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Multivariate but vectorized versions for Bernoulli and binomial distributions are 
established using the concept of Kronecker product from matrix calculus. The mul- 
tivariate Bernoulli distribution entails a parameterized model, that provides an 
alternative to the traditional log-linear model for binary variables. 0 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

Assume {Xi, i= 1, 2, . . . . n} is a sequence of Bernoulli random variables, 
i.e., for i = 1, 2, . . . . n, 

P{xi=o}=qj, P{X,= l} =pi, 

where 0 < pi = 1 - qi < 1. Note that EX, = 1 - qi < 1. 
We look for an algebraically convenient representation for the multi- 

variate Bernoulli distribution 

pk,,k2,...,k, := p{x, = k,, x, = k,, . . . . x,, = k,}, (l-1) 

where we assume that k, E (0, l}, i= 1, 2, . . . . n. The representation should 
be amply parameterized by the n mean values {p,, i = 1,2, . . . . n> and by 
other parameters expressing the possible dependencies among the 
{Xi, i= 1, 2, . . . . n}. 

EXAMPLE 1.1. Let n = 2. Here poO=P{X,=O,X,=O}, pIo= 
P(X,=l,X,=O}, poI=P{X,=O,X,=l}, and pI1=P{X,=l,X,=l}. 
Furthermore pm+ plo + pal + pI1 = 1 so that the distribution can be 
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characterized by three parameters. However there are three “natural” 
parameters for n = 2, i.e., 

pl=EXI=P{X,=l} 

pz=EX2=P{X*=1} 

012 := Jw1- Plm-2 -Pd. 

Alternatively we can use p12 :=EX1X2=a,,+p,.p,=p,,. Solvingforp,, 
PlO> PO1 9 and pll we obtain the following two representations 

P00=4142+~12 =1-Pl-P2+Pl2 

PlO = Pl q2 - 012 = P1- Pl2 

PO1 = qlP2 - Cl2 = P2 - PI2 

Pll =Pl P2 + 012 = Pl2. 

Notice that X1 and X, will be independent iff (r12 =O; the first representa- 
tion nicely separates the independence part from the dependency quantity 
c12. We can cast the representation in matrix form: 

L 
PO0 
PlO 

PO1 

Pll 

1 -1 -1 1 1 
0 1 o-1 [ I[ p, 

=o 0 1-l p2’ 

0 0 0 1 CL12 1 

The latter can in turn be rewritten in terms of Kronecker products. Put pC2’ 
for the vector on the left; then we have 

(a= q2 -1 [ 1 P [ 
41 

P 
P2 PI 

and 

p@)=[k -#3[:, 

I[ 

1 

-1 

0 
1 0 

012 

1 
1 PI 
1 

I[ I 
P2 . 

PI2 
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EXAMPLE 1.2. Let n = 3. Put 

P (3) = (Porn PlOO~ P 0109 PI109 Poole PlOl? Poll, Plll 1’ 

where ( )T stands for the transpose. We need seven parameters to charac- 
terize this distribution. On the other hand, seven natural parameters are 

pi = EXi, i= 1,2, 3 

cu = E(Xi - Pi)(xj - Pj), (6 j)E ((1, 21, (1, 3h (2,3)), 

0 := EWl - PlU, - PAX3 - P3). 

In the same way as above one can find the following representation 

Pooo=414243+43~12+q2~13+ql~23-- 

PlOO=Plq2q3-q3~12-q2~l3+PI~23+~ 

PO10 = qlP2q3 - 43O12 + P2g13 - 41 O23 + 0 

PllO = Pl P243 + 43Ol2 - P2a13 - Pla,, - 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Again the Kronecker form can be given 

The latter expression seems easily generalizable. 

2. THE MULTIVARIATE BERNOULLI DISTRIBUTION 

2.1. Derivation 

We start by introducing a general notation for p’“‘, a vector containing 
2” components. For 1 <k < 2” write k in 3 binary expansion, i.e., 

k= 1+ i ki2j-‘, (2.1) 
i=l 

where ki E (0, 1 }. This expansion induces a l-l correspondence 

k +-+ (k,, k,, . . . . k,) 
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so that with (1.1) 

&’ = Pkl,kz,....k,, 1 <k<2”. 

If we introduce 

zz=l-X;, i= 1, 2, . . . . n, 

then we can write 

The expression on the right can be considered as an element from a 
Kronecker product. In general we have the following formula for the 
Kronecker product of 2 x 1 vectors: 

[[;:]@[;;‘-:]@I ... @[;I]], =fi, af-ksb:, 1 <kd2”, (2.2) 

where k is given by (2.1). Putting ai = Xi and bi = Xi, we obtain the 
starting formula for p’“‘, 

p@‘=E[[:]@[;I;]@ ... @I[;;]]. (2.3) 

We want to express p’“’ in terms of the vector of ordinary moments, 

P Cn) = (p’;‘, py, . ..) &‘,‘, 

where 

and k is given by (2.1). Relation (2.4) follows from (2.2) by the choice 
a, = 1, bi = Xi. 

Another representation makes use of the central moments expressed in 
the dependency vector 

where 
a(“)= ((T(ln), a?), . . . . a$‘)‘, 

,J$$=E fi (Xi - pJk’ = E 
i=l > [[:nk[y.f-Il@ ‘.. @[:,]#I, 

and Yi = Xi - pi, i = 1, 2, . . . . n. 



260 JOZEF L. TEUGELS 

Both representations are combined in our first result. 

THEOREM 1. With p’“‘, p’“‘, and u (IZ) defined above, we have: 

0) 

(n)- 1 -1 On 
p-o 1 [ 1 c’“’ 

(2.5) 

and 

(n) - l l c3n p’“‘; 
p -01 [ 1 (2.6) 

(ii) 

p’“‘= qfi -l 
P” 1 

]@[;;I: -;]@ ... @I[;: -:]u(‘) (2.7) 

and 

G=[ -;, lJa[ ep;-, ,.‘,]a ... @[ -‘,, 6,]P(? (2.8) 

Proof (i) Note that 

[f:l=[i -i][ij, i=l,2 ,..., n. 

Filling this into (2.3), we have 

P@)=$) -#+JJ; -J 

@[J-f:, -:I@[# 

Apply the mixed product rule of matrix calculus [7], 

(AOB).(COD)=(A.C)O(B.D), 

n - 1 times to obtain 

(2.9) 
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By an application of the linearity of E we find (2.5) by (2.4). The other 
formula derives from the rule of matrix calculus [7], 

(A@~)-‘=A-‘@BP’ (2.10) 

and easy algebra. 

(ii) Clearly 

and hence. 

[cj=[b -$j=[;. -:I[ :,1. 
The remaining calculations are as in case (i). m 

A slightly different proof of (ii) could be based on the following 
formulas, linking p(“) and e(“): 

and 

For future reference we mention another property of the Kronecker 
product [7], 

(A@B)T=AT@BT. (2.11) 

The above formulas easily lead to expressions for the marginal distributions. 

EXAMPLE 2.1. Let again n = 3. Then the three possible marginal dis- 
tributions containing two of the three r.v.‘s are given by (Z, is an m x m 
identity matrix): 

(i) (1, l)OZ2 OZ2p (3) for X, and X,, 
(ii) Z, @(l, l)OZ2p’3’ for XI and X3, 
(iii) Z, OZ, @(l, 1)~‘~’ for X, and X3. 
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2.2. Generating Function 

We now derive a number of equivalent expressions for the (probability) 
generating function of the multivariate Bernoulli distribution 

dz,, 22, . ..> z,) = E(zPzT.. . z?), 

where z r, z2, . . . . z, are n (complex) numbers. 

THEOREM 2. (i) &.zr, z2, . . . . z,) =C’,“= r ok(zl, z2, . . . . z,)pp), where k is 
given by (2.1) and 

Wk(ZlY z2, . . . . z,) = fi (Zi - l)kS, 1 dk<2”; 
i=l 

(ii) cp(z,, z2, . . . . z,) =Cr=“=, B,(z,, z2, . . . . ~,)a?‘, where k is given by 
(2.1) and 

8&l, z2, . . . . Z,)’ fi (qi + piZi)lmk’ (Zi - l)k’, 1 <k62”. 
i= 1 

Proof By the fact that Xi E (0, 1 } we see that 

xi zx’=xi+ziX,=(l,zi) x, . 
(3 

Then 

Hence by the mixed product rule and (2.3) we have 

cp(Zl 3 z2, ..., z,)=(l,zJ@ ‘.. @(l,z,).p’“‘. 

(i) Use this relation together with (2.5) and the mixed product rule 
again to find 

cp(z1, z2, ..., z,)=(l,z,). l -l 0 
( > 0 1 

... .,l,z,)(:, -p. 

But 

(l,zi) i -: 

(  > 

= (1, 2; - l), i = 1, 2, . . . . n 
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and so 

dz,, z2, .*., z,)=(l,z,-l)@ ... @(l,z,-1)p’“‘. 

To the last formula we apply the transposed version of (2.2) with ai = 1, 
bi = zi - 1, to obtain the first formula. 

