Skip to content

[ACTION] Update Google Gemini actions #16262

@dannyroosevelt

Description

@dannyroosevelt

General Improvements

Let's make sure the models are up to date (can we list them dynamically?)

Actions improvement

Action: Chat

Uses the generateContent endpoint with conversation history.

Props:

Prop Type Description API Mapping
model string/options/async options The model to use.
prompt string The user's input message for the current turn. contents.parts.text
history array The preceding conversation history (user and model turns). contents (previous items)
systemMessage string Optional. Instructions that guide the model's behavior throughout the conversation. system_instruction
temperature number Optional. Controls randomness (0.0 deterministic, 1.0+ creative). Default varies by model. generationConfig.temperature
maxOutputTokens integer Optional. Maximum number of tokens to generate in the response. generationConfig.maxOutputTokens
topK integer Optional. Selects tokens from the top K most probable. generationConfig.topK
topP number Optional. Selects tokens cumulatively reaching probability P. generationConfig.topP
safetySettings array Optional. Configuration for blocking potentially harmful content. safetySettings
outputSchema object Optional. JSON schema defining the structure of the desired output. generationConfig.response_schema

API Document: https://ai.google.dev/gemini-api/docs/text-generation#chat


Action: Create Embeddings

Uses the embedContent or batchEmbedContents endpoints.

Props:

Prop Type Description API Mapping
content string The text content to generate embeddings for. content.parts.text (or in requests)
model string The embedding model to use (e.g., "models/embedding-001"). Part of the endpoint URL
taskType string Optional. The intended use case (e.g., "RETRIEVAL_QUERY", "RETRIEVAL_DOCUMENT"). Affects embedding quality. taskType

API Document: https://ai.google.dev/gemini-api/docs/embeddings


Action: Summarize

Uses the generateContent endpoint with a specific instruction prompt.

Props:

Prop Type Description API Mapping
model string/options/async options The model to use.
content string The text content to summarize (provided within the prompt). contents.parts.text
instruction string The prompt instructing the model to summarize the content. contents.parts.text
maxOutputTokens integer Optional. Maximum number of tokens for the generated summary. generationConfig.maxOutputTokens
temperature number Optional. Controls creativity/factuality in the summary (0.0 more factual). generationConfig.temperature

API Document: https://ai.google.dev/gemini-api/docs/text-generation


Action: Translate Text

Uses the generateContent endpoint with a specific instruction prompt.

Props:

Prop Type Description API Mapping
model string/options/async options The model to use.
content string The text content to translate (provided within the prompt). contents.parts.text
instruction string The prompt instructing the model to translate the content, specifying target language (and optionally source). contents.parts.text
temperature number Optional. Controls translation style (0.0 more literal). generationConfig.temperature

API Document: https://ai.google.dev/gemini-api/docs/text-generation


Action: Classify Items Into Categories

Uses the generateContent endpoint with a specific instruction prompt. Use Output Schema to produce the output in object as follow:

{"category1": ["item1", "item2"], "category2": ["item3", "item4"]}

Props:

Prop Type Description API Mapping
model string/options/async options The model to use.
items array List of items to be classified (provided within the prompt). contents.parts.text
categories array List of available categories (provided within the prompt). contents.parts.text
instruction string The prompt describing the classification task, items, and categories. contents.parts.text
temperature number Optional. Controls randomness in classification decisions (0.0 more deterministic). generationConfig.temperature

API Document: https://ai.google.dev/gemini-api/docs/text-generation


Action: Chat with Image/Video

Uses the generateContent endpoint with multimodal input (image/video + text prompt).

Props:

Prop Type Description API Mapping
model string/options/async options The model to use.
filePath object File path in tmp dir to image/video
prompt string Instructions .
outputSchema object Optional. JSON schema defining the structure of the desired output. generationConfig.response_schema

API Document: https://ai.google.dev/gemini-api/docs/vision


Action: Chat with Audio

Uses the generateContent endpoint with multimodal input (audio + text prompt).

Props:

Prop Type Description API Mapping
model string/options/async options The model to use.
filePath object File path in tmp dir to the audio
prompt string Instructions for transcription (e.g., "Transcribe this audio."). Can specify language if needed. contents.parts.text
outputSchema object Optional. JSON schema defining the structure of the desired output. generationConfig.response_schema

API Document: https://ai.google.dev/gemini-api/docs/audio

Metadata

Metadata

Assignees

Labels

actionNew Action RequestenhancementNew feature or requestgood first issueGood for newcomershelp wantedExtra attention is neededtriagedFor maintainers: This issue has been triaged by a Pipedream employee

Type

No type

Projects

Status

Done

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions