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Topic 2.  The Particle in a Box & the Postulates 

and Tools of Quantum Mechanics 

 

 A.  The Particle in a Box 
1.  Motivation:  Organic Dyes 

  The cyanine dye molecules like 

 
or  

 
are often modeled as “electrons in a box.”  To understand why, start by thinking classically.  You 

learn in organic chemistry that electrons can more “freely” along alternating double bonds.  If 

this is true, then you can imagine that the electrons can more from one Nitrogen to the other, 

almost without resistance.  On the other hand, there are sp3-hybridized functional groups 

attached to the Nitrogen atom, so once the electron gets to Nitrogen atom, it has to turn around 

and go back whence it came.   A very, very, very simple model would be to imagine that the 

electron is totally free between the Nitrogen atoms, and totally forbidden from going much 

beyond the Nitrogen atoms.  This suggests modeling these systems a potential energy like: 
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where a is the length of the box. 

2.  The Wavefunctions for the Particle-in-a-box  

 The nice thing about this “particle in a box” model is that it is easy to solve the time-

independent Schrödinger equation in this case.  Because there is no chance that the particle could 

ever “escape” an infinite box like this (such an electron would have infinite potential energy!), 

the wavefunction must be zero outside the box.  In addition, the wavefunction should be zero at 

the edges of the box, because otherwise the wavefunction will not be continuous.  So we should 

have a wavefunction like 

 ( )

0 0

?? 0

0

x

x x a

x a




 =  
 

 (2) 

 How do we find the wavefunction inside the box?  We solve the Schrödinger equation, 

which in this case takes the breathtakingly simple form because the potential is zero inside the 

box: 
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What function(s), when differentiated twice, gives back something proportional to itself?  

Hmmm…a bit of thought reveals that ( )sin cx  or ( )cos cx  satisfy the equation.  So the general 

solution Eq. (3) has the form: 

 ( ) ( ) ( )sin cosn n n n nx A c x B d x = +  (4) 

However, we also know that the wavefunction is zero at the edges of the box.  ( )cos 1dx =  when 

x = 0, so 0nB = .  There is no “cosine part” to the solution.  ( )sin cx  is automatically zero at 

x = 0, but it is only zero at x = a if c is an integer multiple of π/a.  So the only possible solutions 

have the form 

 ( ) sin 1,2,3,n nx A n x n
a

  
 = =  

  
 (5) 

We have now solved our first (of many!) Schrödinger equations. 

 Let us now return to our organic dye molecules. Notice that the wavefunctions of the 

particle-in-a-box closely resemble the wavefunctions you drew for π-conjugated systems like 

these.  If you want to compute the frequency of absorption for a dye molecule like these, you 

first count the number of π-electrons in the system.  Then you fill up the “particle-in-a-box 

orbitals”, two-at-a-time, until you run out of electrons.  The observed excitation energy is the 

energy gap between the highest-occupied-orbital (HOMO) and the lowest-unoccupied-orbital 

(LUMO).   
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3.  Energies of the Particle-in-a-box 

 How do we compute the energies of the particle-in-a-box?  All we have to do is substitute 

the wavefunctions (Eq. (5)) back into the Schrödinger equation.  We obtain: 
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Notice that only certain energies are allowed.  This is a fundamental principle of quantum 

mechanics, and it is related to the “waviness” of particles.  Certain “frequencies” are resonant, 

while other “frequencies” cannot be observed.  The only energies that can be observed for a 

particle-in-a-box are the ones given by the formula in Eq. (6).   

 Naïvely, you might expect that the lowest-energy state of the particle in a box has zero 

energy.  The potential inside the box is zero after all.  Since that’s true, shouldn’t the lowest-

energy state be the state with zero kinetic energy?  And if the kinetic energy is zero and the 

potential energy is zero, then the total energy would also be zero.   

 But this doesn’t happen.  It turns out that you can never “stop” a quantum particle.  Not 

only that, the more you confine the particle (to try to “stop it”), the bigger its kinetic energy gets.  

Since the particle in a box has only kinetic energy, this is clear from Eq. (6): 
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The kinetic energy (related to the average magnitude of the momentum) increases as 1/a2, so the 

smaller you make the box, the faster (on average) the electron moves.   

The residual energy in the electronic ground state is called the zero-point energy: 

 
2

zero pt. energy 28

h
E

ma
=  (8) 

This is a general principle of quantum mechanics.   

Zero-Point-Energy-Principle: 

Let V(x) be a nonnegative potential.  The ground-state energy of 

the quantum system is greater than zero. 

More generally, one has: 
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Minimum-Energy-Bound: 

Given a potential that has a lower bound, V —i.e., 

( )V V  x —the ground-state energy of this system1 is greater 

than V .   

4.  Normalization of the Wavefunction 

We still need to determine An.  These numbers—which are just the amplitude of the 

wavefunction—are not specified by quantum mechanics because the Schrödinger equation for 

any choice of An.  It is convenient, for reasons that will be clear later, to choose An so that the 

wavefunctions are normalized,2 

 ( ) ( )*
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where ( )*

n x  denotes the complex conjugate of ( )x .  Determining An becomes a 

straightforward exercise in trigonometric integration: 
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Notice that this doesn’t totally determine nA .  We can choose, for example: 

 
1  Technically this is true only if the potential supports a bound state.  If the potential is too weak to bind the 

particle, then the particle can have E V= . 

2  While this normalization convention is used 99% of the time, there are some cases where it is more 

convenient to make a different choice for the amplitude of the wavefunctions. I say this to remind you that 

normalization the wavefunction is something we do for convenience; it is not required by physics! 
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or, more generally, any value of the form  

 ( )2 2
1nA k i k

a
=  −  (12) 

where k is any real number.  This arbitrariness of phase is an important aspect of the 

wavefunction.  Because the wavefunction can be imaginary, it is obvious that the wavefunction is 

not an observable property of a system.  The wavefunction is only a mathematical tool that we 

use to solve the equations; it isn’t a “physical” object.   

 The wavefunction contains information about the system.  Indeed, it contains all the 

physically meaningful information about the system.   

 Note that just because the wavefunction contains all of the physically meaningful 

information about the system doesn't mean that it contains “all information.”  In quantum 

mechanics, some things are just not observable.  Consider that when you squeeze the box, the 

root-mean-square average momentum, ( )
2 2

2
2 2

8 2
rms

h n hn
p m T m

ma a
=  = =  increases.  That is, 

the more you try to constrain the particle in space, the faster it moves.  You can’t “stop” the 

particle, no matter how hard you squeeze it.  In fact, if you squeeze down the box infinitely far, 

you’ll find that the particle is moving infinitely fast.   

 

B.  Postulates of Quantum Mechanics 
 Quantum mechanics at the level of the Schrödinger equation can be derived from more 

general principles.  However, it is more useful for us to simply make some assumptions about the 

nature of quantum mechanics. For this reason, I will call the following “postulates.”  These are 

things that cannot be proved, at least not at the level of this course. 

 

1.  The Wavefunction Contains All of the Observable Information About the System 

 This is the most fundamental principle of quantum mechanics.  The wavefunction 

contains all of the physically relevant information about a system.  If the information isn’t in the 

wavefunction, then that information is not observable and, as such, is “philosophy” and not 

“science.”  For one particle in one dimension, the wavefunction looks like ( ),x t .  For N 

particles in d dimensions, it is 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 2

1 1 1 2 2 2, , , ; , , , ; ; , , , ;
d d d

N N Nx x x x x x x x x t , which 

is usually written in the more compact form ( )1 2, , , ,d t x x x  or even just ( ), t .  We often 

summarize this as 

 ( ), everythingt →  (13) 
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2.  The Wavefunction Is Obtained from the Time-Dependent Schrödinger Equation 

How does one find the wavefunction?  One finds the wavefunction by solving the time-

dependent Schrödinger equation. In analogy to the 1-dimensional 1-particle Schrödinger 

equation,3 
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the d-dimensional, N-particle Schrödinger equation is 
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where we have defined the Laplacian in the usual way,  

 
( )( )
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2
1

d

i
i x=


 =  =


 . (16) 

Since the Hamiltonian, Ĥ , determines the solutions to the Schrödinger equation, then we may 

also say that: 

 ( )ˆ , everythingH t →  (17) 

3.  Observable Properties of the System Correspond to Linear, Hermitian Operators4 

 So the wavefunction determines all the observable properties.  How do we determine the 

values of those properties? For classical particles, if you knew the particles’ positions and 

momenta at a given point in time, then you can compute everything else.  Thus, for a property C, 

there exists some function,  

 ( )1 2 1 2, , ; , , ;N NC tr r r p p p  (18) 

that can be used to compute the value of the property.  Quantum mechanics is similar, but now 

there exists a linear, Hermitian, operator that can be used to compute the value of the property.  

 
3  Again, this is true only in the nonrelativistic case.  Incorporating special relativity can be done without too 

much trouble.  However, including general relativity is an open problem in physics, and leads us to the realm 

of things like string theory.  One problem arises in how one deals with the mathematics once the spatial and 

time coordinates are totally interchangeable.  A bigger issue is the fact that mass “curves space” in general 

relativity.  
4  Depending on the sources you read, you may refer hear this type of “allowed operator” called different things.  

A mathematician would say that such operators are self-adjoint (which includes linearity already), and 

consider “Hermitian” to be a small subset of self-adjoint operators.  The full set of quantum mechanical 

operators is even larger than the set of self-adjoint operators.  (Essentially any operator that can be “extended” 

into an “essentially self-adjoint” operator in a nice way is allowed.) Fortunately, for practical calculations—

which are always performed in an approximate way—these nuances do not matter very much. 
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The way that classical functions (which can also be thought of as operators) are transformed into 

quantum mechanical functions is called the correspondence principle.5,6   

 ( ) ( )correspondence principle

1 1 1
ˆ, ; ; , , ,N N NC t C t⎯⎯⎯⎯⎯⎯⎯→r r p p r r  (19) 

 An operator is linear if  

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2
ˆ ˆ ˆ, , , , , , ,C t a t b t a C t t b C t t +  =  +   (20) 

for any complex numbers a and b ( ,a b ) and any wavefunctions ( )1 , t  and ( )2 , t .  

Why do observables correspond to linear operators?  This is a deep result from mathematics.  It 

arises from the mathematical structure of quantum mechanics.7  I can’t expect you to know it, but 

I’ll (try to) explain it in a footnote.8 

 An operator has the “Hermitian property” if it satisfies the relation 

 
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )2

*

1

*

1 2

*

1

2

* *

2 1

ˆ , , ,

,

ˆ, , ,

ˆ, , ,, ˆ ,

C t t t d

t C t t d

t C t t d

t C t t d

 



=  

=  




 (21) 

In words, the Hermitian property means that ( )ˆ ,C t  can operate “either forwards (on 2 ) or 

backwards (on *

1 ).”9   

 
5  A better term would be correspondence principles, because there are many different ways to define quantum 

mechanical operators that are equivalent to their classical definition.  Some of the resulting operators are, 

however, nonlinear. 
6  This is rather similar to the situation in classical mechanics.  There, if you know Hamilton’s principle 

function, ( )1, , ,NS tr r , you can compute any property as: 

  ( )1 1, ; , , ;N NC S S t r r  

Notice that this says you can compute the value of any observable in classical mechanics using a function (S) 

that depends on the same number of variables as the time-dependent wavefunction. 
7  However, one can choose expressions for observables that are not linear in the wavefunction.  Those 

expressions, however, are always equivalent to a different, linear, expression.  A good example is the kinetic 

energy, which can be computed from either the “standard” expression 

( ) ( ) ( )
2

* 2

1

ˆ , ,
2

N

i

i i

T t t t d
m=

 
=  −   

 
  

 or from 

( ) ( ) ( )( )
2

*

1

ˆ , ,
2

N

i i

i i

T t t t d
m=

=     . 

 Notice that the second result doesn’t have the form that we “expect” for a quantum mechanical observable.  

However, it is an allowed expression because it is mathematically equivalent to the first form. 

8  The key is that ( ) ( )1
ˆ , ,C t t  must also be a physically reasonable wavefunction, 

( ) ( ) ( )1
ˆ, , ,C t C t t =  .  Requiring that ( ),C t  is a “mathematically legal” wavefunction 

means that ( )ˆ ,C t  must be in the “dual space” to the space of all “mathematically legal” wavefunctions, 

which means that ( )ˆ ,C t  should be a bounded linear operator on the space of “mathematically legal” 

wavefunctions.  I turns out that the “boundedness” constraint can be relaxed. 
9  This is especially clear if you consider a real-valued operator, where 

*ˆ ˆC C= . 
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Why is it essential that the operators be Hermitian?  The expectation value of an 

observable at time t for the system described by the wavefunction ( ), t  is computed using 

 ( ) ( ) ( ) ( )* ˆ, , ,C t t C t t d=    (22) 

This number should obviously be real.  Suppose that ( )Ĉ t  were not Hermitian.  Then there 

would be some wavefunction for which: 

 ( ) ( ) ( ) ( ) ( ) ( )( )
*

* ˆ ˆ, , , , , ,t C t t d t C t t d       (23) 

But this implies that  

 ( ) ( )
*

C t C t  (24) 

If a number is not equal to its complex conjugate, then it must be a complex number.  But 

experimental observables are all (obviously!) real numbers.  Therefore, experimental observables 

must correspond to Hermitian operators. 

 Not every value for an observable will actually be observed.  In fact, the only 

experimentally observable values for the property C  are the eigenvalues of the operator,  

 ( ) ( ) ( ) ( )
these are the
only values that
are observable!!

ˆ , , ,k k kC t t c t t =   (25) 

Let’s go back to the particle-in-a-box.  We said that the energies of the particle-in-a-box were  

 
2 2

28
n

h n
E

ma
=  (26) 

These were the only possible energies for the particle in a box.  No other values of the energy can 

be observed.  This is a consequence of the “waviness” of particles:  if you think about waves in a 

cavity, there are only certain frequencies, certain energies, etc. that can be observed.  Similarly, 

there are only certain “special values” of properties that can be observed for a particle, and these 

values are the eigenvalues of the linear, Hermitian, operator for that property. 

Equation of Motion for an Operator:  An example of the use of the Hermitian 

Property 

 How does the expectation value of a property change in time?  Starting with the 

definition in Eq. (22) 

Consider  

 
( ) ( ) ( ) ( )* ˆ, , ,d t C t t dd C t

dt dt

 
=


 (27) 

We can pull the derivative inside the integral, and then we get: 

( )
( )

( ) ( ) ( )
( )

( )

( ) ( )
( )

*

*

*

ˆ, ,ˆ , , , ,

,ˆ, ,

t C t
C t t t td C t t t d

dt t
t C t

t

  
 +  

  =
 
+ 

 

  (28) 

The time-dependent Schrödinger equation tells us that 
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which allows us to rewrite the equation for the time-dependence of an operator as 
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*

*

*

*

*
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ˆ
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,
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C t
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t C t
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i tt C t H t t
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i t C t H t H t C t t d
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H t

H t t

 −  
 = +  
  +  

 −  
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 
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( )
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ˆ ,

, ,
C t

t t d
t





  (30) 

Notice that we used the Hermitian property of the operator in next-to-last line,  

 ( ) ( ) ( ) ( ) ( )( ) ( )2

** *

1 1 2
ˆ ˆ ,, ,,, ,C t C tt d tt dt  =   . (31) 

Suggested Exercise:  Suppose that the operator for the property of interest does not 

depend on the time.  So one can replace ( )ˆ ,C t  with just ( )Ĉ .  Show that the 

expectation value of the property does not change in time only if one or more of the 

following three properties holds: 

•   is an eigenfunction of the Hamiltonian. 

• Ψ is an eigenfunction of the property operator, ( )Ĉ . 

• The Hamiltonian and the property commute, ˆ ˆˆ ˆHC CH= . 

 

Suggested Exercise:  Show that the eigenvalues of a Hermitian operator are always real. 

 

Suggested Exercise:  Different textbooks use different definitions of Hermitian 

operators. 

Definition #1.  A Hermitian operator, ( )Ĉ , satisfies  

( ) ( ) ( ) ( ) ( )( ) ( )* * *ˆ ˆC d C d      (32) 

for any wavefunction ( ) . 

Definition #2.  A Hermitian operator, ( )Ĉ , satisfies  

( ) ( ) ( ) ( ) ( )( ) ( )* * *

1 2 1 2
ˆ ˆC d C d      (33) 

for any two wavefunctions ( )1  and ( )2 . 
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These two definitions are equivalent!  It is easy to see that Definition #2 implies 

Definition #1; just choose ( ) ( ) ( )1 2 = = .  Show that Definition #1 implies 

Definition #2. 

 

4.  The Eigenvectors of an Operator form a Complete, Orthonormal, Set of Functions 

 The set of all of the eigenvalues and eigenvectors of an operator is called its spectrum.  It is a 

general theorem of mathematics, called the spectral theorem, that the set of all eigenvectors of an 

operator is a complete set.  This is a deep result and, unfortunately, it is beyond the scope of this course 

to prove this.   

There are three types of spectra.   

a. Discrete Spectrum 

The simplest, and most commonly used in chemistry, spectrum is a discrete 

spectrum.  In this case, there are a countable number of eigenvalues and eigenvectors, 

which can be labeled k = 0, 1, 2, …, 

 ( ) ( ) ( ) ( )ˆ , ,k k kC t t c t t =  (34) 

Any wavefunction can be expanded in terms of the eigenvectors,  

 ( ) ( ) ( )
0

, ,k

k

kb tt t


=

 =  (35) 

In the most important case where the operator is not time-dependent, this becomes simply 

 ( ) ( ) ( )ˆ
k k kC c =  (36) 

Any wavefunction can be expanded in terms of the eigenvectors,  

 ( ) ( )
0k

k kb 


=

 =  (37) 

Because any wavefunction can be expanded in terms of the eigenvectors of the operator, 

we say that ( ) 
0k k




=
 is a complete set of functions.  In the language of linear algebra, 

( ) 
0k k




=
 is a basis for the space of all possible wavefunctions.  Notice that   is fully 

specified by the coefficients of the basis functions,  0 1, ,a a , and so it looks like a 

vector.  For this reason, you will sometimes hear people call    a wave vector (instead 

of a wavefunction).10 The space of all wavefunctions is an infinite-dimensional vector 

space.  Infinite-dimensional vector spaces are called Hilbert spaces. 

 The eigenvectors of a linear, Hermitian operator can always be chosen to be 

orthonormal,  

 ( ) ( )*

l k kld  =  (38) 

where kl  is called the Kronecker delta.  The Kronecker delta is just the infinite-

dimensional identity matrix,  

 
10  I do not like this term because the wave vector in classical electromagnetism is something very different. 
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1 0 0

0 1

0

0 0 1

0

1
kl lk

k l

k l



 

= = 
 
 
 
 
 
 


= = 

=

I

 (39) 

If one works in matrix notation, the defining “identity” property of the identity matrix is  

  
0

0

lk
k

k

l

k

k

l k

b b

b



=



=

=

=

=





I

bIb

 (40) 

The key defining property of the Kronecker delta is likewise 

 
0

l kkl

k

b b


=

=  (41) 

 How does one determine the coefficients of the expansion in Eq. (37)?  Multiply 

both sides of the equation by ( )*

l  and integrate, obtaining 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

* *

0

*

0

*

0

0

*

l l k

k

l

l k

k

l k

k

k

kl

k

k

k

k

l

d d

d

d

b

b

b

b

d b

  

 

 







=



=



=



=

 
 =  



 

 
=  



=



=

=

 











 (42) 

Substituting this equation into Eq. (37) gives  

 ( ) ( ) ( ) ( )*

0

k k

k

d 


=

    
 

=   (43) 

 

An example of a discrete spectrum is the energy spectrum of the particle-in-a box. 

 The spectrum of the Hamiltonian in the particle-in-a-box is discrete. It is obvious 

that the set of all eigenvectors is a complete set because  

 ( )
( )

0

12
sink

k

k x
x b

a a



=

+ 
 =  

 
  (44) 
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is just the Fourier series for a function defined on 0 x a   that is zero at the edges of the 

interval.11  It is a small, but useful, exercise to show that  

 
( ) ( )

*

0

1 12 2
sin sin

a

kl

l x k x
dx

a a a a

 


   + +   
=          

      
 . (45) 

 

b. Continuous Spectrum 

 The second most common type of spectrum in chemistry is a continuous 

spectrum.  Operators with a continuous spectrum can have any value in a specified range.   

 

An example of an operator with continuous spectrum is the position operator. 

 For the particle in a box, an example of an operator with a continuous spectrum is 

the position operator, x.  The position of the particle can be any real number between 0 

and a.   

 The eigenfunctions of the position operator are called the Dirac delta function, 

( ) ( )0 0x x x x = − .12 The Dirac delta function is the “identity matrix in real space,” and 

is analogous to the Kronecker delta function when summation is replaced by integration,  

 ( ) ( ) ( ) ( ) ( )0 0 0d d  =  =  −   (46) 

Equation (46) is called the sifting property of the Dirac delta function. 

Because the eigenvectors of an operator are a complete set, any wavefunction can 

be expanded in terms of a infinite linear combination of Dirac delta functions, and this is 

what Eq. (46) indicates.  Analogous to the Kronecker-delta definition of Eq. (39),  

 ( ) 0

0

0

0



− = 

+ =
 (47) 

 Choose ( ) 1 =  in Eq. (46).  Notice that the Dirac delta function is not 

normalized in the usual way; one has  

 ( )0 1d − =  (48) 

but 

 ( )( ) ( )
*

0 0 1d − − →  . (49) 

This does not cause any problems, because if ( )0f  is an eigenfunction of the position 

operator at 0= , then ( )0kf  also is, where k is any constant.  The normalization 

condition in Eq. (48) is chosen to be most nearly analogous to the Kronecker delta,  

 
0

1kl

k




=

= , (50) 

which follows from choosing 0 1 21 b b b= = = =  in Eq. (41). 

 
11  Specifically, this is the Fourier half-range series expansion. 
12  In physics the eigenfunctions of position are usually called the field operators and are denoted ( )ˆ x .  The 

field operators are normalized, but they are difficult to deal with compared to most of the quantities we will 

use in the course.  After you know how to use them, however, they are very beautiful.  
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The wavefunction can be defined as a “linear combination” of Dirac delta 

functions, in analogy to Eq. (37).  However, because the number of possible values for 

the position is not countable, the sum in Eq. (37) is replaced by an integral,  

 ( ) ( ) ( ) ( ) ( )0 0 0bd db   = = −   (51) 

Notice that  is the analogue of k in this expression.  Equation (42) is also replaced by an 

integral: 

 ( ) ( ) ( ) ( ) ( )b d d   =  =  −   (52) 

and so Eq. (43) becomes 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

d d

d d









   
 

 −

=

= = 




 (53) 

There are many other examples of operators with continuous spectra.  If ( )f  denote 

the eigenvectors of these operators with eigenvalues κ, then the formula for the expansion 

is  

 ( ) ( )( ) ( ) ( )
*

d df f   = 
    (54) 

 To understand the Dirac delta function better, let us think about the Dirac delta 

function in one dimension.  The one-dimensional Dirac delta function can be defined as 

follows,  

 

( ) ( )

( )

0 0

0

0

0

0

lim

1

2

0

h

h

h

x x d x x

x x h
hd x x

x x h


→

− = −


− 

− = 
 − 

 (55) 

This corresponds to the limit of an infinitely thin, unit-area box centered at x0.  There are 

many other ways to write the delta function.  One of my favorites uses hyperbolic 

functions,  

 ( ) ( )( )( )21
0 02

lim sechx x x x


  
→

− = −  (56) 

Notice how the curves get higher and higher, but the area under the curves remains the 

same. 
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c. Mixed Spectrum 

 An operator that has partly continuous spectrum but also some discrete 

eigenvalues is said to have a mixed spectrum.   

 

An example of an operator with a mixed spectrum is the Hamiltonian for the electrons in 

an atom or a molecule. 

The electronic energy spectrum of every atom and molecule is a mixed spectrum.  

The discrete spectrum corresponds to the bound states of the system.  So, at first, when 

one puts energy into the electrons of an atom/molecule one jumps up in energy (1s to 2s 

to 3s to …) in discrete chunks.  At some point, one has added enough energy to the 

system to ionize an electron; at this point the ionized electron is unbound, and can have 

any energy, depending on how much kinetic energy it is given.  So the electronic 

spectrum of atoms and molecules is discrete up until the ionization threshold, and 

discontinuous afterwards.  If one denotes the eigenvectors of an atom/molecule by 

( )k , then the expansion in terms of those eigenvectors is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

bound

. .

bound

.

*

0

.

*

number of bound electronic energy states

ionization potential

E ground state energy

g s

Ek E

N

k E IP

k

g s

d d

N

IP

Ed 


= +



=

         


= +

=



=

   

 

 

 The Dirac Delta Function on a Basis:  An Example of Basis-Set Expansion. 

 The Dirac delta function can be written in a complete, discrete, basis as 

- 0.5 0.5 1.0 1.5

2

4

6

8

10
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 ( ) ( ) ( )*

0 0

0

k k

k

  


=

− =  (57) 

To prove this, we need to prove that Eq. (46) holds.  Substitute Eq. (57) into Eq. (46); 

 

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

* *

0 0

0 0

0

0

0

k k k k

k k

k k

k

d d

b

   



 

= =



=

 = 

=

= 

  

  (58) 

In the second line we used Eq. (42). 

Equation (57) is called the Poisson kernel. When the sum stops at some point 

(e.g., k = 10,000, just for computational utility), it is called the Christoffel-Darboux 

kernel. 

 

Why do we call the functions and numbers in ( ) ( ) ( ) ( ) ( ) ( )ˆ k k k
C c =  eigenfunctions 

and eigenvalues?  An example of the use of the basis-set expansion theorems. 

We have been consistently referring to ( ) ( ) 
0

k

k




=
 and ( ) 

0

k

k
c



=
 as the eigenvectors and 

eigenvalues of the linear, Hermitian, operator ( )Ĉ  

 ( ) ( ) ( ) ( ) ( ) ( )ˆ kk k
C c =  (59) 

What do these quantities have to do with the eigenvectors and eigenvalues in linear algebra? 

 Suppose that ( ) 
0i i




=
 is a complete basis.  We can expand the wavefunctions in Eq. (59) in 

this basis set.  We have  

 
( ) ( ) ( ) ( )

0

k k

j j

j

b 


=

=  (60) 

with (cf. Eq. (42)) 

 
( ) ( ) ( ) ( )*k k

j jb d =  . (61) 

Substitute Eq. (60) into the left-hand-side of Eq. (59), 

 ( ) ( ) ( ) ( ) ( ) ( )
0

ˆ k

j j

j

k k
cbC 



=

=  (62) 

Because ( )Ĉ  is a linear operator, we can (a) pull it inside the summation and (b) pull the expansion 

coefficients outside the operator.  So  

 
( ) ( ) ( ) ( ) ( ) ( )

0

ˆ

j

k kk

j jC cb 


=

= . (63) 

Now, just as we did in deriving Eq. (42), multiply both sides of the equation by ( )*

i  and integrate.  

Then  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

* *

*

0

0

*

ˆ

ˆ

k k

i i

k

i

j

k

k

j j

j

k

j j i

b C d c d

C dbd c



 





 






=

=

=

 
 

= 

 

 


 (64) 

Now the right-hand-side of this equation is just the expansion coefficient (cf. Eq. (61)), so we have 

 ( ) ( ) ( ) ( ) ( ) ( )*

0

ˆ
j

k

i j

k

i

k

j

bd c bC 


=

 
 

=   (65) 

Define a matrix C with elements  

 ( ) ( ) ( )  * ˆ
ij i j ij

c C d = = C  (66) 

Then Eq. (65) is equivalent to  

 
( ) ( ) ( )

0

k

j i

k

j

k

i

j

c bb c


=

=  (67) 

or in matrix notation,  

 
( ) ( ) ( )k k k

c=Cb b  (68) 

The eigenvectors of C are ( ) 
0

k

k



=
b  and the eigenvalues of C are ( ) 

0

k

k
c



=
.  This indicates that 

solving for the eigenvalues/eigenvectors of a linear-Hermitian operator is equivalent to solving 

for the eigenvalues/eigenvectors of a infinite-dimensional Hermitian matrix. 

