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Abstract—This paper presents a novel approach to generate
data-driven regression models that not only give reliable predic-
tion of the observed data but also have smoother response surfaces
and extra generalization capabilities with respect to extrapolation.
These models are obtained as solutions of a genetic programming
(GP) process, where selection is guided by a tradeoff between two
competing objectives—numerical accuracy and the order of non-
linearity. The latter is a novel complexity measure that adopts the
notion of the minimal degree of the best-fit polynomial, approxi-
mating an analytical function with a certain precision. Using nine
regression problems, this paper presents and illustrates two dif-
ferent strategies for the use of the order of nonlinearity in symbolic
regression via GP. The combination of optimization of the order
of nonlinearity together with the numerical accuracy strongly
outperforms “conventional” optimization of a size-related expres-
sional complexity and the accuracy with respect to extrapolative
capabilities of solutions on all nine test problems. In addition to
exploiting the new complexity measure, this paper also introduces
a novel heuristic of alternating several optimization objectives in
a 2-D optimization framework. Alternating the objectives at each
generation in such a way allows us to exploit the effectiveness of
2-D optimization when more than two objectives are of interest
(in this paper, these are accuracy, expressional complexity, and
the order of nonlinearity). Results of the experiments on all test
problems suggest that alternating the order of nonlinearity of GP
individuals with their structural complexity produces solutions
that are both compact and have smoother response surfaces, and,
hence, contributes to better interpretability and understanding.

Index Terms—Complexity, evolutionary multiobjective opti-
mization, extrapolation, genetic programming (GP), industrial
data analysis, model selection.

I. INTRODUCTION

F UNDAMENTAL model building is a time- and labor-
consuming process in industrial engineering—partic-

ularly in polymer research. When time is crucial, empirical
estimation of fundamental relationships in process variables
is certainly preferable to discovering first-principle models
and developing mathematical apparatus to operate with them.
Outputs (e.g., system control variables) are usually difficult to
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monitor, can be measured only in a lab, or require expensive
hardware for analysis. The measurements are taken within a
limited range of operating conditions and are usually available
offline. However, models built upon these measurements are
expected to be used to control dynamic processes online.

Because industrial data is always corrupted by noise and is
driven by a combination of measured and unmeasured process
variables, models should not only accurately predict the ob-
served output but also have some extra generalization capabil-
ities. Examples of such capabilities are insensitivity to a cer-
tain amount of noise in the inputs or a capability to extrapolate
the output outside the observed region. In addition, generated
models should be interpretable, in order to provide additional
understanding of the underlying process. The requirements for
empirical models in industrial settings are defined as follows
(see, also, [1]):

• capability for online reliable prediction of process outputs
within the given range of operating conditions and outside
this range;

• interpretability and the possibility of integrating informa-
tion from first principles;

• low maintenance and development costs with no (or negli-
gible) operator interference;

• robustness with respect to the variability in process inputs;
• the ability to detect novelties in data to attune itself toward

changes in the process.
There is no single technique producing models that fulfil all of

the requirements listed above. In the creation of an input–output
model, the main emphasis is usually put on the goodness of fit
in the given range of inputs. For real-life problems, however, the
other requirements are at least equally valuable.

Several empirical modeling techniques are used for con-
structing input–output regression models including linear
regression, nonlinear regression, [2], kriging, [3], radial basis
functions, [4], neural networks, [5], support vector machines
(SVMs), [6], [7], and genetic programming (GP), [8]. These
techniques are used together to complement each other in mod-
eling complex chemical processes. Neural networks, SVMs,
and GP have advantages over classical statistical methods in
the following cases (see [1]):

• where no or negligible a priori information is known about
the process and no assumptions on models can be made;

• where modeling problems are multidimensional with ei-
ther too much or too little data.

Symbolic regression via GP has incontestable advantages
over neural networks and SVMs for problems where models
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have to be simple and interpretable analytic expressions and
have a reasonable generalizing behavior [1], [9].

Symbolic regression via GP is a methodology to automati-
cally generate symbolic models that describe functional rela-
tionships on given data. Inspired by principles of natural se-
lection, symbolic regression via GP sets up an artificial evolu-
tion of models, optimizing some of them, evaluating how well
they fit the observed data, and then using this information to de-
cide which models to use as parents for the next generation [8],
[10]–[12]. Such evolutionary search continues until a perfect so-
lution is found or the allotted computation time is exceeded. If
no a priori information is given about the relationship between
inputs and outputs, the search space is a set of all possible sym-
bolic models representing valid operations from the fixed set
on the given input variables. Classical numerical optimization
techniques applied in an empirical modeling framework can be
less effective, if they make certain assumptions about the struc-
ture of input–output models a priori and, hence, limit the search
space or make the search biased.

The benefits of symbolic regression via GP include the
following.

• There are no prior assumptions on model structure.
• The final predicting model or model ensemble is chosen

from a rich set of nonlinear empirical models that is gen-
erated automatically.

• Sensitivity analysis of the inputs and variable selection is
implicitly performed with no extra cost, which reduces the
dimensionality of the problem.

• No assumptions are made on independence of input
variables.

• Insight can be provided due to the symbolic representation
of models (e.g., in a form of low-order variable transfor-
mations that can be used as “natural” meta-variables).

Because the class of potential nonlinear solutions is broad,
the main problem is to choose the model or a set of models of
optimal complexity [1], [7], [13]. The model selection problem,
together with the requirements for a reliable model, lead us to
the following questions: How can we measure and control the
complexity of models? How can we quickly assess their dissim-
ilarities in interpretability, flexibility to fit the data, and ability
to predict the outputs outside the training range?

This paper introduces a new complexity measure reflecting
the features of the response surfaces related to symbolic models.
The process of model selection under complexity control with
this measure, called the order of nonlinearity, improves the ex-
trapolation capabilities of solutions generated by symbolic re-
gression.

In addition to the new complexity measure, a novel heuristic
is also introduced, aimed at producing accurate solutions that are
genotypically and phenotypically simple. The process of two-
objective optimization of model error and expressional com-
plexity alternated at each generation with the two-objective op-
timization of model error and the order of nonlinearity pro-
duces competitive solutions that have low expressional com-
plexity and low orders of nonlinearity.

This paper is organized as follows. Section II briefly de-
scribes the concept of symbolic regression via GP and touches
on various issues of the complexity control. Section III in-

troduces a new complexity measure reflecting the order of
nonlinearity of the evolved models. Section IV describes the
results of testing the new measure empirically. Section V
concludes by discussing the applicability of the order of non-
linearity in a GP framework.

