
11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 1 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

 » Specifications » File Formats » USDC File Format Specification

USDC File Format Specification

Copyright © 2022, Pixar Animation Studios, version 0.9.0

Introduction
Versions

Version History
Order of Reads
Integers
Index

Compression
LZ4 Compression
Integer Compression

Preamble
Bootstrap
Table of Contents
Sections

Tokens
Strings
Fields
Field Sets
Paths
Specs

Constructing the Layer
Layer Metadata
Prims
Variant Sets
Variants
Properties (Attribute)

Value Representations

file:///Users/dhruvgovil/Projects/tmp/usddocs/index.html
file:///Users/dhruvgovil/Projects/tmp/usddocs/spec.html
file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_fileformats.html

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 2 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Inlined Types
Singular Offset Types
Array Offset Types

Compressed Integer Arrays
Compressed Floating Point Arrays

Value Types
Type Table
Base Types

Bool
UChar
Int
Uint
Int64
UInt64
Half
Float
Double
String
Token
AssetPath
Payload
ValueBlock
Value
UnregisteredValue
TimeCode

Other Types
References
Layer Offset
Quaternions

QuatD
QuatF
QuatH

Vectors (Mathematical)
Vec2d
Vec2f

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 3 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Vec2h
Vec2i
Vec3d
Vec3f
Vec3h
Vec3i
Vec4d
Vec4f
Vec4h
Vec4i

Matrix
Matrix2d
Matrix3d
Matrix4d

Dictionary
List Operations

Header
Contents
TokenListOp
StringListOp
ReferenceListOp
IntListOp
Int64ListOp
UIntListOp
UInt64ListOp
PayloadListOp
UnregisteredValueListOp

Vectors (Arrays)
PathVector
TokenVector
DoubleVector
LayerOffsetVector
StringVector

Specifier
Permission

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 4 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Variability
Variant Selection Map
TimeSamples

Introduction

The USD Crate format is binary encoding of the USD scene graph. This document
aims to document the layout of the this format.

 Warning

This is a Work in Progress documentation of the USD Crate format. It is not
guaranteed to be an exact description of the format right now. Contributions to
improve accuracy are welcome.

If areas are unspecified, or if a discrepancy occurs, the implementation in the
official USD library should always take precedence as being the canonical
implementation of the format.

It is NOT yet recommended to make your own implementation based on this
document , and we encourage developers to use the official implementation.

This document does not describe the composition elements of USD.
Implementing this document will only allow for reading a single USD layer.

Versions

This document only aims to document version 0.9.0 of the Crate format and higher.
For older versions of the Crate format, please refer to the USD code
implementations.

These older crate files are exceedingly rare outside of Pixar and very early USD
adopters.

Version History

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 5 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Even though the spec only starts with 0.9.0, it is useful to understand the high level
history of versions

0.9.0: Added support for the timecode and timecode[] value types.
0.8.0: Added support for SdfPayloadListOp values and SdfPayload values with
layer offsets.
0.7.0: Array sizes written as 64 bit ints.
0.6.0: Compressed (scalar) floating point arrays that are either all ints or can be
represented efficiently with a lookup table.
0.5.0: Compressed (u)int & (u)int64 arrays, arrays no longer store ‘1’ rank.
0.4.0: Compressed structural sections.
0.3.0: (broken, unused)
0.2.0: Added support for prepend and append fields of SdfListOp.
0.1.0: Fixed structure layout issue encountered in Windows port.
0.0.1: Initial release.

Order of Reads

The Crate format is designed for minimal parsing on file load.

To achieve this, the general structure of the file is set up in the preamble section
below that must be read first.

Value types are parsed on demand from there on out.

Integers

Integers are stored with the least significant bit first to allow for fast loading on Little
Endian systems.

Index

Many fields reference into an another section to get their value. USD uses unsigned
32 bit integers as an index unless otherwise specified.

https://en.wikipedia.org/wiki/Endianness

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 6 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Compression

LZ4 Compression

Various section and data blocks use LZ4 Compression.

USD vendors the LZ4 library with modifications and can be found here. It is currently
using version 1.9.2 of the library.

The first byte of any buffer passed to be decrypted stores the number of chunks
used.

If the number of chunks is 0, then the buffer is decompressed as a whole.

If the number of chunks is specified as higher than zero, then the first byte of each
chunk represent the size of the chunk, followed by the chunk data which can be
decompressed.

In the table below, chunkSize is not provided if numChunks is zero

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numChunks chunkSize

0x0010 data

Integer Compression

Compressed integers are stored as a contiguous , homogenous array of either
32-bit or 64-bit integers.

Once read, the array of integers can be decompressed using the LZ4 algorithm.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 compressedSize data

0x0010 data

https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
https://github.com/PixarAnimationStudios/USD/tree/release/pxr/base/tf/pxrLZ4
https://github.com/lz4/lz4/releases/tag/v1.9.2

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 7 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Preamble

The Crate format has a preamble that must be read prior to parsing the rest of the
file.

This contains all the structural information that is required to identify Prim
specifications and their resulting attributes.

Bootstrap

Every USD file starts with a Bootstrap that tells us information to parse the file.

Files must start with an identifier (PXR-USDC), the version number and the offset to
the Table of Contents. There is additional reserved space at the end of the bootstrap
for future use.

Version numbers are stored as Major , Minor and Patch followed by unused bytes.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 identifier version

0x0010 toc_offset reserved

Table of Contents

The Table of Contents are found at the byte offset given by the bootstrap above.

It consist of named sections , as documented below.

Sections

Sections define a name as well as their start location and size in bytes. Section
names are 16 characters wide

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 name

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 8 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

0x0010 start size

There are several sections with their own specific internal structures.

Sections should be parsed in the order below since many sections depend on their
predecessors.

Tokens

The TOKENS section defines all the tokens within the file in their compressed form.
The section must be null terminated.

It starts with an unsigned 64-bit integer representing the number of tokens.
Following that are two unsigned 64-bit integers representing the uncompressed and
compressed size respectively.

The data section follows the compressedSize and is that many bytes long. It must be
uncompressed using TfFastCompression::DecompressFromBuffer which uses an
LZ4 decompressor.

The uncompressed data section is a null delimited array of token strings.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numTokens uncompressedSize

0x0010 compressedSize data

0x0020 data

Strings

The STRINGS section is a vector of Indexes into the Tokens section.

It starts with an unsigned 64-bit integer representing the number of strings.
Following this is a contiguous array of index values.

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 9 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numIndices data

0x0010 data

Fields

The FIELDS section stores the TfToken index and associated VtValue The indices are
stored first as an LZ4 compressed set of Index values.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numFields compressedIndices

0x0010 compressedIndices

This is followed by an unsigned 64-bit integer representing the compressed size of
the Value Representations. Following the size is the LZ4 compressed set of value
representations.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 dataSize compressedData

0x0010 compressedData

Field Sets

The FIELDSETS section stores a grouping of fields that are presented together.

The section starts with an unsigned 64-bit integer representing the number of
indexes.

Field Sets are stored in a flat list of indexes into the FIELDS section, where groups are
terminated by a default initialized FieldIndex (0).

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numFields compressedIndices

0x0010 compressedIndices

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 10 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Paths

The PATHS section stores a list of compressed SdfPaths used in the file. To start ,
the section starts with an unsinged 64-bit integer for the number of total paths.

See below for details on the path compression algorithm.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numPaths compressedPaths

0x0010 compressedPaths

The compressed paths are stored as a series of indexed tokens that make up the
path.

To start is a 64 bit unsigned integer that represents the number of paths.

Following this is a compressed integer array of Index’s into the Tokens section that
represent the path.

Next is the Element Token Index array. It consists of a compresed integer array of
signed 32-bit integers. Positive elements represent an index to which path element
should be added to the parent to construct the full path. Negative elements are prim
property path elements.

Jumps define the hierarchy of this path. This optimizes storage for broad hierarchies
over deep ones. They are stored as compressed array of signed 32-bit integers.

0 represents only a sibling.
-1 represents only a child.
-2 represents a leaf.
Positive numbers define sibling offset relative to the current index.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numPaths pathIndexes

0x0010 pathIndexes

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 11 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

0x0020 elementTokenIndexes

0x0030 jumps

Once you’ve read the paths section, you should 3 arrays that will let you build the
paths:

Path Indexes
Element Token Indexes
Jumps

To build the path array we need to recurse over the data. Start with the current index
(X) being 1, to represent the first iteration. This will reflect the implicit root (“/”) of the
layer.

Once you have this element, add it to the path array at the index you find in the Path
Index array at X. Use this path as your parent path for future iterations.

Now check the Jumps array at Index N to see if the path has siblings or children.

It has children if the value is either greater than 0 or -1
It has siblings if the value is greater or equal to 0

If it has siblings, you get the sibling index (S) by taking N and adding the value in the
jumps array at X, then adding 1. Use the current element as the parent path and run
this iteration again with the sibling index as X, and whatever parent path you’ve built
thus far.

Building siblings is designed to be a parallelizable algorithm.

Once siblings are evaluated, or if the element had a child, you should then reset the
parent path to whatever is stored in your Path array at the index from the Path
Indexes array at X.

Repeat the process with an incrementing index (X++) as long as Jumps shows the
element has children or siblings to process.

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 12 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

For any iterations (X), where a parent path has been calculated by a previous
iteration (X-1), the new path is defined by looking up the Element Token Index array
at X to get the element token index (E).

If the value of E is less than 0, it is a prim property path, otherwise it is another prim
path.

Use the abs(value) of this index E to look up the token in your Tokens section at that
index. Append this token to the parent path as either an element or a property to get
your new path.

As before with the root iteration, add this to your Paths array at the index derived
from looking up the Path Indexes array at your current iteration value (X).

Specs

The SPECS section combines the data from the previous sections and creates a
resulting PrimSpec.

The section starts with an unsigned 64-bit integer representing the number of specs.

The section is then made up of 3 compressed integer arrays:

Path indexes consisting of Indexes into the Path section
Field Set indexes consisting of Indexes into the Field Sets section.
SpecTypes which are a series of unsigned 32-bit integers corresponding to the
SpecType enum.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 numSpecs pathIndexes

0x0010 pathIndexes

0x0020 fieldSetIndexes

0x0030 specTypes

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 13 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Spec Types are integer backed enums.

Certain types are marked as being Internal to Pixar. These are implementations of
Pixar’s internal software and are therefore reserved for use. Though they are
documented below for completeness, they should not be used for other purposes.

Constructing the Layer

Once you have read the Preamble, you can then start constructing the prim hierarchy
of this individual USD Crate file that can act as a layer within a USD composition.

 Warning

Spec Type Key Description

Unknown 0 An unknown type

Attribute 1 Attributes under a Prim Spec

Connection 2 Connections between rel attributes

Expression 3 Scripted Expressions or named plugin expressions (Internal to Pixar)

Mapper 4 Used to modify the value flowing through a connection (Internal to Pixar)

MapperArg 5 Arguments for a mapper (Internal to Pixar)

Prim 6 A Prim specifier

PseudoRoot 7 The Pseudo Root that exists for all Sdf Layers

Relationship 8 A relationship description

RelationshipTarget 9 The Relationship target

Variant 10 A definition of a specific variant

VariantSet 11 A group of variants]

NumSpecTypes 12 A sentinel to represent the number of types

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 14 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

As noted above, implementation of this document only allows for reading a single
USD file layer. It does not describe composition however as that is a higher level
functionality of the USD library.

You should now have a mapping of:

Prim and Property Paths from the Paths section
Fields consisting of their associated Token and Value Representation.
Field Sets consisting of groups of Fields
Specs that associate paths with Field Sets and a Spec Type

Therefore each node consists of:

A Path
A SpecType
A Field Set

Fields are made up of Value Representations that are deferred for parsing. See the
section below on how to parse the range of Value Representations.

Layer Metadata

Layer Metadata is derived from the Field Sets on the PseudoRoot.

Common metadata in layers are, but not limited to:

Name Type Description

comment string Top level comment for this layer

customLayerData dictionary Custom user specified data

defaultPrim token The prim to use when this layer is referenced

documentation string Top level documentation for this layer

metersPerUnit double The scale unit for this layer

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 15 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

primChildren token[] A list of top level children to limit the layer to

timeCodesPerSecond double The time unit used

upAxis token The Up Axis of the scene

Prims

Prims have the spec type of Prim.

Prims are defined by the field set as below. However prims may have many more
fields than this, especially depending on the schema type of the prim.

Variant Sets

Variant Sets have the VariantSet spec type, and the following fields

Name Type Description

specifier SdfSpecifier Whether this is a def, over or class

typeName token The optional prim Type

kind token The kind of this prim (component, assembly etc)

active bool Whether this prim is active or not

apiSchems TokenListOp The API schemas to apply to this prim

variantSelection VariantSelectionMap The variants selected for this prim spec

references ReferencesListOp A list of references this prim should use in composition

inherits PathListOp A list of prims this inherits from

properties token[] List of name of prim properties

primChildren token[] List of child prims to limit to

comment string The comment for this prim

documentation string The documentation for this prim

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 16 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Name Type Description

variantChildren token[] A list of the names of the variants in this set

Variants

Variants have the Variant Spec Type. They have the following fields.

Variants encapsulate their own hierarchy for use in composition later.

Properties (Attribute)

Properties are of the Attribute SpecType. They are the individual data members of
each composed prim.

The fields for properties are, but are not limited to:

Name Type Description

typeName token The name of the type

custom bool Whether or not this is a custom property

variability variability See the Variability section below

default Value The static value

timeSamples TimeSamples The TimeSampled animated values

connectionPaths PathListOp The list of paths this is connected to

Value Representations

Crate stores Value Representations as data blobs that are read on demand. This
allows large USD scenes to be read incredibly quickly by deferring all data reads to
the latest point possible.

Value reps are stored as an unsigned 64 bit integer.

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 17 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

The first byte refers to the type enum value. The second byte has bit flags to
represent characteristics of the type:

Array Bit Mask is 1ull << 63 or 0x8000000000000000
Inlined Bit Mask is 1ull << 62 or 0x4000000000000000
Compressed Bit Mask is 1ull << 61 or 0x2000000000000000

This is followed by 6 bytes of data.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000type flags payload

If possible, we attempt to store certain values directly in the local data, such as ints,
floats, enums, and special-case values of other types like zero vectors, identity
matrices, etc…

For values that aren’t stored inline (offset types), the 6 data bytes are the offset from
the start of the file to the value’s location.

Refer to the Value Types section below for documentation on different value types.

Inlined Types

Inlined types are stored directly in the payload of the value representation.

They cannot have the compressed or array bits set.

For types of a single dimension, you can simply cast the data bytes to the given type.

For single dimensioned types like Vec2i , elements are stored as signed 8 bit
integers and cast to the native type of the container.

For multidimensional type like Matrix2D, the data is stored as the diagonal signed 8
bit integers and then cast to the native type of the type.

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 18 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

E.g a Matrix3D is stored as

1 - -
- 1 -
- - 1

Singular Offset Types

If a value representation has the array bit set to False, it can be treated as a singular
value. The data of non-inlined types are stored at the offset defined by the payload
value.

The bytes at the offset are a direct memory representation of each types’ payload or
are parsed based on the specifics of the types’ implementation.

Array Offset Types

Array values may be stored in multiple ways.

If the payload of a Value Rep is 0, then the array can be assumed to be empty.

Uncompressed arrays use an unsigned 64 bit integer at the head of the data to
represent the number of elements. Elements are stored as a contiguous array of the
singular type used.

Array compression will vary based on the type of the value representation.

Compressed Integer Arrays

Compressed integer arrays are stored with the element count as an unsigned 64bit
integer. Data can then be read with the standard integer compression algorithm.

Arrays that are 16 bytes or smaller are not compressed.

Compressed Floating Point Arrays

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 19 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Compressed float arrays start with an unsigned 64 bit integer to represent their
element count.

Arrays that are 16 bytes or smaller are not compressed.

Following this, a char is used to represent the array encoding scheme:

i for integer compression (follow the compressed integer array logic)
t for lookup tables (described below)

The size of the lookup table (LUT) is a 32bit unsigned integer. The LUT data is read
as a contiguous array of the given type. Following that is a compressed array of
integers representing the indexes that should be used to populate the output array
by looking up the LUT indices in order.

Value Types

The following types are valid Value Representation types in USD.

Type Table

The following section enumerates the USD type table used to identify value types.

All type values are documented below the table.

Name ID C++ Type Supports Array

Invalid 0

Bool 1 bool ✓

UChar 2 uint8_t ✓

Int 3 int ✓

UInt 4 unsigned int ✓

Int64 5 int64_t ✓

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 20 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

UInt64 6 uint64_t ✓

Half 7 GfHalf ✓

Float 8 float ✓

Double 9 double ✓

String 10 std::string ✓

Token 11 TfToken ✓

AssetPath 12 SdfAssetPath ✓

Quatd 16 GfQuatd ✓

Quatf 17 GfQuatf ✓

Quath 18 GfQuath ✓

Vec2d 19 GfVec2d ✓

Vec2f 20 GfVec2f ✓

Vec2h 21 GfVec2h ✓

Vec2i 22 GfVec2i ✓

Vec3d 23 GfVec3d ✓

Vec3f 24 GfVec3f ✓

Vec3h 25 GfVec3h ✓

Vec3i 26 GfVec3i ✓

Vec4d 27 GfVec4d ✓

Vec4f 28 GfVec4f ✓

Vec4h 29 GfVec4h ✓

Vec4i 30 GfVec4i ✓

Matrix2d 13 GfMatrix2d ✓

Matrix3d 14 GfMatrix3d ✓

Matrix4d 15 GfMatrix4d ✓

Dictionary 31 VtDictionary

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 21 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

TokenListOp 32 SdfTokenListOp

StringListOp 33 SdfStringListOp

PathListOp 34 SdfPathListOp

ReferenceListOp 35 SdfReferenceListOp

IntListOp 36 SdfIntListOp

Int64ListOp 37 SdfInt64ListOp

UIntListOp 38 SdfUIntListOp

UInt64ListOp 39 SdfUInt64ListOp

PathVector 40 SdfPathVector

TokenVector 41 std::vector<TfToken>

Specifier 42 SdfSpecifier

Permission 43 SdfPermission

Variability 44 SdfVariability

VariantSelectionMap 45 SdfVariantSelectionMap

TimeSamples 46 TimeSamples

Payload 47 SdfPayload

DoubleVector 48 std::vector<double>

LayerOffsetVector 49 std::vector<SdfLayerOffset>

StringVector 50 std::vector<std::string>

ValueBlock 51 SdfValueBlock

Value 52 VtValue

UnregisteredValue 53 SdfUnregisteredValue

UnregisteredValueListOp 54 SdfUnregisteredValueListOp

PayloadListOp 55 SdfPayloadListOp

TimeCode 56 SdfTimeCode ✓

NumTypes 57

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 22 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Base Types

The following types are foundational types that are used to compose other types.

Bool

The Bool type is a basic Binary boolean that can be checked by taking any non-zero
number as True.

UChar

An unsigned character bit , represented by a single unsigned 8-bit integer.

Int

A signed 32-bit integer

Uint

An unsigned 32-bit integer

Int64

A signed 64-bit integer

UInt64

An unsigned 64-bit integer

Half

A 16-bit floating point data type

Float

A 32-bit floating point data type

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 23 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Double

A 64-bit floating point data type

String

Strings are stored in the file as an index to a token in the Token section.

Token

Tokens are stored in the file as an index to a token in the Token section.

AssetPath

AssetPaths are stored in the file as an index to a token in the Token section.

