
	

	

Power Availability Requests
June	23,	2009	

Abstract

By	default,	Windows®-based	platforms	enable	device	and	system	power	management	
technologies	to	help	improve	energy	efficiency	and	reduce	power	consumption.	Two	
of	the	most	effective	power	management	features	are	display	power	management	
and	automatic	sleep.	However,	in	some	scenarios,	applications	or	drivers	must	
temporarily	disable	these	power	management	technologies	to	perform	tasks	as	the	
user	expects.	Applications	can	temporarily	prevent	display	power	management	and	
automatic	sleep	by	making	power	availability	requests.		

This	paper	describes	when	to	use	availability	requests,	the	user-mode	and	kernel-
mode	functions	that	support	such	requests,	and	new	options	in	the	PowerCfg	tool	to	
manage	availability	requests	on	Windows	7	or	Windows	Server®	2008	R2.	

This	information	applies	to	the	following	operating	systems:	
	 Windows	Server	2008	R2	
	 Windows	7	

References	and	resources	discussed	here	are	listed	at	the	end	of	this	paper.	

The	current	version	of	this	paper	is	maintained	on	the	Web	at:		
	 http://www.microsoft.com/whdc/system/pnppwr/powermgmt/AvailabilityReque
sts.mspx	

	 	

Fehler!	Formatvorlage	nicht	definiert.	-	2	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

Disclaimer: This is a preliminary document and may be changed substantially prior to final commercial
release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the
issues discussed as of the date of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement
from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, email address, logo, person, place or event is intended or should be
inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective
owners.
	

Document	History	
Date	 Change	 	 	 	
June	23,	2009	 First	publication		
	

Contents
Introduction	...	3	
Scenarios	for	Availability	Requests	..	3	

Temporarily	Delay	Display	Power	Management	...	4	
Temporarily	Delay	Automatic	Sleep	..	5	
Enable	Away	Mode	..	5	

New	Functions	for	Availability	Requests	..	5	
Win32	Functions	..	6	
Kernel-Mode	Functions	...	10	
Using	the	Win32	Power	Availability	Functions	in	Managed	Environments	12	
Developing	Software	for	Windows	7	and	Earlier	Versions	of	Windows	13	

Common	Windows	Availability	Requests	...	14	
Managing	Availability	Requests	...	14	

Enumerating	Outstanding	Requests	..	14	
Analyzing	System	Energy	Efficiency	...	15	
Overriding	Availability	Requests	..	16	

Best	Practices	for	Availability	Requests	...	17	
Resources	...	17	
	

Fehler!	Formatvorlage	nicht	definiert.	-	3	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

Introduction
Windows®	platforms	provide	a	wide	variety	of	power	management	technologies	to	
help	extend	mobile	PC	battery	life	and	improve	energy	efficiency.	Two	of	the	most	
common	and	effective	technologies	are	display	power	management	and	automatic	
sleep.	Display	power	management—powering	off	or	reducing	brightness	of	the	
display	after	a	period	of	user	inactivity—is	effective	because	the	display	consumes	a	
large	amount	of	the	total	system	power	budget.	Similarly,	automatic	sleep	after	user	
inactivity	is	an	effective	power-saving	feature	because	it	can	reduce	the	power	
consumption	of	an	idle	PC	to	only	a	few	watts.	

Beginning	with	Windows	Vista®,	both	display	power	management	and	automatic	
sleep	are	enabled	by	default	for	all	Windows	client	operating	systems.	However,	
some	user	scenarios	conflict	with	these	power-saving	modes	and	require	display	
power	management	and	automatic	sleep	to	be	temporarily	disabled.	A	good	example	
is	video	playback.	If	the	computer	plays	a	DVD	for	several	hours,	the	user	does	not	
interact	with	the	system	via	keyboard	or	mouse.	The	display	and	sleep	idle	timeouts	
must	be	temporarily	disabled	so	that	the	DVD	movie	can	play	without	interruption.	

By	using	power	availability	requests	(or	simply	availability	requests),	applications,	
services,	and	drivers	can	temporarily	disable	power	management	features	to	
accomplish	user	scenarios.	Availability	requests	can	prevent	the	display	from	turning	
off	after	inactivity,	prevent	the	system	from	automatically	sleeping,	and	enable	Away	
Mode.		

Developers	of	applications,	services,	and	drivers	should	be	aware	of	availability	
requests	and	the	best	practices	for	their	use.	Correct	use	of	availability	requests	is	
critical	because	end	users	and	IT	administrators	expect	the	computer	to	use	display	
power	management	and	automatic	sleep	as	configured	in	Power	Options	in	Control	
Panel.	

Although	Windows	7	and	Windows	Server®	2008	R2	provide	innovations	in	
availability	request	APIs	and	diagnostics,	many	earlier	versions	of	Windows	have	
supported	availability	requests.	Developers	might	be	familiar	with	the	
SetThreadExecutionState	function,	which	allows	user-mode	Win32	applications	to	
create	availability	requests.		

This	paper	details	the	improvements	in	availability	request	APIs	and	diagnostics	for	
Windows	7	and	Windows	Server	2008	R2.	It	covers	new	Win32	application	
programming	interface	(API)	functions	and	kernel-mode	device	driver	interface	(DDI)	
functions	that	can	create	availability	requests	that	have	rich	textual	diagnostic	
information.	The	paper	also	describes	enhancements	to	the	PowerCfg	utility	that	
enable	administrators	to	enumerate	outstanding	availability	requests	to	help	
determine	why	display	power	management	or	automatic	sleep	is	not	functioning	as	
expected.		

