PID Controllers and
Modified PID

Controllers

8-1 INTRODUCTION

In previous chapters, we occasionally discussed the basic PID controllers. For example,
we presented electronic, hydraulic, and pneumatic PID controllers. We also designed
control systems where PID controllers were involved.

It is interesting to note that more than half of the industrial controllers in use today
are PID controllers or modified PID controllers.

Because most PID controllers are adjusted on-site, many different types of tuning
rules have been proposed in the literature. Using these tuning rules, delicate and fine tun-
ing of PID controllers can be made on-site. Also, automatic tuning methods have been
developed and some of the PID controllers may possess on-line automatic tuning
capabilities. Modified forms of PID control, such as I-PD control and multi-degrees-of-
freedom PID control, are currently in use in industry. Many practical methods for bump-
less switching (from manual operation to automatic operation) and gain scheduling are
commercially available.

The usefulness of PID controls lies in their general applicability to most control sys-
tems. In particular, when the mathematical model of the plant is not known and there-
fore analytical design methods cannot be used, PID controls prove to be most useful. In
the field of process control systems, it is well known that the basic and modified PID con-
trol schemes have proved their usefulness in providing satisfactory control, although in
many given situations they may not provide optimal control.

In this chapter we first present the design of a PID controlled system using Ziegler
and Nichols tuning rules. We next discuss a design of PID controller with the conventional
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frequency-response approach, followed by the computational optimization approach to
design PID controllers. Then we introduce modified PID controls such as PI-D control
and [-PD control. Then we introduce multi-degrees-of-freedom control systems, which can
satisfy conflicting requirements that single-degree-of-freedom control systems cannot.
(For the definition of multi-degrees-of-freedom control systems, see Section 8-6.)

In practical cases, there may be one requirement on the response to disturbance
input and another requirement on the response to reference input. Often these two re-
quirements conflict with each other and cannot be satisfied in the single-degree-of-
freedom case. By increasing the degrees of freedom, we are able to satisfy both. In this
chapter we present two-degrees-of-freedom control systems in detail.

The computational optimization approach presented in this chapter to design con-
trol systems (such as to search optimal sets of parameter values to satisfy given transient
response specifications) can be used to design both single-degree-of-freedom control sys-
tems and multi-degrees-of-freedom control systems, provided a fairly precice mathe-
matical model of the plant is known.

Outline of the Chapter. Section 8-1 has presented introductory material for the
chapter. Section 8-2 deals with a design of a PID controller with Ziegler-Nichols Rules.
Section 8-3 treats a design of a PID controller with the frequency-response approach.
Section 8-4 presents a computational optimization approach to obtain optimal param-
eter values of PID controllers. Section 8-5 discusses multi-degrees-of-freedom control
systems including modified PID control systems.

8-2 ZIEGLER-NICHOLS RULES FOR TUNING
PID CONTROLLERS

Figure 8-1
PID control
of a plant.
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PID Control of Plants. Figure 8-1 shows a PID control of a plant. If a mathe-
matical model of the plant can be derived, then it is possible to apply various design
techniques for determining parameters of the controller that will meet the transient and
steady-state specifications of the closed-loop system. However, if the plant is so com-
plicated that its mathematical model cannot be easily obtained, then an analytical or
computational approach to the design of a PID controller is not possible. Then we must
resort to experimental approaches to the tuning of PID controllers.

The process of selecting the controller parameters to meet given performance spec-
ifications is known as controller tuning. Ziegler and Nichols suggested rules for tuning
PID controllers (meaning to set values K, 7;, and 7,) based on experimental step
responses or based on the value of K, that results in marginal stability when only pro-
portional control action is used. Ziegler—Nichols rules, which are briefly presented in
the following, are useful when mathematical models of plants are not known. (These
rules can, of course, be applied to the design of systems with known mathematical
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Figure 8-2
Unit-step response
of a plant.

Figure 8-3
S-shaped response
curve.

models.) Such rules suggest a set of values of K, 7;, and T}, that will give a stable oper-
ation of the system. However, the resulting system may exhibit a large maximum over-
shoot in the step response, which is unacceptable. In such a case we need series of fine
tunings until an acceptable result is obtained. In fact, the Ziegler-Nichols tuning rules
give an educated guess for the parameter values and provide a starting point for fine tun-
ing, rather than giving the final settings for K,,, T;, and 7, in a single shot.

