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Abstract. Ecological models help us understand how ecosystems function, predict
responses to global change, and identify future research needs. However, widespread use of
models is limited by the technical challenges of model–data synthesis and information
management.
To address these challenges, we present an ecoinformatic workflow, the Predictive

Ecosystem Analyzer (PEcAn), which facilitates model analysis. Herein we describe the
PEcAn modules that synthesize plant trait data to estimate model parameters, propagate
parameter uncertainties through to model output, and evaluate the contribution of each
parameter to model uncertainty. We illustrate a comprehensive approach to the estimation of
parameter values, starting with a statement of prior knowledge that is refined by species-level
data using Bayesian meta-analysis; this is the first use of a rigorous meta-analysis to inform the
parameters of a mechanistic ecosystem model.
Parameter uncertainty is propagated using ensemble methods to estimate model

uncertainty. Variance decomposition allows us to quantify the contribution of each parameter
to model uncertainty; this information can be used to prioritize subsequent data collection. By
streamlining the use of models and focusing efforts to identify and constrain the dominant
sources of uncertainty in model output, the approach used by PEcAn can speed scientific
progress.
We demonstrate PEcAn’s ability to incorporate data to reduce uncertainty in productivity

of a perennial grass monoculture (Panicum virgatum L.) modeled by the Ecosystem
Demography model. Prior estimates were specified for 15 model parameters, and species-
level data were available for seven of these. Meta-analysis of species-level data substantially
reduced the contribution of three parameters (specific leaf area, maximum carboxylation rate,
and stomatal slope) to overall model uncertainty. By contrast, root turnover rate, root
respiration rate, and leaf width had little effect on model output; therefore trait data had little
impact on model uncertainty.
For fine-root allocation, the decrease in parameter uncertainty was offset by an increase in

model sensitivity. Remaining model uncertainty is driven by growth respiration, fine-root
allocation, leaf turnover rater, and specific leaf area. By establishing robust channels of
feedback between data collection and ecosystem modeling, PEcAn provides a framework for
more efficient and integrative science.

Key words: Bayesian approach; ecoinformatics; ecological forecast; ecophysiology; Ecosystem
Demography model; ecosystem model; meta-analysis; plant traits; sensitivity analysis; variance decompo-
sition.

INTRODUCTION

In the face of unprecedented global change there is

growing demand for predictions of ecosystem responses

that provide actionable information for policy and

management (Clark et al. 2001). Currently, the response

of the terrestrial biosphere remains one of the largest
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sources of uncertainty in projections of climate change

(Denman et al. 2007).

This uncertainty comes from a combination of the

uncertainties about our conceptual understanding of

ecological systems as captured by the structure and

assumptions of the models used to make ecological

forecasts, the uncertainties in the parameters of these

models, and the uncertainties associated with the

underlying data (McMahon et al. 2009). Reducing these

uncertainties requires that we be able to synthesize

existing information, efficiently identify the dominant

sources of model uncertainty and target them with

further field research.

Despite the acknowledged importance of these activ-

ities, there is often a disconnection between model

simulation and data collection. Both model–data

synthesis and the investigation of uncertainty remain

challenging, while the use of models to quantitatively

inform data collection is extremely rare. Most modeling

uses a single point estimate for each parameter,

effectively treating each parameter value as completely

certain. However, such point estimates do not account

for the degree to which we understand a parameter

based on observations. Furthermore, the rationale for a

particular estimate is often unclear, as is the degree to

which the estimate represents the process being observed

or its representation in a model. In many cases,

parameter values are chosen iteratively to ‘‘tune’’ or

‘‘calibrate’’ the model output to observations. A first

step toward constraining model uncertainty is to

account for uncertainty in model parameters instead of

relying on point estimates.

More rigorous approaches to estimating parameter

values include model optimization and data assimilation

(Reichstein et al. 2003, Medvigy et al. 2009), as well as

Bayesian model–data fusion (Luo et al. 2011). However,

these approaches have generally started with uninfor-

mative or vague prior estimates of model parameters.

These vague priors ignore available data that could

directly inform parameter values; the most commonly

used vague prior distributions are uniform. A uniform

prior assigns equal probability to parameter values over

its entire range, in many cases over many orders of

magnitude.

The use of such vague priors often exacerbates

problems with equi-finality (Richardson and Hollinger

2005, Luo et al. 2009, Williams et al. 2009) which can

produce unidentifiable parameters, as well as biologi-

cally unrealistic parameter sets that generate the right

model output for the wrong reasons (Beven and Freer

2001, Beven 2006, Williams et al. 2009).

Another reason to use informed priors is to take

advantage of one of the key strengths of the Bayesian

paradigm: the ability to synthesize multiple sources of

information in a rigorous and consistent framework.

For example, plant traits related to leaf stoichiometry

and photosynthetic capacity are often well constrained

by previous research (Wullschleger 1993, Reich and

Oleksyn 2004, Wright et al. 2004, Skillman 2008),

whereas other traits, such as root respiration rate, are

more difficult to measure and data are sparse. Informed

priors allow existing information to be formally

integrated into model parameterization, even if there

are no data for the particular species or plant functional

type (PFT) being measured; the level of confidence in a

parameter value is reflected in the parameter’s variance.

Models have rarely been used to quantify the value of

data with respect to reducing uncertainty. Instead, data

collection is often focused on answering specific

questions in specific spatial, temporal, and taxonomic

contexts. In these contexts, the value of a particular data

set is based on the ability to answer a particular

question. However, the same data set may have a very

different value in the context of reducing model

uncertainty. For example, a single data point used to

inform a poorly understood but influential model

parameter can reduce model uncertainty more than a

large collection of data on a trait that is relatively well

studied. In a modeling context, the value of an

additional data point depends both on how much it

constrains parameter uncertainty and on the sensitivity

of model output to the parameter. Thus, the ability to

comprehensively utilize available data in model param-

eterization can help to identify gaps in existing

knowledge, improve the ability of models to account

for current understanding, and inform data collection

efforts by identifying the knowledge gaps most respon-

sible for uncertainty.

Although the increasing sophistication of model–data

fusion and uncertainty accounting is a critical step in the

right direction, the complexity of such analyses can

make models even less accessible. One of the reasons to

make models more accessible, and to make them better

at synthesizing existing data, is that models are

fundamentally a formal, quantitative distillation of our

current understanding of how a system works. As such,

models can be used to identify gaps in our understand-

ing and target further research.

This feedback between models and data could be

improved if models were routinely evaluated in a way

that quantifies the value of data with respect to reducing

uncertainty.

We fundamentally believe that streamlining the

informatics of modeling, the need to track, process,

and synthesize data and model output, will make the

development and application of ecological data and

models more accessible, transparent, and relevant.

In this paper we present the Predictive Ecosystem

Analyzer (PEcAn) as a step toward meeting these

objectives. PEcAn is a scientific workflow that manages

the flows of data used and produced by ecological

models, and that assists with model parameterization,

error propagation, and error analysis. PEcAn accom-

plishes two goals: first, it synthesizes data and propa-

gates uncertainty through an ecosystem model; second,

it places an information value on subsequent data
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collection to efficiently reduce uncertainty. In addition

to quantifying the information content of any prediction

or assessment, these techniques also help to identify the

gaps in our knowledge of ecological and biogeochemical

processes (Saltelli et al. 2008).

PEcAn addresses the challenge of synthesizing plant

trait data from the literature in a way that accounts for

the different scales and sources of uncertainty. Available

data are synthesized using a Bayesian meta-analysis, and

the meta-analysis posterior estimates of plant traits are

used as parameters in an ecosystem model.

A model ensemble is a set of model runs with

parameter values drawn from the meta-analysis poste-

rior estimates of plant traits. Output from a model

ensemble represents the posterior predictive distribu-

tions of ecosystem responses that account for trait

parameter uncertainty. Hereafter ‘‘model posterior’’

refers to the ‘‘model ensemble output.’’ Sensitivity

analysis and variance decomposition help to determine

which traits (model parameters) drive uncertainty in

ecosystem response (model posterior) (Larocque et al.

2008, Saltelli et al. 2008). These analyses help to target

parameters for further constraint with trait data,

forming a critical feedback loop that drives further field

research and provides an informative starting point for

data assimilation. Here we illustrate an application of

PEcAn to the assessment of aboveground yield in a

perennial grass monoculture.

In the sections that follow, we provide an overview of

the components of PEcAn’s integrated framework for

data synthesis and ecological prediction. We start with a

description of the methods implemented in the workflow

(Implementation). This includes descriptions of the

database, Bayesian meta-analysis, ensemble analysis,

sensitivity analysis, and variance decomposition. Finally

we present an example of the application of the system

(Application) to analyze the aboveground biomass of

switchgrass (Panicum virgatum L.), by the Ecosystem

Demography model version 2.1 (ED2) (Moorcroft et al.

2001, Medvigy et al. 2009).

Implementation

PEcAn workflow.—The Predictive Ecosystem Analyz-

er (PEcAn) manages the flow of information into and

out of ecosystem models. PEcAn is not a model itself,

but a scientific workflow consisting of discrete steps, or

modules. Individual modules are building blocks of the

workflow, represented by the rectangles in Fig. 1,

whereas flows of information are represented by arrows.

This makes PEcAn an encapsulated, semi-automated

system for model parameterization, error propagation,

and analysis.

