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Abstract

We consider a novel multi-armed bandit framework where the rewards obtained
by pulling the arms are functions of a common latent random variable. The
correlation between arms due to the common random source can be used to design
a generalized upper-confidence-bound (UCB) algorithm that identifies certain arms
as non-competitive, and avoids exploring them. As a result, we reduce a K-armed
bandit problem to a C + 1-armed problem, where C + 1 includes the best arm
and C competitive arms. Our regret analysis shows that the competitive arms
need to be pulled O(log T ) times, while the non-competitive arms are pulled only
O(1) times. As a result, there are regimes where our algorithm achieves a O(1)
regret as opposed to the typical logarithmic regret scaling of multi-armed bandit
algorithms. We also evaluate lower bounds on the expected regret and prove that
our correlated-UCB algorithm is order-wise optimal.

1 Introduction

Multi-armed Bandits. The multi-armed bandit (MAB) framework is a special case of reinforcement
learning [1] where actions do not change the system state. At each time step we obtain a reward by
pulling one of K arms which have unknown reward distributions, and the objective is to maximize
the cumulative reward. The seminal work of Lai and Robbins [2] proposed the upper confidence
bound (UCB) arm-selection algorithm, and studied its fundamental limits in terms of bounds on
regret. Subsequently, multi-armed bandit algorithms [3, 4] have been used in numerous applications
including medical diagnosis [5], system testing [6], scheduling in computing systems [7–9], and web
optimization [10, 11] among others. A drawback of the classical model is that it assumes independent
rewards from the arms, which is typically not true in practice.

Related Work. Motivated by this shortcoming, several variants of the multi-armed bandit framework
have been proposed in recent years. A class of variants relevant to our work is contextual bandits
[12–16], where in each round we observe a contextual vector that provides side information about the
reward of each arm. Instead of receiving side information, correlated multi-armed bandits exploit
the inherent correlation between the rewards of arms arising due to a structural relationship between
the arms, or a set of common parameters shared between them. Some recent works [17–24] have
studied the correlated multi-armed bandit problem. Many of these works consider specific types of
correlation such as clusters of arms [17, 18] and Gaussian or invertible reward functions [23] that
depend on a constant hidden parameter vector θ [20, 23–26]. We consider latent random variable X ,
instead of constant parameter θ. Some recent papers [27] study the regret of such latent source models
for collaborative filtering, with rewards belonging to the set {−1, 0,+1}. Instead of maximizing
regret, [28] considers the same model as this paper, but with the objective of learning the distribution
of the latent random variable X .
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Main Contributions. We consider a novel correlated multi-armed bandit model with a latent random
source X , and we allow the rewards to be arbitrary functions of X , as described in Section 2. In
Section 3, we propose the C-UCB algorithm, which is a fundamental generalization of the classic
UCB algorithm. The C-UCB algorithm uses observed rewards to generate pseudo-reward estimates
of other arms, and restricts the exploration to the arms that are deemed (empirically) competitive.
Regret analysis in Section 4 shows that after T rounds of sampling, the C-UCB algorithm achieves
an expected regret of C ·O(log T ) + O(1), where C ∈ {0, . . . ,K − 1} denotes the number of arms
that are competitive with respect to the optimal arm. Thus, when the correlation between the rewards
results in C being equal to 0, C-UCB achieves constant regret scaling with T , which is an order-wise
improvement over standard bandit algorithms like UCB. We also find a lower bound on expected
regret and show that the proposed algorithm achieves bounded regret whenever possible, and hence is
order-wise optimal. Simulation results in Section 5 show that our C-UCB algorithm outperforms the
vanilla UCB algorithm that does not exploit the correlation between arms.

Applications. Unlike the classic MAB model that considers arms with independent rewards, our
framework captures several applications where the rewards of arms k = 1, . . . ,K depend on a
common source of randomness. For example, the response toK possible advertisements/products can
depend on a latent variable X that represents the social/economic condition of a customer. Similarly,
the reward for using one of the K possible encoding/routing strategies in a wireless communication
network may depend on the current state X of a time-varying channel.

Through controlled experiments or supervised learning approaches, we can learn the reward function
gk(·) for each possible value of X . While it is possible to find the mappings gk(x) for a small
control group with different x’s, learning the distribution FX of a large population is likely to be
difficult and costly; e.g., imagine a company willing to expand to a new region/country with an
unknown demographic, and trying to identify the best products/ads. Similarly, in a communication
network, it may not be efficient/possible to obtain the channel state information at every node
and at every time instant. In this setting, our framework will help obtain the order-wise optimal
reward. In particular, instead of the correlation-agnostic MAB framework, our approach will leverage
the previously learned correlations to reduce the regret. Also, unlike contextual bandits where a
personalized recommendation is given after observing the context x, our framework identifies a single
recommendation that appeals to a large population where these contexts are hidden.

2 Problem Formulation

2.1 System Model and Regret Definition

X 

g1(X) g2(X) gK(X) 

arm 1 

arm
 2 

arm
 K 

Figure 1: The correlated multi-armed
bandit framework. The reward of arm
k at round t is gk(xt), where xt is an
i.i.d. realization of the latent random
variable X .

Consider a latent random variable X whose probability distri-
bution is unknown. The random variable can be either discrete
or continuous. For discrete X , we denote the sample space
byW = {x1, x2, . . . xJ}, and use pj to denote the probability
Pr(X = xj) such that

∑J
j=1 pj = 1. For continuousX , fX(x)

denotes the probability density function of X over x ∈ R.

Due to the latent nature of X , it is not possible to draw direct
samples of X and infer its unknown probability distribution.
Instead, indirect samples can be obtained by choosing one of
K arms in each round t, where K is finite and fixed. Arm k
is associated with a reward function gk(X). If we take action
kt ∈ {1, 2 . . . ,K} in time slot t, we obtain the reward gkt(xt)
where xt is an i.i.d. realization of X as shown in Figure 1. The
functions g1(X), g2(X) . . . gK(X) are assumed to be known.
Assume that there is a unique optimal arm k∗ that gives the maximum expected reward, that is,

k∗ = arg max
k∈{1,2,...,K}

E [gk(X)] = arg max
k∈{1,2,...K}

µk, (1)

where µk denotes the mean reward of arm k. Let ∆k , µk∗ − µk be defined as the sub-optimality
gap of arm k with respect to the optimal arm k∗. We also assume that the reward functions are
bounded within an interval of size B, that is, (maxx∈W gk(x)−minx∈W gk(x)) ≤ B for all arms
k ∈ {1, . . . ,K}. We do not make any other assumptions such as the functions g1, . . . gK being
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invertible. And indeed our problem framework and algorithm is most interesting when the reward
functions are not invertible.

Our objective is to sequentially pull arms k1, . . . , kt in order to maximize the cumulative reward.
After T rounds, the cumulative reward is

∑T
t=1 gkt(xt). Maximizing the cumulative reward is

equivalent to minimizing the cumulative regret which is defined as follows.
Definition 1 (Cumulative Regret). The cumulative regret Reg(T ) after T rounds is defined as

Reg(T ) ,
T∑
t=1

(gk∗(xt)− gkt(xt)) (2)

where xt is an i.i.d. realization of X that is not directly observed; we only observe gkt(xt).

Thus, our goal is to design an algorithm to choose an arm kt at every round t so as to minimize
expected Reg(T ). Note that we do not know the number of rounds T beforehand, and aim to
minimize Reg(T ) for all T .
Remark 1 (Connection to Classical Multi-armed Bandits). Although we consider a scalar ran-
dom variable X for brevity, our framework and algorithm can be generalized to a latent ran-
dom vector X = (X1, X2, . . . Xm), as we explain in the supplementary material. The classical
multi-armed bandit framework with independent arms is a special case of this generalized model
when X = (X1, X2, . . . XK) where Xi are independent random variables and gk(X) = Xk for
k ∈ {1, 2, . . . ,K}.

