The transmission rate of ESP32

Objective
The objective of this document is to put in evidence the current performance of Smooth’s MQTT. To do so, Smooth MQTT is contrasted with TCP/IP from ESP-IDF. To provide a good comparison, the same hardware setup is used for both tests.
Hardware Setup
· Router set on 2.4 GHz frequency.
· ESP32-DevKitC-VE with chip ESP32-WROVER-E 8MB
· Lenovo Laptop running Mosquitto 2.0.10 and/or Netcat 1.11 for NT.
Procedure
This document is divided into two main sections. The first part tests the transmission capabilities of Smooth MQTT, the second is a simple test of ESP32 transmission rate using TCP/IP.

Benchmark Smooth MQTT

Objective
The goal is to evaluate and analyze the transmission capabilities of Smooth MQTT on ESP32.
Procedure
For this experiment, we use the template code provided in Smooth examples (it can be retrieved from “Smooth/test/mqtt”. The code was modified to time its transmission rate. The complete code can be found here:
https://gist.github.com/Elfelsoufim/f9ef715755d385cce8258ba149ab7861

Part 1: Illustrating data loss.

Before testing Smooth MQTT’s transmission speed, it is important to see what happens when it is driven over its capacity. When trying to send messages too quickly, the transmit buffer gets filled faster than it gets emptied, which results in data not getting added to the buffer array.
This data loss is obvious when every message sent is numbered. At 50 ms between each message sent (see line 107 in Figure 1), which means 20 messages per second, about 5 messages cannot get added to the queue every second. For example, in Figure 1, the message “Sample #10282” was never sent nor received.
In Figure 1 to 5, the command prompt window is the laptop receiver, a Mosquitto client that receives all messages sent by ESP32. The VSCode Terminal window monitors the ESP32 through a USB cable.
[image:]Figure 1: Output of the laptop receiver when ESP32 sends messages at a rate of 20 Hz.

If I increase the delay between messages to 80 ms (see line 107 in Figure 2), all messages can get added to the transmit queue since the transmit buffer gets emptied faster than it gets filled. This is a state that I call “reliable transmission”, where every single message gets transmitted correctly. Following these results, I conclude that Smooth MQTT's maximum transmission rate is 12 messages per second.
[image:]Figure 2: Output of laptop-based receiver when ESP32 sends messages at a rate of 12 Hz.

Part 2: Benchmark publish().

To isolate the problem and avoid any slowdown caused by intermediary computations, I send a fixed-value: a constant string of value “Q”. The results are very similar, the ESP32 can reliably send messages only if they are queued with a delay of 70 to 80 ms between each other. In Figure 3, ESP32 was programmed to send a message whenever it receives one, allowing Smooth MQTT to run at cruise speed. This is done by calling Task::start(). From Figure 3, we can confirm that the natural transmission rate of ESP32 is around 12 Hz.

[image:]Figure 3: Output of ESP32 transmitting messages and receiving them through the Mosquitto broker.
[image:] Figure 4: Output of the laptop receiver when ESP32 sends a fixed message at a rate of 12 Hz.
[image:]Figure 5: Output of the laptop receiver when ESP32 sends a fixed message at a rate of 20 Hz.

The transmission rate of ESP32 on TCP/IP

Objective
The goal of this experiment is to determine the raw transmission rate of ESP32. To do so, we set the ESP32 to send short messages to a laptop using TCP.

Procedure
The code to send TCP/IP messages from the ESP32 was taken from:
https://github.com/espressif/esp-idf/tree/c13afea635adec735435961270d0894ff46eef85/examples/protocols/sockets/tcp_client
And modified in the following manner:
The receive code was removed. The program was set to run for 1 second using system_clock from <chrono> library. A counter included inside the loop was incremented every time a transmission was successful. When the time is up, the value of the counter is printed.
[image:]Figure 1: The code snippet that sends TCP/IP messages.

Results
	Run #
	Transmission rate (messages/second)

	1
	684

	2
	684

	3
	3166

	4
	4087

	5
	3837

	6
	4066

	7
	4230

	8
	2920

	9
	4654

	10
	3418

	11
	4982

	12
	4642

Table 1: Results of ESP32 transmission speed test	

	Minimum
	2920

	Maximum
	4982

	Average
	4000

	Standard Deviation
	674

Table 2: Statistics from ESP32 transmission speed test

Discussion
Run #1 and #2 executed a print statement at each transmission. As it was removed for run #3 to #12, we can see that the print statement caused important delays in the execution of the program. Therefore, the results from the first two runs were discarded.
Runs #3 to #6 were conducted inside a room (where the router is not present) with the door closed. Runs #7 to #12 were conducted 2 meters from the router without any obstacles in the way. We can see that obstacles and walls negatively influence the transmission rate as the average of run #3 to #6 is 3789 while the average of run #7 to #12 is 4141.
During the test, I noticed that closing other programs running on the receiving computer as well as the orientation and position of the router and/or the ESP32 can influence the throughput, which might explain why the last runs had better results overall.