A central objective of the PEcAn workflow is to make

the entire modeling process transparent, reproducible,

and adaptable to new questions (sensu Ellison 2010,

Stodden et al. 2010). To achieve this objective, PEcAn’s

adheres to ‘‘best practice’’ guidelines for ecological data

management and provenance tracking (Jones et al. 2006,

Michener and Jones 2012).

PEcAn uses a database to track data provenance and

a settings file to control workflow analyses and model

runs. The database records the site, date, management,

species, and treatment information for each trait

observation used in the meta-analysis. Settings related

to the experimental design and computation are set and

recorded in a separate file for each analysis.

The code, inputs, outputs, and a virtual machine

required to reproduce the analysis described in the

section Application are provided in the PEcAn version

1.1 archive (available online).5

The PEcAn ‘‘virtual machine’’ minimizes the effort

required to run PEcAn and begin using an ecosystem

model. The virtual machine contains the PEcAn

software, ecosystem models, and other software depen-

dencies in a pre-configured desktop environment that

can be run on any standard operating system using a

freely available virtualization software such as Virtual-

Box (available online)6 or VmWare Player (available

online).7 We use the virtual machine to support

investigation, development, and education.

The PEcAn software is primarily written in R and

developed in a Linux environment. It also relies on a

MySQL database, JAGS, and contributed R packages.

PEcAn has a family of model-specific functions that

manage the details of launching of model runs and

reading model output.

Although PEcAn does not depend on any specific

model, it was developed to support ecosystem models

that run in high-performance computing environments;

for this reason, it is capable of running models locally,

remotely, or through queuing systems regardless of

whether PEcAn is compiled locally or run as a virtual

machine. The PEcAn 1.1 release described herein runs

with ED2 (see footnote 5). More recent versions include

web interfaces to the database, model execution, and the

R programming environment (Dietze et al. 2013) plus

support for two additional models: Sipnet (Moore et al.

2008) and BioCro (Miguez et al. 2009). Current work

includes multi-model inference and intercomparison.

Trait database.—Model parameters are associated

with corresponding prior distributions, and in many

cases, with species-level data. Both prior distributions

and data are stored in a relational database (Supplement

1). PEcAn directly accesses the database, which contains

additional meta-data for each data set, including site

descriptions, measurement conditions, experimental

details, and citations.

Trait priors.—A fundamental component of the

Bayesian approach to parameter estimation is the use

of priors. Priors formally incorporate knowledge of a

parameter based on previous studies into a new analysis.

5 https://www.ideals.illinois.edu/handle/2142/34655
6 www.virtualbox.org/
7 www.vmware.com
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In the current study, we leverage previously collected

data from nontarget species to place biologically

informed constraints on the distributions of plant trait

parameters. When additional data for a specific species

or plant functional type are available, priors are further

constrained before being used as model parameters.

When no additional data are available, these priors are

used directly to parameterize the model.

For the P. virgatum example, priors were set using

data from all plant species, from only grass species, or

from just C4 grass species depending on available data.

Sources of this prior information included data from

previous and ad hoc syntheses, expert knowledge, and

biophysical constraints (Table 1).

Prior distributions used in the meta-analysis were fit

to one of four types of information: (1) data from

multiple species, (2) the posterior predictive distribution

for a new species from a meta-analysis of data (when

error estimates were available), (3) a central tendency

informed by data with expert constraint on the

confidence interval, or (4) expert constraints on both

the central tendency and confidence intervals. In case

(2), the across-species meta-analysis ‘‘posterior’’ informs

the prior for the species-level meta-analysis. In all cases,

maximum likelihood estimation was used to fit a prior

distribution. When more than one candidate distribu-

tion was considered, Aikake’s information criterion

(AIC) was used to select the best-fit distribution. The

FIG. 1. Overview of the PEcAn (Predictive Ecosystem Analyzer) workflow. The synthesis of plant trait data begins by querying
a database of plant trait data for data on a single species or a plant functional type and then mapping these data to the model
parameters that they inform. The database also provides probability distributions that describe our prior information about the
range of values that a model parameter can take. Next, this information is synthesized in a Bayesian meta-analysis, resulting in a
posterior trait distribution that summarizes the uncertainty in each parameter. The ensemble of model runs produces the posterior
distribution of model outputs, representing a probabilistic assessment or forecast that accounts for input parameter uncertainty.
The final steps in the workflow are the sensitivity analysis and variance decomposition; these steps gives insight into the relative
contribution of each parameter to the uncertainty in the model output and can be used to guide additional data collection that will
most efficiently reduce model uncertainty.
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choice of prior was confirmed by visually inspecting the

prior density functions overlain by data or expert

constraints (Fig. 2).

Meta-analysis.—A hierarchical Bayes meta-analytical

model (Fig. 3) formally synthesizes available trait data

from multiple studies while accounting for various

sources of uncertainty. This hierarchical Bayes approach

integrates prior information and provides a flexible

approach to variance partitioning and parameter

estimation.

The meta-analytical framework is useful for summa-

rizing data sets that include summary statistics. The trait

data queried by PEcAn consist of a trait name, sample

mean, sample size, and a sample error statistic. PEcAn

transforms error statistics to exact or conservative (i.e.,

erring toward inflating the variance) estimates of

precision (s ¼ 1/SE2) (Appendix).

The sample mean is drawn from a normal distribu-

tion:

Yk ; N ðHk; skÞ ð1Þ

where Yk is the sample mean of the kth unique site 3

treatment combination (sample unit) and Hk is the

unobserved ‘‘true’’ value of the trait for the kth sample

unit.

The meta-analysis partitions trait variability into

among-site, among-treatment, and within-unit variance.

The unobserved ‘‘true’’ trait mean Hk is a linear function

of the global trait mean, b0, plus random effects for

study site (bsitej ) and treatment (btr j siteij ), and a fixed

effect for greenhouse (bgh):

Hk ¼ b0 þ bsitei
þ btr j siteij

þ bghIðiÞ ð2Þ

where i indexes study site, j indexes each treatment

within a study, and I(i ) is an indicator variable set to 0

for field studies and 1 for studies conducted in a

greenhouse, growth chamber, or pot experiment. The

parameter used in the ecosystem model is the posterior

estimate of the global mean trait value, b0, which has an

informed prior functional form and parameter specifi-

cation that varies by trait and species or PFT. Methods

used to elicit priors for the present study are provided in

the Application section under Priors.

TABLE 1. Prior distributions used in meta-analysis and model parameterization.

Parameter (units) Clade Distribution a b N Mean LCL UCL Source

Specific leaf area
(m2/kg)

grass Gamma 2.06 19.00 125 17 3.2 36 Wright et al. (2004)

Leaf turnover rate
(yr�1)

grass Weibull 2.90 0.63 40 4.6 0.91 11 Wright et al. (2004)

Root turnover rate
(yr�1)

grass Gamma 1.67 0.66 66 0.59 0.073 1.4 Gill and Jackson (2000)

Quantum efficiency
(proportion)

C4 grass Weibull 90.90 1580.00 56 0.058 0.046 0.07 Skillman (2008)

Stomatal slope (ratio) C4 grass Gamma 3.63 3.81 4 3.4 1.4 5.5 data from this study;
Supplement 1

Vc,max

(lmol CO2�m�2�s�1)
graminoid Gamma 3.49 24.70 97 22 8.6 36 Wullschleger (1993),

Kubien and Sage
(2004), Massad et al.
(2007), Wang et al.
(2011)

Leaf width (mm) C4 grass Weibull 26.10 5.94 18 4.4 2.9 6.2 Oyarzabal et al. (2008)
Root respiration rate
(lmol CO2�m�2�s�1)

C4 grass F 5.61 2.33 35 5.6 1 10 Tjoelker et al. (2005)

Fine-root allocation
(ratio)

grass log-normal 0.80 0.81 0 3.1 0.46 11 Saugier et al. (2001)

Seed dispersal
(proportion)

grass Beta 20.10 74.90 30 0.21 0.14 0.3 Jongejans and
Schippers (1999)

Photosynthesis min.
temp. (8C)

C4 grass F 10.00 1.02 0 10 8 12 D. S. LeBauer and D.
Ort ( personal
communication)

Growth respiration
(proportion)

grass Beta 2.63 6.52 0 0.29 0.062 0.6 �, D. S. LeBauer and
M. C. Dietze

Seedling mortality
(proportion)

monocots Beta 3.61 0.43 0 0.89 0.5 1.0 �, D. S. LeBauer and
M. C. Dietze

Mortality coefficient
(yr�1)

plants Weibull 1.47 0.06 0 25 1.8 80 �, D. S. LeBauer and
M. C. Dietze

Reproductive
allocation
(proportion)

plants Beta 2.00 4.00 0 0.33 0.053 0.72 �, D. S. LeBauer and
M. C. Dietze

Notes: Terms a and b are the first and second parameters of the probability distribution; N is the number of distinct species
represented in data used to estimate the prior; LCL and UCL are the upper and lower 95% credible limits, respectively. Sources are
listed in the right-most column: citations, authors of the present study, or default ED2 parameterizations. The ‘‘Clade’’ column
indicates the group of plants for which the priors were derived.

� Default ED2 parameterizations, as described in Methods: Trait priors.
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The ‘‘site’’ random effects (bsite), account for the

spatial (among-site) heterogeneity of a parameter. The

‘‘treatment’’ random effect (btr j site) accommodates

differences among experimental treatments. These ran-

dom effects of treatment and site are assumed to have

normal distribution with zero mean and they have

diffuse Gamma priors on precision ssite and str. Control
treatments and observational studies have btr j site ¼ 0.