Scenarios for Availability Requests
Applications	use	availability	requests	for	the	following	reasons:	

• To	temporarily	disable	display	power	management		

Fehler!	Formatvorlage	nicht	definiert.	-	4	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

• To	temporarily	disable	automatic	sleep	after	a	period	of	inactivity	

• To	enable	Away	Mode	

You	should	use	availability	requests	only	when	essential	to	complete	a	user	scenario.	
Users	expect	automatic	sleep	or	display	power	management	to	function	as	enabled	in	
Power	Options.	If	an	availability	request	has	disabled	one	of	these	power	
management	features,	the	user	might	not	be	aware	which	application	or	driver	has	
temporarily	disabled	the	functionality.		

Applications	should	create	the	availability	request	when	the	user	scenario	begins	and	
release	it	promptly	when	the	user	scenario	completes.	You	must	test	and	validate	the	
use	of	availability	requests	to	ensure	that	power	management	features	are	disabled	
only	when	necessary.	Validation	should	ensure	that	the	availability	request	is	created	
when	the	user	scenario	begins	and	is	promptly	released	when	the	user	scenario	is	
completed.	

Temporarily Delay Display Power Management
To	reduce	power	consumption,	Windows	automatically	turns	off	the	display	after	a	
period	of	user	inactivity.	Windows	7	also	automatically	reduces	the	brightness	of	the	
integrated	display	in	a	mobile	PC	after	a	period	of	user	inactivity.		

To	determine	user	activity,	Windows	tracks	user	input	through	the	attached	human	
input	devices.	If	the	elapsed	time	since	the	last	user	input	is	greater	than	the	display	
idle	timeout	that	the	current	power	policy	specifies,	Windows	turns	off	the	display.	
Similarly,	if	the	elapsed	time	since	the	last	user	input	is	greater	than	the	display	dim	
timeout	specified	in	power	policy,	Windows	dims	the	display.	

Applications	can	prevent	the	display	from	being	turned	off	when	they	are	displaying	
information	to	the	user	for	long	periods	of	time	but	the	user	is	not	providing	input,	
such	as	during	a	full-screen	presentation	or	full-screen	media	visualization.	Common	
scenarios	include:	

• Delivering	a	full-screen	presentation	

• Viewing	video	content	

• Displaying	a	picture	slide	show	

However,	when	preventing	display	power	management,	developers	should	
remember	that	the	display	consumes	a	large	amount	of	power.	Display	power	
consumption	is	particularly	important	on	mobile	PCs	where	the	LCD	backlight	
consumes	a	large	percentage	of	the	overall	system	power	budget.	

Display	power	management	is	important	for	correct	operation	of	media	playback	
applications,	including	Web-based	applications.	Many	applications	correctly	prevent	
display	power	management	when	rendering	video	content	in	full-screen	modes.	
However,	few	applications	correctly	prevent	the	display	from	dimming	or	turning	off	
when	rendering	video	content	that	is	embedded	into	a	Web	page.		

The	ideal	design	for	the	Web-integrated	video	scenario	is	to	make	an	availability	
request	when	the	user	initiates	video	playback	and	to	clear	the	request	when	video	
playback	stops.	Use	an	availability	request	only	when	rendering	video	content	that	

Fehler!	Formatvorlage	nicht	definiert.	-	5	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

the	user	has	initiated.	Availability	requests	are	not	appropriate	for	preventing	display	
power	management	during	display	of	an	animated	advertisement.	

Temporarily Delay Automatic Sleep
To	help	reduce	system	power	consumption,	Windows	automatically	places	the	
computer	in	the	sleep	state	after	a	period	of	user	inactivity.	Sleep	consumes	much	
less	power	than	in	the	working	state,	allowing	for	large	potential	power	savings	when	
the	system	is	idle.	Typically,	the	computer	automatically	enters	sleep	after	30	or	60	
minutes	of	user	inactivity.	The	user	can	increase	or	decrease	the	sleep	idle	timeout	in	
Power	Options.	

Applications	typically	might	need	to	prevent	automatic	sleep	when	they	are	
consuming	system	resources	to	deliver	a	user	scenario,	but	the	user	is	not	currently	
interacting	with	the	system.	Common	scenarios	include:	

• Delivering	a	full-screen	presentation	

• Viewing	video	content	

• Saving	files	to	an	optical	disk	

• Downloading	files	from	the	Internet	or	another	computer	on	the	network	

• Recording	television	content	

However,	when	preventing	automatic	sleep,	developers	should	keep	in	mind	the	
large	potential	power	savings	for	automatic	sleep.	The	user	or	system	administrator	
expects	the	system	to	automatically	enter	sleep	after	the	period	of	inactivity	specified	
in	Power	Options.	Developers	must	ensure	that	their	applications	are	delivering	
critical	user	scenarios	when	creating	availability	requests	to	prevent	automatic	sleep.	

Enable Away Mode
You	can	also	use	availability	requests	to	enable	Away	Mode	on	Windows	Vista	and	
later	versions	of	Windows.	Away	Mode	is	designed	for	entertainment	and	media	PCs.	
When	Away	Mode	is	enabled,	if	the	user	places	the	system	in	sleep,	the	computer	
remains	on	(ACPI	S0	state)	and	the	display	is	turned	off	and	audio	is	muted.	Away	
Mode	provides	the	illusion	that	the	system	turned	off,	while	it	remains	powered	on	
to	deliver	media	content	to	networked	PCs	or	Windows	Media	Center	Extender	
devices.	

Enable	Away	Mode	only	when	essential	for	media	and	connected	entertainment	
scenarios.	End	users	expect	the	system	to	enter	sleep	when	they	select	Sleep	from	
the	Windows	Start	menu	or	press	the	sleep	button	on	the	computer	or	a	connected	
remote	control.	Similarly,	use	of	automatic	sleep	and	Wake-on-LAN	technologies	is	
often	preferable	to	Away	Mode	because	sleep	provides	greater	energy	efficiency	
than	keeping	the	computer	in	the	On	state	with	Away	Mode.		

New Functions for Availability Requests
In	previous	versions	of	Windows,	applications	used	the	SetThreadExecutionState	
function	to	make	an	availability	request	to	prevent	display	power	management	or	
prevent	automatic	sleep.	SetThreadExecutionState	requires	that	requests	be	set	and	
cleared	on	the	same	Win32	thread.	Additionally,	SetThreadExecutionState	callers	

Fehler!	Formatvorlage	nicht	definiert.	-	6	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

cannot	specify	the	reason	for	the	availability	request,	which	could	aid	administrators	
in	diagnosing	why	PCs	are	not	using	display	power	management	and	automatic	sleep	
as	expected.	These	challenges	made	its	use	cumbersome	and	diagnosis	difficult.	

Windows	7	and	Windows	Server	2008	R2	include	new	user-mode	and	kernel-mode	
functions	that	are	easier	to	use.	The	new	functions	use	an	object	and	handle	model	
for	each	availability	request.	These	functions	also	improve	system-wide	diagnostics	
for	availability	requests	by	allowing	you	to	provide	a	textual	string	denoting	the	
reason	for	the	request.		

Win32 Functions
The	user-mode	Win32	API	includes	three	new	functions	for	creating	and	managing	
availability	requests.	These	functions	are	defined	in	Winbase.h	and	listed	in	Table	1.	

Table	1.		Power	Availability	Request	Functions	in	Win32	API	
Function	name	 Description	
PowerCreateRequest	 Creates	a	power	context	object	and	returns	a	handle	to	it.	
PowerClearRequest	 Removes	an	outstanding	availability	request	on	a	

particular	request	context	object	
PowerSetRequest	 Activates	a	power	availability	request	and	indicates	

the	type	of	request.	
	

You	can	use	the	new	PowerCreateRequest,	PowerSetRequest,	and	
PowerClearRequest	functions	to	create	availability	requests	in	Windows	7	and	
Windows	Server	2008	R2.	These	functions	improve	on	the	SetThreadExecutionState	
function	by	removing	the	per-thread	restriction	and	removing	the	inconsistency	when	
SetThreadExecutionState	is	used	with	the	ES_CONTINUOUS	flag.		

The	PowerCreateRequest,	PowerSetRequest,	and	PowerClearRequest	functions	use	
a	handle	and	object–based	model.	When	an	application	requires	an	availability	
request,	it	calls	PowerCreateRequest	to	create	an	object	that	contains	context	about	
the	availability	request.	The	context	object	includes	caller-provided	diagnostic	
information	about	the	request,	including	a	textual	string	indicating	the	reason	for	the	
request.		

Winbase.h	defines	the	context	object	and	the	PowerCreateRequest	function	as	
follows:	

//
// Power Request Context Object
//
typedef struct _REASON_CONTEXT {
 ULONG Version;
 DWORD Flags;
 union {
 struct {
 HMODULE LocalizedReasonModule;
 ULONG LocalizedReasonId;
 ULONG ReasonStringCount;
 LPWSTR *ReasonStrings;

 } Detailed;

 LPWSTR SimpleReasonString;

Fehler!	Formatvorlage	nicht	definiert.	-	7	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

 } Reason;
} REASON_CONTEXT, *PREASON_CONTEXT;

typedef REASON_CONTEXT POWER_REQUEST_CONTEXT, *PPOWER_REQUEST_CONTEXT,
*LPPOWER_REQUEST_CONTEXT;

//
// Version and Reason Type Constants
//
#define POWER_REQUEST_CONTEXT_VERSION 0
#define POWER_REQUEST_CONTEXT_SIMPLE_STRING 0x00000001
#define POWER_REQUEST_CONTEXT_DETAILED_STRING 0x00000002

//
// PowerCreateRequest API
//
WINBASEAPI
HANDLE
WINAPI
PowerCreateRequest (
 __in PREASON_CONTEXT Context
);
	

The	diagnostic	string	can	be	simple	or	detailed.	In	the	simple	case,	the	caller	provides	
a	string	value	such	as	“Application	xxx	Is	Downloading	Files”	in	the	
SimpleReasonString	member	of	the	REASON_CONTEXT	object.	For	example:	