2.2 Utilizing Correlation Between the Arms: Intuition and Examples

In the classical multi-armed bandit framework there is a trade-off between exploring more arms to
improve the estimates of their rewards, and exploiting the current best arm in order to maximize
the cumulative reward. The sub-optimal arms have to be pulled Θ(log T ) times each, resulting in
a Θ(log T ) cumulative regret as shown in the seminal work [2]. In our new framework, since the
reward functions g1, . . . gK are correlated through the common hidden random variable X , pulling
one arm can give information about the distribution of X , which in turn can help estimate the reward
from other arms. These pseudo-rewards (defined formally in Section 3) can allow us to declare certain
arms as non-competitive (defined formally in Section 3) and pull them only O(1) times. As a result, a
K-armed bandit problem is reduced to a C + 1-armed bandit problem, where C ∈ {0, 1, . . . ,K − 1}
is the number of competitive arms. Let us consider some examples to gain intuition on how arms are
deemed non-competitive.
Example 1 (All Reward Functions are Invertible). Suppose that all the reward functions g1, . . . gK
are invertible. Then, if we obtain a reward r by pulling arm k in slot t, it can be mapped back
to a unique realization x = g−1

k (r) of the latent random variable X . Using this realization, we
can generate pseudo-samples g`(x) from any other arm ` 6= k. This renders all sub-optimal arms
non-competitive and obviates the need to explore them. As a result, a pure-exploitation strategy is
optimal and it gives O(1) regret.

g1(X)

x1 x2 x3 x1 x2 x3

g2(X)

2

1.5
1

00

Figure 2: Example of two arms.

In fact, it suffices to have only the function gk∗(x) correspond-
ing to the optimal arm to be invertible to deem all other arms
as non-competitive and to achieve O(1) regret; see Section 4
for details. To understand the intuition behind declaring arms
as non-competitive for general reward functions, consider the
two-arm example below.
Example 2 (Identifying Non-competitive Arms). Consider two-
armed bandit problem with reward functions g1 and g2 respec-
tively, as shown in Figure 2. Suppose arm 1 is pulled 10 times,
out of which we observe reward 1 three times, and 2 seven
times, such that the empirical reward is

µ̂1 = p̂1 + 2(p̂2 + p̂3) = 1.7 (3)

Using (3), we can estimate the distribution (p1, p2, p3) of X to be p̂1 = 0.3 and p̂2 + p̂3 = 0.7. It is
not possible to use this to estimate the reward of arm 2 since we only know the sum p̂2 + p̂3. However,
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we can find an upper bound on the empirical reward of arm 2 as follows.

µ̂2 = 1.5p̂1 + 0p̂2 + 1.5p̂3 (4)
≤ 1.5p̂1 + max(0, 1.5)(p̂2 + p̂3) = 1.5 (5)

Since the upper bound on arm 2’s reward (which we refer to as its pseudo-reward) is less than arm
1’s empirical reward, we consider arm 2 as empirically non-competitive with respect to arm 1 and do
not pull it until it becomes empirically competitive again.

In Section 3 below we formalize the idea of competitive and non-competitive arms and propose a
correlated upper confidence bound (C-UCB) algorithm. In Section 4 we give upper and lower bounds
on the regret of the proposed algorithm, and show that the regret is similar to that of UCB with just
C + 1 arms instead of K arms, where C is the number of competitive arms.

3 C-UCB: The Proposed Correlated-UCB Algorithm

Our algorithm to choose an arm in each round in the correlated multi-armed bandit framework is
a fundamental generalization of the upper confidence bound (UCB1) algorithm presented in [29].
In round t, the UCB1 algorithm chooses the arm that maximizes the upper confidence index Ik(t)
which is defined as

Ik(t) = µ̂k(t) +B

√
2 log t

nk(t)
, (6)

where µ̂k(t) is the empirical mean of the rewards received from arm k until round t, and nk(t) is
the number of times arm k is pulled till round t. The second term causes the algorithm to explore
arms that have been pulled only a few times (small nk(t)). Recall that we assume all rewards to be
bounded within an interval of size B. When the index t is implied by context, we abbreviate µ̂k(t)
and Ik(t) to µ̂k and Ik respectively in the rest of the paper. Also, we use the terms UCB1, UCB, and
classic UCB interchangeably to refer to the UCB1 algorithm proposed in [29].

In correlated MAB framework, the rewards observed from one arm can help estimate the rewards
from other arms. Our key idea is to use this information to reduce the amount of exploration required.
We do so by evaluating the empirical pseudo-reward of every other arm ` with respect to an arm k, as
we saw in Example 2. If this pseudo-reward is smaller than empirical reward of arm k, then arm ` is
considered to be empirically non-competitive with respect to arm k, and we do not consider it as a
candidate in the UCB1 algorithm.

The notions of pseudo-reward and empirical competitiveness of arms are defined in Section 3.1
and Section 3.2 below, and in Section 3.3 we describe how we modify the UCB1 algorithm. The
pseudo-code of our algorithm is presented in Algorithm 1.

3.1 Pseudo-Reward of Arm ` with respect to Arm k

The pseudo-reward of arm ` with respect to arm k is an artificial sample of arm `’s reward generated
using the reward observed from arm k. It is defined as follows.
Definition 2 (Pseudo-Reward). Suppose we pull arm k and observe reward r. Then the pseudo-
reward of arm ` with respect to arm k is

s`,k(r) , max
x:gk(x)=r

g`(x). (7)

The pseudo-reward s`,k(r) gives the maximum possible reward that could have been obtained from
arm `, given the reward observed from arm k. In Example 2, if we observe a reward of r = 2 from
arm 1, X could have been either x2 or x3. Then the pseudo-reward of arm 2 is s2,1 = 1.5 which is
the maximum of g2(x2) and g2(x3). The pseudo-reward definition also applies to continuous X , and
it can be directly extended to a latent random vector X = (X1, . . . Xm) as well as explained in the
supplementary material.
Definition 3 (Empirical and Expected Pseudo-Reward). After t rounds, arm k is pulled nk(t) times.
Using these nk(t) reward realizations, we can construct the empirical pseudo-reward φ̂`,k(t) for
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Algorithm 1 C-UCB Correlated UCB Algorithm

1: Input: Reward Functions {g1, g2 . . . gK}
2: Initialize: nk = 0, Ik =∞ for all k ∈ {1, 2, . . .K}
3: for each round t do
4: Find kmax = arg maxk nk(t− 1), the arm that has been pulled most times until round t− 1
5: Initialize the empirically competitive set A = {1, 2, . . . ,K} \ {kmax}.
6: for k 6= kmax do
7: if µ̂kmax > φ̂k,kmax then
8: Remove arm k from the empirically competitive set: A = A�{k}
9: end if

10: end for
11: Apply UCB1 over arms in A ∪ {kmax} by pulling arm kt = arg maxk∈A∪{kmax} Ik(t− 1)
12: Receive reward rt, and update nkt = nkt + 1

13: Update Empirical reward: µ̂kt(t) =
µ̂kt (t−1)(nkt (t)−1)+rt

nkt (t)

14: Update the UCB Index: Ikt(t) = µ̂kt +B
√

2 log t
nkt

15: Compute pseudo-rewards for all arms k 6= kt: sk,kt(rt) = maxx:gkt (x)=rt gk(x).

16: Update empirical pseudo-rewards for all k 6= kt: φ̂k,kt(t) =
∑
τ :kτ=kt

sk,kτ (rτ )/nkt
17: end for

each arm ` with respect to arm k as follows.

φ̂`,k(t) ,

∑t
τ=1 1kτ=ks`,k(rt)

nk(t)
, ` ∈ {1, . . . ,K} \ {k}. (8)

The expected pseudo-reward of arm ` with respect to arm k is defined as

φ`,k , E [s`,k(gk(X))] . (9)

Note that the empirical pseudo-reward φ̂`,k(t) is defined with respect to arm k and it is only a function
of the rewards observed by pulling k. It may be possible to get a more accurate estimate of arm `’s
reward by combining the observations from all other arms. However, we consider this rough estimate,
and it is sufficient to obtain order-wise optimal regret scaling as we show in Section 4.

3.2 Competitive and Non-competitive arms with respect to Arm k

Using the pseudo-reward estimates defined above, we can classify each arm ` 6= k as competitive or
non-competitive with respect the arm k. To this end, we first define the notion of the pseudo-gap.

Definition 4 (Pseudo-Gap). The pseudo-gap ∆̃`,k of arm ` with respect to arm k is defined as

∆̃`,k , µk − φ`,k, (10)

i.e., the difference between expected reward of arm k and the expected pseudo-reward of arm ` with
respect to arm k.

