
A Beginner guide to Vanilla Buffer overflow

Overview

Stack Buffer Overflows/Vanilla Buffer Overflow It occurs when a program overwrites a
memory address on the program’s call stack outside of the buffer boundary which has a fixed
length. In stack buffer overflow the extra data is written in adjacent buffers located on the
stack. This usually results in the crashing of the application because of errors related to
memory corruption caused in the overflown adjacent memory locations on the stack.

To demonstrate we are using brainpan. Brainpan is a great OSCP practice room on
TryHackMe. The box was first released on Vulnhub by superkojiman.

Lab setup

Requirements- brainpan VM, Windows 10, Linux, Virtual box, and Immunity debugger.

Brainpan

1. Click on the link and it will download Brainpan.zip.

https://download.vulnhub.com/brainpan/Brainpan.zip

2. Setup the brainpan in Virtual Machine.

3. Setup the Windows 10 and Linux as per your choice in Virtual Machine.

https://twitter.com/superkojiman
https://download.vulnhub.com/brainpan/Brainpan.zip

4.Network setting must be a Bridge adapter for all 3 VM.

5.All set lets get started

Enumeration
Power on Linux and Brainpan.

First we need to find the ip address of brainpan vm.

Open terminal in linux and run the command.
● ifconfig

● showed us the ip address of linux which will help us to find ip of brainpan.
Use nmap to find other connected device ip addresses.

● Copy your ip address up to 3 dots and write this .0/24
● nmap 192.168.43.0/24 , run the command.

Now we found the ip address and as you can see there are two ports open.
Connect with linux by entering - nc ip port.
● nc 192.168.43.172 9999

Port 9999 provides a banner with the name of the machine and also an input to enter a
password.
Port 10000 is a python http server.
Power on windows 10 and open the browser and enter.
● Ip address:port
● 192.168.43.172:1000

Just read the content, and run the command.
● Ip address:port/bin/
● 192.168.43.172:1000/bin/

Download this .exe
ran the file and as expected it appears to be the application I connected to on port 9999.
From my linux machine I connect to my windows machine on port 9999.
I get the same prompt. Next I opened Immunity Debugger and attached the brainpan
service.This step is repeated a lot during exploit development! Each time I run my
exploit script I closed Immunity Debugger reopen and reattach the brainpan.exe.

Exploit Development

Now I have the exe on my windows machine, I ran the file and as expected it appears to be
the application I connected to on port 9999. From my linux machine I connect to my windows
machine on port 9999.

Fuzzing
Looking at the output from the exe console, the application is copying the input to a
buffer. So first we need to fuzz the application to see if we can crash the application
and overwrite the buffer.
I have created a very simple python script to fuzz the application. Ran brainpan.exe
from immunity debugger.

fuzzer.py

The script will send 100 A’s to the application and will keep increasing the sent
characters by 100 on each attempt. If the application crashes the script will fail and
print out the length of A’s sent at the time of the crash.

Running the script I can see it crashed at 700 bytes. Looking in Immunity debugger I
can see the status is now showing ‘Paused’ rather than running indicating a crash.

EIP is showing 41414141 which is AAAA so we have successfully overwrote EIP. If I
can control EIP I may be able to exploit the application to create a reverse shell.

Find Offset

The next step is to find the offset of the crash. I have successfully overwritten EIP but
I need to determine the offset so I can accurately control the value inputted into EIP.
To find the offset script will send 100 A’s to the application and will keep increasing
the sent characters by 1 on each attempt. If the application crashes the script will fail
and print out the length of A’s sent at the time of the crash and that is our offset value.

offset.py

Running the script again crashes the application as expected.
Output is.

Great the offset is 524. To make sure it's correct I’ve updated the script with a buffer
of 524 A’s, 4 B’s which is what will be shown as 42424242 in EIP and the remaining
bytes as D’s. I've also added a slight offset of 4 C’s

Exp1.py

I ran the exploit script again.

I now control EIP!

Bad Characters
Before I go any further I need to check for bad characters that could break the
exploit. To do this I updated the script with the following string. Normally I remove
/x00 as this is a null byte and will break the exploit however to show the process of
identifying bad characters I have kept it in.

I've updated the script with the bad character list.

Exp2.py

I ran the script again and checked Immunity Debugger.

To check for any issues I right clicked on ESP and selected ‘Follow in Dump’.

From the output I can see my offset of C’s which is 43 43 43 43 then the null byte 00
but instead of 01 I see FB, that's not what I expected which highlights that \x00 is a
bad character. I update my script removing /x00 from the bad chars list and run it
again.

This looks like what I was expecting, I can see my offset and then each of the

characters in the bad char list. Scanning through I don’t see any more bad
characters. I.e no other characters have malformed the output.

Find a Return Address
Our next step is to find a return address for our exploit. To do this I use the Immunity
Debugger plugin mona.py plugin. Running ‘!mona modules’ in the bottom bar of
Immunity Debugger I can see all the modules used. I am looking for any module
which has False displayed across columns as this means I don’t need to worry about
protection mechanisms.

Only one is available and it's the brainpan.exe itself, now to check for JMP ESP
pointers.

Again only one with the value 311712f3. x86 architecture stores values in memory
using little endian which means we need to reverse the byte order when adding to
our script.

Now I have a JMP ESP value. I updated the script.

Exp3.py

Create shell code
Nearly finished, the last step is to add our payload that will create a reverse shell to
our machine. To do this I used msfvenom.

msfvenom allows for the reverse shell payload to be created which I can add to the
script.
The final exploit script is:

Exp4.py

Before I run the script I change the hosts file to point to the machine IP provided by
TryHackMe and start a netcat listener.

└──╼ $nc -nvlp 4444
listening on [any] 4444 …

Run the script

Finally we got the shell !!

connect to [192.168.43.172] from (UNKNOWN) [192.168.43.172] 9999
CMD Version 1.4.1
Z:\home\puck>getuid

All of the above scripts are available in the GitHub repository with their respective
name.

