Appendix B

Distribution-to-Distribution NDT

In this appendix, we start from the approximation of the log-likelihood of pdf addressed in the
Point-to-Distribution NDT [7]. Then, we paraphrase the derivations of the objective function,

the gradient vector, and the Hessian matrix of the Distribution-to-Distribution NDT [6].

Approximation of Log-likelihood of Gaussian Probability Density Function [7]

Let p(z) = N(x | p,0?) be the probability density function of a Gaussian distribution.
Minimizing p(z) is often replaced by minimizing log(p(z)) due to the property of logarithms.
However, log(p(x)) could be unbounded below when p(z) is close to zero. To prevent this issue
from happening, Magnusson [7] suggests to add a base pdf value 0 < ¢, < 1 and a scale factor

¢ > 0 to approximate p(x), that is,

1 1 (z — p)?
p(z) = Eexp(—g%) (B.1)
)2
~ () = cvexp(— 5 1) o, ®2)

N2

log(7(r) = log(er exp(—3 1) 1 0y ®3)
2

~ plx) = dy exp(—%%) + ds (B.4)

where dy,dy > 0,d; < 0 are computed by assuming the approximated value and the original

value are identical at y, © + o, and 400, that is,

log(p(p)) = p(u), log(p(p £ o)) = p(p £ 0), log(p(£00)) = p(400). (B.5)
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Therefore, we have

dl = IOg(Cl -+ CQ) — dg, (B6)
1 1 —d
dy = —2log ( og(er exp( d2) e 3) (B.7)
1
dg = log(Cg). (B8)

In the implementation in [7], these parameters are chosen as empirical values. Following

the same approximation, we can derive the following multivariate version:

argmax N (x | pu,Y) = argmax log(N(z | p, X)) (B.9)

d
A argmax d; exp(—é(m — )Y@ —p)). (B.10)
Note that d3 is omitted since it is a constant and does not influence the optimization.

Objective Function of Distribution-to-Distribution NDT [6]

Recall eq. (3.9), the L, distance between two NDT models is

DN N = [N (@ | b 5,) = Na | g, ) de
— [ W] 5P et [N | 10,2 do

2 [ N(@ | 195 N | 2, de (B.11)

The first and second terms in eq. (B.11) are constants, and the third term can be simplified as,

— Q/N(a: | tp, 2p) N(x | pg, 2y) de (B.12)
:—Q/J\/'(O|p,p—yq,2p—|—2q)N(w|uc,20)dw (B.13)
=—2N(0] pp — pg Zp + 1) (B.14)

where pe = (5,1 4+ 3,1 7HE pp + X 1g), X = (8,142,171 Equation (B.13) follows

eq. (371) in Section 8.1.8 of the Matrix Cookbook [21] and can be proved by expansion.
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After combining all the correspondences, the optimized parameter ®, and the approximation

in eq. (B.10), the final optimization problem then becomes eq. (3.12).

argminHDLQ(T(/\/pk, ©), Nu) (B.15)
® k4
=argmin [ [ Dp, (W (Rppr. + t, RS R"), N (gi, Sgi) (B.16)
Rt =1
= argmin — HN(O | Rpgpis +t — prgr, RE, R 4 Sgr) (B.17)
Rt Pt
= arg min Z —1log(N(0 | Rptpr +t — prgr, RERT + 1)) (B.18)
Rt 1
—~ : . dy T T -1
~ ar%%r?ln Z —d; exp (—E(Rupk +t— pgr) (RELR + X)) (Rptpr +t — pgr))
k=1
(B.19)
Gradient Vector and Hessian Matrix of Distribution-to-Distribution NDT [6]
Following the notations in [6], we define
Ppq = Ry +t — g B=(RE,R" +%,)! (B.20)
) Optpg O(Rpp+1t) OB~ J(RX,R")
Ja = 90, 90, “T 90, 90, ®.20)
2 2 t QBfl 2 Ez T
Hy= 2tea Oy tt) ) OB O g5
00,00, 00,00, 00,00, 00,00,
The objective function of a single correspondence is
dy 1
fazanat(©, Ny, Ny) = —dy eXP( = Hpg Bltpq) (B.23)
The components of the gradient vector are
dyd d
V(©)a = =5 exp(— g Bhtpg) - ta (B.24)
Ga = 211'qu.7& - /J’Z;qBZaBIJ’Pq (B25)
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B B!
Note that we apply the property 88 5 = —B%B =—-BZ,B.