From the definition of pseudo-reward, it follows that the expected pseudo-reward φ`,k is greater than
or equal to the expected reward µ` from arm `. Thus, a positive pseudo-gap ∆̃`,k > 0 indicates that it
is possible to classify arm ` as sub-optimal using only the rewards observed from arm k (with high
probability as the number of pulls for arm k gets large); thus, arm ` needs not be explored. Such arms
are called non-competitive, as we define below.

Definition 5 (Competitive and Non-Competitive arms). An arm ` is said to be non-competitive if its
pseudo-gap with respect to the optimal arm k∗ is positive, that is, ∆̃`,k∗ > 0. Similarly, an arm ` is
said to be competitive if ∆̃`,k∗ < 0. The unique best arm k∗ has ∆̃k∗,k∗ = 0 and is not counted in
the set of competitive arms.
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Since the distribution of X is unknown, we can not find the pseudo-gap of each arm and thus have
to resort to empirical estimates based on observed rewards. In our algorithm, we use a noisy notion
of the competitiveness of an arm defined as follows. Note that since the optimal arm k∗ is also not
known, empirical competitiveness of an arm ` is defined with respect to each of the other arms k 6= `.

Definition 6 (Empirically Competitive and Non-Competitive arms). An arm ` is said to be “empiri-
cally non-competitive with respect to arm k at round t" if its empirical pseudo-reward is less than
the empirical reward of arm k, that is, µ̂k(t) − φ̂`,k(t) > 0. Similarly, an arm ` 6= k is deemed
empirically competitive with respect to arm k at round t, if µ̂k(t)− φ̂`,k(t) ≤ 0.

3.3 Modified UCB1 Algorithm to Eliminate Non-Competitive Arms

The central idea in our correlated UCB algorithm is that after pulling the optimal arm k∗ sufficiently
large number of times, the non-competitive (and thus sub-optimal) arms can be classified as empiri-
cally non-competitive with increasing confidence, and thus need not be explored. As a result, the
non-competitive arms will only be pulled only O(1) times. However, the competitive arms cannot
be discerned as sub-optimal by just using the rewards observed from the optimal arm, and have to
be explored Θ(log T ) times each. Thus, we are able to reduce a K-armed bandit to a C + 1-armed
bandit problem, where C is the number of competitive arms.

Using this idea, our C-UCB algorithm proceeds as follows. After every round t, we maintain values
for empirical reward, µ̂k(t), and the UCB1 index Ik(t) for each arm k. These empirical estimates are
based on the nk(t) samples of rewards that have been observed for k till round t. In addition to this,
we maintain empirical pseudo-reward of arm ` with respect to arm k, φ̂`,k(t), for all pairs of arms
(`, k). In each round t, the algorithm performs the following steps:

1. Select arm kmax = arg maxk nk(t− 1), that has been pulled the most until round t− 1.

2. Identify the set A of arms that are empirically competitive with respect to arm kmax.

3. Pull the arm kt ∈ {A ∪ kmax} with the highest UCB1 index Ik(t− 1) (defined in (6)).

4. Update the empirical pseudo-rewards s`,kt for all `, the empirical reward φ̂`,kt(t), and the
UCB1 indices of all arms based on the observed reward rt.

In step 1, we choose the arm that has been pulled the most number of times because we have the
maximum number of reward samples from this arm. Thus, it is likely to most accurately identify
the non-competitive arms. This property enables the proposed algorithm to achieve an O(1) regret
contribution from non-competitive arms as we show in Section 4 below.

4 Regret Analysis and Bounds

We now characterize the performance of the C-UCB algorithm by analyzing the expected value of
the cumulative regret (Definition 1). The expected regret can be expressed as

E [Reg(T )] =

K∑
k=1

E [nk(T )] ∆k, (11)

where ∆k = E [gk∗(X)]− E [gk(X)] = µk∗ − µk is the sub-optimality gap of arm k with respect to
the optimal arm k∗, and nk(T ) is the number of times arm k is pulled in T slots.

For the regret analysis, we assume without loss of generality that the reward functions gk(X) satisfy
0 ≤ gk(X) ≤ 1 for all k ∈ {1, 2, . . .K}. Note that the C-UCB algorithm does not require this
condition on gk(X), and the regret analysis can also be generalized to any bounded reward functions.

4.1 Instance-Dependent Bounds

Most works on multi-armed bandits derive two types of bounds on expected regret: instance-
dependent and worst case bounds, depending on whether or not the minimum sub-optimality gap
∆min goes to 0 with the total number of rounds T . Our instance-dependent bounds assume that the
minimum gap ∆min = mink ∆k remains strictly positive as the number of rounds T →∞, which is
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generally true in practice. Worst-case bounds are required when ∆min can be arbitrarily small for
large T . We derive both these bounds for the correlated-UCB algorithm. We use the standard Landau
notation in the results, where all asymptotic statements are for large T . The proofs of all the results
presented below are deferred to the supplement.

In order to bound E [Reg(T )] in (11), we can analyze the expected number of times sub-optimal arms
are pulled, that is, E [nk(T )], for all k 6= k∗. Theorem 1 and Theorem 2 below show that E [nk(T )]
scales as O(1) and O(log T ) for non-competitive and competitive arms respectively. Recall that
a sub-optimal arm is said to be non-competitive if its pseudo-gap ∆̃k,k∗ > 0, and competitive
otherwise.

Theorem 1 (Expected Pulls of a Non-competitive Arm). If the pseudo-gap ∆̃k,k∗ ≥ 2
√

2K log t0
t0

,

and the sub-optimality gap ∆min ≥ 4
√

K log t0
t0

for some constant t0 > 0 then

E [nk(T )] ≤ Kt0 +K(K − 1)

T∑
t=Kt0

3

(
t

K

)−3

+

T∑
t=1

t−4, (12)

= O(1). (13)

Theorem 2 (Expected Pulls of a Competitive Arm). Expected number of times a competitive arm is
pulled can be bounded as

E [nk(T )] ≤ 8
log(T )

∆2
k

+

(
1 +

π2

3

)
+

T∑
t=1

exp

(
− t∆

2
min

2K

)
, (14)

= O(log T ) if ∆min = min
k

∆k > 0. (15)

Substituting the bounds on E [nk(T )] derived in Theorem 1 and Theorem 2 into (11), we get the
following upper bound on expected regret.
Theorem 3 (Upper Bound on Expected Regret). If the minimum sub-optimality gap ∆min ≥
4
√

K log t0
t0

, and the pseudo-gap of non-competitive arms ∆̃k,k∗ ≥ 2
√

2K log t0
t0

for some constant
t0 > 0, then the expected cumulative regret of the C-UCB algorithm is

E [Reg(T )] ≤
∑
k∈C

∆kU
(c)
k (T ) +

∑
k′∈{1,...,K}\{C∪k∗}

∆k′U
(nc)
k′ (T ), (16)

= C ·O(log T ) + O(1), (17)

where C ⊆ {1, . . . ,K} \ {k∗} is set of competitive arms with cardinality C, U (c)
k (T ) is the upper

bound on E [nk(T )] for competitive arms given in (14), and U (nc)
k (T ) is the upper bound for non-

competitive arms given in (12).

Remark 2. If the set of competitive arms C is empty (i.e., the number of competitive arms C = 0),
then our algorithm will lead to (see (17)) an expected regret of O(1), instead of the typical O(log T )
regret scaling in classic multi-armed bandits. A simple case where C is empty is when the reward
function gk∗(X) corresponding to the arm k∗ is invertible. This is because, for all sub-optimal arms
` 6= k∗, the pseudo-gap ∆̃`,k∗ = ∆` > 0, resulting in those arms being non-competitive. The set C
can be empty in more general cases where none of the arms are invertible. Then, our algorithm still
achieves an expected regret of O(1).

Remark 3. For the UCB1 algorithm [29], the first sum in (16) is taken over all arms. In this sense,
our C-UCB algorithm is able to reduce a K-armed bandit problem to a C + 1-armed bandit problem.

