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Abstract

Master of Science

by Bharath Keshavamurthy

This graduate thesis proposal document details the numerous open problems in the de-

sign and operation of Cognitive Radio Networks. Additionally, the document also out-

lines solutions and solution methodologies to solve these open problems. There is a need

for an over-arching spectrum sensing and scheduling framework that operates in both

collaborative and non-collaborative radio environments, with or without the presence of

Fusion Centres. The Secondary User (SU) radio environment should be able to discern

the situation it is in at any given point in time and determine the best possible action

policy in order to maximize the throughput of this SU network while keeping PU in-

terference to a minimum. Reinforcement Learning techniques coupled with Supervised

and Unsupervised learning algorithms can be employed to tackle this requirement as

these ”intelligent” frameworks, also known as ”expert systems”, most effectively model

the dynamism of the Cognitive Radio ecosystem. For instance, Clustering algorithms

can be employed to facilitate neighbour discovery, trust-based heuristics can be incorpo-

rated to ’elect’ cluster-heads for distributed sensing in ad-hoc SU networks, SVM-based

supervised learning techniques can be used to determine PU channel access schemes, au-

tonomous participation strategies can be integrated at secondary radio nodes based on

cost-reward Bayesian game heuristics, and Bandits, Markov Decision Processes (MDPs),

and Model-Free Learning agents can be leveraged to solve for optimal action policies.

Furthermore, the secondary considerations of reducing control channel overhead, reduc-

ing the dedicated spectrum sensing time per SU, and improving the energy efficiency

of radio nodes can be consolidated into the overall optimization problem. The purpose

of this research proposal is to carry out rigorous functional and performance evalua-

tions of the proposed framework against existing state-of-the-art and conclusively prove

that incorporating an adaptive, hierarchical architecture leveraging intelligent sensing

and scheduling policies based on Reinforcement Learning and Supervised/Unsupervised

Learning techniques, out-performs any existing state-of-the-art. Finally, the proposal

also details intentions of prototyping and testing certain aspects of the framework in em-

ulated radio environments with other ”unknown” collaborative/competing radio nodes,

such as Scenario-based Channel Emulation on the DARPA SC2 Colosseum.

https://www.purdue.edu/gradschool/
bkeshava@purdue.edu
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Chapter 1

Introduction

The problem of spectrum scarcity has been in the spotlight for the past few years pri-

marily owing to the advent of fifth-generation wireless technologies and the increased

penetration of the ”Internet of Things” into our day-to-day lives. Both these advances

rely on Massive Machine to Machine communication which would, if they’re fully preva-

lent, impose enormous strain on the available spectrum. The amount of spectrum avail-

able for commercial use is limited and Communication Commissions around the world

such as the Federal Communications Commission (FCC) typically license portions of

this spectrum to operators for huge sums of money. The enormous additional burden

imposed by next-generation wireless technologies and the Internet of Things cannot be

accommodated by conventional licensing strategies. This problem has brought up a need

for dynamic spectrum access policies, thereby proliferating research in Cognitive Radio

Networks. Dynamic Spectrum Access and Management strategies in Cognitive Radio

Networks facilitate concurrent utilization of the spectrum while keeping interference

with the primary, licensed users to a minimum. The proposed research aims to deliver

an adaptive, hierarchical, intelligent spectrum sensing and spectrum access policy-driven

framework for Cognitive Radio Networks leveraging techniques from Bandits, Reinforce-

ment Learning, Supervised/Unsupervised Learning, and Game Theory. In general, the

optimization problem can be modelled as maximizing the overall throughput of the Sec-

ondary User network while keeping the missed detection probability below a certain

threshold. Moreover, secondary objectives of the heuristics involved in the proposed

framework include energy efficiency of the SUs, minimizing control channel overhead,

and limiting false alarm rate. The term ”Missed detection”, as the name suggests, refers

to the system incorrectly identifying an occupied sub-band as being idle while the term

”False alarm rate” refers to the system incorrectly identifying an idle sub-band as being

occupied.
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Introduction 2

This graduate research proposal is broken down into five phases: RL-agents in Cen-

tralized, Collaborative CRNs (inclusion in the BAM! Wireless collaboration framework

employing information extracted from CIL client-server messages and peer-to-peer mes-

sages); Distributed learning heuristics in decentralized ad-hoc collaborative networks

along with optimal neighbor discovery; Opportunistic spectrum access in competing

radio resource utilization environments; Functional and Performance comparison of al-

gorithms that employ CNNs/SVMs for PU behavior modelling and SU scheduling, algo-

rithms that model the spectrum access and autonomous participation behavior in spec-

trum sensing using game-theoretic heuristics, and Reinforcement Learning based multi-

agent, multi-band spectrum sharing policies; and Coalescence of various approaches into

a best-policy framework along with possible applications in the 5G and IoT landscape

while also leveraging the programmability and controllability facets of Software Defined

Networks to deliver a complete, adaptive, hierarchical, and intelligent framework.

