
Phala Network Demand-End To-
kenomic Design
Samuel Häfner
samuelhaefner.github.io
samuel.haefner@gmail.com

December 22, 2021

This proposal discusses a pricing mechanism for the
Phala network, as requested in RFP #2. The RFP asks
for a pricing model on the demand side; i.e., to sketch
how PHA could be employed to allocate scarce com-
puting resources among the smart contract users.1

1 The General Idea

The demand side of Phala can be broadly described as
follows. There are individual userswho want to employ
apps to run certain computations. An app consists of
a multitude of related smart contracts together with a
front-end. Apps are deployed by developers who might
themselves want to make use of them.

The general idea to allocate the network’s comput-
ing power is to use an app-centered approach with two
layers. The first layer allocates the network’s comput-
ing resources among the different apps. On the second
layer, the apps distribute their computing power among
their respective users.

Specifically, users are allowed to stake PHA into the
apps of their choice. The network then allocates the
computing resources among the apps according to their
shares of the total amount of staked PHAs.For the sec-
ond layer, this proposal suggests different mechanisms
that could be used by the apps. The apps are free to
employ these mechanisms or to develop their own so-
lutions. In any case, the mechanism on the second
layer should ensure that first-layer stakers earn some

1The supply of computing resources is remunerated through a
miner subsidy mechanism, which is already established and well de-
scribed. The basic idea is to steadily remunerate miners for being in
the network, where miners can choose payouts at any time. Possible
payouts depend on a miner-specific value promise that grows over
time according to a pre-defined formula, which takes computing
power into account. Miners have to stake PHA when registering.

revenue from their investment.

1.1 First Layer: Allocating Resources
among the Apps

The number of resources allocated to the app depends
on how much PHA the developers stake. In particular,
if the total computing power in the network is P , there
are n different apps, and app i ∈ {1, ..., n} stakes an
amount si, then the amount Pi of computing power
reserved for app i is2

Pi =
si∑n
j=1 sj

P.

Staking happens through a crowdfunding module
to which all PHA holders can contribute. The mod-
ule might have a cap on the total stake, which the
developer can dynamically adjust. An app can remain
funded forever, but users can take out their stakes at
any time (possibly subject to an unbonding period).
This ensures that once users stop wanting to use the
app or deem the app as not staking-worthy, then there
won’t be any resources reserved for the app anymore,
either.

Apps will also be given the possibility to issue their
own designated app token (ATO). In that case, the
crowdfunding module issues ATOs to the contributors
at a one-to-one PHA–ATO ratio. At any point in time,
the staked PHA can be redeemed by transferring back
the same amount of ATO. ATOs are exclusive to an
app. They can be used to consume an app’s computing

2Technically, the computing power that an app receives will be
converted into a specific budget of CPUs that an app can claim. The
apps can then choose which miners to use (potentially in order of
their stakes), upon which their smart contracts are loaded in the
respective secure enclaves.

1

https:\samuelhaefner.github.io
mailto:samuel.haefner@gmail.com
https://github.com/Phala-Network/bounty-program/issues/2
https://wiki.phala.network/en-us/docs/tokenomic/
https://wiki.phala.network/en-us/docs/tokenomic/


Phala Network Demand-End Tokenomic Design

resources and possibly allow participating in an app’s
governance. I envision that larger apps might want to
have their own ATO both for community building and
to decentralize decision-making.

1.2 Second Layer: Allocating an App’s
Resources to its Users

On the second layer, we need to think about how the
computing power of a given app is allocated among its
users. The basic idea is that the apps either use PHA
or — if they have them issued — the designated app
tokens (ATOs) to do so.

The allocation can happen in at least four different
ways (but mainly we should leave it open to the cre-
ativity of the apps’ teams):

1. Based on 1st-Layer Staking: This variant allocates
the computing resources of an app proportional
to the stake put into the app’s staking module.
That is every staker obtains a share of the app’s
resources that is equal to his or her share in the
total stake of the app. There is an open question
of whether and how we could allow users to trade
the computing resources that they have in an app
on an open market.

2. Based on 2nd-Layer Staking: This variant allows
users to obtain a share of the app’s resources
by staking in a second-layer staking module ad-
ditional PHA or the ATO that they obtained or
bought on the market. As for the first layer de-
scribed above, the share of the app’s computing
resources that a user obtains is proportional to his
share in the total stake by all users.

3. Transaction Fees: The app might require users to
pay a fee per transaction. There are at least two,
standard ways of determining the fees:

(a) App-Chosen Fee: Here, the app determines
a fee that is proportional to the computing
complexity of a smart contract call. The fee
might also depend on the current usage of
the app. The particular curve is set by the
developer or, if existent, by the app’s gover-
nance.

(b) User-Chosen Fee: Here, I envision that users
can set a fee and that the app then runs
the submitted transactions according to their
fees. That is, transactions with a higher at-
tached fee are processed before transactions
with a lower fee.

A combination of the two fee-setting mechanisms
is also possible, similar to Ethereum after the Lon-
don upgrade: The total fee consists of a base fee
set by the app and an additional tip that affects
how fast a transaction is processed. Alternatively
one could think of having a fee set by the app as
long as the dedicated computing power is suffi-

cient and an additional fee chosen by the users
once the computing power is exhausted.

4. Flat Fees: The app might also charge a flat fee
from the user. The flat fee would allow the user
to invoke the app as much as he wants for a given
amount of time (again, we might allow users to
add tips to individual invocations of the app in case
the miners cannot process all submitted transac-
tions at a time).

