
 

 

A level Computer Science Project 
 

 
My details 
Name .………………………………………………………………………………………………….…………………………………… Peter Metcalfe 
Candidate number …………………………………………………………………………...………………..……………………...................... 
School ……………………………………………………………………………………………….…………………………... The School 
Centre number …………………………………………………………………………………………………………………………….………... 

 

Contents 
Analysis 
Introduction ………………………………………………………………………………………….……………………………..………………………… 3 
Stakeholders …………………………………………………………………………………………………………………………...……...……………... 3 

Research 
Prior knowledge …………….………………….…………………………..……………………………………………………………………………… 4 
Existing programs ..……………………………………….…………………………………………………….………………………………………… 6 
Stakeholder(s) / User(s) needs ………………………………….………………………………………………………………………..………… 7 
My ideas ……………………………………………………………………………….………………………………………………………………………. 7 
Features …………………………………………………………………………………………………………………………………………………………. 8 
Limitations ……………………………………………………………………………………………………………………………………………….……. 9 
Computational methods …………………………………………………………………………………………..…………………………………… 9 
Hardware and software requirements ………………………….………………………………………………………………………..…….... 9 
Success Criteria ……………….………………………………………………………………………...………………………………………………… 10 

Design 
Structure diagram …………………………………………………………………………………………………………………………………….…. 12 
Modules and processes …………………………………………………………………...……………………………………………………….…. 13 
Interface design……………………………….…………………………………………………………………….…………………………………….. 15 
Validation of inputs ………………………………………………………………………………………………………………………………..……. 16 
Pseudocode …………………………………………………………………………………………………………………………………………….…… 16 
Class diagrams …………………………………………………………………………………………………………………………………………….. 22 
Variables and Justification …………………………………………………………………………………………………………………………… 23 
Test data ………………………………………………………………..…………………………………………………………………......................... 24 
Post-development testing ……………………………………..…………………………………………………………………......................... 27 

Developing the coded solution 
Milestone 1a – User interface ……………………………………………………………………………………………………………….……... 28 
Milestone 2a – Polynomials ………………………………………………………………………………………………………………….……... 29 
Milestone 3a – Circles ………………………………………………………………………………………………………………………….………. 30 
Milestone 4a – Points ………………………………………………………………………………………………………………………….………. 33 
Milestone 5a – Regression Line ………………………………………………………………………………………………………….……….. 34 
Milestone 6a – Graph details …………………………………………………………………………………………………………….………… 35 

2022 



 

 2 

Milestone 7a – Mandelbrot Set ……………………………………………………………………………………………….………………….. 36 
Finished prototype ………………………………………………………………………………………………………………………….……..……. 37 

Milestone 1b– User interface ………………………………………………………………………………………………………….…….……... 38 
Milestone 2b – Polynomials ………………………………………………………………………………………………………………….……... 39 
Milestone 3b – Circles …………………………………………………………………………………………………………………………………. 41 
Milestone 4b – Points …………………………………………………………………………………………………………………………….……. 42 
Milestone 5b – Regression Line ……………………………………………………………………….………………………………………….. 43 
Milestone 6b - Graph details ………………………………………………………………………………………………………………….…… 44 
Milestone 7b – Mandelbrot Set …………………………………………………………………..…………………………………………….... 45 
Extra Features ……………………………………………………………………………………………………………………………………………… 46 

Evaluation 
Alpha testing .………………………………………………………………………………………………………………………………………………. 48 
Beta testing …………………………………………………………………………………………………………………………………………………. 51 
Product review ….…………………………………………………………………………………………………………………………………………. 53 
Usability ………………………………………………………………………………………………………………………………………………………. 54 
Limitations …………………………………………………………………………………………………………………………………………………… 54 
Future of my application ……………………………………………………………………………………………………………………………..  55 
Conclusion …………………………………………………………………………………………………………………………………………………… 56 

References …………………………………………………………………………………………………………………………………………………… 57 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 



 

 3 

Analysis 
 

Introduction 
Students and teachers today are often expected to draw graphs for exams, textbooks and to practice real 
life examples too. Graphs are an important and a significant part of many subjects, especially at A level, in 
maths, physics, chemistry, biology, and many more…  

To assist students and teachers in their use of graphs and maths in general, I intend to create an easy-to-
use graphing calculator application. 

Existing graphing software is limiting and complicated and I have experienced this first-hand. It is much 
easier for students to understand a question or problems by simply being able to visualise it and see what is 
happening. I intend to address this with my solution. 

My application will enable the user to plot graphs and shapes with ease. I hope to make this a tool for 
students to further their understanding, as well as a tool for teachers to display solutions and problems. My 
program can include more tools and functions than existing software, making it more useful for students 
(like myself) taking subjects that go into more depth (such as further maths), where you may be looking at 
Argand diagrams as well as ordinary cartesian grids. 

I now need to research what features students and teachers may want to see or use in a graphing calculator 
and what is important to include to make sure that the application is useful and valued. 

 

 

Stakeholder(s) 
As mentioned above, my application will aim to help both students and teachers. Therefore, I am going to 
make sure that I am in constant contact with both parties: my maths teacher (Mrs Evans) and my peers who 
specifically take subjects suited to using my application. This way, I will be able to get live feedback on what 
I am creating, ensuring a good result for my final product. 

Different users are going to use the application in different ways. Students rely on calculators to perform 
calculations correctly and to make solving problems easier.  

Whereas teachers rely on them to visualise and “solve tricky problems or functions” that they “don’t know 
the shape of” (quoting Mrs Evans). The difference here is that teachers do a lot more of the simple sums in 
their head and don’t need the calculator for ‘easier’ math. Another difference is that teachers like displaying 
graphs and functions to the class on their interactive whiteboards, so the whole class can learn at once. 

 

 

 

 

 



 

 4 

Research 

 

Prior knowledge needed 

For this project I am going to need to know and be able to: 
1. Find the roots of functions. 
2. Find the turning points of functions. 
3. Convert from radians to degrees. 
4. Calculate the equation of a regression line. 
5. Generate the Mandelbrot set. 

Here is a table showing points 1 and 2. 

Function Y-
intercept 

Turning Point(s) Root(s) Graphical 
Representation 

Linear 
f(x) = ax + b 

Y = b N/A X = -b / a  

Quadratic 
f(x) = ax2 + bx + c 

Y = c X = (-c/2*b)  
Y =  (b*(-c/2*b)2 + c*(*(-c/2*b)+d)  

X = −𝑏±√𝑏
2−4𝑎𝑐

2𝑎
  

Cubic 
f(x) = ax3 + bx2 + 
cx + d 

Y = d X1 = ((-2*b)+sqrt((4*(b2))-(12*(a*c))))/(6*a) 
Y1 = a*((X1)3) + b*((X1)2) + (c*(X1)) + d 
X2 = ((-2*b)-sqrt((4*(b2))-(12*(a*c))))/(6*a) 
Y2 = a*((X2)3) + b*((2)2) + (c*(X2)) + d 

Explained Below (*)  

Any other 
function… 

f(x) = ax34 + yx12 + z 

(Generalised 
method) 

Y = z (the 
constant) 

Solve the first derivative 
OR 
Approximate, by iteratively 
substituting X into the function and 
finding when f(x) changes from 
increasing to decreasing or vice 
versa 

Approximate, by 
iteratively 
substituting X into 
f(x) and finding when 
it changes from 
negative to positive 
or vice versa 

 

(I derived the formulas for the turning points by solving the first derivative) 

(*) Roots of cubic functions: The formula 
for these gets quite complicated as 
shown here.  
However, this formula only outputs one 
real root, even if there are three 
(depending on the function, it can have 
either 0, 1, 2, or 3 roots). It disguises the other two roots as complex numbers that you must transform into 
real numbers, which then become your answer.  
To do this you use the fact that the other two roots are complex conjugates and that all three roots form an 
equilateral triangle when plotted. With this information, you can re-write the complex numbers in their 
modulus-argument form or polar form, which then cancel out leaving you with just the real part of the 
complex number. These are your other roots (Mathologer, 2019). 



 

 5 

3. Converting from radians to degrees:  
Angle in degrees = 180 * (Angle in radians / π) 
This will be used when performing calculations with trigonometry and drawing the trig’ graphs. 

 

4. Calculating the equation of the regression line: 
This is the mathematical linear line of best fit for a set of given points. To calculate the equation of a line 
you need the gradient and a point on that line (TLMaths, 2015).  
Therefore, to calculate a point on the regression line, you take an average of all the points provided  
= ( average(x), average(y) ) 
To find the gradient:  
Sxy = ( x - average(x) )*( y – average(y) ) 
Sxx = ( x – average(x) )2 

Gradient = Sxy / Sxx =  𝑆𝑥𝑦
𝑆𝑥𝑥

 

The equation of a line: y1-y2 = m(x1-x2) 
Therefore the equation of the regression line: y - average(y) =  𝑆𝑥𝑦

𝑆𝑥𝑥
 ( x - average(x) ) 

        y = 𝑆𝑥𝑦
𝑆𝑥𝑥

( x - average(x) ) + average(y) 

 

5. Generating the Mandelbrot Set: 
To make this, you iteratively sub the complex number c in the function f(c) = z2 + c 
where z increments by some step (e.g. 0.1) on each pass. If f(c) is ever > 2 you know it 
is unstable, but if after a set limit of iterations, it still isn’t greater than 2 you say it is 
stable and you plot that as black on an Angrand diagram (Numberpile, 2015). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 6 

Existing programs 

There are two existing programs that I have researched: 
Desmos = https://www.desmos.com/calculator 
 
 
 
 
 
 
 
 
 
 
 
 
GeoGebra = https://www.geogebra.org/calculator 
 
 
 
 
 
 
 
 
 
 
 
 
 

Issues / limitations: 

- Does not calculate complex numbers 
- Does not calculate regression line 
- Does not draw Mandelbrot set 

 

 

- Does not draw / sketch 
- Does not work offline 

 

I hope to include all the features and limitations listed above in my application, with the aim to make my 
program more useful and helpful (except for making it web-based). These current programs do not 
consider complex numbers (to date), so this is where I will try to make my program excel. One limitation of 
my program will be that it will only be in two dimensions, whereas GeoGebra does have the ability to draw 
in three dimensions. However, this could be something I could consider adding if I have enough time. 

