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Introduction. David Griffiths, in his Introduction to Quantum Mechanics (2"¢
edition, 2005), is content—at equation (1.1) on page 1—to pull (a typical
instance of) the Schrédinger equation
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out of his hat, and then to proceed directly to book-length discussion of its
interpretation and illustrative physical ramifications. I remarked when I wrote
that equation on the blackboard for the first time that in a course of my own
design I would feel an obligation to try to encapsulate the train of thought
that led Schrodinger to his equation (1926), but that I was determined on this
occasion to adhere rigorously to the text. Later, however, I was approached by
several students who asked if I would consider interpolating an account of the
historical events I had felt constrained to omit. That I attempt to do here. It
seems to me a story from which useful lessons can still be drawn.

1. Prior events. Schrodinger cultivated soil that had been prepared by others.
Planck was led to write E = hv by his successful attempt (1900) to use the
then-recently-established principles of statistical mechanics to account for the
spectral distribution of thermalized electromagnetic radiation. It was soon
appreciated that Planck’s energy/frequency relation was relevant to the
understanding of optical phenomena that take place far from thermal
equilibrium (photoelectric effect: Einstein 19os; atomic radiation: Bohr 1913).
By 1916 it had become clear to Einstein that, while light is in some contexts well
described as a Maxwellian wave, in other contexts it is more usefully thought
of as a massless particle, with energy F = hv and momentum p = h/\. The
mechanical statement E = cp! and the wave relation \v = ¢ become then
alternative ways of saying the same thing. Einstein had in effect “invented the
photon” (which, however, did not acquire its name until 1926, when it was
bestowed by the American chemist, Gilbert Lewis).

In 1923, Louis de Broglie—then a thirty-one-year-old graduate student at
the University of Paris—speculated that if light waves are in some respects

! This is the relativistic statement E = c¢y/p? + (mc)? in the limit m | 0.
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particle-like, perhaps particles are in some respects wave-like, with frequency
and wavelength that stand in the relation (hv) = cy/(h/)\)2 + (mc)2.2 Tt was
obvious to others that if particles are indeed in some respects “wave-like” then
they should exhibit the interference and diffractive effects most characteristic
of waves. Electron diffraction was in fact observed by Davisson & Germer at
Bell Labs in 1927, but by then Schrodinger had already completed his work.

Schrédinger cannot have been the only one to appreciate that the wave-like
properties of particles—if any—must be describable by a wave equation of some
sort. Because de Broglie had been led to his idea by Einstein and relativity,
so also—and for that reason—were Schrodinger’s initial efforts relativistic. He
observed that if one looks for planewave solutions

o(z,t) = exp {;[p-z — Et]}
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one immediately recovers (E/c)? = p-p+ (mc)?, but when he attempted to use
a modification of the preceding equation® to compute the energy spectrum of
hydrogen he obtained results that were not in agreement with the measured
values.*

2 This is more neatly formulated w = cvVk2 + 32 , where w = 27v, k = 27/
and » = mc/h. De Broglie had written mc?> = hv and interpreted v to refer
to some kind of “interior vibration.” He then set the particle into motion
and observed that m increased while v—owing to time dilation—decreased, so
had a sophomoric “paradox” on his hands. It was from an effort to resolve the
paradox—mnot from mere idle word play—that his idea was born. For an English
translation of his brief paper, visit http://www.davis-inc.com/physics/. At the
end of his paper de Broglie remarked that if a mass pursues a circular orbit
of radius r with momentum p, and if we can assume that Einstein’s p = h/\
pertains not only to light quanta but also to particles, then Bohr’s quantization
of angular momentum rp = nh can be interpreted as the stipulation that the
circumference of the orbit be integrally many wavelengths long: 27r = nA.
The architecture of the Bohr atom could thus be understood in a new way.
This modest accomplishment notwithstanding, de Broglie’s advisors were so
dubious that they sent the text of his work to Einstein for evaluation. Einstein,
on the other hand, was so favorably impressed that he appended to a paper of
his own—then in press—a note reporting that he had learned of an idea put
forward by one Louis de Broglie that he thought merited closer study. It was
this note that engaged Schrodinger’s attention.

3 Tt is known today as the Klein-Gordon equation, and is of fundamental
importance in a connection distinct from the one originally contemplated by
Schrédinger.

4 See L. 1. Schiff, Quantum Mechanics (3" edition 1968, page 470) for the
details, which Schrédinger published in 1926 after his non-relativistic papers
were already in print.
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So he put the work aside, not—so the story goes—to take it up again
until Peter Debye asked him to present a seminar at the ETH (Eidgendssische
Technische Hochschule) in Ziirich, to which they were both attached at the
time. For the occasion, Schrodinger chose to develop a non-relativistic version
of his earlier work. Schrodinger (1887-1961) was 38 in 1925, only eight years
younger than Einstein, five years younger than Born, two years younger than
Bohr and—by a wide margin—the “old man” among the founding fathers of the
“new quantum theory” (Pauli was 25, Heisenberg was 24, Dirac was 23). Partly
as a result of his unusually thorough and well-rounded formal education (he
had been a student of Fritz Hasenohrl, Boltzmann’s successor at the University
of Vienna) and partly because of his prior research experience, Schrodinger’s
knowledge of physics appears to have been in many respects much broader
than that of his junior colleagues. This fact made it possible for Schrodinger
to approach his objective with an erudite circumspection that was, I suspect,
quite beyond their reach. Schrodinger was uniquely positioned to do what he
did.

Schrodinger remarked that optics came into the world as a theory of rays,
which broadened into a wave theory from which ray optics could be recovered
as a certain (high-frequency) approximation, and that at the interface between
the two theories stood a certain elegant formalism (“theory of the characteristic
function”) that had been devised by Hamilton—devised without reference to
wave theory—mnearly a century earlier.” Schrodinger was aware also that
Hamilton himself had noticed (then forgotten, then noticed again) that it is
possible to construct a formalism (known today as Hamilton-Jacobi theory)
that stands to the classical theory of particle trajectories as the theory of
characteristic functions stands to the classical theory of rays. Schrodinger
proposed to complete the optico-mechanical analogy by constructing a “wave
mechanics of particles” that stands to Hamilton-Jacobi theory (whence to the
theory of particle trajectories) as optical wave theory stands to characteristic
function theory (whence to the theory of optical rays).

2. Review of the situation on the optical side of the analogy. For the purposes at
hand it serves to pretend that light is a scalar wave phenomenon, described in
vacuum by the simple wave equation
102
V3o(x,t) = =L o(x,t 1

olat) = 32 0(,0) 1)
It is from the linearity of this equation (i.e., from the availability of a principle
of superposition) that optical interference effects arise, in which connection

5 Hamilton’s ideas were developed in a pair of papers that were published
under the title “Theory of systems of rays” in 1830 and 1832. The central idea
was adapted to mechanics in “On a general method in dynamics” (1834). By
the late 19" Century Hamilton-Jacobi methods were used routinely to study
the 3-body problem, the stability of the solar system and similar problems. A
participant in that work was H. Bruns, who in 1895 had the bright idea of using
those methods to in effect reinvent Hamiltonian optics.
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we recall that local field intensity is proportional to the square of local field
strength.

Separation of the time variable leads to the theory of monochromatic wave
fields

o(@,t) = f(x) e @ with V2f(z) +Kk2f(z) =0 : k2= (w/c)?
Monochromatic planewaves are produced in cases of the type
f(.z‘) ~ eik n-x

Surfaces of constant phase are in such cases planes normal to the unit vector
n, defined by equations of the form

n-x = constant
We then have
) - ez[kﬂm — wt]

!

~ €

p(x,t

ilkr —wt] the one-dimensional case

To compute—in the one-dimensional case—the speed with which points of
constant phase advance we set % [kz — wt] = 0 and obtain v =w/k =c. In
the three-dimensional case we note that the advance is along the local normal,
so write & = xfn and are led back to the same result.

If the vacuum is replaced by the simplest kind of refractive medium we
expect the wave equation (1) to be replaced by

v2o(e, 1) =["E] & a1 )

-

where n(z) refers to the local index of refraction. Time-separation is still
possible (which is to say: it is still possible to speak of monochromatic wave
fields), but leads to the requirement that the space factor satisfy the modified
equation

3
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v f(2) + K [n(@)]* f(z) = 0 3)

It becomes natural to contemplate solutions of the form f(z) ~ R E () wWe
would then have ]
QO(.’E, t) ~ ez[kF(m) — wt]
and would find that he formerly planar surfaces of constant phase have become
—at each instant—a space-filling population of generally curved surfaces of
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FiGURE 1: The fundamental image from which both Hamiltonian
optics and Hamilton-Jacobi theory derive.

constant F(x). Let X(t) denote the surface defined by the equation
[kF(x) — wt] = p. Normal to that population of surfaces stands a population
of curves, which we identify with a system of light rays (in Hamilton’s phrase).

Let @ refer to some point on ¥ (), and R to the ray that stands normal to
Y, (t) at £ —that “punctures” ¥, (t) at 2. Time 6t passes. The surface moves:
Y,(t) — E,(t+ dt). And so also does the puncture point: & — = + vndt
(here n is the unit vector that stands normal to ¥ (¢)—tangent to R—at x).
From 4

GkF(z) —wt] = k&-VF — w
=kvn-VF —w=0

we find that the speed with which the moving surface X (t) sweeps past the
point & on R—in short: the phase velocity at £ —is given by

@) = NF@] T JoTE) S E) @

To discover the F-functions that are candidates for inclusion in the
preceding discussion, we introduce RE(Z) into (3) and obtain

—k*VF-VF +ikV?*F + En(@)* =0

It is a fact of optical (also acoustic) experience that the “ray” concept is useful
only in situations where frequency is so high-—and wavelength so short—as to
cause diffractive effects to be negligible. With that fact in mind, we divide by
k? and proceed to the limit k T oo, obtaining the eikonal equation®

VF-VF = [n(z))? (5)

6 The terminology is Brun’s, who called Hamilton’s “characteristic function”
(or “principal function”) the “eikonal,” after the Greek for icon, likeness, image.
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This non-linear partial differential equation is structurally identical to (4),

which can be written
[c/v(x)]* = VF-VF (6)

But at (4) we imagined ourselves to be evaluating v(2) after F(z) has been
prescribed, while at (5) it is n(z) that has been prescribed, and F'(z) that is
being evaluated. Taken together, the two statements imply that “phase velocity
at £” has meaning irrespective of which ray R through z one has in mind,
and irrespective also of the specific “system of rays” that one has supposed
contains R as a member—irrespective, that is to say, of the global geometry
of the surfaces-of-constant-F' from which that system (or “pencil”) of rays has
been assumed to radiate.

That geometrical optics can be formulated as a theory of surfaces (surfaces
of constant F'(zx), with F(x) subject to (5)), with rays standing everywhere
normal to those surfaces,” was first appreciated by Hamilton, rediscovered by
Bruns.

The established properties of those surfaces permit one to say sharp things
about the associated rays. Let ray R stand normal to X ,(0) at & 4, let 23 mark
some down-stream point on R, and let 2(\) provide a parametric description
of the ray: #(0) = ¢4 and (1) = . We watch the motion of the puncture
point produced by the advancing surface ¥, (t). Specifically, we compute the
time of flight x4 — xp:

Tlgg — 5] = /O m\/zb()\)-dz()\)dA L d(N) ==

along ray v
1 /n(z‘)v:t-:i?d)\

__ “optical length” of the ray segment

C

It follows from the fact that the puncture point advances always normally to
Y ,(t)—which is to say: along the locally shortest path from @ on X (¢) to
Y, (t + 0t)—that the time of flight along the ray x4 — xp is shorter than
would be the time of flight along any alternative curve linking those points.
Thus have we recovered Fermat’s principle of least time. Geometrical optics
is, however, a theory of curves and surfaces in which time plays actually no
role (Fermat worked before it had been established experimentally that it even
made sense to speak of a finite “speed of light”): what we are really talking
about here is a principle of shortest optical length. In any event, from

5/n(m)\/.'i:-é:d/\ —0
it follows that

(5~ oo

7 The imagery is not at all unfamiliar: think of the “lines of force” that stand
everywhere normal to “surfaces of constant potential.”
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We are led thus to the so-called “ray equations”

j—A[n\/;_A—\/EVnzo

which if we adopt arc-length parameterization (where v&-2 reduces to unity)
assumes the simpler form

% [n(m) Z—ﬁ — Vn(z) =0 (7)

In homogeneous media (where Vn = 0) we have simply d?z/ds?> = 0: all rays
become straight lines. Note that (7) describes not a t-parameterized flight a(t)

but an s-parameterized curve (ray), with ds = y/dx? + dy? + dz?: to obtain
flight one would have to develop s as a function of ¢, writing ®(s(t)).

Hamilton’s own line of argument was the reverse of the argument I have
presented: he proceeded from the theory of rays (actually, systems of rays) to
the equation (5) that governs the structure of “characteristic functions” W (z).
He therefore had no reason to identify surfaces of constant W with surfaces of
constant phase, no reason to consider the possible relevance of a wave equation
to the geometrical theory he had constructed.

3. Derivation of the Hamilton-Jacobi equation. To simplify the writing, let us
agree to work now in one-dimensional space, and to use subscripts to signify
partial derivatives: thus f,(x,y) = 0f(z,y)/0z. At time ¢ let a nice function
S(z,t) be defined on configuration space. Interpret

p(x,t) = Sy(x,t)
to inscribe a curve on phase space. From Hamilton’s canonical equations

& =+Hpy(z,p)

it follows that in time ¢ the points in phase space move

x+—ax+ Hy(z,p)ot
pr—p— Hy(x,p)ot

Our objective is to describe the induced adjustment S(z,t) — S(x,t+0t).
We proceed by noticing that on the one hand

Se(x,t) — Sp(x,t) — Hy(x,S,)0t
while the expression on the right must be describable also as

Sy (x 4+ Hp(z, Sp)o0t, t + 0t) = Sy(x,t) + Sea(x, t)Hp(z, Sy) 0t + Sy, t)ot



8 Schrédinger’s train of thought

p— Hy(z,p)dt

FIGURE 2: “Canonical drift” of a curve that has been inscribed on
phase space. Hamilton-Jacobi theory addresses the drift of curves
(surfaces) that have been inscribed on phase space by the equation
p(t) = VS(x,t).

We conclude that
H,(x,Sy) + Hp(x,S4)Sz0 + Set =0
But this can be written [H(x, Sy) + S| = 0, which entails
H(z,S,)+ St = arbitrary function of ¢

A physically inconsequential adjustment S +—— S— [ t(arbitrary function) could
always be used to extinguish the term on the right, so we discard it: we are left
with

which is the celebrated Hamilton-Jacobi equation.

If we look for solutions of the separated form S(z,t) = W(z) + f(¢) we
discover at once that necessarily f(¢) = constant, which (partly for dimen-
sional reasons) we will agree to call E. We then have the time-independent
Hamiltonian-Jacobi equation

H(z,W,)=E 9)
In the most commonly encountered case H(z,p) = z—-p-p + U(x) we have
LYWW+ Ue) = E (10)

Most typically (as in the case just considered) the Hamiltonian H (2, p) depends
non-linearly upon p, so typically (8) and (9)—which in several dimensions read

H(z,VS)+ S, =0 (11.1)
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and
H(z,VW)=F (11.2)

with S = S(z,t) and W = W (x)—are non-linear partial differential equations.

The Newtonian, Lagrangian and canonical formalisms culminate in systems
—often quite large systems—of coupled ordinary differential equations. It is
remarkable that in (11) all that physics has come to rest in a single partial
differential equation, and noteworthy that, while it is VU that enters into the
equations of motion supplied by the formalisms just mentioned, U(z) enters
nakedly /undifferentiatedly into the Hamilton-Jacobi equation. . .as it will also
into the Schrédinger equation.

It is upon the foundation provided by the elegant material just presented—
a body of theory that was more than ninety years old by the time he decided
to accept de Broglie/Einstein’s challenge—that Schrodinger erected his “wave
mechanics.”

4. Completion of the optico-mechanical analogy. Note first that from p = S, it
follows that dimensionally

[S] = (length)(momentum) = action = [#]

Pursuing now in reverse the change of dependent variable that led us from (2)
to (5/6), we write

Y(@, t) = g 5@ /D (12)

and observe that
SRy [l geug_ ;2] .
L w2y = {vas vs—izlty s} b
Uy = { U} )
—inop = {8} v
from which it follows (by i(h/2m)¥v2S = (h?/2m)ypv? log[¢/1po]) that

_ 2 192 _ g2 iny = [ Lyg. .
IZ [924 — 92 loglup /hol] + Uv —ilitgy = {5-VS-VS+U + 8} - v
We conclude that the equation

_h_z 2. — 72 b /a/ _ -

5 (V2 — v log[y /1po]] + Utp — ihapy = 0
is but a renotated variant of—and entirely equivalent to—the Hamilton-Jacobi
equation, an eccentric way of rendering classical mechanics. Schrédinger had,
however, the wit to abandon the 1¥/v?log[t)/1q] term. He was left then with a
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linear field equation (we know that linearity in quantum mechanics is the name
of the game!)—the time-dependent Schrédinger equation

h? o s
—%V w+U¢—Zﬁ¢t (13)

which is manifestly not just old wine in a new bottle.
It is instructive to pursue the preceding argument in reverse: insert®
b(@,t) = Rz, ) 5@ D/

into the Schrédinger equation (13) and obtain an equation the real and
imaginary parts of which can be written

-
L VS.VS+U(x) — %%ﬁst —0 (14.1)
OHR*+ V- [LR*VS] =0 (14.2)

respectively. These coupled equations are—conjointly—entirely equivalent to
the Schrédinger equation. The latter possesses the form

%(density) + V-(current) =0 : density = R* = ¢*3)

of a “continuity equation,” and evidently describes the local conservation of
probability.? Equation (14.1) gives back the Hamilton-Jacobi in the classical
limit A | 0. Recall that a limiting process entered also into the derivation of
the eikonal equation (5) from the wave equation (2).

Curiously, one might look upon the Schrédinger equation as a “linearized
Hamilton-Jacobi equation.” Even if the quantum world did not exist, it would
make computational good sense to adopt the following 3-step program

e linearize
e solve the resulting “Schrédinger equation”
e proceed to the classical limit & | 0

as a way of solving classical problems.

If one introduces the time-separated wave function
V(1) = R(@)e V@) = Bt/
into the Schrédinger equation (16) one obtains

LYW-VW = E — Ul(z) + 22 L1 (15.1)

2m

V-[LR*VW] =0 (15.2)

8 We use this polar alternative to (12) to insure the reality of R(z,t) and
S(z,t).

9 Note that Schrédinger’s derivation of (13) did not carry with it any
interpretive advice. Nor did it have anything to say about the (very unclassical)
quantum measurement process: all of that came later (Born, von Neumann).
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In the classical limit the former equation decouples, to give back the time-
independent Hamilton-Jacobi equation (10):

VW-VW =2m[E — U(z)]
5. The “rays” traced by classical particles. We now take leave of Schrodinger

to trace this story back to point of departure. In recent discussion we have
proceeded

classical H-J theory ———— quantum wave theory

and I propose now to proceed in the reverse direction:

classical particle trajectories «———— classical H-J theory

It is by way of preparation that we distinguish several “natural velocities”
(speeds) that arise from the theory of waves and particles.

Recall that the phase velocity of the simple wave eilka — w(k)t]

setting < [kx — w(k)t] = 0, is given by

, got by

w(k

Uphase = L

~

while the group velocity, got by looking to the motion of the envelope when
such waves of nearly identical k-values are superimposed,'? is given by

dw(k)
Vgroup — dk

If we use de Broglie’s relations E = hv = hw and p = h/A = hk to translate
those equations into mechanical variables we obtain

E
Uphase = %ﬂ
_ dE(p)
vgroup - W

which in the case E(p) = 5=p® + U become

I
2m[E — Ula)]

Vgroup (T) = %p = % V2m[E - U(z)]

Recall also that a mass point m, if moving with conserved energy F in the

Uphase ((II) =

10" See Chapter 6, §5 in my SOPHOMORE NOTES (2005).
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presence of a potential U(z), necessarily has speed

(@) = /7 [~ U(z)]

when it passes through point z, whatever the direction in which it is moving.
That

Ve (Z) = Vgroup (%)
conforms to our experience that in quantum mechanics classical particle motion
is represented by the motion of wave packets.

In “Geometrical mechanics: remarks commemorative of Heinrich Hertz” 1!

I show it to be an implication of Newton’s my(t) = —VU(y) that one can
always write y(t) = &(s(t)) where
e xz(s) describes the path traced by the particle (mechanical analog of a
“ray”) and s signifies Euclidean arc length ;

e 5(t) describes progress along that path, and is got by integrating $ = v ().
I am able to show, moreover, that #(s) satisfies a set of equations
d { dm}
—In(x)==| —Vn(z)=0 16
4 n(@) %] - In(z) (16)
that is structurally identical to the ray equations (7), except that here

c _2me?[E-U(x)]  \2me?
vphase(m) FE E
where physically inconsequential factors have been introduced simply to render
n(z) dimensionless, and to highlight the formal identity of the mechanical
equation with its optical counterpart. It follows already from our previous
work that (16) can be obtained from?!?

5E/ n(z(s))ds ~ 5E/ VT ds ~ 5E/Tdt

This variational principle, first stated by Jacobi and later by Hertz, is the direct
mechanical analog of Fermat’s Principle of Least Time. Neither principle has
anything to do with time or motion: both have to do with the design of curves,
rays, trajectories, “flight paths.” The Jacobi-Hertz principle of least action
states that of all curves that are pursued 4 — @p with constant energy F,
the curve realized by a particle in natural motion will be the one that extremizes
the mechanical analog of optical path length.'3

n(x) = \/ kinetic energy T

All of which emerges quite naturally when (with Hamilton) we identify
those curves with the curves normal to surfaces of constant S(z,t) = W(z)— Et
and observe that those surfaces advance with speed

v(x) = £ = E = Uphase(T)
VVW.-VW  /2m[E —U(z)]

I Notes for a Reed College Physics Seminar presented 23 February 1994.

2 The final step here follows from §* = 2T'; i.e., from ds ~ VT dt.

13 For detailed discussion see H. Goldstein, C. Poole & J. Safko, Classical
Mechanics (3'¢ edition 2002), §8.6.
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I note in conclusion that David Bohm has proposed that, after one has
worked to obtain the physically interesting solution to the Schrédinger equation,
one use that information to evaluate what he calls the “quantum potential”

n? V2R

Qz,t) = “om R

—in which notation (14.1) reads
7=VS-VS+U(x) + Qx,t) + Sy =0

Bohm would have us use that modified Hamilton-Jacobi equation to obtain
a “system of rays” (particle trajectories) in precisely the manner that one
would employ classically. On this basis he erects what he calls a “causal
interpretation of quantum mechanics.” Most physicsts (I among them) consider
Bohm’s proposal to be, while not technically in error, profoundly misguided—a
complex embellishment of a theory that stands in no need of embellishment.
For an excellent account of Bohm’s theory, see P. R. Holland, The Quantum
Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of
Quantum Mechanics (1993), which one reviewer called “a good book about a
bad theory.”

ADDENDUM

Hamilton’s Other Contribution to the Development of Quantum Mechanics

Introduction. Hamilton-Jacobi theory comes in two flavors. The first—the
“one-point theory,” the theory to which we have thus far restricted our attention,
and upon which Schrédinger drew—is concerned with functions S(z,t) of a
single space-time point that satisfy

and in Schrodinger’s hands gave rise to what might be called “one point wave
mechanics”:

S(z,t) P(z,t)

Schrédinger quantization
The second—the two-point theory—is concerned with functions S(21,t1; o, to)
of variables that refer to a pair of space-time points, and that satisfy a pair of
Hamilton-Jacobi equations:

H(x1,+VS) + Sy, =0 }

17
H(zo, —WS) — Spy = 0 (a7)

The quantum mechanical relevance of the two-point theory remained generally
unrecognized until 1942, when it acquired a central place in what was, in effect,
Feynman’s reinvention of wave mechanics:

S(@,t; 0, t0) K(z,t;20,t0)

Feynman quantization

Here K(z,t;20,t0) is the Green’s function or propagator that describes the
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dynamical evolution of Schrédinger’s wave function:

1,[)($7t) :/K(m,t;mo,to)’lp(fto,to) dfl,'()

The two-point propagator satisfies a pair of Schrodinger equations

{H(z ,+2V )—iho, } K(z,t;20,t0) =0 as.1)
{H(.’l‘o,—%Vo)—|—iﬁ8t0}K(.'E,t;$0,t0) =0 )
together with the initial condition
lim K (z, t; 20, to) = d(xo — ) (18.2)

tlto

Here I undertake to describe the most salient features of two-point
Hamilton-Jacobi theory, and to indicate how that theory relates to Feynman’s
“sum-over-paths” formulation of non-relativistic quantum mechanics.

5. Two-point Hamilton-Jacobi theory. Let L(z, &) be the Lagrangian of whatever
mechanical system we may have in mind, and let the well-behaved function
z(t) describe a hypothetical “path” (curve inscribed on (n + 1)-dimensional
spacetime) that connects a specified pair of endpoints: z(tg) = 2o, 2(t1) = ;.
To every such path we associate the “action functional”

S[path] = /t1 L(z(t),z(t)) dt

to

Hamilton’s principle (which it was Feynman’s habit to call the “principle of least
action”) asserts that the natural or dynamical path (21,t1) «— (2o,%0) is the
path'? that extremizes the action:

t1
- _ d oL _ oL _
) ; L(z(t),z(t))dt =0 = o oz °

Solutions of the equations of motion—though usually fixed by specificiation

of initial data (xg,&o)—can as well be fix by specification of endpoint data

(Zo,x1). Thus does the path functional S[(z1,t1) ————— (2o, 0)]
. . . . dynamical path

become a function of its endpoint coordinates:

S[mdynamical(t)] = S(mla tl; Zo, tO)

We have here made the acquaintance of the two-point action function,'® the

14 0Of these there might in fact be several, in which case we would find
ourselves talking about “local extrema in the space of paths.” It serves my
present purposes to ignore that possibility.

15 which in cases of the type mentioned in the preceding footnote may be
multi-valued.
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central object in two-point Hamilton-Jacobi theory, the characteristic properties
of which I will illustrate by

EXAMPLE: For a free particle onehas L(z, &) = 2ma-&. The equation

of motion therefore reads & = 0 and the dynamical path linking
(.’toﬂfo) to (ml,tl) is

It now follows that
ty

m.’l)l —.’EO..'El — Xy dt
W 2 ti—to t— o

m (&1 — Xo)- (21 — o)

Sfree particle (331, tl; Zo, tO) =

== 19
2 t — to (19)
Immediately
VS = tmTL=80 g 5, — m(®1 - mo).(mlz— o)
t1 — 1o 2 (t1 —to) (20)
G T =® 4 oo m(T o) (T — o)
Vo Ty T T T3 (t1 —t0)?

from which it becomes obvious that

ﬁVlSVlS + St1 - 0
7=V0S5- VoS — Sy, =0

2m

But these are precisely the equations that are supplied by (17) in
the present instance: H(z,p) = ﬁp-p.