Next, we present a lower bound on the expected regret E [Reg(T )]. Intuitively, if an arm ` is
competitive, it can not be deemed sub-optimal by only pulling the optimal arm k∗ infinitely many
times. This indicates that exploration is necessary for competitive arms. The proof of this bound
closely follows that of the 2-armed classical bandit problem [2]; i.e., we construct a new bandit
instance under which a previously sub-optimal arm becomes optimal without affecting reward
distribution of any other arm.
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Theorem 4 (Lower Bound on Expected Regret). If C > 0, that is, when there is at least one
competitive arm, for any algorithm that achieves a sub-polynomial regret,

lim
T→∞

inf
E [Reg(T )]

log(T )
≥ max

k∈C

∆k

D(fRk ||fR̃k)
. (18)

Here fRk is the reward distribution of arm k, which is linked with fX since Rk = gk(X). The term
fR̃k represents the reward distribution of arm k in the new bandit instance where arm k becomes
optimal and distribution fRk∗ is unaffected. The divergence term represents "the amount of distortion
needed in fX to make arm k optimal", and hence captures the problem difficulty in the lower bound
expression.

Remark 4. From Theorem 3, we see that whenever C > 0, our proposed algorithm achieves
O(log T ) regret matching the lower bound given in Theorem 4 order-wise. Also, when C = 0, our
algorithm achieves O(1) regret. Thus, in all cases, our algorithm leads to an expected regret that is
order-wise optimal.

4.2 Worst Case Bound on Expected Regret

Our instance-dependent bounds assumed that the minimum gap ∆min ≥ 4
√

K log t0
t0

for some t0 > 0,
with a similar assumption on the pseudo-gap. We now present an upper bound the on expected regret
without this assumption, when ∆k can scale with T and become arbitrarily small as T →∞.

Theorem 5 (Worst Case Expected Regret). In the worst case, the expected regret of the C-UCB
algorithm is O(

√
T log(T )).

Note that this worst case regret bound is the same as that obtained for the UCB1 algorithm [29] when
the arms are independent. This demonstrates that our algorithm can achieve the same order-wise
worst case regret as classic UCB.

5 Simulation Results

We now present simulation results for the case where X is a discrete random variable (simulations for
continuous X and random vector X are shown in the supplement). We consider the reward functions
g1(X), g2(X) and g3(X) shown in Figure 3 for all simulation plots. However, the probability
distribution PX = (px1

, px2
, . . . px5

) of X is different for each of the following cases given below.
For each case, Figure 4 shows the cumulative regret versus the number of rounds. The cumulative
regret is averaged over 500 simulation runs, and for each run we use the same reward realizations for
both the C-UCB and the vanilla UCB1 algorithms.

g1(X)

0

4
2

6

x1 x2 x3 x4 x5

g2(X)

0

4
2

6

x1 x2 x3 x4 x5

g3(X)

0

4
2

6

x1 x2 x3 x4 x5

Figure 3: Reward Functions used for the simula-
tion results presented in Figure 4.

Case 1: No competitive arms. Here, we set
PX = (0.1, 0.2, 0.25, 0.25, 0.2). For this proba-
bility distribution, arm 1 is optimal, and arms 2
and 3 are non-competitive. Since both arm 2 and
arm 3 are non-competitive, our result from The-
orem 1 suggests that regret of C-UCB algorithm
should not scale with the number of rounds T .
This is supported by our simulation results as
well. We see in Figure 4a that the proposed C-
UCB algorithm achieves a constant regret and
is significantly superior to the UCB1 algorithm
as it is able to exploit the correlation of rewards between the arms.

Case 2: One competitive arm. Let PX = (0.25, 0.17, 0.25, 0.17, 0.16) which results arm 3 being
optimal. Arm 1 is non-competitive while arm 2 is competitive. We expect from our results that
number of pulls of arm 1 should not scale with T , while the number of pulls for arm 2 can scale with
the T . This phenomenon can be seen in Figure 4b. The regret of C-UCB algorithm is much smaller
than the UCB1 algorithm as C-UCB algorithm is not exploring arm 1. However, the regret scales
with the number of rounds T as it is necessary to explore Arm 2.
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Case 3: Two competitive arms. In the last scenario, we set PX = (0.05, 0.3, 0.3, 0.05, 0.3). For
this distribution, arm 3 is optimal and arms 1 and 2 are both competitive. Since both arms are
competitive, exploration is necessary for both arms. Therefore, as we see in Figure 4c, the regret
obtained under C-UCB and UCB1 are similar and scale with the number of rounds T .
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(b) Only One Competitive arm
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(c) Both Arms are Competitive

Figure 4: For the reward functions in Figure 3, the cumulative regret of C-UCB is smaller than
vanilla-UCB1 in all the three cases above.

6 Concluding Remarks

This work studies a correlated multi-armed bandit (MAB) framework where the rewards obtained by
pulling the K different arms are functions of a common latent random variable X . We propose the
C-UCB algorithm which achieves significant regret-reduction over the classic UCB. In fact, C-UCB
is able to achieve a constant (instead of the standard logarithmic) regret in certain cases. A key idea
behind the success of this algorithm is that correlation helps us use reward samples from one arm to
generate pseudo-rewards from other arms, thus obviating the need to explore them. We believe that
this idea is applicable more broadly to several other sequential decision-making problems. Ongoing
work includes generalization of other multi-armed bandit algorithms such as Thompson sampling
[13], and understanding the scaling of regret with respect to the number of arms K. Instead of the
deterministic reward functions gi(X), we also plan to consider random reward variables Yi, such that
the conditional distribution p(Yi|X) is known.
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SUPPLEMENTARY MATERIAL

A Continuous X and Random Vector X = (X1, X2, . . . Xm)

Observe that our algorithm depends on the functions gi(X) through the evaluation of pseudo-rewards
(see Definition 2). For discrete X , the set {x : gk(x) = r} is a discrete set with a finite number of
elements. Hence, it is easy to evaluate max{x:gk(x)=r} g`(x) for any arm ` 6= k. For continuous X ,
if {x : gk(x) = r} is a finite union of continuous sets, and if g`(x) has finite stationary points, then it
is possible to evaluate g`(x) for x that lie at the boundary of continuous sets and at stationary points
lying within these sets. Therefore, it is possible to compute max{x:gk(x)=r} g`(x).

The algorithm and the regret analysis is also applicable to more general random sources, such as a
latent random vector X = (X1, X2, . . . Xm). For example, if X = (X1, X2) is a random variable,
and g1(X) = X1 + 0.1X2 and g2(X) = X2 + 0.1X1. Then evaluating the pseudo-reward of arm 2
with respect to arm 1 on observing reward r reduces to solving an optimization problem

max
z1,z2

z2 + 0.1z1

s.t z1 + 0.1z2 = r

z1 ∈ W1, z2 ∈ W2,

where,W1,W2 are support of X1 and X2 respectively.

As mentioned in Remark 1, this also captures the case of classical multi-armed bandit problem,
if X = (X1, X2, . . . Xn), where Xi are independent random variables and gk(X) = Xk for
k ∈ {1, 2, . . .K}.

B Simulations for Continuous X and Random Vector X

In this section we obtained cumulative regret by averaging over 100 simulation runs, for each run we
use the same reward realizations for both the C-UCB and UCB1 ([29]) algorithm. We show these
results for continuous X and random vector X.

B.1 Continuous Random Variable

We consider the reward functions g1(X), g2(X) and g3(X) as shown in Figure 5. Arm 1 corresponds
to a Gaussian reward function g1(x) = 1

2
√

2πσ2
exp

(
− (x−µ)2

2σ2

)
, with µ = 0.5 and σ = 0.2.

Arm 2 corresponds to g2(x) = 1 − exp(−5λx), with λ = 0.5. Arm 3 corresponds to a uniform
reward function with g3(x) = 0.5. Depending on the distribution of random variable X , we can
have different scenarios. For this simulation, we considered three cases with distribution of X as
Beta(4, 4), Beta(2, 5) and Beta(1, 5) respectively. Distribution of X for these three cases is shown
in Figure 6.

Case 1: X ∼ Beta(4, 4). For this case arm 1 is the optimal arm, and arms 2 and 3 are non-
competitive. As a result, the regret of C-UCB algorithm does not scale with the number of rounds.
Observe that in Figure 7a the regret of C-UCB algorithm is very small; this is because the pseudo-gap
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Figure 5: Reward Functions used for the
simulation results presented in Figure 7.
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Figure 6: Distribution ofX for the three cases
of simulation results presented in Figure 7.
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of arms 2 and 3 with respect to arm 1 in this setting are large and hence sub-optimal arms are
pulled very few times as they are easily identified as sub-optimal through pulls of Arm 1. This also
demonstrates a case where sub-optimal arms are non-nompetitive even though the optimal arm is
non-invertible.