//
// Simple, non-localized availablity request diagnostic string
//
POWER_REQUEST_CONTEXT SimplePowerRequest;
SimplePowerRequest.Version = POWER_REQUEST_CONTEXT_VERSION;
SimplePowerRequest.Flags = POWER_REQUEST_CONTEXT_SIMPLE_STRING;
SimplePowerRequest.SimpleReasonString = L”Sample Reason String.”;

	

Detailed	strings	enable	localization	of	the	diagnostic	string	and	string	substitution	in	
the	Detailed	member	of	the	object.	If	you	provide	a	module	and	resource	ID	in	the	
Detailed	member,	Windows	automatically	displays	the	string	in	the	language	of	the	
user	enumerating	outstanding	availability	requests,	assuming	localized	modules	have	
been	provided.	The	following	shows	how	to	supply	a	diagnostic	string	that	Windows	
localizes:		

//
// Localized availablity request diagnostic string
// without substitution
//
POWER_REQUEST_CONTEXT LocalizedPowerRequest;
LocalizedPowerRequest.Version = POWER_REQUEST_CONTEXT_VERSION;
LocalizedPowerRequest.Flags = POWER_REQUEST_CONTEXT_DETAILED_STRING;
LocalizedPowerRequest.LocalizedReasonModule = HandleToResourceDLL;
LocalizedPowerRequest.LocalizedReasonId = -1040
LocalizedPowerRequest.ReasonStringCount = 0;
LocalizedPowerRequest.ReasonStrings = NULL;

	

Fehler!	Formatvorlage	nicht	definiert.	-	8	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

The	detailed	string	also	enables	substitution	at	run	time	to	provide	rich	diagnostic	
information.	For	example,	by	using	substitution	you	can	provide	a	string	such	as	
“Application	is	downloading	abc.zip	from	ftp://www.microsoft.com”.	Within	
Windows,	detailed	string	substitution	is	used	to	display	the	path	of	any	open	network	
files	that	cause	automatic	sleep	to	be	temporarily	disabled.	The	following	shows	how	
an	application	can	use	substitution	to	provide	additional	detail:	

//
// Localized availablity request diagnostic string
// with string substituion. Assume string resource -1041 contains
// L”My Application is recording television on channel %1”.
//
POWER_REQUEST_CONTEXT LocalizedPowerRequest;
LocalizedPowerRequest.Version = POWER_REQUEST_CONTEXT_VERSION;
LocalizedPowerRequest.Flags = POWER_REQUEST_CONTEXT_DETAILED_STRING;
LocalizedPowerRequest.LocalizedReasonModule = HandleToResourceDLL;
LocalizedPowerRequest.LocalizedReasonId = -1041
LocalizedPowerRequest.ReasonStringCount = 1;
LocalizedPowerRequest.ReasonStrings = “35”;
	

After	the	application	has	created	a	context	object	for	an	availability	request,	the	
application	can	set	or	activate	the	request	by	using	the	PowerSetRequest	function.		

The	following	shows	the	definition	of	this	function	from	Winbase.h:	

//
// Power Request Type Enumeration
//
typedef enum _POWER_REQUEST_TYPE {
 PowerRequestDisplayRequired,
 PowerRequestSystemRequired,
 PowerRequestAwayModeRequired
} POWER_REQUEST_TYPE, *PPOWER_REQUEST_TYPE;

//
// PowerSetRequest API
//
WINBASEAPI
BOOL
WINAPI
PowerSetRequest (
 __in HANDLE PowerRequest,
 __in POWER_REQUEST_TYPE RequestType
);

	

Table	2	describes	the	availability	request	types	that	an	application	can	set	by	using	
PowerSetRequest.	

Table	2.		Availability	Request	Types	
Power	request	type	 Description	
PowerRequestDisplayRequired	 Prevents	display	power	management,	including	

automatic	display	dimming.	
PowerRequestSystemRequired	 Prevents	automatic	sleep.	
PowerRequestAwayModeRequired	 Enables	Away	Mode.	

An	application	can	use	PowerSetRequest	to	set	multiple	and	different	types	of	
availability	requests	on	the	same	request	context	object.	For	example,	an	application	

Fehler!	Formatvorlage	nicht	definiert.	-	9	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

can	create	a	single	context	object	to	prevent	both	display	power	management	and	
automatic	sleep	while	displaying	full-screen	video	content.	To	make	the	availability	
requests,	the	application	calls	PowerSetRequest	twice:	once	with	the	
PowerRequestDisplayRequired	type	and	once	with	the	
PowerRequestSystemRequired	type.	Windows	displays	the	same	diagnostic	context	
information	for	both	requests.	

An	application	can	also	call	PowerSetRequest	multiple	times	for	the	same	type	of	
request.	For	example,	consider	an	application	that	downloads	multiple	files	from	the	
network.	The	application	can	create	a	single	request	context	object	and	call	
PowerSetRequest	each	time	it	starts	to	download	a	file.	Windows	displays	the	same	
diagnostic	context	information	for	each	request.	

