Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
259 lines (207 sloc) 9.4 KB
## Copyright 2016-2017 Jonas Hoersch (FIAS), Tom Brown (FIAS), Markus Schlott
## (FIAS)
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
Renewable Energy Atlas Lite (Atlite)
Light-weight version of Aarhus RE Atlas for converting weather data to power systems data
"""
import os
import pandas as pd
import numpy as np
import xarray as xr
import shutil
from six.moves import range
from contextlib import contextmanager
from tempfile import mkstemp
import logging
logger = logging.getLogger(__name__)
try:
import cdsapi
has_cdsapi = True
except ImportError:
has_cdsapi = False
# Model and Projection Settings
projection = 'latlong'
@contextmanager
def _get_data(target=None, product='reanalysis-era5-single-levels', chunks=None, **updates):
"""Download ERA5 data from the Climate Data Store (CDS)"""
if not has_cdsapi:
raise RuntimeError(
"Need installed cdsapi python package available from "
"https://cds.climate.copernicus.eu/api-how-to"
)
# Default request
request = {
'product_type':'reanalysis',
'format':'netcdf',
'day':[
'01','02','03','04','05','06','07','08','09','10','11','12',
'13','14','15','16','17','18','19','20','21','22','23','24',
'25','26','27','28','29','30','31'
],
'time':[
'00:00','01:00','02:00','03:00','04:00','05:00',
'06:00','07:00','08:00','09:00','10:00','11:00',
'12:00','13:00','14:00','15:00','16:00','17:00',
'18:00','19:00','20:00','21:00','22:00','23:00'
],
# 'area': [50, -1, 49, 1], # North, West, South, East. Default: global
# 'grid': [0.25, 0.25], # Latitude/longitude grid: east-west (longitude) and north-south resolution (latitude). Default: 0.25 x 0.25
}
request.update(updates)
assert {'year', 'month', 'variable'}.issubset(request), "Need to specify at least 'variable', 'year' and 'month'"
result = cdsapi.Client().retrieve(
product,
request
)
if target is None:
fd, target = mkstemp(suffix='.nc')
os.close(fd)
logger.info("Downloading request for {} variables to {}".format(len(request['variable']), target))
result.download(target)
with xr.open_dataset(target, chunks=chunks) as ds:
yield ds
os.unlink(target)
def _add_height(ds):
"""Convert geopotential 'z' to geopotential height following [1]
References
----------
[1] ERA5: surface elevation and orography, retrieved: 10.02.2019
https://confluence.ecmwf.int/display/CKB/ERA5%3A+surface+elevation+and+orography
"""
g0 = 9.80665
z = ds['z']
if 'time' in z.coords:
z = z.isel(time=0, drop=True)
ds['height'] = z/g0
ds = ds.drop('z')
return ds
def _area(xs, ys):
# North, West, South, East. Default: global
return [ys.start, xs.start, ys.stop, xs.stop]
def _rename_and_clean_coords(ds, add_lon_lat=True):
"""Rename 'longitude' and 'latitude' columns to 'x' and 'y'
Optionally (add_lon_lat, default:True) preserves latitude and longitude columns as 'lat' and 'lon'.
"""
ds = ds.rename({'longitude': 'x', 'latitude': 'y'})
if add_lon_lat:
ds = ds.assign_coords(lon=ds.coords['x'], lat=ds.coords['y'])
return ds
def prepare_meta_era5(xs, ys, year, month, module):
# Reference of the quantities
# https://confluence.ecmwf.int/display/CKB/ERA5+data+documentation
# Geopotential is aka Orography in the CDS:
# https://confluence.ecmwf.int/pages/viewpage.action?pageId=78296105
#
# (shortName) | (name) | (paramId)
# z | Geopotential (CDS: Orography) | 129
with _get_data(variable='orography',
year=year, month=month, day=1,
area=_area(xs, ys)) as ds:
ds = _rename_and_clean_coords(ds)
ds = _add_height(ds)
t = pd.Timestamp(year=year, month=month, day=1)
ds['time'] = pd.date_range(t, t + pd.DateOffset(months=1),
freq='1h', closed='left')
return ds.load()
def prepare_for_sarah(year, month, xs, ys, dx, dy, chunks=None):
area = _area(xs, ys)
grid = [dx, dy]
with _get_data(area=area, grid=grid, year=year, month=month,
variable=['2m_temperature',
'toa_incident_solar_radiation',
'surface_solar_radiation_downwards',
'surface_net_solar_radiation'],
chunks=chunks) as ds:
ds = _rename_and_clean_coords(ds, add_lon_lat=False)
ds = ds.rename({'t2m': 'temperature'})
ds = ds.rename({'tisr': 'influx_toa'})
logger.debug("Calculating albedo")
ds['albedo'] = (((ds['ssrd'] - ds['ssr'])/ds['ssrd']).fillna(0.)