Though born of the Lagrangian formulation of classical mechanics, the
two-point function S(21,11;%o,tp) gains importance primarily from the role it
plays in the theory of canonical transformations. Hamilton’s canonical equations

can be written _

&= —[H(z,p),z]
where the Poisson bracket is defined [A,B] = )~ g—igﬁ - ngBk%}' The
Hamiltonian acquires thus the role of the generator (in the sense of Sophus Lie)
of infinitesimal canonical transformations

g — z(6t) = 2o — [H, x|t
po — p(0t) = po — [H, plodt
that by iteration result finite t-parameterized phase flow:

xo — x(t; 2o, Po)
Po + P(t; 20, Po)
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The function S(z, t; zp, 0) achieves that same finitistic result by different means:

write
p =D (mat;z()»tO) = +V S(m;t;z()ato)

Do = pO(xa ta Zo, tO) = —VOS(.'E, ta Zo, tO)
By functional inversion (often more easily said than done!) of the latter equation

obtain
T = x(m Zo, Po, tO)

Then return with that information to the first equation to obtain

p :p(t;mOaPOatO)

We recognize the sequence of operations just described to comprise an instance
of Legendre’s procedure for promoting derivatives to the status of independent
variables. Evidently

e the Hamiltonian H (z,p) is the Lie generator of dynamical flow in phase
space, and does its work incrementally;

e the two-point action function S(z,t;2,%o) is the Legendre generator of
that evolving canonical transformation, and does its work wholistically

and the Hamilton-Jacobi equations (17) describe the relationship between those
generators.

EXAMPLE REVISITED: Pressing the free particle Hamiltonian
H(z,p) = ﬁp-p into service as a Lie generator, we have

z(t) = xo — t[H,z]o + 3t°[H,[H,z]]o — -

=zo+tp (21.1)
p(t) = Po — t[Hap]O + %tZ[H? [va]]o -
= Do (21.2)

while from (20) we have
p =4V 5 mE=Eo

Py = VoS = mE %0

Functional inversion of the latter gives
z(t) =z +tLpy (22.1)
which when introduced into the former equation gives back

p(t) =po (22.2)

Comparison of (21) with (22) shows that—in this instance, as
generally—the two procedures lead to identical descriptions of the
dynamical phase flow.
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It is obvious—yet instructive to notice—that two-point functions become
single-point functions (of a certain type) when the second argument is frozen:
S(z,t;e,0) = S(x,t). Such neutered functions are, however, incapable of
generating canonical transformations. I note also that constants of the motion
arise within H-theory from conditions of the form [H, A] = 0, but in S-theory
from symmetries of the two-point action (Noether’s theorem), but will refrain
from discussion of how those two notions come to be interconnected.

6. Quantum mechanics according to Feynman. The train of thought that led
the 23-year-old Richard Feynman (1918-1988) to his very fruitful reinvention of
non-relativistic quantum mechanics can be traced to an occasion when he asked
a drinking buddy whether he “had ever encountered a quantum mechanical
application of the principle of least action” (his allusion being actually to
Hamilton’s principle), and was referred to an obscure paper by P.A.M. Dirac.'¢

The objects of central interest to Dirac (as also to Feynman after him) were
not “one-point Schrodinger functions” ¢ (z,t) but the “two-point Schrédinger
functions” K (z,t;xo, o) that arise in &-representation

K(z, 8,20, t0) = (2|U(#; Lo)|20)

of the unitary operator that (in the Schrédinger picture) sends [¢)¢, — [1))¢,
and that, as was remarked at (18), become single-point functions (of a certain
type) when the second argument is frozen: K (z,t;e,0) = t(x,t).

Necessarily
U(tl;to) = U(tl,t)u(t,to) : t1>t Zto

which in &-representation becomes the slightly less obvious composition rule
K(z1,t1520,t0) = /K(zl,tl;-’t»t)de(m,t;l‘o,to)

Feynman—typically—attached to that equation a much more robustly physical
interpretation than Dirac, in his sophistication, had reason to do:'” Feynman
considered it to state that

probability amplitude of transition (21,¢;) «— (2, %0)

= / {amplitude of transition via the intermediate point (z,t)} da

16 “The Lagrangian in quantum mechanics,” Physikalische Zeitschrift der
Sowjetunion 3, 1933. This beautiful paper is reprinted in J. Schwinger (editor),
Selected Papers on Quantum Mechanics (1958)—a valuable collection of classic
papers known commonly as “the Schwinger collection.”

17 Dirac, working in the Heisenberg picture, looked upon (21, 1| o, to) as an
element of a transformation matrix that relates one representation to another.
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Dirac noted—and Feynman later made much of the fact— that by repeated
application of the composition rule one can resolve K (z1,t1; o, to) into iterated
short-time propagators

K(z1,t1;20,t0) = /"'/K(zl,t1§yN>t1 —7)dyy - dy, K(yy,to + 7; 2o, to)

Dirac—who considered himself to be simply pointing out a formal parallelism
between quantum mechanical transformation theory (in the development of
which he had played the leading role) and the classical theory of canonical
transformations—was led at this point to remark that

K(y,t+ 7;2,t) “corresponds to” eiS(y, t+7ia,t)/h

and that therefore K (21, t1;20,t9) “corresponds (in the limit N T co) to”

/. . / S (T, b3 Yy, T — T)/hdyN : ..dyleis(ylat() + 7:%0,t0)/h

O Y (. p———s Vo

where 7 = 1110 ap4 r; «—— x( refers to the segmented path
N+l Yno Y2l
x| «— o that visits successively the points {yN,...,yz,yl}. Dirac found

it natural, in view of his objective, to point out (without explicit reference
to the method of stationary phase) that in the classical limit & | 0 the paths
contemplated above tend collectively to “buzz themselves to extinction,” the
only path immune to this fate being the path (or paths) whose nodal-points

{yN, e ,y27y1} are so placed as to extremize'®
N
S(x &) = S n st + T nvtn
(@ %) HZ:;) (Yn+1 Yn tn)

—placed, that is to say, so as to lie on the classical path (z1,t1) < (2o, t0)-

Feynman—mystified by Dirac’s “corresponds to”—chose tentatively to
interpret that phrase to mean “equals” (actually: “equals to within an adjustable
factor”) and to see where he was led. Setting

Ky, t+7;2,t) = ALeiS(y,tJrr;m,t)/h (23)

-
his conjecture read

K(mlatlam()vto (24)

= hrn/ /H A yn—&-lat + 7 yn7 )/ﬁdyldy2dyN

NToo

18 Here yy = %o, Y41 = 1 and ¢, = to + nt.
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Proceeding in the one-dimensional case from the assumption that

L(z, &) = imi® — V(2)

Feynman was able to establish in fairly short order (which is to say: by heavy
calculation completed within hours of his first reading of Dirac’s paper) that if
(24) is used to construct the propagator K (z,t;zg,to) that appears in

'LZJ(I’,t) :/K(x,t;$07t0)l/}(xo,t0) d(EO

then the resulting 9 (x, t) does in fact satisfy the Schrodinger equation, and does
in fact give back (g, to) as t | to.1°

EXAMPLE: For a [ FREE PARTICLE | it was established already at
(19) that

m(xy — x0)?

