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Some Representations of the Multivariate
Bernoulli and Binomial Distributions

Jozer L. TEUGELS

Katholieke Universiteit Leuven, B-3030 Heverlee, Belgium

Communicated by the Editors

Multivariate but vectorized versions for Bernoulli and binomial distributions are
established using the concept of Kronecker product from matrix calculus. The mul-
tivariate Bernoulli distribution entails a parameterized model, that provides an
alternative to the traditional log-linear model for binary variables. © 1990 Academic

Press, Inc.

1. INTRODUCTION

Assume {X;, i=1, 2, .., n} is a sequence of Bernoulli random variables,
ie, fori=1,2,..,n,

P{Xi=0}=qia P{Xi=1}=pi’

where 0 < p,=1—g¢,< 1. Note that EX,=1—¢,< 1.
We look for an algebraically convenient representation for the multi-
variate Bernoulli distribution

pkl,kz ,,,,, kn :=P{X1=klaX2=k29"-a Xn=kn}7 (1'1)

where we assume that k; e {0, 1}, i=1, 2, .., n. The representation should
be amply parameterized by the n mean values {p,,i=1,2,..,n} and by
other parameters expressing the possible dependencies among the
{X,i=12,.,n}.

ExaMmpLE 1.1. Let n=2  Here py=P{X,;=0,X,=0}, p,=
P{X,=1,X,=0}, poy=P{X,=0,X,=1}, and p,,=P{X,=1,X,=1}.
Furthermore pgo+ pio+ Por + P11 =1 so that the distribution can be
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characterized by three parameters. However there are three “natural”
parameters for n=2, ie.,

p=EX,=P{X,=1}
p2=EX;=P{X,=1}
01y = E(X,— p)(X;— p2).
Alternatively we can use 4, ;= EX X, =06+ p, - p»= Py, Solving for py,,
Dio> Po1» and p,, we obtain the following two representations
Po=q19:+02=1—p—p+pn
Pro=P142— 01 =pP1— Hi2
Po1=4q1P2 — 0= Pr— g2
Puu=Pi Pt 0= .
Notice that X; and X, will be independent iff ¢,, =0; the first representa-

tion nicely separates the independence part from the dependency quantity
0,,. We can cast the representation in matrix form:

Po| [90142 —92 —q, 1[I
Pio P19 4> —p; —1 0
Por qap: —p2 4 —1|[ O
Pu LPle P2 pr Lo
1 -1 —1 1 1
0 1 0 -=1]| p
0 0 1 -1} p,
[0 0 0 1l up

The latter can in turn be rewritten in terms of Kronecker products. Put p®
for the vector on the left; then we have

1
2) q> -1 q ‘I:I 0
P [Pz 1]® pr MO
012

and

1

1 -1 1 -1 py
@ —
P [o 1]®[0 1] 2,

Hi2
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ExaMPLE 1.2. Let n=3. Put

Pm = (Pooo> P100> Po1os P110> Poot> Prois> Potts 17111)T

where ( )7 stands for the transpose. We need seven parameters to charac-
terize this distribution. On the other hand, seven natural parameters are

p:=EX,, i=1,2,3
oy =EX,—p)X;—p), (i )e{(},2),(1,3),(23)},
0 1= E(X, — ps)(X5— p2)(X5— p3).

In the same way as above one can find the following representation
Poow=919295+ 4361, + 4,063+ 4,655 — 0
P100=P19293 9301, — 42013+ P63+ 0
Po10=4q1P243= 43012+ P03~ 4,053+ 0
P1o=P1P2q3+ 430, — Pr03— P63~ 0
Poot =q192P3+ P301,—q2013—¢,10,5+0
P101=P192P3— P30 1+ 4203~ p053— 0
Pott =q1P2P3— P3G1a— P2013+ 4,053~ 0
Put=P1P2P3+ P301a+ Pa0i3+ proy+0.

Again the Kronecker form can be given
- -1 -1
p(3)=[q3 1]®|:q2 :|®[q1 :l(l’ O’an-lz’oaG]}’ 02376)T'
ps 1 pr 1 po 1

The latter expression seems easily generalizable.

