Skip to content
Permalink
9be5a29827
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
427 lines (355 sloc) 15 KB
//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <assert.h>
#define OSD_PATCH_BASIS_CUDA
#include "../osd/patchBasisCommonTypes.h"
#include "../osd/patchBasisCommon.h"
#include "../osd/patchBasisCommonEval.h"
// -----------------------------------------------------------------------------
template<int N> struct DeviceVertex {
float v[N];
__device__ void addWithWeight(DeviceVertex<N> const & src, float weight) {
#pragma unroll
for(int i = 0; i < N; ++i){
v[i] += src.v[i] * weight;
}
}
__device__ void clear() {
#pragma unroll
for(int i = 0; i < N; ++i){
v[i] = 0.0f;
}
}
};
// Specialize DeviceVertex for N=0 to avoid compile error:
// "flexible array member in otherwise empty struct"
template<> struct DeviceVertex<0> {
__device__ void addWithWeight(DeviceVertex<0> &src, float weight) {}
__device__ void clear() {}
};
// -----------------------------------------------------------------------------
__device__ void clear(float *dst, int count)
{
for(int i = 0; i < count; ++i) dst[i] = 0;
}
__device__ void addWithWeight(float *dst, float const *src, float weight, int count)
{
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
}
// --------------------------------------------------------------------------------------------
template <int NUM_ELEMENTS> __global__ void
computeStencils(float const * cvs, float * vbuffer,
int const * sizes,
int const * offsets,
int const * indices,
float const * weights,
int start, int end) {
DeviceVertex<NUM_ELEMENTS> const * src =
(DeviceVertex<NUM_ELEMENTS> const *)cvs;
DeviceVertex<NUM_ELEMENTS> * verts =
(DeviceVertex<NUM_ELEMENTS> *)vbuffer;
int first = start + threadIdx.x + blockIdx.x*blockDim.x;
for (int i=first; i<end; i += blockDim.x * gridDim.x) {
int const * lindices = indices + offsets[i];
float const * lweights = weights + offsets[i];
DeviceVertex<NUM_ELEMENTS> dst;
dst.clear();
for (int j=0; j<sizes[i]; ++j) {
dst.addWithWeight(src[lindices[j]], lweights[j]);
}
verts[i] = dst;
}
}
__global__ void
computeStencils(float const * cvs, float * dst,
int length,
int srcStride,
int dstStride,
int const * sizes,
int const * offsets,
int const * indices,
float const * weights,
int start, int end) {
int first = start + threadIdx.x + blockIdx.x*blockDim.x;
for (int i=first; i<end; i += blockDim.x * gridDim.x) {
int const * lindices = indices + offsets[i];
float const * lweights = weights + offsets[i];
float * dstVert = dst + i*dstStride;
clear(dstVert, length);
for (int j=0; j<sizes[i]; ++j) {
float const * srcVert = cvs + lindices[j]*srcStride;
addWithWeight(dstVert, srcVert, lweights[j], length);
}
}
}
// -----------------------------------------------------------------------------
#define USE_NVIDIA_OPTIMIZATION
#ifdef USE_NVIDIA_OPTIMIZATION
template< int NUM_ELEMENTS, int NUM_THREADS_PER_BLOCK >
__global__ void computeStencilsNv(float const *__restrict cvs,
float * vbuffer,
int const *__restrict sizes,
int const *__restrict offsets,
int const *__restrict indices,
float const *__restrict weights,
int start,
int end)
{
// Shared memory to stage indices/weights.
__shared__ int smem_indices_buffer[NUM_THREADS_PER_BLOCK];
__shared__ float smem_weights_buffer[NUM_THREADS_PER_BLOCK];
// The size of a single warp.
const int WARP_SIZE = 32;
// The number of warps per block.
const int NUM_WARPS_PER_BLOCK = NUM_THREADS_PER_BLOCK / WARP_SIZE;
// The number of outputs computed by a single warp.
const int NUM_OUTPUTS_PER_WARP = WARP_SIZE / NUM_ELEMENTS;
// The number of outputs computed by a block of threads.
const int NUM_OUTPUTS_PER_BLOCK = NUM_OUTPUTS_PER_WARP*NUM_WARPS_PER_BLOCK;
// The number of active threads in a warp.
const int NUM_ACTIVE_THREADS_PER_WARP = NUM_OUTPUTS_PER_WARP * NUM_ELEMENTS;
// The number of the warp inside the block.
const int warpId = threadIdx.x / WARP_SIZE;
const int laneId = threadIdx.x % WARP_SIZE;
// We use NUM_ELEMENTS threads per output. Find which output/element a thread works on.
int outputIdx = warpId*NUM_OUTPUTS_PER_WARP + laneId/NUM_ELEMENTS, elementIdx = laneId%NUM_ELEMENTS;
// Each output corresponds to a section of shared memory.
volatile int *smem_indices = &smem_indices_buffer[warpId*WARP_SIZE + (laneId/NUM_ELEMENTS)*NUM_ELEMENTS];
volatile float *smem_weights = &smem_weights_buffer[warpId*WARP_SIZE + (laneId/NUM_ELEMENTS)*NUM_ELEMENTS];
// Disable threads that have nothing to do inside the warp.
int i = end;
if( laneId < NUM_ACTIVE_THREADS_PER_WARP )
i = start + blockIdx.x*NUM_OUTPUTS_PER_BLOCK + outputIdx;
// Iterate over the vertices.
for( ; i < end ; i += gridDim.x*NUM_OUTPUTS_PER_BLOCK )
{
// Each thread computes an element of the final vertex.
float x = 0.f;
// Load the offset and the size for each vertex. We have NUM_THREADS_PER_VERTEX threads loading the same value.
const int offset_i = offsets[i], size_i = sizes[i];
// Iterate over the stencil.
for( int j = offset_i, j_end = offset_i+size_i ; j < j_end ; )
{
int j_it = j + elementIdx;
// Load some indices and some weights. The transaction is coalesced.
smem_indices[elementIdx] = j_it < j_end ? indices[j_it] : 0;
smem_weights[elementIdx] = j_it < j_end ? weights[j_it] : 0.f;
// Thread now collaborates to load the vertices.
#pragma unroll
for( int k = 0 ; k < NUM_ELEMENTS ; ++k, ++j )
if( j < j_end )
x += smem_weights[k] * cvs[smem_indices[k]*NUM_ELEMENTS + elementIdx];
}
// Store the vertex.
vbuffer[NUM_ELEMENTS*i + elementIdx] = x;
}
}
template< int NUM_THREADS_PER_BLOCK >
__global__ void computeStencilsNv_v4(float const *__restrict cvs,
float * vbuffer,
int const *__restrict sizes,
int const *__restrict offsets,
int const *__restrict indices,
float const *__restrict weights,
int start,
int end)
{
// Iterate over the vertices.
for( int i = start + blockIdx.x*NUM_THREADS_PER_BLOCK + threadIdx.x ; i < end ; i += gridDim.x*NUM_THREADS_PER_BLOCK )
{
// Each thread computes an element of the final vertex.
float4 x = make_float4(0.f, 0.f, 0.f, 0.f);
// Iterate over the stencil.
for( int j = offsets[i], j_end = offsets[i]+sizes[i] ; j < j_end ; ++j )
{
float w = weights[j];
float4 tmp = reinterpret_cast<const float4 *>(cvs)[indices[j]];
x.x += w*tmp.x;
x.y += w*tmp.y;
x.z += w*tmp.z;
x.w += w*tmp.w;
}
// Store the vertex.
reinterpret_cast<float4*>(vbuffer)[i] = x;
}
}
#endif // USE_NVIDIA_OPTIMIZATION
// -----------------------------------------------------------------------------
__global__ void
computePatches(const float *src, float *dst,
float *dstDu, float *dstDv,
float *dstDuu, float *dstDuv, float *dstDvv,
int length, int srcStride, int dstStride,
int dstDuStride, int dstDvStride,
int dstDuuStride, int dstDuvStride, int dstDvvStride,
int numPatchCoords, const OsdPatchCoord *patchCoords,
const OsdPatchArray *patchArrayBuffer,
const int *patchIndexBuffer,
const OsdPatchParam *patchParamBuffer) {
int first = threadIdx.x + blockIdx.x * blockDim.x;
// PERFORMANCE: not yet optimized
for (int i = first; i < numPatchCoords; i += blockDim.x * gridDim.x) {
OsdPatchCoord const &coord = patchCoords[i];
int arrayIndex = coord.arrayIndex;
int patchIndex = coord.patchIndex;
OsdPatchArray const &array = patchArrayBuffer[arrayIndex];
OsdPatchParam const &param = patchParamBuffer[patchIndex];
int patchType = OsdPatchParamIsRegular(param)
? array.regDesc : array.desc;
float wP[20], wDu[20], wDv[20], wDuu[20], wDuv[20], wDvv[20];
int nPoints = OsdEvaluatePatchBasis(patchType, param,
coord.s, coord.t, wP, wDu, wDv, wDuu, wDuv, wDvv);
int indexBase = array.indexBase + array.stride *
(patchIndex - array.primitiveIdBase);
const int *cvs = patchIndexBuffer + indexBase;
float * dstVert = dst + i * dstStride;
clear(dstVert, length);
for (int j = 0; j < nPoints; ++j) {
const float * srcVert = src + cvs[j] * srcStride;
addWithWeight(dstVert, srcVert, wP[j], length);
}
if (dstDu) {
float *d = dstDu + i * dstDuStride;
clear(d, length);
for (int j = 0; j < nPoints; ++j) {
const float * srcVert = src + cvs[j] * srcStride;
addWithWeight(d, srcVert, wDu[j], length);
}
}
if (dstDv) {
float *d = dstDv + i * dstDvStride;
clear(d, length);
for (int j = 0; j < nPoints; ++j) {
const float * srcVert = src + cvs[j] * srcStride;
addWithWeight(d, srcVert, wDv[j], length);
}
}
if (dstDuu) {
float *d = dstDuu + i * dstDuuStride;
clear(d, length);
for (int j = 0; j < nPoints; ++j) {
const float * srcVert = src + cvs[j] * srcStride;
addWithWeight(d, srcVert, wDuu[j], length);
}
}
if (dstDuv) {
float *d = dstDuv + i * dstDuvStride;
clear(d, length);
for (int j = 0; j < nPoints; ++j) {
const float * srcVert = src + cvs[j] * srcStride;
addWithWeight(d, srcVert, wDuv[j], length);
}
}
if (dstDvv) {
float *d = dstDvv + i * dstDvvStride;
clear(d, length);
for (int j = 0; j < nPoints; ++j) {
const float * srcVert = src + cvs[j] * srcStride;
addWithWeight(d, srcVert, wDvv[j], length);
}
}
}
}
// -----------------------------------------------------------------------------
#include "../version.h"
#define OPT_KERNEL(NUM_ELEMENTS, KERNEL, X, Y, ARG) \
if (length==NUM_ELEMENTS && srcStride==length && dstStride==length) { \
KERNEL<NUM_ELEMENTS><<<X,Y>>>ARG; \
return; \
}
#ifdef USE_NVIDIA_OPTIMIZATION
#define OPT_KERNEL_NVIDIA(NUM_ELEMENTS, KERNEL, X, Y, ARG) \
if (length==NUM_ELEMENTS && srcStride==length && dstStride==length) { \
int gridDim = min(X, (end-start+Y-1)/Y); \
KERNEL<NUM_ELEMENTS, Y><<<gridDim, Y>>>ARG; \
return; \
}
#endif
extern "C" {
void CudaEvalStencils(
const float *src, float *dst,
int length, int srcStride, int dstStride,
const int * sizes, const int * offsets, const int * indices,
const float * weights,
int start, int end) {
if (length == 0 || srcStride == 0 || dstStride == 0 || (end <= start)) {
return;
}
#ifdef USE_NVIDIA_OPTIMIZATION
OPT_KERNEL_NVIDIA(3, computeStencilsNv, 2048, 256,
(src, dst, sizes, offsets, indices, weights, start, end));
//OPT_KERNEL_NVIDIA(4, computeStencilsNv, 2048, 256,
// (cvs, dst, sizes, offsets, indices, weights, start, end));
if (length == 4 && srcStride == length && dstStride == length) {
int gridDim = min(2048, (end-start+256-1)/256);
computeStencilsNv_v4<256><<<gridDim, 256>>>(
src, dst, sizes, offsets, indices, weights, start, end);
return;
}
#else
OPT_KERNEL(3, computeStencils, 512, 32,
(src, dst, sizes, offsets, indices, weights, start, end));
OPT_KERNEL(4, computeStencils, 512, 32,
(src, dst, sizes, offsets, indices, weights, start, end));
#endif
// generic case (slow)
computeStencils <<<512, 32>>>(
src, dst, length, srcStride, dstStride,
sizes, offsets, indices, weights, start, end);
}
// -----------------------------------------------------------------------------
void CudaEvalPatches(
const float *src, float *dst,
int length, int srcStride, int dstStride,
int numPatchCoords, const OsdPatchCoord *patchCoords,
const OsdPatchArray *patchArrayBuffer,
const int *patchIndexBuffer,
const OsdPatchParam *patchParamBuffer) {
// PERFORMANCE: not optimized at all
computePatches <<<512, 32>>>(
src, dst, NULL, NULL, NULL, NULL, NULL,
length, srcStride, dstStride, 0, 0, 0, 0, 0,
numPatchCoords, patchCoords,
patchArrayBuffer, patchIndexBuffer, patchParamBuffer);
}
void CudaEvalPatchesWithDerivatives(
const float *src, float *dst,
float *dstDu, float *dstDv,
float *dstDuu, float *dstDuv, float *dstDvv,
int length, int srcStride, int dstStride,
int dstDuStride, int dstDvStride,
int dstDuuStride, int dstDuvStride, int dstDvvStride,
int numPatchCoords, const OsdPatchCoord *patchCoords,
const OsdPatchArray *patchArrayBuffer,
const int *patchIndexBuffer,
const OsdPatchParam *patchParamBuffer) {
// PERFORMANCE: not optimized at all
computePatches <<<512, 32>>>(
src, dst, dstDu, dstDv, dstDuu, dstDuv, dstDvv,
length, srcStride, dstStride,
dstDuStride, dstDvStride, dstDuuStride, dstDuvStride, dstDvvStride,
numPatchCoords, patchCoords,
patchArrayBuffer, patchIndexBuffer, patchParamBuffer);
}
} /* extern "C" */