PEcAn dynamically adjusts the meta-analysis model

specification to include terms for each level of site and

treatment, or greenhouse studies as required by available

data. To ensure that the prior on precision remains

sufficiently diffuse when the magnitude of a parameter is

small, the scale parameters in the Gamma priors on

random effect precision terms (ssite and str j site) are

scaled to (�b
2

0/1000) when the prior on b0 has a mean b̄0 ,ffiffiffiffiffi
10
p

.

A ‘‘greenhouse’’ fixed effect accounts for potential

biases associated with plants grown in a greenhouse,

growth chamber, pot, or other controlled environment.

This ‘‘greenhouse’’ effect, bgh, has a diffuse normal prior

with a mean of zero and a precision of 0.01.

FIG. 2. Prior distributions (probability density functions, PDF) of priors with data constraints, based on the traits of plants
within broad taxonomic or functional type groupings (e.g., all grasses, gray density lines). The parameter value is on the x-axis,
probability density is on the y-axis, and the area under each curve equals 1. Three points on each line, from left to right, indicate the
2.5th, 50th, and 97.5th quantiles. (a–d) Four priors fit to data (data points shown as rug plot) using maximum likelihood: specific
leaf area and leaf turnover rate (Wright et al. 2004), root turnover rate (Gill and Jackson 2000), and quantum yield (Skillman
2008). (e–h) Four priors fit to the posterior predictive distribution of an unobserved C4 grass species using Bayesian meta-analysis
of data from multiple plant functional types (C4 data shown in black, other functional types in gray): stomatal slope (Miscanthus,
black circles; three woody species, gray circles; data collected for the present study and provided in Supplement 1), Vc,max of C3

plants (gray symbols; Wullschleger 1993) and C4 grasses (black circles; Kubien and Sage 2004, Massad et al. 2007, Wang et al.
2011), leaf width from C3 and C4 grass species (Oyarzabal et al. 2008), and root respiration (black circles, C4 grass; gray symbols,
C3 plants; Tjoelker et al. 2005). (i–o) Priors fit to 95% CI (dashed gray line) and median (solid gray line) based on ED2 (Ecosystem
Demography model, version 2) defaults and expert opinion as described in the text: fine-root to leaf ratio (Saugier et al. 2001), seed
dispersal (Ernst et al. [1992] model parameterized with site-level data), minimum temperature of photosynthesis (D. Ort, personal
communication), growth respiration, seedling mortality factor, mortality factor, and reproductive allocation.
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The observation precision (precision¼ 1/variance) for

the kth sample mean, sk, is determined based on the

within-unit precision, sY, and the sample size, n, as sk¼n

3 sY (since SE¼SD/
ffiffiffi
n
p

). A common within-sample-unit

precision, sY, is assumed in order to accommodate

literature values with missing sample sizes or variance

estimates. The sample standard error, SEk, is drawn

from a Gamma distribution with parameters informed

by the sample size, n, and within-site precision, sY:

1

n 3 SE2
k

; Gamma
n

2
;

n

2sY

� �
ð3Þ

where sY has a diffuse Gamma prior. Unlike the mean

and variance parameters, missing values of n cannot be

estimated and are conservatively set either to 2 (when

existence of a variance estimate indicates n � 2) or to 1

(if no variance estimate is given).

The random and fixed effects and the among-study,

among-treatment, and within-unit precisions are used to

evaluate the importance of different sources of uncer-

tainty.

The meta-analysis module in PEcAn is fit using JAGS

software version 2.2.0 (Plummer 2010) called from

within R code that transforms data and specifies the

meta-analysis model in JAGS. JAGS uses standard

Markov chain Monte Carlo (MCMC) methods (Gel-

man and Rubin 1992) to approximate the posterior

distribution of the terms in the meta-analysis. To

overdisperse the n MCMC chains, initial values of b0

are set to the 1/(n þ 1), . . . , n/(n þ 1) quantiles of the

prior on b0; for the default n ¼ 4 chains, this would be

the f0.2, 0.4, 0.6, 0.8g quantiles. Following Gelman and

Shirley (2011), PEcAn discards the first half of each

chain, thins each chain to 5000 samples, and then

combines the chains into a single vector of samples for

each term in the meta-analysis model. Trace plots and

the Gelman-Rubin (1992) convergence diagnostic are

used to assess chain convergence. Density plots (Fig. 4)

are used to visually compare the b0 chain to data and

priors. The significance of the greenhouse effect is

evaluated by calculating a two-sided probability that

bgh 6¼ 0.

When species-level data are unavailable, the posterior

distributions are equivalent to the priors.

Each term in the meta-analysis is represented as a

vector of MCMC samples from the posterior distribu-

tion. Statistical summaries of the parameters can be

calculated from these chains, and chains can also be

directly sampled for use in ecosystem model parameter-

ization. When the b0 chains are sampled for the

ecosystem model ensemble, the meta-analysis posteriors

become the model ensemble priors.

Model analysis

Ensemble analysis.—Typically, ecosystem models are

run for a single model parameterization. For example,

FIG. 3. Overview with a modified Kruschke (2010) diagram of the hierarchical Bayesian meta-analysis model used to estimate
species-level trait parameters. For each trait, the posterior estimate of the global trait mean (b0) is used as an input parameter in the
sensitivity analysis and model ensemble (Figs. 5 and 6). Results from the meta-analysis of specific leaf area are used as an
illustrative example; x-axes have units of m2/kg, and all plots are on the same scale; the y-axis is the probability density function
(area under the curve ¼ 1). Each of the k sample means (Yk) were taken from published articles and unpublished field
measurements, and may be associated with a sample standard error and sample size. When sufficient data were available, site,
treatment, and greenhouse effects were estimated. The within-unit standard deviation, rY, is estimated from SE and n. Site and
treatment random effects, represented by bsite and btrjsite, are estimated for each site and treatment within site from normal
distributions with mean zero and standard deviations rsite and rtrjsite, respectively. Greenhouse is a fixed effect. Table 2 summarizes
the global mean, variance terms, and greenhouse effect for the seven model parameters informed by species-level data.
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the model could be evaluated at the median value of

each parameter. However, this approach only provides a

point estimate, with no accounting for parameter

uncertainty.

To propagate parameter uncertainty through the

ecosystem model, PEcAn uses standard ensemble-based

Monte Carlo approaches. An ensemble of model runs is

a set (e.g., 500 or 1000) of model runs that are

parameterized by sampling from the trait parameter

distributions. For each ensemble member, parameter

sets are sampled from the full joint parameter distribu-

tion of b0, the vector of all model parameters. As a

result, the model ensemble approximates the posterior

distribution of the ecosystem model output. The model

ensemble produces a posterior distribution of the

ecosystem model output that can be summarized with

standard statistics (e.g., mean, standard error, and

credible interval).

Sensitivity analysis.—Sensitivity analyses are used to

understand how much a change in a model parameter

affects model output; sensitivity is the derivative, df/db0t
,

of the model ( f ) with respect to the estimate of b0; here

we use the subscript t for trait and vector b as the vector

of parameters to distinguish univariate from multivar-

iate calculations. PEcAn approximates the sensitivities

based on univariate perturbations of model parameters.

These approximations are necessary because analytical

solutions for sensitivity are not tractable for most

ecosystem models, and PEcAn is designed to be flexible

and applicable to any such model. One disadvantage of

traditional perturbation-based sensitivity analyses is that

the perturbations are usually arbitrary, for example

FIG. 4. Curves show prior (gray) and posterior (black) densities of trait parameters used in the analysis. Prior distributions are
based on the traits of plants within broad taxonomic or functional type groupings (e.g., all grasses; Fig. 2, Table 1); the y-axis is the
probability density function (area under the curve ¼ 1). When species-level data were available, they were used in a hierarchical
Bayesian meta-analysis, and the posterior estimate of the mean parameter value is shown. Data (mean 6 SE) used in the meta-
analysis come from both published and our own measurements of the trait on the perennial C4 grass switchgrass (Panicum
virgatum). The plots illustrate mismatch between data and the posterior estimate of the global trait mean results from site,
treatment, and greenhouse effects. Data from plants grown under an experimental treatment are presented in gray; data from plants
grown in a controlled environment (e.g., in a pot or greenhouse) are presented as open circles; data from field-grown plants under
control treatments are in black. In the specific-leaf-area and leaf-width plots, site-level effects account for disparity between the
black circles and the meta-analysis posterior (black density line).
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varying each parameter by a fixed percentage of its value

(Larocque et al. 2008) rather than over a meaningful

range of the parameter. These traditional approaches

make interpretation of sensitivities difficult because they

fail to acknowledge the distribution or uncertainty of

each parameter. In this regard, PEcAn offers a distinct

advantage over traditional sensitivity analyses because

parameters are varied based on the meta-analysis

posterior parameter distributions.

Based on initial exploratory analyses, we found a local

perturbation to be inadequate for capturing the respons-

es in most parameters, so we instead estimate sensitiv-

ities using a global univariate sensitivity analysis. By

default, PEcAn evaluates each parameter at the poste-

rior median and at the six posterior quantiles equivalent

to 6[1, 2, 3]r in the standard normal, while holding all

other parameters constant at their posterior median.

The relationship between model output and each model

parameter b0t is then approximated by a natural cubic

spline gt(b0t ) that interpolates through the evaluation

points. The model sensitivity to each parameter is

approximated by the derivative of the spline (dgt/db0t
)

at the parameter median. In addition to the sensitivity

analysis, this set of spline approximations is used in the

variance decomposition, in partitioning residual vari-

ance, and in evaluating the effect of ensemble size on the

estimate of model variance.