Conclusion
The goal of this test was to verify the bare transmission speed of ESP32. As TCP/IP is a protocol that necessitates an acknowledgment of every data packet sent, we can conclude that ESP32’s bare-metal transmission rate is likely much higher than 5000 messages per second.

Conclusion
Considering that MQTT is based on the TCP/IP protocol, the important gap between the benchmarks of the two protocols suggests that there is room for improvement for Smooth’s MQTT in order to take advantage of the full potential of Smooth for ESP32.
image5.png
101
102 static void transmitter(void* arg) {

> log Aa Bl K 30f3

103 app->init();
104
105 while(true){
106 app->send_message();
107 vTaskDelay (50 / portTICK RATE MS);
108 }
netuork_test ~
109 } network_test
110 netuork_test
; . netuork_test
111 void app_main(void) hetwork_test
o netuork_test
netuork_test
113 app = new App(); netuork_test
114 //xTaskcreate(mgtt_com, "mqtt_com”, 16384, NULL, 10, Ny ress
115 XTaskCreate(transmitter, "transmitter”, 4696, NULL, 10,network test
116 netuork_test
117 int counter = @3 [network_test

network_test
network_test
network_test
network_test
network_test
network_test

PROBLEMS (2) OUTPUT DEBUGCONSOLE TERMINAL

Message could not be queued.

COEOEOEEOEOEREOOEOE0OO06EO

Timer: 66 seconds. network_test
Message could not be queued. network_test
Message could not be queued. neteork test
Message could not be queued. - v

Message could not be queued.
Message could not be queued.
Timer: 67 seconds.

Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Timer: 68 seconds.

Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Timer: 69 seconds.

Message could not be queued.

image6.png
main > € tcp_client.cpp > @ tep_client task(void *)

86
87 int counter = 0; Hessage fron E5P32.
: Hessage from £sP32.
88 using namespace std; Hessage from ESP32.
- .. . Hessage from £sP32.
89 auto start = std::chrono: :system_clock: :now(); jezeoge Trom Eer
% auto end = std::chrono: :system_clock: :now(); ressoge fron esr.
5 . Message from ESP32.
o1 while((std: :chrono: :duration_cast<std: :chrono: :seconds>(end - start).count() < 1)) heeeces from cova
o { Hessage from £sP32.
X Hessage from £sP32.
o3 int err = send(sock, payload, strlen(payload), 6); Memsase from capaa.
2 Hessage from £sP32.
e o7 (@ 8 @) 4 Message from £sP32.
95 ESP_LOGE(TAG, "Error occurred during sending: errno %d”, errno); Message from ESP32.
Hessage from £sP32.
96 break; Message from ESP32.
97 } Hessage from £sP32.
Hessage from £sP32.
o8 else { Mesonce from ESpas.
. Hessage from £sP32.
@ CEIErS Hessage from £sP32.
100 } Message from ESP32.
101 end = std: :chrono: :system_clock: :now();
102 //cout<<"Time is"<<std: :chrono: :duration_cast<std: :chrono: :seconds>(end - start).count()<<" second"<<endl;
103 }
104 printf("%d messages.\n", counter);
105
106
107
PROBLEMS (3) OUTPUT DEBUGCONSOLE TERMINAL 3:ESP-IDFMonitor v~ +~ [@ ~ x
1 (2750) wifi:state: assoc -> run (10)
I (2860) wifi:connected with TP-Link 1045, aid = 2, channel 10, 40D, bssid = @0:31:92:49:10:45
I (2870) wifi:security: WPA2-PSK, phy: bgn, rssi: -32
I (2870) wifi:pm start, type: 1

I (2990) wifi:AP's beacon interval = 102400 us, DTIM period = 1
I (4140) esp_netif handlers: example connect: sta ip: 192.168.0.101, mask: 255.255.255.0, gw: 192.168.0.1

I (4140) example connect: Got IPv4 event: Interface "example connect: sta” address: 192.168.0.101

I (4640) example connect: Got IPv6 event: Interface "example connect: sta” address: fe80:0000:0000:0000:3e61:05f:feac:39dc, type: ESP_IP6 ADDR IS LINK LOCAL
T (4640) example _connect: Connected to example connect: sta
1
1
1
1

(4650) example_connect: - IPvA address: 192.168.0.101

(4650) example_connect: - IPv6 address: fe80:0000:0000:0000:3e61:05f:feac:39dc, type: ESP_IP6 ADDR IS LINK LOCAL
(4670) example: Socket created, connecting to 192.168.0.100:4444

(5870) example: Successfully connected

24642 messages.
n

image1.png
main > € mqtt.cpp > @ transmitter(void %)

102 static void transmitter(void* arg) {

> log

Aa Bl K 70f3

TV =

103 app->init();
104
105 while(true){
106 app->send_message();
107 vTaskDelay((50 / portTICK RATE
108 }
network_test
w hetwork_test
110 netuork_test
. PP netuork_test
111 void app_main(void) ibehgond
12 { netuork_test
netuork_test
113 app = new App(); netuork_test
114 //xTaskCreate(mgtt_com, "mqtt_com”, 16384, NULL, 10, 1:::;[:7:::
115 xTaskCreate(transmitter, “transmitter”, 4096, NULL, 10,netuork test
P netuork_test
netuork_test
117 int counter = etk test
N netuork_test
18 while(true){ netuork_test
119 printf(" Timer: %d seconds.\n", counter); network_test

PROBLEMS (2) OUTPUT DEBUGCONSOLE TERMINAL

Message could not be queued.
Timer: 527 seconds.

Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Timer: 528 seconds.

Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.
Timer: 529 seconds.

Message could not be queued.
Message could not be queued.
Message could not be queued.
Message could not be queued.

i

network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test

Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample

#10279
#10281
#10283
#10284
#10285
#1027
#10288
#10289
#10291
#10292
#10293
#10295
#1029
#10298
#10299
#10300
#10302
#10303
#10304
#10306
#10307
#10309
#10311
#10312

P
<«

image2.png
101 > log Aa Bl J* 30f3 T
102 static void transmitter(void* arg) {

103 app->init();
104
105 while(true){
106 app->send_message();
107 vTaskDelay|(80 / portTICK RATE
108 } network_test Sample #290 S
netuork_test Sample #251
19 } network_test Sample #292
110 netuork_test Sample #293
) L netuork_test Sample #294
111 void app_main(void) netuork test Sample #295
netuork_test Sample #2965
w hetwork_test sample #297
113 app = new App(); network_test Sample #298
q o network_test Sample #299
114 //xTaskCreate(mqtt_com, "mqtt_com”, 16384, NULL, 10, Nicoerk test somole #2060
115 xTaskCreate(transmitter, "transmitter”, 4096, NULL, 1@,tetwork test Sample #3061
netuork_test Sample #302
116 netuork_test Sample #303
i =R netuork_test Sample #304
17 int counter - 6 eret e wes
118 while(true){ network_test Sample #306
netuork_test Sample #307
netuork_test Sample #308
PROBLEMS (2) OUTPUT DEBUGCONSOLE TERMINAL Petuork_test Sample #309
—_— netuork_test Sample #310
Timer: 7 seconds. network_test Sample #311

imor: network_test Sample #312
Tz © ezanriks network_test Sample #313

Timer: 9 seconds. v
Timer: 10 seconds.
Timer: 11 seconds.
Timer: 12 seconds.
Timer: 13 seconds.
Timer: 14 seconds.
Timer: 15 seconds.
Timer: 16 seconds.
Timer: 17 seconds.
Timer: 18 seconds.
Timer: 19 seconds.
Timer: 20 seconds.
Timer: 21 seconds.
Timer: 22 seconds.
Timer: 23 seconds.
Timer: 24 seconds.
Timer: 25 seconds.

n

image3.png
nain > € mqtt.cpp > @ Ap|

S SLALLC VULU WYLL_COMVULU - aig)
99 app->start();

100}

101

102 static void transmitter(void* arg) {

103 app->init();

104

105 while(true){

106 app->send_message();

107 vTaskDelay (50 / portTICK_RATE_MS);
108 }

109}

110

111 void app_main(void)
112 {
113 app = new App();

send_message()

> log

T L= X

network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test

114 xTaskCreate(mqtt_com, "mqtt com”, 16384, NULL, 10, NULnetwork test

PROBLEMS (@) OUTPUT DEBUG CONSOLE

(210995) Rec: T:network test,
(211069) Rec: T:network test,

I
I
I (211141) Rec: T:network test,
I
I

el

(211208) Rec: T:network test,
(211281) Rec: T:network test,
Timer: 210 seconds.
(211352) Rec: T:network test,
(211422) Rec: T:network test,
(211499) Rec: T:network test,
(211565) Rec: T:network test,
(211652) Rec: T:network test,
(211722) Rec: T:network test,
(211809) Rec: T:network test,
(211878) Rec: T:network test,
(211953) Rec: T:network test,
(212044) Rec: T:network test,
(212123) Rec: T:network test,
(212210) Rec: T:network test,
Timer: 211 seconds.
I (212357) Rec: T:network test,
I (212427) Rec: T:network test,

HEHHHHHHHHRBRKH
e e R]

TERMINAL

network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test

COEOEOEEOEOEREOOEEOOE0606EO

image4.png
102 static void transmitter(void* arg) {

103
104
105
106
107
108
109 }
110

app->init();

while(true){
app->send_message();
vTaskDelay|(80 / portTICK RATE

111 void app_main(void)

12 {
113
114
115
116
117

PROBLEMS

Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:
Timer:

n

2

a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

app = new App();

network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test

//xTaskCreate(mqtt_com, "mqtt_com", 16384, NULL, 10, Npctwork cest

xTaskCreate(transmitter, “transmitter”, 4096, NULL,

int counter = 6;

OUTPUT DEBUGCONSOLE TERMINAL

seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.

10, network_test

(e
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test
network_test

COEOEOEEOEOEREOEOOE0606O

> log