The	PowerClearRequest	function	removes	or	clears	an	outstanding	availability	
request	on	a	given	request	context	object.	Winbase.h	defines	this	function	as	follows:	

WINBASEAPI
BOOL
WINAPI
PowerClearRequest (
 __in HANDLE PowerRequest,
 __in POWER_REQUEST_TYPE RequestType
);
	

For	each	request	that	an	application	initiates	by	using	PowerSetRequest,	the	
application	must	call	PowerClearRequest	to	clear	the	request	when	it	is	no	longer	
required.	As	with	PowerSetRequest,	an	application	can	call	PowerClearRequest	more	
than	once	on	a	single	request	context	object	to	clear	more	than	one	type	of	request.	
The	application	must	call	PowerClearRequest	exactly	once	for	each	previous	call	to	
PowerSetRequest	on	a	given	request	context	object.	

When	the	application	has	cleared	all	availability	requests	and	no	longer	requires	the	
request	context	object,	it	must	close	the	handle	to	the	request	object	by	calling	the	
CloseHandle	function.	

The	PowerCreateRequest,	PowerSetRequest	and	PowerClearRequest	functions	are	
safe	for	use	in	Win32	services	in	the	Service	Control	Manager	(SCM)	programming	
model.	These	functions	are	also	safe	for	use	within	a	thread	pool.	

The	following	code	sample	demonstrates	how	to	use	the	PowerCreateRequest,	
PowerSetRequest,	and	PowerClearRequest	functions	to	create	an	availability	request	
for	an	application	that	downloads	files	from	the	network.	The	application	creates	a	
system	availability	request	to	prevent	automatic	sleep	while	the	file	is	being	
downloaded:	

//
// Create a system availablity request to keep the system from
// automatically sleeping while downloading a file.
//
POWER_REQUEST_CONTEXT DownloadPowerRequestContext;
HANDLE DownloadPowerRequest;

//
// Set up the diagnostic string

Fehler!	Formatvorlage	nicht	definiert.	-	10	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

//
DownloadPowerRequestContext.Version = POWER_REQUEST_CONTEXT_VERSION;
DownloadPowerRequestContext.Flags =
 POWER_REQUEST_CONTEXT_SIMPLE_STRING;
DownloadPowerReqeustContext.Reason.SimpleReasonString =
 L”My application is downloading files.”

//
// Create the request, get a handle
//
DownloadPowerRequest =
 PowerCreateRequest(&DownloadPowerRequestContext);

//
// Set a system request to prevent automatic sleep
//
PowerSetRequest(
 DownloadPowerRequest,
 PowerRequestSystemRequired
);

//
// Download the file...
//

//
// Clear the request
//
PowerClearRequest(DownloadPowerRequest);
	

Kernel-Mode Functions
In	Windows	7	and	Windows	Server	2008	R2,	kernel-mode	code	can	call	the	
PoCreatePowerRequest,	PoSetPowerRequest,	PoClearPowerRequest,	and	
PoDeletePowerRequest	DDI	functions	to	create	and	manage	availability	requests.	
These	functions	are	defined	in	Wdm.h	and	must	be	called	at	IRQL<DISPATCH_LEVEL.	
Table	3	lists	these	functions	and	the	user-mode	equivalents.		

Table	3.		Kernel-Mode	Availability	Request	Functions	and	Equivalent	Win32	Functions	
Kernel-mode	function	 User-mode	function	
PoCreatePowerRequest	 PowerCreateRequest	
PoSetPowerRequest	 PowerSetRequest	
PoClearPowerRequest	 PowerClearRequest	
PoDeletePowerRequest	 No	equivalent	

The	kernel-mode	functions	work	in	almost	exactly	the	same	manner	as	the	
corresponding	user-mode	Win32	functions.	The	primary	difference	is	that	the	
Windows	kernel	creates	the	request	object	and	allocates	the	memory	that	backs	it.	
Therefore,	the	driver	must	call	into	the	kernel	to	delete	the	request	object	when	the	
availability	request	is	no	longer	required.	The	driver	must	call	
PoDeletePowerRequest	when	it	no	longer	requires	use	of	the	power	request	object	
so	that	Windows	can	free	the	memory.	The	other	functions	work	in	exactly	the	same	
way	as	their	Win32	counterparts.	For	additional	details	about	how	to	use	these	
functions,	see	the	previous	section.	

Fehler!	Formatvorlage	nicht	definiert.	-	11	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

The	following	shows	the	function	and	structure	prototypes	for	
PoCreatePowerRequest,	PoSetPowerRequest,	PoClearPowerRequest	and	
PoDeletePowerRequest,	as	defined	in	Wdm.h:		

//
// PoCreatePowerRequest function
//
NTKERNELAPI
NTSTATUS
PoCreatePowerRequest (
 __deref_out PVOID *PowerRequest,
 __in PDEVICE_OBJECT DeviceObject,
 __in PCOUNTED_REASON_CONTEXT Context
);

//
// PoSetPowerRequest function
//
NTKERNELAPI
NTSTATUS
PoSetPowerRequest (
 __inout PVOID PowerRequest,
 __in POWER_REQUEST_TYPE Type
);

//
// PoClearPowerRequest function
//
NTKERNELAPI
NTSTATUS
PoClearPowerRequest (
 __inout PVOID PowerRequest,
 __in POWER_REQUEST_TYPE Type
);

//
// PoDeletePowerRequest function
//
NTKERNELAPI
VOID
PoDeletePowerRequest (
 __inout PVOID PowerRequest
);
	

The	kernel-mode	context	structure	is	essentially	similar	to	the	user-mode	structure,	
and	the	constants	and	enumerations	are	identical,	as	the	following	definitions	show:		

