
Latent Contextual Bandits and their Application to Personalized
Recommendations for New Users

Li Zhou and Emma Brunskill
Computer Science Department

Carnegie Mellon University
{lizhou, ebrun}@cs.cmu.edu

Abstract

Personalized recommendations for new users, also
known as the cold-start problem, can be formulated
as a contextual bandit problem. Existing contextual
bandit algorithms generally rely on features alone
to capture user variability. Such methods are ineffi-
cient in learning new users’ interests. In this paper
we propose Latent Contextual Bandits. We con-
sider both the benefit of leveraging a set of learned
latent user classes for new users, and how we can
learn such latent classes from prior users. We show
that our approach achieves a better regret bound
than existing algorithms. We also demonstrate the
benefit of our approach using a large real world
dataset and a preliminary user study.

1 Introduction
In general we desire recommender systems that can quickly
start providing good recommendations for new users, which
is particularly challenging as no prior information for new
users is available. This is often known as the cold-start prob-
lem. Despite the lack of prior information for new users,
such systems typically have interacted with millions of previ-
ous users. Therefore, this problem can be cast as an instance
of lifelong learning across sequential decision making tasks:
how should information from prior users be leveraged to help
improve the recommendations for a new user? Standard tech-
niques like collaborative filtering [Koren et al., 2009] provide
good answers to this challenge, but such approaches are typ-
ically limited to myopically providing a single recommenda-
tion, rather than reasoning about the multi-step interactions
the system may have with the user. This is important, be-
cause across a sequence of interactions it may be useful for
the system to actively gather information (potentially sacri-
fice immediate performance outcomes) in order to maximize
its benefit over the longer run with the individual in question.

One approach to this is to model users by a contextual ban-
dit model [Bubeck, 2012; Zhou, 2015] with a single shared
set of model parameters, and all prior users’ data can be lever-
aged to fit those model parameters for use in interacting with
a new user. Example algorithms are LinUCB [Li et al., 2010],
Thompson sampling with linear payoffs [Agrawal and Goyal,

2013], and CofineUCB [Yue et al., 2012]. However, these ap-
proaches work well only when there are many available fea-
tures that describe users and capture user variability. If those
features are not available, then we may need to fall back on a
population average that may make poor recommendations for
the current new individual.

At the other extreme is to use learning algorithms such as
LinUCB and Thompson sampling with linear payoffs to learn
from scratch for each new user separately. Such systems can
provide full personalization to an individual (using model pa-
rameters learned only for that user), but may take an enor-
mous amount of interactions to achieve this, yielding very
little value for a long period (and potentially causing the user
to get frustrated or cease using the system).

We instead propose an approach that provides partial per-
sonalization. We assume that users can be described as each
belonging to one of a finite set of latent classes. Each class
may be associated with a different set of model parameters,
but within a class all individuals share the same parame-
ters. Compared with the two extreme approaches mentioned
above, partial personalization does not fully rely on user fea-
tures to capture user variability, instead it leverages users’ la-
tent class structure to more quickly start providing good rec-
ommendations for new users.

Latent class structure has been explored in the non-
contextual Multi-armed bandits setting [Lazaric et al., 2013;
Maillard and Mannor, 2014]. In the contextual setting, the
most closely related work is CLUB [Gentile et al., 2014].
CLUB learns an underlying graph structure of users based
on user similarities and serves a group of users by taking ad-
vantage of the learned graph structure. However, as we will
show later, our algorithm is theoretically and empirically bet-
ter than CLUB.

In this paper, we focus on the latent contextual bandit set-
ting. We consider both the benefit of using a set of learned
latent classes, and how we can obtain such latent classes from
a prior set of data or online. We also provide a formal analy-
sis of the regret in this setting, by building on recent progress
on latent variable learning of regression model mixtures us-
ing tensor methods [Chaganty and Liang, 2013], to bound
the performance obtained by learning and leveraging a set of
latent models learned from data. We then demonstrate the
benefit of our approach in simulation and an unbiased offline
evaluation using a large real world dataset, as well as a pre-

liminary user study. Our results suggest a substantial benefit
of our latent contextual bandit approach.

2 Our Approach
2.1 Problem Formulation
We assume there is a sequence of contextual bandit tasks, and
each contextual bandit task involves multi-step interactions
with a particular user.1 Let there be Ũ users, where Ũ may be
infinite. Each user u belongs to one of a finite set of N latent
classes. Denote by cu the (unknown) latent class of user u.
Users within the same latent class share similar interests and
behaviors. Each task (series of interactions with a single user)
is assumed to last for Tu steps.

During a task, in each time step tu ∈ {1, . . . , Tu}, the al-
gorithm observes both the current user u and a set Atu of
arms (items) together with their d-dimensional feature vectors
xtu,a ∈ Rd for all a ∈ Atu . ||xtu,a||2 ≤ 1. The feature vec-
tor xtu,a captures the information of both user u and arm a at
time tu. For example, xtu,a could be the linear concatenation
of user and arm feature vectors. We assume the size of Atu
is fixed: |Atu | = K. These K feature vectors are together
referred to as the context Ctu at tu: Ctu = {xtu,a|a ∈ Atu}.

The algorithm then recommends an arm atu to the cur-
rent user u, and receives reward rtu ∈ [0, 1] from the user.
We assume that the reward is a noisy linear function of the
current user’s latent class. More precisely, each latent class
h ∈ {1, ..., N} is associated with an (unknown) weight vec-
tor βh ∈ Rd. The reward of an arm a ∈ Atu is given by

rtu,a = β>cuxtu,a + εcu

where εcu follows a Gaussian distribution with zero mean and
bounded variance. Let a∗tu = arg maxa∈Atu

β>cuxtu,a be the
arm with highest expected reward at time tu, and atu be the
arm selected at tu. Then the algorithm’s goal is to minimize
the regret, which is defined as

Reg(Ũ , Tu:u∈{1,...,Ũ})

=

Ũ∑
u=1

Tu∑
tu=1

β>cuxtu,a∗tu −
Ũ∑
u=1

Tu∑
tu=1

β>cuxtu,atu

2.2 Latent Contextual Bandits
Our algorithm, Latent Contextual Bandits (LCB), is described
in Algorithm 1. LCB learns the set of latent models from prior
users and leverages the learned models to make recommenda-
tions for new users. The algorithm consists of two phases. In
phase 1, LCB simply runs LinUCB algorithm on the first J
users and collects the pulled arms and rewards. (line 2 − 11,
Algorithm 1). The reason to do phase 1 is that initially when
LCB starts from scratch, there are no prior users or training

1While in the paper we assume users come sequentially and in-
teract with our algorithm, our approach can also handle interleaved
users. As we will describe later, in phase 1 of our algorithm, it
doesn’t matter if users interleave as LinUCB is used. In phase 2,
we can fix the current set of clusters and parameters for a new user
when he/she first arrive, and use that for the entire time we interact
with that user.

data for LCB to learn the latent models. Therefore, phase 1
is the bootstrap phase of the algorithm. A short phase 1 will
cause a high model estimation error at the early stage of phase
2, while a long phase 1 will cause large regret in phase 1. In
Section 3 we will discuss how to pick the length of phase 1
to get low overall regret bound. In real world systems, usu-
ally we already have a huge set of interactions made by prior
users, then phase 1 is not needed.

In phase 2, LCB train/re-train latent models using data col-
lected in both phases 1 and 2 so far (line 13, Algorithm 1).
We will show how to learn the latent models in Section 2.3.
In practice, we may want to re-train the latent models after a
batch set of users instead of each user.

Meanwhile, in phase 2 LCB should leverage the learned
latent models to improve performance for new tasks (users).
Though there are many ways to do this, we propose an ap-
proach that first constructs a policy for each learned latent
model, and then uses a contextual bandit algorithm that can
adaptively select across the policies for a new task. A pol-
icy is a function that takes a context as input and returns
an arm or a distribution over arms. For example, one pol-
icy could be a function that always return the arm with the
highest expected reward estimated by a learned latent model.
There already exist numerous contextual bandit algorithms
that take as input a finite set of policies and compete with the
best policy inside the policy set [Beygelzimer et al., 2011;
Agarwal et al., 2014], so LCB can build upon these exist-
ing works. However, LCB in phase 2 offers multiple advan-
tages relative to these prior works: the policy set N is often
smaller than the set of policies considered by generic contex-
tual bandit approaches; LCB automatically constructs the set
of policies (instead of requiring an oracle or expert to provide
a good set); and assuming the problem setting holds, the set
of N policies is sufficient to enable optimal performance for
any new task, in contrast to standard contextual bandit ap-
proaches which can only achieve performance as good as the
input policies (which may not achieve optimal performance).

More precisely, LCB constructs one policy for each learned
latent model (line 14, Algorithm 1), and then runs a pre-
selected contextual bandit algorithm B that takes in the set
of N learned policies for the N latent contextual bandit tasks
(line 15− 22, Algorithm 1). We will discuss specific choices
of B and ways to construct policies in Section 2.4, and we
will shortly provide a theoretical analysis of our approach in
Section 3.

2.3 Learn Latent Models from Past Users
We model latent user classes using a mixture of linear regres-
sions [Viele and Tong, 2002]. A mixture of linear regressions
consists ofN mixture components, each is a linear regression
model. Let Θ = {πh, βh, σ2

h|h ∈ {1, ..., N}} be the model
parameters, where πh is the mixture proportion, βh is the co-
efficient vector, and σ2

h is the variance of the response. Then
the likelihood of mixture of linear regressions is defined as

L(Θ;D) =
∏

(r,x)∈D

(
N∑

h=1

πhN
(
r|β>

h x, σ
2
h

))

where N (r|µ, σ2) is the probability density function of a
Gaussian distribution with mean µ and variance σ2. One

Algorithm 1: Latent Contextual Bandits (LCB)
Input: J ∈ R+: number of users in phase 1

N ∈ R+: number of latent classes
P: policies construction strategy
B: contextual bandit algorithm

1: Samples D = ∅
// Phase 1

2: Create a LinUCB instance
3: for user u ∈ {1, 2, ..., J} do
4: for tu ∈ {1, 2, ..., Tu} do
5: Observe context Ctu = {xtu,a ∈ Rd|a ∈ Atu}
6: Pull atu = LinUCB(Ctu)
7: Observe reward rtu
8: Update LinUCB based on reward
9: Add (xtu,atu , rtu) to D

