Switch branches/tags
Nothing to show
Find file History
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
..
Failed to load latest commit information.
README.md

README.md

PipelineAI Logo

AWS SageMaker Overview

PipelineAI + AWS SageMaker Dashboard

PipelineAI + AWS SageMaker Overview

PipelineAI + SageMaker

Click HERE for more details on AWS SageMaker.

Pull PipelineAI Sample Models

git clone https://github.com/PipelineAI/models

Change into the new models/ directory

cd models

Requirements

System

  • 8GB
  • 4 Cores

Installs

Build CPU and GPU Models (TensorFlow-based with TensorFlow Serving)

CPU

pipeline predict-server-build --model-name=mnist --model-tag=v1cpu --model-type=tensorflow --model-path=./tensorflow/mnist-v1/model --model-chip=cpu
  • Try different runtimes using --model-runtime=tensorrt or --model-runtime=python

GPU

pipeline predict-server-build --model-name=mnist --model-tag=v1gpu --model-type=tensorflow --model-path=./tensorflow/mnist-v1/model --model-chip=gpu
  • For GPU-based models, make sure you specify --model-chip=gpu

Register TensorFlow Model Server with Docker Repo

Notes:

  • This can be an AWS ECR Docker Repo - or any public Docker Repo (ie. DockerHub).

Defaults

  • --image-registry-url: docker.io
  • --image-registry-repo: pipelineai

CPU

pipeline predict-server-register --model-name=mnist --model-tag=v1cpu

GPU

pipeline predict-server-register --model-name=mnist --model-tag=v1gpu

Start TensorFlow Models on AWS SageMaker

Notes

  • You may need to increase your quota limits for the specific instance type with AWS.
  • We are using the same instance type for both CPU and GPU model versions. This is intentional for this demo, but it is not required.
  • You can check the CloudWatch LOGS to monitor the startup process.

Examples

  • --aws-iam-arn: arn:aws:iam:::role/service-role/AmazonSageMaker-ExecutionRole...

CPU

pipeline predict-sage-start --model-name=mnist --model-tag=v1cpu --aws-iam-arn=<aws-iam-arn> 

GPU

pipeline predict-sage-start --model-name=mnist --model-tag=v1gpu --aws-iam-arn=<aws-iam-arn>

Split Traffic Between CPU Model (50%) and GPU Model (50%)

pipeline predict-sage-route --model-name=mnist --aws-instance-type-dict='{"v1cpu":"ml.p2.xlarge", "v1gpu":"ml.p2.xlarge"}' --model-split-tag-and-weight-dict='{"v1cpu":50, "v1gpu":50}'

Notes:

  • You may need to increase your AWS EC2 quotas for the special ml.p2.xlarge instance (note the ml. prefix).
  • From an Instance Limit standpoint, ml.p*.* instances are different than regular p*.* instances. They require a separate quota increase.

AWS SageMaker Endpoint

Wait for the Model Endpoint to Start

pipeline predict-sage-describe --model-name=mnist

### EXPECTED OUTPUT ###
...
Endpoint Status 'InService'  <-- WAIT UNTIL THIS GOES FROM 'Creating' to 'InService' 
...

Notes:

  • This may take 5-10 mins.
  • To decrease the start time, make sure your Docker images are available in AWS ECR (Elastc Container Registry)
  • DockerHub is very slow - especially on larger images
  • DockerHub will time out often - especially on larger images
  • If anything in your Docker image lineage is pulling from DockerHub (ie. FROM docker.io/pipelineai/predict-cpu:1.5.0), you will see 3-5x longer Docker download times 3-5x longer Docker download times lead to 3-5x longer SageMaker startup times.
  • This is not SageMaker's fault!
  • Again, using AWS ECR will put the Docker images closer to SageMaker - enabling faster SageMaker startup times

Run Load Test on Models CPU and GPU (100 Predictions)

pipeline predict-sage-test --model-name=mnist --test-request-path=./tensorflow/mnist-cpu/input/predict/test_request.json --test-request-concurrency=100

Notes:

  • We are testing with sample data from the CPU version of the model.
  • This is OK since the sample data is the same for CPU and GPU.
  • If the endpoint status (above) is not InService, this call won't work. Please be patient.