Both these programs are written in JavaScript and have HTML and CSS elements to them too. They perform 
the processing on the client side for faster speeds and better performance. Desmos can store graphs, this 
involves processing on their servers and allows the user to close the tab and reopen the same graph setup. 
As my program is an application run on the user’s device, my code is all client side processing and I will try 
to allow the user to save their graph setups too, this may just be by adding the ability to save an image of 
the graph. 

Online / web based 

 

Zoom 

 

 

Draw multiple functions on same axes 

 

 

Label graphs 

Colour graphs 

 

Find roots 

 

Find intersections 

Find turning points 

https://www.desmos.com/calculator


 

 7 

Stakeholder and user needs 

Having discussed with my client (Mrs Evans – Math teacher), I discovered some of the things she would like 
to see in an improved graphical calculator. 

She said that a graphical calculator should be able to calculate, at least some basic sums and be able to 
draw, at least some basic graphs. She also added that some of the things that a graphical calculator should 
output are the turning points, roots, intercepts and asymptotes.  

She added that current calculators are too complicated, especially for beginners and that it would be 
advantageous if it could be simpler and quicker to use. Furthermore, these calculators are usually difficult to 
navigate and locate all the functions, so this is also something I must consider when designing mine. 

 

 

My ideas 

In addition to the basic functioning calculator, I would like to involve complex numbers. I feel having the 
ability to process imaginary numbers and plot on an argand diagram is a unique feature and something 
that will help students taking further maths at A level. This may mean making a separate section in my 
application dedicated to dealing with complex numbers. That way, users are not forced into trying to use or 
understand them if they don’t wish to, but still have the option.  

Alongside this, I have thought about including the Mandelbrot set as this is also plotted on an argand 
diagram and links well with complex numbers. It would certainly be a unique feature to my application and 
would add educational and artistic befits for the user. 

Another idea is to add the ability to plot all kinds of graphs, similar to Excel. These may include scatter 
graphs, bar charts, pie charts, cumulative frequency graphs and box plots. This would allow the user to 
visualise a variety of statistical distributions helping students taking statistics.  

Other possible things to include are ‘solvers’. For example, a page that solves SUVAT equations or 
simultaneous equations or matrices, etc… This would be helpful to both students and teachers as it would 
allow them to double check their calculations on the dedicated ‘solver’ page and possibly show them how 
to solve it if they get stuck. 

My approach will involve lots of prototyping and constant feedback from my stakeholders, if I am to 
achieve all my aims. It will be important to adjust my design to keep everyone’s expectations aligned. 

 

 

 

 

 

 

 



 

 8 

Features for the Proposed Solution 

The feature Including / Removing Justification 

Drawing functions Including This is essential to any graphical 
calculator 

Drawing functions on same axis Including This is useful for comparing different 
functions against each other 

Label functions Including Useful to distinguish between 
functions 

Colour functions Including Useful to distinguish between 
functions 

Find roots Including A key feature to any calculator 

Find turning points Including A key feature to any calculator 

Find intersections with axis Including Easy to include, so why not? 

Find intersections with other functions Removing Not so easy to include – possibly 
something to add if I have time 

Zoom Including Useful to get a better view of the 
functions drawn on axis 

Complex numbers Including Unique feature, useful for further 
maths students 

Regression line Including Useful for scientific experiments with 
data 

Mandelbrot set Including Unique feature useful for 
educational and artistic purposes 

Sketching Removing I will only include this if I have 
enough time, as it is not essential 

Calculator Including Essential for a calculator 

Drawing statistical graphs Removing I will only include this if I have 
enough time, as it is not essential 

‘Solvers’ Including This is a very useful tool, but I am 
not sure how many I will be able to 
complete. 

 

The above table lists all the features I am considering for my application and my justification for including 
them. Some topics are not essential, but I will try and include them if time permits.  
 



 

 9 

Limitations 

When drawing functions there are few limitations I may encounter; the speed at which I draw the graph and 
the resolution of the graph. These two things are inversely proportional. The faster I draw the graph, the 
less the resolution and the higher the resolution the lower the speed. There is always a compromise 
between these two variables, so I will collect user feedback to help me ascertain what is felt to be 
acceptable.  

Furthermore, the resolution of the graph effects how accurate the approximations are for the turning points 
and roots. For this reason, I will need to carefully choose a resolution that offers an acceptable waiting time 
to draw the function but still outputs an accurate enough result for the roots and turning points. 

Time is also a limiting factor. Whilst this project is well defined, there are always more features to include. 

 

Computational Methods 

My application involves a significant amount of math, whether this is solving calculations, approximating 
answers or performing statistical tests. This makes a computer perfectly suited for this application, for many 
reasons: 

Firstly, they are reliable and reduce human input and error. This eliminates the possibility of performing a 
calculation wrong as this is what computers were literally designed to do – perform calculations. 

Secondly, it decreases the amount of time needed to solve problems as computers are much faster at 
processing data than humans are. It would take a human hours to approximate the roots of large, irregular 
polynomials but a computer only milliseconds.  

Thirdly, computers are designed to store data for long periods of time. This makes them perfect for storing 
graphs or plots that need to be preserved. Storing such data on paper is much less reliable, easier to lose, 
and requires space.  

Finally, computers around the world are connected via the internet, so can share data almost 
instantaneously. This would allow the user of my application to share their graphical plots or statistical data 
with others, anywhere in the world seamlessly and reliably. It would also allow for automatic backs-up too. 

 
 
Hardware and Software Requirements 

For this project, the hardware consists of a keyboard, mouse and monitor. 

The software will be written in Python. Python is a useful language to use when performing mathematical 
tasks due to the vast amount to useful libraries that can be used and implemented. I did consider using C or 
C++ for the added speed when it comes to performing many iterative calculations but decided against the 
idea due to the simplicity of Python. 

The libraries I plan to use involve ‘Tkinter’ for the main GUI components, ‘Matplotlib’ for the graphs and 
visual elements and ‘Math’ for some of the mathematical calculations. 

I am currently running a Windows operating system and will be writing my code using Visual Studio Code 
and the traditional Python IDLE. 



 

 10 

Success Criteria 

No. Criteria Justification 

1 Have 5 functions allowing the user to freely 
select the graphing function they would like 
to perform. This should include as a 
minimum: polynomials, circles, regression 
lines and complex numbers. 

This gives the user control and allows them to 
achieve the result they were looking for. The more 
graphing functions, the more freedom the user has 
and the more useful my program will be. 

2 The user can input graph functions to be 
processed. 

This is vital for the program to be able to know what 
to output, including the graph and extra details like 
roots and intersections. 

3 The user can clearly see the graph they 
inputted on the screen and be able to make 
necessary observations form it. This can 
include the ability to manipulate the graph 
by zooming and moving it around the 
screen. 

The reason for this is to really allow the user to make 
the most of the application. Being able to visualise 
the inputted graph functions should aid the user in 
their understanding. 

4 The user should be able to clear the set of 
axes. 

This is important if the user plots several graphs on 
the same axis as it could get messy. The user should 
be able to clear this without having to restart the 
application. 

5 Allow the user to plot up to cubic functions. The purpose of this is that the user may have several 
types of graphs they would like to input, and I would 
like my program to be able to handle this. 

6 The program should output data about the 
inputted graph, including roots, turning 
points and intersections.  

Extra information about the graph will be useful for 
the user as my stakeholders has mentioned. It not 
only makes my program more useful but also helps 
the user with mathematical problems too.  

7 The program must recognise and alert the 
user when the user has inputted something 
that is invalid. 

This is important  so that the user knows they have 
done something incorrect. My program must be 
interactive and malleable in this way to prevent a 
lack of communication between the user and my 
program, resulting in a lack of interest and usage. 

8 The user must be able to distinguish 
between different graphs drawn on the 
same axis, by colour coordination and / or 
labelling. 

This allows the user to use the application easier and 
with less effort. It stops the set of axes getting out of 
control and messy when lots of graphs are drawn.  

9 There should be a calculator within the 
application to allow the user to perform 
quick calculations. 

This is a necessary function of any calculator and 
should be expected. 



 

 11 

10 Functions should be plotted with a  high 
enough resolution and that approximated 
answers are accurate to at least two 
decimal places. 

This ensures the plot is an accurate representation of 
the graph and that the approximated calculations 
are accurate and usable. 

11 The user to have the option to draw 
functions on the imaginary plane / argand 
diagram. 

This should allow users explore new areas of maths 
or help those who require the imaginary plane to 
plot in it. 

12 The user should have the ability to quite the 
program whenever they wish to. 

The user should not feel trapped withing the 
application and should have the freedom the quit. 

Ultimately, my goal is to make a calculator that is intuitive to use and simple to understand. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 



 

 12 

Design 
 

Structure Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot boxplot 

Input perpendicular 
bisector 

Input wave type 

Graphing Application 

Graph page Help page Complex page 

Input function 

Input circle 

Input point 

Input points for 
regression line 

Input complex 
point 

Input 
Mandelbrot set 

Move graph 

Draw circle 

Draw function 

Draw point 

Output error 
message 
function 

Draw wave 

Calculate and plot 
regression line 

Validate inputs 

Zoom 

Generate / 
output details 

Draw perpendicular 
bisector 

Draw complex 
point 

Draw 
Mandelbrot set 

Green boxes represent the main pages of my application. 

 
Blue boxes represent sub-pages / functions with more of a concise purpose. 

 
Orange boxes are an indication of the objects or functions of code that I will write. 