To facilitate comparisons among the trait sensitivities

despite differences in the units on different traits, we

tabulate the coefficient of variation (normalized param-

eter variance) and the elasticity (sensitivity with terms df

and db0t standardized by the mean model output and

parameter mean, respectively).

Variance decomposition.—Variance decomposition

aims to explain how much each input parameter

contributes to uncertainty in model output (Cariboni

et al. 2007). Although the present analysis focuses on

model parameters, these methods can be extended to

address uncertainty in initial conditions or model

drivers.

The Delta Method uses Taylor series expansion to

approximate the probability distribution of a continuous

function of random variables (Oehlert 1992, Casella and

Berger 2001:240–245). In this study, the model output

f (b0) is a function of a vector of the full set of

parameters. After approximating the distribution of

f (b0), it is possible to estimate the variance of the model

output. The first step is to derive the Taylor series

approximation of the variance of a function (Casella and

Berger 2001: Eq. 5.5.9):

Var½ f ðb0Þ�’
Xm

t¼1

Var f ðb0t
Þ þ df

db0t

ðb0t
� b0t

Þ þ . . .

� �

ð4Þ

¼
Xm

t¼1

df

db0t

� �2

Var½b0t
� þ x ð5Þ

where m is the number of parameters in the model, the

error term x accounts for higher order terms in the

Taylor series, and b0t
is the estimate of b0 from the meta-

analysis (Eq. 2) for each trait, t.

With this approximation, it is straightforward to

estimate the variance contributed by each parameter.

The terms in this form of the variance decomposition

can be estimated directly from the preceding analyses:

Var[ f(b0)] is the variance of the model ensemble;

Var[b0t ] is the posterior variance of trait b0t from the

meta-analysis (Eq. 2); and df/db0t
is the model sensitivity

at the parameter mean b0t
. The resulting assertion is that

the variance of model output is equal to the sum over the

variance of each trait times its sensitivity squared plus a

closure term, x.
We found that the traditional Taylor polynomial

approach to variance decomposition produced a poor

closure of the total variance of the model output: for

more sensitive parameters, a linear approximation of

f(b0) provided unrealistic estimates of the sensitivity

function that overestimated variance. Increasing the

order of the Taylor series expansion actually exacerbat-

ed this problem (results not shown). One problem with

the polynomial approximation is that, unlike polynomi-

als, most response variables in ecosystems and ecosys-

tem models tend to be asymptotic at both high and low

values of a trait. For example, when assessing above-

ground biomass, there is a lower bound of zero biomass

and most parameters become progressively less sensitive,

if not genuinely asymptotic, at their upper bound. This

asymptotic behavior is poorly approximated by a

polynomial because polynomials are unbounded at

extreme parameter values. Therefore, we sought a better

approximation for the variance decomposition.

First, we formulated a more generalized form of the

variance decomposition (Eq. 4):

Var½ f ðb0Þ� ¼
Xm

t¼1

Var½gtðb0t
Þ� þ x: ð6Þ

The spline gt(b0t
) is a statistical emulator of the model

response to trait t that transforms b0t
from the parameter

domain to the model domain. The univariate contribu-

tion of each parameter to variance of the model output

is thus Var[gt(b0t )].
Eq. 6 only requires b0t

from the preceding meta-

analysis, gt(b0t ) from the sensitivity analysis, and

Var[ f(b0)] from the ensemble analysis.

The final term, x, is the closure between the right-

hand side and the left-hand side of the variance

decomposition; x represents the effects of the higher

order terms in the Taylor approximation and the

covariance terms between parameters. This closure term

is intended to represent parameter interactions that are

excluded from the univariate variance decomposition

(Eq. 6). Negative trade-offs among physiological traits

would result in x less than zero. However, our estimate

of x also includes errors associated with using finite
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sample sizes, the spline approximation in each gt(b0t ),
and biological range restrictions on model output that

are not reflected in the variance decomposition (Eq. 6).

One approach to partition the error in the closure

term is to use the univariate spline functions from the

sensitivity analysis to estimate what the model output

would be for each of the parameter sets used in the

model ensemble; we call this estimate the ‘‘spline

ensemble’’:

g‘ðb0Þ ¼ gðb̂0Þ þ
Xm

t¼1

½gtðb0t‘
Þ � gtðb̂0t

Þ�: ð7Þ

In this equation, g‘(b0) is the spline estimate of the

model output for the ‘th ensemble member, where g is a

vector of functions and b̂0t is the posterior median

parameter value of trait t.

Although the individual splines may respect range

restrictions on output variables (e.g., biomass values

cannot fall below zero), combinations of the splines

evaluated for a set of unfavorable traits can fall outside

these ranges. For parameter sets that give a biologically

implausible estimate of negative biomass (g‘(b0) , 0),

the estimate is set to zero. The only difference between

the variance of the spline ensemble (Eq. 7) and the

variance decomposition (Eq. 6) is that range restrictions

are not corrected for in the variance decomposition.

Therefore, the spline ensemble allows us to estimate the

effect of using combinations of spline estimates that do

not respect the zero bound on biomass in the variance

decomposition. The difference between the model

ensemble and the spline ensemble provides an estimate

of parameter interactions in the model because the spline

ensemble does not include the parameter interactions

that exist in the model.

The precision of the estimate of model ensemble

variance is affected by the number of runs in the

ensemble. When the computational expense of the

model itself limits the ensemble size, there can be

significant uncertainty in the estimate of ensemble

variance.

The uncertainty in a sample variance is estimated as

Varðs2Þ ¼ 1

n
l4 �

n� 3

n� 1
r4

� �
ð8Þ

(Mood et al. 1974:239), where l4 is the fourth central

moment. Var(s2) scales inversely with sample size. The

effect of the limited model ensemble size on uncertainty

in the estimate of ensemble variance is measured in two

ways. The first way is to calculate Var(s2) for the model

ensemble (n ¼ 500). The second way is to compare

Var(s2) of the spline ensemble with 500 and 10 000 runs.

The 95% credible interval for s2 is calculated as

s2 6 1:96ss2 ;where ss2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðs2Þ

p
:

The error introduced from using a spline approxima-

tion of the model response cannot be estimated based on

the existing output, but it is small in comparison to the

other effects, given the range restrictions imposed by the

spline interpolation.

The results of a model ensemble are posterior

estimates of aboveground biomass.

However, we also distinguish between ensembles

depending on the nature of model parameters. First,

we ran a ‘‘prior model ensemble’’ using an ensemble of

parameter sets drawn from prior distributions, and then

a ‘‘posterior model ensemble’’ drawn from meta-analysis

posteriors.

APPLICATION: SWITCHGRASS MONOCULTURE

We demonstrate the application of PEcAn to estimate

the aboveground yield of an experimental switchgrass

(Panicum virgatum) monoculture. The first step to

applying PEcAn was to construct an appropriate set of

priors based on data syntheses and expert knowledge.

These priors were conservative estimates of the plant

trait parameters based on information other than

species-level data. Next, switchgrass trait data from

both previous studies and field measurements were

summarized using meta-analysis to constrain the prior

parameter estimates. The Ecosystem Demography mod-

el version 2.1 (Moorcroft et al. 2001, Medvigy et al.

2009) was used to simulate plant growth.

The model ensemble and sensitivity analysis were

performed using both the prior and posterior parameter

estimates. By comparing the prior model ensemble to the

posterior model ensemble, we are able to evaluate the

ability of species-level data to reduce model uncertainty.

To evaluate model performance, we compare the

ensemble estimates of aboveground biomass with

observed yields (Heaton et al. 2008, Wang et al. 2010)

in Fig. 5.

Site

Switchgrass (Panicum virgatum) is a perennial grass

native to North America that has received attention as a

potential cellulosic biofuel crop (McLaughlin and Kszos

2005, Wang et al. 2010). We modeled the aboveground

biomass production of a switchgrass monoculture and

compared model estimates to a monoculture planted in

2002 at the University of Illinois Agricultural Research

and Education Center in Urbana, Illinois, USA (40.09

N, 88.2 W; see Plate 1). The climate at this site is

characterized by hot, humid summers and cold winters,

with a 50-year (1959–2009) mean annual temperature of

118C and mean annual precipitation of 1000 mm/yr

(Angel 2010). Meteorological data used to drive the

model were downloaded from the North American

Regional Reanalysis (Mesinger et al. 2006). Soil is a silt

loam from the Drummer-Flanagan soil series; texture

data were obtained through the USDA NRCS web soil

survey website (available online).8 The yield and other

8 websoilsurvey.nrcs.usda.gov
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aspects of this ecosystem have previously been reported

(Heaton et al. 2008).

Ecosystem Demography model

We used the Ecosystem Demography model, version 2

(hereafter ED2) to model the productivity and soil

carbon pools in this switchgrass agroecosystem. ED2 is

a terrestrial biosphere model that couples age- and

stage-structured plant community dynamics with eco-

physiological and biogeochemical models. The biophys-

ical land surface model in ED2 allows plant uptake and

growth to respond dynamically to changes in weather

and soil hydrology (Medvigy et al. 2009). ED2 has the

ability to link short-term, physiological responses to
environmental conditions with realistic, long-term suc-

cessional changes in ecosystem structure and composi-

tion (Moorcroft et al. 2001). Although other models

have both succession and physiology, ED2 also has

explicit spatial scaling, a sub-daily time step, and the

ability to couple with a land surface model (Dietze and

Latimer 2011).

