Javascript implementation of A* search
Switch branches/tags
Nothing to show
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.


Javascript implementation of A* search. Works for one/two-way connections in graphs. Calculates path, and only recalculates when the graph changes, or the goal changes. See 'index.html' for example of what it can do, and simple_example.html for a commented simple example of using the API.


You will need to include 4 files (could all be minified into one in the future... sorry)

<script type='text/javascript' src='linkedlist.js'></script> //linked list is used by binary tree and graph
<script type='text/javascript' src='binarytree.js'></script> //binary tree is used by traverser
<script type='text/javascript' src='graph.js'></script> //graph is used by traverser
<script type='text/javascript' src='traverser.js'></script>

Create the Graph

js-astar works for arbitrary graphs, and you can structure your node objects however you'd like.

First, create a graph object:

var graph = new Graph("IDENTIFIER");

The graph constructor is passed a string identifier. You are responsible for keeping this unique among graphs. The purpose of this is to allow for re-use of nodes in multiple graphs without conflict. (If you only have 1 graph, the string is arbitrary.)

Next, you need to create your node objects. You are in complete control over the content/structure of the nodes.

//Note- this code has nothing to do with js-astar; it is simply an illustration of creation of arbitrary nodes.
var nodes = [];
for(var i = 0; i < 10; i++)

Once you have your node objects, you need to add them to the graph

for(var i = 0; i < nodes.length; i++)

Now, you must tell the graph which nodes are connected


*You may notice that a bit of information that is missing is the cost of the edges- this is intentionally left out until the next step to allow for traversals that don't use edge cost in the traditional way.

Set Up the Tuning Algorithms

Set up the H function:

//This function should return the H value for a node, given the goalNode
//Note- the name is arbitrary, but its signature is not
var calculateHFromNodeToNode = function(node, goalNode)
  //'node' is the node that will be assigned the H value returned from this function,
  //'goalNode' is the node the A* algorithm is seeking

  //If your graph was a grid, you might simply use the 'manhattan distance' between the two nodes, assuming the 'x' and 'y' properties of a node represent its position (NOTE- again, you would be responsible for constructing the grid appropriately were this the case; in the example above, we did NOT create such a grid, nor do our nodes have the x and y properties, so this would not be appropriate)
  //  return Math.abs(goalNode.x-node.x)+Math.abs(goalNode.y-node.y);

  //Simply return 0 to devolve to djikstra's algorithm.
  return 0;

Set up the G function:

//This function should return the cost to get to nodeB, given nodeA and the cost to get to nodeA
//Again- the name is arbitrary, but the signature is not
//This is where the equivalence of edge-weights comes in.
var calculateGFromNodeToNode = function(nodeA, g, nodeB)
  //If you have nodes that have a weight to move onto them (ie, mountains cost +5 while plains cost +2), you'd have:
  //  return g+nodeB.cost;

  //If you have a traditional graph where node->node edges have a defined cost, you might query a data structure to return such a cost:
  //  return g+getEdgeCostFromNodeToNode(nodeA,nodeB);

  //If all weights are '1', you would simply have:
  return g+1;

Make the Traversal

You will use the traverser to query for the optimal path, one step at a time.

Create the traverser by passing in all the objects we just set up. Here you will also give it a unique string to allow for multipile simultaneous traversals of the same graph not interfering.

var traverser = new AStarTraverser(graph, calculateHFromNodeToNode, calculateGFromNodeToNode, "TRAVERSAL_IDENTIFIER");

To query for a path, pass in the start and the goal node, and you will be returned the optimal next step (as a node).

var step = traverser.getBestNextStep(start,goal);

The traverser is smart enough to know not to recalculate everything so long as the goal hasn't changed. To get subsequent steps, your code could look like this:

var step = start;
while(step != end && (step = traverser.getBestNextStep(step,end)))
  //Take the next step

If something outside of the knowledge of the traverser potentially invalidates the path (an edge breaks, a node was added, a connection was made, etc...), you are responsible for alerting the traverser. This will force a recalculation of the best path.