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TL;DR
In µDIC, all strains are determined from the right stretch tensor U,
obtained from the deformation gradient F = RU using spectral decom-
position.
Operations such as determining the Hencky strain tensor is calculated
principal values of U and the tensor components in image coordinates are
obtained by rotating the strain tensor into the image coordinate system.

1 The deformation gradient

When a solid is deformed, a material point P which resides at X in the un-
deformed state, resides at x after deformation. The displacement between the
point P before and after deformation is denoted u(X) as:

x = u(X) + X (1)

where x and X are the position vectors in the current and initial configurations,
and the displacement vector u(X) is a function of X.

We now define the deformation gradient F as:

F =
∂x

∂X
(2)

The deformation gradient F is a non-symmetric second-order tensor.

Note that:

dx =
∂x

∂X
dX

which means that the deformation gradient F maps an infinitesimal line
segment in its undeformed configuration dX into the deformed configu-
ration dx.
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2 Polar decomposition

The deformation gradient F can be multiplicatively decomposed into two parts:

F = RU (3)

where R is the orthogonal rotation tensor and U is the symmetric right stretch
tensor. The operation of splitting F into R and U is known as polar decompo-
sition and is illustrated in Figure 1.

Figure 1: Illustration of the deformation of a
solid by the deformation gradient. Taken from
https://commons.wikimedia.org/wiki/File:PolardecompositionofF .png

Equation 3 implies that the deformation of a material fiber can be split
into two sequential operations being first a deformation by U and a subsequent
rotation by R. As only U deforms the material and refers to the materials
un-rotated state, the measures of strain used in µDIC are based on U

Determining U from F is done by exploiting the symmetry of the right
Cauchy-Green deformation tensor C, namely:

C = FTF = UTRTRU = UTU (4)

which allows U to be determined by calculating the square root of the eigenval-
ues of UTU.

Since C is a symmetric second-order tensor, we can determine the orientation
θp of the largest eigenvector directly as:

tan(2θp) =
2C12

C22 − C11
(5)
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where Cij are the tensor components in the image coordinate system. We can
now rotate C into the coordinate system defined by its principal directions. We
do this by introducing a rotation matrix [Q] as:

[Q] =

[
cos(θp) sin(θp)
− sin(θp) cos(θp)

]
(6)

The tensor C can be rotated into its principal orientation by:

[C̄] = [Q][C][Q]T (7)

where [C] and [C̄] represent the component matrices of the tensor C in the
two coordinate systems. Since the matrix [C̄] is diagonal, U can be calculated
directly in the principal coordinate system as:

[Ū] =

[√
C1 0
0

√
C2

]
(8)

where C1 and C2 are the eigenvalues of C.
We can now rotate [Ū] back into the image coordinate system by:

[U] = [Q]T [Ū][Q] (9)

Note that C and U have the same principal directions (or eigenvectors).

The eigenvalues of U are often referred to as principal stretches.

3 Strain tensors

The Hencky strain tensor El (often referred to as the logarithmic strain tensor)
is determined as:

[Ēl] =

[
ln (
√
C1) 0

0 ln (
√
C2)

]
(10)

Note that the eigenvectors of εt and U are the same. The components of the
Hencky strain tensor εt can be determined in image coordinate system as:

[El] = [Q]T [Ēl][Q] (11)

The principal values of the Hencky strain tensor are often referred to as the
logarithmic (or true) strains.

Two other strain tensors that can be calculated from the right stretch tensor
are the Biot strain tensor

EB = U− I (12)
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and the Green-Lagrange strain tensor

E =
1

2
(FTF− I) =

1

2
(U2 − I) (13)

where I is the identity matrix.
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