ED2 incorporates a mechanistic description of plant

growth that accounts for the fast temporal responses of

plants to changes in environmental conditions. In this

study, we vary 15 model parameters based on observable

plant traits that control carbon uptake, carbon allocation,
turnover, and reproduction (Table 1, Figs. 2 and 4).

ED2 calculates photosynthetic rates using the enzyme

kinetic model developed for C3 plants (Farquhar and

Sharkey 1982, Ball et al. 1987) and the modifications for

C4 plants (Collatz et al. 1992). Vc,max sets the upper

bound on the rate of Rubisco-limited photosynthesis in

C3 plants and PEP-limited photosynthesis in C4 plants,

whereas light-limited photosynthesis is constrained by

the quantum efficiency parameter, and a threshold

parameter controls the minimum temperature at which

photosynthesis will occur. Stomatal conductance is

calculated using the Leuning variant of the Ball-Berry

model (Leuning 1995) and is controlled by the stomatal

slope parameter. Leaf boundary layer conductance

depends on the leaf width parameter.

Together, stomatal conductance and leaf boundary

layer conductance affect carbon and moisture fluxes and

the leaf energy balance. Specific leaf area (SLA)

determines the amount of leaf area produced per unit

leaf biomass investment.

In addition to photosynthesis, ED2 also accounts for

carbon allocation to growth, respiration, and for the

turnover rate of carbon pools. These parameters include:

one to partition between leaf and fine-root growth; one

for allocation to reproduction; two respiration param-

eters associated with growth respiration and root

maintenance respiration; and two parameters to control

the rates of leaf and root turnover.

Finally, three demographic parameters control seed

dispersal, seedling mortality, and adult mortality due to

carbon limitation (Table 1).

FIG. 5. Ensemble average 2004–2006 post-senescence yield of switchgrass. The histogram shows results from prior ensemble
runs (solid gray line), posterior ensemble runs (solid black), the spline posterior ensemble (dotted gray), and observations (dashed
black line) from Wang et al. (2010); the y-axis is the probability density (area under the curve¼ 1). The vertical gray box on the left
represents nonviable ensemble members (yield � 2Mg/ha; see the Ensemble section in both Results and Discussion). Horizontal bars
provide a summary of yields: a three-year trial (4 observations) at the modeled site (Heaton et al. 2008), all 1902 observations
included in a recent meta-analysis (Wang et al. 2010), and viable runs from the ED2 ensemble based on prior and posterior
parameterizations. Open diamonds indicate the median; thick and thin lines indicate the 68% and the 95% credible intervals,
respectively. Histogram-style plots provide comparison of the distributions of observations and model runs. For clarity, nonviable
and viable runs are plotted with different width bins.
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Priors

Priors from data.—Priors were estimated by finding

the best-fit distribution to raw data sets, including SLA

(n ¼ 125) and leaf turnover rate (n ¼ 40) from the

GLOPNET database (Wright et al. 2004); root turnover

rate (n¼ 66; Gill and Jackson 2000); and quantum yield

(n ¼ 56; Skillman 2008). Candidate distributions for

these priors were Gamma, Weibull, log-normal, and F

because each of these traits is bound at zero. In all cases,

we are interested in using the full distribution of across-

species data as our prior constraint on what one

individual species is capable of doing, as opposed to

using the estimate of the mean of this distribution as our

prior.

Quantum yield data represent a survey of published

values of quantum yield in C4 monocots (Skillman

2008); original data were provided by the author and

restricted to measurements made under photorespira-

tory conditions (ambient CO2 and O2) (J. Skillman,

personal communication). Given the narrow range of

data (CV ¼ 11%), the normal distribution was also

considered but was not the best fit.

Priors from meta-analysis.—We used meta-analysis to

calculate a prior from data when summary statistics and

sample sizes were available. The meta-analysis model

used to calculate prior distributions is similar to the one

used by PEcAn to summarize species-level data (Eq. 2),

with three differences. First, there were no site,

treatment, or greenhouse effects. Second, data from

multiple species were used. Third, we generated a

posterior predictive distribution to predict the distribu-

tion of trait values for an unobserved C4 plant species,

unlike the species-level meta-analysis, which estimated

the global mean parameter value. Thus, the model

included plant functional type (PFT) as a random effect:

Hspecies ¼ b0 þ bPFT: ð9Þ

Stomatal slope is the empirical slope coefficient in the

Leuning (1995) model of stomatal conductance. Esti-

mates of this parameter are sparse, so we collected new

data for this study. Stomatal slope was estimated using

measurements of four leaves from each of five field-

grown energy crop species during the 2010 growing

season (Supplement 1). The five species included two C4

grasses: Miscanthus (Miscanthus 3 giganteus) and

switchgrass (Panicum virgatum) planted in 2008, and

three deciduous tree species: red maple (Acer rubrum),

eastern cottonwood (Populus deltoides), and Sherburne

willow (Salix3Sherburne) planted in 2010 as 2-year-old

saplings. All plants were grown at the Energy Biosci-

ences Institute Energy Farm (408100 N, 888030 W). We

used the data from the three tree species and Miscanthus

to calculate the posterior predictive distribution of an

unobserved C4 grass species, and used this distribution

as the prior estimate for switchgrass stomatal slope.

Maximal carboxylation rate (Vc,max) data consist of

94 C3 species (Wullschleger 1993) plus three C4 species

(Kubien and Sage 2004, Massad et al. 2007, Wang et al.

2011). To express Vc,max at a common temperature of

258C for all species, we applied an Arrhenius tempera-

ture correction (Appendix). The Wullschleger (1993)

data set included a 95% credible interval (CI) and an

asymptotic error calculated by the SAS nlin procedure

(S. Wullschleger, personal communication). We used the

asymptotic error as an estimate of SE, the 95% CI to

estimate SD (SD¼ (0.5 3 CI)/1.96), and then estimated

n as n̂¼ (SE/SD)2. Plant species were classified into five

functional types (C3 grass, C4 grass, forb, woody non-

gymnosperm, and gymnosperm) based on species

records in the USDA PLANTS Database (USDA

NRCS 2011). Ambiguous species (those with both forb

and woody growth forms, n ¼ 15) were excluded.

Leaf width data represent 18 grass species grown in a

common garden greenhouse experiment (Oyarzabal et

al. 2008). Panicum virgatum was among the 18 species,

and was excluded from the prior estimation but used as

raw data in the meta-analysis. The remaining 17 species

were divided into C3 and C4 functional types. Relative to

the small sample of C4 grasses, switchgrass leaf width

was an outlier; inflating the variance fourfold reduced

the prior information content to account for this

discrepancy.

Root respiration rate values were measured on 36

plants representing five functional types, including six C4

grass species (Tjoelker et al. 2005). As before, P.

virgatum data were excluded from the prior estimation

and used as raw data in the species-level meta-analysis.

Priors from limited data and expert knowledge.—When

available data were limited to a few observations, these

were used to identify a central tendency such as the

mean, median, or mode, while expert knowledge was

used to estimate the range of a confidence interval. An

optimization approach was used to fit a probability

distribution to this combination of data and expert

constraint.

In order to estimate the fine-root to leaf ratio for

grasses, we assume that fine roots account for all

belowground biomass (Jackson et al. 1997) and that

leaves account for all above ground biomass. Roots

account for approximately two-thirds of total biomass

across temperate grassland biomes (Saugier et al. 2001:

Table 23.1), so we constrained a beta prior on the root

fraction to have a mean of 2/3 by setting a¼b/2 because

the mean of a beta distribution is defined as a/(aþb). To
convert from proportion to ratio, we used the following

identity:

if X ; Beta
a
2
;

b
2

� �

then
X

1� X
; Fða; bÞ3 a

b
:

We constrained the 95% CI¼ [1/3, 10/11], equivalent to

a fine-root to leaf ratio with a mean fixed at 2 and a 95%
CI¼ [1/2, 10]. We simulated the distribution of the fine-
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root to leaf ratio by drawing 10 000 samples from a

F(2a, a) distribution and multiplying these samples by 2.

Seed dispersal in ED2 represents the proportion of seed

dispersed outside of a 7.5 m radius plot, which we

approximate as a beta distribution. Although no direct

measurements of seed dispersal were available, it was

straightforward to parameterize a ballistic model of seed

dispersal (Ernst et al. 1992): D ¼ VwH/Vt. This model

relates dispersal distance D to terminal velocity Vt, wind

speed Vw, and seed height H. Although more sophisti-

cated treatments of dispersal exist and are important for

estimating low-probability long-distance dispersal events

(Clark et al. 1999, Thompson and Katul 2008), the Ernst

et al. (1992) model is sufficient for the relatively short

dispersal distances required in the present context.

Values of terminal velocity, Vt, of grass seeds were

taken from two references (Ernst et al. 1992, Jongejans

and Schippers 1999) and these data were best described as

Vt ; Gamma(2.93, 1.61). Next the heights from which

the seeds are dropped were estimated from calibrated

photographs of reproductively mature switchgrass at a

field site in Urbana, Illinois, USA:H ; N(2, 0.5). Finally,

wind speed data observed at the site were fit to a Weibull

distribution (Justus et al. 1978). Vw ; Weibull (2.4, 0.712)

(M. Zeri, unpublished data). Given these distributions of

Vw, H, and Vt, sets of 100 dispersal distances were

simulated 10 000 times to calculate the fraction of seeds in

each simulation dispersed beyond 7.5 m.

