Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
man
 
 
 
 
 
 
 
 
 
 
 
 

README.md

OOBCurve

With the help of this package the out of bag learning curve for random forests can be created for any measure that is available in the mlr package.

Supported random forest packages are randomForest and ranger and trained models of these packages with the train function of mlr. Available measures can be looked up on the mlr tutorial page.

The main function is OOBCurve that calculates the out-of-bag curve depending on the number of trees. With the OOBCurvePars function out-of-bag curves can also be calculated for mtry, sample.fraction and min.node.size for the ranger package.

Installation:

devtools::install_github("PhilippPro/OOBCurve")

Examples:

library(mlr)
library(ranger)

# Classification
data = getTaskData(sonar.task)
sonar.task = makeClassifTask(data = data, target = "Class")
lrn = makeLearner("classif.ranger", keep.inbag = TRUE, par.vals = list(num.trees = 100))
mod = train(lrn, sonar.task)

# Alternatively use ranger directly
# mod = ranger(Class ~., data = data, num.trees = 100, keep.inbag = TRUE)
# Alternatively use randomForest
# mod = randomForest(Class ~., data = data, ntree = 100, keep.inbag = TRUE)

# Application of the main function
results = OOBCurve(mod, measures = list(mmce, auc, brier), task = sonar.task, data = data)
# Plot the generated results
plot(results$mmce, type = "l", ylab = "oob-mmce", xlab = "ntrees")
plot(results$auc, type = "l", ylab = "oob-auc", xlab = "ntrees")
plot(results$brier, type = "l", ylab = "oob-brier-score", xlab = "ntrees")

# Regression
data = getTaskData(bh.task)
bh.task = makeRegrTask(data = data, target = "medv")
lrn = makeLearner("regr.ranger", keep.inbag = TRUE, par.vals = list(num.trees = 100))
mod = train(lrn, bh.task)

# Application of the main function
results = OOBCurve(mod, measures = list(mse, mae, rsq), task = bh.task, data = data)
# Plot the generated results
plot(results$mse, type = "l", ylab = "oob-mse", xlab = "ntrees")
plot(results$mae, type = "l", ylab = "oob-mae", xlab = "ntrees")
plot(results$rsq, type = "l", ylab = "oob-mae", xlab = "ntrees")

# Use OOBCurvePars for OOBCurve of other hyperparameters
library(mlr)
task = sonar.task

lrn = makeLearner("classif.ranger", predict.type = "prob", num.trees = 1000)
results = OOBCurvePars(lrn, task, measures = list(auc))
plot(results$par.vals, results$performances$auc, type = "l", xlab = "mtry", ylab = "auc")

lrn = makeLearner("classif.ranger", predict.type = "prob", num.trees = 1000, replace = FALSE)
results = OOBCurvePars(lrn, task, pars = "sample.fraction", measures = list(mmce))
plot(results$par.vals, results$performances$mmce, type = "l", xlab = "sample.fraction", ylab = "mmce")

results = OOBCurvePars(lrn, task, pars = "min.node.size", measures = list(mmce))
plot(results$par.vals, results$performances$mmce, type = "l", xlab = "min.node.size", ylab = "mmce")

About

Random Forest OOB Curves for any performance measure of mlr

Resources

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.