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Appendix A. Bounce-averaged drifts
For the analytical, shifted circle model, the important geometric coefficients are defined

below

gradpar = b · ∇θ = G0(1− ϵ cos(θ)) (A 1)

where ϵ≪ 1 is the aspect ratio of the flux surface of interest. In this analytial model, we
can also write the integrated local shear

gds21 =
∇ψ ·∇α
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)
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(A 2)

and the binormal component of the grad-B drift

gbdrift =
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B2
(b×∇B) ·∇α (A 3)
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(A 4)

where we have used (A 2) to obtain the final expression for gbdrift. The geometric factor
corresponding to the binormal component of the curvature drift
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Note that the quantities f2 and f3 are scalar factors used to match analytical expressions
with their numerical values. Using all these quantities, we can calculate the bounce-
averaged drift

⟨ωDs⟩ =
∫ θb2
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(A 8)

where θb1 and θb2 are bounce angles. As used in Connor et al. and shown by Hegna, in
the limit of a large aspect ratio shifted circle model, the parallel speed of a particle with
a fixed energy E is
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(A 9)
where λ = µ/E is the pitch angle, µ = mw2

⊥/(2B) is the magnetic moment, E = mw2/2
the particle energy, and the parameter
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, (A 10)
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is a reparametrization of the pitch angle λ. Using these geometric simplifications, and
w2

⊥/2 = E − w2
∥/2, we can write the bounce-averaged drift as
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∫ 2 sin−1(k)
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(A 11)

Using the following identities, we can further simplify (A 11)
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(A 12)
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(A 13)
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I3 =

∫ 2 sin−1(k)

−2 sin−1(k)

dθ
√
k2 − sin(θ/2)2 θ sin(θ)

=
16k

9

[
2(−1 + 2k2)E − (−1 + k2)K

]
(A 15)
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(A 16)
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where K and E are incomplete elliptic integrals of the first and second kind, respec-
tively. Using these formulae, to lowest order, we can write all the three terms in the above
equation, and the evaluated analytical bounce-averaged drifts give us
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After rearranging the terms, we can write
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(A 20)

To be removed later To resolve the smaller discrepancies between the analytical and
numerical values, it is important to note that we have dropped all terms of the order ϵ
from the analytical integrals.