Priors informed by expert knowledge.—When no data

were available, expert knowledge was used to estimate

the central tendency and confidence interval for a trait

parameter. Again, optimization was used to fit a

probability distribution to these constraints.

The minimum temperature of photosynthesis for C4

grasses was given a prior based on expert knowledge

with a mean of 108C and a 95% CI¼ [8, 12]8C that fits a

normal (l¼ 10, r¼ 1.02) distribution (D. Ort, personal

communication).

The growth respiration factor is the proportion of

daily carbon gain lost to growth respiration. Because it

is a proportion, the beta distribution was fit with a mean

set equal to the ED2 default parameter value, 0.33, and

a 95% CI¼ [0.05, 0.60] was conservatively based on the

range of construction costs reviewed by Amthor (2000).

The seedling mortality factor represents the propor-

tion of carbon allocated to reproduction that goes

directly to the litter pool. Given that the default ED2

parameter is 0.95, we stated a beta prior with a median

at 0.95 and a 95% CI ¼ [2/3, 1].

The mortality factor in ED2 is the rate parameter in

the negative exponential relationship between carbon

balance and mortality (Medvigy et al. 2009). The default

parameter for all plant functional types (PFTs) in ED2

is 20, and our weakly informed Gamma prior sets this as

the median and gives a 95% CI ¼ [5, 80].

Reproductive allocation represents the proportion of

carbon in the storage pool allocated to reproduction.

This parameter is a proportion and has a default value

of 0.33 in ED. The Beta(2, 4) distribution has a mean of

1/3 and a 95% CI ¼ [0.05, 0.72] representing relatively

high uncertainty. This distribution implies that the plant

may allocate any fraction of the carbon pool to

reproduction between, but not equal to, 0 and 1, and

has an 80% probability that less than half of the carbon

pool will be allocated to reproduction.

Switchgrass trait meta-analysis

Switchgrass trait data used to constrain model

parameters are stored in the Biofuel Ecophysiological

Trait and Yield database, a database designed to

support research on biofuel crops (BETYdb, available

online; see Supplement 2).9 BETYdb includes both

previously published and primary data. Prior to entry

in the database, data were converted to standard units

chosen for each variable (Table 1).

Trait data available for Panicum virgatum include

Vc,max, SLA, leaf width, fine-root to leaf ratio, root

respiration, stomatal slope, and root turnover rate (Fig.

4, Table 2). Methods used to collect these data and site

descriptions are available in the source references

(Supplement 1). Each meta-analysis was run with four

50 000-step MCMC chains.

Model analysis

We executed a 10-year, 500-run ensemble of ED2

using parameter values drawn from the prior or

posterior parameter distributions. The model was run

for the years 1995–2006 to simulate the field trials

conducted by Heaton et al. (2008). The model output of

interest was the December mean aboveground biomass

(AGB) during the years 2004–2006, simulating the yields

of the mature stand (Heaton et al. 2008). The ensemble

estimate was also compared to the larger set of all

reported switchgrass yield data (Wang et al. 2010).

Runs resulting in yields ,2 Mg/ha were considered

nonviable parameter combinations. To test if prior and

posterior parameter sets resulted in different fractions of

nonviable runs, we estimated the posterior probability of

a nonviable run as a binomial posterior from a beta-

binomial model with a flat (Beta(1, 1)) prior. Then we

calculated the two-tailed probability that the difference

between these binomial posteriors 6¼ 0.

RESULTS

Trait meta-analysis

Switchgrass data were collected from the literature

and field for seven of the model parameters: specific leaf

area, SLA (n¼24 independent estimates), leaf width (n¼
39), Vc,max (n¼ 4), fine-root to leaf allocation ratio (n¼
4), stomatal slope (n ¼ 4), root respiration rate (n ¼ 1),

and root turnover rate (n ¼ 1). Here, n corresponds to

the k site3 treatment combinations in the meta-analysis.

Table 2 summarizes the meta-analysis for each of these

9 www.betydb.org

May 2013 145MEASUREMENTS AND MODELS: FEEDBACKS

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



parameters, including the posterior mean and 95% CI of

the global mean, the fixed greenhouse effect, and each of

the variance components (reported as standard devia-

tions).

SLA and leaf width data were from from multiple

sites, but the meta-analysis provided no evidence for

among-site variability in excess of within-site variability

(rY and rsite, respectively; Table 2). For the remaining

traits, there was insufficient spatial sampling to assess

site-to-site variability. Greenhouse growing conditions

had a positive effect on both SLA (P¼ 0.027), and leaf

width (P ¼ 0.052).

Fig. 4 compares parameters before and after

incorporating data in the meta-analysis. A reduction

in parameter uncertainty is seen as the reduction in the

spread of the posterior (black) compared to the prior

(gray) parameter distributions. The influence of the

prior information on the posterior distribution in-

creased when the prior was more constrained or when

fewer data were available for use in the meta-analysis.

For example, data substantially constrained the uncer-

tainty in the Vc,max and SLA posteriors relative to the

priors. By contrast, there was little effect of additional

data on the parameter estimates for fine-root to leaf

allocation and root respiration rate; these parameters

had relatively well constrained priors and limited

species-specific data.

Model analysis

Ensemble.—Within the model ensemble analysis (Fig.

5), both the prior and posterior parameterizations

produced yield estimates that were consistent with yields

observed at the Urbana site for which the model was run

(Heaton et al. 2008) and with 1902 previously reported

yields of switchgrass (Wang et al. 2010). In both the

prior and posterior ensembles, the predicted above-

ground biomass was clearly bimodal. These two modes

had little overlap and a distinct break at 2 Mg/ha. We

inferred that the first peak represents nonviable plants

generated by unrealistic parameter sets; thus plants with

aboveground biomass ,2 Mg/ha were considered

‘‘nonviable.’’ When summarizing the model output, we

consider viable and nonviable ensemble members

separately; all runs are considered in the sensitivity

analysis and variance decomposition. A greater percent-

age of runs in the prior ensemble fell below this

threshold (53.4 vs. 36.6; P ’ 0).

Compared to the prior ensemble prediction, the data-

constrained posterior runs had lower median yields and

a more constrained 95% credible interval (16.5 [7.2, 37]

Mg/ha vs. 25 [7.7, 56] Mg/ha). This reflects the

substantial shrinkage of the posterior relative to the

prior SD estimates of model output uncertainty (from r
¼ 19.7 to r ¼ 11.9). In particular, the upper tail of the

modeled yield was reduced toward the observed yields.

Despite the reduction in ensemble uncertainty, the

ensemble posterior yield was still relatively imprecise

and had much greater uncertainty than the field trial (r
¼ 4.1; Heaton et al. 2008) or the meta-analysis of all

observations (r ¼ 5.4; Wang et al. 2010). The spline

ensemble viable plants had a median 18.8 [2.9, 48] Mg/

ha and r ¼ 13.

Sensitivity analysis.—Sensitivity analysis demonstrat-

ed that traits varied in their effect on aboveground

biomass (Fig. 6). For example, parameters associated

with photosynthesis and carbon allocation (including

Vc,max, SLA, growth respiration, and root allocation)

were particularly sensitive. For particularly sensitive

parameters, the sensitivity functions had coverage of

unrealistic yields .30 Mg/ha. Constraining SLA and

Vc,max parameters with data resulted in a more realistic

range of yields. On the other hand, aboveground

biomass was largely insensitive to leaf width, seed

dispersal, and mortality rate.

Variance decomposition.—The variance decomposi-

tion showed that data-constrained parameters substan-

tially reduced their contribution to overall model

variance (Fig. 7). Prior to including species-specific trait

data, SLA contributed the most to model uncertainty,

followed by growth respiration, fine-root allocation,

Vc,max, seedling mortality, and stomatal slope (Fig. 7c,

gray bars). Incorporating species-level data substantially

reduced the contributions of SLA, Vc,max, seedling

mortality, and stomatal slope to model uncertainty.

TABLE 2. Results of meta-analysis of switchgrass data for six physiological traits.

Parameter (units) k b0 rY rsite rtr j site bgh

Specific leaf area (m2/kg) 24 16 (12, 20) 2.8 (2.5, 3.2) 3.2 (1.6, 7.3) 2.4 (1.1, 6) 6.5 (1, 12)
Leaf width (mm) 39 6 (4.7, 6.6) 0.46 (0.44, 0.48) 0.47 (0.2, 2.1) 6.4 (1.9, 130) 1.6 (�0.033, 3.5)
Vc,max (lmol CO2�m�2�s�1) 4 24 (18, 30) 12 (8.1, 17) 1.2 (0.098, 47)
Fine-root allocation (ratio) 4 1.3 (0.5, 2.6) 2.2 (1.2, 6.2)
Root respiration rate

(lmol CO2�m�2�s�1)
1 5.1 (3.7, 6.6) 1.2 (0.39, 2.3)

Root turnover rate (yr�1) 1 0.67 (0.2, 1.1) 0.45 (0.14, 0.88)
Stomatal slope (ratio) 4 4.1 (3.9, 4.3) 0.33 (0.23, 0.45)

Notes: The number of sample units (number of site 3 treatment combinations) in the meta-analysis is given by k. The global
mean parameter, b0, is used to parameterize the Ecosystem Demography model and is described in more detail by Fig. 4; rY, rsite,
and rtr j site represent among-site, within-site, and treatment–site variability in random effects, respectively; subscript ‘‘gh’’ refers to
greenhouse, a fixed effect. The variance components are transformed from precision to the standard deviation scale for ease of
interpretation. Values are reported as the parameter median with the 95% credible interval in parentheses.
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For example, SLA fell from first to fourth and stomatal

slope fell from sixth to 14th in rank contribution to

ensemble variance. Although the addition of data

reduced parameter uncertainty for fine-root to leaf

allocation, aboveground biomass was more sensitive to

this parameter at the posterior median. These changes

cancelled each other out, and as a result the contribution

of the fine-root allocation parameter to ensemble

variance remained constant.