//
// Power Request Reason Context Structure
//
typedef struct _COUNTED_REASON_CONTEXT {
 ULONG Version;
 ULONG Flags;
 union {
 struct {
 UNICODE_STRING ResourceFileName;
 USHORT ResourceReasonId;
 ULONG StringCount;
 PUNICODE_STRING __field_ecount(StringCount) ReasonStrings;
 } DUMMYSTRUCTNAME;

Fehler!	Formatvorlage	nicht	definiert.	-	12	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

 UNICODE_STRING SimpleString;
 } DUMMYUNIONNAME;
} COUNTED_REASON_CONTEXT, *PCOUNTED_REASON_CONTEXT;

//
// Power Request Constants
//
#define POWER_REQUEST_CONTEXT_VERSION 0
#define POWER_REQUEST_CONTEXT_SIMPLE_STRING 0x00000001
#define POWER_REQUEST_CONTEXT_DETAILED_STRING 0x00000002

//
// Power Request Enumerations
//
typedef enum _POWER_REQUEST_TYPE {
 PowerRequestDisplayRequired,
 PowerRequestSystemRequired,
 PowerRequestAwayModeRequired
} POWER_REQUEST_TYPE, *PPOWER_REQUEST_TYPE;

Using the Win32 Power Availability Functions in Managed Environments
You	can	easily	use	the	PowerCreateRequest,	PowerSetRequest,	and	
PowerClearRequest	functions	in	Windows	7	and	Windows	Server	2008	R2	in	
managed	programming	environments	by	using	the	Platform	Invocation	Services	
(PInvoke)	capability.	The	following	example	C#	definitions	can	be	used	directly	in	a	
managed	application	or	service:		
//
// Availability Request Functions
//
[DllImport("kernel32.dll")]
static extern IntPtr PowerCreateRequest(
 ref POWER_REQUEST_CONTEXT Context
);

[DllImport("kernel32.dll")]
static extern bool PowerSetRequest(
 IntPtr PowerRequestHandle,
 PowerRequestType RequestType
);

[DllImport("kernel32.dll")]
static extern bool PowerClearRequest(
 IntPtr PowerRequestHandle,
 PowerRequestType RequestType
);

//
// Availablity Request Enumerations and Constants
//
enum PowerRequestType {
 PowerRequestDisplayRequired = 0,
 PowerRequestSystemRequired,
 PowerRequestAwayModeRequired,
 PowerRequestMaximum
}

const int POWER_REQUEST_CONTEXT_VERSION = 0;
const int POWER_REQUEST_CONTEXT_SIMPLE_STRING = 0x1;

Fehler!	Formatvorlage	nicht	definiert.	-	13	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

const int POWER_REQUEST_CONTEXT_DETAILED_STRING = 0x2;

//
// Availablity Request Structures
//

//
// Note:
//
// Windows defines the POWER_REQUEST_CONTEXT structure with an
// internal union of SimpleReasonString and Detailed information.
// To avoid runtime interop issues, this version of
// POWER_REQUEST_CONTEXT only supports SimpleReasonString.
// To use the detailed information,
// define the PowerCreateRequest function with the first
// parameter of type POWER_REQUEST_CONTEXT_DETAILED.
//
[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Unicode)]
public struct POWER_REQUEST_CONTEXT
{
 public UInt32 Version;
 public UInt32 Flags;
 [MarshalAs(UnmanagedType.LPWStr)] public string
 SimpleReasonString;
}

[StructLayout(LayoutKind.Sequential)]
public struct PowerRequestContextDetailedInformation
{
 public IntPtr LocalizedReasonModule;
 public UInt32 LocalizedReasonId;
 public UInt32 ReasonStringCount;
 [MarshalAs(UnmanagedType.LPWStr)] public string[] ReasonStrings;
}

[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
public struct POWER_REQUEST_CONTEXT_DETAILED
{
 public UInt32 Version;
 public UInt32 Flags;
 public PowerRequestContextDetailedInformation DetailedInformation;
}

Developing Software for Windows 7 and Earlier Versions of Windows
If	your	application	software	must	run	on	both	Windows	7	and	earlier	versions	of	
Windows,	you	should	use	the	new	power	availability	function	PowerCreateRequest	
and	associated	functions	whenever	possible.	In	user	mode,	the	best	way	to	
determine	whether	these	functions	are	available	on	the	current	Windows	instance	is	
to	call	the	GetProcAddress	function	to	dynamically	obtain	a	pointer	to	
PowerCreateRequest	and	the	associated	functions.	If	GetProcAddress	returns	a	
pointer	that	is	not	equal	to	NULL,	the	requested	function	is	available	and	the	
application	should	use	it.		

Kernel-mode	components	can	use	the	MmGetSystemRoutineAddress	function	for	
the	same	purpose.	

Fehler!	Formatvorlage	nicht	definiert.	-	14	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

Common Windows Availability Requests
Table	4	lists	Windows	components	that	make	availability	requests	based	on	user	
scenarios	or	policy	configuration.	Administrators	can	use	this	information	to	
understand	the	most	common	availability	requests	on	Windows	platforms.	