Under-utilized licensed spectrum is a time-frequency-location varying resource influenced

by PU behavior, radio wave propagation, and signal attenuation. Dynamic Spectrum

Access (DSA) policies in Cognitive Radio Networks (CRNs) are concerned with iden-

tifying the temporal and spatial holes in the spectrum and capitalizing on them while

ensuring non-interference with the PUs. Dynamic Spectrum access can be broadly cat-

egorized into Collaborative Spectrum Access and Opportunistic Spectrum Access.

Collaborative or Cooperative spectrum sensing plays a crucial role in identifying the

spectrum holes by mitigating the effects of fading and shadowing. Collaborative Spec-

trum Sensing can be achieved in three ways: Using a centralized aggregation approach

employing Fusion Centres, A semi-centralized clustered topology where in highly corre-

lated SUs are clustered and one node among them is ”nominated” as the cluster head

which operates on the next tier as just another radio node in the distributed radio en-

vironment, or A completely distributed ad-hoc Cognitive Radio environment in which

SUs make local decisions to sense and access portions of the spectrum based on their

observations and received test statistics from their neighbours. Broadly speaking, the

optimization problem involves maximizing the SU network throughput while keeping

the missed detection probability under a certain threshold.

Non-Collaborative Cognitive Radio Networks deal with environments in which all the

SUs opportunistically try to access the spectrum and complete their network flows.

”Opportunistic access” among competing radio nodes brings in a completely new set of

problems to consider such as mandated acknowledgements, intelligent back-off policies,

modelling the effects of fading and shadowing into observations of PU activity, and

distributed learning policies without any prior knowledge of the radio environment or

without any kind of information exchange among the radio nodes.



Chapter 2

Literature Survey

Although there have been a few research publications detailing policies and strategies

for Dynamic Spectrum Access in Cognitive Radio Networks, there are numerous open

problems that are yet to be solved. For instance, clustering strategies to devise groups of

highly correlated SUs for collaboration is one approach to distributed spectrum sensing

which has not been attempted in existing state of the art. Furthermore, a large number

of research publications in the area of Cognitive Radio Networks assume some kind of

Channel State Information or prior knowledge which may not be the case in completely

ad-hoc radio environments. Additionally, the entire state-of-the-art assume indepen-

dence of frequency sub-bands with respect to PU access- this is not always the case and

this one huge open problem which needs to be solved by devising learning strategies

which produce optimal or nearly-optimal outcomes. The end goal of the proposed re-

search endeavour is to produce an optimal, well-defined, intelligent, adaptive framework

that can be deployed in next-generation wireless networks irrespective of the underlying

network topology and traffic scenarios. Some of the open problems observed in the exist-

ing state-of-the-art are listed in Section 2.1. This research proposal aims to solve these

open problems and coalesce the solutions into an intelligent, over-arching framework that

adapts itself to changing network topologies and radio environment conditions. Section

2.2 lays down brief analyses of existing literature in this domain.

2.1 Open Problems

• Optimal neighbour discovery strategies in semi-centralized or distributed Cognitive

Radio Networks to facilitate collaboration and thereby mitigate the effects of fading

and shadowing that may creep into observations of PU activity.

3



Literature Survey 4

• The evaluation of frameworks which involve compliant communications among

peers over a dedicated collaboration network which facilitate a better picture of

spectrum utilization in the Cognitive Radio Network.

• Analysis of the potential impact on control channel overhead caused by the dis-

semination of test statistics among radio nodes in distributed collaborative envi-

ronments or to and from the Aggregator in centralized collaborative environments.

The optimal policy should conclusively reduce the control channel overhead com-

pared to policies in the existing state-of-the art.

• Tuning control knobs such as Diversity Order, Missed Detection Probability, False-

Alarm Rate, Fusion rules, Number of sub-bands to be sensed per node, etc. and

observe corresponding variations in control channel overhead, energy efficiency of

radio nodes, aggregation latency, and SU network throughput.

• How do we model the radio environment without the assumption of independence

between sub-bands conditioned on the number of PUs in the network?

• How do we factor in the impact of fading and shadowing on local PU observations

when SUs do not exchange any information among them in non-collaborative Cog-

nitive Radio Networks? Also, there is a need for intelligent back-off strategies and

operational scheduling policies in these radio environments where each SU is trying

to complete its network flows without interacting with other SUs in the network.

• Estimation of state transition probabilities when modelling the spectrum sensing

policy optimization using Markov Decision Processes (MDPs).

• There is a need for an intelligent, adaptive, hierarchical framework that learns

the radio network behaviour irrespective of the topology, application, and traf-

fic scenarios, and produces an optimal or nearly-optimal policy which maximizes

the throughput of the SU network while limiting PU interference along with con-

straints on control channel overhead, decision latency, and energy efficiency of

SUs. A coarse approach to devise this adaptive framework would be to leverage

the programmability of Software Defined Networking (SDN) and use heuristics in

the Application layer to modify radio node operational parameters in the Data

plane through the Control plane using simple protocols such as REST, SOAP, and

CLI. A finer approach would be to embed this adaptive intelligence within the

Cognitive Radio Network.
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2.2 State-of-the-Art

• Reference 8 details optimal neighbour discovery heuristics using finite Markov De-

cision Processes in Cognitive Radio Ad-Hoc Networks (CRAHNs). The initiating

SU requests it’s one-hop neighbours for local test statistics and aggregates them

to get a spectrum utilization map in the ”protected region”. The PU activity is

modelled as a two-state Birth-Death process in which the transitions are Poisson

processes. The observations from this sensing operation are disseminated to all

the neighbours. This cooperative sensing strategy is iterated over N episodes to

figure out an optimal policy using Reinforcement Learning.