 

 13 

Structure diagram explanation 
The diagram shows that my application will have 3 main pages, leading form the home page.  
The ‘graph page’ will have all the functions I am offering, on the traditional cartesian coordinates system, 
whereas the ‘complex page’ will be plotted on the complex plane. Finally, the ‘help page’ will guide the user 
through different functionalities of my program if they need further instructions. 

From each of the main pages there will be sub-pages where the user inputs their values to be drawn. 
The corresponding functions of code will process this input and draw the result. 

The ‘zoom’ and ‘move’ functions will be on the ‘graph’ and ‘complex’ page and will be used, by the user, to 
manipulate the graphs they draw. This allows the user to make clearer observations and provides more 
useability. 

 

 
Modules and Processes 

The graph page will consist of all the functions that I am offering to the user, which can be plotted on the 
usual cartesian coordinates grid.  

First we have the drawing function page. Here the user will have the ability to input functions up to at least 
cubic equations, maybe more depending on time constraints. This should then draw the graph of the 
inputted function and output the useful data about the graph. To draw the graph, I plan to use the equation 
of the function to substitute in a value for ‘x’. Then, as it is a function, it will output a value, this being the ‘y’ 
coordinate. I can then plot this coordinate and will repeat this for every value of ‘x’ on the axis, until I have 
drawn a line. 

The graph ‘details’ function will calculate all the roots and turning points of the inputted function and then 
the user should have the option to view this information if they wish. The calculations for this have already 
been discussed, however I may need to optimise this, as some calculations may take a significant amount of 
time to process. 

Next, there is drawing circles, this should take input values for the radius and centre coordinate, then plot 
the circle on the axis. This allows for a wider variety of questions / problems to be drawn using my program, 
making it more useful for users. To draw the circles, I will repeat the same process as drawing functions but 
I will have to complete two passes, once for the top half of the circle and once for the bottom half. 

The draw point module will simply draw a point (small circle) at the inputted coordinate. This gives the user 
the ability to plot specific points that may be useful for their problem. This ability also lets the user plot 
many points, maybe data collected in a science experiment, and see what shape the points make. This 
power, to observe the shape of graphs at an instant, will be very useful for students and teachers to come 
to conclusions about their experiments. 

The regression line function will work in the same way as the drawing function but first the equation of the 
line must be calculated, using the maths in the ‘Prior knowledge section’. There is also another function 
connected to this page that allows the user to generate or draw a boxplot. This will involve calculating some 
statistical variables from the inputted data (like the median and inter quartile range) and then plotting two 
rectangles accordingly. 



 

 14 

Moving on to the complex plane page, the first function will be to plot complex numbers. This is a useful 
tool for students taking Further Maths studies as they will be using complex numbers. My program will 
output the modulus and argument of these complex numbers, which I know from experience could be very 
useful as these terms are used frequently throughout the course. 

Finally, the Mandelbrot set. This will output the same image, as there is only one Mandelbrot set, however it 
will allow the user to control the colour scheme used and the resolution. The reason for this, is there are 
multiple points to calculate and the smaller the resolution the quicker it will take to render. This ability to 
picture the Mandelbrot set may come in useful for visualisation and possibly artistic endeavours too. 

I plan on generating the Mandelbrot set by processing every point on the Argand diagram and deciding (in 
the algorithm) whether it is stable or not, in other words, whether to colour it black or not. Then I should 
generate the whole image, however, this may need adjusting as I predict this may take a long time to 
complete. 

Other less important modules may involve the ‘colour changing’ function that changes the colour of the 
graphs being plotted, the ‘ input validation’ object that will check the input values for my program and the 
‘clear axes’ function that resets axes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 15 

Interface design 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, to make things as simple as possible, I have tried to abstract all the unnecessary information. When 
the user requires information, I will provide it as a pop-up window so that the user has the option to close it 
again. These leaves the cleanest user interface possible, as suggested by my stakeholders. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
I have tried to make the user interface as simple to navigate as possible. I have sorted all the functions into 
two main categories that the user can switch between depending on what their goal is. My aim was to make 
this easy and quick for the user to navigate, while also being informative and useful.  

 

Home Page 

Graph 

Complex Plane 

Help 

 

Function Page 

Draw Back 

 

 

 

 

a = 
 
b =  
 
c =  
 
d =  

y = ax3 + bx2 +cx + d 

This is the initial 
design for the 

application, with 3 
simple clear buttons 
on the home page. 

 
This is the polynomial 
page, where the user 
will input their values 

of a, b, c, d. 
 

All the pages where 
the user must input 
values should have 

this same style. 

This is an example of what 
the graph might look like.  

 
Notice each line plotted has 
a colour coordinated label, 
so the user can keep track. 

0 1 2 3 4 5 6 7 8 

7 
 
6 
 
5 
 
4 
 
3 
 
2 
 
1 
 
 

_  y = (x-4)2  _  y = x - 1 



 

 16 

Validation of inputs 

As my GUI contains text-based user inputs, I need to validate these inputs before I can use them to do any 
calculations or drawings. This is what I will check for: 

Validation check How it works Example 

Left blank Checks whether the text bar was 
left empty. If it is, it makes the 
input equal to zero (sanitisation). 

Input: ‘          ‘ 
Output: 0 
 

String check If the input requires an integer / 
float, this will reject any strings or 
characters and alert the user. 

Input: ‘hello’ 
Output: [Pop-up message] 
[‘This input is not valid’] 

Range check This checks to see whether the 
inputted values are within the 
range of the axes to be drawn 
on. 

Input: ‘100000’ 
Output: [Pop-up message] 
[‘Input too large’] 

Sign check Inputs cannot be negative, like 
the circle radius. 

Input: ‘-54’ 
Output: [Pop-up message] 
[‘Input must be greater than 0’] 

 

 

 

Pseudocode 
 

Draw function 

 

 

 

 

 

 

 

 

 

 

a , b , c , d = check_vars( “function”, a , b , c , d )                #a, b, c, d are parts of inputted function 

step = 0.1               #’step’ and ‘axes’ are global variables 
axes = 200 
x = -axes 
Xvalues = [ ] 
Yvalues = [ ] 

WHILE x <= axes: 
  Yvalues.append( (a * x3 )+ (b * x2 ) + (c * x) + d )         #For a cubic function 
  Xvalues.append( x ) 
  x += step 
END WHILE 

change_colour()                     #Changes the colour of the line 
PLOT( Xvalues ,Yvalues )             #Draws the function as a line of points 



 

 17 

This algorithm needs to start at the left-hand side of the axis (e.g. x = -200) and on each loop increment x 
by some step. On each loop, the algorithm needs to calculate the y coordinate relating to that x value. To 
do this, it will sub the value of x into the inputted function. It will then store all the points calculated in a list 
to be plotted once the loop has ended at the right-hand side of the axis (x = 200). 

The variable ‘step’ controls the size of the increment of x, each time the loop is performed. I have made this 
a variable as I may want to change this depending on the type of graph. This variable is going to be 
responsible for how quickly, but also how well, it draws the graph. As bigger ‘steps’ means more jagged 
curves. 

I have also made the axis size a variable (‘axes’), as I may also want to change this, either at the user’s 
discretion or I may set it depending on the type of graph. If the graph inputted is only small, I only need a 
small set of axes to draw it on, so this will save time. 

I have also made sure to include the ‘check_vars()’ routine that will validate the input variable and return 
them as floats, to be used in calculations. 

This algorithm will be one function of a ‘draw’ object. This object may also contain the other algorithms that 
follow, such as the ‘draw circle’ function and the ‘draw point’ function. 

 

Draw circle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT radius 
INPUT centreX 
INPUT centreY 

radius , centreX , centreY = check_vars( “circle”, radius , centreX , centreY ) 

step = 0.1 
axis = 200 
Xvalues = [ ] 
Yvalues = [ ] 

x = -axis 
WHILE x <= axis: 
 Yvalues.APPEND( ( radius2 - x2 – ( 2 * centreX * x ) – centreX2 )1/2 – centreY )  
 Xvalues.APPEND( x ) 
 x += step 
END WHILE 

x = axis 
WHILE x <= -axis: 
  Yvalues.APPEND( - ( radius2 - x2 – ( 2 * centreX * x ) – centreX2 )1/2 - centreY ) 
 Xvalues.APPEND( x ) 
 x -= step 
END WHILE 

change_colour() 
PLOT( Xvalues, Yvalues ) 



 

 18 

For the algorithm to draw the circle, it is very similar to the one that draws functions, but I have to do it 
twice as the circle will give two outputs each time I substitute ‘x’ in, to to find ‘y’. Consequently, I start at the 
left-hand side of the x-axes, increment ‘x’ until I reach the right-hand side, then go back again, decreasing 
‘x’ until I am back at the left-hand side. Doing this only once produces a semi-circle.  

The vairables ‘axes’, ‘step’, ‘Xvalues’ and ‘Yvalues’ occur in many of my algorithms so I plan on making these 
global variables. Therefore, every algorithm will have access to the same variable. 

 

Draw regression line 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Xvalues = [ ] 
Yvalues = [ ] 
Xpoints = [ ] 
Ypoints = [ ]  
X = 0 
Y = 0 
Sxx = 0 
Sxy = 0 

FOR _ IN user_inputs:      #loops for the number of points the user has 
   INPUT FLOAT = x 
  INPUT FLOAT = y 
  Xpoints.APPEND( x )     #adds these points to list 
  Ypoints.APPEND( y ) 
END FOR 

FOR x IN Xpoints:      #finds sum of the points 
  X += x 
  Y += x 
END FOR 

X = X / LENGTH( Xpoints )     #X is set to the average of the ‘x’ points 
Y = Y /  LENGTH ( Ypoints )     #Y is set to the average of the ‘y’ points 

FOR p IN RANGE( 0 , LENGTH( Xpoints ) ):   #loops for the number of points 
  Sxy += ( Xpoints[ p ] - X ) * ( Ypoints[ p ] - Y ) 
  Sxx += ( Xpoints[ p ] -X )2 
END FOR 
m = Sxy / Sxx       #finds gradient 
c = Y – ( c * X )       #finds y intercept 

WHILE x <= axes: 
Yvalues.APPEND( (m * x) + c )    #calculates all the points of the line 
Xvalues.APPEND( x ) 
x += step 

END WHILE 

change_colour() 
PLOT( Xvalues , Yvalues )     #outputs line 



 

 19 

To find the equation of the regression line, the user will input at least 2 coordinates and then this algorithm 
will ouput the result using the math descirbed in the ‘Prior knowledge’ section. It can then plot this graph 
using a similar alogrithm to the ‘draw function’ psueodcode. 