II. SYMBOLIC REGRESSION VIA GP

Construction of an unknown function in a high-dimensional
space from a finite number of samples bears the risk of over-
fitting. Care should be also taken to avoid the process noise.
Therefore, from models approximating the noisy data, the ones
that have minimal (optimal) complexity should be chosen.
Okkam’s razor principle states: “No more things should be
presumed to exist than are absolutely necessary.” Following
this principle, we should limit and control the complexity of
models we create and favor the simplest ones to take part in the
evolution. The structural complexity is not the only measure to
minimize, in order to produce simple and interpretable models.
Also, the extrapolative capabilities of models are important, as
is the presence of good local properties, which can be related
to first principles.

New models for the next iteration are generated from the cur-
rent population of models by means of crossover, mutation, and
copying. Models gain the right to propagate their good features
to successive generations. The current implementation of sym-
bolic regression via GP uses an elite-based selection strategy to
select good models and endow them with improved propaga-
tion rights. This strategy consists of determination and preser-
vation of a representative set of high quality models, obtained
by a given step of evolution [14]. This elite set is stored in an
archive [1], [14]. It is built based upon the concept of domi-
nance in a space of selected optimization objectives. Propaga-
tion rights are granted to all archive members irrespective of
their relative numerical goodness of fit. Archive members gen-
erate offspring for the next evolutionary step1; and these new
models are then used to optimize the archive. When the iteration
process is terminated, the set of final GP solutions is determined
by the archive at the last iteration step. An excellent description
of the elite-based strategy for multiobjective evolutionary com-
putation is given in [15] and [16].

The process of updating the archive at each generation em-
ploys the concept of Pareto optimality in a set of selected op-
timization objectives (see [14], [15], and
Fig. 1). We use the nondominated sorting in the objective space
to create an archive of a constant size (see the example in Fig. 2).

The fitness measure used during the evolution is the normal-
ized mean squared error (NMSE). It is bounded by 0 and 1 with
a perfect fit corresponding to 1 [see (21)–(23)].

A. Complexity Control

In classical GP applications [8], [10], [11], survival of the
fittest is the only criterion to find the optimal model. However,
besides numerical closeness to the observed data, there are cer-
tainly more characteristics that reflect the quality of the gener-
ated models. In applications, the measured data is almost always

1In case of crossover, we always choose one parent from the archive, and the
other from a population.
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Fig. 1. Pareto front and overfitting. For the shown set of GP-individuals, plotted
in the objective space of model expressional complexity versus model error ���
NMSE�, the nondominated set consists of only three individuals. Points with
low model error and very high expressional complexity are the first suspects
of overspecialization. The best-of-run models are almost always at the bottom-
right corner of the plot (i.e., are almost always overfitting). Points with too low
expressional complexity may be too compact to describe the data, and, hence,
have high errors. Note that we want to focus the search on the area around zero
(low error and low complexity).

Fig. 2. Archive at the first generation. The figure illustrates the creation of an
archive from the initial population. Dots represent 100 population individuals,
which are plotted in the objective space of model expressional complexity and
model error ��� NMSE� (all subtrees act as individual models to increase the
effectiveness of the search). Fifty individual points from the plotted set, which
are dominated by the least number of other individuals, are selected to form an
archive (depicted as circles). These archive models will be granted the propaga-
tion rights to form the next generation.

with noise, so that perfectly accurate models are not the goal. We
presume that “the” solution does not exist. Often models with
high goodness of fit look so obscure that it becomes infeasible to
convince process engineers to implement them for controlling
real online processes. In these cases, simpler credible models
with a lower level of fitness will be preferred over complex ones.
Moreover, limiting the complexity of models may be vital in
avoiding overfitting of data and also modeling the process noise.
Too complex models are difficult to use, whereas too simple
models may give poor prediction. For classical modeling tech-
niques, model complexity is controlled by a priori knowledge

of the process and the true underlying relationship [7]. In these
cases, parsimony pressure is introduced in the fitness function,
and a resulting composite fitness function is defined as a linear
combination of prediction error and a complexity term (the latter
is called a regularization coefficient).

Because penalizing models for high complexity is a natural
way to control bloat (i.e., excessive growth in the size of GP in-
dividuals without improvements in fitness) [8], [17]–[26], GP
researchers have quite extensively analyzed evolutions under
parsimony pressure and their relationship to bloat [27]–[29].
The definition of the parsimony pressure as a linear term, added
to the fitness function, causes GP to perform well on some prob-
lems [20], [27], [30], and less well on others [8], [18]. Soule and
Foster showed [28] that the linear coefficients in a composite fit-
ness function, relating numerical fitness and the structural com-
plexity, can be used as a good indicator of the performance of a
GP population. However, the search for a good combination of
these coefficients requires some intuition and empirical testing.

We firmly believe that when no a priori information about
the problem is known, the measure for parsimony pressure has
to be optimized individually and simultaneously with numerical
fitness. This fosters an intelligent tradeoff between model sim-
plicity and model accuracy. Optimizing complexity and accu-
racy in a truly multiobjective way will exempt us from making
risky assumptions about the exact relationship between com-
plexity and accuracy, and will, therefore, not bias the search.
With such bi-objective selection, the GP system is pushed to
produce both accurate and simple individuals, from which the
best ones form a Pareto front—a set of optimal tradeoffs in the
2-D performance space of complexity and accuracy.

For the complexity definition, one can think of two directions
in determining the qualitative complexity of the GP model: com-
plexity of the model expression (compactness of the genotype)
and behavior of the associated response surface (smoothness of
the phenotype).

Two-dimensional optimization with striving for compact and
accurate GP solutions has been shown to systematically out-
perform the standard single-objective GP on a variety of re-
gression and classification problems [1], [31], [32]. Similar re-
sults have been reported for genetic algorithm (GA) in [33] and
[34]. This paper aims to explore the feasibility of producing
smooth and accurate GP solutions that do not necessarily have
“simple” structures, but have “simple” response surfaces, and,
hence, generalize better. If producing smooth and accurate so-
lutions proves feasible, this will indicate the possibility of com-
bining the structural and behavioral complexity measures for
creating both smooth and simple GP models, without a risk of
either bloat or overfitting.

B. Structural Complexity of an Expression

Until now, almost all complexity measures considered by the
GP community have addressed the structural complexity of an
individual.