• Reference 1 details the use of an ε-greedy algorithm to devise a Reinforcement

Learning based spectrum sensing policy optimization. Here, the optimal sensing

assignments are learned using Q-value optimization along with a solution for the

exploration-exploitation trade-off using the ε-greedy algorithm. Pseudo-Random

sequences called Frequency Hopping codes are employed to facilitate exploration.

• Reference 4 outlines the use of a Multi-agent Multi-band distributed Reinforce-

ment Learning approach using SARSA with Linear Function Approximation for

Dimensionality Reduction.

• Reference 9 details the use of Multi-Armed Bandit frameworks to enable reliable

and efficient spectrum access in Opportunistic Cognitive Radio Networks. Here,

g-statistic values are computed for each orthogonal channel in the spectrum of

interest and the SU selects a channel with the highest g-statistic. However, this

approach leads to large number of collisions among SUs which have decided to

access the same channel. Hence, intelligent back-off strategies and mandated ac-

knowledgements are essential here.

• Reference 17 outlines the use of Support Vector Machines (SVMs) to differenti-

ate between various PU channel access schemes such as TDMA, Aloha, Slotted

Aloha, and CSMA/CA. Reference 10 details the use of fourth-order cumulant-

based classifiers to distinguish between TDMA, OFDMA, and CDMA. Reference

10 also employs a cumulant sample variance based collision detector to detect

contention-based channel access schemes. Other research endeavours such as the

one described in 18 uses Supervised Learning algorithms to categorize PU activity

into subsets of the 802.11 standard.

• Reference 12 describes the use of various heuristics within three proposed SU

scheduling strategies- Sequential, Parallel, and Sequential-Parallel. Reference 11

proposes the use of soft and hard reports algorithms to learn the footprints of the
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PUs. Detection of active components is done by comparing the received energy

observations with the learned candidate and confirmed components. The paper

also lays down heuristics for confirming, deleting, and merging source components

corresponding to PUs in the network.



Chapter 3

Centralized Collaborative

Cognitive Radio Environments

3.1 Overview

The first phase of the research proposal detailed in this document deals with the incorpo-

ration of Bandit frameworks and Reinforcement Learning techniques to devise optimal

spectrum sensing and access policies in Centralized Collaborative Cognitive Radio en-

vironments. Additionally, novel fusion heuristics are proposed to incorporate the CIL

client-server messages and peer-to-peer messages into the global decision-making at the

Fusion Centre, also known as the Aggregator node or the Gateway node. The end

goal of this phase is to conclusively prove that the proposed framework out-performs

existing state-of-the-art by evaluating its functionalities and performance metrics in em-

ulated radio environments such as the various RF/Traffic scenarios on the DARPA SC2

Colosseum.

The proposed research aims to incorporate the use of multi-band, multi-user, central-

ized, collaborative, Reinforcement Learning based spectrum sensing policy for efficient

spectrum sharing in the DARPA SC2 radio environment. The proposed policy implic-

itly learns the Primary User (PU) behavior over time by directly interacting with the

radio environment, i.e. learning the best action policy based on Q-value optimization.

The optimization problem is to maximize the throughput of the Secondary User (SU)

network while keeping the missed detection probability below a certain threshold. Sec-

ondary objectives of the heuristics involved in the system include energy efficiency of

the SUs, minimizing control channel overhead, and limiting false alarm rate.

7
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Under-utilized licensed spectrum is a time-frequency-location varying resource influenced

by PU behavior, radio wave propagation, and signal attenuation. Dynamic Spectrum

Access (DSA) policies in Cognitive Radio Networks (CRNs) are concerned with iden-

tifying the temporal and spatial holes in the spectrum and capitalizing on them while

ensuring non-interference with the PUs. Collaborative or Cooperative spectrum sensing

plays a crucial role in identifying these spectrum holes by mitigating the effects of fading

and shadowing. In a collaborative spectrum sensing environment, multiple SUs sense

the same sub-bands and send their local statistics to an Aggregator node which may be

just another standard radio node or a dedicated Fusion Center. The Aggregator, upon

receiving the test statistics for the most optimal sub-bands from groups of spatially

and temporally optimal Secondary Users along with the Report/Violation/Spectrum-

Utilization messages received over the DARPA SC2 collaboration channel according to

the CIL specifications, constructs a global view of the spectrum at that time step. To

reiterate, the optimization problem involves maximizing the SU network throughput

while keeping the missed detection probability under a certain threshold.