10: end
11: end

// Phase 2
12: for user u ∈ {J + 1, J + 2, ...} do
13: Learn N latent models {β̂1, ..., β̂N} using data D
14: Construct N policies {P(β̂1, ·), ...,P(β̂N , ·)}
15: Create a B instance for u
16: for tu ∈ {1, 2, ...Tu} do
17: Observe context Ctu = {xtu,a ∈ Rd|a ∈ Atu}
18: Pull atu = Bu(Ctu , {P(β̂1, ·), ...,P(β̂N , ·)})
19: Observe reward rtu
20: Update Bu based on reward
21: Add (xtu,atu , rtu) to D
22: end
23: end

classic algorithm to learn a mixture model is the Expectation-
Maximization (EM) algorithm. However, EM does not guar-
antee convergence to the globally optimal parameters, and it
does not provide finite sample guarantees on the quality of
the resulting parameter estimates. On the other hand, tensor
decomposition based methods, as we will describe shortly,
give us finite sample guarantees which can be further used to
derived our regret bound.

Learn Latent Models using Spectral Experts
Anandkumar et al. [2014] showed that tensor decomposition
can efficiently recover parameters for a wide class of latent
variable models. They exploited a special tensor structure
derived from second and third-order moments of the obser-
vations, and apply the robust tensor power method to recover
model parameters. Spectral Experts [Chaganty and Liang,
2013], built on top of Anandkumar et al.’s work, provide
provably consistent estimator for mixture of linear regres-
sions. Our algorithm uses Spectral Experts to estimate pa-
rameters of mixture of linear regressions. Later in Section 3
we also use the parameter error bound provided by Spectral
Experts to bound the regret of our algorithm.

Though Spectral Experts algorithm has appealing theoret-
ical properties, it is not particularly sample efficient and it is

computationally expensive. Therefore, in the following sec-
tion, we also derive and implement a computationally effi-
cient Gibbs sampling based procedure to estimate parameters
of mixtures of linear regressions.

Learn Latent Models using Gibbs Sampling
Gibbs sampling is an efficient inference technique to learn
latent models for large scale dataset. We derive a sampling
procedure for Dirichlet Process [Neal, 2000] mixtures of lin-
ear regressions. By using a Dirichlet Process prior, we do
not need to specify the number of latent models. Specifically,
we assume the prior of βh and σ2

h follow the Normal-inverse-
Gamma distribution and the prior of π follows GEM distri-
bution [Murphy, 2012a], which is used by the stick-breaking
construction of the Dirichlet process. The generative process
is as follows:
1. α ∼ Gamma(u0, v0)

2. π ∼ GEM(α)

3. For each latent model h ∈ {1, ..., N}
(a) (βh, σ

2
h) ∼ NIG(w0, V0, a0, b0)

4. For each user u ∈ {1, ..., U}
(a) cu ∼ Categorical(π)

(b) For each interaction tu ∈ {1, ..., Tu}
i. rtu ∼ N (β>cuxtu,atu , σ

2
cu)

We use collapsed Gibbs sampling to sample cu and α. Denote
all the rewards of a user u by ru = {rtu : tu ∈ {1, ..., Tu}}.
To sample cu,

P (cu = h|c−u, ru, α, w0, V0, a0, b0)

∝ P (cu = h|c−u, α)P (ru|rh−u, w0, V0, a0, b0) (1)

where c−u = {cu′ : u′ 6= u} and rh−u = {ru′ : cu′ =
h, u′ 6= u}. The first term in Equation (1) is given by the Chi-
nese Restaurant Process (CRP) [Neal, 2000], the second term
in Equation (1) is the posterior predictive distribution of ru
given rh−u, and it follows Multivariate t-distribution [Murphy,
2012b]. To sample α, we adopt the auxiliary variable method
[Escobar and West, 1995].

2.4 Leverage Learned Models for New Users
Let {β̂1, ..., β̂N} be the N learned latent models. We define
N policies based on these models. There are two types of
policies we can define, one is deterministic, and the other one
is probabilistic. The deterministic one maps a context Ctu to
an arm a ∈ Atu :

P(β̂h, Ctu) = arg max
a∈Atu

β̂>h xtu,a

The probabilistic one maps a context Ctu to a categorical dis-
tribution over arms:

P(β̂h, Ctu) = [p1, p2, ..., p|Atu |]

where

pa =
exp(β̂>h xtu,a)∑

a∈Au
exp(β̂>h xtu,a)

The constructed polices can be used by many contex-
tual bandit algorithms to serve new users. If the policies
are deterministic, possible contextual bandit algorithms in-
clude Epoch-Greedy [Langford and Zhang, 2008], ILOVE-
TOCONBANDITS [Agarwal et al., 2014], and General-
ized Thompson Sampling [Li, 2013]. If the policies are
probabilistic, possible contextual bandit algorithms include
EXP4 [Auer et al., 2002] and EXP4.P [Beygelzimer et al.,
2011]. The algorithm choice depends on the desired outcome,
and we will shortly consider specific choices for both our the-
oretical analysis and empirical results.

3 Theoretical Analysis
In this section, we analyze LCB’s expected regret. We as-
sume the latent models are learned using the Spectral Experts
algorithm. Let J be the number of users in phase 1, U be
the number of users in phase 2, and Ũ = J + U be the total
number of users. Let S =

∑J
u=1 Tu, T =

∑Ũ
u=J+1 Tu, and

T̃ = S + T be the total number of interactions. We denote
the first n positive integers by [n]. For convenience, we define
the true policy of a user u ∈ [Ũ] as the deterministic policy
constructed by βcu (the true latent model the user belongs to).

For theoretical analysis, we make two minor changes to
the Algorithm 1. First, instead of running a single LinUCB
instance for all users in phase 1, we run a separate LinUCB
instance for each user. The reason is that under our realizabil-
ity assumption (each user belongs to one of the latent models)
single LinUCB instance which runs for all users has linear
regret O(S). Second, we collect τu i.i.d. samples from each
user u ∈ [Ũ], that is, we select arms uniformly at random for
the first τu interactions for each user u ∈ [Ũ]. When training
latent models using Spectral Experts, we only use these i.i.d.
samples. We do this because Spectral Experts requires i.i.d.
training examples to get theoretical guarantee on the parame-
ter error bound.

Assume Tu ≤ L for all u ∈ [Ũ] for some constant L. De-
note the minimum Euclidean distance of any two latent mod-
els by 4, that is, ||βh − βh′ || ≥ 4 for any h 6= h′. The fol-
lowing two theorems show a problem-independent expected
regret bound which is independent of 4 and a problem-
dependent expected regret bound which depends on4.

Theorem 1. Set τu =
√
Tu for all u ∈ [Ũ] and J =

√
L. As-

sume P constructs deterministic policies. If B is a contextual
bandits algorithm with optimal regret bound (e.g. EXP4.P),
then the problem-independent expected regret bound of LCB
with respect to the true policy is

E
[
RegLCB

(
Ũ , Tu:u∈[Ũ]

)]
= O

(√
JS + d

√
JS ln(1 + S)

)
+O

(
3
√
UT +

√
UTK lnN

)
= O

(√
UTK lnN

)
as UT � max

{
1, d

2

K

}
JS, that is, as T and U grows large.

Similarly, if B is EXP3 [Auer et al., 2002] which treats each
learned policy as an arm, then the problem-independent ex-
pected regret bound of LCB with respect to the true policy

is

E
[
RegLCB

(
Ũ , Tu:u∈[Ũ]

)]
= O

(√
UTN lnN

)
as UT � max

{
1, d

2

N

}
JS, that is, as T and U grows large.

Theorem 2. Set τu = 3 for all u ∈ [Ũ] and J = L2. Assume
P constructs deterministic policies and B is Epoch-Greedy,
then the problem-dependent expected regret bound of LCB
with respect to the true policy is

E
[
RegLCB

(
Ũ , Tu:u∈[Ũ]

)]
=

O

(
3L2 + dL

√
S ln(L+ 1) +

UK

42
(lnN + ln(T + 1))

)
Proof (Theorem 1). The expected regret of LinUCB [Zhou,
2015] is

E [RegLinUCB(Tu)] = O(d
√
Tu ln(1 + Tu))

so in phase 1 the expected regret of LCB is

E
[
Regphase 1

LCB

(
J, Tu:u∈[J]

)]
= O

(
J∑

u=1

(√
Tu + d

√
(Tu −

√
Tu) ln(1 + Tu −

√
Tu)

))
= O(

√
JS + d

√
JS ln(1 + S)) (2)

where Equation (2) follows from the Cauchy-Schwarz in-
equality.

We next need to bound the regret in phase 2. For each user
u ∈ {J + 1, ..., J + U} in phase 2, define

β̂∗u = arg max
β̂∈{β̂1,...,β̂N}

Tu∑
tu=1

E[rtu,P(β̂,Ctu)] (3)

as the best model of that user within all estimated models.
Also recall that βcu is the true model of the user u and β̂cu is
the estimate of βcu returned by Spectral Experts. Let a∗tu , ã

∗
tu

and â∗tu be the arm proposed by βcu , β̂cu and β̂∗u. β̂∗u achieves
the highest expected cumulative reward based on its defini-
tion, so it achieves higher expected cumulative reward than
β̂cu , so

Tu∑
tu=1

x>tu,â∗tu
βcu ≥

Tu∑
tu=1

x>tu,ã∗tu
βcu (4)

Meanwhile, we can bound the gap between the expected cu-
mulative reward achieved by βcu and by β̂cu as follows:

x>tu,a∗tu
βcu − x>tu,ã∗tuβcu

≤ x>tu,a∗tuβcu − x
>
tu,ã∗tu

βcu + x>tu,ã∗tu
β̂cu − x>tu,a∗tu β̂cu

= (x>tu,a∗tu
βcu − x>tu,a∗tu β̂cu) + (x>tu,ã∗tu

β̂cu − x>tu,ã∗tuβcu)

≤ 2||βcu − β̂cu || (5)

The last step uses the fact that ||xtu,a||2 ≤ 1. Using Equa-
tion (4) and (5) together we can bound the gap between the
expected cumulative reward achieved by βcu and by β̂∗u:

Tu∑
tu=1

x>tu,a∗tu
βcu −

Tu∑
tu=1

x>tu,â∗tu
βcu ≤ 2Tu||βcu − β̂cu ||

Chaganty and Liang [2013] showed that ||βcu − β̂cu || =

O
(

1√
n

)
where n is the number of training examples. Now if

B is a bandits algorithm with optimal expected regret bound
O(
√
TuK lnN), then in phase 2 the expected regret of Latent

Contextual Bandits is

E
[
Regphase 2

LCB

(
U, Tu:u∈{J+1,...,J+U}

)]
= O

(
J+U∑

u=J+1

(√
Tu +

√
TuK lnN + 2Tu||βcu − β̂cu ||

))

= O

 J+U∑
u=J+1

√Tu +
√
TuK lnN +

2Tu√√
Tu(u− 1)

= O

 J+U∑
u=J+1

√TuK lnN +
3
√
Tu√

(1 + (u− J − 1)/
√
Tu)

(6)

= O(3
√
UT +

√
UTK lnN) (7)

Equation (6) follows from J ≥
√
Tu for all u. Equation

(7) follows from bounding the last term in (6) by 3
√
Tu, and

then applying Cauchy-Schwarz inequality.2 Similarly, if B is
EXP3 which achieves a regret ofO(

√
TN lnN), then the ex-

pected regret of LCB in phase 2 isO(3
√
UT+

√
UTN lnN).

Finally, by adding the regret bound of phase 1 and phase 2,
we prove the theorem.

Proof (Theorem 2). The proof of Theorem 1 shows that the
regret in phase 1 is

E
[
Regphase 1

LCB

(
J, Tu:u∈[J]

)]
= O

(
J∑
u=1

(
τu + d

√
Tu ln(1 + Tu)

))
If B is Epoch-Greedy, then based on Epoch-Greedy’s
problem-dependent bound we have

E
[
Regphase 2

LCB

(
U, Tu:u∈{J+1,...,J+U}

)]
= O

(
J+U∑

u=J+1

(
τu +

K ln(N(Tu + 1))

42
+ 2Tu||βcu − β̂cu ||

))

= O

(
J+U∑

u=J+1

(
τu +

K ln(N(Tu + 1))

42
+

2Tu√
u− 1

))

2The last term actually decreases at the rate of O(1/
√
u) with

respect to u, so our regret bound gets tighter as u increases in phase
2, but only by a constant factor.

Set J = L2, then the last term is less than or equal to 1. Set
τ = 3, then the regret of LCB, by adding the regret in phase
1 and phase 2, is

E
[
RegLCB

(
Ũ , Tu:u∈[Ũ]

)]
=

O

(
3L2 + dL

√
S ln(L+ 1) +

UK

42
(lnN + ln(T + 1))

)
which proves the theorem.

To put these results in context, we now compare our regret
results to several other approaches. We compare the follow-
ing algorithms: 1) Population EXP4.P: runs a single EXP4.P
model for all users, 2) Individual EXP4.P: runs a separate
EXP4.P model for each user, 3) Population LinUCB: runs a
single LinUCB model for all users, 4), Individual LinUCB:
runs a separate LinUCB model for each user, 5) EXP4.P
enum-policies: enumerates all policies by mapping all pos-
sible contexts to all possible arms and then runs EXP4.P on
each user (assuming contexts are enumerable), 6) CLUB, 7)
LCB. Table 1 shows the expected regret of each algorithm; it
also shows the policy each algorithm is competing with when
deriving the regret bound. Keep in mind that all comparisons
are under our realizability assumption that each user belongs
to one of the latent models.

Within the 7 algorithms in Table 1, 3 of them does not com-
pete with the true policy of each user: Population LinUCB
doesn’t distinguish between users from different classes, so it
is competing with the best average policy of all users; Popula-
tion/Individual EXP4.P requires a set of pre-defined policies
as input, and compete with the best one inside the policy set
instead of the true policy of each user.

The remaining 4 algorithms all compete with the true pol-
icy of each user; however, LCB achieves the best expected
regret bound. The problem-independent regret bound of Indi-
vidual LinUCB is linear with respect to the contexts’ feature
dimension which is often very large. Define C as the total
number of contexts. EXP4.P enum-policies has a C term in
its problem-independent regret bound which is often large or
even infinite. LCB’s problem-independent regret bound, on
the other hand, only has square root dependence on U, T and
min{K,N}.

Table 1 also shows the problem-dependent regret bound
of CLUB analyzed by Gentile et al. [2014]. Both LCB and
CLUB’s problem-dependent regret bounds depends on 1/42.
However, CLUB has a square root dependence on T̃ , while
LCB only has a square root dependence on S (number of in-
teractions in phase 1) which is a constant. Moreover, the anal-
ysis of CLUB (see Appendix of Gentile et al. [2014]) shows
that CLUB’s expected regret on a new user u is linear with
respect to Tu when Tu < B for some constant B that is in the
order of O(d

42). B may be enormous if 42 is small. Mean-
while, LCB’s problem-independent regret bound guarantees
that LCB’s expected regret on a new user u is always sublin-
ear (square root) with respect to Tu even when Tu is small.