Ziegler-Nichols Rules for Tuning PID Controllers. Ziegler and Nichols pro-
posed rules for determining values of the proportional gain K, integral time 7;, and de-
rivative time 7, based on the transient response characteristics of a given plant. Such
determination of the parameters of PID controllers or tuning of PID controllers can be
made by engineers on-site by experiments on the plant. (Numerous tuning rules for PID
controllers have been proposed since the Ziegler—Nichols proposal. They are available
in the literature and from the manufacturers of such controllers.)

There are two methods called Ziegler—Nichols tuning rules: the first method and the
second method. We shall give a brief presentation of these two methods.

First Method. In the first method, we obtain experimentally the response of the
plant to a unit-step input, as shown in Figure 8-2. If the plant involves neither integra-
tor(s) nor dominant complex-conjugate poles, then such a unit-step response curve may
look S-shaped, as shown in Figure 8-3. This method applies if the response to a step
input exhibits an S-shaped curve. Such step-response curves may be generated experi-
mentally or from a dynamic simulation of the plant.

The S-shaped curve may be characterized by two constants, delay time L and time
constant 7. The delay time and time constant are determined by drawing a tangent line
at the inflection point of the S-shaped curve and determining the intersections of the
tangent line with the time axis and line ¢(¢) = K, as shown in Figure 8-3. The transfer
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Figure 8—4
Closed-loop system
with a proportional
controller.
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Table 8-1 Ziegler—Nichols Tuning Rule Based on Step Response

of Plant (First Method)
Type of
Controller K, T; T,
T
T L
9— — 0
PI 0.9 2 03
T
PID 12 I 2L 0.5L

function C(s) /U (s) may then be approximated by a first-order system with a transport
lag as follows:

C(s)  Ke™
U(s) Ts+1

Ziegler and Nichols suggested to set the values of K, T}, and T according to the formula
shown in Table 8-1.

Notice that the PID controller tuned by the first method of Ziegler—Nichols rules
gives

1

1
G.(s) = KP<1 + Ts + Tds)

T 1
=12—(1+=—+05L
12L<1 2Ls 05 S)

N

= 0.6T

Thus, the PID controller has a pole at the origin and double zeros at s = —1/L.

Second Method. In the second method, we first set 7; = oo and 7; = 0. Using the
proportional control action only (see Figure 8—4), increase K, from 0 to a critical value
K, at which the output first exhibits sustained oscillations. (If the output does not ex-
hibit sustained oscillations for whatever value K, may take, then this method does not
apply.) Thus, the critical gain K and the corresponding period P, are experimentally

1) u(?) (1)
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Figure 8-5

Sustained oscillation

with period P,,.
(P, is measured in
sec.)

(1)
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determined (see Figure 8-5). Ziegler and Nichols suggested that we set the values of
the parameters K,,, T;, and T}, according to the formula shown in Table 8-2.

Table 8-2 Ziegler—Nichols Tuning Rule Based on Critical Gain
K. and Critical Period P,, (Second Method)

Type of
Controller K, T; T,
P 05K, 00 0
PI 045K, L P, 0
M cr 1.2 cr
PID 0.6K,, 0.5P, 0.125P,,

Notice that the PID controller tuned by the second method of Ziegler—Nichols rules
gives

1
G.(s) = Kp<1 + Ts + Tds>

i

= 0.61<ﬂ<1 + + 0.125Pcrs>

05P,s
4 2
+ _
<s Pcr>
s

Thus, the PID controller has a pole at the origin and double zeros at s = —4/P...

Note that if the system has a known mathematical model (such as the transfer func-
tion), then we can use the root-locus method to find the critical gain K, and the fre-
quency of the sustained oscillations w,,, where 27/w., = P... These values can be found
from the crossing points of the root-locus branches with the jw axis. (Obviously, if the
root-locus branches do not cross the jw axis, this method does not apply.)

= 0.075K,,. P,
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Comments. Ziegler—-Nichols tuning rules (and other tuning rules presented in the
literature) have been widely used to tune PID controllers in process control systems
where the plant dynamics are not precisely known. Over many years, such tuning rules
proved to be very useful. Ziegler—Nichols tuning rules can, of course, be applied to plants
whose dynamics are known. (If the plant dynamics are known, many analytical and
graphical approaches to the design of PID controllers are available, in addition to
Ziegler—Nichols tuning rules.)

