Switch branches/tags
Nothing to show
Find file History
Latest commit f29491f Oct 18, 2018
Permalink
..
Failed to load latest commit information.
community Update README.md Oct 12, 2018
docker Update README-training.md Oct 19, 2018
kubernetes Update README.md Oct 15, 2018
sagemaker Update README.md Sep 4, 2018
README.md Update README.md Oct 12, 2018

README.md

PipelineAI Logo

Requirements

  • 8GB
  • 4 Cores
  • Python 2 or 3 (Conda is Preferred)
  • (Windows Only) Install PowerShell

Install PipelineAI CLI

PyPI PipelineAI CLI

pip install cli-pipeline==1.5.217 --default-timeout=120 --ignore-installed --no-cache --upgrade

Notes:

  • This command line interface requires Python 2 or 3 and Docker as detailed above in the Pre-Requisites section.
  • If you're having trouble, use one of our support channels HERE to let us know!
  • Followed these steps described here: https://apple.stackexchange.com/questions/254380/macos-sierra-invalid-active-developer-path: 1) sudo xcode-select --reset (didn't work for me, but including this because it worked for others) or 2) xcode-select --install
  • If you have any issues, you may want to create a separate virtualenv or conda environment to isolate the environments.
  • You may need to increase --default-timeout=120 to avoid ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.
  • You may need to run pip uninstall -y python-dateutil if you see an issue related to pip._vendor.pkg_resources.ContextualVersionConflict
  • Ignore anything along these lines: urllib3 (1.23) or chardet (3.0.4) doesn't match a supported version! RequestsDependencyWarning
  • You may also use --user if you're still having issues.

Verify Successful PipelineAI CLI Installation

pipeline version

### EXPECTED OUTPUT ###
cli_version: 1.5.x    <-- MAKE SURE THIS MATCHES THE VERSION YOU INSTALLED ABOVE

default train base image: docker.io/pipelineai/train-cpu:1.5.0     
default predict base image: docker.io/pipelineai/predict-cpu:1.5.0 

PipelineAI Quick Start (CPU, GPU, and TPU)

Train and Deploy your ML and AI Models in the Following Environments:

PipelineAI CLI Overview

pipeline

### EXPECTED OUTPUT ###
...
env-kube-activate            <-- Switch Kubernetes Clusters
env-conda-activate           <-- Switch Conda Environments
env-registry-sync            <-- Sync with the latest Docker images

help                         <-- This List of CLI Commands

model-archive-tar            <-- Create Tar Archive for Model Server
model-archive-untar          <-- Untar Model Server Archive

predict-http-test            <-- Test Model Cluster (Http-based)

predict-kube-autoscale       <-- Configure AutoScaling for Model Cluster
predict-kube-connect         <-- Create Secure Tunnel to Model Cluster 
predict-kube-describe        <-- Describe Model Cluster (Raw)
predict-kube-endpoint        <-- Retrieve Model Cluster Endpoint 
predict-kube-endpoints       <-- Retrieve All Model Cluster Endpoints
predict-kube-logs            <-- View Model Cluster Logs 
predict-kube-route           <-- Route Live Traffic  
predict-kube-routes          <-- Describe Routes
predict-kube-scale           <-- Scale Model Cluster
predict-kube-shell           <-- Shell into Model Cluster
predict-kube-start           <-- Start Model Cluster from Docker Registry
predict-kube-stop            <-- Stop Model Cluster
predict-kube-test            <-- Test Model Cluster

predict-sage-describe        <-- Describe of SageMaker Model Predict Cluster
predict-sage-route           <-- Route Live Traffic in SageMaker
predict-sage-start           <-- Start Model Cluster in SageMaker
predict-sage-stop            <-- Stop Model Cluster in SageMaker
predict-sage-test            <-- Test Model Cluster in SageMaker

predict-server-build         <-- Build Model Server
predict-server-describe      <-- Describe Model Server
predict-server-logs          <-- View Model Server Logs
predict-server-pull          <-- Pull Model Server from Docker Registry
predict-server-register      <-- Register Model Server with Docker Registry
predict-server-shell         <-- Shell into Model Server (Debugging)
predict-server-start         <-- Start Model Server
predict-server-stop          <-- Stop Model Server
predict-server-tar           <-- Tar Model Server
predict-server-test          <-- Test Model Server (Http-based)
predict-server-untar         <-- Untar Model Server Tar File

predict-stream-test          <-- Test Stream-based Model Server

resource-upload              <-- Add Model to PipelineAI Cluster
resource-optimize-and-deploy <-- Add Model to PipelineAI Cluster

stream-http-consume          <-- Consume Stream Messages (REST API)

stream-kube-consume          <-- Consume Messages from Stream
stream-kube-produce          <-- Produce Messages to Stream

train-kube-connect           <-- Create Secure Tunnel to Training Cluster
train-kube-describe          <-- Describe Training Cluster
train-kube-logs              <-- View Training Cluster Logs
train-kube-scale             <-- Scale Training Cluster
train-kube-shell             <-- Shell into Training Cluster
train-kube-start             <-- Start Training Cluster from Docker Registry
train-kube-stop              <-- Stop Training Cluster

train-server-build           <-- Build Training Server
train-server-logs            <-- View Training Server Logs
train-server-pull            <-- Pull Training Server from Docker Registry
train-server-register        <-- Register Training Server with Docker Registry
train-server-shell           <-- Shell into Training Server (Debugging)
train-server-start           <-- Start Training Server
train-server-stop            <-- Stop Training Server

version                      <-- View This CLI Version

Having Issues? Contact Us Anytime... We're Always Awake.