Core Ethereum Smart Contracts for Polymath - The Securities Token Platform
Switch branches/tags
2.0.0-readme-update 2.2.0-merge-into-3.0.0 CLI-Permissions-Manager CLI-improvements CLI-minor-updates CLI-verifyTransfer-Bug CPSTL-contribute-md CPSTL-patch-1 CPSTL-patch-2 CPSTL-patch-3 CPSTL-patch-4 Cli-minor-updates EtherscanAPI-strMigrator MATM-Fix MATM-Issuance-Fix MATM-new-functions ModuleFactory-variables-visibility Optimise-GTM POLY-to-USD PercentageTM-admin-permission Permission-Manager-Changes Remove-redundant-getters ST_FIX_PR327 Split-out-ISTO Standardize-proxy-approach TravisCI-cron-jobs Use-Bokky's-timestamp-library-in-ScheduledCheckpoint Vesting-Escrow-Wallet add-checkpoint-times add-date-time-library anti-optimize-gtm audit_fix_iterate_investors bakii-travis-fix better-fees black capped-sto-fix cappedsto-price-fix change-cappedSTO-description circle-ci circleci-dev3 cli-count-and-percentage-TM contracts-grammar-check-dev1.5.0 controller core-diagram count-TM-Audit-Change countTM-Audit-Change coverage-optimization coveralls-fix create-checkpoint customModules dev-2.1.0-master dev-2.1.0 dev-2.2.0 dev-3.0.0 development-1.5.0 disclaimer-ptm dividend-delegate dividend_exclusion divident-transfer docs-fix-master docs-script-improve docs-solc-fix document-getSTODetails event-upgradability faucet-fix fetch-PolyToken-from-PMRegistry fix-1 fix-3 fix-4 fix-10 fix-15 fix-coverage fix-deploy-address fix-investorCount fix-linter-errors fix-signing-issue-gtm fix_cli_for_max_modules_change force_transfer forced-transfer forcedTransfer fuzz-test-VRTM fuzz-test-adding-removing-modules fuzz-test-permissions-manager-module general-fixes-st greenkeeper-fix greenkeeper/ethers-4.0.19 greenkeeper/ethers-4.0.20 greenkeeper/ethers-pin-4.0.18 greenkeeper/ethers-pin-4.0.19 greenkeeper/ganache-cli-6.2.0 greenkeeper/ganache-cli-6.2.1 greenkeeper/ganache-cli-6.2.2 greenkeeper/ganache-cli-6.2.3 greenkeeper/ganache-cli-6.2.4 greenkeeper/ganache-cli-pin-6.1.8 greenkeeper/solc-0.5.0 greenkeeper/solc-0.5.1 greenkeeper/truffle-5.0.0 greenkeeper/truffle-contract-4.0.0 image-update improve-coverage improve-freezing improve-getter-mr improve-readme increase-coverage index-moduleAdded-params-ST indexed-matm interface-improve katipult_integration lockup-fix lockup-tm-fixes master-circleci master-dev-2.1 master matm-fixes matm-to-master migration-scrit-to-2.0.0 mint-in-one module-label-changelog module-labeling monitoring-scripts more-info-transfer multi-identity multiple-controllers multiple-stable-coins multiple_types new-tokenInfo-script new_poly_oracle nonce-fix off-chain-validation optimize-dividend optimize-verifytransfer owner-fix-mr pr/262 precompute-hashes private/fede/cli/polymathRegistry proxy-deplyoment-usdt reinvent-lockup release-2.0.0 remove-blocking-MATM remove-delegate remove-log-oracles rename-vrtm revert-329-voting-module-oct revert-433-Optimise-GTM rounding-fix safemath sample_modules signed-transfer-manager-fixed signing-fix single-use-migrator some_changes str-fix token-info-script token_owners_str tokeninfo-trycatch touches transfer-manager-with-signed-data truffle-5 unverify update-openZeppelin-and-oraclize-IERC20-workaround update-openZeppelin-and-oraclize update-tokenInfo-script upgradability upgrade-clean upgrade-in-constructor upgrade-keccak upgrade-mr upgrade-str usdtieredsto-desc usdtsto-changes usdtsto-migration volTM-module voting-module-oct-reopen voting-module-oct voting-module-test-refactor voting-module voting-pr-test warning windows-support withholding_tax_on_dividends withholding yarn
Nothing to show
Clone or download
Latest commit 9352849 Dec 17, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.circleci Increased no o/p timeout Dec 14, 2018
.github/ISSUE_TEMPLATE formatting Aug 30, 2018
CLI fixed issue with CLI and added more flattener commands Nov 16, 2018
audit reports replaced audit report for 2.0.0 Nov 20, 2018
contracts MATM to master (#435) Nov 26, 2018
docs add new core 2.0.0 diagram to readme Nov 27, 2018
migrations fixed deployment on Kovan Nov 6, 2018
scripts comment Dec 14, 2018
test MATM to master (#435) Nov 26, 2018
.babelrc initial truffle setup Mar 6, 2018
.eslintrc.js copy files over based on dev 1.5.0 Oct 5, 2018
.gitattributes Made .sol prettier on GH Apr 6, 2018
.gitignore Fix merge conflict Dec 14, 2018
.npmignore release-1.3.0 Jul 25, 2018
.solcover.js Coverage config changes Oct 26, 2018
.soliumignore removed linters from travis Mar 31, 2018
.soliumrc.json removed linters from travis Mar 31, 2018
.travis.yml Combine travis and CircleCI Dec 14, 2018
CHANGELOG.md 2.0.1 MATM deployed to mainnet Nov 27, 2018
CODE_OF_CONDUCT.md formatting Aug 30, 2018
CONTRIBUTING.md Update to security vulnerability section Sep 18, 2018
LICENSE Initial commit Mar 6, 2018
NETWORK-HISTORY.md history file formatting Jul 30, 2018
PULL_REQUEST_TEMPLATE.md Update PULL_REQUEST_TEMPLATE.md Aug 28, 2018
Polymath.png update readme Mar 7, 2018
README.md Combine travis and CircleCI Dec 14, 2018
UPGRADE-PROCEDURES.md Migration script to 2.0.0 (#325) Oct 10, 2018
greenkeeper.json chore: add Greenkeeper config file Nov 5, 2018
package.json Fix merge conflict Dec 14, 2018
truffle-ci.js Fix merge conflict Dec 14, 2018
truffle-config.js fixed truffle script Nov 5, 2018
yarn.lock Fix merge conflict Dec 14, 2018

README.md

Build Status Coverage Status Gitter Telegram Greenkeeper badge

Polymath logo

Polymath Core

The Polymath Core smart contracts provide a system for launching regulatory-compliant securities tokens on a decentralized blockchain. This particular repository is the implementation of a system that allows for the creation of ST-20-compatible tokens. This system has a modular design that promotes a variety of pluggable components for various types of issuances, legal requirements, and offering processes.

Introduction to Security Tokens

What is a Security token?

A Security Token shares many of the characteristics of both fungible (erc20) and non-fungible tokens (erc721). Security tokens are designed to represent complete or fractional ownership interests in assets and/or entities. While utility tokens have no limitations on who can send or receive the token, security tokens are subject to many restrictions based on identity, jurisdiction and asset category.

Security Tokens Vs. Utility Tokens?

The concept of utility tokens is fairly well understood in the blockchain space today. Utility tokens represent access to a network, and your token purchase represents the ability to buy goods or services from that network- Think of when you purchase a arcade token to allow you to play an arcade game machine. Utility tokens give you that same type of access to a product or service. On the other hand, security tokens represent complete or fractional ownership in an asset (such as shares in a company, a real-estate asset, artwork, etc). Such as having a stake in a company, real estate, or intellectual property can all be represented by security tokens. Security tokens offer the benefit of bringing significant transparency over traditional paper shares through the use of the blockchain and its associated public ledger. Security token structure, distribution, or changes that could affect investors are now accessible to all via the blockchain.

ST-20 Interface Overview

Description

An ST-20 token is an Ethereum-based token implemented on top of the ERC-20 protocol that adds the ability for tokens to control transfers based on specific rules. ST-20 tokens rely on Transfer Managers to determine the ruleset the token should apply in order to allow or deny a transfer, be it between the issuer and investors, in a peer to peer exchange, or a transaction with an exchange.