3.2 Application and Emulation in the DARPA SC2 Radio

environment

In competition or scrimmage events, only one SRN (LXC container) can be designated a

Gateway Node. The container should use the presence of the col0 interface to determine

that they are the gateway node. This proposal intends to call the gateway SRN the

Aggregator while the non-gateway SRNs are simply termed SUs. The Aggregator is

a part of the SC2 collaboration network consisting of a Collaboration server which

serves as a PUB-SUB framework indicating peer-entry, peer-removal, and other specific

collaboration messages. The SC2 collaboration network is a /24 broadcast domain over

a link-local routes only wired IP network with the SC2 collaboration server at the center

of it broadcasting CIRN Interaction Language (CIL)-specific collaboration messages to

the gateway SRNs in the network.

3.3 Anticipated Contributions

The incorporation of Reinforcement Learning algorithms (RL) into the spectrum sensing

framework allows the system to learn the radio environment without the need for prior

dynamic modelling. The problem of modelling an extremely dynamic radio environment

is reduced down to an optimization problem of maximizing SU network throughput while

having a constraint on the missed detection probability. The exploration-exploitation
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heuristics modelled into RL algorithms makes them very suitable for reaching optimal

action policies when we do not have prior information on the reward distributions of

the environment were modelling. Intuitively, the optimization problem can be stated as

finding the most optimal sub-bands and the most optimal (SU, sub-band) sensing as-

signments in order to ensure all the SU flows are successfully fulfilled without any need

for re-transmissions and without violating the SC2 PU interference constraints. The dis-

semination of binary decisions/statistics from the SUs to the Aggregator greatly reduces

the control channel overhead as opposed to sharing the entire Channel State Information

(CSI). The incorporation of the Diversity Order metric (D) opens up the controllability

of the framework. Even the use of simple ε-greedy algorithms to find near-optimal sens-

ing assignments provide impressive results as seen in 1. Varying complexities of fusion

rules can be incorporated at the Aggregator node and this provides us with a incredi-

ble amount of control & management flexibility. The use of pseudo-random frequency

hopping codes as discussed in 2 constitutes the exploration aspect of the sensing policy

which prevents the policy improvement algorithm from settling on sub-optimal actions.

This framework serves as a logical starting point to tackle more complicated problems

in this arena such as distributed sensing in ad-hoc networks, mobility of nodes, neighbor

discovery, opportunistic spectrum access in competing radio networks, etc.

Phase 1 involves three approaches to solve the optimization problem for Collaborative

Cognitive Radio Networks in a Centralized topology. Each of these approaches are

explained in detail below.

3.4 Bandit frameworks at the Aggregator

3.4.1 Advantages

• No complex modelling of state and action spaces are needed

• No prior knowledge about the system is assumed

3.4.2 Problem Formulation

The problem of frequency band selection for sensing can be modelled as a Restless

Multi-Armed Bandit one such that the decision-maker (the bandit) chooses L out of

N frequency bands to sense (L out of N arms to pull) where L≥1 and L≤N. Restless

Multi-Armed Bandit (R-MAB) frameworks model the DSA scenario in CRNs accurately

because the states of the frequency bands which are not sensed in a particular time-step

change as opposed to a stationary MAB formulation where in the reward distributions
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of un-played arms remain the same. Moreover, the lack of prior information about

the reward distributions of various frequency bands brings in the known problem of

exploration v/s exploitation which can be solved very well using numerous Multi-Armed

Bandit algorithms such as UCB, Posterior Sampling, ε-greedy, and contextual bandit

algorithms such as LinUCB. UCB (employs exploration bonus term in optimal policy

selection) and Posterior Sampling (requires some prior knowledge about the reward

distribution to update the posterior reward distribution and choose the optimal action

policy) have asymptotic logarithmic regret which intuitively means that these algorithms

strike the perfect balance between exploration and exploitation. LinUCB is a contextual

bandit framework that models the current state information into optimal policy selection

by developing a state-arm embedding and then using ridge regression to estimate the

theta matrix which is then included in the policy selection algorithm along with an

exploration bonus.

3.4.3 System Model

The spectrum of interest is assumed to be divided into NB sub-bands of identical or

different bandwidths. Any of these bands can be occupied by any PUs at any time. The

problem is much more difficult and dynamic when the assumption of well-demarcated

sub-bands is removed (well tackle this at a later stage). Based on the physical capa-

bilities of the SUs, one SU can sense up to Ks bands simultaneously. Let the number

of cooperating SUs be Ns. The SU operation is divided into Sensing timeslots and

Transmission time-slots. In each sensing time slot, the SUs sense the bands assigned

to them by the Aggregator and send their binary decisions about these bands to the

Aggregator along with their transmission requirements such as flow enabled flag, esti-

mated flow throughput, SRN ID, and other relevant meta-data. The Aggregator, upon

receiving the SU decisions and the CIL messages over the collaboration channel employs

simple fusion rules such as the OR rule or the K-out-of-N rule or more complex fusion

rules which can be captured in decision-processing frameworks such as Apache NiFi,

Apache JEXL, Drools, etc to make more-informed, global decisions about the state of

the sensed frequency bands.

