Notes 3
Appendix A. Bounce-averaged drifts

For the analytical, shifted circle model, the important geometric coefficients are defined
below

gradpar = b - VO = Gy(1 — ecos(d)) (A1)

where € < 1 is the aspect ratio of the flux surface of interest. In this analytial model, we
can also write the integrated local shear

gds21 = W =3 (ga - O‘“ng sin(0)> ., aMHD = —(1%25% (A2)
and the binormal component of the grad-B drift
ehrift = %(b < VB)-Va (A3)
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where we have used (A 2) to obtain the final expression for ghdrift. The geometric factor
corresponding to the binormal component of the curvature drift
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Note that the quantities fo and f3 are scalar factors used to match analytical expressions
with their numerical values. Using all these quantities, we can calculate the bounce-
averaged drift

2 dp 1 w?
_ 2 ; 1 :
<WDS> = /6bl biwwiu |:'lU|CVdI'lft —+ ngdrlft} (A 8)
where 01 and 62 are bounce angles. As used in Connor et al. and shown by Hegna, in
the limit of a large aspect ratio shifted circle model, the parallel speed of a particle with
a fixed energy F is
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where A = u/E is the pitch angle, u = mw? /(2B) is the magnetic moment, E = mw?/2
the particle energy, and the parameter
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is a reparametrization of the pitch angle . Using these geometric simplifications, and
wl/2=F— wﬁ/?, we can write the bounce-averaged drift as

251n_1(]q)
- AB (0/2)2) cvdrift
<WD> /2sm1(k) b-Vo |:\/6 0\/ SlIl / ) )CV Il
VIR = GO ! ghdrift
— VeAB brift + e
m 2 g \/e)\Bo \/k2 Sln 9/2)) 2 } ( )

Using the following identities, we can further simplify (A 11)
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where K and FE are incomplete elliptic integrals of the first and second kind, respec-
tively. Using these formulae, to lowest order, we can write all the three terms in the above
equation, and the evaluated analytical bounce-averaged drifts give us
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After rearranging the terms, we can write
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(A 20)
To be removed later To resolve the smaller discrepancies between the analytical and

numerical values, it is important to note that we have dropped all terms of the order e
from the analytical integrals.