4 Experiments
In this section, we evaluate our algorithm both on simulation
and on a large real world dataset from Yahoo!. We compare

Algorithm Expected Regret Regret with respect to Regret Type

Population EXP4.P O(
√
T̃K lnN) best policy in pre-defined policy set problem-independent

Individual EXP4.P O(
√
Ũ T̃K lnN) best policy in pre-defined policy set problem-independent

Population LinUCB 3 O(d
√
T̃ ln(1 + T̃)) best average policy of all users problem-independent

Individual LinUCB O(d
√
Ũ T̃ ln(1 + T̃)) true policy of each user problem-independent

EXP4.P enum-policies O(
√
Ũ T̃KC lnK) true policy of each user problem-independent

LCB (Theorem 1) O(
√
UT min{K,N} lnN) true policy of each user problem-independent

CLUB O(N + Ũ
√
Nd+ Ũd

42 ln(T̃ + 1) + dN
√
T̃) true policy of each user problem-dependent

LCB (Theorem 2) O(3L2 + dL
√
S + UK

42 (lnN + ln(T + 1))) true policy of each user problem-dependent

Table 1: Expected regret bounds of LCB and baseline algorithms. We use N to denote both the number of policies in the three
EXP4.P variants and the number of latent models in LCB and CLUB. We use C to denote the total number of contexts.

the following algorithms: 1) LCB: our approach. We choose
Generalized Thompson Sampling as B in Algorithm 1. For
simulation we use Spectral Experts to learn latent models, but
due to time/memory constrains, for large real world dataset
we use Gibbs sampling to learn latent models; 2) LCB GT:
this is similar to LCB, except that instead of learning the la-
tent models, we provide true latent models to the algorithm.
3) CLUB; 4) Population LinUCB: runs single LinUCB in-
stance on all users; 5) Individual LinUCB: runs a separate
LinUCB instance on each user; 6) Random : selects each
arm uniformly at random.

4.1 Simulation
We artificially created 5 latent models as shown in Figure 1.
Each model had 10 parameters, and 4 of them were assigned
higher weights. Users were sampled uniformly at random
from these latent models. For each user interaction we gener-
ated 20 arms, that is, |Atu | = 20. Each arm a was associated
with a feature vector xtu,a sampled uniformly from [−1, 1]10,
and was normalized so that ||xtu,a||2 = 1. We sampled the
reward of each arm a from N (β>cuxtu,a, σ

2) with σ = 0.1.
For LCB, we set J = 50, and in phase 2 we re-trained the
latent models after every 50 users.

0

0.5
model 1

0

0.5
model 2

w
e

ig
h

ts

0

0.5
model 3

0

0.5
model 4

features
1 2 3 4 5 6 7 8 9 10

0

0.5
model 5

Figure 1: Models in simulation

In the first experiment,
we fixed Tu = 20 for all
users, and reported the
averaged per-user regret
vs. number of users. Re-
sults are shown in Figure
2a. We can see that the
regret of LCB was about
35% lower than CLUB
and 50% lower than Pop-
ulation LinUCB. In the
second experiment, we
fixed the number of users
to 1000, and varied Tu from 10 to 100. Tu were set to the
same for all users. Figure 2b shows the averaged per-user re-
gret vs. Tu. We can see that LCB outperformed CLUB and

3Under our realizability assumption, Population LinUCB has
O(T̃) linear regret, so here we show the regret under its own re-
alizability assumption

LinUCB, and as Tu increased, the gap between their regret
also increased. Also, when Tu was more than 40, Individ-
ual LinUCB started to learn a good model for each user, and
outperformed Population LinUCB, however, it still had much
higher regret than LCB.

number of users
0 200 400 600 800 1000

a
v
e

ra
g

e
d

 r
e

g
re

t
p

e
r

u
s
e

r

0.5

1

1.5

2

2.5

3

3.5

4

4.5
LCB
LCB_GT
CLUB
Population LinUCB
Individual LinUCB
Random

(a) Averaged per-user regret vs.
number of users.

number of interactions per user
20 40 60 80 100

a
v
e

ra
g

e
d

 r
e

g
re

t
p

e
r

u
s
e

r

0

2

4

6

8

10

12

14

16

18
LCB
LCB_GT
CLUB
Population LinUCB
Individual LinUCB
Random

(b) Averaged per-user regret vs.
number of interactions per users.

Figure 2: Experiment results on simulation

4.2 Experiments on Real World Dataset
We evaluated our algorithm on a news feed dataset provided
by Yahoo!. The dataset contained 500,000 users and all their
visits in a one month period. In each visit, a user was shown
25 news articles from the top down. User clicks (binary feed-
back) were logged. There were 21 news categories, and each
news article belonged to 1 ∼ 3 categories. Therefore, articles
were represented as a 21-dimensional binary feature vector.
User features were not available because of privacy issues.

To the best of our knowledge, in our case there is no perfect
solution for unbiased offline evaluation. For stationary algo-
rithm one can use propensity scoring [Strehl et al., 2010],
however our algorithm is nonstationary, and propensity score
is not available in this dataset. One state-of-the-art solution
is rejection sampling based replay method [Li et al., 2011].
However, rejection sampling is quite sample inefficient on
our dataset because the policy which generated our dataset
was biased towards exploitation. Therefore, we adopted the
queue method [Mandel et al., 2015], a sample efficient offline
evaluation method for non-contextual bandits, and extended
it to our contextual case.