How it works

ST-20 tokens must implement a verifyTransfer method which will be called when attempting to execute a transfer or transferFrom method. The verifyTransfer method will determine whether that transaction can be completed or not. The implementation of verifyTransfer can take many forms, but the default approach is a whitelist controlled by the GeneralTransferManager.

The ST-20 Interface

contract IST20 {

    // off-chain hash
    bytes32 public tokenDetails;

    //transfer, transferFrom must respect the result of verifyTransfer
    function verifyTransfer(address _from, address _to, uint256 _amount) view public returns (bool success);

    //used to create tokens
    function mint(address _investor, uint256 _amount) public returns (bool success);
}

The Polymath Core Architecture

The diagram below depicts a high-level view of the various modules, registries, and contracts implemented within Polymath Core 2.0.0:

Polymath Core architecture

Components

Polymath Registries

Security Token Registry (STR) - This registry tells us which tokens and tickers have been registered to it. This allows us to prevent people from reserving the same ticker as another issuer as well checking for inputs such as making sure it is a maximum of 10 characters and what the expiry date is on the respective ticker. Right now, if you reserve a ticker it last for 60 days. After it expires someone else can go ahead and reserve it or they you can re-register it.

With the 2.0.0 Core Release, when you deploy a token you do it through the ST registry and it keeps a record of which tokens have been registered within it.

The Module Registry - This registry keeps a record of all the different module factories.

The Features Registry - A registry of features that we may enable in the future but right now only Polymath has control of the features. Later, Polymath can easily turn access on and off.

To be clear, each module has its own factory which is in charge of deploying an instance of that module for the issuers token.

There are General factories which every token uses (if wanted). It works by sending the token to the factory where it asks for an instance of that said module and the token will add an instance of that module to itself. This allows for each token to have its unique modules associated with it. All of this is created through the factories and the module registry keeps a records of all the different modules factories that are registered.

As of now, Polymath is the only one that can add or register a module factory to the module registry. Polymath submits the modules to the registry, however, we are exploring different approaches to open up development to other parties such as potentially working with external developers to provide services to issuers through modules.

Polymath has 3 main registries

  1. Security Token Registry
  2. Features Registry
  3. Module Registry

The Polymath Registry holds the addresses of the 3 registries above.

As of the 2.0.0 release, we have built it out so that the Module and Security Token Registry are upgradeable. This means that down the road if there is something in the logic that we need to change, we can do that without having to re-deploy the whole thing again. All we need to do is update it.

Modules

Security Token (ST-20): The SecurityToken is an implementation of the ST-20 protocol that allows the addition of different modules to control its behavior. Different modules can be attached to a SecurityToken.

We have a ST-20 token which is an Ethereum-based token implemented on top of the ERC-20 protocol that adds the ability for tokens to control transfers based on specific rules. ST-20 tokens rely on Transfer Managers to determine the ruleset the token should apply in order to allow or deny a transfer, be it between the issuer and investors, in a peer to peer exchange, or a transaction with an exchange.

To simplify, it breaks down to having a base token that gives the issuer the ability to add functionality through modules.

Example

We have modules that can deal with transfer management. Restricting transfers through a whitelist or just restricting a transfer between addresses that could make an account go over a specified limit or you can limit the amount of a token holders or you can even limit transfers to prevent dumping of tokens by having a lockup period for token holders.

The Polymath Modules

TransferManager modules: These control the logic behind transfers and how they are allowed or disallowed. By default, the ST (Security Token) gets a GeneralTransferManager module attached in order to determine if transfers should be allowed based on a whitelist approach.

The GeneralTransferManager behaves differently depending who is trying to transfer the tokens. a) In an offering setting (investors buying tokens from the issuer) the investor's address should be present on an internal whitelist managed by the issuer within the GeneralTransferManager.

b) In a peer to peer transfer, restrictions apply based on real-life lockups that are enforced on-chain. For example, if a particular holder has a 1-year sale restriction for the token, the transaction will fail until that year passes.

Security Token Offering (STO) modules: A SecurityToken can be attached to one (and only one) STO module that will dictate the logic of how those tokens will be sold/distributed. An STO is the equivalent to the Crowdsale contracts often found present in traditional ICOs.

Permission Manager modules: These modules manage permissions on different aspects of the issuance process. The issuer can use this module to manage permissions and designate administrators on his token. For example, the issuer might give a KYC firm permissions to add investors to the whitelist.

Checkpoint Modules These modules allow the issuer to define checkpoints at which token balances and the total supply of a token can be consistently queried. This functionality is useful for dividend payment mechanisms and on-chain governance, both of which need to be able to determine token balances consistently as of a specified point in time.

Burn Modules These modules allow issuers or investors to burn or redeem their tokens in exchange of another token which can be on chain or offchain.

With the Core 2.0.0 Release, Polymath has also introduced the USDTieredSTO. This new STO module allows a security token to be issued in return for investment (security token offering) in various currencies (ETH, POLY & a USD stable coin). The price of tokens is denominated in USD and the STO allows multiple tiers with different price points to be defined. Discounts for investments made in POLY can also be defined.

CLI and CLI Documentation Wiki:

The CLI is for users that want to easily walkthrough all the details of an STO issuance. The CLI documentation is located on our Github Wiki.

You can easily navigate through it with the sidebar directory in order to run the CLI and set up and test the following:

  1. Prerequisite Instructions / Deploy and setup the Polymath contracts
  2. Launch the CLI on Ganache
  3. Use the Faucet to get POLY
  4. Deploy a token + Launch a USDTieredSTO
  5. Whitelist investors
  6. Work with the Dividends module
  7. Using other CLI features

Setting up Polymath Core

Mainnet

v2.0.0

Contract Address
SecurityTokenRegistry (Proxy): 0x240f9f86b1465bf1b8eb29bc88cbf65573dfdd97
ModuleRegistry (Proxy): 0x4566d68ea96fc2213f2446f0dd0f482146cee96d
Polymath Registry: 0xdfabf3e4793cd30affb47ab6fa4cf4eef26bbc27
Feature Registry: 0xa3eacb03622bf1513880892b7270d965f693ffb5
ETHOracle: 0x60055e9a93aae267da5a052e95846fa9469c0e7a
POLYOracle: 0x52cb4616E191Ff664B0bff247469ce7b74579D1B
General Transfer Manager Factory: 0xdc95598ef2bbfdb66d02d5f3eea98ea39fbc8b26
General Permission Manager Factory: 0xf0aa1856360277c60052d6095c5b787b01388cdd
CappedSTOFactory: 0x77d89663e8819023a87bfe2bc9baaa6922c0e57c
USDTieredSTO Factory: 0x5a3a30bddae1f857a19b1aed93b5cdb3c3da809a
EthDividendsCheckpointFactory: 0x968c74c52f15b2de323eca8c677f6c9266bfefd6
ERC20 Dividends Checkpoint Factory: 0x82f9f1ab41bacb1433c79492e54bf13bccd7f9ae
Count Transfer Manager Factory: 0xd9fd7e34d6e2c47a69e02131cf8554d52c3445d5
Percentage Transfer Manager Factory: 0xe6267a9c0a227d21c95b782b1bd32bb41fc3b43b
Manual Approval Transfer Manager Factory (2.0.1): 0x6af2afad53cb334e62b90ddbdcf3a086f654c298

New SecurityTokenRegistry (2.0.1): 0x538136ed73011a766bf0a126a27300c3a7a2e6a6 (fixed bug with getTickersByOwner())

New ModuleRegistry (2.0.1): 0xbc18f144ccf87f2d98e6fa0661799fcdc3170119 (fixed bug with missing transferOwnership function)

New ManualApprovalTransferManager 0x6af2afad53cb334e62b90ddbdcf3a086f654c298 (Fixed 0x0 from bug)

KOVAN

v2.0.0

New Kovan PolyTokenFaucet: 0xb347b9f5b56b431b2cf4e1d90a5995f7519ca792

Contract Address
SecurityTokenRegistry (Proxy): 0xbefb81114d532bddddc724af20c3516fa75f0afb
ModuleRegistry (Proxy): 0x0fac8d8cce224eead73c1187df96570aa80a568b
Polymath Registry: 0x9903e7b5acfe5fa9713771a8d861eb1df8cd7046
Feature Registry: 0xa8f85006fdacb3d59ffae564c05433f0c949e911
ETHOracle: 0xCE5551FC9d43E9D2CC255139169FC889352405C8
POLYOracle: 0x461d98EF2A0c7Ac1416EF065840fF5d4C946206C
General Transfer Manager Factory: 0xfe7e2bb6c200d5222c82d0f8fecca5f8fe4ab8ce
General Permission Manager Factory: 0xde5eaa8d73f43fc5e7badb203f03ecae2b29bd92
CappedSTOFactory: 0xe14d7dd044cc6cfe37548b6791416c59f19bfc0d
USDTieredSTO Factory: 0xf9f0bb9f868d411dd9a9511a79d172449e3c15f5
EthDividendsCheckpointFactory: 0x2861425ba5abbf50089c473b28f6c40a8ea5262a
ERC20 Dividends Checkpoint Factory: 0xbf9495550417feaacc43f86d2244581b6d688431
Count Transfer Manager Factory: 0x3c3c1f40ae2bdca82b90541b2cfbd41caa941c0e
Percentage Transfer Manager Factory: 0x8cd00c3914b2967a8b79815037f51c76874236b8
Manual Approval Transfer Manager Factory: 0x9faa79e2ccf0eb49aa6ebde1795ad2e951ce78f8

New ManualApprovalTransferManager 0x9faa79e2ccf0eb49aa6ebde1795ad2e951ce78f8 (Fixed 0x0 from bug)

Package version requirements for your machine:

  • node v8.x.x or v9.x.x
  • npm v6.x.x or newer
  • Yarn v1.3 or newer
  • Homebrew v1.6.7 (for macOS)
  • Truffle v4.1.11 (core: 4.1.11)
  • Solidity v0.4.24 (solc-js)
  • Ganache CLI v6.1.3 (ganache-core: 2.1.2) or newer

Setup

The smart contracts are written in Solidity and tested/deployed using Truffle version 4.1.0. The new version of Truffle doesn't require testrpc to be installed separately so you can just run the following:

# Install Truffle package globally:
$ npm install --global truffle

# (Only for windows) set up build tools for node-gyp by running below command in powershell:
$ npm install --global --production windows-build-tools

# Install local node dependencies:
$ yarn

Testing

To test the code simply run:

# on *nix systems
$ npm run test

# on windows systems
$ npm run wintest

Extending Polymath Core

  1. Deploy ModuleRegistry. ModuleRegistry keeps track of all available modules that add new functionalities to Polymath-based security tokens.

  2. Deploy GeneralTransferManagerFactory. This module allows the use of a general TransferManager for newly issued security tokens. The General Transfer Manager gives STs the ability to have their transfers restricted by using an on-chain whitelist.

  3. Add the GeneralTransferManagerFactory module to ModuleRegistry by calling ModuleRegistry.registerModule().

  4. Deploy TickerRegistry. This contract handles the registration of unique token symbols. Issuers first have to claim their token symbol through the TickerRegistry. If it's available they will be able to deploy a ST with the same symbol for a set number of days before the registration expires.

  5. Deploy SecurityTokenRegistry. This contract is responsible for deploying new Security Tokens. STs should always be deployed by using the SecurityTokenRegistry.

Deploying Security Token Offerings (Network Admin Only)

Security Token Offerings (STOs) grant STs the ability to be distributed in an initial offering. Polymath offers a few out-of-the-box STO models for issuers to select from and, as the platform evolves, 3rd party developers will be able to create their own offerings and make them available to the network.

As an example, we've included a CappedSTO and CappedSTOFactory contracts.

In order to create a new STO, developers first have to create an STO Factory contract which will be responsible for instantiating STOs as Issuers select them. Each STO Factory has an STO contract attached to it, which will be instantiated for each Security Token that wants to use that particular STO.

To make an STO available for Issuers, first, deploy the STO Factory and take note of its address. Then, call moduleRegistry.registerModule(STO Factory address);

Once the STO Factory has been registered to the Module Registry, issuers will be able to see it on the Polymath dApp and they will be able to add it as a module of the ST.

Note that while anyone can register an STO Factory, only those "approved" by Polymath will be enabled to be attached by the general community. An STO Factory not yet approved by Polymath may only be used by it's author.

Code Styleguide

The polymath-core repo follows the Solidity style guide.

Links