Expected Output

CPU

('{"variant": "mnist-v1cpu-tensorflow-tfserving-cpu", "outputs":{"outputs": '
 '[0.11128007620573044, 1.4478533557849005e-05, 0.43401220440864563, '
 '0.06995827704668045, 0.0028081508353352547, 0.27867695689201355, '
 '0.017851119861006737, 0.006651509087532759, 0.07679300010204315, '
 '0.001954273320734501]}}')
 
 Request time: 240.805 milliseconds

GPU

('{"variant": "mnist-v1gpu-tensorflow-tfserving-gpu", "outputs":{"outputs": '
 '[0.11128010600805283, 1.4478532648354303e-05, 0.43401211500167847, '
 '0.06995825469493866, 0.002808149205520749, 0.2786771059036255, '
 '0.01785111241042614, 0.006651511415839195, 0.07679297775030136, '
 '0.001954274717718363]}}')

Request time: 158.047 milliseconds

Monitor Your Models

Notes:

  • The logs below show that we are, indeed, using the GPU-based TensorFlow Serving runtime in the GPU model.
  • Click HERE for the Dockerfile of the GPU version of TensorFlow Serving that we use below.

AWS SageMaker + CloudWatch Monitoring

AWS SageMaker CPU vs. GPU Latency

CPU

2018-01-09 21:38:04.021915: I tensorflow_serving/model_servers/main.cc:147] Building single TensorFlow model file config: model_name: mnist model_base_path: /root/ml/model/pipeline_tfserving
...
2018-01-09 21:38:04.128440: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: mnist version: 1510612528}
2018-01-09 21:38:04.134781: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
...
2018-01-09 21:38:04.206946: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: mnist version: 1510612528}
E0109 21:38:04.210768165 53 ev_epoll1_linux.c:1051] grpc epoll fd: 5
2018-01-09 21:38:04.213992: I tensorflow_serving/model_servers/main.cc:288] Running ModelServer at 0.0.0.0:9000 ...

GPU

2018-01-09 21:40:47.842724: I tensorflow_serving/model_servers/main.cc:148] Building single TensorFlow model file config: model_name: mnist model_base_path: /root/ml/model/pipeline_tfserving
...
2018-01-09 21:40:47.949612: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:240] Loading SavedModel with tags: { serve }; from: /root/ml/model/pipeline_tfserving/1510612528
2018-01-09 21:40:48.217917: I external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:898] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-01-09 21:40:48.218607: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1202] Found device 0 with properties: 
name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8755
pciBusID: 0000:00:1e.0
totalMemory: 11.17GiB freeMemory: 11.10GiB
2018-01-09 21:40:48.218644: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1296] Adding visible gpu device 0
2018-01-09 21:40:50.336216: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:983] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10765 MB memory) -> physical GPU (device: 0, name: Tesla K80, pci bus id: 0000:00:1e.0, compute capability: 3.7)
...
2018-01-09 21:40:50.634043: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: mnist version: 1510612528}
2018-01-09 21:40:50.640806: I tensorflow_serving/model_servers/main.cc:289] Running ModelServer at 0.0.0.0:9000 ...

Stop Model Endpoint

pipeline predict-sage-stop --model-name=mnist

Stop Model through AWS SageMaker UI

  • Delete Model
  • Delete Endpoint Config
  • Delete Endpoint

More details HERE

Distributed TensorFlow Training

Note: These instructions are under active development.

Note: The paths below are relative to the sample datasets located here: s3://datapalooza-us-west-2/tensorflow/census/input/.

pipeline train-sage-start --model-name=census --model-tag=v1 --model-type=tensorflow --input-path=./tensorflow/census-v1/input --output-path=./tensorflow/census-v1/output --master-replicas=1 --ps-replicas=1 --worker-replicas=1 --train-args="--train-files=training/adult.training.csv --eval-files=validation/adult.validation.csv --num-epochs=2 --learning-rate=0.025"

PipelineAI Quick Start (CPU, GPU, and TPU)

Train and Deploy your ML and AI Models in the Following Environments: