-
Notifications
You must be signed in to change notification settings - Fork 0
Penncil/YETI-YETI2
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
## A working example for runing the KL-meta and YETI methods
mypath ="~/Downloads/yetiexample/“
setwd(mypath)
library(Matrix) ## require package when install "metafor" package
#install.packages(“metafor”)
library(metafor) ## use a function "rm" when run YETI method
##==================================================================================================================================
## Load a simualted SNP dataset
##
## The info about "SNPdata":
## (i) L=200, K=2, # of subjects in cases=5000, # of subjects in controls=5000
## (ii) the dominant model is considered, ie, SNPs may take values 0 for two copies of a putative non-risk allele, or 1 otherwise.
##==================================================================================================================================
SNPdata = read.table("SNPdata.txt",header=TRUE)
head(SNPdata)
##====================================================================================================================================
## Run the KL-meta method (only apply for dominant model):
##
## Input: data (e.g., ID, Y, Z, SNP1,...,SNPL), L (# of markers), K (# of populations/studies), pre.alpha (tuning parameter), alpha
## Output: SNP1 (id for the 1st interacting SNP), SNP2 (id for the 2nd interacting SNP), bet3.overall.est, beta3.overall.se, pvalue
##====================================================================================================================================
## source the KLmeta funciton
source("KLmeta_func.R")
kl = KLmeta.func(mydata=SNPdata, L=200, K=2, pre.alpha=0.01, alpha=0.05)
kl
#rm(list=ls())
##====================================================================================================================================
## Run the YETI method (only apply for the dominant model):
##
## Input: data (e.g., ID, Y, Z, SNP1,...,SNPL), L (# of markers), K (# of populations/studies), pre.alpha (tuning parameter), alpha
## Output: SNP1 (id for the 1st interacting SNP), SNP2 (id for the 2nd interacting SNP), bet3.overall.est, beta3.overall.se, pvalue
##====================================================================================================================================
## source the KLmeta funciton
source("YETI_func.R")
yeti = YETI.func(mydata=SNPdata, L=200, K=2, pre.alpha=0.01, alpha=0.05)
yeti
#rm(list=ls())
##====================================================================================================================================
## Run the YETI2 method (only apply for the dominant model):
##
## Input: data (e.g., ID, Y, Z, SNP1,...,SNPL), L (# of markers), K (# of populations/studies), pre.alpha (tuning parameter), alpha
## Output: SNP1 (id for the 1st interacting SNP), SNP2 (id for the 2nd interacting SNP), bet3.overall.est, beta3.overall.se, pvalue
##====================================================================================================================================
## source the YETI2 funciton
source("YETI2_func.R")
yeti2 = YETI2.func(mydata=SNPdata, L=200, K=2, pre.alpha=0.01, alpha=0.05)
yeti2
#rm(list=ls())
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published