EXAMPLE 8-1 Consider the control system shown in Figure 8-6 in which a PID controller is used to control the
system. The PID controller has the transfer function

1
G.(s) = K,,(l + Ts + Tds>

i

Although many analytical methods are available for the design of a PID controller for the pres-
ent system, let us apply a Ziegler—Nichols tuning rule for the determination of the values of pa-
rameters K, T;, and T,. Then obtain a unit-step response curve and check to see if the designed
system exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive
(40% or more), make a fine tuning and reduce the amount of the maximum overshoot to ap-
proximately 25% or less.

Since the plant has an integrator, we use the second method of Ziegler-Nichols tuning rules.
By setting 7; = oo and 7, = 0, we obtain the closed-loop transfer function as follows:

C(s) K,
R(s) s(s+1)(s+95) +K

P

The value of K, that makes the system marginally stable so that sustained oscillation occurs can
be obtained by use of Routh’s stability criterion. Since the characteristic equation for the
closed-loop system is

$+65+55+K,=0

the Routh array becomes as follows:

s 1 5
s? 6 K,
! 30 - K,
6
s? K,
R(s) G R 1 C(s)
o) SG+D(s+3)
Figure 8-6 PID
PID-controlled controller
system.
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Figure 8-7

Block diagram of the
system with PID
controller designed
by use of the
Ziegler—Nichols
tuning rule (second
method).

Examining the coefficients of the first column of the Routh table, we find that sustained oscilla-
tion will occur if K, = 30. Thus, the critical gain K is

K., =30
With gain K, set equal to K, (= 30), the characteristic equation becomes
s+ 652+ 55+30=0

To find the frequency of the sustained oscillation, we substitute s = jw into this characteristic
equation as follows:

(jw)® + 6(jw)* + 5(jw) + 30 =0
or

6(5 — @*) + jo(5 — @?) =0

from which we find the frequency of the sustained oscillation to be w* = 5or w = /5. Hence, the
period of sustained oscillation is

2 2
P,=—=—=28099
o 5

Referring to Table 8-2, we determine K, T;, and T, as follows:
K, = 06K, =18

T, = 0.5P, = 1.405
T, = 0.125P, = 0.35124

The transfer function of the PID controller is thus

1
G.(s) = K,,(l +— + Tds>

L

= 18(1 + + 0.35124s>

1.405s

_63223(s + 1.4235)
S

The PID controller has a pole at the origin and double zero at s = —1.4235. A block diagram of
the control system with the designed PID controller is shown in Figure 8-7.

R(s) 6.3223 (s + 1.4235)? X 1 C(s)
s s(s+ 1)(s+5)
PID controller
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Figure 8-8
Unit-step response
curve of PID-
controlled system
designed by use of
the Ziegler—Nichols
tuning rule (second
method).
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Next, let us examine the unit-step response of the system. The closed-loop transfer function
C(s)/R(s) is given by
C(s)

R(s)

6.3223s> + 18s + 12.811
st + 6s% + 11.32235> + 18s + 12.811

The unit-step response of this system can be obtained easily with MATLAB. See MATLAB
Program 8-1. The resulting unit-step response curve is shown in Figure 8-8. The maximum
overshoot in the unit-step response is approximately 62%. The amount of maximum overshoot is
excessive. It can be reduced by fine tuning the controller parameters. Such fine tuning can be
made on the computer. We find that by keeping K, = 18 and by moving the double zero of the
PID controller to s = —0.65—that is, using the PID controller

(s + 0.65)

G.(s) = 18(1 + + O.7692s> = 13.846 (8-1)

3.077s

the maximum overshoot in the unit-step response can be reduced to approximately 18% (see
Figure 8-9). If the proportional gain K, is increased to 39.42, without changing the location of
the double zero (s = —0.65), that is, using the PID controller

(s + 0.65)°

N

G.(s) = 39.42(1 + + 0.7692s> =30.322 (8-2)

3.077s

MATLAB Program 8-1

num = [6.3223 18 12.811];
den=1[1 6 11.3223 18 12.811];
step(num,den)

grid

title('Unit-Step Response')

Unit-Step Response
1.8 T T T T T "

1.6

1.4

—_
S

—_

Amplitude
(=)
o0

o
=N

0 2 4 6 8 10 12 14
Time (sec)
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Figure 8-9

Unit-step response of
the system shown in
Figure 8-6 with PID
controller having
parameters K, = 18,
T, = 3.077, and

T, = 0.7692.

Figure 8-10
Unit-step response of
the system shown in
Figure 8-6 with PID
controller having

parameters
K, = 39.42,
T, = 3.077, and
T, = 0.7692.

