

PulseTile: End-To-End testing

CONTENT

Introduction

Project structure

Tools and Environment

Test algorithms

Common algorithm
Allergies test
Breadcrumbs test
Contacts test
Login test
Medication test
Patient Accordion test
Patient Information test
Patient Summary Redirection test
Patient Summary test
Personal Notes test
Problems test
Sidebar Menu test
Vaccination test

Introduction

End-to-End Testing is a tool which gives the possibility to check the work of
web-application in the browser, ie to exercise a complete production-like scenario. This
type of control is based on doing some operations step-by-step and comparing
expected and received results.

This manual consists of three separate parts.

In the first part, we described the structure of the tested project. The project

presents a structure of files and directories, and each of them has certain target
function.

In the second part, we reviewed tools and environments used for End-to-End

Testing implementation.

In the third part, we described the operational method of the End-to-End Testing.

Project structure

Structure of directories and files of the project is shown below:
---- root/
-------- node_modules/
-------- page_objects/
------------ angularDatePicker.js
------------ loginPage.js
------------ patientInformationPage.js
------------ patientSummaryPage.js
------------ reactDatePicker.js
------------ topBar.js
------------ topBarShowcase.js
-------- reports/
-------- tests/
------------ allergiesTest.js
------------ breadcrumbsTest.js
------------ contactsTest.js
------------ loginTest.js
------------ medicationsTest.js
------------ patientAccordionTest.js
------------ patientInformationTest.js
------------ patientSummaryRedirectTest.js
------------ patientSummaryTest.js
------------ personalNotesTest.js
------------ problemsTest.js
------------ sideBarMenuTest.js
------------ vaccinationsTest.js
-------- utils/
------------ deleteItems.js
------------ devDeleteList.json
------------ isTestChecked.js
------------ scrollPage.js
------------ showcaseDeleteList.json
-------- .gitignore
-------- globals.js
-------- LICENSE
-------- nightwatch.json
-------- package.json
-------- package-lock.json
-------- README.md
-------- selenium-debug.log

root/
.gitignore - the list of directories, files and file extensions which can’t be added

to commits and to the pull-requests

globals.js - export the module with a list of rules. These rules present helper

functions that are called behind the scenes or explicitly in the following cases:
- before/after each test is run;
- removing single test item;
- removing all test items;
- date picking

LICENSE -
nightwatch.json - JSON-format array with all settings which are required for test

realization

package.json -
package-lock.json - the list of Node- and React- modules/plugins versions, that

included in this project

README.md - the information for the users how to install and set the project

node_modules/

This directory is used to locate all NodeJs- and ReactJS- plugins and modules
which are required for tests working.

page_objects/

Each JS-file in this directory exports a module, which includes required settings:
angularDatePicker.js, reactDatePicker.js - for Angular/React datepicker;
loginPage.js - for login page;
patientInformationPage.js - for Patient Information page;
patientSummaryPage.js - for Patient Summary page;
topBar.js - for topbar menu;
topBarShowcase.js - for topbar (in Showcase-version)

reports/

This directory is used to locate report information after tests passing. There are
report HTML-file, screenshots etc

tests/

Each JS-file in this directory exports a module, which conducts certain type of
checking / verification:

allergiesTest.js - working of core-plugin Allergies;
breadcrumbsTest.js - breadcrumbs component rendering;
contactsTest.js - working of core-plugin Contacts;
loginTest.js - user authorization process;
medicationsTest.js - working of core-plugin Medications;
patientAccordionTest.js - patient accordion component rendering;
patientInformationTest.js - patient information component rendering;
patientSummaryRedirectionTest.js - redirecting to patient summary page;
patientSummaryTest.js - patient summary page rendering;
personalNotesTest.js - personal notes component rendering;
problemsTest.js - working of core-plugin Problems (Diagnosis);
sideBarMenuTest.js - sidebar menu component rendering;
vaccinationsTest.js - working of silver-plugin Vaccinations

utils/

deleteItems.js, devDeleteList.json, showcaseDeleteList.json - this file
includes a function and settings which are used for removing test data

isTestChecked.js - this file include a function which checks that est is used in
the current version

scrollPage.js - this file includes a function which scrolls a browser page

TOOLS AND ENVIRONMENT

End-to-End tests are written using the Nightwatch.js framework the framework
Nightwatch.js which is based on Node.js. The main advantages of this framework are:

- Nightwatch.js has simple but powerful syntax which helps to write tests very

quickly, using only Javascript (Node.js) and CSS or Xpath selectors;
- Built-in command-line test runner in Nightwatch.js can run the tests either

sequentially or in parallel, together, by group, tags or single;
- Nightwatch.js controls the Selenium standalone server automatically in a

separate child process; can be disabled if Selenium runs on another host;
- In Nightwatch.js either CSS or Xpath selectors can be used to locate and verify

elements on the page or execute commands;
- Flexible command and assertion framework which makes it easy to extend to

implement an application specific commands and assertions;
- JUnit XML reporting is built-in so you can integrate your tests in your build

process with systems such as Teamcity, Jenkins, Hudson etc.

Tests run by open source automation server Jenkins. It takes test code from

GitHub and runs them using its own settings. Below you could find main benefits why
use Jenkins:

- Jenkins is easy to install: it is a ready to run out-of-the-box, with packages for

Windows, Mac OS X and other Unix-like operating systems;
- Jenkins can be easily set up and configured via its web interface, which includes

on-the-fly error checks and built-in help;
- With hundreds of plugins, Jenkins integrates with practically every tool in the

continuous integration and continuous delivery toolchain;
- Jenkins also can be extended via its plugin architecture, providing nearly infinite

possibilities for what Jenkins can do;
- Jenkins can easily distribute work across multiple machines, helping drive builds,

tests and deployments across multiple platforms faster.

COMMON ALGORITHM

End-2-End Testing consists of thirteen separate tests, which check working of
the PulseTile application in the browser. Tests work one after another. Report about test
results are formed when all tests are passed. Common scheme of the test algorithm is
presented at the image below.

Initial data for testing is located in the settings file nightwatch.json which is located in the
root application directory. Parameters value depends on the test version. Lists of test
parameters are presented in the tables below:

Parameter Description Version Value

launchUrl Launch page of the
application. Login form must
be located here

Showcase https://secureshowcase
.ripple.foundation/

Dev-Angular

Dev-React

Helm http://dev.ripple.foundat
ion:8000

version Application version Showcase showcase

Dev-Angular dev_ang

Dev-React dev_react

Helm helm

loginInput Test user’s login Showcase Alen

Dev-Angular

Dev-React

Helm ivor.cox@ripple.founda
tion

passwordInput Test user’s password Showcase 070790

Dev-Angular

Dev-React

Helm IvorCox1!

testNotChecked List of tests which isn’t used
for the current version

Showcase empty

Dev-Angular empty

Dev-React empty

Helm personalNotesTest

loginButton CSS selector for login button Showcase button.auth0-lock-subm
it

Dev-Angular

Dev-React

Helm input[name^='login']

menuItems List of items which must be
presented in the left sidebar
menu

Showcase Problems, Contacts,
Medications, Allergies,
Clinical Notes,
Personal Notes,
Vaccinations

Dev-Angular

Dev-React

Helm Contacts, Medications,
Allergies, Vaccinations,
Diagnosis, Top Three
Things

userInfo Patient information for the
user profile testing

Showcase "name" : "Alen
Mekka",
"userType" : "PHR",
"email" :
"aschenputtel123912
@gmail.com",
"birthday" :
"10/05/2099",

Dev-Angular

Dev-React

Helm "name" : "Ivor Cox",
"userType" : "PHR",
"email" : "",
"birthday" :
"10/05/2099"

patientSummary
Main

Link name for the Patient
Summary page

Showcase Patient Summary

Dev-Angular

Dev-React

Helm Home

Description of common test scheme is located below:

Block Description

1 Initial data is passed to the program

2 Work of Core-plugin Allergies checking

3 Breadcrumbs rendering checking

4 Work of Core-plugin Contacts checking

5 Work of login form and user authorization checking

6 Work of Core-plugin Medications checking

7 Patient Accordion rendering checking

8 Patient Information rendering checking

9 Redirecting between left sidebar checking

10 Patient Summary rendering checking

11 Work of Core-plugin Personal Notes checking

12 Work of Core-plugin Problems checking

13 User profile rendering checking

14 Left sidebar rendering checking

15 Work of Silver-plugin Vaccinations checking

ALLERGIES TEST

This test checks the work of core-plugin Allergies.

It is necessary to check:

- possibility to enter Allergies list;
- rendering of Allergies creating form;
- creating new Allergies and updating information about Allergies.

Description for est scheme is located below:

Block Description

1 Initial data is passed to the program

2-3 User authorization and checking, that user logged in correctly

4 Redirecting to Patient Summary page and Browser window resizing

5-6 Redirecting to Allergies page.Checking, that allergies list and button Create are
presented on this page

7-8 Redirecting to Allergies creating form and checking that it was rendered correctly

9-10 Creating new Allergy and checking that it is presented in the allergies list after it

11-12 Updating information about Allergy and checking, that changes is presented

13 Removing test data and closing browser page

14-15 Preparing report about the test results

The same algorithm is used to check the work of:

- core-plugin Contacts;
- core-plugin Medications;
- core-plugin Problems;
- silver-plugin Vaccinations.

BREADCRUMBS TEST

This test checks the work of left sidebar menu. It monitors those menu items are
present in the menu and are clickable. List of these items can be different depends on
the version.

For this reason, the list of checked items is one of settings, that is set in
nightwatch.json settings file.

Lists of menu items that checked are shown below:

Version Items

Showcase Problems, Contacts, Medications, Allergies,
Clinical Notes, Personal Notes, Vaccinations

Dev-angular

Dev-React

Helm Contacts, Medications, Allergies,
Vaccinations, Diagnosis, Top Three Things

Algorithm of Breadcrumbs test is shown below:

CONTACTS TEST

Algorithm that checks the work of core-plugin Contacts is similar to the algorithm
for the Allergies plugin check.

LOGIN TEST

This test controls the process of user authorization. It checks next:

- Launch page is loaded correctly;
- Login form is rendered correctly and all required elements are presented here;
- Initial user data is presented in the database;
- Patient summary page is loaded after authorization;
- Patient information at summary page corresponds to request.

Initial data of login tests is described in the table below:

Parameter Description Version Value

launchUrl Launch page of the
application. Login form
must be located here

Showcase https://secureshowcase.ripple.f
oundation/

Dev-Angular

Dev-React

Helm http://dev.ripple.foundation:800
0

loginInput Test user’s login Showcase Alen

Dev-Angular

Dev-React

Helm ivor.cox@ripple.foundation

passwordInput Test user’s password Showcase 070790

Dev-Angular

Dev-React

Helm IvorCox1!

loginButton CSS selector for login
button

Showcase button.auth0-lock-submit

Dev-Angular

Dev-React

Helm input[name^='login']

waitingTime Maximal time for
elements rendering

Showcase 25000 msec

Dev-Angular

Dev-React

Helm

userInfo Patient information
appears after page
rendering

Showcase “name” : “Ivor Cox”,
“doctor” : “Doctor: Goff Carolyn
D.”,
“address” : “Address: Hamilton
Practice, 5544 Ante Street,
Hamilton, Lanarkshire, N06 5L”,
“birthday” : “D.O.B.
06-Jun-1944”,
“phone” : “Phone: (011981)
32362”,
“gender” : “Gender: Male”,
“number” : “NHS No. 999 999
9000”,

Dev-Angular

Dev-React

Helm

Launch page with login form in Helm version and all other versions:

Launch page with login form in other versions:

Algorithm of login test is shown below:

Description for the login test block scheme:

Block Description

1 Initial data passes to the test

2 - 3 Browser is opened, launch page is loaded. Checking, that launch page was loaded
correctly

4 - 5 Checking, that login form is presented at the launch page and it includes three main
elements:

- Login input field
- Password input field
- Submit button

6 - 7 User login and password are input to the field and form is submitted. Login and

password must be presented in the database

8 - 9 If user is presented in the database, browser renders patient summary page.
Program checks that this page is rendered correctly

10 - 11 Checking user information at the patient summary page. It must be corresponded to
initial data

12 - 13 Test report is formed depends on test result

14 Browser is closed

MEDICATIONS TEST

The Algorithm checks the work of core-plugin Medications. It is similar to the
algorithm for Allergies plugin check.

PATIENT ACCORDION TEST

This test checks rendering of Patient Information page in Personal Information block.