Case 2: X ∼ Beta(2, 5). In this scenario arm 1 is the optimal arm, arm 2 is competitive and arm
3 is non-competitive. Due to this, C-UCB algorithm still explores arm 2. As evident in Figure 7b,
C-UCB clearly outperforms the UCB1 algorithm. This is because C-UCB algorithm explores only
arm 2, while UCB1 explores both arm 1 and arm 2.

Case 3: X ∼ Beta(1, 5). In this case, arm 3 is the optimal arm. Since pulls of arm 3 provide no
information about reward from Arm 1 and Arm 2, both Arm 1 and Arm 2 are Competitive. Due
to this C-UCB algorithm explores both the arms and has a performance very similar to the UCB1
algorithm as shown in Figure 7c.

(a) Arm 1 is optimal, other two are
non-competitive.

(b) Arm 1 is optimal, arm 2 is compet-
itive and arm 3 is non-competitive.

(c) Arm 3 is optimal and arm 1, 2 are
competitive.

Figure 7: Simulation results for continuous X.

B.2 Latent Random Vector X

We now consider a case where we have a random vector X = (X1, X2). In our setting X1, X2 have
a support of {−1, 0, 1}. We consider two arms with g1(X) = X1 +X2 and g2(X) = X1 −X2. In
this example s2,1(r) > g1(r) only if the observed reward r = 2, which corresponds to the case where
the realization (X1, X2) can be identified as (1, 1). Similarly s1,2(r) > g2(r) only if the observed
reward r = 2, which corresponds to the realization (1,−1). Depending on the distribution of X ,
suboptimal arm can be competitive or non-competitive.

Case 1: Suboptimal arm is Competitive. We consider a case where PX = PX1
PX2

, with PX1
=

{0.3, 0.4, 0.3} and PX2
= {0.38, 0.22, 0.4}. In this scenario Arm 1 is optimal and sub-optimality

gap of arm2 is ∆2 = 0.04. Since the probability mass on (1, 1) is small, Arm 2 is Competitive. Due
to this, we see in Figure 8a that regret of the C-UCB algorithm scales with number of rounds T and
has a performance very similar to the UCB1 algorithm.

Case 2: Suboptimal arm is Non-Competitve We consider the distribution PX with PX(1,−1) =
0.48, PX(1, 1) = 0.5 and PX(x1, x2) = 0.0028 for all other x1, x2. In this scenario, arm 1 is optimal
and arm 2 is sub-optimal with suboptimality gap ∆2 = 0.04. Since probability mass at (1, 1) is high,
it is possible to infer sub-optimality of arm 2 using reward samples of arm 1. We see this effect in
Figure 8b.

C Standard Results from Previous Works

Fact 1 (Hoeffding’s inequality). Let Z1, Z2 . . . Zn be i.i.d random variables bounded between
[a, b] : a ≤ Zi ≤ b, then for any δ > 0, we have

Pr

(∣∣∣∣∑n
i=1 Zi
n

− E [Zi]

∣∣∣∣ ≥ δ) ≤ exp

(
−2nδ2

(b− a)2

)
.

Lemma 1 (From Proof of Theorem 1 in [29]). Let Ik(t) denote the UCB index of arm k at round t,
and µk = E [gk(X)] denote the mean reward of that arm. Then, we have

Pr(µk > Ik(t)) ≤ t−4.
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(a) Sub-optimal arm is competitive.
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(b) Sub-optimal arm is non-competitive.

Figure 8: Simulation results for latent vector X.

Observe that this bound does not depend on the number nk(t) of times arm k is pulled. UCB index is
defined in equation (6) of the main paper.

Proof. This proof follows directly from [29]. We present the proof here for completeness as we use
this frequently in the paper.

Pr(µk > Ik(t)) = Pr

(
µk > µ̂k +

√
2 log t

nk(t)

)
(19)

= Pr

(∑t
τ=1 1{kτ=k}rτ

nk(t)
− µk < −

√
2 log t

nk(t)

)
(20)

≤ exp

(
−2nk(t)

2 log t

nk(t)

)
(21)

= t−4. (22)

where (21) follows from Hoeffding’s inequality as we note that rewards {rτ : τ = 1, . . . , t, kτ = k}
form a collection of i.i.d. random variables each of which is bounded between [0, 1].

Lemma 2. Let E [1Ik>Ik∗ ] be the expected number of times Ik(t) > Ik∗(t) in T rounds. Then, we
have

E [1Ik>Ik∗ ] =

T∑
t=1

Pr(Ik > Ik∗) ≤
8 log(T )

∆2
k

+

(
1 +

π2

3

)
.

The proof follows the analysis in Theorem 1 of [29]. The analysis of Pr(Ik > Ik∗) is done
by conditioning on the event that Arm k has been pulled 8 log(T )

∆2
k

. Conditioned on this event,

Pr(Ik(t) > Ik∗(t)|nk(t)) ≤ t−2.
Lemma 3 (Theorem 2 [2]). Consider a two armed bandit problem with reward distributions Θ =
{fR1

(r), fR2
(r)}, where the reward distribution of the optimal arm is fR1

(r) and for the sub-optimal
arm is fR2

(r), and E [fR1
(r)] > E [fR2

(r)]; i.e., arm 1 is optimal. If it is possible to create an

alternate problem with distributions Θ′ = {fR1
(r), f̃R2

(r)} such that E
[
f̃R2

(r)
]
> E [fR1

(r)] and

0 < D(fR2
(r)||f̃R2

(r)) <∞ (equivalent to assumption 1.6 in [2]), then for any policy that achieves
sub-polynomial regret, we have

lim inf
T→∞

E [n2(T )]

log T
≥ 1

D(fR2
(r)||f̃R2

(r))
.

Proof. Proof of this is derived from the analysis done in [30]. We show the analysis here for
completeness. A bandit instance v is defined by the reward distribution of arm 1 and arm 2. Since
policy π achieves sub-polynomial regret, for any instance v, Ev,π [(Reg(T ))] = O(T p) as T →∞,
for all p > 0.
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Consider the bandit instances Θ = {fR1(r), fR2(r)}, Θ′ = {fR1(r), f̃R2(r)}, where E [fR2(r)] <

E [fR1(r)] < E
[
f̃R2(r)

]
. The bandit instance Θ′ is constructed by changing the reward distribution

of arm 2 in the original instance, in such a way that arm 2 becomes optimal in instance Θ′ without
changing the reward distribution of arm 1 from the original instance.

From divergence decomposition lemma (derived in [30]), it follows that

D(PΘ,Π||PΘ′,Π) = EΘ,π [n2(T )]D(fR2(r)||f̃R2(r)).

The high probability Pinsker’s inequality (Lemma 2.6 from [31], originally in [32]) gives that for any
event A,

PΘ,π(A) + PΘ′,π(Ac) ≥ 1

2
exp (−D(PΘ,π||PΘ′,π)) ,

or equivalently,

D(PΘ,π||PΘ′,π) ≥ log
1

2(PΘ,π(A) + PΘ′,π(Ac))
.

If arm 2 is suboptimal in a 2-armed bandit problem, then E [Reg(T )] = ∆2E [n2(T )] . Expected
regret in Θ is

EΘ,π [Reg(T )] ≥ T∆2

2
PΘ,π

(
n2(T ) ≥ T

2

)
,

Similarly regret in bandit instance Θ′ is

EΘ′,π [Reg(T )] ≥ Tδ

2
PΘ′,π

(
n2(T ) <

T

2

)
,

since suboptimality gap of arm 1 in Θ′ is δ. Define κ(∆2, δ) = min(∆2,δ)
2 . Then we have,

PΘ,π

(
n2(T ) ≥ T

2

)
+ PΘ′,π

(
n2(T ) <

T

2

)
≤ EΘ,π [Reg(T )] + EΘ′,π [Reg(T )]

κ(∆2, δ)T
.