Unit-Step Response

08

:
E : :
= 0.6 : :
[=H : :
£ : :
< : :
04
0.2 : :

0 ; ; ; ; ; ;

0 1 2 3 4 5 6 7
Time (sec)

then the speed of response is increased, but the maximum overshoot is also increased to approxi-
mately 28%, as shown in Figure 8-10. Since the maximum overshoot in this case is fairly close to 25%
and the response is faster than the system with G,(s) given by Equation (8-1), we may consider G.(s)
as given by Equation (8-2) as acceptable. Then the tuned values of K,,, 7;, and T, become

K,=3942, T,=3077, T,=07692

It is interesting to observe that these values respectively are approximately twice the values sug-
gested by the second method of the Ziegler—Nichols tuning rule. The important thing to note here
is that the Ziegler—Nichols tuning rule has provided a starting point for fine tuning.

It is instructive to note that, for the case where the double zero is located at s = —1.4235, in-
creasing the value of K, increases the speed of response, but as far as the percentage maximum
overshoot is concerned, varying gain K, has very little effect. The reason for this may be seen from

Unit-Step Response

Amplitude

Time (sec)
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Figure 8-11
Root-locus diagram
of system when PID
controller has double
zero at s = —1.4235.
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(s + 1.4235)? 1
N s(s+ (s +5)

the root-locus analysis. Figure 8-11 shows the root-locus diagram for the system designed by use of
the second method of Ziegler—Nichols tuning rules. Since the dominant branches of root loci are
along the { = 0.3 lines for a considerable range of K, varying the value of K (from 6 to 30) will not
change the damping ratio of the dominant closed-loop poles very much. However, varying the lo-
cation of the double zero has a significant effect on the maximum overshoot, because the damping
ratio of the dominant closed-loop poles can be changed significantly. This can also be seen from the
root-locus analysis. Figure 8-12 shows the root-locus diagram for the system where the PID controller
has the double zero at s = —0.65. Notice the change of the root-locus configuration. This change in
the configuration makes it possible to change the damping ratio of the dominant closed-loop poles.

In Figure 8-12, notice that, in the case where the system has gain K = 30.322, the closed-loop
poles ats = —2.35 + j4.82 act as dominant poles. Two additional closed-loop poles are very near the
double zero at s = —0.65, with the result that these closed-loop poles and the double zero almost can-
cel each other. The dominant pair of closed-loop poles indeed determines the nature of the response.
On the other hand, when the system has K = 13.846, the closed-loop poles at s = —2.35 + j2.62 are
not quite dominant because the two other closed-loop poles near the double zero at s = —0.65 have
considerable effect on the response. The maximum overshoot in the step response in this case (18%)
is much larger than the case where the system is of second order and having only dominant closed-loop
poles. (In the latter case the maximum overshoot in the step response would be approximately 6%.)

It is possible to make a third, a fourth, and still further trials to obtain a better response. But
this will take a lot of computations and time. If more trials are desired, it is desirable to use the
computational approach presented in Section 10-3. Problem A-8-12 solves this problem with
the computational approach with MATLAB. It finds sets of parameter values that will yield the
maximum overshoot of 10% or less and the settling time of 3 sec or less. A solution to the present
problem obtained in Problem A-8-12 is that for the PID controller defined by

(s + a)?

G.(s) =K S
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Figure 8-12 i - =2
Root-locus diagram K=13.846 i
of system when PID
controller has double L —j4
zero at s = —0.65. K =30322 i
K = 13.846
corresponds to G,(s) - —j6
given by Equation (8-1)
and K = 30.322 K=60 |
corresponds to G,(s) L8
given by Equation (8-2).

the values of K and a are
K =29, a =025

with the maximum overshoot equal to 9.52% and settling time equal to 1.78 sec. Another possible
solution obtained there is that
K =27, a=02

with the 5.5% maximum overshoot and 2.89 sec of settling time. See Problem A-8-12 for details.

8-3 DESIGN OF PID CONTROLLERS WITH FREQUENCY-RESPONSE
APPROACH

In this section we present a design of a PID controller based on the frequency-response
approach.

Consider the system shown in Figure 8-13. Using a frequency-response approach, de-
sign a PID controller such that the static velocity error constant is 4 sec™!, phase margin
is 50° or more, and gain margin is 10 dB or more. Obtain the unit-step and unit-ramp
response curves of the PID controlled system with MATLAB.

Let us choose the PID controller to be

K(as + 1)(bs + 1)
s

Gi(s) =
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