After that, the components of the Hessian matrix are

d T :
V2f(©)a = didy exp(—fu,quupq)(J{f Bja — MpgBZyBja + tpg BHab
—WpqBZa B3 + tpgBZaBZyBipg

1 d
~ 5 HpaBZuBlipg — - Gah). (B.26)

where g, follows eq. (B.25) but use the derivatives to Oy,

Analytical Expressions of j,, H,p, Z,, Zyp

To compute these expressions, we first compute on and PR We have
P P . PU 50, ' 90,00,
R = Rx(Hm)Ry(Qy)Rz(HZ) (B.27)
CyCs —5.Cy Sy
SzSyCy + 8:Cx —8;5yS; + CxC, —SzCy (B-28)

SzSz — SyCaCy  SzCy + SyS.Cy CyCy

where s, = sind,, s, =sin6,, s, =sinf,, c, = cosl,, ¢, = cosb,, c, = cos0,.
The derivatives of 12 with respect to translation parameters ¢,, ¢, t. are zero matrices since

R is only related to 0,0, 0., i.e.,

OR OR OR
Db e ek gy B.29
ot, ot, ot, (B.29)
where 03,3 represents the 3x3 zero matrix.
For the same reason, we have
0’R
(B.30)

90,00, O3

where a or b € {t,,1,,t.}.

The next page shows the derivatives of 12 with respect to 6, 6,,0..
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O’R
00,00,

0*R
00,00,

O*R
00,00,

0

0 0

=84S, + SyCrCy  —SzCp — 8yS,Cp —CyCy

SzSyCy + 8:Cx —SzSyS, + CpCr —SzCy
—5yC ENER Cy
SpCyCy  —858,Cy  SzSy
—CgCyCy  8;C3Cy  —S8yCy

—5,Cy —CyCs 0
—835y5, + CpC. —835,C, — S,¢p 0
S2Cy + 8yS,C  —855, + SyCzC; 0

0 0 0

—5835yC; — 5,Cp  SpSyS; — CzC;  SgCy

=84S, + SyCrCy  —83C, — SyS,Cp —CyCy

—CyC, 5:Cy —5y
—555yC;  Sz8yS.  SzCy
SyCaCs  —8yS,Cp  —CyCy

—CyC 5,Cy 0

—88yCy — 8,Cp  S38yS; — gy 0

—828, + 8yCaCs —55C, — 5yS.¢, 0

0

CaCyCs

0

0 0

5,C5Cy  SyCy

S5CyCy  —8545;Cy SzpSy

0 0

—8,C, — 8yS,Cp  SzS, — SyCyc, 0

—88yS, + CuCs —835,C; — 8.6, 0

SyS.
—5825,Cy

5,C5Cy

SyCs 0
—58,¢yC; 0
CzCyC; 0
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Therefore, we can derive j4, Hap, Z,, Z4p from eq. (B.31) to eq. (B.39).

joo = (1,0, 0 jo, =10, 1, 0 jo. =10, 0, 17
Jo, = g—equp Jo, = g—eRyup Jo. = g—zﬂp
Hg,o, = %“’p Hyg,, = %Mp Hy.o, = ?;ejjﬂp
Hgy,p, = aa;jy Hp Hg,o, = ;ZZZ Hp Hy,. = 689292 Kp
Note that H,, = 0 whena or b € {t,,1,,t.}.
Zy, = Zy, = Zp. = Osns
e B B
Zy, = STRE RT + (STRE RT)T
Zezzggz p +(§Z pIt)
Zoo. = (Gt + SEm, G + (G, RT + She, Sy
Zop, = <%2 R S (G0N <%2 R S G
Zoa. = Gm i + e, G + Gllm et + Shs, Sy
T, = (g S+ G GO + (G oSyt 4 Sl ()"
Zo. = (g oD T + D0t (O2Ly7 4 <%EPRT + s, Gy
Zos. = (g5 Zot! + S B+ (g e ol + GG

Note that Z,, = O3x3 whena or b € {t,,%,,t.}.

Finally, the values of eq. (B.24) and eq. (B.26) can be computed.
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