Skip to content
A python library for visualizing Artificial Neural Networks (ANN)
Python
Branch: master
Clone or download
Latest commit 031f497 Jul 2, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
ann_visualizer.egg-info Release 2.5 Jul 2, 2018
ann_visualizer Release v2.4 Apr 23, 2018
dist Release 2.5 Jul 2, 2018
tests Update .travis.yml Jul 2, 2018
.travis.yml travis update Jul 2, 2018
LICENSE.txt Update 1.0 Mar 28, 2018
MANIFEST Pip upload Mar 28, 2018
README.md Release 2.5 Jul 2, 2018
setup.cfg Update 1.0 Mar 28, 2018
setup.py Release 2.5 Jul 2, 2018

README.md

photo photo

ANN Visualizer

PyPI version Build Status Donate

A great visualization python library used to work with Keras. It uses python's graphviz library to create a presentable graph of the neural network you are building.

Version 2.0 is Out!

Version 2.0 of the ann_visualizer is now released! The community demanded a CNN visualizer, so we updated our module. You can check out an example of a CNN visualization below!

Happy visualizing!

Installation

From Github

  1. Download the ann_visualizer folder from the github repository.
  2. Place the ann_visualizer folder in the same directory as your main python script.

From pip

Use the following command:

pip3 install ann_visualizer

Make sure you have graphviz installed. Install it using:

sudo apt-get install graphviz && pip3 install graphviz

Usage

from ann_visualizer.visualize import ann_viz;
#Build your model here
ann_viz(model)

Documentation

ann_viz(model, view=True, filename="network.gv", title="MyNeural Network")

  • model - The Keras Sequential model
  • view - If True, it opens the graph preview after executed
  • filename - Where to save the graph. (.gv file format)
  • title - A title for the graph

Example ANN

import keras;
from keras.models import Sequential;
from keras.layers import Dense;

network = Sequential();
        #Hidden Layer#1
network.add(Dense(units=6,
                  activation='relu',
                  kernel_initializer='uniform',
                  input_dim=11));

        #Hidden Layer#2
network.add(Dense(units=6,
                  activation='relu',
                  kernel_initializer='uniform'));

        #Exit Layer
network.add(Dense(units=1,
                  activation='sigmoid',
                  kernel_initializer='uniform'));

from ann_visualizer.visualize import ann_viz;

ann_viz(network, title="");

This will output: photo

Example CNN

import keras;
from keras.models import Sequential;
from keras.layers import Dense;
from ann_visualizer.visualize import ann_viz
model = build_cnn_model()
ann_viz(model, title="")

def build_cnn_model():
  model = keras.models.Sequential()

  model.add(
      Conv2D(
          32, (3, 3),
          padding="same",
          input_shape=(32, 32, 3),
          activation="relu"))
  model.add(Dropout(0.2))

  model.add(
      Conv2D(
          32, (3, 3),
          padding="same",
          input_shape=(32, 32, 3),
          activation="relu"))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.2))

  model.add(
      Conv2D(
          64, (3, 3),
          padding="same",
          input_shape=(32, 32, 3),
          activation="relu"))
  model.add(Dropout(0.2))

  model.add(
      Conv2D(
          64, (3, 3),
          padding="same",
          input_shape=(32, 32, 3),
          activation="relu"))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.2))

  model.add(Flatten())
  model.add(Dense(512, activation="relu"))
  model.add(Dropout(0.2))

  model.add(Dense(10, activation="softmax"))

  return model

This will output: photo

Contributions

This library is still unstable. Please report all bug to the issues section. It is currently tested with python3.5 and python3.6, but it should run just fine on any python3.

You can’t perform that action at this time.