An individual is a regression model—a functional relation-
ship between system inputs and outputs built on a limited set of
observations (measurements or other models). In our case, it is
represented as a valid mathematical expression based on a set
of given basic functions, input variables, and random constants
sampled from a certain range. Model expressions may vary in
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Fig. 3. Expressional complexity of a tree model is the total number of nodes in
all subtree models.

size and, in this paper, are represented as tree structures. All sub-
trees in a tree representation of an expression are considered as
separate models during the selection process. Thus, more search
space is effectively covered by a population of a fixed number
of models.

A set of basic operations contains functions that have one or
two arguments. Typical representatives of the set are the stan-
dard arithmetical functions: addition, subtraction, multiplica-
tion, and division. They may also include power, trigonometric,
logarithmic, exponential, and logical functions.

There is a variety of intuitive measures for determining the
size of structures operated by a tree-based GP:

1) the number of nodes in a tree;
2) the number of layers in a tree;
3) path length, etc.2

We have been using a so-called expressional complexity (see
[1]). This measure is determined by the sum of the number of
nodes in all subtrees of a given tree. It favors the flatter trees (i.e.,
trees with fewer layers and, hence, with fewer nested functions)
over deep unbalanced trees (in the case of an equal number of
nodes). An example of such a case is shown in Fig. 3. The ex-
pressional complexity can be interpreted as a size of the model
obtained by substituting all inner functions of the model by their
function bodies. Keijzer and Foster call this complexity mea-
sure a visitation length, show that it is a close relative of the
path length, and provide a thorough review of its mathematical
properties [36].

The expressional complexity measure is successfully used
throughout implementations in MatLab and Mathematica
(DataModeler add-in). Optimizing the structural complexity
of evolving models together with the goodness of fit produces
compact solutions that are interpretable and reliable within
the training range. After extrapolation, these solutions often
demonstrate unwanted behavior, caused by overfitting.

III. ORDER OF NONLINEARITY OF AN EXPRESSION

A. Motivation

With respect to the quality of the function determined by the
tree expression and the behavior of its response surface, there is
a range of complexity measures:

1) the number of variables in the tree representation (the total
number of variables present at the leaves is an indicator of

2Iba [35] uses a minimal description length principle, which is not explicitly
a complexity measure, but is related to a representation and can be considered
as a complexity measure.

model complexity; the number of unique variables reflects
the dimensionality of the model);

2) the number of binary and unary functions present at inner
nodes;

3) some componentwise nonlinearity of functions present at
inner nodes (e.g., addition is less nonlinear, and, hence,
simpler than exponentiation), etc.

Our main objective in measuring the nonlinearity of a model
is to favor smooth and extrapolative behavior of the response
surface and to discourage highly nonlinear behavior (which is
unstable towards minor changes in inputs and is dangerous for
extrapolation).

It would, moreover, be desirable to find a nonlinearity mea-
sure that agrees with an intuitive impression of the complexity
of an elementary function. In other words, we want exponentia-
tion to be more complex than taking a square, summation to be
simpler than multiplication, and taking a square root and divi-
sion to be very complex in the neighborhood of zero.

In [37], we introduced a complexity measure that reflects the
order of nonlinearity of a model. It is a quantitative measure
reflecting the nonlinear growth of the response function deter-
mined by a labeled tree. The definition is based on the minimum
degree of a polynomial approximating the function on a certain
interval with a certain precision.

The reasoning is simple: an obvious measure for the com-
plexity of a multivariate polynomial is its degree. Any tabulated
multivariate function can be associated with its unique best-fit
approximating polynomial. The degree of this polynomial can
be considered as a measure for the order of nonlinearity of the
response surface of the original function. This order can be seen
as a numeric value of the deviation of the response surface from
a linear hyperplane.

To make this idea suitable for an evolutionary optimization
framework, and in particular, for our implementation of sym-
bolic regression, we had to make several simplifications in its
realization.

The best-fit polynomials are difficult to find [38]. Even
though we settle for a polynomial giving a good approximation
of the function, instead of the best-fit polynomial, we still need
a procedure that is computationally efficient. Because our goal
is to compare the behavior of response surfaces of GP models
at each step of the evolution, we strove to:

1) calculate the order of nonlinearity iteratively for a given
model, starting from the terminals3;

2) consider an efficient Chebyshev polynomial approximation
of a function [39], [40], instead of a labor-intensive search
for an optimal best-fit polynomial for a given precision;

3) determine the order of nonlinearity as the degree of the ap-
proximating polynomial only for univariate operators, and
use another definition of nonlinearity for bivariate func-
tions and compositions.

The first implementation described in [37] used a least
squares polynomial approximation for complexity determi-
nation. Given a set of points and a

3Because we consider the subexpressions of a symbolic model as indepen-
dent models, we want the order of nonlinearity to be easily computable for all
subtrees as well as for the parent tree.
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maximum order , , least squares fitting produces a
polynomial of degree that minimizes the
error with respect to the coef-
ficients . However, certain conditions for points
must hold for a least squares polynomial to exist and to be
unique. For high degrees, the problem of finding a unique
polynomial often becomes ill-defined. For better treatment of
steep response surfaces, we therefore made good use of a more
stable and reliable framework—Chebyshev approximations
(see, also, [41]).

Our current implementation for a given accuracy constructs a
Chebyshev polynomial approximation of a function, and takes
the degree of the resulting polynomial as a basis for the measure
of nonlinearity of a univariate function. An exact definition of
the order of nonlinearity appears in Section III-B.

Before giving the definition, we would first like to comment
on “approximation of a given accuracy.” It is said that
approximates a continuous function on interval with
accuracy , if

(1)

We change the above definition for error evaluation and con-
sider a finite number of samples . The way in
which we determine the test set indeed affects the true quality
of the approximation. If has too few points, then condition (1)
is superficial.

If the test set consists of too many points, then error estima-
tion can require excessive computational resources. The choice
of is dictated by a tradeoff between the efficiency of computa-
tion and the desired accuracy. In the current implementation, the
test set consists of equidistant points whose number changes
dynamically depending on the length of the interval .

Further on, by a polynomial approximating a univariate func-
tion on interval with a certain precision , we will denote
an approximation in a class of Chebyshev polynomials; more
precisely, a polynomial of a min-
imal order, such that

(2)

Here, , ,
and is an th Chebyshev polynomial on .

For a univariate function given analytically, the degree of the
approximating polynomial depends on the interval, in which the
function is being approximated. This implies the necessity of
including scaling into the definition of complexity and calcu-
lating the ranges for every inner node that corresponds to a uni-
variate operation. In order to be able to treat bivariate functions
as univariate (for polynomial approximations), we also need to
estimate the ranges of inner nodes, corresponding to bivariate
operations.

We would like to emphasize that the function ranges corre-
sponding to inner nodes cannot be determined accurately from
the ranges of terminals by using simple interval computations.

In general, the range evaluation of a function defined on a real
interval should take into account the monotonicity and extrema
of this function and may involve unwanted computation time.

There is a price to pay, however, to avoid these computations.
Every subexpression of a symbolic model is explicitly evalu-
ated to obtain the goodness of fit of predicted output to the orig-
inal output. Therefore, the ranges of subexpressions can be esti-
mated by simply taking the minimum and the maximum of the
predicted outputs in the fitness evaluation routine. Such evalua-
tion of ranges of all subfunctions of the given model can indeed
introduce some inaccuracy if the extrema of subfunctions are
not at the sampling points. Because this is the best we can do
without doing extra calculations, it will be good enough for an
efficient comparison of the nonlinearity of the GP models.

Once the ranges for all nodes in the tree-based symbolic
model are found, then the order of nonlinearity of this model can
be computed according to the following inductive definition.

B. Definition

Inductive Definition of the Order of Nonlinearity
of a Symbolic Model: Let a tree structure repre-
sent a valid analytical model over a set of variables

, and a set of constants
with functions from a set , where

, . Assuming that the
precision is given, the complexity of the tree structure is
calculated from the leaves to the root according to the following
definition:

A) The complexity of a single node referring to a constant
is zero

(3)

B) The complexity of a single node referring to a variable
from is one

(4)

C) The complexity of an inner node referring to unary func-
tion is related to the complexity of the child
node referring to a function, variable, or constant ,

, and the range of the child node by the
following:

(5)

where is the minimal degree of , a Chebyshev ap-
proximation of function , with approxima-
tion error (2) at most .
NB: The complexity of an inner node referring to a unary
function , , is
related to the complexity of the child node referring to a
function, or to a variable and the range of the
child node by the following:

(6)

where is the minimal degree of a Chebyshev ap-
proximation of function , with the
approximation error (2) at most .
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D) The complexity of an inner node referring to summation
and subtraction is related to the complexi-
ties of child nodes referring to from by
the following:

(7)

(8)

E) The complexity of an inner node referring to multiplica-
tion is related to the complexities of child nodes
referring to from by the following:

(9)

F) The complexity of an inner node referring to division
is related to the complexities of child nodes

referring to from with ranges and
by the following:

(10)

where is a minimal degree of the Chebyshev approx-
imation of a function on interval with the
approximation error (2) at most .

G) The complexity of the root node determines the com-
plexity of the tree structure.

The inductive definition described above is an algorithm to
calculate the order of nonlinearity.

In the current implementation, the maximum admissible de-
gree of the Chebyshev approximation is limited to 100. If the
precision of the approximation by a 100th-order polynomial
still exceeds , then the complexity value is set to a predefined
limit. This limit value is 10 000 for the current implementation.
The value for precision is fixed to 0.0001. The fixed precision
used for estimating the degree of Chebyshev approximation will
imply higher degrees for wider domain ranges. This penalizes
the GP system for constructing solutions with too much diver-
sity in the ranges of the inner nodes.

The number of points at which the approximation error is
evaluated is dynamic and depends on the length of the interval
of approximation. Currently, we take
equidistant points on . This number should vary, depending
on the problem difficulty and the descriptiveness of the input
data file.

An example of the nonlinearity calculation for a simple two-
variable model for is given in Fig. 4.

C. Discussion

The definition of the order of nonlinearity implies that the
complexity of a parent model is never less than the nonlinearity
of any of its submodels. This definition allows us to implicitly
take the complexity of the representation into account, and make
the order of nonlinearity a characteristic of a genotype. Often
this causes overestimation of the true order of nonlinearity of
the simplified expression. We do this deliberately to push the
system towards creating simplified expressions, and to penalize
possible precision errors, caused by unnecessary scaling. For
example, let trees , , and represent models , ,

Fig. 4. Example of nonlinearity calculation for a two-variable model. If � �

��� �� and � � ��� ��, then “� � � ” takes values from the interval ��� ��.
Nonlinearities of the terminal nodes are one. The nonlinearity of the � node is
�� � � �. Therefore, the nonlinearity of the ��� node is two times the degree
of the Chebyshev approximation of function 	
� � on the interval ��� ��. If the
chosen approximation accuracy is �� , then the order of nonlinearity of the
root node is � � � � �. The expressional complexity (visitation length) of the
model is 9.

Fig. 5. Genotypic nature of the order of nonlinearity. The order of nonlinearity
depends on the representation, because interval arithmetics is taken into account:
trees � , � , and � determine models � �� , ���, 1, for � � ��� ��. Whereas
the response surfaces of the models are identical, the orders of nonlinearity are
different.

and 1 (see Fig. 5). Despite the fact that the models have iden-
tical response surfaces, computation of values of may cause
loss of precision. This is why the nonlinearity complexities of

strictly decrease: , ,
.

A situation may arise in which, during the calculation of the
order of nonlinearity, we encounter a node corresponding to a
function with a very small range (e.g., smaller than ). In
this case, we do not evaluate the order of nonlinearity by rules
A)–F), but assign the complexity of the child node to the node
complexity. Although the function with a range less than
could be considered as a constant (in part because the accurate
approximation of this function and the error evaluation become
questionable due to roundoff errors), we do not make the order
of nonlinearity zero, but include the nonlinearity of the child
tree into the definition.

Because the order of nonlinearity is determined inductively
for every node of the tree starting from the leaves, in most cases,
an overestimation of the true minimal order of a polynomial ap-
proximating the function with given precision will be produced
for unary functions.

For example, consider the function on .
The minimal degree of the Chebyshev approximation of accu-
racy is 9 and the order of nonlinearity of the model is also
9 (see Figs. 6 and 7).

Now consider function on . The
Chebyshev approximation of degree 76 has accuracy , but
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Fig. 6. Chebyshev approximation with precision �� of functions ������, �	
���, �	
��������, and �����	
���� on interval ��� � and their behavior by
extrapolation. The plots represent the functions and their Chebyshev approximations on the interval ��� � for �� error bound. The degree � of the approximation
is given in plot captions. The orders of nonlinearity computed for � � ��� � are shown in Fig. 7.

Fig. 7. Modularity over a set of symbolic models. Orders of nonlinearity of tree structures are computed for the domain � � ��� �.

the order of nonlinearity of the tree, representing ,
is 430 (see Figs. 6 and 7).