Payload

A payload represents a prim reference to an external layer. It is similar to a reference
but allow for deferred loading.

The first field is the asset layer path, represented by an index to an asset path in the
Strings section. An empty string represents an internal reference.

This is followed by an index into the Paths section representing the prim to use. If no
prim is specified, then use the defaultPrim or fallback to the first top level prim.

Finally, it is followed by 16-bytes that represent the layer offset.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 assetPathIndex primPathIndex layerOffset

0x0010 layerOffset

ValueBlock

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 24 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

A special value type that can be used to explicitly author an opinion for an attribute’s
default value or time sample value that represents having no value. Note that this is
different from not having a value authored.

Value

A Value type allows for an indirect pointer to another value somewhere else in the
file.

It is represented by signed 64-bit integer offset which points to a Value
Representation stored at the offset from the current seek pointer in the file.

It is important to guard against recursion here so that pointers don’t create an infinite
loop. The default behaviour is to return an empty value if a recursion is detected.

UnregisteredValue

A representation of unregistered metadata field values.

Read in the same way as a Value, as an indirection pointer to the real data. Possible
value types are * Strings * Dictionaries * UnregisteredValueListOps

If the type is something else, return an empty value.

TimeCode

A single Double that represents an SdfTimeCode

Other Types

When traversing a USD crate file, other data types used by SDF are involved, and
described here. These are not directly referencable as Value Representations but are
used by other container types below.

References

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 25 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

A reference type represents an SdfReference and all its metadata.

The first field is an index into the strings section which represents the asset path for
the reference. An empty string represents an internal reference.

This is followed by an index into the Paths section for the path of the Prim to
reference. If the PrimPath is empty, the recomendation is to use the defaultPrim,
falling back on the first top level prim.

Next is a layer offset value corresponding to an SdfLayerOffset represented by 16
bytes.

Finally, it’s followed by a data blob representing a Dictionary.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 assetPathIndex primPathIndex layerOffset

0x0010 layerOffset customData

0x0020 customData

Layer Offset

A layer offset represents a time offset and scale between layers. It is represented by
two doubles.

The first represents the time offset to be used , and the second the scale. Scale
should always be applied before the offset.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000 timeOffset scale

Quaternions

Quaternions are represented by four contiguous elements of a given type.

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 26 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

The first three make up the imaginary coefficient. The last the element is the real
coefficient.

QuatD

A Quaternion using doubles as the core type.

QuatF

A Quaternion using floats as the core type.

QuatH

A Quaternion using halfs as the core type.

Vectors (Mathematical)

Vectors are fixed length contiguous arrays of a given type.

Vec2d

A vector with 2 doubles.

Vec2f

A vector with 2 floats.

Vec2h

A vector with 2 halfs.

Vec2i

A vector with 2 32-bit integers.

Vec3d

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 27 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

A vector with 3 doubles.

Vec3f

A vector with 2 floats.

Vec3h

A vector with 3 halfs.

Vec3i

A vector with 3 32-bit integers.

Vec4d

A vector with 4 doubles.

Vec4f

A vector with 4 floats.

Vec4h

A vector with 4 halfs.

Vec4i

A vector with 4 32-bit integers.

Matrix

Matrix types are NxN dimensional groups of Doubles. They are defined in a
contiguous row-major order so matrix[i][j] refers to row i and column j.

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 28 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Identity Matrix values have all cells zeroed out, except for the diagonal from top left (
0,0) to bottom right (N,N) which are set to 1.

Matrix2d

A 2x2 matrix

Matrix3d

A 3x3 matrix

Matrix4d

A 4x4 matrix

Dictionary

A Dictionary is a key:value map of data.

The Value Representation starts with an unsigned 64-bit integer representing the
number of elements in the dictionary.

Keys are strings, stored as an index to a token in the Token section.

Values are a 64-bit unsigned integer representing the offset from the start of the file
to a value representation.

List Operations

List Operations (ListOps) are a value type representing an operation that edits a list.
It can make modifications like:

Adding or removing items
Reordering Items
Replacing items

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 29 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0000header size data

0x0010 data

Header

ListOps have an 8-byte bitmasked header that determine what type of operation is
being run.