(ii) The proof is entirely similar. 1 

EXAMPLE 2.2. For n = 2 we have the formulas. 

i 

Poo+zlPlo+z2Pol +zlzzPll> 

cp(z,,z,)= l+(z,--l)P,+(z2-l)P2+(z,--l)(z2-1)~,,, 

(41+ P,z,)(q* + P2Z2) + @I - lb2 - l)flll. 

The last expression best refers to the case of eventual independence, when 
dz,, z2) = cp(zl, 1) dl, z2) iff gll = 0. 

2.3. Some Comments on the Multivariate Bernoulli Distribution 

(i) The representation (2.5) in Theorem 1 contains 2” - 1 
parameters since ~‘1”’ = 1. The number of parameters in (2.7) is also 2” - 1; 
2” -n - 1 are obtained in @), since rrr’ = 0 whenever ki + k, + ... + 
k, = 1; the n remaining parameters are, of course, {pi, 1 < i< n}. The 
representation (2.7) can be written as p’“‘=A,a’“‘; here A,, .e(;l) is the 
representation of p’“’ under the assumption of independence of all r.v. 
{Xi, i= 1, 2, . . . . n>. In general the non-null components of (r(“) express in a 
transparent way the 2” -n - 1 possible dependencies that might exist 
between any subset (of at least 2) of the r.v. (Xi, i= 1, 2, . . . . n}. The term 
dependence vector seems therefore appropriate. 

(ii) In the analysis of cross-tabulated data one often uses log-linear 
models. See, for example, [3, 121. For n = 3 the fully saturated model has 
the following log-linear representation in terms of Kronecker products; for 
n=2, see [4]; 

y(3) = 
1 1 @J3 ( > A(3) 

l-l ’ 

where viik = log pijk, i, j, k E (0, 1 } and where 

Compare this representation with that of Example 1.2. The number of 
parameters is also seven, but the direct interpretation is different. 

The representation p @)=A,,&‘) allows G,~=G,~=cJ~~=O without 8=0; 
hence there is no need for hierarchical structures like with the log-linear 
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representation. Also no particular problems arise when one or more of piik 
happen to be zero, a situation hardly possible in the log-linear case. 

Let us stress that the multivariate Bernoulli distribution only uses O-1 
variables while log-linear models have a much wider applicability. 

(iii) To express the dependence between the different r.v.‘s, a variety 
of measures of association can be defined. Let us restrict attention to the 
case n = 3. A tedious calculation using the notation of Example 1.2 shows 
that 

PI11 PO01 - PI01 PO11 = “12d - fll3023 + P,O 

~l10h09-bO~O10=a12+o13023-~38~ 

The quantities [3, 121 

PI11 PO01 P110P0c@ 

PlOl Poll’ PI00 PO10 

are often used to describe the interaction among X, , X2, and X3. From our 
model it seems natural to look at differences rather than at ratios. For 
example, X1 and X2 will be conditionally independent, given X3, iff the two 
ratios are one, or iff 

g12P: - (r13g23 + P3e = o 

Ol2q: - (rl3o23 - q3e =O* 

This can be rewritten in the form 

OlZ(P3 - 43) + 6 = o 

Pl3’P23=Pl2, 

where pg = cr,/JE, i, jE { 1, 2, 3}, are the correlation coefficients. 

3. THE MULTIVARIATE BINOMIAL DISTRIBUTION 

Our starting point is the multivariate Bernoulli distribution where 
pi = EXi and o(“) is the dependency vector. We take a sample of size m 
from (Xl1 X2, . . . . X,), say, 

{(Xii, X2i, . . . . Xnj), i= 1, 2, . . . . m}; 

we form the multivariate sum 

(Sh, SZm, ‘.., S,,), 
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where S, =XiI + ... +X,, i= 1,2, . . . . n. We write for the joint distribu- 
tion of (Slm, . . . . S,,) where O<ri <m, 1 <i<n, 

n(m) r,.r2 ,_... ?, =P{Slm =rl, SZ~ =r2, . ..) Km =r,). 

To vectorize this n-dimensional scheme we write 

k= 1 + i rj(m+ l)‘-‘, ri E (0, 1, . . . . m}. 
i= 1 

Then we associate with the n-tuple (r,, r2, . . . . r,, 
vector 

“Q Cm) := (,qyy nq:m), . ..) nq;;‘+ 

the kth element of a 

)dT 

by the l-l correspondence, 

nqk 
Cm) := ?l(m) 

u. i-2. .I., r.’ 
l<k<(m+l)“. 

The vector ,,qCm) will be called the (vectorized) multivariate binomial 
distribution. 