The Aggregator employs two Q-value optimization algorithms: one for the frequency

bands and the other for the (SU, Freq. band) assignment combinations. The Q-value

optimization algorithm for each frequency band ’b’ in the spectrum of interest has the

following reward assignment:

rk+1(b) = Throughput of b, if the decision at the Aggregator finds it to be free
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rk+1(b) = 0, if the decision at the Aggregator finds the band to be occupied

The Q-values for the (SU, Freq. band) assignment pairs are optimized based on the

following reward heuristics:

rk+1(s, b) = the local binary decision, if the decision at the Aggregator for b is 1

rk+1(s, b) = Qk(s, b), if the decision at the Aggregator for band b is 0

These reward heuristics are picked from 1 and they need to be changed based on the

convergence/near-convergence of our algorithms in the DARPA SC2 radio environment.

After making a decision on the availability of a certain band, the Aggregator RL agent

updates the Q-function for that particular band based on the following equation:

Qk+1(a) = Qk(a) + α[rk+1(a)Qk(a)]

where, α = a constant step-size factor such that,

0 ≤ α ≤ 1

As α is made larger, more emphasis is placed on recent rewards while as α approaches

0, the algorithm will push emphasis on rewards obtained in the past. So, this parameter

will be an important control knob in the system. Additionally, the Aggregator also

updates the Q-values of the (SU, Freq. band) sensing assignment pairs using the above

equation and reward heuristics outlined in the previous slide. In a simple ε-greedy MAB

algorithm, with a probability (1 - ε) of the system can be made to choose L out of Ns

frequency bands to sense based on the throughput requirements, i.e. the flows assigned

to the BAM! Wireless network nodes, by simply selecting the L bands with the highest

Q-values and their correspondingly optimal sensing assignments. With a probability of

ε, the frequency-band selection and sensing assignments are done either uniformly at

random or by employing pseudo-random frequency hopping codes as outlined in 2.
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Figure 3.1: System Architecture

Figure 3.2: Sensing Policy Optimization Flow Diagram

Figure 3.1 shows the architecture of the Restless Multi-Armed Bandits framework based

Centralized Collaborative Cognitive Radio environment.

Figure 3.2 shows the flow diagram of the sensing policy optimization approach using a

Restless Multi-Armed Bandits framework in Centralized Collaborative Cognitive Radio

Networks.
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3.4.4 Optimization Problem

The bandit algorithm at the Aggregator is going to choose L sub-bands out of Ns possible

sub-bands to be sensed at that time step by selecting those sub-bands which possess

the highest Q-values (provide maximum utility to the system). After choosing these

L < NB sub-bands, the exploration-exploitation engine kicks in which chooses with a

probability of epsilon, a random sensing assignment based on the defined randomization

logic (can be as simple as a random selection of frequency hopping codes with fixed

or varying diversity orders) AND, with a probability of (1 − ε), chooses a sensing

assignment according to the following optimization problem:

min
X

∑
b∈B

∑
s∈S

wsxsb such that,

P̂ bmiss,Global(X) ≤ P bmiss,predefined and,

∑
b∈B

xsb ≤ Ks where, xsb ∈ {0, 1}

Here, ws is the weight assigned to each SU s ∈ S, X is Ns X L sensing assignment matrix

xsb is an element of X which is set to 1 if the SU s ∈ S is assigned to sense b ∈ B, else

it is set to 0.

Reference 1 uses hard-decision combining of multiple Neyman-Pearson detectors to solve

the optimization problem outlined in the previous slide, i.e. maximize detection proba-

bility. False alarm rate constraints are included in Neyman-Pearson detector heuristics.

Using simple OR-Fusion Rules, the optimization problem can be converted into a linear

BIP problem as follows which is solved in 1 using Branch-and-Bound searches and an

Iterative Hungarian algorithm.

min
x

wTx, such that Ax ≤ c,

where, A is the constraint matrix c is a constraint vector, and x is a binary vector of X.
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Figure 3.3: Sensing Policy Convergence with the true probability detection curve

The analytical expressions in 1 and 2 show that as the number of interactions with the

radio environment approach +∞, the optimization problem outlined in the previous

slide converges in the same manner as the Q-value convergence for the (SU, Freq. band)

pair assignment. The following figure from 1 shows that the Q-values align with the

true probabilities of detection.
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3.5 Markov Decision Process based RL agent at the Ag-

gregator

3.5.1 Key Differentiators

• State space and Action space definitions

• Dimensionality reduction (if needed)

• Solve the optimization problem using Dynamic Programming, i.e. Policy Iteration

(Policy Evaluation + Policy Improvement)

• Estimate the state transition probabilities using stochastic approximation theory

3.5.2 Overview

An MDP-based RL agent running on the Aggregator node chooses optimal sensing as-

signments for the Ns SUs with respect to the NB frequency bands in the spectrum of

interest. Local test statistics from the SUs along with the statistics from the CIL mes-

sages are fused into a global spectrum state map at the Aggregator node. As mentioned

in the previous approach, fusion rules are made to sit outside the framework for easy

hot-reloading of system behavior (leverage the PropertyChangeEvent design pattern in

software development practices). The optimal policy at the Aggregator involves choos-

ing an action at each state which maximizes the system utility, i.e. the throughput

of the secondary network.In scenarios where the state space turns out to be too large

to converge, dimensionality reduction techniques based on state space approximation

can be employed to ensure optimal or near-optimal policy selection. Dynamic program-

ming techniques are employed to solve the optimization problem: Policy Evaluation and

Policy Improvement.