 

Draw wave 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
In this algorithm, I take a user input to deduce what wave they would like to draw. Depending on this result, 
I calculate the points for this trig’ function. It is slightly different if the ‘type’ inputted is ‘tan’ due to the 
different shape of this function. The tangent function goes off to infinity every 180 and therefore has 
asymptotes too. That is why I have designed the algorithm to plot this function in stages between each 
asymptote. 

 

INPUT type       #user inputs which wave: sin, cos or tan 

IF type == “sine”: 
 WHILE X < axes: 
  Yvalues.APPEND( sin(X) * π / 180 )   #add points for sine 
  Xvalues.APPEND( X ) 
   X += step 

ELSE IF type == “cosine”: 
 WHILE X < axes: 
  Yvalues.APPEND( cos(X) * π / 180 )   #add points for cos 
  Xvalues.APPEND( X ) 
   X += step 

ELSE type == “tangent”: 
 WHILE X < axes: 
  Y = ( tan(X) * π / 180 )    #calculate y point, but don’t add it yet 
   IF Y < axes and Y > -axes: 
    Yvalues.APPEND( Y )   #only add if its on axes, as tan goes to infinity 
   Xvalues.APPEND( X ) 
   ELSE: 
    PLOT( Xvalues , Yvalues )  #plot this much, then repeat 
    Xvalues = [ ] 
    Yvalues = [ ] 
   END IF 
   X += step 
END IF 

IF Xvalues AND Yvalues: 
  change_colour() 
 PLOT( Xvalues , Yvalues )    #plot sin or cos if user picked these 
END IF 



 

 20 

Draw point 

 
 

 

 

 

 
This is a simple algorithm that takes inputs for ‘x’ and ‘y’, validates them and then plots them. 

 

Draw complex point 

This is similar to the ‘draw point’ algorithm except I am plotting it on the complex plane.  
On the comple plane, ‘x’ and ‘y’ are refered to as ‘a’ and ‘b’. 

 

 

 

 

 

 

Perpendicular bisector 

 

 

 

 

 

 

 

 

 

 

 

This algorithm is using some simple math to calculate the perpendicular bisector from two inputted points. 
It then outputs this to the user and draws the function. 

INPUT x 
INPUT y 

x, y = check_vars(“point”, x, y) 

change_colour() 

PLOT( x ,  y ) 

INPUT a 
INPUT b 

a, b = check_vars(“point”, a, b) 

change_colour() 

PLOT( a ,  b ) 

INPUT a1 
INPUT b1 
INPUT a2 
INPUT b2 

a1, b1, a2, b2 = check_vars( “pBisector”, a1, b1, a2, b2 ) 

PLOT( [a1, a2] , [b1, b2] )      #plots the points, so clearer to see 

m = (b1 – b2) / (a1 – a2)      #calculate gradient 
m = -( (m)-1 )         #find perpendicular gradient 
mdptx = (a1 + a1) / 2       #find midpoint 
mdpty = (b1 + b2) / 2 

OUTPUT “y = “ + str( m ) + “x + ” + str( ( mdptx * m) + mdpty ) #ouput bisector equation 

change_colour() 

PLOT( lst_function( m , ( mdptx * m) + mdpty )  )   #draw function equation 



 

 21 

Mandelbrot set         #’MS’ = Mandelbrot set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In this algorithm, I am going through the loop, checking every coordinate to see whether it is ‘stable’ or not. 
I then plot this point in a specific colour. This is going to be very time consuming so I will probably have to 
optimise this code later on. Here I am also only using a red colour scheme, ‘MSredScalse’ but I hope to have 
more. A scheme is a 2D array wich contains every colour used and the iteration it should be used on. 

stable = FALSE 
colour_before = “ “ 
colour = “ “  
WHILE x <= ( axis - step ): 
 x += step             #x and y increments, to get every point 
 y = -axes 
 WHILE y <= axes: 
  y += step 
  Xscale = x / ( 0.5 * axes )  #makes it bigger as the MS is only between -2 → 2 
  Yscale = y / ( 0.5 * axes ) 
  answer = COMPLEX( 0 , 0 ) 
  FOR i IN RANGE( 0 , 100 ): 
   answer = ( answer2 + COMPLEX( Xscale , Yscale ) )          #MS sum 
   IF ( answer.real2 ) + (answer.imag2) >= 4:           #circle with radius of 2, stable? 
    stable = FALSE 
    IF INPUT == "red":           #user picks form colour scheme 
                                       FOR c IN RANGE( 0 , LENGTH( MBredScale ) ): 
                                           IF i > MSredScale[ c ][ 0 ]:           #picks colour gradient 
                                                colour = MBredScale[ c ][ 1 ] 
                                                BREAK 
       END IF 
      END FOR 
     END IF 
    BREAK 
    ELSE: 
    stable = TRUE 
    END IF 
   END FOR 
  IF stable == TRUE:                #if stable, colour black 
   colour = ‘black’ 
   END IF 
  IF colour_before != colour OR y >= axes: 
    PLOT( x , y , colour_before )    #plots points in that colour 
   colour_before = colour 
   END IF 

IF y >= axes:         
                        PLOT( ( x + step ) , -axes ) 
                      colour_before = " " 
  END IF 
END WHILE 

END WHILE 
 
    



 

 22 

Class Diagrams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Draw 

a: float 
b: float 
c: float 
d: float 
colour_index: float 
limit = integer 

Draw_polynomial 
Draw_circle 
Draw_point 
Draw regression line 
 

 Check_vars 

Limit: integer 

check_polynomial 
check_circle 
check_point 
check regression line 
 

Main 

Container: string 
filemenu: string 
menubar: string 
 __innit__ 
Show_frame  
 

Home_page  

Label: string 
button1: string 
button2: string 
button3: string 
 __innit__  
 

Graph_page   

Label: string 
button1: string 
button2: string 
button3: string 
 __innit__  
 

Complex_page   

Label: string 
button1: string 
button2: string 
button3: string 
 __innit__  
 

Draw_complex 

a: float 
b: float  
colour_index: float 
limit: integer 

Draw_complex_number  
Draw_mandelbrot_set 
 

 Graph_deails 

Graph: string 

Search_roots() 
Search_turningPoints() 
linear() 
quadratic() 
cubic() 

Help_page   

Label: string 
button1: string 
 
__innit__  
 



 

 23 

Variables and Justification 

Variable Data Type Justification 

Button String This valiable stores the the data that shows the 
buttons. I will reference this variabale whenever I need 
to change the appearance or position of a button. 

a, b, c, d Float These will store the inputs from the user, for eache 
part of the polynomial. I need a separate variable for 
each, to be able to perform calculations with each 
individual part. 

Colour_index Integer This is where I will store the value for the colour I will 
use to draw the next line on the axes. Each time I draw 
a line, I will increment this value so that each line is a 
different colour. 

Limit Integer Here I will store the size of the axes, in other words, 
the greatest value of X and Y (the limit). 
 

Graph String Stores the whole string that the user inputs when 
plotting a function. 
I will then process this variable to identify the values 
of the previous variables a, b, c and d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 24 

Test Data 

I have a lot of functions and objects to complete. I have made a list of milestones that I need to reach, to 
focus my programming and to help structure my coded solution in an organised manner: 

1. Creating the user interface 
2. Drawing functions  (Taking and validating an input and drawing the associated graph) 
3. Drawing circles 
4. Drawing points 
5. Drawing regression lines 
6. Displaying detailed information along with the ouputted plot 
7. Drawing the Mandelbrot set 

 Milestone 1: User Interface  

Test No. What is being tested and inputs Expected outputs 

1 That buttons do as they say. 
Test – Press them. 

Button performs as expected. 
e.g. links to the correct page. 

2 Text inputs work and reject unusable inputs. 
Test – Enter numbers, strings, 0, negatives. 

Usable input leads to associated response. 
Unusable inputs leads to popup message. 

3 Check-boxes perform as expected. 
Test – tick them, and untick them. 

The check-boxes should have the 
intended result. 

4 Scroll bars work as intended. 
Test – Scroll them. 

The scroll bars should have the intended 
result. 

 

 Milestone 2: Drawing functions  

Test No. What is being tested and inputs Expected outputs 

1 Test linear functions. 
e.g. 2x – 3 

The correct line should be displayed. 
e.g. gradient of 2 and y-interept of -3. 

2 Test quaratic functions. 
e.g. 2x^2 +3x -5 

The correct line should be plotted in the 
correct position on the axis. 

3 Test cubic functions 
e.g. x^3 +2x^2 +3x +5 

The correct line should be plotted in the 
correct position on the axis. 

4 Test the 3 previous functions but with negative 
coefficients.  

The correct line should be plotted in the 
correct position on the axis. 

5 Test the colour of the graph changes when a 
new function is plotted. 

The colours should cycle as different 
functions are plotted. 

6 Test limits of axis. 
e.g. make the y-intercept greater than or less 
than the axis. 

If the graph doesn’t fit on the axis, either 
display an error message or resize the axis 
and plot. 