On applying the high probability Pinsker’s inequality and divergence decomposition lemma stated
earlier, we get

D(fR2
(r)||f̃R2

(r))EΘ,π [n2(T )] ≥ log

(
κ(∆2, δ)T

2(EΘ,π [Reg(T )] + EΘ′,π [Reg(T )])

)
(23)

= log

(
κ(∆2, δ)

2

)
+ log(T )

− log(EΘ,π [Reg(T )] + EΘ′,π [Reg(T )]). (24)

Since policy π achieves sub-polynomial regret for any bandit instance, EΘ,π [Reg(T )] +
EΘ′,π [Reg(T )] ≤ γT p for all T and any p > 0, hence,

lim inf
T→∞

D(fR2
(r)||f̃R2

(r))
EΘ,π [n2(T )]

log T
≥ 1− lim sup

T→∞

EΘ,π [Reg(T )] + EΘ′,π [Reg(T )]

log T
+

lim inf
T→∞

log
(
κ(∆2,δ)

2

)
log T

(25)

= 1. (26)

Hence, lim inf
T→∞

EΘ,π [n2(T )]
log T ≥ 1

D(fR2
(r)||f̃R2

(r))
.
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D Lemmas Required to Prove Theorems 1, 2, 3, and 5

Lemma 4. Define E1(t) to be the event that arm k∗ is empirically non-competitive in round t+ 1,
then,

Pr(E1(t)) ≤ exp

(
−t∆2

min

2K

)
,

where ∆min = mink ∆k, the gap between the best and second-best arms.

Proof. We analyze the probability that arm k∗ is empirically non competitive by conditioning on the
event that arm k∗ is not pulled for maximum number of times till round t. Analyzing this expression
gives us,

Pr(E1(t)) = Pr(nk∗(t) 6= max
k

nk(t)) Pr(E1(t)|nk∗(t) 6= max
k

nk(t)) (27)

≤ Pr(E1(t)|nk∗(t) 6= max
k

nk(t)) (28)

=
∑
k 6=k∗

Pr(nk(t) = max
k′

nk′(t))Pr(E1(t)|nk(t) = max
k′

nk′(t)) (29)

≤ max
k

Pr(E1(t)|nk(t) = max
k′

nk′(t)) (30)

= max
k

Pr(µ̂k > φ̂k∗,k|nk(t) = max
k′

nk′(t)) (31)

≤ max
k

Pr

(
µ̂k > φ̂k∗,k

∣∣∣∣nk(t) ≥ t

K

)
(32)

= max
k

Pr

(∑t
τ=1 1{kτ=k}rτ

nk(t)
>

∑t
τ=1 1{kτ=k}sk∗,k(rτ )

nk(t)

∣∣∣∣nk(t) ≥ t

K

)
(33)

= max
k

Pr

(∑t
τ=1 1{kτ=k} (rτ − sk∗,k(rτ ))

nk(t)
> 0

∣∣∣∣nk(t) ≥ t

K

)
(34)

= max
k

Pr

(∑t
τ=1 1{kτ=k} (rτ − sk∗,k(rτ ))

nk(t)
− (µk − φk∗,k) > φk∗,k − µk

∣∣∣∣nk(t) ≥ t

K

)
(35)

≤ max
k

Pr

(∑t
τ=1 1{kτ=k} (rτ − sk∗,k(rτ ))

nk(t)
− (µk − φk∗,k) > ∆k

∣∣∣∣nk(t) ≥ t

K

)
(36)

≤ max
k

exp

(
−t∆2

k

2K

)
(37)

= exp

(
−t∆2

min

2K

)
, (38)

Here (31) follows from the fact that in order for arm k∗ to be empirically non-competitive, empirical
mean of arm k should be more than empirical pseudo-reward of arm k∗ with respect to arm k. Inequal-
ity (32) follows since nk(t) being more than t

K is a necessary condition for nk(t) = maxk′ nk′(t)
to occur. We have (36) as sk∗,k is more than µk∗ . We have (37) from the Hoeffding’s inequality, as
we note that rewards {rτ − sk∗,k(rτ ) : τ = 1, . . . , t, kτ = k} form a collection of i.i.d. random
variables each of which is bounded between [−1, 1] with mean (µk − φk∗,k).

Lemma 5. If ∆min ≥ 4
√

K log t0
t0

for some constant t0 > 0, then,

Pr(kt+1 = k|nk(t) ≥ s) ≤ 3t−4 for s >
t

2K
,∀t > t0.
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Proof. By noting that kt+1 = k corresponds to arm k having the highest index among the set of arms
that are not empirically non-competitive (denoted by A), we have,

Pr(kt+1 = k|nk(t) ≥ s) = Pr(Ik(t) = arg max
k′∈A

Ik′(t)|nk(t) ≥ s) (39)

≤ Pr(E1(t) ∪ (Ec1(t), Ik(t) > Ik∗(t)) |nk(t) ≥ s) (40)
≤ Pr(E1(t)|nk(t) ≥ s) + Pr(Ec1(t), Ik(t) > Ik∗(t)|nk(t) ≥ s) (41)

≤ exp

(
−t∆2

min

2K

)
+ Pr

(
Ik(t) > Ik∗(t)

∣∣∣∣nk(t) ≥ s
)
. (42)

Here E1(t) is the event described in Lemma 4. If arm k∗ is not empirically non-competitive at
round t, then arm k can only be pulled in round t+ 1 if Ik(t) > Ik∗(t), due to which we have (40).
Inequalities (41) and (42) follow from union bound and Lemma 4 respectively.

We now bound the second term in (42).
Pr(Ik(t) > Ik∗(t)|nk(t) ≥ s)
= Pr (Ik(t) > Ik∗(t)|µk∗(t) ≤ Ik∗(t), nk(t) ≥ s)× Pr (µk∗(t) ≤ Ik∗(t)|nk(t) ≥ s) +

Pr (Ik(t) > Ik∗(t)|µk∗(t) > Ik∗(t), nk(t) ≥ s)× Pr (µk∗(t) > Ik∗(t)|nk(t) ≥ s) (43)
≤ Pr (Ik(t) > Ik∗(t)|µk∗(t) ≤ Ik∗(t), nk(t) ≥ s) + Pr (µk∗(t) > Ik∗(t)|nk(t) ≥ s) (44)

≤ Pr (Ik(t) > Ik∗(t)|µk∗(t) ≤ Ik∗(t), nk(t) ≥ s) + t−4 (45)

= Pr (Ik(t) > µk∗(t)|nk(t) ≥ s) + t−4 (46)

= Pr

(
µ̂k(t) +

√
2 log t

nk(t)
> µk∗(t)

∣∣∣∣nk(t) ≥ s

)
+ t−4 (47)

= Pr

(
µ̂k(t)− µk(t) > µk∗(t)− µk(t)−

√
2 log t

nk(t)

∣∣∣∣nk(t) ≥ s

)
+ t−4 (48)

= Pr

(∑t
τ=1 1{kτ=k}rτ

nk(t)
− µk > ∆k −

√
2 log t

nk(t)

∣∣∣∣nk(t) ≥ s

)
+ t−4 (49)

≤ exp

−2s

(
∆k −

√
2 log t

s

)2
+ t−4 (50)

≤ t−4 exp

(
−2s

(
∆2
k − 2∆k

√
2 log t

s

))
+ t−4 (51)

≤ 2t−4 for all t > t0. (52)
We have (43) holds because of the fact that P (A) = P (A|B)P (B) + P (A|Bc)P (Bc), Inequality
(45) follows from Lemma 1. From the definition of Ik(t) we have (47). Inequality (50) follows from

Hoeffding’s inequality, and (52) follows from the fact that s > t
2K and ∆k ≥ 4

√
K log t0
t0

for some
constant t0 > 0.

Plugging this in the expression of Pr(kt = k | nk(t) ≥ s) (42) gives us,

Pr(kt+1 = k | nk(t) ≥ s) ≤ exp

(
−t∆2

min

2K

)
+ Pr(Ik(t) > Ik∗(t)|nk(t) ≥ s) (53)

≤ exp

(
−t∆2

min

2K

)
+ 2t−4 (54)

≤ 3t−4. (55)

Here, (55) follows from the fact that ∆min ≥ 2
√

2K log t0
t0

for some constant t0 > 0.