There was no effect of increasing the sample size from

500 to 10 000 on the variance estimates (Table 3). The

variance of the ensemble was less than the variance

calculated in the variance decomposition, and this

difference is the closure term, x. The closure term

accounted for ;28% of the variance decomposition

estimate on the standard deviation scale (Table 4).

DISCUSSION

Switchgrass trait meta-analysis

When species-level data were available, the meta-

analysis constrained estimates of the trait mean param-

eter (Fig. 4) and provided insight into the sources of

parameter uncertainty (Table 2). In the context of

constraining model parameters, we were interested in

accounting for, but not directly investigating, the specific

effects of site, treatment, or greenhouse effects. Howev-

er, we can use the meta-analysis results to identify

sources and scales of parameter variability. This insight

into parameter variability helps to inform future

sampling designs, development of the ecosystem model,

and improvement of methods used to parameterize the

ecosystem model.

FIG. 6. Sensitivity of aboveground biomass to 15 plant traits: univariate relationships between parameters and 2004–2006
average modeled yield. Parameter values are on the x-axis, and biomass is on the y-axis; runs centered around the prior median are
in gray, and those centered around the posterior median are in black. The univariate responses were estimated using a cubic spline
to fit model output at the median and 6[1, 2, 3]r quantiles of each parameter while holding other parameters to the median value.
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Where data from multiple sites were available, we

could evaluate the relative importance of within- vs.

among-site variance for the range of sites represented in

the data (Table 2). Recent studies demonstrate impor-

tant effects of intraspecific trait variability on ecosystem

functioning (Albert et al. 2011, Breza et al. 2012, Violle

et al. 2012).

Therefore, for traits that do exhibit greater variability

across than within sites, explicit inclusion of spatial,

environmental, and even genetic information into the

meta-analytical model would be justified. This approach

would enable the estimation of site-specific parameters

for use in the ecosystem model and will be investigated

in future development of the meta-analysis module.

For the other parameters (Vc,max, fine-root allocation,

root respiration rate, and root turnover rate) data came

from one site, so it is not possible to estimate the across-

site variability. For these traits, obtaining data from

additional sites would better constrain both the global

FIG. 7. Partitioning of variance by parameter results from variance decomposition conducted before (gray) and after (black)
updating parameter estimates with species-level data in the meta-analysis. (a) Uncertainty associated with each parameter
(coefficient of variation, CV¼r/l). The degree to which some parameters have been constrained by species-level data is indicated
by the reduction in CV in the black compared to the gray bars; sample sizes are indicated in Table 2. (b) The sensitivity of modeled
aboveground biomass to each parameter presented as elasticity (normalized sensitivity; an elasticity of 1 indicates that model
output will double when the parameter value doubles). Sensitivity is the slope of the line at the median in Fig. 6. Parameters with
larger bars have greater influence on model output. (c) SD is the contribution of each parameter to model uncertainty. This is a
function of both the parameter variance and sensitivity. Parameters with both large CV and elasticity have the highest SD,
indicating that they explain the most uncertainty in model output.

TABLE 3. Comparison of sample variance estimates (s, on
standard deviation scale) for the aboveground biomass (all
values Mg/ha) estimated from data-constrained parameters
calculated from model ensemble, spline-emulated model
ensembles, and variance decomposition.

Sample
size, n

Model
ensemble sf (b0)

Spline
ensemble sg (b0)

Variance
decompositionX

sgtðb0t
Þ

500 13 (14) 13.8 (13) 18.2 (6)
10 000 � 14.1 (2.8) 18.1 (1.2)

Notes: Values in parentheses are estimates of uncertainty in
the sample estimate of variance. Sample size, n, refers to the
ensemble size of the sample from the posterior parameter
distribution. Terms are: b0, vector of parameter values; f, ED2
model; g, spline approximation of the ED2 model (Eq. 7); t, the
tth of m parameters (Eq. 6).

� Analysis of the closure term is based on estimates with n¼
10 000 parameter sets, except in the case of the model ensemble
because evaluation of the model ensemble at n ¼ 10 000 is
computationally prohibitive.

TABLE 4. Components of the variance closure term, x (see Eq.
6), the difference between the variance decomposition and
model ensemble estimates of r.

Calculation Mg/ha

xtotal

X
sgt
� sf 5.2

xcovariance sg � sf 1.1

xtruncation

X
sgt � sg 4.1

Notes: The closure due to parameter interactions is estimated
as the difference between the spline ensemble and the model
ensemble; the closure due to the absence of a lower bound of
zero on the spline functions is estimated as the difference
between the variance decomposition and the spline ensemble
estimates.
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mean and the across-site variance. This additional data

collection is particularly justified for traits that contrib-

ute most to the uncertainty in the model ensemble.

Model ensemble

Despite the large reduction in model uncertainty from

the prior to the posterior model ensemble, the uncer-

tainty in projected yield is substantial (Fig. 5) and

further constraint would increase the utility of this

model output. However, the explicit accounting of

parameter uncertainty is an important first step toward

producing more informative model output. If model

parameters had been treated as fixed constants, we

would have no estimate of model uncertainty; without

an estimate of uncertainty, the similarity between the

modeled (16.5 Mg/ha) and observed (12.0 Mg/ha)

median yields would be difficult to interpret; a naive

interpretation could create false confidence in the model.

Including the nonviable plants would have made the

model mean more accurate but less precise (Fig. 5). The

90% CI would have contained the possibility that

switchgrass would not grow in Champaign County,

Illinois, even though extensive research (Heaton et al.

2008, VanLoocke et al. 2012; D. LeBauer, personal

observation) demonstrates that it does grow very well in

this area.

The reduction in median modeled yield in the

posterior relative to the prior model ensemble is

consistent with the reduced probability of high SLA

and Vc,max values in the posterior relative to the prior

distributions. As expected, the use of switchgrass trait

data to inform model parameters succeeded in both

reducing total uncertainty and bringing modeled yield in

line with observations of switchgrass yields, both at this

site (Heaton et al. 2008) and globally (Wang et al. 2010).

Reducing uncertainty in model outputs (in this case,

yield) is key to increasing the value of ecological

forecasts (Clark et al. 2001).

Although reducing uncertainty does not necessarily

increase model accuracy, an estimate of model uncer-

tainty is a first step toward generating meaningful

statistical inference from the model itself. Without an

estimate of model uncertainty, it is not possible to make

such a basic inference as the probability that the model

predictions overlap with observed data; this limits the

capacity of models to inform research and applied

problems (Clark et al. 2001). Instead, comparisons of

ecosystem models with observations have focused on

differences and correlations between model output and

data (Bellocchi et al. 2010, Schwalm et al. 2010, Dietze

et al. 2011) without providing a confidence interval

around the model output itself. The ability to identify,

with confidence, the conditions under which a model

produces valid output helps to determine appropriate

applications of the model and to identify targets for

further model development (Williams et al. 2009).

Although parameter uncertainty is clearly just one of

many sources of uncertainty in models (McMahon et al.

PLATE 1. Switchgrass stand in winter, Urbana, Illinois, USA. Photo credit: D. S. LeBauer.
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2009), and constraining model parameters by no means

guarantees that a model will match reality, it is difficult

to assess the accuracy of a model if it has low precision.

In deterministic models, such as most ecosystem models,

parameter uncertainty is a major driver of the precision

of a model.

In this study, we can state with 90% confidence that

the mean switchgrass yield during the Heaton et al.

(2008) study should have been between 7.2 and 37 Mg/

ha, and if we had made this prediction in advance, we

could have said that we were correct because the mean

did fall within this range. We can also see that the model

uncertainty contains the 90% CI for observed switch-

grass yields globally (Wang et al. 2010), even though we

know that important drivers of variability in the global

meta-analysis (e.g., climate, soil) are different from the

source of uncertainty in our model predictions (e.g.,

parameters). The model ensemble left open the possi-

bility that the yields could have been much more or

much less than those actually observed, and we conclude

that much of this variability could be constrained with

additional trait-level data or data assimilation. Wang et

al (2013) provide an example of combining the PEcAn

meta-analysis and variance decomposition with data

assimilation of biomass to constrain uncertainty in

parameter estimates and improve the accuracy and

precision of model output. Once the model can make

more precise predictions, it will be possible to begin

investigation of other sources of uncertainty, such as

model structure and state variables (e.g., climate, soil).

Although the present analysis focuses on modeled

aboveground biomass, PEcAn can analyze any model

output, including pools and fluxes of water, energy, and

carbon.

Indeed, PEcAn’s approach to the synthesis of data

and mechanistic models is independent of the system

being modeled, and thus has potential applications far

beyond the scope of its current development to support

ecosystem modeling.

Variance decomposition

Variance decomposition quantified the contribution

of each parameter to model uncertainty, helping to

identify a subset of parameters for further constraint.

SLA, Vc,max, fine-root to leaf ratio, and leaf turnover

rate dominated uncertainty in yield prior to incorporat-

ing species-level data. Therefore, SLA, which can be

measured quickly and at low cost, would make a good

first target for reducing uncertainty when a new species

is evaluated. SLA also correlates strongly with other

important model parameters, such as photosynthetic

rate, leaf life span, and nitrogen content (Wright et al.