3.5.3 The MDP State Space

The state space is a set of all possible binary code-words of size NB. The state space

represents the sub-band specific spectrum occupancy map of the spectrum under obser-

vation. Each sub-band in the spectrum of interest is represented by a sub-state variable

ω, which can take binary values, i.e. ω ∈ {0, 1}.

S = { {ωi} : ω ∈ {0, 1} and i ∈ I where, I = {1, 2, 3, ..., Ns} }
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The size of the state space is,

|S| = 2NB

3.5.4 The MDP Action Space

The MDP action space corresponds to the set of all actions the RL-agent can undertake

in a certain state. In the proposed framework, the action space is the combination of SU

and frequency band sensing assignments of which the RL-agent picks an optimal action

which maximizes the SU-network throughput.

A = { {x1, x2, x3, ...., xNs} : xi ∈ {0, 1, 2, ......, NB} }

The size of the action space is,

|A| = (NB + 1)Ns

3.5.5 Estimation of State Transition Probabilities

In a dynamic radio environment such as a CRN, state transition probabilities will be

completely unknown. However, there are methods which allow us to estimate the state

transition probabilities. The state transition probabilities may be estimated ONLINE

incrementally using the update rule outlined in [4] and the theorem laid down in [5].

Using two consecutive global decisions at the Aggregator node for a specific sub-band,

the state transition probabilities denoting the stochastic nature of the dynamics of the

radio environment can be estimated.

p̂n,ijj,k+1 = p̂n,ijj,k + αp,k(I(dn,i
t =j)

− p̂n,ijj,k), where j ∈ {0, 1}

Here, k represents the index of the decision pairs in this incremental online algorithm

alphap,k is a step-size parameter in {0, 1} I
(dn,i

t =j)
is an indicator function such that,

I
(dn,i

t )
= 1, if (dn,it = j), 0 otherwise

According to the stochastic approximation theorem laid down in [5], [the above update

rule converges to the true state transition probabilities if,

∞∑
k=0

αp,k = ∞ and
∞∑
k=0

α2
p,k < ∞, i.e. for instance αp,k = (1/k)
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Figure 3.4: System Model: Using MDPs at the Aggregator

Figure 3.4 shows the proposed system model employing an MDP-based RL-agent at the

Aggregator.

3.5.6 Optimization Problem

The optimization problem involves solving the Optimized Bellman Equation until con-

vergence. The optimization problem can be solved by constructing a Policy Iteration

algorithm (Policy Evaluation and Policy Improvement) and solving it using Dynamic

Programming (The presence of overlapping sub-problems in the optimization problem,

i.e. the recursive relationship between the value function of the current state and the

successor state, makes the use of DP optimal). The optimization problem can also be

solved by leveraging another construct of DP called Value Iteration which combines

policy evaluation and policy improvement into a single update. Asynchronous DP ap-

proaches can be used in the above mentioned algorithms to ensure efficient performance

in terms of time to convergence, processor memory utilization, and Aggregator energy

efficiency. The Finite-Horizon MDP space is given by,

{S,A, R, P, γ} with the model P (s′, r|s, a)

Use Asynchronous Dynamic Programming approaches to output the optimal policy π =

π∗ such that:

π(s) = argmaxa∈A{
∑
s′,r

P (s′, r|s, a)[r + γV (s′)]}
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Figure 3.5: Solving the Optimization Problem through Policy Iteration

Figure 3.6: Solving the Optimization Problem through Value Iteration

Here, a ∈ A corresponds to an action in the action space modelled in section 3.5.4, s ∈ S
corresponds to a state in the state space modelled in section 3.5.3, P (s′, R|s, a) refers to

the state transition probabilities estimated using stochastic approximation theory, γ is

the discount factor such that γ ∈ [0, 1], and V (s′) refers to the value function estimate of

the successor state in the previous evaluation cycle. Figure 3.5 shows the algorithm to

solve the Optimization Problem termed Policy Iteration (Reference 6). Figure 3.6 shows

the algorithm to solve the Optimization Problem termed Value Iteration (Reference 6).
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3.6 Model-Free learning

3.6.1 Key Points

• Using the same State Space and Action Space modelling outlined in the previous

approach, learn the model of the radio environment using deep searches / sampled

searches / n-step deep weighted searches over the back-off diagram.