2. THE MULTIVARIATE BERNOULLI DISTRIBUTION

2.1. Derivation

We start by introducing a general notation for p‘”, a vector containing
2" components. For 1 <k < 2" write k in a binary expansion, ie.,

k=1+Y k2771, (2.1)

i=1
where k; € {0, 1}. This expansion induces a 1-1 correspondence
ko> (ky, kg, o )
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so that with (1.1)
If we introduce

then we can write

=P {m[x k]} {ﬁ X{."'X’}""}.

i=1 i=1

The expression on the right can be considered as an element from a
Kronecker product. In general we have the following formula for the
Kronecker product of 2 x 1 vectors:

[ Jelt]e o5 ] = et 1ere ea

where k is given by (2.1). Putting ¢, =X, and b, =X,, we obtain the
starting formula for p”,

peel[SJeff JoofS]) e

We want to express p”™ in terms of the vector of ordinary moments,

p = (), 1, w7,

wo=r(flre)=el[ Joly, Jo-oly]] v

and k is given by (2.1). Relation (2.4) follows from (2.2) by the choice
a,=15b=X

Another representation makes use of the central moments expressed in
the dependency vector

where

o = (0'(") a("),. 0.2"))T

where

s nr)-ol[1ol,! Jo o[ ]]

and Yf=Xf—pi’ i:l’ 2, ey M.
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Both representations are combined in our first result.

THEOREM 1. With p, n'"), and ¢\ defined above, we have:

(i)
1 —1]®"
(n) ()
=y 1| n

1 1)e
(n) _ (m).
L

and

and

w [ 11 oo L1 .,
3 o ® ®® p".
—Pn qn “Pn-1 9n =P 9

Proof. (i) Note that

X, 1 -1 1 .
I:Xi:l - [0 l][X’]’ i=12 ..,
Filling this into (2.3), we have
oel[y el
P o x, 1010 1
oo ] Lo el
[Xn—l].”‘:o 1 [Xl .

Apply the mixed product rule of matrix calculus [7],

(A®B)-(CRD)=(4-C)®(B-D),

n—1 times to obtain

el ] L el Je s li]]

(2.6)

(2.7)

(2.8)

(2.9)
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By an application of the linearity of E we find (2.5) by (2.4). The other
formula derives from the rule of matrix calculus [7],

(A®B) '=4"'®B’ (2.10)

and easy algebra.
(ii) Clearly

A P P
MR S M

The remaining calculations are as in case (i). |

and hence,

A slightly different proof of (ii) could be based on the following
formulas, linking p and ¢™:

10
3 L, el e
pnl Pn1 1 Pl
1 0 1 0 1 0
(n) — ()
o [—pn 1]®[—pnl 1]® ®[—p1 1]" |

For future reference we mention another property of the Kronecker
product [7],

and

(AQB)T=AT® B™. (2.11)

The above formulas easily lead to expressions for the marginal distributions.

ExaMmpLE 2.1. Let again n=3. Then the three possible marginal dis-
tributions containing two of the three r.v.’s are given by (/,, is an mxm
identity matrix):

(i) (1, H)®L®LpY for X, and X,
(i) L®(1,1)RLp? for X, and X;,
(i) L ®L ®(1,1)p* for X, and X;.
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2.2. Generating Function

We now derive a number of equivalent expressions for the (probability)
generating function of the multivariate Bernoulli distribution

(p(zla 225 ey Zn)zE(zll‘,lzér2 ) "Z;:/"),

where z,, z,, .., z, are n (complex) numbers.

THEOREM 2. (1) @(2(, Zay o Z5) = 2a  @k(21, 22, oy Z,) Y, Where k is
given by (2.1) and

wk(zlizz’--'s Zn)—__n (Zi_l)kl7 1<k<2",

i=1

() @215 Zas s Zn) = Sor_y Okl2y, 22, oy 2,)0 ", where k is given by
(2.1) and
Hk(zhzla-n’ H q,+PZ 1 k’(z —1) 1<k<2"

Proof. By the fact that X, € {0, 1} we see that

_ bé
Xiz Y. X.=(Q,z .
Z[ I+Zl { ( ZI) (Xl>

Then

Hence by the mixed product rule and (2.3) we have

(P(Zl’ 225 e Z,,)= (1’ Zn)® ®(1, Zl) ,p(nl_

(i) Use this relation together with (2.5) and the mixed product rule
again to find

1 -1 1 —1
w(zl,zz,...,z,,)=(1,z,,)-(0 1)®~-®<1,z1)(0 1)"‘"’-

But
s “q 0 1 RS ] l LRt B ]
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and so

(P(lez29 ooy Z,,)=(1,Z,,—' 1)® ®(1’zl_1)"|’(n)'

To the last formula we apply the transposed version of (2.2) with a, =1,
b, =z,—1, to obtain the first formula.

(ii) The proof is entirely similar. ||
ExaMPLE 2.2. For n=2 we have the formulas,

PotZiProtz2Pa+21Z22P115
0z, 2) =<1+ (z; =) py+(z— 1) pa+ (2, — D)(z, — D pyy,
(g1 + Pz )ga+ paz) + (2, = 1)(z;—1)0y,.

The last expression best refers to the case of eventual independence, when
(21, 22)= (2, 1) (1, z5) iff 6, =0.

2.3. Some Comments on the Multivariate Bernoulli Distribution

(i) The representation (2.5) in Theorem1 contains 2"—1
parameters since p{” = 1. The number of parameters in (2.7) is also 2" — 1;
2"—n~—1 are obtained in ¢, since ¢ =0 whenever k,+k,+ --- +
k,=1; the n remaining parameters are, of course, {p;, 1<i<n}. The
representation (2.7) can be written as p™ =A4,6"); here 4,-e!” is the
representation of p™ under the assumption of independence of all r.v.
{X;,i=1,2,..,n}. In general the non-null components of ¢ express in a
transparent way the 2" —n—1 possible dependencies that might exist
between any subset (of at least 2) of the r.v. {X,, i=1,2,..,n}. The term
dependence vector seems therefore appropriate.

(1) In the analysis of cross-tabulated data one often uses log-linear
models. See, for example, [3, 12]. For n=3 the fully saturated model has
the following log-linear representation in terms of Kronecker products; for

n=2, see [4];
1 1)\®?
(3)— L3
! (1 —1> ’

where v, =log py, i, j, ke {0, 1} and where
(“”)T: (1 Ays A2y A1z, A3, 443, 0, @)

Compare this representation with that of Example 1.2. The number of
parameters is also seven, but the direct interpretation is different.

The representation p'™ = 4,6 allows 6,, =05 = 06,; =0 without §=0;
hence there is no need for hierarchical structures like with the log-linear
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representation. Also no particular problems arise when one or more of p;;
happen to be zero, a situation hardly possible in the log-linear case.

Let us stress that the multivariate Bernoulli distribution only uses 0-1
variables while log-linear models have a much wider applicability.

(iii)) To express the dependence between the different r.v.’s, a variety
of measures of association can be defined. Let us restrict attention to the
case n=3. A tedious calculation using the notation of Example 1.2 shows
that

1711117001—17101170112‘71217%_0'13‘7234‘1’30
P110P000‘P100P010=012‘]§_‘7130'23_‘139-
The quantities [3, 12]

P11 Poot P 110 Pooo
P P011’ P1oo Poro

are often used to describe the interaction among X, X,, and X;. From our
model it seems natural to look at differences rather than at ratios. For
example, X, and X, will be conditionally independent, given X, iff the two
ratios are one, or iff

01,03 — 013023+ p36=0

01243~ 013023— 30 =0.
This can be rewritten in the form
012(p3—¢q3)+0=0
P13 P23=P12s
where p; = aij/\/m, i, je {1, 2, 3}, are the correlation coefficients.

3. THE MULTIVARIATE BINOMIAL DISTRIBUTION

Our starting point is the multivariate Bernoulli distribution where
p; = EX; and ¢™ is the dependency vector. We take a sample of size m
from (X, X,, .., X,,), say,

{(le’ X2i’ aeny X,”'), l= 1, 2, very m};
we form the multivariate sum

(Slm’ SZm7 ey Snm)’
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where S, =X, + -+ + X, i=1,2, .., n. We write for the joint distribu-
tion of (S,,,, ..., S,.) Where 0 <r, <m, 1 <i<n,

n(M) =P{Slm=rlss2m=r2’"-a Snmzrn}'

T1h2entn

To vectorize this n-dimensional scheme we write

k=14 5% rim+1)y~", rie{0,1,..,m}.

i=1

Then we associate with the n-tuple (r(,r,,..,r,) the kth element of a
vector

. — T
nq(M) B (nq(lm)’ nq(zm)’ o0y nqu)-;- 1)2)

by the 1-1 correspondence,

W =nt" 1<k (m+1)"

P17y Py?