Such overestimation of the true degree of a polynomial ap-
proximating a univariate function with a given precision is delib-
erate. The order of nonlinearity represents a comparative mea-
sure and also builds a modularity (structural separation) in a
space of all possible symbolic models over a given set of vari-
ables.

Before turning to the empirical analysis of features of the
defined complexity measure, we would like to make one more
remark. Symbolic regression via GP is used for problems with
multiple inputs (up to 1000 or more). The problem of con-
structing a polynomial approximation in quickly becomes
numerically intensive with . This explains why, in our
inductive definition, we treat symbolic models as univariate
functions. In general, formulas (7), (9), and (10) should not be
considered as the rules for finding the true minimal degree of
the Chebyshev polynomial.

IV. NUMERICAL RESULTS

A. Test Problems

Real-life applications operate with complex processes, where
the true dependency between system inputs and outputs is usu-
ally unknown or very complex, and cannot be expressed in one
equation. To demonstrate the order of nonlinearity control as a
mechanism for preventing overfitting, we selected a suit of syn-
thetic regression problems, which allowed us to generate reli-
able noise-free test data for inter- and extrapolation. The target
equations for chosen problems are given as follows:

(11)

(12)

(13)
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Fig. 8. Contour plots of the target functions (or their projections) in the test regions. The dashed lines represent the boundaries of the training regions. Note that
none of the target response surfaces displays pathological behavior in the test region. We expect the same from the GP solutions with good extrapolation properties.
(a) Kotanchek; (b) Salustowicz; (c) Salustowicz2D; (d) UBall5D, � � � � � � �; (e) RatPol3D, � � �; (f) SineCosine; (g) Ripple; (h) RatPol2D; and
(i) Tower problem: 5000 response values.

(14)

(15)

(16)

(17)

(18)

The choice of several target expressions was inspired by
[42], which introduced 13 functions to analyze the performance
of scaled GP. We selected the most difficult problems of that
set, and still modified most of them to make the regression
process more challenging for our ParetoGP system. The first
equation defines the Kotanchek function first used in [1]. The
second function originates from [43]; we call it the Salustowicz
function. The third equation (13) is our 2-D version of the

Salustowicz function, which we call Salustowicz2D. The func-
tion defined in (14) is our favorite problem. This 5-D equation,
which we call the UBall5D4 function, was inspired by a simpler
2-D problem from [42] and [44]. Our GP systems appears to
have most difficulties in discovering the simple and harmonious
input–output relationship of the UBall5D function. Target ex-
pressions for RatPol3D (15), SineCosine (16), and Ripple (17)
problems are adopted from [44], with a linear transformation
of variables: and a few other modifications. The
RatPol2D problem, defined by (18), represents another rational
polynomial that is challenging for GP. The contour plots of nine
target functions [or projections onto 2-D intervals for functions
(14) and (15)] shown in Fig. 8 confirm the high nonlinearity of
the underlying response surfaces.

The data for the ninth test problem come from an industrial
problem on modeling gas chromatography measurements of the
composition of a distillation tower. This Tower problem con-
tains 5000 records and 23 potential input variables. The esti-

4Five-dimensional unwrapped ball.
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mated parameter is propylene concentration at the top of the
distillation tower. The samples are from a gas chromatograph
and are taken every 15 min. The 23 potential inputs are temper-
atures, flows, and pressures related to the distillation tower. The
actual sampling rate is 1 min, but 15-min averages of the inputs
are used for model development to synchronize with the output
measurement. The measurements (5000 for each variable) are
not treated as time series, but simply used as samples for a re-
gression model. The propylene concentration needs to modeled
as a function of relevant inputs only. The range of the measured
propylene concentration is very broad and covers most of the
expected operating conditions in the distillation tower.

B. Experimental Setup

To compare the effects of optimizing different complexity
measures in symbolic regression via GP, we devised experi-
ments for three optimization schemes:

CASE I: Pareto optimization of the sum of squared errors
and expressional complexity;
CASE II: Pareto optimization of the sum of squared errors
and the order of nonlinearity;
CASE III: Pareto optimization of the sum of squared errors
and expressional complexity, alternated with the Pareto op-
timization of the sum of squared errors and the order of
nonlinearity at every generation.

Note that the optimization of the goodness of fit is present
in all cases, because constructing accurate models is our first
priority. Comparison of CASE I with CASE II will show that
creating accurate and “structurally simple” (i.e., more compact)
equations may still lead to highly nonlinear pathological pre-
dictions, compared with creating accurate equations of a low or
reduced order of nonlinearity.

The presence of CASE III experiments is our attempt to blend
optimization of the structural complexity and the nonlinearity
with accuracy optimization in a “multiobjective” fashion. We
are wary about using a composite objective function, which
uses a linear combination of objectives of interest, due to its
sensitivity to the particular linear coefficients. Instead of lim-
iting the search by using a composite objective function, one
should pursue a true multiobjective search and use a vector of
objective functions, whose components are optimized individu-
ally and simultaneously. However, the multiobjective approach
scales badly when the number of objectives increases. We pro-
pose a novel heuristic of overcoming the curse of dimension-
ality of the objective space by alternating two two-objective op-
timizations of CASE III.

Because the focus of this paper is nonlinearity control, the for-
malization and generalization of the approach of CASE III for a
general multiobjective optimization problem would overburden
the reader. Instead, we illustrate the idea using a particular case,
in which one accuracy measure and two complexity measures
are defined, where the priority is on the accuracy.

Three objectives need to be minimized during the model
development cycle: prediction error of the model’s phenotype
(Error NMSE), the expressional complexity of the
model’s genotype (complexity), and the order of nonlinearity
of the model’s genotype (nonlinearity). The order of impor-
tance of these objectives is as follows: error minimization is the
primary objective and expressional complexity and nonlinearity

are equally important secondary objectives. Taking this into
account, the original multiobjective optimization problem can
be substituted by a different one, according to the following
scheme:

error, complexity, nonlinearity (19)

error, complexity

error, nonlinearity (20)

Computational complexity of such substitution drops down
from to , where is the total number of models in
the population and the archive.5

The experiments of CASE III are formulated to combine the
best properties of solutions of CASES I and II. Accurate models
are thus expected to be both compact and “smooth” (i.e., gener-
alize well), while not producing pathologies in the unseen areas
of the input space.

The results of the experiments are compared with respect to
the number of pathologies produced on test data with extrapola-
tion, average order of nonlinearity and expressional complexity,
and the area percentages under the convex hulls of archives
plotted in expressional complexity versus model error and the
order of nonlinearity versus model error spaces.