Table	4.		Common	Windows	Availability	Requests	
Windows	component	 Request	type	 Description	
Network	File	Sharing	 SYSTEM	 Created	on	both	the	client	and	server	when	a	file	

that	is	open	across	the	network	is	not	backed	by	a	
client-side	cache.	

Audio	Playback	 SYSTEM	 Created	when	any	audio	stream	is	active.	
Media	Sharing	 SYSTEM	 Created	when	remote	devices	are	configured	

and	are	not	compatible	with	Wake-on-LAN	
(WoL).	

Windows	Explorer	 SYSTEM	 Created	during	file	copy	operations.	
Windows	Print	Spooler	 SYSTEM	 Created	when	print	spooler	is	active.	
Media	Center	/	Extender	 SYSTEM	+	

AWAY	MODE	
Created	when	streaming	content	to	remote	
extender	devices.	Away	Mode	request	is	based	
on	user	policy	selection	during	extender	setup.	

Windows	Media	Player	 SYSTEM	+	
DISPLAY	

Created	when	playing	back	full-screen	video	
content.	

Managing Availability Requests
Administrators	often	focus	on	enabling	PC	power-saving	features,	including	display	
power	management	and	automatic	sleep.	When	such	features	do	not	work	as	
expected,	it	can	be	difficult	to	identify	the	application,	service,	or	driver	that	is	
responsible.	Windows	includes	tools	that	can	help	you	resolve	any	problems	and	
ensure	that	all	managed	PCs	use	display	power	management	and	automatic	sleep	
efficiently.	

In	Windows	7	Windows	Server	2008	R2,	the	PowerCfg	utility	includes	new	options	
that	provide	information	about	outstanding	availability	requests:	

• /requests	

• /energy	

• /requestsoverride	

If	a	component	creates	the	availability	request	by	using	the	new	
PowerCreateRequest	and	related	functions,	Windows	reports	additional	diagnostic	
information	as	described	in	the	following	sections.	Only	the	process	name	and	service	
name	are	available	if	the	request	is	created	using	the	older	SetThreadExecutionState	
function.		

Enumerating Outstanding Requests
In	Windows	7	and	Windows	Server	2008	R2,	the	PowerCfg	utility	supports	the	
/requests	option,	which	enumerates	all	outstanding	availability	requests.	To	use	this	
option,	you	must	run	PowerCfg	from	an	elevated	command	prompt.	

In	the	following	example,	Windows	Explorer	has	a	single	outstanding	system	
availability	request	because	of	an	ongoing	file	copy	operation:	

Fehler!	Formatvorlage	nicht	definiert.	-	15	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

C:\>PowerCfg /REQUESTS
DISPLAY:
None.

SYSTEM:
[PROCESS] \Device\HarddiskVolume2\Windows\explorer.exe
A file copy operation is in progress.

AWAYMODE:
None.
	
As	the	example	shows,	PowerCfg	displays	all	outstanding	availability	requests	for	
each	type	of	request:	Display,	System,	and	Away	Mode.	For	each	request,	it	shows	in	
brackets	whether	the	requestor	is	a	process,	service,	or	driver,	and	the	path	to	the	
process	executable	file	on	disk,	the	name	of	the	service,	or	the	name	of	the	driver.	

If	the	requestor	uses	the	new	availability	request	function	and	provides	a	context	
string,	PowerCfg	shows	the	string.	In	the	example,	Windows	Explorer	(Explorer.exe)	
was	updated	to	provide	the	string	“A	file	copy	operation	is	in	progress.”	as	the	reason	
for	the	system	availability	request.	

PowerCfg	/requests	enumerates	availability	requests	that	user-mode	applications	
make	by	using	the	older	SetThreadExecutionState	function	and	displays	the	type	of	
request	and	“kernel”	as	the	requestor.	The	utility	displays	[LEGACYKERNELCALLER]	for	
availability	requests	that	a	kernel-mode	caller	created	by	using	the	older	
PoRegisterSystemState	function.		

Analyzing System Energy Efficiency
In	Windows	7	and	Windows	Server	2008	R2,	the	PowerCfg	utility	supports	the	
/energy	option,	which	analyzes	overall	system	energy	efficiency.		

The	/energy	option	generates	a	report	that	contains	detailed	results	and	includes	
information	about	any	outstanding	availability	requests	at	the	time	of	analysis.	Such	
requests	are	logged	as	errors,	because	they	prevent	optimal	system	energy	efficiency.	
For	complete	information	about	the	/energy	option,	see	“Using	PowerCfg	to	Evaluate	
System	Energy	Efficiency,”	which	is	listed	in	“Resources”	later	in	this	paper.	

Figure	1	shows	a	snippet	from	the	PowerCfg	/energy	report	that	describes	an	
outstanding	availability	request.	

Figure 1 Sample PowerCfg /energy output

Fehler!	Formatvorlage	nicht	definiert.	-	16	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

Overriding Availability Requests
To	enable	system	administrators	to	work	around	software	that	makes	availability	
requests	incorrectly,	the	PowerCfg	utility	on	Windows	7	and	Windows	Server	2008	R2	
provides	the	/requestsoverride	option.	By	using	this	option,	you	can	override	any	
availability	request	on	the	system.	To	use	this	option,	you	must	run	PowerCfg	from	an	
elevated	command	prompt.	