Suggested Exercise:  Show that Hermitian operators in quantum mechanics correspond 

to Hermitian matrices (that, is matrices A whose elements satisfy *

ij jia a= ) in linear 

algebra.   

Suggested Exercise:  Show that if that you an transform between two complete, 

orthonormal basis sets, ( ) 
0k k




=
 and ( ) 

0k k




=
, using a unitary transformation.  That 

is, if you have an expansion in one both bases,  

 ( ) ( ) ( )
0 0

k k k k

k k

b b  
 

= =

 = =   (69) 

that the relationship between the coefficients of the two expansions is given by  

 0

k kl l

l

b U b 

 



=

=

=



b Ub

 (70) 

where U is a unitary matrix.  A unitary matrix is a matrix whose conjugate-transpose is 

its inverse.  So,  

 

( )

( )

* †

*

0

T

km lk lm

l

u u


=

= =

=

I U U U U

 (71) 

If you find this difficult, use the particle-in-a-box eigenfunctions as a special case.  Try to 

show this for two different box widths for example, a = 1 and a = 2.  Then you would 

have, explicitly,  
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( ) ( )( )

( )
( )

2 sin 1

1
sin

2

k

k

x k x

k x
x

 




= +

+ 
=  

 

 (72) 

Suggested Exercise:  Show that if two eigenvectors of a linear, Hermitian, operator have 

different eigenvalues, then these eigenvectors are orthogonal.  

 

4.  The Square of the Wavefunction is Probability 

What does the wavefunction mean?  Well, since the wavefunction can be imaginary, it 

obviously can’t mean anything.  How do we turn a complex-valued function into something that 

is real-valued?  We take its complex magnitude.  The complex magnitude of the wavefunction, 

squared,  

 ( ) ( ) ( ) ( )
2 *, , , ,p t t t t=  =    (73) 

is the probability of observing the system at the spatial location  at the time t.  Since 

probabilities are measurable but wavefunctions are not, sometimes it is said that “the 

wavefunction is the square root of reality.”  The idea that the complex-square-magnitude of the 

wavefunction equal to the probability originated with Max Born, and is called the Born postulate 

in his honor. 

 Eq. (73) cannot really be derived, but it can be justified.  To do this, we need to 

“interpret” the Dirac delta function.  It is zero everywhere except at one point, 0 , and it goes to 

infinity at 0 that point in a way that ensures that ( )0  is normalized. The Dirac delta 

function is the probability distribution function for an elementary particle at 0 .  Related to this, 

the Dirac delta function is the linear, Hermitian, operator for “probability of a particle being at 

0 .  So the property “probability of a point being at 0 ” can be computed as 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

*

0 0 0

*

0

2

0

2

0

p d

d

d

 





= − =  − 

= −  

= − 

= 






 (74) 

We used the sifting property of the Dirac delta function in the last line.  The “derivation” in (74) 

helps “justify” the probabilitistic interpretation of 
2

 .   

C.  Allowed Forms for Wavefunctions 
 We have frequently talked about the “space of all wavefunctions.”  What is this space?  

I.e., when is a function a possible wavefunction, and what types of functions can never be a 

wavefunction for anything?   

 The key to answering this question is the probabilistic interpretation of 
2

 .  Since 
2

  

is a probability, and the particle must be somewhere, the integral of 
2

  over all space must be 

one:  
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 ( )
2

1 d=   (75) 

This defines a set of wavefunctions but not a space:  to be a space, it must be that if ( )1  and 

( )2  are wavefunctions, then any complex linear combination of them, ( ) ( )1 1 2 2c c +  , 

must also be a wavefunction.  Mathematically, it is much easier to deal with spaces than it is to 

deal with sets.  Fortunately, as we discovered with the particle in a box, if Eq. (75) is not 

satisfied, then we can normalize a wavefunction so that it is by simply performing the 

replacement: 

 ( )
( )

( )
2

d


 →


 (76) 

 We can now define the space of all wavefunctions in two equivalent ways: 

• The space of wavefunctions contains is the space of all wavefunctions that are 

normalizable, plus any function that can be reached as the limit of a convergent sequence 

of these functions.13  This means that the space of all wavefunctions is the space of all 

functions for which 

 ( )
2

d    (77) 

• The space of all wavefunctions that can be written as  

 ( ) ( )0c =   (78) 

where c  is a complex number and ( )0  is a normalized wavefunction.  (I.e., 

( )0  satisfies Eq. (75).) 

In practice, certain other types of wavefunctions—e.g., plane waves ( ( ) ( )
,

i kx t
x t e

−
 = ) or Dirac 

delta functions—are also sometimes allowed.  However, the extension of the theory to include 

those wavefunctions is beyond the scope of this course. 

 The space of all functions, ( )t , for which  

 ( ) ( )* d     (79) 

 is called ( )2 d , where d is the spatial dimension of the space.14  (That is, ( )dimd = .)  This 

is called the space of Lebesgue-2 integrable functions, or simply “el-two” by mathematicians.  

El-two is the most famous Hilbert space in the world.  Though “famous” is probably not the right 

word.   