• Monte-Carlo Learning: Deep and Sampled backup (Learn directly from episodes

of experience)

• Temporal Difference Learning (TD()): Online update of value functions even after

incomplete sequences, introduction of eligibility traces, combining n-step returns

using weights, incremental approach more efficient than MC learning.

3.6.2 Incremental Monte Carlo Learning

Monte-Carlo Learning is a model-free learning technique that does not require any knowl-

edge about the state transition probabilities of the dynamic system under observation.

The goal here is to learn the value function vπ from episodes of experience under π.

Update vπ(s) incrementally after each episode under π: Si, Ai, Ri+1, Si+1. For each

state s ∈ S with return Gt,

N(st) ←− N(st) + 1

vπ(st) ←− vπ(st) + ((Gt − vπ(st))/N(st))

3.6.3 Incremental Online TD(λ) Learning

Update the value function under π for each state SinS as follows,

vπ(s) = vπ(s) + αδtEt(s)

where, Et(s) refers to the Eligibility trace of state s, α is the step-size parameter, and

δt is the TD error such that,

δt = rt+1 + γv(st+1) − v(st)
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Collaboration Container Interface col0

Collaboration Network 172.30.<CollabNet>.<HostID> / 24

CollabNet 101-228

Host IDs (for SRNs 1 128) 101-228

Collaboration Server IPs 172.30.<CollabNet>.2 / 24

Table 3.1: Collaboration Network Design Parameters

Figure 3.7: DARPA Passive Incumbent Message Specification

3.7 DARPA SC2 Collaboration Network Design

A collaboration network and server will be allocated to each SC2 reservation. The

network and server will only be accessible by nodes within the reservation. The collab-

oration network will consist of a single /24 broadcast domain and will only require link

local host routes. The IP address 3rd octet will be the same for all nodes and server

in a reservation and will be defined at allocation time. Each collaboration gateway in-

terface will be named col0. The servers IP address 4th octet will always be 2. Table

3.1 summarizes the network design for the SC2 Collaboration System. A configuration

file will be pushed into each competitor container that provides the IP address of the

collaboration server. For information on this file, see the colosseum config.inisection of

the Radio Command and Control (C2) API specification on FreshDesk.

Figure 3.7 shows illustrates a scenario highlighting the IncumbentNotify CIL message

specifications corresponding to the Passive Incumbent in the Collaboration Network

(Source: DARPA SC2 Colosseum FreshDesk)
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3.7.1 Modelling the CIL messages into the framework

(common for all approaches)

• Incorporate the Report and Violation Messages from the Collaboration Server into

the reward distribution heuristics. If a Violation is reported, penalize the sub-band

and assignment pair state value function or action value function by the number

of seconds of violation reported in the Violation message.

• Use the parameters in the Report Message and scheduled parameter change mes-

sages to modify the detection threshold / constraint vectors in the Aggregators

fusion rules.

• Use other CIL messages such as the SpectrumUsageMessage to get a more well-

informed global view of spectrum utilization by using simple OR or K-out-of-N

fusion heuristics at the Aggregator.



Chapter 4

Distributed Collaborative

Cognitive Radio Environments

with Neighbour Discovery

As of this version (v1.0.0) of the thesis proposal, only Phase 1 has been investigated in

detail and will be taken up during the first semester of the Master of Science degree with

the phase ending in its successful incorporation in the BAM! Wireless code-base and one

or more IEEE research publications. This phase is presented as a potential candidate

which can be tackled in semesters II and beyond.

4.1 Overview

One proposal is to employ Clustering algorithms to produce highly correlated clusters

of collaborating neighbours. These neighbours may then proceed to nominate a cluster-

head which would operate as another standard radio node in the next tier with other

cluster-heads and serve as a centralized service node for its cluster. The cluster-heads

would have Reinforcement Learning agents running on them which try to optimize the

formulated problem and come up with an optimal or a nearly-optimal action policy that

maximizes the SU network throughput while imposing constraints on missed detection

probability, control channel overhead, energy efficiency of nodes, and decision latencies.

Another approach here would be to employ multi-agent, multi-band, distributed Rein-

forcement Learning agents on individual SUs. The proposal as of this version of the

document is to replicate the results obtained in 4.

22
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A third approach would be replicate the results detailed in 8 which employs Markov De-

cision Processes at SUs to learn their optimal set of cooperating neighbours in CRAHNs.

This proposal is described to minimize control channel overhead and improve detection

performance by using binary decision dissemination and hard-combining strategy.
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Opportunistic spectrum access in

competing radio resource

utilization environments

As of this version (v1.0.0) of the thesis proposal, only Phase 1 has been investigated in

detail and will be taken up during the first semester of the Master of Science degree with

the phase ending in its successful incorporation in the BAM! Wireless code-base and one

or more IEEE research publications. This phase is presented as a potential candidate

which can be tackled in semesters II and beyond.