.assign_attrs(units='(0 - 1)', long_name='Albedo'))
ds = ds.drop(['ssrd', 'ssr'])
logger.debug("Fixing units of influx_toa")
# Convert from energy to power J m**-2 -> W m**-2
ds['influx_toa'] /= 60.*60.
ds['influx_toa'].attrs['units'] = 'W m**-2'
logger.debug("Yielding ERA5 results")
yield ds.chunk(chunks)
logger.debug("Cleaning up ERA5")
def prepare_month_era5(year, month, xs, ys):
area = _area(xs, ys)
# Reference of the quantities
# https://confluence.ecmwf.int/display/CKB/ERA5+data+documentation
# (shortName) | (name) | (paramId)
# tisr | TOA incident solar radiation | 212
# ssrd | Surface Solar Rad Downwards | 169
# ssr | Surface net Solar Radiation | 176
# fdir | Total sky direct solar radiation at surface | 228021
# ro | Runoff | 205
# 2t | 2 metre temperature | 167
# sp | Surface pressure | 134
# stl4 | Soil temperature level 4 | 236
# fsr | Forecast surface roughnes | 244
with _get_data(area=area, year=year, month=month,
variable=[
'100m_u_component_of_wind',
'100m_v_component_of_wind',
'2m_temperature',
'runoff',
'soil_temperature_level_4',
'surface_net_solar_radiation',
'surface_pressure',
'surface_solar_radiation_downwards',
'toa_incident_solar_radiation',
'total_sky_direct_solar_radiation_at_surface'
]) as ds, \
_get_data(area=area, year=year, month=month, day=1,
variable=['forecast_surface_roughness', 'orography']) as ds_m:
ds_m = ds_m.isel(time=0, drop=True)
ds = xr.merge([ds, ds_m], join='left')
ds = _rename_and_clean_coords(ds)
ds = _add_height(ds)
ds = ds.rename({'fdir': 'influx_direct', 'tisr': 'influx_toa'})
with np.errstate(divide='ignore', invalid='ignore'):
ds['albedo'] = (((ds['ssrd'] - ds['ssr'])/ds['ssrd']).fillna(0.)
.assign_attrs(units='(0 - 1)', long_name='Albedo'))
ds['influx_diffuse'] = ((ds['ssrd'] - ds['influx_direct'])
.assign_attrs(units='J m**-2',
long_name='Surface diffuse solar radiation downwards'))
ds = ds.drop(['ssrd', 'ssr'])
# Convert from energy to power J m**-2 -> W m**-2 and clip negative fluxes
for a in ('influx_direct', 'influx_diffuse', 'influx_toa'):
ds[a] = ds[a].clip(min=0.) / (60.*60.)
ds[a].attrs['units'] = 'W m**-2'
ds['wnd100m'] = (np.sqrt(ds['u100']**2 + ds['v100']**2)
.assign_attrs(units=ds['u100'].attrs['units'],
long_name="100 metre wind speed"))
ds = ds.drop(['u100', 'v100'])
ds = ds.rename({'ro': 'runoff',
't2m': 'temperature',
'sp': 'pressure',
'stl4': 'soil temperature',
'fsr': 'roughness'
})
ds['runoff'] = ds['runoff'].clip(min=0.)
yield (year, month), ds
def tasks_monthly_era5(xs, ys, yearmonths, prepare_func, meta_attrs):
if not isinstance(xs, slice):
xs = slice(*xs.values[[0, -1]])
if not isinstance(ys, slice):
ys = slice(*ys.values[[0, -1]])
return [dict(prepare_func=prepare_func, xs=xs, ys=ys, year=year, month=month)
for year, month in yearmonths]
weather_data_config = {
'_': dict(tasks_func=tasks_monthly_era5,
prepare_func=prepare_month_era5)
}
meta_data_config = dict(prepare_func=prepare_meta_era5)
You can’t perform that action at this time.