2004). The ranking of parameters based on variance

contribution depends on the response variable of choice

(in this case, aboveground biomass) as well as the

conditions of the run (duration, soil, climate), and the

species or PFT being evaluated. In general, for a given

species and model output, overall patterns of parameter

importance are consistent across a broad range of

climates (Wang et al. 2013).

Variance decomposition (Eq. 6) demonstrates that it

is not parameter uncertainty or model sensitivity alone,

but the combination of the two, that determines the

importance of a variable. For example, despite the high

uncertainty in seed dispersal, switchgrass yield is

insensitive to this parameter (Figs. 6 and 7); therefore

a better understanding of switchgrass seed dispersal

would not reduce model uncertainty. By contrast,

although uncertainty in the growth respiration is not

particularly large, switchgrass yield was very sensitive to

growth respiration, and for this reason growth respira-

tion is the greatest contributor to model uncertainty. In

addition, although no seedling mortality data were

available, model sensitivity to this parameter was much

lower in the posterior compared to prior runs. Using the

sensitivity analysis or parameter uncertainties alone

would thus lead to incorrect conclusions about what

parameters are most important and would be an

inefficient approach to reducing predictive uncertainties.

This analysis only represents the first step toward

more comprehensive accounting of known sources of

uncertainty. The next step in reducing uncertainty would

be to use the results of the variance decomposition to

target the most influential model parameters for further

constraint through data collection. We have demon-

strated how the use of species-level data to constrain

parameter uncertainty reduced ensemble variance, re-

sulting in a new set of targets for additional field

observations and refined literature surveys.

Processes that are difficult to measure, such as

belowground carbon cycling, can be indirectly con-

strained with ecosystem-level observations using data

assimilation (Luo et al. 2009, 2011). Integrating data

assimilation into PEcAn will allow ecosystem-level

observations to further constrain parameters for which

trait-level observations are difficult or impossible to

obtain. To date most Bayesian data assimilation

approaches applied by ecologists have employed flat,

uninformative priors (assigning equal probability to

values over many orders of magnitude), which has lead

to the problems of parameter identifiably and the

criticism that model parameters are allowed to take on

biologically unrealistic values. The use of the meta-

analysis posteriors as priors in the data assimilation step

ensures that any parameter estimates are consistent with

what is known about different plant traits. In this way,

Bayesian methods are, in effect, updating the literature-

derived estimates with new data and providing a

coherent and rigorous framework for combining multi-

ple different types of data.

In addition, by effectively restricting parameter space

based on observed values, the use of informed priors in

data assimilation reduces problems of equi-finality and

identifiability. This is consistent with the argument by

Beven and Freer (2001) that only the feasible parameter

range should be sampled.
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To a first order, the spline interpolations of the

univariate relationships between parameters and above-

ground biomass (Fig. 6) provide a good estimate of the

total model variance. The closure term (Table 4)

accounted for ;5.2 Mg/ha or 28% of the variance

decomposition estimate (18.1 Mg/ha; Table 3), suggest-

ing that although parameter interactions are important,

univariate parameter uncertainty drives overall model

variance. One key concern of parameter interactions is

that the combination of the variance decomposition

terms would result in the prediction of negative yields,

which is clearly biologically impossible. By comparing

the spline ensemble, where this term is truncated, to the

spline-based variance decomposition, we can conclude

that this truncation effect accounts for 4.1 Mg/ha or

80% of the closure term in the variance decomposition.

By contrast, evaluating the spline ensemble for

different ensemble sizes shows that ensemble size had

negligible effect on the mean variance estimate, although

it does improve the precision of this estimate (Table 3).

Finally, the difference between the model and spline

ensembles (Table 4) suggests that the absence of

parameter interactions in the variance decomposition

account for the remaining 20% of the closure term (,6%
of the variance decomposition calculation), which could

be improved by a multivariate meta-analysis and

sensitivity analysis, both of which are planned for future

development of PEcAn. Overall, the closure term is

relatively well constrained, even when the parameter

interactions are assumed to be linear.

Model–fieldwork feedback

Variance decomposition can be used to inform data

collection by identifying candidate parameters for

further refinement based on their contributions to model

variance. Recall that this variance contribution is a

function of parameter sensitivity and the parameters’

probability density (Eq. 6; Fig. 7). Sensitivity is a

function of the model and so there is no direct way to

reduce sensitivity. However, because Var( f ) } Var(b0),

it is possible to reduce the model uncertainty by reducing

parameter variances.

Through simple power analyses, one can explicitly

estimate the relationship between an increase in sample

size and the reduction in posterior variance. Not only

can we calculate the reduction in parameter uncertainty

that would be expected for a given sample size, we can

also use Eq. 6 to estimate the resulting decrease in the

variance of the model output. This then allows us to

directly compare the value of different data types in a

common currency.

Quantitatively evaluating the relationship between

data and model uncertainty provides a path of

communication between field research and modeling,

opening the door for a new framework in which

modeling and fieldwork can be mutually informative.

Given the current data and model uncertainties, it is

possible to identify effective data acquisition strategies

based on this analysis. For example, data could be

ranked by the ratio of reduction in model uncertainty to

the cost of acquiring each sample in terms of dollars

and/or man hours. In this way, data collection could be

optimized in terms of the efficiency with which new

information is gained.

These approaches close the model–data loop by

enabling models to inform data collection, and data to

inform models. Such a shift has the potential to put field

ecologists and modelers in closer connection. It also

gives us the tools to answer the long-standing question

among many field ecologists about what exactly

modelers need to know. Indeed, this shift highlights a

need for greater accessibility to models by the general

research community so that field ecologists can drive this

loop directly. This is exactly the objective of PEcAn: to

encapsulate these tasks in a way that makes the analysis

of models transparent, repeatable, and accessible.

In addition to informing sample size, the parameter

meta-analysis can inform experimental design by pro-

viding valuable information on the scales of variability.

For example, when data from multiple sites are

available, the meta-analysis partitions among-site and

within-site variance. This information can be used to

construct optimal sampling designs that balance inten-

sive vs. extensive sampling, and may help to identify

environmental covariates that should be measured in

order to explain parameter variability.

Based on our switchgrass example, variance parti-

tioning also highlights broad data needs and the

discrepancy between the relative ease of parameterizing

aboveground processes compared to belowground

processes. Indeed, one of the greatest challenges in

ecosystem ecology is the ability to constrain below-

ground processes including allocation, respiration, and

turnover. These parameters are uncertain precisely

because measurement is difficult, often indirect, and

data may reflect the diverse methods used to indirectly

estimate a pool or flux. Many parameters in the ED2

model correspond to processes that are not directly

observable. For example, the root respiration parameter

in ED2 is not total root respiration, but just mainte-

nance respiration, whereas measurements typically

cannot separate growth, maintenance, and rhizosphere

respiration. Whole-plant growth respiration, which is

currently the most important model parameter, is also

difficult to estimate directly from measurements (Am-

thor 2000). In this case, data assimilation is likely to be

the most efficient route to constrain this parameter; data

assimilation would effectively use mass balance of

ecosystem carbon exchange to estimate this respiration

parameter once other parameters are more directly

constrained by data.

Future directions

The analyses presented here represent the first phase

in the development of the PEcAn project. In the near

term, we intend to expand the existing analyses to
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include a multivariate meta-analysis and sensitivity

analysis to reduce model uncertainty by accounting for
parameter covariances. In addition, we plan to imple-

ment the power analyses just discussed to more
quantitatively inform data collection. A data assimila-

tion module is in progress for PEcAn that will allow the
use of ecosystem-level data, including plot-level inven-
tory data, eddy covariance fluxes, and remote-sensing

imagery, to enter the analysis and provide additional
constraint on uncertainty in both parameters and

output. The basic concept of variance decomposition
will also be expanded to investigate other sources of

variability, such as uncertainty in initial conditions or in
driver data. We are implementing ecosystem models

other than ED2 within the PEcAn workflow. This will
provide opportunities for multi-model ensemble fore-

casting and assessing data requirements across models.
Integrating modeling into a workflow system has

distinct advantages not just for model analysis, but also
for managing the flows of information coming in and

out of the model. In this sense we also envision PEcAn
as an informatics and data management tool.

Finally, it is our hope that other researchers will find
PEcAn useful and will contribute modules that extend

the functionality of the system in creative and exciting
ways.

CONCLUSION

In this paper, we demonstrate an approach to the

parameterization of a terrestrial ecosystem model that
synthesizes available data while providing a robust

accounting of parameter uncertainty. We also present a
scientific workflow that enables more efficient constraint

of this uncertainty by identifying the key areas requiring
data collection and model refinement. By quantifying

the effect that each parameter has on model output
uncertainty, this analysis identifies additional data that,

once obtained, would improve model precision. In
addition, the analysis calculates probabilities of alter-

nate potential outcomes, resulting in more useful
assessments.
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SUPPLEMENTAL MATERIAL

Appendix

Data transformations used by PEcAn, including the Arrhenius correction and equations used to estimate SE from various
statistics reported in the literature (Ecological Archives M083-006-A1).

Supplement 1

Data used in the present analysis, including new stomatal slope data for five species and previously published switchgrass
observations of Vc,max, SLA, leaf width, and fine-root : leaf ratio (Ecological Archives M083-006-S1).

Supplement 2

Documentation of database (BETYdb) used in the present study, including schema and contents (Ecological Archives
M083-006-S2).

Data Availability
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