The vector ,q" will be called the (vectorized) multivariate binomial
distribution.

The fundamental relationship between n™ and ,q“™ is most easily seen
by looking at the generating function. The proof of the following lemma
can be obtained by induction.

LEMMA 3. For me{l,2,..},

m m m
m — r F4) I (m)
O™zy, 29y 2)= 3, 2V Y ZF - Y Zrmlm)
ri=0 rp=0 =0

=RV @ - @V g™, (3)

where for i€ {1,2,..,n} and m>=1,v\" :=(1, z,, .., z7")". Note that for any
e{l,2,..,n},

(qi+pizi)(v£m))T=(v5m+1))T'Qi,m+1’ (3.2)

where

=
=
=
o
=

Qimer=| . (33)
0 0 0 --p q
0o 0 0 ---0 p
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is a (m+2)x (m+ 1) matrix, depending solely on p;. In a similar manner,
(z; =)V T = (v T, 4, (34)

where

-1 0 0--0 0
1 =1 0 .-

(]
<o

To=l ) (35)

0 0 0--1 -1
0 0 0---0 1

We now derive a vector form for ,q".

THEOREM 4. For any n=2 and m = 1 the multivariate binomial distribu-
tion is given by

(m) _ 17(n) (n) (n)
nq"’_[/"zl .V"’:_l.....Vl"’

where

2"
(n) _ ( k) k
Vit= ) oRI® - @RY)

k=1

and
R(k) — Qi,m lf ki =0
Ve i k=1

the matrices Q,,, and J,, are given by (3.3) and (3.5), respectively.

Proof. By the independence of the elements of the sample,

m+1(

® 215225 s Zn)=(p(215223"~’ Zn) qu(zl’ZZs Bt zn)' (36)

Now Theorem 2(ii) gives us a relationship allowing us to write ¢(z,, ..., z,)
in terms of the elements of the dependency vector 6", Combine (3.6) and
(i1) of Theorem 2 to obtain

n

(V;m+1)® ®v(lm+l))T nq(m+l)= Z 0'2")91((21, .y Zn)
k=1

(v ® - @vi™M)T g™ (3.7)
Apply (2.11) and Theorem 2(ii) to write
0(z1s 225 s 2V NV ® - @ (V)T =w,Qw, | ® --- ®w;, (3.8)
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where
wii=(q; + p;z))' TF (z, — )N (vt

If k, =0, then (3.2) applies; if k; = 1, (3.4) applies. By the definition of R,
we combine both statements into the single

w= ()T RW. (39)

Combine (3.7)-(3.9) with the mixed product rule to find

2”
) " R () (m) . () (m)
nq(m+ ) — E g}(")RS"l_l,n@) - ® m+1,1 nqm Vn’:+lnqm'
k=1

An easy induction completes the proof. ]

For the special case of the bivariate binomial distribution one can replace
Lemma 3 by the simpler formula

,q™ = vec 7™,

where 7™ is the matrix with elements 7' and vec refers to the vec-

r,r2

operator introduced by Neudecker in [11] and utilized in [7, 8]. There
results the expression
294 =(Qom® Q1+ 2% (02, @0, +0]P?)
X(02,1®0,,+0J ),

where @, ,, and J,, are defined by (3.3) and (3.5), respectively.
Note that

Qz1®Q1,1+0J1®2=<q2)®<q1)+0<_1)®<_1>
’ P> P 1 1
1
— q, —1> <41 “1) 0
(Pz )% 1)l
o

by an easy calculation. For earlier attempts, see [1, 2, 5, 6, 9, 10].

4. CONCLUDING REMARKS

(i) The bivariate binomial has appeared a couple of times in the
literature, mostly as a stepping stone towards a bivariate Poisson distribu-
tion. See [5,9, 10].
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(ii) The vectorization used in Section 3 is necessarily restricted to
distributions with a finite number of non-zero probabilities. For the
bivariate case one can still use infinite matrices like in (i) above. A bivariate
version of the geometric and of the negative binomial distribution is also
tractable using matrix theory. See [10]. Any further multivariate extension
seems more difficult.

(ili) In [13] Wishart derives expressions for the cumulants of the
multivariate multinomial distribution. They are obtained by expanding
log @(e", e™, ..., ") with respect to increasing powers of ¢, i=1, 2, .., n. We
failed in finding a relatively easy tensor formulation of his results.
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