
5/3/2021 Mobile Secure | Data Theorem

https://www.securetheorem.com/mobile/share/7H-SgaV5uY2f_j-NBX0OMGi0w/app/713340001/single-finding/153602 1/1

Switch to Secure Object Archiving APIs

CultureNEXT - PreProd 1.0.0 ID $153602 Severity: Medium No Priority

The following code locations leverage unsafe methods of the `NSKeyedArchiver` or `NSKeyedUnarchiver` APIs, which are vulnerable to object substitution attacks:

OPEN

since 4/10/2021 Stack Trace

OPEN

since 4/13/2021 Stack Trace

OPEN

since 4/13/2021 Stack Trace

View 14 more components

DESCRIPTION

RECOMMENDATION

SECURE CODE

QUESTIONS & COMMENTS

-[CTAppController applicationDidFinishLaunching:] calls -[NSKeyedUnarchiver unarchiveObjectWithData:]

-[PWRequestsCacheManager requestsQueue] calls -[NSKeyedUnarchiver unarchiveObjectWithFile:]

-[PWRequestsCacheManager save] calls -[NSKeyedArchiver archiveRootObject:toFile:]

The NSKeyedArchiver or NSKeyedUnarchiver methods used by the App are insecure because they are incompatible with the NSSecureCoding protocol. An attacker-controlled payload

that is deserialized via these APIs may result in attacker-controlled code being executed.

NSCoding is an Objective-C protocol that interoperates with NSKeyedArchiver and NSKeyedUnarchiver . Together, these APIs allow serialization and deserialization of code objects.

However, the NSKeyedUnarchiver methods used by the app, and the NSCoding protocol itself, do not verify the type of object upon deserialization. Thus, an attacker may craft a malicious

payload that results in unexpected code being executed.

To mitigate this vulnerability, Apple introduced the NSSecureCoding protocol along with the following secure methods of NSKeyedArchiver and NSKeyedUnarchiver , which are robust

against this type of attack:

// Secure NSKeyedUnarchiver methods
- (instancetype)initForReadingFromData:(NSData *)data error:(NSError **)error;
+ (id)unarchivedObjectOfClass:(Class)cls fromData:(NSData *)data error:(NSError **)error;
+ (id)unarchivedObjectOfClasses:(NSSet<Class> *)classes fromData:(NSData *)data error:(NSError **)error;

// Secure NSKeyedArchiver methods
- (instancetype)initRequiringSecureCoding:(BOOL)requiresSecureCoding;
+ (NSData *)archivedDataWithRootObject:(id)object requiringSecureCoding:(BOOL)requiresSecureCoding error:(NSError **)error;

These APIs protect against object substitution attacks by requiring the programmer to declare the expected type of object before deserialization completes. Thus, if an invalid object is

deserialized, the error can be handled safely.

Apple provides more information in the WWDC20 session, 'Securing Your App'.

Locate all the classes in the App that conform to NSCoding and migrate them to NSSecureCoding . Then, replace the insecure usages of NSKeyedArchiver and NSKeyedUnarchiver with

the secure APIs that perform error handling and validate the expected type of the deserialized objects.

Additionally, ensure all input data is validated before it is used, especially when dealing with data that becomes executable.

// Declare that your class conforms to NSSecureCoding
@interface MySecureObject : NSObject <NSSecureCoding>
@property (nonatomic, retain) NSDictionary *myData;
@end

@implementation MySecureObject
+ (BOOL)supportsSecureCoding {
 // Must override this class delegate method to reture YES
 return YES;
}
+ (MySecureObject*)deserializeFromData:(NSData*)data {
 // Inform the system of the object type we expect to be deserialized from the data
 // This method will return an error if the serialized data was invalid
 NSError* out_error = nil;
 [NSKeyedUnarchiver unarchivedObjectOfClass:[MySecureObject class] fromData:data error:&out_error];
 if (out_error != nil) {
 // Handle the error
 NSLog(@"Deserialization failed: %@", out_error);
 }
}
- (id)initWithCoder:(NSCoder *)decoder {
 if ((self = [super init])) {
 // When decoding sub-objects, use @selector(decodeObjectOfClass:forKey:)
 // This method will throw an exception if the deserialized object's class doesn't match the expected class
 self.myData = [decoder decodeObjectOfClass:[NSDictionary class] forKey:@"myData"];
 }
 return self;
}
- (void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.myData forKey:@"myData"];
}
@end

VIEW IN PORTAL

https://developer.apple.com/documentation/foundation/nssecurecoding?language=objc
https://developer.apple.com/wwdc20/10189
https://www.securetheorem.com/app/713340001/issues/153602

