-
Notifications
You must be signed in to change notification settings - Fork 70
/
metadata.json
198 lines (198 loc) · 8.22 KB
/
metadata.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.2.5",
"changelog": {
"0.2.5": "use monai 1.4 and update large files",
"0.2.4": "update to use monai 1.3.1",
"0.2.3": "add load_pretrain flag for infer",
"0.2.2": "add checkpoint loader for infer",
"0.2.1": "remove meta_dict usage",
"0.2.0": "add support for TensorRT conversion and inference",
"0.1.9": "fix the wrong GPU index issue of multi-node",
"0.1.8": "Update evalaute doc, GPU usage details, and dataset preparation instructions",
"0.1.7": "remove error dollar symbol in readme",
"0.1.6": "add RAM usage with CacheDataset and GPU consumtion warning",
"0.1.5": "fix mgpu finalize issue",
"0.1.4": "Update README Formatting",
"0.1.3": "add non-deterministic note",
"0.1.2": "Update figure with links",
"0.1.1": "adapt to BundleWorkflow interface and val metric",
"0.1.0": "complete the model package",
"0.0.1": "initialize the model package structure"
},
"monai_version": "1.4.0",
"pytorch_version": "2.4.0",
"numpy_version": "1.24.4",
"optional_packages_version": {
"nibabel": "5.2.1",
"pytorch-ignite": "0.4.11"
},
"name": "Whole body CT segmentation",
"task": "TotalSegmentator Segmentation",
"description": "A pre-trained SegResNet model for volumetric (3D) segmentation of the 104 whole body segments",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "TotalSegmentator",
"data_type": "nibabel",
"image_classes": "104 foreground channels, 0 channel for the background, intensity scaled to [0, 1]",
"label_classes": "0 is the background, others are whole body segments",
"pred_classes": "0 is the background, 104 other chanels are whole body segments",
"eval_metrics": {
"mean_dice": 0.8
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Wasserthal, J., Meyer, M., Breit, H.C., Cyriac, J., Yang, S. and Segeroth, M., 2022. TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868.",
"Myronenko, A., Siddiquee, M.M.R., Yang, D., He, Y. and Xu, D., 2022. Automated head and neck tumor segmentation from 3D PET/CT. arXiv preprint arXiv:2209.10809.",
"Tang, Y., Gao, R., Lee, H.H., Han, S., Chen, Y., Gao, D., Nath, V., Bermudez, C., Savona, M.R., Abramson, R.G. and Bao, S., 2021. High-resolution 3D abdominal segmentation with random patch network fusion. Medical image analysis, 69, p.101894."
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "hounsfield",
"modality": "CT",
"num_channels": 1,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 105,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
104
],
"is_patch_data": true,
"channel_def": {
"0": "background",
"1": "spleen",
"2": "kidney_right",
"3": "kidney_left",
"4": "gallbladder",
"5": "liver",
"6": "stomach",
"7": "aorta",
"8": "inferior_vena_cava",
"9": "portal_vein_and_splenic_vein",
"10": "pancreas",
"11": "adrenal_gland_right",
"12": "adrenal_gland_left",
"13": "lung_upper_lobe_left",
"14": "lung_lower_lobe_left",
"15": "lung_upper_lobe_right",
"16": "lung_middle_lobe_right",
"17": "lung_lower_lobe_right",
"18": "vertebrae_L5",
"19": "vertebrae_L4",
"20": "vertebrae_L3",
"21": "vertebrae_L2",
"22": "vertebrae_L1",
"23": "vertebrae_T12",
"24": "vertebrae_T11",
"25": "vertebrae_T10",
"26": "vertebrae_T9",
"27": "vertebrae_T8",
"28": "vertebrae_T7",
"29": "vertebrae_T6",
"30": "vertebrae_T5",
"31": "vertebrae_T4",
"32": "vertebrae_T3",
"33": "vertebrae_T2",
"34": "vertebrae_T1",
"35": "vertebrae_C7",
"36": "vertebrae_C6",
"37": "vertebrae_C5",
"38": "vertebrae_C4",
"39": "vertebrae_C3",
"40": "vertebrae_C2",
"41": "vertebrae_C1",
"42": "esophagus",
"43": "trachea",
"44": "heart_myocardium",
"45": "heart_atrium_left",
"46": "heart_ventricle_left",
"47": "heart_atrium_right",
"48": "heart_ventricle_right",
"49": "pulmonary_artery",
"50": "brain",
"51": "iliac_artery_left",
"52": "iliac_artery_right",
"53": "iliac_vena_left",
"54": "iliac_vena_right",
"55": "small_bowel",
"56": "duodenum",
"57": "colon",
"58": "rib_left_1",
"59": "rib_left_2",
"60": "rib_left_3",
"61": "rib_left_4",
"62": "rib_left_5",
"63": "rib_left_6",
"64": "rib_left_7",
"65": "rib_left_8",
"66": "rib_left_9",
"67": "rib_left_10",
"68": "rib_left_11",
"69": "rib_left_12",
"70": "rib_right_1",
"71": "rib_right_2",
"72": "rib_right_3",
"73": "rib_right_4",
"74": "rib_right_5",
"75": "rib_right_6",
"76": "rib_right_7",
"77": "rib_right_8",
"78": "rib_right_9",
"79": "rib_right_10",
"80": "rib_right_11",
"81": "rib_right_12",
"82": "humerus_left",
"83": "humerus_right",
"84": "scapula_left",
"85": "scapula_right",
"86": "clavicula_left",
"87": "clavicula_right",
"88": "femur_left",
"89": "femur_right",
"90": "hip_left",
"91": "hip_right",
"92": "sacrum",
"93": "face",
"94": "gluteus_maximus_left",
"95": "gluteus_maximus_right",
"96": "gluteus_medius_left",
"97": "gluteus_medius_right",
"98": "gluteus_minimus_left",
"99": "gluteus_minimus_right",
"100": "autochthon_left",
"101": "autochthon_right",
"102": "iliopsoas_left",
"103": "iliopsoas_right",
"104": "urinary_bladder"
}
}
}
}
}