 

 25 

 

 

 

 Milestone 3: Drawing circles  

Test No. What is being tested and inputs Expected output(s) 

1 Draw cicle at origin. 
e.g. radius = 10, centre X = 0, centre Y = 0. 

This should draw a circle at the origin with 
a radius of 10. 

2 Draw circles with a differrent centre. 
e.g. radius = 10, centre X = 2, centre Y = -5. 

This should draw a circle at this position 
with that radius. 

3 Test inputing negative radii. 
e.g. Radius = -23 

This should ouput a suitable error 
massage, as this is not possible to draw. 

4 Test axis limits.  
E.g. Input a centre off the axis. 

If the graph does not fit on the axis, 
display an error message. 

5 Test the colour of the graph changes when a 
new circle is plotted. 

The colours should cycle as different 
things are plotted. 

 Milestone 4: Drawing points  

Test No. What is being tested and input(s) Expected output(s) 

1 Draw a point. 
e.g x= 10, y =2 

This should draw a point at (10,2). 

2 Test negatives. 
e.g. x=-10, y-2 

This should draw a point at (-10,-2). 

4 Test point off the axes scale. 
e.g. x=200, y=1000 

This should display a suitable error 
message. 

5 Test inputting a string. 
e.g. “Hello” 

This should output a suitable error 
message. 

 Milestone 5: Regression line  

Test No. What is being tested and input(s) Expected output(s) 

1 Test what values can be inputted. 
e.g. x=10, y=5 

Programm should accept this input and 
ask the user for the next point. 

2 Test inputtig a string instead of an integer. 
e.g. “test” 

This should output a suitable error 
message. 

3 Test the correct regression line is outputted 
after at least 2 points have been inputted. 

The correct regression line should be 
outputted. 

4 Test point off the axes scale. 
e.g. x=200, y=1000 

This should show a suitable error message. 



 

 26 

 

 

 

 

 

 

 

 

 

 Milestone 6: Outputting data about graph 

Test No. What is being tested and input(s) Expected output(s) 

1 Test  if the outputted roots are correct for 
linear graphs. 
E.g. Input = 2x 

 
 
E.g. Output = 0 

2 Test  if the outputted roots are correct for 
quadratic graphs. 
E.g. Input =  (x+4)2 

 
 
E.g. Output = -4 

3 Test  if the outputted roots are correct for 
cubic graphs. 
E.g. Input = 5x3 +5x2 +5x + 5 

 
 
E.g. Output = -1 

4 Test  if the outputted roots are approximately 
correct for other graphs. 
E.g. Input = x7 - 2x3 + 2x – 2 

 
 
E.g. Output = ~1.158 

5 Test If the outputted turning points are corect. 
E.g. Input = 5x3 +5x2 +5x + 5 

 
E.g. Output = (0,5) 

6 Test if the outputted graph type is correct. 
E.g. Input = x3 + 3x2- 2 

 
E.g. Output = ‘Cubic’ 

7 Test that the colour of the graph changes. Every gragh should have a different colour 
to the one plotted before it. 

 Milestone 7: Mandelbrot Set  

Test No. What is being tested and input(s) Expected output(s) 

1 Test the plotted Mandelbrot set is acurate and 
to scale. 

Should be plotted on imaginary axis 
between 2 and -2. 

2 Test that the inputted colour scheme is 
correclty used. 

If the user selects the Red scheme, then 
the MS should be Red. 



 

 27 

Post-Development Testing 

I intend to perform alpha testing, checking my program works, in line with my success criteria. 

Beta testing will allow my stakeholders to offer their feedback and for me to make any small changes. I plan 
on providing them with a small feedback survey to fill out, once they have had the chance to use the app. 

I will also perform integration testing as laid out below. 

 

Post-development test Justification 

Test the program can open and close at the user’s 
discretion. 

This gives the user the freedom to use the 
application and gain some trust / control. 

Test that all the buttons work and navigate to the 
correct page or perform their associated task. 

This ensures the user can explore the application 
freely and that all the button functions can be used 
extensively and reliably.  

Test that the axes are to scale.  
Test plotting y = x. This should be at exactly 45. 
Circles plotted should be perfectly circular. 

It is essential that a graphing calculator is accurate 
and to scale, allowing the user to trust and use the 
application for important tasks. 

Test that infinitely long numbers cannot be 
inputted. 

This would be a problem as when labels are added 
to the graph, the number would obstruct the graph 
from being viewed. 

Test that the application window can be resized, 
but not too little that content is lost. 

This would be annoying for the user and therefore 
needs to be catered for. 

 

As well as testing, I intend to observe, where possible how people interact with my user interface. This will 
allow me to adjust subtleties that I am unable to pick up from my survey, improving my GUI further. 

 

 

 

 

 

 

 

 

 

 



 

 28 

Developing The Coded Solution 
 
Prototyping 

The first thing I am going to do, is create a prototype of my application. This will have simpler graphics and 
slower speeds but I am going to do this to make sure I can get all the math working first. I am going to 
write some ‘simple’ Python code using the ‘Turtle’ library that will be able to do all the functions I have 
described above. I will then use parts of this code to create my final product which will be of a higher 
quality and run faster. 

This effectively means creating each milestone twice. Once for the prototype (a), and once for the final 
product (b). I will do all the testing, verification and user feedback in version 2. 

For the prototype I am NOT using an object orientated approach and will be using the Python IDLE. That 
way it is easier to distinguish between code written for the prototype (code with white background) and 
code for the real application (written in Visual Studio Code with black background). 

 

Milestone 1a – User Interface 

For this prototype I am going to keep the interface simple as this is not what I need to test. I will create a 
simple ‘Turtle Canvas’ to draw graphs on and a simple input bar to perform tasks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 29 

This code makes produces a simple set of axes that I can now draw graphs on. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Milestone 2a – Drawing functions 

I now plan to get the ‘turtles’ to draw curves and graphs on the set of axes shown on the previous page. For 
the purpose of this prototype, I will only go up to cubic equations. So, the user can input function(s) with 
exponents up to and including cubic. This will be in the format ax3 + bx2 + cx + d, where a, b, c and d are 
the constants that the user will input. 

Here is the simple interface that I implemented to get these inputs. 

Now that I have the function to draw, I need to draw it. 
I thought of a couple of different ways of doing this: 
- I could scan the x axis, substituting in every x value into the function,  
to find the y value, then plot this. 
- I could do the same thing as the point above, but to increase  
resolution, differentiate the function, find the gradient at this x value,  
and draw a small line, at this gradient, between the previous x value and 
the next. 
- I could do the same thing but scan the y axis instead of the x axis. However, this will often output two 
results, for example if there is a ‘U’ shaped curve, so this will involve two plots. 

I went with my first option as it was the easiest to implement and the resolution could be increased by 
decreasing the step at which I scan the x axis (however, this increases the time taken to draw it). 



 

 30 

I implemented each method, but you were unable tell them apart, so I chose based on complexity. 
 

 

 

 

This code follows my pseudo code algorithm, with these adaptations which make it work in reality: 
- ‘tim’ and ‘tom’ are the ‘turtles’ that draw the graph.  
To make it quicker I used two ‘turtles’ that draw half the graph each.  
- ‘step’ is the rate at which they scan the x axis. E.g.     (step =1) 1 → 2 → 3      (step = 0.2) 1 → 1.2 → 1.4 
- ‘Axis’ is the size of the axes; in this case it is = 200. 
- ‘.xcor()’ / ‘.ycor()’ is a built-in function that returns the ‘turtles’ position. 

The results:  

 
 

 

 

 

 

 

 

 

 

 

Milestone 3a – Drawing circles 

This is the code that I wrote to calculate all the points on the inputted circle. 

 

 

 

 

 

 

 

 

This works just as the pseudo 
code does. 
 
‘cx’ and ‘cy’ refer to the centre 
coordinates of the circle (centre X 
and centre Y) and ‘r’ refers to the 
radius; these are all inputs of the 
user. 



 

 31 

These is one difference to the pseudo code though. I ended up using the ‘try’ and ‘except’ instructions. This 
is because I wanted to avoid errors being thrown up when trying to square root negatives. 

I also found that this code was very slow as it iterates over the whole axes twice. To improve this, I scanned 
the axis once, to draw the top half of the circle and recorded the first and last values of x used. I then used 
this to draw the rest of the circle, just between these two recorded points. Here is the updated code: 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

But I then thought of a more efficient way. I realised I could use the inputs from the user to set the limits. 
Here is the final code: 

 

 

 

 

 

 

 

 

 

 

 

 



 

 32 

The output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 33 

Milestone 4a - Drawing points 

This was simple to implement.  

 

 

 

 
I set “tim’s” position to ‘y-2’ because I am using the built-in function to draw these small circles to represent 
points. When I do this, with the circle having a radius of 2, it starts drawing the circle 2 units below the 
circle’s centre, which is the position of the point I am trying to represent. I then counter this by drawing the 
circle 2 units below the actual inputted position. 

I can then also give these points labels, by doing this:  

 

 

 

 

 

 
Here I am writing the points position above the point so that the user can accurately see the point’s 
position. However, I found that when the points were too close to the axes and the labels overlapped and 
were hard to read. I solved this by using the main ‘If’ statement above to decide where to write the label, 
depending on how close the point was to the axes.  

The other ‘if’ statements after this, round up the inputted number (if it is a large decimal). This prevents the 
user from covering the whole axes with one long label. These subtle changes made the GUI display cleaner. 

The results: 

 

 

 

 

 

 

 

 

 

 

Points near axis 
don’t show labels 



 

 34 

Milestone 5a – Drawing the regression line 

I drew this using the ‘draw polynomial’ function I created for milestone 2a. The more challenging part is that 
I must mathematically create the function of the line to be plotted, rather than just use the inputted one.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The first half of this (lines: 581 - 596) calculates the equation of the ‘regression line ‘and the other half 
validates and plots it. To test if the output was correct I would compare it with the results that my real 
physical calculator outputs and check they were the same. 

The second half checks that this line I have calculated, fits on the axes and sets the “turtles’’’ to their 
designated positions to start drawing the line. 

Finally, on the last line (610), I use the polynomial function I created before. This takes two parameters, the 
step which is set to 1 in this case, and a Boolean variable on whether the line to be drawn should be 
dashed.  

I am also using the ‘Draw points’ function to show all the inputted points. 

Results: 

 
 
 
 
 
 
 
 
 
 
 
 

I inputted the points, and it drew this line, 
the line of best fit. 

 

It also outputted the equation of this line. 



 

 35 

Milestone 6a – Graph details: 

When the polynomial function is called, I also want to output the 
‘graph details’.  

First I need to find what type of graph it is. The inputs being a, b, c, 
and d, in the form ax3 + bx2 + cx + d. By looking at which if these 
variables are 0, I can decide what type of graph it is.  
For example, 
if a = 0, I know it cannot be cubic. 

Next, I need to find the roots. So, to simplify things, I created a 
class called ‘Roots()’ where I will use this code to calculate the 
roots, depending on what type of graph it is. I have created three 
functions for the three types of equation linear, 
quadratic and cubic. In each function I calculate the roots and 
return them. I underestimated how long it would take to get this complex math working.  
 
 
 
 
 
 

 
 
 
 

Next, I needed to find the turning points (if any) of the curves that were drawn.  
To do this I use the math explained in the ‘Prior knowledge section’. 
 
 
 
 
 
 
 
 

The results: 
 

 

 

 

 

graph type 
input 
turning point 

roots 

              graph 



 

 36 

Milestone 7a – The Mandelbrot Set:  

Following the algorithm I found online, I attempted to create the image of the Mandelbrot set. 
These were my first attempts: 
 
 
 
 
 
 
 
 
 
 
Whilst these were failures, I learnt a lot, especially about ‘optimisation’ as I started by drawing this one pixel 
at a time and they were taking hours to render (using the same ‘turtle’ library). I reduced this time by using:   
- Run Length Encoding (RLE). 
- The fact that the shape I was making was symmetrical, meant I could halve the number of calculations. 
- A circle around the shape, not a full square, also reduced the number of calculations required. 
After a lot of trial and error, I discovered that Python was able to deal with complex numbers.  
So, when I changed my variables to imaginary ones I was able to get it working. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of complex variable types 

2 colour schemes 

Circle equation for circular shape 

Only moves ‘turtle’ if colour has changed (RLE) 



 

 37 

The results: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As the images above show, I was finally able to produce clear, colourful, beautifully-detailed MS plots. 

 

 

 

 
Finished prototype: 

After weeks of work, I have now completed all the milestones that I set, in the prototype. I have manged to 
get all the math working using Python, with mostly just functions (not object orientated yet). 

I have received some positive feedback from other students and my client. They like the functions and 
capability of my program so far but they think it is perhaps a bit too slow. This is something to consider and 
try to rectify in the next iteration.  

I will now re-do the seven milestones with the following changes: 
- Include validation and testing 
- Consider the feedback and try and make my program more efficient and quicker 
- Start using VS code for editing my code rather than the Python IDLE (which I have used up till now) 
- Stop using ‘turtles’ and start using ‘matplotlib’ and ‘Tkinter’ 
- Write an object orientated program as I designed and planned to implement. 

 

 

 

 

 



 

 38 

Milestone 1b – User Interface: 
I will now design the real user interface as I planned. This should be easier to follow and understand.  

 

 

 

 

 

 

 

 

 
Here is the code I wrote to show the start page. As you can see, I have created a class called ‘StartPage’ so 
that I can reuse this code whenever the user selects this page. You can also see the list of labels and buttons 
that I have made that make up this page, as well as the tool bar at the bottom that will allow the user to 
manipulate the graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here you can see the new layout – I have changed the design slightly to have split screens. This separates 
the axes and the input page. This feature allows the user to present their graphs independently of the 
controls, for example teachers could show the axes on the board while having the controls on their 
computer.  



 

 39 

When I spoke to my Math teacher, she liked this feature and thought it was a good idea. She also stated the 
interface “looked friendly” and “more simple to use” than the traditional graphical calculator.  
All the feedback was very positive and the testing I did went smoothly, I have not had to modify anything 
with the GU interface yet, which reflects all the thoughts I had successfully implemented. 

 

Milestone 2b – Drawing functions: 

Using the math I got working in my prototype, I now need to plot graphs on this new interface. This works 
differently to ‘Turtles’. I now need to generate a list of X and Y points to plot. 

Here I found an alternative  
solution.  
‘graph_copy’ refers to the 
function that the user 
inputted  
e.g. ‘3x2+2x’.  
I replace ‘x’ with the variable 
‘nx’ e.g. ‘3nx2+2nx.  
Then, on each iteration I 
‘evaluate’ the equation (the 
inputted string) with an 
incremented number of ‘nx’ 
e.g. nx = 0 → 3*02+2*0. Then nx = 1 → 3*12+2*1. 
On each iteration, I check the calculated value fits on the axis and then add it to the x / y list of points to 
plot. The reason I have changed this code from the original is because I found this to be more efficient and 
more importantly, it allows the user to input any type of function, not just linear, quadratic or cubic. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 40 

Here you can see how I have set up the user interface to allow the user to input functions. And you can also 
see the labels and colour coordinated graphs. This is much faster than ‘turtles’ and makes the inputting far 
more user-friendly. 

I fully tested this feature against the test table I created earlier, verifying that all these sections work.  
This includes negatives, ranges, colour changing etc… As shown above. 

After talking to my peers, they were impressed with the increased speed compared to my prototype.  
“It was able to plot lines much faster” they said, “this makes it much easier to use”. 

There was one improvement, suggested by my teacher. That was to add a ‘Edit last plot’ button that allows 
you edit the last thing you plotted; in case you made a mistake. To achieve this, I made a global list that 
stores all the points of everything plotted on the graph. Then, if the user would like to undo or edit 
something, I am able to remove the last item from this list and add the edited function. 

So now we have this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By adding this line of code to the end of the ‘draw’ function, I 
am adding the plot to my global ‘storage’ list, which I can refer 
to if the user wants to edit something. 



 

 41 

Milestone 3b – Drawing Circles 

Similarly, the math is all be the same as the prototype, it is just the new interface that I had to get working, 
as demonstrated here.  

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
As you can see, I have issues that I have encountered when the circle crosses the boundary of the axis. This 
is down to the way I plot the circles by storing points. Lines are drawn between the points I calculate, to 
create one flowing shape. When I start drawing points from the left-hand side of the circle, if the circle goes 
off the bottom, the points are just joined up to create a flat edge but if the circle goes off the left edge, it 
forms a gap as this is the last point calculated (as shown above).   

While testing, I realised I needed to add validation checking to the user inputs, so that my program would 
not crash if the user put a character in. For this I created 
another class for checking and I created functions for all 
the drawing tools that required inputs validating.  

The first thing I check for, is to see if the 
three inputs are floats or strings (radius, 
centre X and Centre Y).  
I then check to see if the radius is greater 
than 0. 
Finally, I check if the radius is less than the 
size of the graph.  
If any of these fail, I display an error 
message. 



 

 42 

Milestone 4b – Drawing Points: 

The only real change I have made that is different to the prototype, for drawing points, is the fact that the 
labels for the corresponding points are no longer on the graph but are displayed above instead.  
This means that the labels are no longer obstructing the user’s view of other things on the graph.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fully tested now, this part of my program and has had no issues. Similarly, with all the other parts of my 
program, when the user types in something wrong, my program outputs an appropriate error message. 
 
 
 
 
 
 

 

 

 

 

 

 

 



 

 43 

Milestone 5b – Regression line: 

The most significant modification for the regression line, from my prototype version, is the user interface. I 
added a table with an ‘undo’ button to make everything look and feel both updated yet consistent. Plus, I 
added a check box for the regression line. If the user just wants a scatter graph, they can untick this box.  

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is how I added the table within the UI.  
Using the built-in ‘treeview’ function of ‘Tkinter’ I was able to create headings and columns. 

 
 
 

 

 
 
 
 
I was then able to get the buttons working by using these commands that add and remove items, 
retrospectively,  from that table. 
 
 
 
My stakeholder was very impressed and certainly preferred this over the previous version.  
She found it a lot easier to use and more aesthetically pleasing. 



 

 44 

Milestone 6b – Graph details: 

Here, using the same math, I have 
improved the UI with this new, colour 
coordinated, pop-up. This shows all 
the necessary details as planned. 
 
 
 
 
 
 

 

 
 

This was very challenging to complete. Before, the user inputted each variable separately (a=2 then b=6 
then c=0 for example). Now, the user inputs the whole equation in one go, in any format (for example ax^2 
+ 3 – 3x). This makes the GUI very simple and easy to use but behind the scenes it is now my program that 
must understand and organise the variables before performing any mathematics. 

To do this I first split this into its individual variables (no matter the spacing) and store this in a list.  
I also put in place brackets and make sure that squares are in the right format (^ should be **).  
As demonstrated below: 

Input = 0.5x^2 -3x+1  →  Output =        - Part 1 

I then continue, working on each element of the list separately, I extract all the numerical characters left of 
the left bracket of ‘x’. For example:   0.5*(x)**2   →   0.5. 
Now I would know that b = 0.5.         - Part 2 

There is not enough space here to show all the code (lines 2249 – 2344 or graph_details.details() ), so here is 
a snippet from part 2: 

This is just the ‘IF’ statement for the ‘b’ value or quadratic value, altogether that are four of these, for the 
four separate values I must find: a, b, c and d. 

 

 

 

 

‘abcd’ is an array that holds the output shown in part 1. ‘temp1’ is a temporary variable that holds the 
position of any ‘**’ within the string:  

I then set the value of ‘b’ equal to any values before that left bracket position (line 2300), if they are 
numerical or a decimal point (line 2299). Finally, if ‘b’ has no visible value, I set it to equal 1 (line 2301) and if 
it was originally negative I add that too (line 2304). Now that I have this value (and 3 others) I can calculate 
the roots, intercepts etc … to display. 