The detailed results of CASES 1–III follow immediately after
descriptions of the settings for GP parameters and the choice of
training and test data.

C. Data Sampling and GP Settings

As mentioned previously, we focused on the synthetic data in
this paper so that we could generate a sufficient amount of reli-
able, outlier-free test samples in the regions outside the training
regions. The details of sampling procedures used for generation
of training and test data are given in Table I.

The Tower problem contains real-life data for which the true
input–output relationship is unknown. To assess extrapolative
capabilities of GP solutions for the Tower problem, we decided
to select significant input variables at a preprocessing step, and
then used only those to divide the data into training and test
sets. The driving variables identified at initial screening using
the fitness inheritance approach (see [9]) were , , , ,
and . The 5000 data records corresponding to these inputs
were scaled into the 5-D cube . All records belonging to
the interval were selected into the training set, and
the remaining records formed a test set for extrapolation.

In all experiments of this paper, one optimization measure is
always the numerical fitness, determined as a NMSE between
observed output vector and the predicted output vector

NMSE
MSE scale scale
MSE scale scale

(21)

MSE (22)

5We use the nondominated sorting algorithm to select a fixed number of least
dominated models at the Pareto front to update the archive.
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TABLE I
SAMPLING STRATEGY FOR TRAINING AND TEST DATA FOR NINE REGRESSION

PROBLEMS. THE TABLE REPRESENTS THE SAMPLING STRATEGY, AND THE

NUMBER OF POINTS WE USE FOR TRAINING AND TESTING GP SOLUTIONS.
NOTATION � � ������� �� MEANS THAT THE � VARIABLE IS SAMPLED

RANDOMLY FROM AN INTERVAL ��� ��. NOTATION � � �� � � � � �,
� � �� � � � � � DETERMINES A UNIFORM MESH WITH STEP

LENGTH �� � � � ON AN INTERVAL �� � � � � �� � � �

scale (23)

We conducted 50 independent GP runs for each approach and
for each problem. All GP settings except for the optimization
complexity (expressional, order of nonlinearity, or “both, but
alternating”) are the same for each test problem. The number
of generations is fixed to 250 for all problems except SineCo-
sine and UBall5D problems. These two had to be modeled over
500 generations in order to get an appropriate goodness of fit.
Other parameter setting are given in Table II. Point mutation
and balanced crossovers were used as genetic operators. When
a crossover is performed, the crossover node in the first parent
is selected randomly and uniformly. The level from which this
node is sampled dictates the selection of a crossover node in
the second parent—the levels of the nodes should be the same
or similar. According to our experience, and to [45], balanced
crossovers allow reduction in the risk of bloat and also over-
come the crossover bias in expressional complexity, introduced
by the standard uniform crossover (for the latter, see [36]).

TABLE II
GP PARAMETERS FOR NINE TEST PROBLEMS

D. Results and Discussion

The solutions of each independent GP run are stored in an
archive that contains 50 expressions. These 50 individuals lie
at the Pareto front in “optimization complexity” versus “model
fitness” objective space containing all individuals evaluated
during the current GP run. For our purposes, all of these indi-
viduals are equally valuable GP solutions. The “customer,” or
the domain expert, will have to choose one of these solutions
or, better, an ensemble of solutions that satisfies customer
needs; see [46]. We, therefore, combined all archive solutions
of independent runs in one ensemble at a postanalysis stage and
analyzed the properties of the resulting set of
solutions across different cases and different test problems.

In addition to analyzing the archive solutions, we studied
the features of the best-of-the-run solutions, to conform with
the standard GP practice, where the elite-preservation strategy
based on the multiobjective model selection is not commonly
used.

The detailed results appear in Table III. The second and third
columns of this table contain the fraction of equations that
showed pathological behavior on the test data. Column two
is a percentage of equations producing infinite or undefined
root mean squared error (RMSE). The latter is computed from
the vectors of predicted values of the model and the target
values on the test data as

RMSE (24)

where is the number of test points.
Column three is a percentage of solutions for which the

RMSE is infinite, undefined, or excessively large. The threshold
for pathologically high error is chosen to be 100. It corresponds
to the MSE equal to . Equations producing these large errors
on test data are dangerously erroneous, and a high fraction of
them in the set of solutions indicates the tendency to overfitting.

Column four of the table represents the percentage of equa-
tions that have the highest allowed order of nonlinearity, equal
to 10 000. This value indicates highly nonlinear behavior of a
model and the potential to have a pathology on unseen data. We
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TABLE III
RESULTS OF THE THREE EXPERIMENTS ON SELECTED TEST PROBLEMS. CASE I CONSISTS OF OPTIMIZATION OF FITNESS AND EXPRESSIONAL COMPLEXITY; CASE
II CONSISTS OF OPTIMIZATION OF FITNESS AND THE ORDER OF NONLINEARITY; AND CASE III CONSISTS OF OPTIMIZATION OF THE FITNESS AND ALTERNATED AT

EACH GENERATION EXPRESSIONAL COMPLEXITY AND NONLINEARITY. FOR EACH EXPERIMENT, THE QUALITY OF ARCHIVE SOLUTIONS AND THE BEST-OF-RUN

SOLUTIONS OVER 50 INDEPENDENT RUNS IS ASSESSED AGAINST TRAINING AND TEST DATA WITH EXTRAPOLATION. CASE II CONSISTENTLY OUTPERFORMS

OTHER EXPERIMENTS WITH RESPECT TO THE RATE OF PATHOLOGIES ON TEST DATA OVER ALL TEST PROBLEMS

expect best-of-the-run solutions to have these high nonlinearity
values, due to their inclination to overfitting. Because the rest
of the solutions are expected to have lower nonlinearity, small
percentages in column four are preferred.

Column five contains the mean order of nonlinearity of
those solutions that have the nonlinearity below the threshold
of 10 000. Low values in this column for solutions of CASE
I for Salustowicz, Salustowicz2D, UBall5D, and SineCosine
problems demonstrate the “all or nothing” phenomenon for
the orders of nonlinearity of models generated by expressional
complexity minimization. For example, for CASE I of the
Salustowicz problem, we see that 86% of final solutions have
the order of nonlinearity 10 000, and the remaining 14% have
average nonlinearity equal to only 12.2. We illustrate such a
situation for one GP run in Fig. 9.