Algorithm of this test is shown below:

Description for the test block scheme:

Block Description

1 Initial data passes to the test

2 - 3 Launch page is loaded. Checking, that launch page was loaded correctly

4 Redirecting to Patient Information page

5 - 6 Check the presence on expand button and click on it

7 - 8 Comparing information on Patient Information block with initial data

9 Closing browser page

10-11 Test report creating depends on test result

PATIENT INFORMATION TEST

This test checks rendering of Patient Information page.

Algorithm of this test is shown below:

Description for the test block scheme:

Block Description

1 Initial data passes to the test

2 - 3 Browser is opened, launch page is loaded. Checking, that launch page was loaded
correctly

4 Redirecting to Patient Information page

5 - 6 Check the presence of blocks “Application Presence”, “Personal Information”,
“Contact Information”, “Change history”

7 Closing browser page

8-9 Test report creating depends on test result

PATIENT SUMMARY REDIRECT TEST

This test checks Patient Summary page displaying and redirecting between items

in left bar menu. Algorithm of this test is shown below:

Description for the test block scheme:

Block Description

1 Initial data passes to the test

2 - 3 Browser is opened, launch page is loaded. Checking, that launch page was loaded
correctly

4 - 5 Checking redirecting of Patient Summary page

6 - 7 Checking redirecting of Contacts page

8 - 9 Checking redirecting of Allergies page

10 - 11 Checking redirecting of Medications page

12 - 13 Checking redirecting of Diagnosis page

14 Closing browser page

15 - 16 Test report creating depends on test result

This test has only one initial parameter - patientSummaryMain. It equals

“Home” for Helm-version and “Patient Summary” for all other versions.

PATIENT SUMMARY TEST

This test checks Patient Summary Panel displaying and toggling of heading
blocks. Algorithm of this test is shown below:

Description for the test block scheme:

Block Description

1 Initial data passes to the test

2 - 3 Browser is opened, launch page is loaded. Checking, that launch page was loaded
correctly

4 - 5 Checking redirecting of Patient Summary page

6 - 7 Open Patient Summary panel and checking presence of checkbox with labels
Contacts, Problems, Allergies and Medications

8 - 9 Toggle checkbox Allergies and check that it is appeared

10 - 11 Toggle checkbox Diagnosis and check that it is appeared

12 - 13 Toggle checkbox Medications and check that it is appeared

14 Closing browser page

15 - 16 Test report creating depends on test result

PERSONAL NOTES TEST

This test checks Personal Notes page rendering and possibility to create or update new
items.

Algorithm of this test is shown below:

Description for the test block scheme:

Block Description

1 Initial data passes to the test

2 - 3 Browser is opened, launch page is loaded. Checking, that launch page was loaded
correctly

4 - 5 Checking redirecting of Patient Summary page

6 - 7 Checking redirecting of Personal Notes page

8 Checking that button Create is presented on Personal Notes page

9 - 10 Checking possibility to create new Personal Notes

11 - 12 Checking that new Personal Note is presented in list and possibility to update
information about it

13 Removing test information and closing browser page

14 - 15 Test report creating depends on test result

This test run only for version that includes Person Notes plugin.

PROBLEMS TEST

Algorithm that checks the work of core-plugin Problems and similar to the
algorithm for Allergies plugin checking.

This plugin calls Diagnosis in Helm-version and Problems in other version.

PROFILE TEST

This test checks information, that is presented in the user profile block. This test
consists of the follow steps:

- user authorization;
- user profile panel opening;
- comparing user information (from settings) with rendering results

User profile in Helm-version:

User profile in all other versions:

Algorithm of this test is shown below:

This test uses initial parameter userInfo, that depends on current version. The

value of this parameter is presented in the description for Common algorithm.

SIDEBAR MENU TEST

This test checks the possibility to toggle left sidebar menu. The Algorithm of this
test is shown below:

Description for the test block scheme:

Block Description

1 Initial data passes to the test

2 - 3 Browser is opened, launch page is loaded. Checking, that launch page was loaded
correctly

4 - 5 Checking redirecting of Patient Summary page

6 Checking that sidebar menu button is presented on page

7 - 9 Click on the button and check that sidebar menu was hidden

13 Removing test information and closing browser page

14 - 15 Test report creating depends on test result

VACCINATIONS TEST

Algorithm checks the works of silver-plugin Vaccinations and similar to the
algorithm for Allergies plugin checking.