The fundamental relationship between n(“) and *qCm) is most easily seen 
by looking at the generating function. The proof of the following lemma 
can be obtained by induction. 

LEMMA 3. For m E { 1,2, . ..}. 

cp”(Zl, z2, ..-, Z”)C f z;’ f z;‘... f C~1:/2.....‘n 
I, =o 12 = 0 ‘” = 0 

= (v~m~“‘vpl @ . . . @V’;“‘)T .q@), (3.1) 

where for iE { 1, 2, . . . . n} and m > 1, vj”” := (1, zi, . . . . zy)=. Note that for any 
ie {1,2, . . . . n}, 

(q. + p.z.)(v!“‘)T = (v!m+l) = II I 1 -Qi,m+l, (3.2) 

qi 0 o.m.0 0 

Pi 4i o...o 0 

0 pi qi ... 0 0 Qim+l = 

. . . . . , . . 

0 0 0 ‘.. pj qi 
0 0 0 ... 0 pi 

(3.3) 
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is a (m + 2) x (m + 1) matrix, depending solely on pi. In a similar manner, 

where 

J m+1= 

We now derive a vector form for nq(m). 

-1 0 o...o 0 
1 -1 o...o 0 
0 l-l...0 0 

. . . . . . . . . 
0 0 O...l -1 
0 0 o...o 1 

(3.4) 

(3.5) 

THEOREM 4. For any n 2 2 and m 2 1 the multivariate binomial distribu- 
tion is given by 

nq(m) = V’“’ . v(n) 
m m-1 ... . v-c;), 

where 

and 
if k, =O 
if k,=l; 

the matrices Qi,,, and J,,, are given by (3.3) and (3.5), respectively. 

Proof: By the independence of the elements of the sample, 

(pm+ ‘(z I, ,729 . . . . z,) = cp(z,, z2, . . . . z,) qfYz1, z2, ..., z,). (3.6) 

Now Theorem 2(ii) gives us a relationship allowing us to write rp(z,, . . . . z,) 
in terms of the elements of the dependency vector G(“). Combine (3.6) and 
(ii) of Theorem 2 to obtain 

2” 

(v!ym+‘)Q .” @v(;n+‘y”qcm+‘)= c rJp3k(z,, . ..) ZJ 
k=l 

x (Vjy’Q . . . QVyyT .q’“‘. (3.7) 

Apply (2.11) and Theorem 2(ii) to write 

dk(ZI, z2, ..., z,)(v~m~)TQ . . . Q(Vy)T=W,,QW,p,Q ... Qw,, (3.8) 
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where 
wi := (qi + piZ,)l-k’ (Zi - 1)“’ (V;m))=. 

If ki = 0, then (3.2) applies; if kj = 1, (3.4) applies. By the definition of Rln”,) 
we combine both statements into the single 

wi = (vi”+ I))= RE), , ;. (3.9) 

Combine (3.7)-(3.9) with the mixed product rule to find 

An easy induction completes the proof. [ 

For the special case of the bivariate binomial distribution one can replace 
Lemma 3 by the simpler formula 

2q (m) = vet ?I(~), 

where n’“’ is the matrix with elements rcty,!, and vet refers to the vec- 
operator introduced by Neudecker in [ 111 ‘and utilized in [7, 81. There 
results the expression 

24 ‘“‘=(Q2,,oQ,,m+~J~2)...(Q2,20Q,,,+aJ~2) 

x (Q2,1 Be,,, +4)‘), 

where Qi,, and J, are defined by (3.3) and (3.5), respectively. 
Note that 

Q~,BQI,,+~J?‘~- q2 -(,,)@(::)+o( Y)@( -:> 

=(;: -WI: -fi) r7 
by an easy calculation. For earlier attempts, see Cl, 2, 5, 6, 9, lo]. 

4. CONCLUDING REMARKS 

(i) The bivariate binomial has appeared a couple of times in the 
literature, mostly as a stepping stone towards a bivariate Poisson distribu- 
tion. See [S, 9, lo]. 
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(ii) The vectorization used in Section 3 is necessarily restricted to 
distributions with a Iinite number of non-zero probabilities. For the 
bivariate case one can still use infinite matrices like in (i) above. A bivariate 
version of the geometric and of the negative binomial distribution is also 
tractable using matrix theory. See [lo]. Any further multivariate extension 
seems more difficult. 

(iii) In [13] Wishart derives expressions for the cumulants of the 
multivariate multinomial distribution. They are obtained by expanding 
log (P(&‘, e’2, . ..) &) with respect to increasing powers of tj, i= 1, 2, . . . . n. We 
failed in finding a relatively easy tensor formulation of his results. 
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