Column six contains the average expressional complexity of
2500 solutions among independent runs. From columns two

to six, we observe that CASE I produces, on average, more
compact expressions than CASE II (see column six), although
a greater fraction of these have pathologies on test data (see
columns two and three). We performed pairwise statistical sig-
nificance tests for solutions of CASES I–III, and concluded that
CASE II outperforms CASE I with respect to the error on test
data for all test problems (see Table IV, columns two and three).
For significance tests, the solutions with infinite errors (or errors
higher than 100) were assigned an error value of 100. ANOVA
tests and Wilcoxon–Mann–Whitney rank sum tests were per-
formed to compare the means and the medians of different sets
of error values of the equal number of samples. Table IV rep-
resents the -values for the 95% significance level. The mean
and the median error on test data for the solutions of CASE II
were significantly smaller than those of the solutions of CASE
I (the maximum -value is 0.0004 for the Wilcoxon test on the
RatPol3D problem).
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Fig. 9. Solutions of a GP run of CASE I experiment for the Salustowicz2D problem plotted in different objective spaces. In (a), solutions of a CASE I (circled
dots) run and their subequations (black dots) are mapped to the original objective space—expressional complexity versus model error. We see a horizontal trend
in solutions—most of the equations have similar errors, despite growth in expressional complexity. If we plot the same archive solutions in a different objective
space of the order of nonlinearity versus model error (b), we observe a big imbalance in the distribution of the nonlinearity. All solutions with errors below 0.1 (45
out of 50) reach the nonlinearity threshold. Of the five remaining equations, four have the nonlinearity equal to one (two very similar errors, and therefore, appear
as one circled dot in the plot); that is, they are estimated as linear in the original inputs. (a) Original objective space; (b) nonlinearity versus model error.

The smoothness of solutions of CASE II comes at the ex-
pense of higher expressional complexity. Solutions generated in
CASE II consist, for the most part, of “simple” operators (such
as addition, subtraction, and multiplication), but are bulky and
sometimes difficult to interpret. This excessive growth in struc-
ture disappears when the CASE III experiment is used. Com-
paring the results of CASES II and III in Table III, we observe
that the average expressional complexity of solutions can be re-
duced in CASE III (column six), however, with a side effect of
an increased pathology rate (columns two and three). The signif-
icance tests show that CASE II significantly outperforms CASE
III in the error on the test set on eight out of nine test prob-
lems: Kotanchek, UBall5D (only for the mean error), RatPol3D,
RatPol2D, Tower, and SineCosine, and Ripple (only for the me-
dian error).

In a comparison of CASE III with CASE I, the tests show that
the errors on the test data produced by solutions of CASE III
are significantly smaller than those of CASE I in all test prob-
lems (see columns two and three of Table IV). This brings us
to the first important conclusion: solutions obtained in CASE
III with alternating expressional complexity and the order of
nonlinearity, as well as solutions of CASE II with nonlinearity
minimization, are significantly smoother than the ones of CASE
I with minimization of expressional complexity. The fact that
CASE III produces solutions competitive with CASE I (with re-
spect to the error) and CASE II (with respect to the expressional
complexity) is counterintuitive and rather surprising. The alter-
nation of optimization complexities at each generation is a very
crude heuristic aimed at producing both compact and smooth
equations. The fact that it works motivates us to explore the scal-
ability of this approach to cases in which a multitude of objec-
tives needs to be satisfied.

The second part of Table III shows the results for the 50
best-of-the-run solutions for each case. The median and the in-
terquartile range of the RMSE over 50 best-of-the-run solutions

Fig. 10. Area under the convex hull of a GP archive.

per experiment are given in columns seven and eight of Table III.
The resulting values look similar for CASES I–III, and no clear
trends can be observed with respect to the superiority of any one
approach on the training data.

The difference among solutions of CASES I–III becomes ob-
vious when the best-of-the-run equations are evaluated on the
test sets. Column nine of Table III represents the fraction of
best-of-the-run equations that have a pathology on the test data,
defined as an infinite RMSE. The trend is similar to the one re-
vealed in columns two and three: CASE I has the highest rate
of pathologies at extrapolation. The only exception in this rule
is the Salustowicz problem, with 24%, 28%, and 34% patholog-
ical equations from the 50 best-of-the-run equations.

Columns 10 and 11 of Table III contain the median error and
the interquartile range of a set of errors that are smaller than
100. For example, for the solutions of CASE I of the Kotanchek
problem, we observe that 52% of best-of-the-run solutions (26
equations out of 50) have a pathology on the test data. If those
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TABLE IV
SIGNIFICANCE OF CONCLUSIONS ABOUT THE RESULTS OF THE THREE EXPERIMENTS. WE PERFORMED ONE-WAY ANOVA TESTS AND

WILCOXON–MANN–WHITNEY TESTS FOR ANALYZING DIFFERENCES IN THE MEANS AND THE MEDIANS OF ACCURACY VALUES OF SOLUTIONS

OF CASES I–III. THE �-VALUES FOR ANOVA TESTS ARE OBTAINED FROM THE � -STATISTICS AT THE 95% CONFIDENCE LEVEL (ANOVA). THE

�-VALUES FOR WILCOXON–MANN–WHITNEY TESTS ARE OBTAINED FROM THE �-STATISTICS AT THE 95% CONFIDENCE LEVEL AND ARE DOUBLED

FOR TWO-SIDED TESTS (WILCOXON). TO OBTAIN EQUAL SAMPLE SIZES, WE TRUNCATED ALL INFINITE AND EXCESSIVELY LARGE VALUES OF RMSE
(THOSE WHERE RMSE �� ���) ON THE TEST DATA AT 100

and also other equations producing errors higher than 100 are
removed from the sample, then the median of the remaining
24 equations will be 0.075, and the interquartile range will be
0.06. This is an argument for using archives of equations and for
being very cautious in using best-of-the-run solutions. If only
best-of-the-run solutions are sought for, then all runs where the
best equation produces a pathology are lost. This corresponds
to an incredible waste of 52% of the spent effort in the example
of CASE I solutions of the Kotanchek problem.

The significance tests for the errors of best-of-the-run equa-
tions are performed in a style similar to that used for all solu-
tions. We first assign an error value of 100 to equations pro-
ducing undefined and infinite values, as well as those exceeding
100. We then perform the pairwise ANOVA and Wilcoxon tests
to determine the significance in the difference of the mean and
median errors among 50 solutions of CASES I–III. The -values

of the tests are given in columns three and four of Table IV.
We can observe that CASE II significantly outperforms CASE
I with respect to best-of-the-run errors on test data on seven out
of nine problems (for UBall5D only for the mean error).

CASE III significantly outperforms CASE I on best-of-
the-run errors only for the mean error on the UBall5D problem.
There is no significant difference in the error samples of CASE
III and CASE I for the rest of the problems. The second
important conclusion that we can make for CASE III is that
it is nowhere significantly worse than CASE I—even on
best-of-the-run solutions.