The pricing mechanisms target different kinds of users
and might be combined within a given app. For ex-
ample, transaction fees are for users that only want
to make one or two transactions now and then, while
staking is appealing to long-term users.

1.3 Incetivizing App Deployment (and
Staking)

Even though app developers might derive utility from
using their app, it might seem appropriate that they
also get rewarded when other users use it. Stakers also
need to be incentivized; likely there will be competition
among the apps for stake.

If the app uses fees to allocate computing resources
among users, then the raised PHA or ATOs could go
directly to the developer and the stakers, where the
developer is free to determine the share that goes to
him and the share that goes to stakers. Among the
stakers, the proceeds are distributed proportionally to
their stake. If the app has its own designated ATO,
then the deployer and the stakers can either keep their
earned ATOs staked, sell them on a secondary market,
or redeem them anytime.

If user resource usage is allocated through (second-
layer) staking of PHA or ATO, the staking module might
“tax“ part of stake; i.e., some of the staked PHA or ATOs
go to some form of app treasury. From this treasury,
the developer again specifies how much he gets to keep
and how much is distributed proportionally among the
(first-layer) stakers.

2 Further Considerations

2.1 Design Considerations

There are a couple of dimensions that need to be con-
sidered when designing a pricing mechanism for com-
puting resources. They include:

1. Incentives: The pricing mechanism needs to pro-
vide sufficient incentives for the developers to de-
ploy smart contracts. Also, staking must be incen-
tivized, as there will be competition between apps
for stake.

2. Useability: The pricing mechanisms should be tai-
lorable to the needs of the users, and be as simple
as possible.

Page 2 of 3

https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/


Phala Network Demand-End Tokenomic Design

3. Recognizeability: At best, the mechanism mimics
pricing mechanisms that the market participants
are used to from other networks.

4. Robustness to price volatility: It should not be the
case that incentives of the users and the developers
depend too much on the price level of PHA.

5. Sustainability: The design should generate suffi-
cient demand for PHA so that the payouts made
to the miners generate enough revenue to cover
their costs.

I believe that the proposed mechanisms meet these
criteria. Point 1 (Incentives) is covered in Subsection
1.3 above. Useability is achieved by leaving the app
developers some choice in how they want to set up the
pricing within their apps. In that way, they can tailor
their pricing to the needs of their users.
Recognizeability is given, too. Staking funds to con-

sume resources is the very idea of parachain auctions
in the Polkadot. Transaction fee-based pricing models
are very common, too.

The staking approach to allocating resources is also
robust to price volatility, because the share of resources
a user obtains is proportional to his staked funds, and
users are affected symmetrically by price movements.
So, a sudden spike in the price of PHA should not crowd
out less wealthy users.

The last point, sustainability of the mechanism is an
empirical question that can only be settled once Phala
runs the mechanisms for a while. However, theoretical
arguments are supporting a staking-based mechanism,
which I discuss in the next subsection.

2.2 Theoretical Considerations

The PHA tokens serve a two-fold role in the Phala
network. On the one side, they are paid out to miners
for providing computing resources. On the other hand,
they are required by users to consume these resources.

A sustainable tokenomics design needs to balance
the incentives of the two sides. Miners require a suf-
ficiently high PHA price so that they can cover their
infrastructure costs by selling PHA. Users, on the other
hand, might not want to buy enough PHA if the price is
too high. In equilibrium, the resulting PHA price needs
to be such that both sides obtain sufficient utility to
participate.

I have analyzed a general version of this problem in
my working paper “Utility Token Design”.3 I believe
that the arguments in that paper can be adapted to
the case of Phala. The general conclusion would be
that existence of an equilibrium is not a problem. That
is, theoretically, a design of staking on both sides will
work. The tokenomics whitepaper for Phala would
include a brief section outlining these arguments.

3Häfner, Samuel, Utility Token Design (November 20, 2021).
Available at SSRN: https://ssrn.com/abstract=3954773.

3 Milestones and Roadmap

The RPF asks for the following milestones:

1. Complete the first version of the demand-end to-
kenomic design.

2. Publish the full tokenomic whitepaper.
3. Work with the dev team to implement the toke-

nomics, propose as a Khala runtime upgrade, and
get it passed.

4. Run the tokenomic on Khala for 3 months and
then improve based on the feedback, and launch
it on Phala Network.

The completion of the first version of the demand-end
tokenomic design will require intensive discussions
with the Phala team to improve my understanding of
Phala and to see what is technically feasible. This step
also requires doing research on how other projects do
it and on the adaption of my “Utility Token Design”
paper. Once this is done, I expect the write-up of the
full tokenomics paper to be fairly quick. As regards the
third step (i.e., the implementation), I am lacking the
required experience to estimate the required time. In
short, I roughly expect the following roadmap.

Milestone Time
1. Draft of Tokenomics Whitepaper 2 months
2. Full Version of Tokenomics

Whitepaper
1 months

3. Implementaion 2 month
4. Testing 3 months

Table 1: Anticipated Roadmap

Page 3 of 3

https://ssrn.com/abstract=3954773

	The General Idea
	First Layer: Allocating Resources among the Apps
	Second Layer: Allocating an App's Resources to its Users
	Incetivizing App Deployment (and Staking)

	Further Considerations
	Design Considerations
	Theoretical Considerations

	Milestones and Roadmap