Lemma 6. If for a suboptimal arm k 6= k∗, ∆̃k,k∗ > 0, then,

Pr(kt+1 = k|nk∗(t) = max
k

nk) ≤ exp

(
−t∆̃2

k,k∗

2K

)
.
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Moreover, if ∆̃k,k∗ ≥ 2
√

2K log t0
t0

for some constant t0 > 0. Then,

Pr(kt+1 = k|nk∗(t) = max
k

nk) ≤ t−4 ∀t > t0.

Proof. We now bound this probability as,

Pr(kt+1 = k | nk∗ = max
k

nk)

= Pr

(
µ̂k∗(t) < φ̂k,k∗(t), Ik(t) = max

k′
Ik′(t) | nk∗(t) = max

k
nk(t)

)
(56)

≤ Pr

(
µ̂k∗(t) < φ̂k,k∗(t)

∣∣∣∣nk∗(t) = max
k

nk(t)

)
(57)

≤ Pr

(
µ̂k∗(t) < φ̂k,k∗(t)

∣∣∣∣nk∗(t) ≥ t

K

)
(58)

≤ Pr

(∑t
τ=1 1{kτ=k∗}rτ

nk∗(t)
<

∑t
τ=1 1{kτ=k∗}sk,k∗(rτ )

nk∗(t)

∣∣∣∣nk∗(t) ≥ t

K

)
(59)

= Pr

(∑t
τ=1 1{kτ=k∗}(rτ − sk,k∗)

nk∗(t)
− (µk∗ − φk,k∗) < −∆̃k,k∗

∣∣∣∣nk∗ ≥ t

K

)
(60)

≤ exp

(
−t∆̃2

k,k∗

2K

)
(61)

≤ t−4 ∀t > t0. (62)

Here, (60) follows from the Hoeffding’s inequality as we note that rewards {rτ − sk,k∗(rτ ) : τ =
1, . . . , t, kτ = k} form a collection of i.i.d. random variables each of which is bounded between

[−1, 1] with mean (µk − φk,k∗). Step (62) follows from the fact that ∆̃k,k∗ ≥ 2
√

2K log t0
t0

for some
constant t0 > 0.

Lemma 7. If ∆min ≥ 4
√

K log t0
t0

for some constant t0 > 0, then,

Pr

(
nk(t) >

t

K

)
≤ 3K

(
t

K

)−3

∀t > Kt0.

Proof. We expand Pr
(
nk(t) > t

K

)
as,

Pr

(
nk(t) ≥ t

K

)
= Pr

(
nk(t) ≥ t

K
| nk(t− 1) ≥ t

K

)
Pr

(
nk(t− 1) ≥ t

K

)
+

Pr

(
kt = k | nk(t− 1) =

t

K
− 1

)
Pr
(
nk(t− 1) =

n

K
− 1
)

(63)

≤ Pr

(
nk(t− 1) ≥ t

K

)
+ Pr

(
kt = k | nk(t− 1) =

t

K
− 1

)
(64)

≤ Pr

(
nk(t− 1) ≥ t

K

)
+ 3(t− 1)−4 ∀(t− 1) > t0. (65)

Here, (65) follows from Lemma 5.

This gives us

Pr

(
nk(t) ≥ t

K

)
− Pr

(
nk(t− 1) ≥ t

K

)
≤ 3(t− 1)−4, ∀(t− 1) > t0.
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Now consider the summation
t∑

τ= t
K

Pr

(
nk(τ) ≥ t

K

)
− Pr

(
nk(τ − 1) ≥ t

K

)
≤

t∑
τ= t

K

3(τ − 1)−4.

This gives us,

Pr

(
nk(t) ≥ t

K

)
− Pr

(
nk

(
t

K
− 1

)
≥ t

K

)
≤

t∑
τ= t

K

3(τ − 1)−4.

Since Pr
(
nk
(
t
K − 1

)
≥ t

K

)
= 0, we have,

Pr

(
nk(t) ≥ t

K

)
≤

t∑
τ= t

K

3(τ − 1)−4 (66)

≤ 3K

(
t

K

)−3

∀t > Kt0. (67)

E Proofs of Instance Dependent Bounds (Theorem 1,2,3)

Proof of Theorem 1 We bound E [nk(T )] as,

E [nk(T )] =

E

[
T∑
t=1

1{kt=k}

]
(68)

=

T−1∑
t=0

Pr(kt+1 = k) (69)

=

Kt0∑
t=1

Pr(kt = k) +

T−1∑
t=Kt0

Pr(kt+1 = k) (70)

≤ Kt0 +

T−1∑
t=Kt0

Pr(nk∗(t) = max
k′

nk′(t)) Pr(kt+1 = k|nk∗(t) = max
k′

nk′(t))+

T−1∑
t=Kt0

∑
k′ 6=k∗

Pr(nk′(t) = max
k′′

nk′′(t)) Pr(kt+1 = k|nk′(t) = max
k′′

nk′′(t)) (71)

≤ Kt0 +

T−1∑
t=Kt0

Pr(kt+1 = k|nk∗(t) = max
k′

nk′(t))+

T−1∑
t=Kt0

∑
k′ 6=k∗

Pr(nk′(t) = max
k′′

nk′′(t)) (72)

≤ Kt0 +

T−1∑
t=Kt0

t−4 +

T∑
t=Kt0

∑
k′ 6=k∗

Pr

(
nk′(t) ≥

t

K

)
(73)

≤ Kt0 +

T∑
t=1

t−4 +K(K − 1)
T∑

t=Kt0

3

(
t

K

)−3

. (74)

Here, (73) follows from Lemma 6 and (74) follows from Lemma 7.

Proof of Theorem 2
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For any suboptimal arm k 6= k∗,

E [nk(T )] ≤
T∑
t=1

Pr(kt = k) (75)

≤
T∑
t=1

Pr(E1(t) ∪ (Ec1(t), Ik > Ik∗)) (76)

≤
T∑
t=1

Pr(E1(t)) + Pr(Ec1(t), Ik(t− 1) > Ik∗(t− 1)) (77)

≤
T∑
t=1

Pr(E1(t)) + Pr(Ik(t− 1) > Ik∗(t− 1)) (78)

=

T∑
t=1

exp

(
− t∆

2
min

2K

)
+

T−1∑
t=0

Pr (Ik(t) > Ik∗(t)) (79)

=

T∑
t=1

exp

(
− t∆

2
min

2K

)
+ E [1Ik>Ik∗ (T )] (80)

≤ 8
log(T )

∆2
k

+

(
1 +

π2

3

)
+

T∑
t=1

exp

(
− t∆

2
min

2K

)
. (81)

Here, (79) follows from Lemma 4. We have (80) from the definition of E [nIk>Ik∗ (T )] in Lemma 2,
and (81) follows from Lemma 2.

Proof of Theorem 3: Follows directly by combining the results on Theorem 1 and Theorem 2.

F Lower bound proofs

For these proofs we define Rk = gk(X) and R̃k = gk(X̃), where fX(x) is the probability density
function of random variable X and fX̃(x) is the probability density function of random variable X̃ .

Lemma 8. If ∆̃k,k∗ < 0, then there exists fX̃(x) such that E
[
R̃k

]
> E [Rk∗ ] and fR̃k∗ (r) =

fRk∗ (r).

Proof. Informally the statement means that if there exists an arm k such that Pseudo-Gap of arm k
with respect to arm k∗ is less than 0, then it is possible to change the distribution of random variable
X from fX(x) to fX̃(x) such that reward distribution of arm k∗ remains unchanged, but arm k
becomes better than k∗ in terms of expected reward.

We now prove this statement for the case when X is a discrete random variable. If PX is the
original distribution, we show how to create a distribution PX̃ such that E

[
R̃k

]
> E [Rk∗ ] and

PR̃k∗ (r) = PRk∗ (r).

We use S(r) to denote the set of realizations x for which gk∗(x) = r. More formally, S(r) = {x :
gk∗(x) = r}. Define

x(r) = arg max
x∈S(r)

gk(x).