 The space of all wavefunctions is gigantic.  It has infinitely many dimensions.  There are 

many wavefunctions that are very strange, but which are totally acceptable mathematically.  A 

few strange cases: 

 
13  The portion of this statement “plus any function….sequence of these functions” is required to form a space, 

because every space has to have a zero element, but the zero element has ( )
2

0d = , and is thus not 

normalizable in the sense of Eq. (76). 
14  For technical reasons, it is sometimes useful to allow the positions of particles (which are necessarily real) to 

be complex.  In that case one works in ( )2 d
. 
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• The wavefunction can be infinitely large at some points.  Such wavefunctions are usually 

considered “not physically reasonable” but there are Hamiltonians that are interesting to 

physicists that have infinite wavefunctions. 

• The wavefunction can be discontinuous.  Such wavefunctions are believed to be 

“nonphysical” (i.e., they are not “real world” wavefunctions) and are rarely, if ever, 

useful.  But they are mathematically allowed. 

• A derivative of the wavefunction can be discontinuous.  For example, the first derivative 

of the particle-in-a-box wavefunction is discontinuous at the boundary of the box.  The 

first derivative of the wavefunction for the hydrogen atom is discontinous.15   

There are also things that no wavefunction will ever do. 

• If a wavefunction is infinite at some points in space, , then the volume of that set of 

points must be zero.  So, 

 
( ) 

0 d=

=  = 


 (80) 

• The derivative of an eigenfunction of a Hamiltonian, ( )Ĥ , can only be discontinuous if 

the potential energy is discontinuous at .   

The set of “physically reasonable” wavefunctions is sometimes defined as the set of 

wavefunctions that are eigenfunctions for some “reasonable” (i.e., “interesting”) Hamiltonian. 

Most “physically reasonable” wavefunctions are less than infinity everywhere, decay rapidly as 

one moves away from the system, and “nice” in the sense that they are infinitely differentiable 

almost everywhere.   

 

Suggested Exercise:  Give an example of a wavefunction that is infinite at the origin 

( 0 ), but nowhere else.  (Hint:  use polar/spherical coordinates in two/three 

dimensions.)   

D.  Linear Algebra and Quantum Mechanics 
  

1.  Dirac Notation:  Bra’s and Ket’s 

 Eventually we all get tired of writing integrals.  Working in the early 1930’s, a man 

named Paul Dirac got tired of writing integrals and decided to replace integrals like 

 ( ) ( ) ( )

can operate
backwards

can operate
forwards

integral
over all
space

*

1 2

just a 
"dummy"
variable

ˆd C

⎯⎯⎯⎯⎯

⎯⎯⎯⎯⎯→

 
 
  
 
  
 

  (81) 

with a compact notation,  

 1 2Ĉ   (82) 

• There is no mention of the limits of integration because this is always “clear from the 

problem” and, in any event, can always be taken to be all of real space.   

 
15  This is only true if one assumes that the proton is infinitely small, which is almost (but not quite) true. 
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• Because of the Hermitian property of the operator, ( )Ĉ  it can operate either “forwards” 

(on ( )2 ) or “backwards” (on ( )*

1 ).   

• The variable of integration does not need to be specified since it is just a “dummy 

variable.” I.e., you can change  to another variable with the same dimensionality, u , 

without changing the interpretation of Eq. (81). 

Dirac called the first part of the notation, with the complex-conjugated wavefunction, a “bra”, 

and the second part a ket. 

 
1 2

bra ket

Ĉ   (83) 

Together you have a “bra Ĉ ket”.  Who says physicists are immune to bad puns? 

 Everything before the first vertical line in a bracket is automatically complex conjugated.  

Sometimes the second vertical line is omitted, and then one has notation like 

 
1 2 1 2

ˆ ˆC C  =    (84) 

This is a very compact notation.  It was basically motivated by the tendency of physicists and 

mathematicians to write expectation values (that is, mean values) as C . From there it is a short 

notational step to:  

 ˆC C=    (85) 

When you see an bra all by itself, it indicates the complex conjugate of the wavefunction: 

 ( )* = . (86) 

An isolated ket means 

 ( ) = . (87) 

Dirac has Asperger’s syndrome and was quite immune, it seems, from making sexually 

suggestive remarks about “bra”s.  It seems to have never occurred to him.  However, there are 

strange mathematical objects, which I saw in a physics seminar a long time ago, called “padded 

bras.”   

2.  Linear Algebra and the Analogy to Quantum Mechanics 

 Aside from its utility for making jokes (which are in short supply in physics seminars) 

and the fact it saves one from writer’s cramp, physicists like Dirac notation because it makes it 

easier to see the analogies between linear algebra and the mathematics of quantum mechanics.  

Almost every result in linear algebra has an analogue in quantum mechanics. 
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Quantum Mechanics Linear Algebra 

Infinite-dimensional complex-valued vector space. (“Hilbert space.”) Finite-dimensional complex-valued vector space.  

(Could also be a real-valued vector space.) 

Wavefunctions, ( ) =  . d-dimensional vectors, v 

Complex-conjugate wavefunctions, ( )* =   Hermitian transpose of vectors, ( ) ( )
*

† *
T

T= =v v v . 

Space of all wavefunctions is the space of all ( )  for which  

( ) ( )* d    =    

Space of all vectors is the space of all v for which  
†  v v  

Norm of wavefunctions is  

( ) ( )* d =   =    

Norm of vectors is 
†=v v v  

Inner product between wavefunctions is 

 ( ) ( )*

1 2 1 2d  =    

 

Inner product (“dot” product) between vectors is 
† *

1 2 1 2= v v v v  

Linear Hermitian Operators, 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

*
*

1 2 1 2

* *

1 2

1 2 1 2 1 2

ˆ ˆ

ˆ

ˆ ˆ ˆ

C d C d

C d

C C C

  =  

=  

  =   =  

 

  

Hermitian Matrices, ( )* †
T

= =C C C . 

( )
††

1 2 1 2=v Cv Cv v  



 23 

 

Eigenvalues of Linear, Hermitian, operators are real and the corresponding 

eigenvectors can be chosen to form a complete, orthonormal, set 

( ) ( ) ( )

( ) ( )*

ˆ

ˆ

k k k k

k l kl

k k k

k l kl

C c c

d

C c





 =  

  =

 = 

  =


 

Any wavefunction can be written as: 

 

( ) ( ) ( ) ( )*

0

0

k k k k

k

k k k k

k

b b d

b b



=



=

 =  =  

 =  =  

 


 

 

Eigenvalues of Hermitian matrices are real and the 

corresponding eigenvectors can be chosen to form a 

complete, orthonormal, set 

†

k k k k

k l kl

c c



= 

=

Cv v

v v
 

 

Any vector can be written as 
1

†

0

d

k k k k

k

b b
−

=

= =u v v u  

Inner product expressed with a basis set. 

( ) ( )

( ) ( )

( ) ( )

0 0

0 0

* *

0

k k k k

k k

k k k k

k k

k k

k

b b

a a

d b a



 

 

= =

 

= =



=

 =  = 

=  = 

 =  =

 

 



 

 

Suggested Exercise:  Derive this result. 

Inner product expressed with a basis set 
1

0

1

0

1
† *

0

d

k k

k

d

k k

k

d

k k

k

b

a

b a

−

=

−

=

−

=

=

=

=







u v

w v

u w
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Linear, Hermitian, operator expressed with a basis set 

( ) ( ) ( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

*

0 0

*

*

0 0

0 0 0

*

0

*

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

k l

kl

k l kl

kl lk k l k l

l

k l

k l

k l

k l

k k l

k l k l

C

c

C

C d

C c

c c C d C

 

= =

 

= =

   

= = = =

   

=  

  

    

 

   =



=  



=  

=















 

Matrix expressed with a basis set 

( )
1 1 1 1

† † †

0 0 0 0

†

d d d d

k k l l k kl l

k l k l

kl k l

c

c

− − − −

= = = =

= =

=

 C v v Cv v v v

v Cv

 

 

Action of a linear, Hermitian, operator on a wavefunction, 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )

0 0

*

* *

* *

0 0

0 0

0 0

0 0

ˆ ˆ

ˆ ˆ

ˆ ˆ

k k k k

k k

k k k

kl lk k l k l

k k l l

k l

k kl l

k l

k k l l

k l

k kl l

k l

b b

b d

c c C d C

C C d d

c b

C C

c b

 

= =

 

= =

 

= =

 

= =

 

= =

 =  = 

=   =  

   = =   =  

       =     

= 

 =     

= 

 





 

 



   

Suggested Exercise:  Derive this result. 

Action of a matrix on a vector, 
1

†

0

†

1 1
†

0 0

1 1

0 0

d

k k k k

k

kl k l

d d

k kl l

k l

d d

k kl l

k l

b b

c

c

c b

−

=

− −

= =

− −

= =

= =

=

=

=





 

u v v u

v Cv

Cu v v u

v

 

This is equal to the usual formula if the basis is 

chosen so that vk is the vector that is all zeros, except 

for a 1 in the k-1st position. 
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Product of two linear, Hermitian, Operators 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

ˆ ˆ

ˆ ˆ

ˆ ˆˆ ˆ

k k l l k kl l

k l k l

m m n n m mn n

m n m n

k k l m n n

k l m n

k kl mn n

k l m n

k kl ln n

k l n

m

k n kl ln

l

l

lm

C C c

D D d

CD C D

c d

c d

c d



   

= = = =

   

= = = =

   

= = = =

   

= = = =

  

= = =

=

     =  

     =  

=      

=  

=  

=

 

 

 

 







0 0 0k n

  

= =

  

 

 

Suggested Exercise:  Derive the expression for ˆ ˆCD   in this basis set. 

Product of two matrices: 

( )

( )

1 1 1 1
† † †

0 0 0 0

1 1 1 1
† † †

0 0 0 0

1 1 1 1
†

0

0

†

0 0 0

1 1 1 1
†

0 0 0

d d d d

k k l l k kl l

k l k l

d d d d

m m n n m

m

l m

mn n

m n m n

d d d d

k kl mn n

k l m n

d d d d

k kl n nm

k l m n

k kl ln

l

c

d

c d

c d

c d



− − − −

= = = =

− − − −

= = = =

− − − −

= = = =

− − − −

= = = =

= =

= =

=

=

=

 

 





C v v Cv v v v

D v v Dv v v v

C

v

v vD v v

v v

v
1 1 1

†

0 0 0

1 1 1
†

0 0 0

d d d

n

k l n

d d d

k n kl ln

k n l

c d

− − −

= = =

− − −

= = =

=



  v v

  

This is equal to the usual formula if the basis is chosen 

so that vk is the vector that is all zeros, except for a 1 

in the k-1st position. 
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D.  Momentum and Position 

1.  The Momentum Operator in Quantum Mechanics 

The operator for position in quantum mechanics is just the position itself, , or, in one 

dimension x.  The expectation value of the position is thus  

 ( ) ( ) ( )
2

* *d d=   =    (88) 

 

 

 

 

 

 

--correspondence principle 

 

2.  The Momentum-Space Wavefunction 

 

3.  The Heisenberg Uncertainty Principle 

 

 

 

 

 

 

Suggested Exercise:  Consider a system whose wavefunction has the form 

( ) ( )a =  , where ( )   is real and a  is complex. Show that the average 

momentum of the system is always zero. 

Suggested Exercise:  Derive the general formula for the average momentum of the 

particle in a box.  Recall that in this case ( )
2

sinn

n x
x

a a

 
 =  

 
. 

Suggested Exercise:  Show that the kinetic-energy operator, 
2 2

22

d

m dx

−
, for a one-

dimensional system is Hermitian. 
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