To use the queue method, we defined arms as news cate-
gories instead of news articles. As there were 21 categories,

number of users used for batch training
50000 100000 150000 200000

re
la

ti
v
e
 C

T
R

 o
n
 n

e
x
t
1
0
,0

0
0
 u

s
e
rs

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
LCB
CLUB
Population LinUCB
Individual LinUCB

(a) Relative CTR of 10,000 new users vs. num-
ber of users used for batch training.

number of latent models
0 5 10 15 20 25 30

re
la

ti
v
e
 C

T
R

 o
n
 n

e
x
t
1
0
,0

0
0
 u

s
e
rs

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
LCB
CLUB
Population LinUCB
Individual LinUCB

(b) Relative CTR of 10,000 new users vs. num-
ber of latent models specified in batch training.

number of users
20000 30000 40000 50000 60000 70000

re
la

ti
v
e
 C

T
R

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
LCB
CLUB
Population LinUCB
Individual LinUCB

(c) Relative CTR vs. number of users that have
been interacted with the algorithm.

Figure 3: Experiment results on a large real world news recommendation dataset.

we defined 21 queues for each user. The queues of each user
were initialized with click labels (0 or 1) of articles shown
to that user. For example, if an article belonged to two cate-
gories, then its click label was added to the two corresponding
queues. Finally, we ran PCA to project the 21-dimensional
article feature space to a 6-dimensional lower space so that
each category (arm) can be represented as a dense vector.

We fixed the number of interactions per user (Tu) to 20
for all users to ensure all users were new users. We re-
ported relative CTR, the algorithm’s CTR divided by the CTR
in the data, due to confidentiality. In the first experiment,
we ran batch training: each algorithm was pre-trained with
20,000 − 200,000 users, and then tested on the 10,000 new
users. Relative CTR of the test users was reported. For LCB,
we used the training users to learn 30 latent models, then we
directly ran phase 2 for the test users without re-training la-
tent models. Figure 3a shows the experiment results. We can
see that LCB achieved the highest CTR, and outperformed
CLUB by about 10%. Moreover, CLUB only outperformed
Population LinUCB by about 2%. One reason is that the re-
wards in our real dataset were binary and noisy, so 20 sam-
ples per user (Tu = 20) were not enough for CLUB to learn
a good regression model for each user and hence to learn a
good latent graph structure. In the second experiment, we
varied the number of latent models of LCB from 1 to 30. Sim-
ilar to the batch training, each algorithm was pre-trained with
150,000 users and then tested on 10,000 new users. The re-
sult is shown in Figure 3b. We can see that with 10 or more
models, LCB started to take the benefit of latent class struc-
ture and outperformed CLUB and LinUCB. With 15 and 30
latent models, our approach improved the CTR by about 5%
and 10% respectively compared with CLUB and Population
LinUCB. The third experiment simulated the real world envi-
ronment in which users came sequentially and interacted with
the algorithm. For LCB, 20,000 users were used in phase 1.
In phase 2, 30 latent models were trained and re-trained af-
ter every 10,000 users. To collect i.i.d data points to better
learn the latent models, we picked arms uniformly at random
for the first 5 interactions of each user, and only used these
data points to train/re-train latent models. For all algorithms,
we reported relative CTR after every 10,000 users. Results

Population LinUCB LCB
0.196± 0.096 0.380± 0.076

Table 2: CTR mean and standard deviation in user study.

in Figure 3c shows that LCB achieved about 5% higher CTR
than CLUB and Population LinUCB.

4.3 Pilot Results on User Study
In this section, we show the pilot results of our user study with
10 users, 5 for each algorithm. We compared two algorithms:
Population LinUCB and LCB. Since the experiments in Sec-
tion 4.2 used the Yahoo! real world dataset, so the learned
models can be directly used for the user study. For LCB,
we used the learned latent models from Section 4.2 and di-
rectly ran phase 2 of LCB. For Population LinUCB, we used
the learned Population LinUCB model from Section 4.2 to
initialize the LinUCB model used in the user study. Users in-
teracted with the algorithms through an app developed on the
Android platform. Tu = 20 for all users. During each user in-
teraction, the app requested 170 latest news articles from the
Yahoo! news service in real time. Similar to Section 4.2, each
news article was represented by a 21-dimensional vector. The
algorithm then selected one of the articles for the user and re-
ceived user feedback (click). Table 2 shows the CTR mean
and standard deviation achieved by these two algorithms. We
can see from the pilot results that LCB outperformed Popula-
tion LinUCB. User study with more users and algorithms is
in progress.

5 Conclusion
In this paper, we propose Latent Contextual Bandits, a con-
textual bandits algorithm that learns the latent structure of
users and leverages the learned latent structure to make per-
sonalized recommendations for new users. We prove both a
problem-independent and a problem-dependent regret bound
with respect to the true policies of users. The regret bounds
significantly improved over baseline algorithms. We then
demonstrate the benefit of our approach using both simula-
tion and an unbiased offline evaluation with a large real world
dataset, as well as a preliminary user study.