In order, from least to most significant bit:

IsExplicit : Removes all items and changes the list to be explicit
HasExcplicitItems : Fills the list with the items included in this ListOp
HasAddedItems : Adds the items included in this ListOp
HasDeletedItems : Removes the items specified in this ListOp
HasOrderedItems : Reorder the list based on the item order in this ListOp
HasPrependedItems : Prepend the items from this ListOp
HasAppendedItems : Append items from this ListOp

Contents

The header byte is then followed by an unsigned 64-bit integer representing the
number of elements stored in the ListOp

Following this is a contiguous array of uncompressed elements of the given ListOp
type.

TokenListOp

A ListOp made of Tokens, stored as an array of Indexes referencing the Tokens
section.

StringListOp

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 30 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

A ListOp made of Strings, stored as an array of Indexes referencing the Tokens
section.

ReferenceListOp

A ListOp consisting of References. See the References section below.

IntListOp

A ListOp consisting of signed 32-bit Integers

Int64ListOp

A ListOp consisting of signed 64-bit Integers

UIntListOp

A ListOp consisting of unsigned 32-bit Integers

UInt64ListOp

A ListOp consisting of unsigned 64-bit Integers

PayloadListOp

A ListOp consisting of a Payload. See the Payload section above.

UnregisteredValueListOp

A ListOp consisting of Unregistered Values. See the UnregisteredValue section
above.

Vectors (Arrays)

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 31 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Vectors are arrays of a given type stored contiguously. These are different in intent
from the mathematical vectors listed above, and their naming reflects the container
type in programming languages like C++.

They always start with a 64-bit unsigned integer reflecting the number of elements,
which is followed by a contiguous array of the specific data type.

PathVector

Consists of Index signed integers referencing the Paths section

TokenVector

Consists of Index signed integers referencing the Tokens section

DoubleVector

Consists of Doubles

LayerOffsetVector

Consists of Layer Offsets

StringVector

Consists of Index signed integers referencing the Tokens section

Specifier

A 32-bit integer backed enum that defines the possible specifiers for a prim. These
are representations of SdfSpecifier.

Spec Type Key Description

Def 0 Defines a concrete prim

Over 1 Overrides an existing prim

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 32 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

Class 2 Defines an abstract prim

NumSpecifiers 3 The number of possible specifiers

Permission

A 32-bit integer backed enum that defines permissions. Permissions control which
layers may refer to or express opinions about a prim.

These are representations of SdfPermission.

Variability

A 32-bit integer backed enum that defines variability for an attribute. Variability
indicates whether an attribute is uniform or time varying.

These are representations of SdfVariability.

Spec Type Key Description

Varying 0 Can be animated

Uniform 1 Can only be static

NumVariability 2 The number of possible variability types

Variant Selection Map

A string:string map of reference variant set names to variants in those sets.

Spec Type Key Description

Public 0 Public prims can be referred to by anything

Private 1 Private prims can only be referred within the local layer stack

NumPermissions 2 The number of possible permissions

11/10/22, 1:12 PMUSDC File Format Specification — Universal Scene Description 22.11 documentation

Page 33 of 33file:///Users/dhruvgovil/Projects/tmp/usddocs/spec_usdc.html#properties-attribute

It starts with an unsigned 64-bit integer representing the number of elements.

The following data block is filled with pairs of Indexes into the String section stored
as contiguous key:value pairs.

TimeSamples

Timesamples store a series of time varying ValueReps

It starts with a signed 64-bit integer that presents an offset from the current seek
pointer in the file. This points to the location where time values are stored.

At this offset you’ll find a Value Representation that consists of an array of the time
values.

Following the original offset will be another signed 64-bit integer that represents an
offset from its current seek position in the file.

This offset will point to a block the values for the time samples are stored. The head
of this block is an unsigned 64-bit integer representing the number of Value
Representations that will be found after it.

These values are index-mapped to the time samples that were read.