S(xy,to + 7320,10) = or

so in this instance (23) reads

1 im(xy — x0)%/2hT

K(x1,to + 75 20,10) = 1 €

2
-1 /. % e~ (@1 —x0)° /o
o =2ihT/m
With Feynman we temporarily complexify #

Ar—h—i : €>0

so as to render the real part of ¢ positive. This done, we have

+oo
/ 1 —( —0)*/0 dry =1

N

— 00

and recognize the integrand to provide (in the limit o | 0) a
Gaussian representation of §(x1 — xg). We therefore have, as was
required at (18.2),

1i{18K(x17t0 + 750, t0) = 6(x1 — T0) (25)

provided we set

A(r) = v =

19 For proof see pages 29-30 in Chapter 3 of ADVANCED QUANTUM TOPICS
(2000).
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Observe next that

/+°° 1 —(x1—y?lo_L_ —(y—=z0)’/o dy

oo VTO Vo

_ 1 e—(l“l —x0)*/20
20

Q

and that N-fold iteration of this result would lead Feynman to write
2
K(l‘l,tl;lo,to) = lim ; ei(xl - xo) /(N + 1)0
~NToo /(N + 1)o

— L (/e —m0)?/2ti—t0) (96)
Zh(tl— to)/m

We verify by quick calculation that the expression on the right does
in fact satisfy the free particle Schrédinger equations (18.1)

{7 %851 - iﬁatl}K(xlatl;x()atO) =0
{- %850 + ihd,, } K (z1,t1; 0, t0) =0

EXAMPLE: For an | OSCILLATOR _|—assuming classical motion
to be uniform in the short term

l‘(t):l'o—l-@(t—to) o toSt<Lty+T
—we compute

S(xq,to + 750, 0)

fotr r1 — xo]? T, — T 2
= / {%m[—l O} — %mwz {xo 41— 0 = 0t — to)} } dt
to

T

— 2 2
- m($12 zo)” _ mcg T (23 + 2120 + 73) (27)
T

A moment’s thought shows that to recover (25) we have again to

set A(T) = /ihT/m, and so have

K(.’tl,t0+7;mo,to) (28)
_ 1 1 {m(ml — 20)*  mw?T 2 2 }

Introduction of this result into Feynman’s formula (24) leads (after
complexification of h) to a multiple integral that can be managed
effectively by appeal to the N-dimensional Gaussian integral formula

+oo 2

y —Lly- 2m)N/2 1 A

“ e ezm ye éyAyd d ...d :(—e Qx T
/ /—oo e Y \/detA
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Taking the result to the limit N 1 oo requires a bit of finesse (for
these and other computational details see pages 43-47 in Chapter 3
of my ADVANCED QUANTUM TOPICS (2000)), but leads ultimately
to the formula

K(x17t1;:1707t0) (29)

_ mw 1 mw 2 2 3 ey
T \/ ihsinw(t1—to) €xp { h 2sinw(t1—to) [(lerIU)COSW(tl to) 2x1w0]}

from which, it is gratifying to observe, we recover (26) as w | 0.
Computation establishes that the Feynman’s oscillator propagator
(29) satisfies

2 .
{_ 2h_m8§1 + %m‘*ﬁx% - Zhatl}K(UChtl;meto) =0
{* %aﬁo + %mwzﬁ) + iﬁato}K(Il,tl;SCoJo) =0

Feynman’s central idea, as set forth in his thesis (May 1942) and in the
paper which he published (Reviews of Modern Physics, 1948),2° admits of the
picturesque if somewhat imprecise formulation

K(z,t;z0,t) = / elﬁfL(I)&th) dt D(paths] (30)

all paths

which he interprets to describe a sum over the probability amplitudes that he
would associate with each conceivable path (z,t) «— (2o,%0), his contention
being that each path contributes with the same weight, but with a phase
determined by the classical action S[path] = #/L(path)dt. He shows how
(30) can be used to provide novel insight into the construction of

e quantum mechanical conservation laws
e commutation relations
e expectation values.
Subsequent work by others established that (30) can be made to retain

its accuracy even when the meaning of “all paths” is altered in various ways—
the important implication being that Feynman’s success cannot be interpreted

20° The thesis is entitled “The principle of least action in quantum mechanics,”
and in his abstract Feynman claims to have produced a generalization of the
standard Heisenberg/Schrodinger /Born theory. In the published version (which
is reprinted in the Schwinger collection) the title has been changed (to
“Space-time approach to non-relativistic quantum mechanics™—the “space-time”
evidently intended to draw attention to the fact that Feynman works throughout
in the x-representation, and the “non-relativistic” to disabuse readers of the
presumption that “space-time” means “spacetime”) and that claim is dropped:
Feynman claims “no fundamentally new results,” aspires only to the “pleasure
of recognizing old things from a new point of view.”
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as having established that quantum particles do move £ «— zy along diverse
nowhere-differentiable paths: it establishes only that they can be imagined to
do so.

There remains—today as in 1942—mno properly constructed general “theory
of functional integration” adequate to the work Feynman would have it do.
Successful functional integrals appear in every instance to be Gaussian integrals,
and to derive that characteristic from the fact that & enters quadratically into
the construction of physical Lagrangians. Feynman seems never to have been
much bothered by the fact that his physical intuition had carried him to a place
beyond the frontier of established mathematics, but. ..

Near the end of the conclusion to his thesis Feynman expresses his regret
that

“A point of vagueness is the normalizing factor, A. No rule has
been given to determine it for a given action expression. This
question is related to the difficult mathematical question as to the
conditions under which the limiting process of subdividing the time
scale. . . actually converges.”

“Hamilton’s principle,” it has often been remarked—in the first instance by
Hamilton himself!—is due actually to Lagrange, whose work Hamilton held to
be a kind of “mathematical poem.” But it was Hamilton who first recognized
that 6 [Ldt = 0 is but the point of entry into a rich landscape?! (theory of
canonical transformations, Hamilton-Jacobi theory) that emerges as soon as
one looks to the properties of the functions S(&1,t1; &g, o) that extremize the
functional S[path] = f Ldt. Feynman’s objective was, in a way, more restricted
than Dirac’s: he sought only to discover a natural place within quantum theory
for the “principle of least action.” Had he not been so quick to dismiss those
aspects of Dirac’s paper that drew upon the deeper reaches of Hamiltonian
physics he might well have resolved the problem identified in the preceding
quotation—as, indeed, did others (Pauli 1951, Cécile Morette 1952) soon after
him. I turn now to discussion of the relevant details.??

Working initially in one dimension, we proceed from
i )
Uit +r,t)=1- ﬁHT+~~' A e iHT/N

where H will be considered to have been obtained by xp-ordered substitution
into the classical Hamiltonian H(z,p):

H= [H(a;, p)L +O(h)

21 Cornelius Lanczos, quoting from the Book of Exodus at the beginning
of Chapter 8 in his Variational Principles of Mechanics (1949), refers to this
landscape as “holy ground.” Lanczos provides, by the way, an excellent account
of Hamilton-Jacobi theory that is directly relevant to many of the topics
discussed in the present essay.

22 The reader should be aware that my methods, taken from a notebook dated
1971, are somewhat eccentric.
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In this notation

Koyt + rizn,t) = [ @lU(e+ 7. 0)lpdp(ria)

~ / L lta—zgp—rH) g
from which it follows in particular (and not at all surprisingly) that
lTiﬁ)lK(:r,t + T 20,1) = / 3 e E=20P gy — 0(x —xo) : all H(z,p)

Notice now that [(x — x¢)p — TH(z,p)] = 7[*="2p — H(x,p)] is, by Hamilton’s
principle,?? stationary at the momentum p. associated with the classical path

(x,t 4+ 7) < (wo,t), where it assumes the value S(x,t + 7;x0,t). With these
points in mind, we use the method of stationary phase?* to obtain

. 1
lim % et (z—xg)p—TH(z,p)] dp ~ % [ i2nh )r piS (@t Tz t) /i

10 —THp,(z,p p=pe

Hamilton’s canonical equations of motion supply

. Oz

Ty =T — THp(.Z‘,p)’ giving - == —Tpr(x,p)‘
P=pPo P P=pPcs
whence
1 _ Op _ 9PS(x,t+T;20,t)
—THpy(z,p)  Ozy O0x0x,

Assembling these results, we have

K(x,t+7i20,t) = /(i/R)D(,t + 7320, 1) - /5@ L+ 7520, 1) /D
825(x,t+7';x0,t)

D(x,t+ 7;20,t) = Sdn
0

which in several dimensions becomes

K (.t +7:20,1) = \/(i/h)"D(@, t +7:30,1) - 5@ LF 7B /M3y

2 .
— det H 0°S(z, t + r,xo,t)H

EXAMPLE: For a FREE PARTICLE we on page 19 had

m(xy — x0)?

S(x1,to+ 7320, t0) = o

2 Recall that L(x,i) = ip — H(x,p))
24 See ADVANCED QUANTUM TOPICS (2000), Chapter 0, page 47.
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which is seen to give \/(i/h) D(z,t + T; 20, t) =/—im/hT, in precise
agreement with Feynman’s 1/A(7) = y/m/ihr.

EXAMPLE: For an OSCILLATOR we on page 20 had

m(z1 — 20)*  mw?
2T 6

S(xq,to + 7320, t0) = T(x%+x1xo+x%)

which gives \/(i/h)D(z,t + 320, t) :\/—im/hT[l + #(w)?]. This
(in leading order) again reproduces Feynman’s normalization factor.
It is curious that Feynman himself seems to have been quite uninterested in
this work, though it resolves what he recognized to be a defect in his own work.

It is neither cited nor exploited in Feynman & Hibbs, Quantum Mechanics and
Path Integrals (1965).

The material sketched above refers to a property of the short-time
propagator K(x1,tg + T;x0,t0). Interestingly, it can be considered to be a
special consequence of a property of general propagators in the classical limit.
If we write

K(x1,t1;20,t0) = R(z1, 150, t0) ¢HS5(®@1, tri o, to) /P

then the argument that on page 10 gave (14) gives

A—V15-ViS+U(z) + O(h*) + Sy, =0 (32.1);
ﬁvos-vos +U(xo) + O(h*) = Sy =0 (32.1)0
Vi-[(£ViS)R*] + 9, R* =0 (32.2);
Vo [(& VOS)RZ} O, R* =0 (32.2)0

One can show?® that if the two-point function S(z1,t1;@0,to) satisfies the
Hamilton-Jacobi equations (32.1)—with O(%#?) terms omitted—then the
Van Vleck determinant 26

a S mlvtlax07tU)H

D(.’L‘1,t1;.’130,f0 detH
Oxi Ozl

25 See ADVANCED QUANTUM TOPICS (2000), Chapter 3, page 15. The
argument does not presume the Hamiltonian to have the specialized form
H(z,p) = 5-p-p+ U(z) implicit in the way I have rendered equations (32).

26 John Van Vleck (1899-1980) came upon this determinant in the course of
an early study of several-dimensional WKB theory (1928). In conversation
with me he once remarked that the idea sprang from a conversation with
J. R. Oppenheimer, and that his own contribution had been simply to work
out the details. Van Vleck remarked with evident pride that the quantum
mechanical dissertation (1922) he wrote at Harvard (where he was the first
student of E. C. Kemble) was an American first. He shared the Nobel Prize in

1977-
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satisfies the continuity equations (32.2). This, I emphasize, is an entirely
classical proposition, its quantum mechanical importance notwithstanding.

We are brought thus to the conclusion that the quantum propagator
K(z1,t1;20,tp) can in semi-classical approximation be described

Ko(z1,t;20,t0) = \/(i/h)nD(mhtl;mo,to) 5@, 120, t0) /1 (33)

This is a fact at which Dirac strongly hinted, and of which Feynman made
implicit use, but which was first clearly stated by Pauli.?” From (33) one
recovers (31) in the short-time limit. Notice that K. (21, t1; 2o, o) is an entirely
classical construction, if one which no classical consideration would motivate
us to construct. And that it is by now clear that at the heart of the Feynman
formalism lies the fact that

Quantum mechanics is briefly classical: the limiting processes
7] 0and h | O are equivalent.

EXAMPLE: Classical calculations establish that for an OSCILLATOR
one has

mw[ (23 + 2) cosw(ty — to) — 2x10]
QSiI’lw(tl - to)
1 (34)

mw
D(xlatl;x()ato) = —m

S(xy,t1;0,t0) =

which when introduced into (33) give back (29). It is a remarkable
fact that in this case—as for all Hamiltonians that depend at most
quadratically upon & and p—K.(21,t1;20,t0) = K(21,t1;20,t0):
the semi-classical approximation is exact. Quick calculation confirms
that the functions (34) do indeed satisfy the continuity equations
(32.2) if one interprets R? to mean D. Note finally that if in (34)
we set t; = tg + 7 and expand in powers of T we recover (27) and
obtain

D(z1,to + T30, t0) = — L2 [1+ 2(wr)? + 555 (wr)* — -]

which in the limit 7 | 0 gives \/(i/h)D = \/m/iht, in precise
agreement with Feynman’s 1/A(7): see again (28) on page 20.

27 See Chapter 6 in Pauli’s Selected Topics in Field Quantization, which is
the English translation (1973) some ETH lecture notes dated 1950/51, to which
this material is attached as an appendix.
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7. Equivalence theorems. Standard quantum mechanics provides a “spectral
representation of the propagator”

. —£E,(t —t
K(21,t1:20,t0) = Y (@19 (@o) e T (b =to)
which bears little resemblance to Feynman’s

= / egfL(path) dt Dipaths]
all paths

The standard construction is “wave theoretic,” while Feynman’s is “particle
theoretic.” At issue is the question of how they come to say the same thing,
which T will discuss in the contexts provided by specific examples:

EXAMPLE: For a FREE PARTICLE we have on the one hand
i _i i1 20
K(21,t13m0,t0) = / ﬁeﬁmlﬁe wProe iz (o) dp

while Feynman’s procedure was seen at (26) to supply

_ [ limm—ao)?
ih(t1 — to) h2 t; — to

The formal equivalence of those results is a familiar fact of Fourier
transform theory:

“+o0
/ ekTe—ak’t g = \/27T/t~e_%’”2/t
—00

Note that ¢t appears “upstairs” on the left, but “downstairs” on the
right.

EXAMPLE: For a PARTICLE CONSTRAINED TO MOVE FREELY ON A
RING of circumference a the spectral representation of the
propagator becomes (here p, = nh/a and & = h?/2ma?)
© i _ig 2
K(z,t;y,0) = Z éeﬁpn(x —y) rENL

n=—oo

o 718 2 _
é{l—l—QZe h ntcos[Qnﬂ'xay]}
n=1

As it happens, a name and elegant theory attaches to series of that
design: the theta function ¥3(z,7)—an invention of the youthful
Jacobi—is defined

I3(z,7)=1+2 Z q"2 cos2nz with ¢ =¢"™"

n=1
>© 2
_ Z GA(mTn® — 2nz)
n=-—oo
In this notation K(z,t;y,0)=29(z,7) with =72 and

T = —% = —3:—@@. The Feynman formalism leads, on the other
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hand, to

K(x7t7y70) = \/ % Z eXp{%(l’-ﬁ-’l’La—y)Z}

n=—oo
— Ve (@) Y dCmt -

2 .
= L\/rfi e T g2, - 1)

The theory of theta functions supplies, however, a zillion wonderful
identities, of which the most celebrated is the “Jacobi theta
transformation” (“Jacobi’s identity”)?®

I(z7) = /rfi & /T (2 1)

which is exactly what we need to establish the equivalence in this
instance of the spectral propagator (wherein ¢ lives upstairs) and the
Feynman propagator (wherein ¢ lives downstairs). Jacobi’s identity
also mediates between the propagators obtained in all soluable
“particle in a box” problems, in one or several dimensions.

EXAMPLE: For an OSCILLATOR we have the spectral representation

K(o,ty,0) = S wn(a)s(y) e+ 2t (31.1)
n=0

1
n(0) = (22)} e b ()

while Feynman’s method was seen at (29) to supply

= 4/ —ihZizr:wt exp {%—2 gilwwt [(x2+y2) cos wt—ny} } (342)

Equivalence follows now from “Mehler’s formula”?2?

Sl 1/1 n 1 me’r — (l’z + y2)T2
L(37)" Hy(2)Ho(y) = ———
7;) n! (27—) (l‘> (y) m eXp { 1— 7_2

28 Richard Bellman—in A Brief Introduction to Theta Functions (1961)—
has remarked that “[Jacobi’s identity] has amazing ramifications in the fields
of algebra, number theory, geometry and other parts of mathematics [to which
I must add also physics!]. In fact, it is not easy to find another identity of
comparable significance.”

29 F. G. Mehler (1866). See A. Erdélyi, Higher Transcendental Functions,
Volume II (1953), page 194. Full details can be found in “Jacobi’s theta
transformation & Mehler’s formula: their interrelation, and their role in the
quantum theory of angular momentum” (2000.)
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I know of a few additional cases in which both the spectral representation
and Feynman’s description of the propagator can be evaluated in exact closed
form, and equivalence established by appeal to a “well-known” identity. In each
such case, t resides upstairs on one side, and downstairs on the other side of the
equality. If the Feynman formulation of quantum mechanics is truly equivalent
to the standard formulation, then there must exist as many such identities
as there are quantum systems! And they must, as a population, provide the
subject matter of some kind of over-arching general theory. Which has, so far
as [ am aware, yet to be devised.

One final comment: It is commonly held to follow from the spectral
representation that

lim K(x1,t1;%0,t0) = Zl/fn(xl)?ﬁfl(mo) = d(z1 — x0)

t1l to

as was required at (18.2). But the latter equality follows from the presumption
that the set {wn(x)} of eigenfunctions is complete. But equivalence theorems
of the sort we have been considering place us in position to write

an(xl)zbz (z9) = lilm {Feynman propagator}
til to

and thus to prove completeness. This is, in fact, the essential pattern of all
completeness proofs known to me.

8. Conclusion: Hamilton’s legacy. What began as a modest attempt to sketch
“Schrodinger’s train of thought” has expanded to become a more ambitious
account of some of the several ways in which Hamiltonian mechanics, in all
of its parts, became foundational to quantum mechanics. Hamilton had by
1834—when he was not yet thirty years old!-—brought classical mechanics to
its highest state of development. But the mountain top on which he stood was
wrapped in a dense fog that forever denied him a view of the glorious landscape
that lay just ahead. Dispersal of the fog had to await completion of the work
of Maxwell (electromagnetic waves, kinetic beginnings of statistical mechanics)
and of those who brought thermodynamics and statistical mechanics to mature
perfection, had to await Planck’s thermodynamics of light and the wide-ranging
insight of Einstein, who built upon those developments. Only then did Bohr,
de Broglie, Schrodinger. .. Feynman become possible, and the quantum world
latent in Hamilton’s classical work come finally into plain view.

It is interesting to note that some of the developments just mentioned made
critical use of ideas original to Hamilton. Statistical mechanics, as formulated by
Gibbs, is an exercise in Hamiltonian mechanics. Planck’s primitive quantization
procedure was recognized by Bohr/Sommerfeld to involve the quantization of
areas § p dg inscribed on Hamiltonian phase space, and when Ehrenfest enlarged
upon that insight to propose the quantization of classical “adiabatic invariants”
it was pointed out by K. Schwarzschild that those issued most naturally from an
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elaboration of Hamilton-Jacobi theory that had been devised by C. Delaunay
as an aid to his study of the motion of the moon (1846).

Between 1843 and the year of his death (1865) Hamilton gave his attention
mainly to the development and promotion of the theory of quaternions. While
that effort seems in retrospect to have been in many respects misguided, it
did mark the introduction of the noncommutivity concept which was destined
to become one of the most distinguishing features of quantum theory. And it
provided a kind of preview of a set of mathematical relationships that—eighty
years later—became fundamental to the quantum theory of spin.