Acknowledgments
This work was supported by the CMU-Yahoo! InMind
project. We also gratefully acknowledge the assistance and/or
helpful feedback of Liangjie Hong, Suju Rajan, Michal
Valko, Saloni Potdar, Zhengyang Ruan, Linxi Zou, Mingzhi
Zeng and the pilot study participants.

References
[Agarwal et al., 2014] Alekh Agarwal, Daniel Hsu, Satyen

Kale, John Langford, Lihong Li, and Robert Schapire.
Taming the monster: A fast and simple algorithm for
contextual bandits. In Proceedings of the 31st Inter-
national Conference on Machine Learning, pages 1638–
1646, 2014.

[Agrawal and Goyal, 2013] Shipra Agrawal and Navin
Goyal. Thompson sampling for contextual bandits with
linear payoffs. In Proceedings of the 30th International
Conference on Machine Learning, pages 127–135, 2013.

[Anandkumar et al., 2014] Animashree Anandkumar, Rong
Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky.
Tensor decompositions for learning latent variable models.
The Journal of Machine Learning Research, 15(1):2773–
2832, 2014.

[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, Yoav
Freund, and Robert E Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing,
32(1):48–77, 2002.

[Beygelzimer et al., 2011] Alina Beygelzimer, John Lang-
ford, Lihong Li, Lev Reyzin, and Robert E Schapire. Con-
textual bandit algorithms with supervised learning guar-
antees. In Proceedings of the 14th International Confer-
ence on Artificial Intelligence and Statistics, pages 19–26,
2011.

[Bubeck, 2012] Sébastien Bubeck. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends in Machine Learning, 5(1):1–122,
2012.

[Chaganty and Liang, 2013] Arun Tejasvi Chaganty and
Percy Liang. Spectral experts for estimating mixtures
of linear regressions. In Proceedings of the 30th Inter-
national Conference on Machine Learning, pages 1040–
1048, 2013.

[Escobar and West, 1995] Michael D Escobar and Mike
West. Bayesian density estimation and inference using
mixtures. Journal of the american statistical association,
90(430):577–588, 1995.

[Gentile et al., 2014] Claudio Gentile, Shuai Li, and Gio-
vanni Zappella. Online clustering of bandits. In Pro-
ceedings of the 31st International Conference on Machine
Learning, pages 757–765, 2014.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, August 2009.

[Langford and Zhang, 2008] John Langford and Tong
Zhang. The epoch-greedy algorithm for multi-armed
bandits with side information. In Advances in Neural
Information Processing Systems 20, pages 817–824.
Curran Associates, Inc., 2008.

[Lazaric et al., 2013] Alessandro Lazaric, Emma Brunskill,
et al. Sequential transfer in multi-armed bandit with finite
set of models. In Advances in Neural Information Process-
ing Systems, pages 2220–2228, 2013.

[Li et al., 2010] Lihong Li, Wei Chu, John Langford, and
Robert E Schapire. A contextual-bandit approach to per-
sonalized news article recommendation. In Proceedings
of the 19th international conference on World wide web,
pages 661–670. ACM, 2010.

[Li et al., 2011] Lihong Li, Wei Chu, John Langford, and
Xuanhui Wang. Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In
Proceedings of the fourth ACM international conference
on Web search and data mining, pages 297–306. ACM,
2011.

[Li, 2013] Lihong Li. Generalized thompson sampling for
contextual bandits. CoRR, abs/1310.7163, 2013.

[Maillard and Mannor, 2014] Odalric-ambrym Maillard and
Shie Mannor. Latent bandits. In Proceedings of the 31st
International Conference on Machine Learning, pages
136–144, 2014.

[Mandel et al., 2015] Travis Mandel, Yun-En Liu, Emma
Brunskill, and Zoran Popovic. The queue method: Han-
dling delay, heuristics, prior data, and evaluation in ban-
dits. In Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, 2015.

[Murphy, 2012a] Kevin P Murphy. Machine Learning: a
Probabilistic Perspective, chapter 25.2.2, pages 882–885.
MIT press, 2012.

[Murphy, 2012b] Kevin P Murphy. Machine Learning: a
Probabilistic Perspective, chapter 7.6.3, pages 234–238.
MIT press, 2012.

[Neal, 2000] Radford M Neal. Markov chain sampling meth-
ods for dirichlet process mixture models. Journal of com-
putational and graphical statistics, 9(2):249–265, 2000.

[Strehl et al., 2010] Alex Strehl, John Langford, Lihong Li,
and Sham M Kakade. Learning from logged implicit ex-
ploration data. In Advances in Neural Information Pro-
cessing Systems, pages 2217–2225, 2010.

[Viele and Tong, 2002] Kert Viele and Barbara Tong. Mod-
eling with mixtures of linear regressions. Statistics and
Computing, 12(4):315–330, 2002.

[Yue et al., 2012] Yisong Yue, Sue A Hong, and Carlos
Guestrin. Hierarchical exploration for accelerating contex-
tual bandits. In Proceedings of the 29th International Con-
ference on Machine Learning, pages 1895–1902, 2012.

[Zhou, 2015] Li Zhou. A survey on contextual multi-armed
bandits. CoRR, abs/1508.03326, 2015.

