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Abstract. Quantum circuit learning is applied to computing option prices

and their sensitivities. The advantage of this method is that a suitable choice
of quantum circuit architecture makes it possible to compute the sensitivities

analytically by applying parameter-shift rules. We expect our numerical result

to pave the way for using quantum machine learning for option pricing.

1. Introduction

The classical–quantum hybrid approach, which uses both quantum and classical
computers, has received much attention recently from the expectation of is use on
near-term quantum devices. For example, one approach called the variational quan-
tum eigensolver, proposed by Peruzzo et al. (2014), has been studied intensively in
field of quantum chemistry. Another approach called quantum machine learning is
also an active area of research (for example, Rebentrost et al. (2014)). As a trial
of using quantum computers in the field of quantitative finance, Sakuma (2020)
used a simulator of a deep quantum neural network (DQNN) provided by Beer et
al. (2018) to learn implied volatilities and Black-Scholes European option prices.
However, a DQNN is assumed to be used in real quantum computers but is too com-
plicated to be implemented in such computers. Therefore, in this paper, quantum
circuit learning (QCL), one type of quantum machine learning, is investigated in
the context of computing option prices and their sensitivities. Application of clas-
sical machine learning to quantitative finance is very active. Differential machine
learning developed by Huge and Savine (2020) in classical computing is especially
useful because it can compute sensitivities via twin neural networks. The analogous
approach in quantum machine learning is the use of parameter-shift rules (Mitarai
et al. (2018), Schuld et al. (2019)). Using parameter-shift rules, together with
chain rules, makes it possible to compute sensitivities analytically from a learned
quantum circuit. We expect our numerical results to pave the way to the applica-
tion of quantum machine learning to option pricing.
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2. Quantum circuit learning

As mentioned in the previous section, QCL, which was introduced by Mitarai
et al. (2018), is the quantum analogue of classical deep learning; the neural net-
works are replaced by a parameterized quantum circuit. The motivation is that
the superposition principle makes it possible to enhance learning of expressing a
high-dimensional nonlinear function.

We use QCL in this paper as follows. We use a 2-qubit gate. Suppose we have
N training pairs Si, Vi (i = 1, ..., N), where Si are stock prices and Vi are Black-
Scholes European call prices. First we convert Si and Vi into numbers between 0
and 1 via

x(Si) = tanh((
Si

C1
)
β

), y(Vi) = tanh((
Vi

C2
)
γ

), (1)

where C1, C2, β, γ are fixed parameters.

Then we apply the following Uin in order to embed real data into quantum states:
|Ψin(φ)⟩ = Uin(φ)|0⟩, where

Uin(φ) = [RY
2 (φ5)⊗RY

1 (φ4)]R
XX(φ3)[R

Y
2 (φ2)⊗RY

1 (φ1)]. (2)

|0⟩ represents the initial state and φi(x) = arcsin(x) for all i. RY
i is a rotation gate

acting on the ith qubit around the y-axis and RXX is Ising coupling gate.

Finally, applying Uin(φ) to a parameterized quantum circuit, U(θ) gives the final
state as

|Ψout(θ, φ)⟩ = U(θ)|Ψin(φ)⟩. (3)

Measuring some observable B gives

⟨B(θ, φ)⟩ ≡ ⟨Ψout|B|Ψout⟩ (4)

and we regard this as output y(Vi, θ, φ) of this quantum circuit. We choose the
parameter θ by minimizing the following loss function:

1

N

N∑
i=1

(y(Vi)− y(Vi, θ, φ))
2

y(Vi)
(5)

and the optimization is conducted on classical computers.

3. Parameter-shift rules

One advantage of QCL is that we can compute sensitivities analytically from the
learned quantum circuit by applying parameter-shift rules. Suppose we have the
following function of θ:

f(θ) = ⟨Ψin|U†(θ)BU(θ)|Ψin⟩, U(θ) = e−iaθG, (6)
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where a is a real number. Then if G has two unique eigenvalues e0 and e1, the
following holds:

∂f(θ)

∂θ
= r[f(θ +

π

4r
)− f(θ − π

4r
)], r =

a

2
(e1 − e0). (7)

For example, suppose U is one of rotation gates RX , RY , RZ where a = 1/2 and G
is a Pauli gate. Then e0 = −1, e1 = 1, so r = 1/2. This means that if Uin consists
of rotation gates RX , RY , RZ and Ising coupling gates RXX , RY Y , RZZ , then the
sensitivities can be calculated analytically via parameter-shift rules:

∂⟨B(θ, φ)⟩
∂φ

=
1

2
(⟨B(θ, φ+

π

2
)⟩ − ⟨B(θ, φ− π

2
)⟩). (8)

For example, we can calculate delta as

∂V

∂S
=

∂⟨B(θ, φ)⟩
∂S

∂y

∂V
, (9)

where

∂⟨B(θ, φ)⟩
∂S

=
∂x

∂S

5∑
j=1

∂φj

∂x

∂⟨B(θ, φ)⟩
∂φj

, (10)

∂φj

∂x
=

1√
1− x2

,
∂x

∂S
=

β

C1
(
x

C1
)β−1(1− x2),

∂y

∂V
=

γ

C2
(
V

C2
)γ−1(1− y2). (11)

Parameter optimization in classical deep learning is conducted via backpropagation,
but we cannot observe gradients when using quantum computers. Instead, quantum
circuit U(θ) employed in this paper can use parameter-shift rules:

∂⟨B(θ, φ)⟩
∂θ

=
1

2
(⟨B(θ +

π

2
, φ)⟩ − ⟨B(θ − π

2
, φ)⟩). (12)

4. Numerical examples

As a numerical example, we consider the data given in table 1. The following pa-
rameters are used: K = 100, T = 0.25, σ = 0.15, β = 5.0, γ = 0.75, C1 = 100, C2 =
10. For implementation of QCL, we use the Pennylane simulator developed by
Bergholm et al. (2018). Pennylane is a Python library specialized in quantum
machine learning. The template we used as U(θ) is StronglyEntanglingLayer with
the number of layers 3, which consists of rotation gates and CNOT gates and was
introduced in Schuld et al. (2020). To compute θs, we use an Adam optimizer with
a learning rate of 0.01 for 1000 iterations. The gradients used in the Adam opti-
mizer are computed analytically by parameter-shift rules. As table 2 demonstrates,
QCL succeeded in learning the prices with high accuracy. The mean relative error
is 0.059%. Table 3 gives a comparison between the delta computed analytically and
the delta computed via parameter-shift rules. The mean relative error is 0.228%
and some relative errors become large compared to prices. One possible reason
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could be the parameter-shift rules themselves: shifting angles by 0.5π in a periodic
function could produce inappropriate output from the learned quantum circuit.

One scheme to increase the accuracy of sensitivities is to use the following additional
loss function:

1

N

N∑
i=1

(y(Vi)− y(Vi, θ, φ))
2

y(Vi)
+

λ

N

N∑
i=1

(∂y(Vi)
∂x − ∂y(Vi,θ,φ)

∂x )2

∂y(Vi)
∂x

, (13)

where

∂y(V, θ, φ)

∂x
=

∂φ

∂x

N∑
j=1

(⟨B(θ, φj(x(S)) +
π
2 )⟩ − ⟨B(θ, φj(x(S))− π

2 )⟩)
2

, (14)

∂y(V )

∂x
=

∂V
∂S

∂y
∂V

∂x
∂S

. (15)

If we increase λ, we can expect the accuracy of delta to increase and that of price
to decrease.

5. Conclusion

In this paper, a version of quantum machine learning called quantum circuit
learning is applied to learning European option prices and their sensitivities and
the usefulness of this method is demonstrated by numerical examples. One possible
extension is the use of the natural gradient approach proposed by Stokes et al.
(2019), which could make the Adam optimization more efficient. In addition, to
consider practical use of QCL on real quantum computers, we need to investigate
the robustness of our approach under noisy environments. Extensions of the use of
QCL to learning Bermudan swaptions are under investigation.
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Table 1. Data used

Spot price BS call price

93 0.6404
95 1.0728
97 1.6861
100 2.9914
103 4.7689
105 6.1925
107 7.7758

Table 2. QCL performance for learning price

Spot Training price Output Relative error

93 0.6404 0.6400 0.057%
95 1.0728 1.0732 0.035%
97 1.6861 1.6877 0.096%
100 2.9914 2.9900 0.047%
103 4.7689 4.7643 0.096%
105 6.1925 6.1927 0.002%
107 7.7758 7.7818 0.078%

Table 3. QCL performance for learning delta

Spot Training delta Output Relative error

93 0.1762 0.1757 0.269%
95 0.2590 0.2599 0.328%
97 0.3562 0.3563 0.032%
100 0.5150 0.5131 0.357%
103 0.6670 0.6677 0.104%
105 0.7543 0.7580 0.496%
107 0.8263 0.8264 0.009%
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