 

 45 

Milestone 7b – Mandelbrot Set: 

The only modification here, is that I have given the user the option to change the resolution or line width of 
the Mandelbrot set that they want to draw. Smaller resolutions can take a while to render (~10mins).  

 

Slider: step = 0.1, min = 0.1, max =3. 

Tick boxes: 2 options (only 1 can be selected at a time) 

Draw axes tick box 

Draw / Back buttons 

Progress bar 

 

 

 

 

To add the progress bar, I added this line of code to the Mandelbrot set function: 

progress['value'] = (((X+limit)/(2*limit))*100) 

This is just a ratio of how far the algorithm has been completed versus how much is left to process. 

 
Testing: 
 

 
 

 

 

 

 

 

 
Line width 0.2    Line width 0.4, with axes  Line width 3 

As shown, I have also switched operating systems, from Windows to Mac, as I got a new laptop. 

User feedback was great on this; so much so, Mrs Evans printed it off to display in her classroom. 

There are additions I can think to add to this page but I have chosen to prioritise other mathematical 
functions as drawing the Mandelbrot set is not a graphical calculator’s most important function. 
Improvements could include zooming, adding more colours, personalised colours and zooming in on a 
specific point. 



 

 46 

Extra Features: 

With extra effort, I decided to add these features, some of which I mentioned at the start: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Simultaneous equation plotter 
- Simultaneous equation solver linear 

and quadratic 
- Wave drawer 
- Bar graphs 
- Complex numbers, points and vectors 
- Complex circles 
- Complex half line 
- Complex perpendicular bisector 
- Calculator 

- Equations page 
- Statistics page 
- Cumulative frequency graphs 
- Box plots 
- Maths/Physics constants page 
- SUVAT equations solver 
- Sorting algorithms 
- Stop-watch 
- Sketch page 

 



 

 47 

I learned a lot developing these features. For example, I learned how to introduce threading into my 
program (which enabled me to get the stopwatch working accurately), how to import images into ’Tkinter’ 
interfaces, how to convert unknown decimals to fractions and much, much more… 

I also experimented with improving the Mandelbrot set. I tried using C++ and ‘shaders’ to improve the 
speed required to process the images. This did work but I wasn’t able to get this working within the existing 
application and they were incompatible. I did however, get it working in a separate test application and 
these are some of the results: 

https://youtu.be/8L85te7QoQs 

 

 

 

 

 

 

 

I also experimented with three dimensions but had the same problems with compatibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 48 

Evaluation 
 

Alpha Testing  

Test video link: https://drive.google.com/file/d/1sXi_xzA1Yn_lLsNWnUh5s4xHzxBSLU68/view?usp=sharing 

 Milestone 1: User interface 

Test 
No. 

What is being tested and inputs Expected output(s) Time 
stamp 

Pass 
/ Fail 

1 That buttons do as they say. 
Test – Press them. 

The button performed as expected 
e.g. links to the correct page. 

0:55 Pass 

2 Text inputs work and reject unusable 
inputs. 
Test – Enter text, try numbers, letters, 
strings, 0, negative numbers. 

When correct data type entered, the 
assosiated reaction should occur. If 
unwanted data inputted, an error 
message is displayed. 

1:55 Pass 

3 Check-boxes work. 
Test – tick them, and untick them. 

The check-boxes should have the 
intended result. 

2:42 Pass 

4 Scroll bars work as intended. 
Test – Scroll them. 

The scroll bars should have the 
intended result.  

N/A N/A 

 

 Milestone 2: Drawing polynomials 

Test 
No. 

What is being tested and inputs Expected output(s) Time 
stamp 

Pass 
/ Fail 

1 Test linear functions. 
e.g. 2x - 3 

The correct line should be plotted. 
e.g. gradient of 2 and y-interept of -3. 

3:20 Pass 

2 Test quaratic functions. 
e.g. 2x^2 +3x -5 

The correct line should be plotted on 
the correct posistion on the axis. 

3:55 Pass 

3 Test cubic functions 
e.g. x^3 +2x^2 +3x +5 

The correct line should be plotted on 
the correct posistion on the axis. 

4:48 Pass 

4 Test the 3 previus functions but with 
negative coefficents. 

The correct line should be plotted on 
the correct posistion on the axis. 

5:12 Pass 

5 Test the colour of the graph changes 
when a new function is plotted. 

The colours should cycle as different 
functions are plotted, so the user can 
distinguish between them.  

6:10 Pass 

6 Test limits of axis. 
e.g. make the y-intercept greater than 
or less than the axis. 

If the graph doesn’t fit on the axis, 
either display an error message or 
resize the axis and plot. 

6:22 Pass 

https://drive.google.com/file/d/1sXi_xzA1Yn_lLsNWnUh5s4xHzxBSLU68/view?usp=sharing


 

 49 

 

 

 

 

 

 Milestone 3: Drawing circles  

Test 
No. 

What is being tested and inputs Expected output(s) Time 
Stamp 

Pass 
/ Fail 

1 Draw circle at origin. 
e.g. radius = 10, centreX = 0, centreY 
= 0. 

Draw a circle at the origin with a radius 
of 10. 

7:20 Pass 

2 Draw circles with a different centre. 
e.g. radius = 10, centreX = 2, centreY 
= -5. 

Draw a circle at this position with that 
radius. 

7:31 Pass 

3 Test inputing negative radii. 
e.g. Radius = -23 

Ouput a suitable error message as this 
is not possible to draw. 

7:46 Pass 

4 Test axis limits.  
E.g. Input a centre off the axis. 

If the graph does not fit on the axis, 
either display an error message or 
resize the axis and then plot. 

8:00 Fail 

5 Test the colour of the graph changes 
when a new circle is plotted. 

The colours should cycle as different 
things are plotted, so the user can 
distinguish between them.  

8:35 Pass 

 Milestone 4: Drawing points 

Test 
No. 

What is being tested and inputs Expected output(s) Time 
Stamp 

Pass 
/ Fail 

1 Draw a point. 
e.g x= 10, y =2 

Draw a point at (10,2). 8:45 Pass 

2 Test negatives. 
e.g. x=-10, y-2 

Draw a point at (-10,-2). 9:12 Pass 

3 Test mixture of both negatives and 
positives. 
e.g. x=10, y=-2 

Draw a point at (10, -2). 9:00 Pass 

4 Test point off the axes scale. 
e.g. x=200, y=1000 

Display suitable error message. 9:20 Pass 

5 Test inputting a string. 
e.g. “Hello” 

Display a suitable error message. 9:29 Pass 



 

 50 

 

 

 Milestone 5: Regression line 

Test 
No. 

What is being tested and inputs Expected output(s) Time 
Stamp 

Pass 
/ Fail 

1 Test what values can be inputted. 
e.g. x=10, y=5 

Program should accept this input 
and ask the user for the next point. 

9:55 Pass 

2 Test inputtig a string instead of an integer. 
e.g. “test” 

Display a suitable error message. 10:04 Pass 

3 Test the correct regression line is outputted 
after at least 2 points have been inputted. 

The correct regression line should 
be outputted. 

10:45 Pass 

4 Test point off the axes scale. 
e.g. x=200, y=1000 

Display a suitable error message. 10:30 Pass 

 Milestone 6: Outputting data about graph 

Test 
No. 

What is being tested and inputs Expected output(s) Time 
Stamp 

Pass 
/ Fail 

1 Test  if the outputted roots are correct for 
linear graphs. 
E.g. Input = 2x 

 

E.g. Output = 0 

11:10 Pass 

2 Test  if the outputted roots are correct for 
quadratic graphs. 
E.g. Input =  (x+4)2 

 

E.g. Output = -4 

11:25 Pass 

3 Test  if the outputted roots are correct for 
cubic graphs. 
E.g. Input = 5x3 +5x2 +5x + 5 

 

E.g. Output = -1 

11:42 Pass 

4 Test  if the outputted roots are 
approximately correct for other graphs. 
E.g. Input = x7 - 2x3 + 2x – 2 

 

E.g. Output = ~1.158 

12:30 Pass 

5 Test If the outputted turning points are 
corect. 
E.g. Input = 5x3 +5x2 +5x + 5 

 

E.g. Output = (0,5) 

13:37 Fail 

6 Test if the outputted graph type is correct. 
E.g. Input = x3 + 3x2- 2 

 

E.g. Output = ‘Cubic’ 

14:43 Pass 

7 Test that the colour of the graph changes. Every gragh should have a 
different colour to the one 
plotted before it. 

15:15 Pass 



 

 51 

 

Out of all these tests, I only encountered 2 small errors.  

As a result, I have had the chance to go back and fix them.  

 

Beta Testing 

I presented the final application to my 
stakeholder to get her feedback: My math 
teacher was impressed. She said, “This 
would be a great tool to use in lessons” and 
“Even my calculator doesn’t solve SUVAT 
equations for me!”. 

As a result, I would say that this application 
is at a stage where it would be ready to ship 
and make public. After following an agile 
development path of constantly developing, 
validating and adjusting I feel the process 
was successful. 

 

 

 

 

 

 

 

 

 

 

 

 Milestone 7: Mandelbrot Set 

Test 
No. 

What is being tested and inputs Expected output(s) Time 
Stamp 

Pass 
/ Fail 

1 Test the plotted Mandelbrot Set is 
acurate, to scale. 

Should be plotted on imaginary axis 
between 2 and -2. 

15:36 Pass 

2 Test that the inputted colour scheme 
is correclty used. 

If the user selects the red scheme. The 
MS should be red. 

15:55 Pass 



 

 52 

As well as my teacher helping to test my application, I enlisted the help of other students.  
 
 

 

 

 

 

 

 

 

 

 
 
They suggested small modification for things like 
the button sizes and the colours I had used.  
 