In gk∗(X) takes values in the set B, then for all r ∈ B, we define PX̃(x) = (1 − ε)PRk∗ (r) if
x = x(r) and δ if x ∈ S(r), x 6= x(r). Here δ > 0 is chosen such that

∑
x PX̃(x) = 1. Note

that such a construction of PX̃(x) does not change the reward distribution of Arm k∗. Moreover

E
[
R̃k

]
≥ (1− ε)E [φk,k∗ ] (since rewards are always non-negative). Since ∆̃k,k∗ < 0 we can always

choose ε > 0 such that (1− ε)E [φk,k∗ ]− E [Rk∗ ] > 0 and subsequently, E
[
R̃k

]
− E [Rk∗ ] > 0.

A similar argument can be made to generalize the result for continuous random variable X as well.
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Proof of Theorem 4

Let arm k be a Competitive sub-optimal arm, i.e ∆̃k,k∗ < 0. Since ∆̃k,k∗ < 0, From Lemma 8, it

is possible to change the distribution of Rk such that E
[
R̃k

]
> E [Rk∗ ] and reward distribution of

arm k∗ is unaffected, i.e fR̃k∗ (r) = fRk∗ (r). Moreover, by our construction of fR̃k(r) in Lemma 8,
D(fRk∗ (r)||fR̃k(r)) <∞.

Therefore, if these are the only two arms in our problem, then from Lemma 3,

lim
T→∞

inf
E [nk(T )]

log T
≥ 1

D(fRk(r)||fR̃k(r))
.

Moreover, if we have more K − 1 sub-optimal arms, instead of just 1, then

lim
T→∞

inf
E
[∑

` 6=k∗ n`(T )
]

log T
≥ 1

D(fRk(r)||fR̃k(r))
.

Consequently, since E [Reg(T )] =
∑K
ell=1 ∆`E [n`(T )], we have E [Reg(T )] = Ω(log(T )).

G Proof of Worst Case Regret Bound

In this section, without loss of generality we assume that Arm 1 is optimal, and µ1 > µ2 > µ3 >
µ4 . . . > µK . Correspondingly, we define the event Ei(t) to denote that arm i was empirically
non-competitive in round t+ 1. Note that this notation is consistent with the definition of E1(t) in
Lemma 4.
Lemma 9.

Pr(E1(t), E2(t) . . . E`(t)) ≤ exp

(
−t(µ`+1 − µ`)2

2K

)
,

Consequently, if µ`+1 − µ` ≥ 2
√

K log T
T ,

Pr(E1(t), E2(t) . . . E`(t)) ≤ t−2.

Proof. We expand Pr(E1(t), E2(t) . . . E`(t)) as,

Pr(E1(t), E2(t) . . . E`(t)) = Pr(E`(t) | E1(t), E2(t) . . . E`−1(t)) Pr(E1(t), E2(t) . . . E`−1(t))

(82)
≤ Pr(E`(t) | E1(t), E2(t) . . . E`−1(t)) (83)

≤
K∑

k=`+1

Pr(E`(t)|nk(t) = max
k′

nk′(t)) Pr(nk(t) = max
k′

nk′(t))

(84)
≤ max
k∈{`+1...K}

Pr(E`(t)|nk(t) = max
k′

nk′(t)) (85)

≤ exp

(
−t(µ`+1 − µ`)2

2K

)
(86)

≤ t−2 if µ`+1 − µ` ≥ 2

√
K log T

T
. (87)

Here, (84) follows from the fact that arm 1, 2 . . . ` can all be empirically non-competitive with respect
to arms `+ 1, `+ 2 . . .K only. Analysis done in the proof of Lemma 4 gives us (86).
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Lemma 10. If ∆k > α
√

K log T
T for some α > 2K. Then there exists an arm ` (` ≤ k) such that

µ` − µ`−1 ≥ 2
√

K log T
T .

Proof. Since ∆k =
∑k
k′=2 µk′ − µk′−1, it follows that

k

(
max

k′={2,3...k}
µk′ − µk′−1

)
≥ ∆k.

The statement of the lemma follows from the fact that ∆k > α
√

K log T
T , α > 2K and k < K.

Lemma 11. If ∆k ≥ α
√

K log T
T , and µ` − µ`−1 < 2

√
K log T
T for all ` ≤ k′ ≤ k, then

µk − µk′ ≥ γ∆k,

for some constant 0 < γ < 1.

Proof. Expanding µk − µk′ gives us

µk − µk′ = µk − µ1 −
k′∑
`=2

(µ` − µ`−1) (88)

= ∆k −
k′∑
`=2

(µ` − µ`−1) (89)

= ∆k

1−
k′∑
`=2

(µ` − µ`−1)

∆k

 (90)

≥ ∆k

(
1− 2

α

)
(91)

= γ∆k. (92)

Here, (91) follows from the fact that ∆k ≥ α
√

K log T
T . Since ` ≤ k′, we also have,

µk − µ` ≥ µk − µk′ ≥ γ∆k ∀` ≤ k′.

Lemma 12. If ∆k > α
√

K log T
T for some α > 2K, then

E [nk(T )] ≤ β log T

∆2
k

, for some β > 0.

Proof. From Lemma 10 there exists an arm ` (` ≤ k) such that µ` − µ`−1 ≥ 2
√

K log T
T . Denote k′

to be the minimum ` such that µ` − µ`−1 ≥ 2
√

K log T
T . Then we have,

E [nk(T )] ≤
T∑
t=1

Pr(kt = k) (93)

≤
T∑
t=1

Pr
(
(Ec1(t), Ik > I1)

⋃
(E1(t), Ec2(t), Ik > I2)

⋃
. . .
⋃

(E1(t)E2(t) . . . Eck−1(t), Ik > Ik−1)
⋃

(E1(t), E2(t) . . . Ek−1(t))
)

(94)
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≤
T∑
t=1

Pr(Ik > I1) + Pr
(
E1(t)

)
Pr
(
Ik > I2|E1(t)

)
+

. . .Pr
(
E1(t), E2(t), . . . Ek−2(t)

)
Pr
(
Ik > Ik−1|E1(t), E2(t) . . . Ek−2(t)

)
+

Pr
(
E1(t), E2(t) . . . Ek−1(t)

)
(95)

≤
k′∑
`=1

T∑
t=1

Pr

Ik > I`

∣∣∣∣∣
`−1⋂
j=1

Ej(t)

Pr

`−1⋂
j=1

Ej(t)

+

k∑
`=k′+1

T∑
t=1

Pr

`−1⋂
j=1

Ej(t)

 (96)

≤
k′∑
`=1

T∑
t=1

Pr (Ik > I`) +

k∑
`=k′+1

T∑
t=1

Pr

 k′⋂
j=1

Ej(t)

 (97)

≤
k′∑
`=1

8
log T

(µk − µ`)2
+

(
1 +

π2

3

)
+

k∑
`=k′+1

T∑
t=1

Pr

 k′⋂
j=1

Ej(t)

 (98)

≤
k′∑
`=1

8
log T

(γ∆k)2
+

(
1 +

π2

3

)
+

k∑
`=k′+1

T∑
t=1

Pr

 k′⋂
j=1

Ej(t)

 (99)

≤
k′∑
`=1

8
log T

(γ∆k)2
+

(
1 +

π2

3

)
+

k∑
`=k′+1

T∑
t=1

t−2 (100)

≤ K
(

8
log T

(γ∆k)2
+

(
1 +

π2

3

))
+K

(
T∑
t=1

t−2

)
(101)

≤ K
(

8
log T

(γ∆k)2
+

(
1 +

π2

3

))
+K

((
1 +

π2

3

))
(102)

≤ β log T

∆2
k

for some β > 0, (103)

where (98) follows from Lemma 2. We have (99) from Lemma 11. Inequality (100) follows from
Lemma 9 and (102) follows from the fact that

∑∞
t=1 t

−2 = 1 + π2

3 .

Proof of Theorem 5

From Lemma 12, we have E [nk(T )] > β log(T )
∆2
k

if ∆k > ∆ = 2K
√

K log T
T for some β > 0. Using

this we can write,

E [Reg(T )] =
∑
k 6=k∗

∆kE [nk(T )] (104)

=
∑

k:∆k<∆

∆kE [nk(T )] +
∑

k:∆k>∆

∆kE [nk(T )] (105)

≤ T∆ +
∑

k:∆k>∆

β
log(T )

∆k
(106)

≤ 2K
√
KT log(T ) + 2Kβ

√
T log(T )

K
(107)

= O
(√

T log(T )
)
. (108)
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