Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
146 lines (112 sloc) 4.3 KB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from random import uniform
from copy import deepcopy
class SolutionRanges(object):
''' Descriptor for solution ranges.
def __init__(self):
self.__ranges = []
def __get__(self, obj, owner):
return self.__ranges
def __set__(self, obj, ranges):
# Check.
if type(ranges) not in [tuple, list]:
raise TypeError('solution ranges must be a list of range tuples')
for rng in ranges:
if type(rng) not in [tuple, list]:
raise TypeError('range({}) is not a tuple containing two numbers'.format(rng))
if len(rng) != 2:
raise ValueError('length of range({}) not equal to 2')
a, b = rng
if a >= b:
raise ValueError('Wrong range value {}'.format(rng))
# Assignment.
self.__ranges = ranges
class DecretePrecision(object):
''' Descriptor for individual decrete precisions.
def __init__(self):
self.__precisions = []
def __get__(self, obj, owner):
return self.__precisions
def __set__(self, obj, precisions):
if type(precisions) in [int, float]:
precisions = [precisions]*len(obj.ranges)
# Check.
if type(precisions) not in [tuple, list]:
raise TypeError('precisions must be a list of numbers')
if len(precisions) != len(obj.ranges):
raise ValueError('Lengths of eps and ranges should be the same')
for (a, b), eps in zip(obj.ranges, precisions):
if eps > (b - a):
msg = 'Invalid precision {} in range ({}, {})'.format(eps, a, b)
raise ValueError(msg)
self.__precisions = precisions
class IndividualBase(object):
''' Base class for individuals.
:param ranges: value ranges for all entries in solution.
:type ranges: tuple list
:param eps: decrete precisions for binary encoding, default is 0.001.
:type eps: float or float list (with the same length with ranges)
# Solution ranges.
ranges = SolutionRanges()
# Orginal decrete precisions (provided by users).
eps = DecretePrecision()
# Actual decrete precisions used in GA.
precisions = DecretePrecision()
def __init__(self, ranges, eps):
self.ranges = ranges
self.eps = eps
self.precisions = eps
self.solution, self.chromsome = [], []
def init(self, chromsome=None, solution=None):
''' Initialize the individual by providing chromsome or solution.
:param chromsome: chromesome sequence for the individual
:type chromsome: list of (float / int)
:param solution: the variable vector of the target function.
:type solution: list of float
.. Note::
If both chromsome and solution are provided, only the chromsome would
be used. If neither is provided, individual would be initialized randomly.
if not any([chromsome, solution]):
self.solution = self._rand_solution()
self.chromsome = self.encode()
elif chromsome:
self.chromsome = chromsome
self.solution = self.decode()
self.solution = solution
self.chromsome = self.encode()
return self
def clone(self):
''' Clone a new individual from current one.
indv = self.__class__(deepcopy(self.ranges), eps=deepcopy(self.eps))
return indv
def encode(self):
Convert solution to chromsome sequence.
:return: The chromsome sequence
:rtype: list of float
raise NotImplementedError
def decode(self):
Convert chromsome sequence to solution.
:return: The solution vector
:rtype: list of float
raise NotImplementedError
def _rand_solution(self):
''' Initialize individual solution randomly.
solution = []
for eps, (a, b) in zip(self.precisions, self.ranges):
n_intervals = (b - a)//eps
n = int(uniform(0, n_intervals + 1))
solution.append(a + n*eps)
return solution