Whilst the application was working well at this 
point, these little suggestions helped the 
application feel and look better, increasing the 
aesthetics of my design.  

Having other students test my application was also 
great as I got feedback from a different 
perspective. These students found my application 
best for helping with homework, rather than for 
use in lessons. They loved the range of functions it 
had, but used the ‘functions’ button most, to solve 
quadratics. 

 

Using other students as my test bed, allowed me to iron out lots of irritations and small errors before 
testing commenced with my stakeholder – my math teacher. 
 
Her time was more precious and so I could ensure that my app was working well before she sat down to 
test it out. 

 

 

 



 

 53 

Product Review 

The product is now finished, all the code is written and is working as specified. All the original features are 
fully tested and many extra features have been added along the way.  

Listed below are the success criteria as stated at the beginning and whether these criteria were met. 

No. Criteria Achieved? Evaluation 

1 Have 5 functions allowing the user to 
freely select the graphing function they 
would like to perform. This should 
include as a minimum: polynomials, 
circles, regression lines and complex 
numbers. 

 
 

Fully met 

This was achieved and exceeded. Users 
can draw functions, circles, regression 
lines, scatter graphs, bar charts, 
cumulative frequency graphs and all the 
above on the complex plane. 

2 The user can input graph functions to be 
processed. 

 
Fully met 

This was completed. Users are easily able 
to type in whatever graph they would like 
to see. 

3 The user can clearly see the graph they 
inputted on the screen and be able to 
make necessary observations form it.  
This can include the ability to 
manipulate the graph by zooming and 
moving it around the screen. 

 

 
Fully met 

See test video.  
User has a clear view of everything that 
they choose to draw.  
There was also evidence of being able to 
move the graph around and zoom in to 
specific areas. 

4 The user should be able to clear the set 
of axes. 

 

Fully met 

This was also demonstrated in the test 
video many times before moving on to 
testing the next milestone.  

5 Allow the user to plot up to cubic 
functions. 

 
Fully met 

This was certainly exceeded.  
The user can plot any type of function 
they wish, not just polynomials (infinite). 

6 The program should output data about 
the inputted graph, including roots, 
turning points and intersections.  

 

Fully met 

This was met.  
Although in testing I came across some 
small issues, these have since been fixed. 

7 The program must recognise and alert 
the user when the user has inputted 
something that is invalid. 

 

Fully met 

Again, this has also been met.  
I came across some small things to clear 
up in the test video but everything is 
working now. 

8 The user must be able to distinguish 
between different graphs drawn on the 
same axis, by colour coordination and/or 
labelling. 

 

Fully met 

This was fully achieved.  
There are clear colours differentiating the 
different lines and correspond labels. 



 

 54 

9 There should be a calculator within the 
application to allow the user to perform 
quick calculations. 

 
Fully met 

This exists are works perfectly. 

10 Functions should be plotted with a  high 
enough resolution and that 
approximated answers are accurate to at 
least two decimal places. 

 
Fully met 

This is done. Lines are smooth and the 
user can zoom in infinitely to make 
accurate observations about the graph. 

11 The user should have the option to draw 
functions on the imaginary plane or 
Argand diagram. 

 
Not Met 

While the user can draw circles, points 
and bisectors on the imaginary plane, 
they cannot draw functions. My 
curriculum did not include drawing these. 

12 The user should have the ability to quit 
the program whenever they wish to. 

Fully met This was achieved, using the red cross in 
the corner & button in drop down menu. 

 

 

Throughout the project, I made sure to upload 
all my code to a personal GitHub repository so 
that I had a backup of my code.  

This helped when I made a mistake, as I had a 
previous version to fall back on. It was also a 
tidy way of keeping track and keeping a log of 
everything I did.  

 

 
 
 
 
 
 
 
 
 

 
 

 

 



 

 55 

 
Usability 

As a PC application, this calculator works well and is easy to navigate with a mouse. However, I do not 
believe this would work as well as a mobile application. If I was to consider releasing this as a mobile app I 
would certainly think about adjusting the window size and making the buttons more accessible for touch 
pad usage, as that is not what it was optimised for. 

In conclusion, this application was designed to be a PC app that teachers can use in the classroom and that 
students could use at home and I believe that it has delivered on these aspects.  

 

Limitations 

Mathematics is a complicated subject covering many complex topics. For a calculator to cover everything, 
would be almost impossible, so I tried to include functions that I knew my audience & stakeholder would 
find useful for specifically resolving ‘A level’ problems. 

I could have added more complex functions, for example, my app could integrate functions or it could allow 
the user to write Python directly into it, allowing you to perform statistical analysis, but I had to be realistic 
with my given time frame. It was important that I remained focused on ensuring that my app met the needs 
of the average student or teacher as my success criteria dictated, without becoming over-complicated. 

Physical limitations: The application only requires a computer with a  mouse, keyboard and monitor.  

Software limitations:  Currently, I can only export it as a windows executable but in the future I hope to get 
this working for Mac too. The application is not very intensive to run, so doesn’t require specialist 
components but higher performance computers would help when rendering the Mandelbrot Set as this is a 
memory intensive task. 

 

The Future of My Application 

If I had more time, or in future revisions or updates, there are a few things I would add and improve. 
Extending my program into three dimensions is something that I wanted to try. I did try experimenting with 
3D using ‘OpenGL’ however, I was unable to get this functioning as it was not compatible with my existing 
code.  

For practicality, I would like to consider making this into a mobile application or a web application. I feel this 
would make my program more accessible and obviously portable. It would allow students to use my 
program on any device, not just limited to Windows computers. This may involve creating a web server to 
host my program and making a web page that is compatible with my existing code, that would allow clients 
to run and use the application online. 

Obviously, there are endless mathematical functions to add. As I learn more at school, I find myself wanting 
to add more features that will help with the work I am currently completing. However, this would be a 
never-ending task, so I need to keep in mind what the average student would find useful and keep focused 
on these features. 

 



 

 56 

Conclusion 

After months of work, weeks of programming and hours of research, I believe that I have met my specified 
criteria and succeeded in producing an application that is both capable and user-friendly (Over 3000 lines 
of code!). 

I went well beyond my initial specification, adding loads of extra, unique and useful features, to create a 
fully functioning graphing calculator that is more than capable of helping both students and teachers 
perform calculations and plot graphs.  

I have personally been using this application in math lessons to help solve SUVAT equations and to plot 
graphs in my physics classes. It is particularly useful in physics as I can use the built-in stopwatch to time an 
experiment and record data. I can then plot this data and calculate the regression line to find the gradient 
which may be the result needed for the experiment. 

My stakeholder was very impressed that I had met and exceeded her expectations in the allotted time 
frame. She complemented me on the vast functionality and yet simplicity of the application.  
She has subsequently used it to generate print offs of the Mandelbrot Set to display in her classroom. 

Many students have tried it out and I can conclude that the application is functional and fun, yet also both 
simple and practical to use. This leads me to conclude it has been very successful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The app in use, in the classroom 8/4/22. 



 

 57 

References 

Mathologer (2019) ‘500 years of NOT teaching THE CUBIC FORMULA. What is it they think you can't 
handle?’, August 24th. Available at: https://youtu.be/N-KXStupwsc. 

 

TLMaths (2015) ‘AQA Statistics 1 7.02 Introducing Linear Regression Part 2’, May 24th.  
Available at: https://youtu.be/MVJv01xr9lM. 

 

Numberpile (2015) ‘The Mandelbrot Set – Numberpile’, July 25th.  
Available at: https://youtu.be/NGMRB4O922I. 

 

Sentdex (2014) ‘How to add a Matplotlib Graph to Tkinter Window in Python 3 - Tkinter tutorial Python 3.4 
p. 6’, November 13th. Available at: https://youtu.be/Zw6M-BnAPP0. 
 

Palopha (2020) ‘disable matplotlib toolbar’, April 20th.  
Available at: https://stackoverflow.com/questions/13942956/disable-matplotlib-toolbar. 

https://youtu.be/N-KXStupwsc
https://youtu.be/MVJv01xr9lM
https://youtu.be/NGMRB4O922I
https://youtu.be/Zw6M-BnAPP0

	Research
	Prior knowledge needed
	Existing programs
	Stakeholder and user needs
	My ideas

	Features for the Proposed Solution
	Limitations
	Computational Methods
	Hardware and Software Requirements
	Success Criteria
	Structure Diagram
	Interface design
	Validation of inputs
	Pseudocode
	Draw function
	Draw circle
	Draw regression line
	Draw wave
	Draw point
	Draw complex point
	Perpendicular bisector
	Mandelbrot set         #’MS’ = Mandelbrot set

	Class Diagrams
	Variables and Justification
	Test Data
	Post-Development Testing
	Prototyping
	Milestone 1a – User Interface
	Milestone 2a – Drawing functions
	Milestone 3a – Drawing circles
	Milestone 4a - Drawing points
	Milestone 5a – Drawing the regression line
	Milestone 6a – Graph details:
	Milestone 7a – The Mandelbrot Set:
	Finished prototype:
	Milestone 2b – Drawing functions:
	Milestone 3b – Drawing Circles
	Milestone 4b – Drawing Points:
	Milestone 5b – Regression line:
	Milestone 6b – Graph details:
	Milestone 7b – Mandelbrot Set:
	Extra Features:

	Alpha Testing
	Beta Testing
	Product Review
	Usability
	Limitations
	The Future of My Application
	If I had more time, or in future revisions or updates, there are a few things I would add and improve. Extending my program into three dimensions is something that I wanted to try. I did try experimenting with 3D using ‘OpenGL’ however, I was unable t...
	Conclusion
	References
	Sentdex (2014) ‘How to add a Matplotlib Graph to Tkinter Window in Python 3 - Tkinter tutorial Python 3.4 p. 6’, November 13th. Available at: https://youtu.be/Zw6M-BnAPP0.