The	following	shows	the	help	message	for	this	option:		

Usage: POWERCFG -REQUESTSOVERRIDE <CALLER_TYPE> <NAME> <REQUEST>
 <CALLER_TYPE> Specifies one of the following caller type:
 PROCESS, SERVICE, DRIVER. This is obtained by
 calling the POWERCFG -REQUESTS command.
 <NAME> Specifies the caller name. This is the name
 returned from calling POWERCFG –REQUESTS
 command.
 <REQUEST> Specifies one or more of the following Power
 Request Types: Display, System, Awaymode.

Example:
 POWERCFG -REQUESTSOVERRIDE PROCESS wmplayer.exe Display System
You	can	use	the	/requestsoverride	option	to	override	any	availability	request	on	the	
system.	For	example,	if	an	application	incorrectly	makes	an	availability	request,	but	
cannot	be	recompiled,	you	can	use	/requestsoverride	to	restore	display	power	
management	or	automatic	sleep	behaviors.	To	correct	such	a	problem	in	an	
administrative	environment,	you	can	call	PowerCfg	from	a	script	that	is	deployed	to	
each	system	by	using	Windows	Group	Policy.	

The	following	example	shows	how	to	override	the	system	availability	request	that	
Windows	Explorer	makes	when	it	copies	a	file.	The	first	command	in	the	example	sets	
the	override	on	the	Explorer.exe	process	and	the	second	command	enumerates	the	
outstanding	overrides:	

C:\>powercfg /requestsoverride PROCESS explorer.exe System

C:\>powercfg /requestsoverride
[SERVICE]

[PROCESS]
explorer.exe SYSTEM

[DRIVER]
	

To	remove	the	power	request	override,	use	the	/requestoverride	option,	but	do	not	
specify	any	type	of	override	(System,	Display,	AwayMode)	as	in	the	following	
example:	

C:\>powercfg /requestsoverride PROCESS explorer.exe

C:\>powercfg /requestsoverride
[SERVICE]

[PROCESS]

[DRIVER]

	

Fehler!	Formatvorlage	nicht	definiert.	-	17	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

Best Practices for Availability Requests
Applications,	services,	and	drivers	should	use	availability	requests	to	temporarily	
disable	display	power	management,	to	temporarily	disable	automatic	sleep,	and	to	
enable	Away	Mode	for	entertainment	and	media	PC	scenarios.	The	following	best	
practices	apply	for	the	programmatic	use	of	availability	requests:	

• Use	PowerCreateRequest	and	related	functions	in	user-mode	code	if	possible.	
Use	GetProcAddress	to	determine	whether	PowerCreateRequest	is	available	on	
the	current	operating	system.	If	the	system	does	not	support	this	function,	use	
SetThreadExecutionState	if	required.	

• Set	the	availability	request	using	PowerSetRequest	only	when	the	availability	
request	is	required.	Clear	the	request	by	calling	PowerClearRequest	as	soon	as	
the	scenario	is	completed.	

• Provide	a	localized,	textual	reason	for	the	availability	request	when	you	call	
PowerCreateRequest	to	create	the	request	context.	

• Clean	up	all	request	objects	and	associated	handles	before	process	exit	or	service	
stop.	

• Enable	Away	Mode	only	for	entertainment	and	media	PC	scenarios.	

Administrators	can	use	the	new	options	for	the	PowerCfg	utility	in	Windows	7	and	
Windows	Server	2008	R2	to	identify	problems	with	display	power	management	and	
automatic	sleep.	The	following	best	practices	apply	for	administrative	management	
of	availability	requests:	

• Use	PowerCfg	with	the	/requests	option	to	identify	outstanding	availability	
requests	that	prevent	display	power	management	or	automatic	sleep.	Run	
PowerCfg	from	an	elevated	command	prompt.	

• Use	PowerCfg	with	the	/requestsoverride	option	to	override	availability	requests.	
Override	only	the	minimally	required	set	of	requests	to	achieve	the	desired	
system	behavior.	Run	PowerCfg	from	an	elevated	command	prompt.	

• Distribute	PowerCfg	commands	to	each	system	in	the	enterprise	by	using	a	Group	
Policy	script.	

Resources

MSDN
Platform	Invoke	Tutorial	
http://msdn.microsoft.com/en-us/library/aa288468.aspx	

PowerCreateRequest	
http://msdn.microsoft.com/en-us/library/dd405533(vs.85).aspx	

Windows Driver Kit (WDK)
PoCreatePowerRequest	
http://msdn.microsoft.com/en-us/library/dd568005.aspx	

PoRegisterSystemState		
http://msdn.microsoft.com/en-us/library/ms806573.aspx		

Fehler!	Formatvorlage	nicht	definiert.	-	18	

June	23,	2009	
©	2009	Microsoft	Corporation.	All	rights	reserved.	

PoSetSystemState		
http://msdn.microsoft.com/en-us/library/ms806601.aspx	

SetThreadExecutionState		
http://msdn.microsoft.com/en-us/library/aa373208(VS.85).aspx	

Windows Hardware Developer Central (WHDC) Web site
Application	Power	Management	Best	Practices	for	Windows	Vista	
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/PM_apps.mspx	

Using	PowerCfg	to	Evaluate	System	Energy	Efficiency	
www.microsoft.com/whdc/system/pnppwr/powermgmt/PowerCfg.mspx	

	