The average values of the order of nonlinearity and expres-
sional complexity of the best-of-the-run equations are given in
columns 12 and 13 of Table III. The conclusions on the com-
plexity of best-of-the-run solutions are the same: 1) CASE I
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TABLE V
EXAMPLES OF BEST-OF-THE-RUN SOLUTIONS FOR THE SALUSTOWICZ 2D PROBLEM

produces more compact expressions at the expense of high or-
ders of nonlinearity; 2) CASE II produces solutions with lower
nonlinearity, but higher expressional complexity; 3) CASE III
produces lower orders of nonlinearity than CASE I does, and
lower expressional complexity than CASE II.

E. Analysis of the Evolved Programs

Note that the differences in the expressional complexity of
best-of-the-run equations for CASES I–III are not big. As an
example, we give five best-of-the-run solutions for each case on
the Salustowicz problem in Table V. All equations in Table V are
simplified in Mathematica, so the solutions of CASE II appear
to be short (because the linear operations on constants and input
variables are already executed). The purpose of Table V is to
provide the reader with a visual impression of the differences

primarily between CASE I and CASE II solutions and to support
our claim that shorter equations may be less convincing for an
engineer than longer but less nonlinear equations. Formulas of
solutions of CASE I in Table V illustrate that opting for shorter
equations generates many nested functions that may make no
physical sense.

F. Further Discussion: Areas Under Pareto Fronts

To conclude the analysis of performance of CASES I–III,
we compared the average areas under the convex hulls of the
archive at the last generation. For two optimization objectives,
a good measure to assess the quality of the approach is the area
under the Pareto front in the complexity versus error space. The
smaller the area, the closer the knee of the Pareto front is to
zero. Because CASES I–III exploit different complexity mea-
sures, we use the concept of the area under the Pareto front in
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Fig. 11. Multiple comparison tests for average percentage of areas under the convex hulls of archive solutions for nine test problems. Plots represent the 95%
confidence intervals of the two-sided tests for multiple comparison of the means of average area percentages over 50 independent runs. Smaller values of the
average area percentage are preferred. Groups are significantly different if the confidence intervals do not overlap. The least �-value for the most significantly
different groups is given in the plot title. The surprising observation is that CASE I (with expressional complexity minimization) does not outperform CASE III
(with alternating complexities) on any test problem. (a) Kotanchek; (b) Salustowicz; (c) Salustowicz2D; (d) UBall5D; (e) RatPol3D; (f) SineCosine; (g) Ripple;
(h) RatPol2D; and (i) Tower.

the following definition of the performance characteristic of a
GP run.

1) The archive at the last generation is plotted in two objective
spaces: expressional complexity versus model error and the
order of nonlinearity versus model error.

2) In both objective spaces, the following points are added
to the set of solutions: ( , maxError), (maxComplexity,
maxError), and (maxComplexity, minError ).
These points are needed to determine the convex hull of the
solutions in each objective space (see Fig. 10).

3) An area of the convex hull of the resulting set of points
is computed together with the following percentage:

maxComplexity maxError
maxComplexity maxError

4) The final area percentage for the GP run is defined as an
average of the two area percentages under the convex hull
of the archive, computed in the expressional complexity
versus error and in the order of nonlinearity versus error
objective spaces.

We computed the average area percentages of two objective
spaces for independent runs of each experiment, and performed
the multiple comparison tests for significance differences in the

mean values for CASES I–III (ANOVA tests at the 95% con-
fidence level). The results of these comparisons are plotted in
Fig. 11.

Columns five and six of Table IV report the -values for the
pairwise comparisons of the average area percentage with the
ANOVA tests and the Wilcoxon tests. The conclusion from these
statistical tests are as follows: CASE III is statistically better
than CASE I on three out of nine problems (Salustowicz, Salus-
towicz2D, and UBall5D) and is not statistically different from
CASE I on the rest of the problems. CASE III is better than
CASE II on three problems (UBall5D, RatPol3D, and Tower)
and is statistically the same for the rest of the problems. These
results make CASE III the winner in comparison with producing
the least average percentage area under the convex hull of the
archive in two objective spaces.

V. CONCLUSION

This paper introduces a novel complexity measure for cre-
ating smoother individuals in symbolic regression via GP. We
suggest computing the order of nonlinearity iteratively for geno-
types of symbolic models according to a set of rules A)–G). The
notion of the new measure is based on a degree of Chebyshev
polynomial approximation of a certain accuracy.
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We demonstrate the positive effects of controlling the order of
nonlinearity on nine nonlinear test problems, and indicate that
a similar gain in extrapolative capabilities of symbolic models
is obtained on other problems from industrial applications (see
[1], [9], and [46]).

One of the weaknesses of the order of nonlinearity is an over-
estimation of the true minimal degree of Chebyshev approxima-
tion of accuracy for unary functions and the approximate na-
ture of the definition for functions of multiple arguments. Even
for functions of two arguments, constructing a Chebyshev ap-
proximation is performed in terms of tensor products, and it rep-
resents a nontrivial computational procedure. For functions of
more variables, it is difficult to construct the Chebyshev polyno-
mial approximation of a given accuracy, thus making it difficult
to compare the order of nonlinearity with the degree of such an
approximation.

The presented order of nonlinearity applied as a second op-
timization objective in combination with numerical accuracy to
symbolic regression via GP favors models with smoother re-
sponse surfaces. On all nine test problems, these models show
significantly better extrapolative capabilities over models gen-
erated with controlled expressional complexity.

We observed that models generated with minimization
of the order of nonlinearity (CASE II experiments) are less
compact than those generated via optimization of expressional
complexity (CASE I experiments). To combine the benefits
of creating compact expressions with smoother response sur-
faces, we have proposed a new hybrid approach to symbolic
regression: Pareto optimization of the goodness of fit and ex-
pressional complexity, alternated with the Pareto optimization
of the goodness of fit and the order of nonlinearity at every
generation (CASE III experiments).

The vast majority of models obtained with the order of non-
linearity control (CASES II and III) exhibit “graceful degrada-
tion” by extrapolation. This corresponds to an intuitive expec-
tation that smoother approximations mimic the original output
longer when extrapolated outside the training range.

Models generated with nonlinearity control do not get singu-
larities when extrapolated over reasonable distances. The funda-
mental question regarding the way in which to obtain a reliable
prediction of the output on an extrapolated domain remains a
subject for further research.
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