5/3/2021 Mobile Secure | Data Theorem

data

Switch from Unsafe Serialization API to NSSecureCoding
& CultureNEXT - PreProd 1.0.0 ID $100814 Severity: Medium No Priority

The following binaries within the App contain code which leverages "NSCoding’, which is vulnerable to object substitution attacks:

OPEN NSCoding protocol used in binary cultureNEXT.app/cultureNEXT

since 4/13/2021 Stack Trace v

NOT FOUND NSCoding protocol used in binary CultureNEXT.app/CultureNEXT

since 4/12/2021 Stack Trace ~

DESCRIPTION
NSCoding is an Objective-C protocol designed to allow serialization and deserialization of code objects. However, this protocol does not verify the type of object upon deserialization. Thus, it is vulnerable to object
substitution attacks. A maliciously crafted payload which is deserialized via the NSCoding protocol can result in attacker-controlled code being executed.

Apple provides the NSSecureCoding protocol which is robust against this type of attack. NSSecureCoding protects against object substitution attacks by requiring the programmer to declare the expected type of
object before deserialization completes. Thus, if an invalid object is deserialized, the error can be handled safely.

SCREENSHOT

Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help

@ @® > #At' RoboRogue) g iPhone X RoboRogue | Clean RoboRogue: Succeeded | Today at 9:56 PM
B = Q A & = b 3 B2 < 2 RoboRogue RoboRogue) . Classes Map) h RRGRoom.h) [E RRGRoom
Find) Text) Containing /!
. // RRGRoom.h
Q> NSCoding o // RoboRogue
== In Project Ignoring Case 3 //

// Created by IUAK#E on 2014/03/01.
// Copyright (c) 2014%F |UAHEEE. All rights reserved.

100 results in 45 files

¥ h| RRGCategories.h RoboRogue 7/
= //NSCoding
¥ | RRGRoom.h RoboRogue #import <Foundation/Foundation.h>

@interface RRGRoom : NSObject <NSCoding>
— typedef NS_ENUM(NSUInteger, RRGRoomType)

¥ m| RRGRoom.m RoboRogue {

= #pragma mark - NSCoding RRGRoomTypeNormal,
¥ | RRGLevel.h RoboRogue RRGRoomTypeUnused,

—| @interface RRGLevel : CCNode <NSCoding> RRGRoomTypeMonstersNest,

RRGRoomTypeShop,
¥ m| RRGLevel.m RoboRogue }:
I

—| #pragma mark - NSCoding

¥ h| RRGLevelMapLayer.h RoboRogue 19 Q@interface RRGRoom : NSObject <NSCoding>

@property (nonatomic) RRGRoomType roomType;
@property (nonatomic) CGRect roomRect;
Oproperty (nonatomic) NSUInteger roomNum;

—| @interface RRGLevelMapLayer : CCNode <NSCoding>
¥ m| RRGLevelMapLayer.m RoboRogue

= /INSCoding key

= #pragma mark - NSCoding -(NSInteger)roomlLX;

¥ h| RRGLevelObject.h RoboRogue -(NSInteger)roomLY;
interface RRGLevelObject : CCNode <NSCodi ~(NSInteger)zoomHX;
=| @interface evelObject : ode <NSCoding> —(NSInteger)ToomHY;
¥ m| RRGLevelObject.m RoboRogue —(NSInteger)roomWidth;
= #pragma mark - NSCoding —-(NSInteger)roomHeight;

¥ hL| RRGNonCharacterObject.h RoboRogue
—| @interface RRGNonCharacterObject : RRGLevelObject <NSCoding>
¥ h| RRGCharacter.h RobocRogue

|=| @interface RRGCharacter : RRGLevelObject <NSCoding> -(void)addGateOut: (CGPoint)newGateOut

gateIn: (CGPoint)newGateln;
—(CGPoint)exitGateOutAtRandom: (CGPoint)entranceGateOut;
(end

+(instancetype)roomwWithRect: (CGRect)rect
roomType: (RRGRoomType) roomType;

¥ m| RRGCharacter.m RoboRogue
—| #pragma mark NSCoding
¥ h| RRGPlayer.h RoboRogue

RECOMMENDATION

Locate all the classes in the App that conform to NSCoding and migrate them to NSSecureCoding . You can utilize Xcode's built-in search function to locate these classes in the App's project. Searching for
"NSCoding" will reveal everything that conforms to the vulnerable protocol.

Additionally, ensure all input data is validated before it is used, especially when dealing with data that becomes executable.

You can read more about NSSecureCoding on NSHipster.

SECURE CODE

// Declare that your class conforms to NSSecureCoding
dinterface MySecureObject : NSObject <NSSecureCoding>
aproperty (nonatomic, retain) NSDictionary myData;
@end

@implementation MySecureObject

+ (BOOL)supportsSecureCoding {
// Must override this class delegate method to reture YES
return YES;

- (id)initWithCoder:(NSCoder x)decoder {
if ((self = [super init])) {
// When decoding sub-objects, use @selector(decodeObjectOfClass:forKey:)
// This method will throw an exception if the deserialized object's class doesn't match the expected class
self.myData = [decoder decodeObjectOfClass:[NSDictionary class] forKey:@"myData"];
}

return self;

- (void)encodeWithCoder:(NSCoder *)encoder {
[encoder encodeObject:self.myData forKey:@"myData"];

}
end

https://www.securetheorem.com/mobile/share/7H-hzbhiOEZvUIqVWZ1BogDgw/app/713340001/single-finding/1008 14 171

https://developer.apple.com/documentation/foundation/nssecurecoding?language=objc
https://nshipster.com/nssecurecoding/
https://www.securetheorem.com/app/713340001/issues/100814