5.1 Overview

The proposal aims to use Bandit frameworks and Reinforcement Learning algorithms

to devise optimum action policies for sensing & transmission assignments and sensing &

transmission schedules. As outlined in the introductory sections of the document, non-

collaborative spectrum access environments require novel, intelligent back-off strategies

along with mandated acknowledgements (with some class of ARQ) in order to facilitate

reliable completion of assigned network flows in a competing radio environment where

there is no knowledge transfer among radio nodes. Also, in these environments, the

problems of fading and shadowing that typically creep into PU activity measurements

at the individual, non-collaborating SU, have to be solved.

24
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Detailed Performance evaluations

of the proposed heuristics in

specific topology/traffic scenarios

As of this version (v1.0.0) of the thesis proposal, only Phase 1 has been investigated in

detail and will be taken up during the first semester of the Master of Science degree with

the phase ending in its successful incorporation in the BAM! Wireless code-base and one

or more IEEE research publications. This phase is presented as a potential candidate

which can be tackled in semesters II and beyond.

6.1 Overview

The following are potential categories of research which can be undertaken in Phase 4.

• The incorporation of autonomous participation strategies at each SU in the net-

work leveraging the cost-reward trade-off analyses in Bayesian games. Intuitively,

the SU decides to either participate in the collaboration process or to go at it alone

by doing a trade-off analyses with respect to the obtained reward and the paid cost.

In the simplest terms, the cost for an SU to participate in a collaborative sensing

episode with its neighbours would be the time lost sensing frequency bands which

could have been used for transmission/sensing other successful frequency bands

and the reward would be the throughput of the successfully completed flow over

the channel found to be idle as a result of this collaborative spectrum sensing

episode.

25
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• Sensing and Transmission scheduling heuristics as described in 12

• Determining PU activity using supervised learning algorithms, for instance, de-

termining PU channel access schemes using CNNs/SVMs. Another approach to

determine PU channel access schemes would be to use cumulant based classifiers

as detailed in 10

• Using stage-based, iterative addition/merger/deletion/updation of PU components

(these so-called components model the PU footprint over the region of interest) by

using multi-stage aggregation. One approach would be to use the soft and hard

reports heuristics described in 11.

• Detailed Performance evaluation of these heuristics against the algorithms devel-

oped in Phase 1, 2, and 3 by varying numerous design parameters such as the

diversity order of sensing, the heterogeneity of nodes, the number of bands sensed

per node, different reward distributions, with or without prior knowledge of the

network, with or without CSI, and many other control knobs which may turn up

as we proceed with the design stages of phases 1, 2, and 3.
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Coalescence of various approaches

into a best-policy framework and

possible applications in the 5G

and IoT landscape

As of this version (v1.0.0) of the thesis proposal, only Phase 1 has been investigated in

detail and will be taken up during the first semester of the Master of Science degree with

the phase ending in its successful incorporation in the BAM! Wireless code-base and one

or more IEEE research publications. This phase is presented as a potential candidate

which can be tackled in semesters III and beyond.

7.1 Overview

• The consolidation of all the knowledge obtained in phases 1, 2, 3, and 4 into a ”best-

policy” framework in which the SU network adapts to changing circumstances

by learning the topology of the network it’s operating in and choosing the best

possible operational action heuristic to maximize the SU network throughput in

collaborative topologies or to successfully complete its assigned traffic flows in

non-collaborative or opportunistic topologies.

• The SU node and SU network adaptation can be approached coarsely leveraging

the programmability brought forth by Software Defined Networking. Simple pro-

tocols like REST and CLI can be employed to modify SU behaviour with respect

27
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to changing network topologies and flow priorities by automating parameter vari-

ations triggered at the application layer which then trickle down to the data plane

through the control plane.

• A fine-grained approach would be to embed this intelligence into the SU network

and modify SU behaviour with variations in network topology, flow priorities, and

other secondary design considerations.

• This ”best-policy” framework would be prototyped on SDR and GPU test-beds to

complete the design flow. The vector processing and multi-threading capabilities of

GPUs can be leveraged by allocating data-intensive tasks such as model training to

the GPUs. The system’s software architectural choices such as type of PUB-SUB

framework used, design patterns, asynchronous calls, design patterns, dedicated

I/O services, loosely-coupled design strategies, and allocation of operations across

FPGAs, GPUs, and CPUs play a vital role in the overall performance of the

proposed framework. Hence, E2E prototyping is a required phase.

• Furthermore, potential applications of the framework and the algorithms under its

hood, in the 5G and the IoT landscape can be explored.



Chapter 8

Conclusion

The graduate research proposal detailed in this document aims to devise a novel, adap-

tive, hierarchical, intelligent framework for Secondary Users in Cognitive Radio Net-

works leveraging algorithms and heuristics from Reinforcement Learning, Bandits, Su-

pervised/Unsupervised Learning, and Game Theory. The proposed research endeavour

is broken down into five phases with each phase ending in one or more IEEE research

publications and potential inclusion in the BAM! Wireless code-base for emulation on

the DARPA SC2 Colosseum. The end goal of this research is to produce the over-arching

framework that’s been extensively discussed in this document and explore its potential

applications in fifth-generation wireless networks and the IoT ecosystem where Massive

MTC demands intelligent dynamic spectrum access solutions.
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