From a460ce86b1169de0d80ad7dc4b28abcdb9e47cb2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 13:14:55 +0200 Subject: [PATCH 01/26] version 0.5.0b --- ot/__init__.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ot/__init__.py b/ot/__init__.py index 1dde39017..fa6600d74 100644 --- a/ot/__init__.py +++ b/ot/__init__.py @@ -29,7 +29,7 @@ # utils functions from .utils import dist, unif, tic, toc, toq -__version__ = "0.4.0" +__version__ = "0.5.0b" __all__ = ["emd", "emd2", "sinkhorn", "sinkhorn2", "utils", 'datasets', 'bregman', 'lp', 'tic', 'toc', 'toq', 'gromov', From 8babe1b307efa3539451b72f6c686fddc1d29cda Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 13:20:42 +0200 Subject: [PATCH 02/26] update doc --- docs/source/readme.rst | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/docs/source/readme.rst b/docs/source/readme.rst index 5d37f6476..d10b769b5 100644 --- a/docs/source/readme.rst +++ b/docs/source/readme.rst @@ -19,6 +19,7 @@ It provides the following solvers: squared L2 regularizations [17]. - Non regularized Wasserstein barycenters [16] with LP solver (only small scale). +- Non regularized free support Wasserstein barycenters [20]. - Bregman projections for Wasserstein barycenter [3] and unmixing [4]. - Optimal transport for domain adaptation with group lasso regularization [5] @@ -29,6 +30,8 @@ It provides the following solvers: pymanopt). - Gromov-Wasserstein distances and barycenters ([13] and regularized [12]) +- Stochastic Optimization for Large-scale Optimal Transport (semi-dual + problem [18] and dual problem [19]) Some demonstrations (both in Python and Jupyter Notebook format) are available in the examples folder. @@ -219,6 +222,8 @@ The contributors to this library are: - `Stanislas Chambon `__ - `Antoine Rolet `__ - Erwan Vautier (Gromov-Wasserstein) +- `Kilian Fatras `__ (Stochastic + optimization) This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various @@ -334,6 +339,20 @@ Optimal Transport `__. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS). +[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) `Stochastic +Optimization for Large-scale Optimal +Transport `__. Advances in Neural +Information Processing Systems (2016). + +[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, +A.& Blondel, M. `Large-scale Optimal Transport and Mapping +Estimation `__. International +Conference on Learning Representation (2018) + +[20] Cuturi, M. and Doucet, A. (2014) `Fast Computation of Wasserstein +Barycenters `__. +International Conference in Machine Learning + .. |PyPI version| image:: https://badge.fury.io/py/POT.svg :target: https://badge.fury.io/py/POT .. |Anaconda Cloud| image:: https://anaconda.org/conda-forge/pot/badges/version.svg From 4d32e6dadcb81f406a38ddd3534513d1d9f7e77a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 13:58:33 +0200 Subject: [PATCH 03/26] complete releases.md --- RELEASES.md | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) diff --git a/RELEASES.md b/RELEASES.md index 58712c8ce..1da43d36a 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -1,5 +1,32 @@ # POT Releases + +## 0.5.0b +*Sep 2018* + +*This is a beta release and is still a work in progress* + +#### Features + +* Add non regularized Gromov-Wasserstein solver (PR #41) +* Linear OT mapping between empirical distributions and 90\% test coverage (PR #42) +* Add log parameter in class EMDTransport and SinkhornLpL1Transport (PR #44) +* Add Marddown format for Pipy (PR #45) +* Test for Python 3.5 and 3.6 on Travis (PR #46) +* Non regularized Wasserstein barycenter with scipy linear solver and/or cvxopt (PR #47) +* Rename dataset functions to be more sklearn compliant (PR #49) +* Smooth and sparse Optimal transport implementation with entropic and quadratic regularization (PR #50) +* Stochastic OT in the dual and semi-dual (PR #52 and PR #62) +* Free support barycenters (PR #56) +* Speed-up Sinkhorn function (PR #57 and PR #58) + +#### Closed issues + +* Issue #35 : remove import plot from ot/__init__.py (See PR #41) +* Issue #43 : Unusable parameter log for EMDTransport (See PR #44) +* Issue #55 : UnicodeDecodeError: 'ascii' while installing with pip + + ## 0.4 Community edition *15 Sep 2017* From 3bc0420b97616062f0a42f412db13545ec7fda3a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 14:00:57 +0200 Subject: [PATCH 04/26] aupdate release --- RELEASES.md | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/RELEASES.md b/RELEASES.md index 1da43d36a..05c2edbb5 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -6,6 +6,12 @@ *This is a beta release and is still a work in progress* +#### TODO + +[] Remove deprecated OTDA Classes (PR #48) +[] Speedup Sinkhorn with einsum + bench (PR #58) +[] Stochastic ot (PR #62) + #### Features * Add non regularized Gromov-Wasserstein solver (PR #41) From f12153c0c1be6f6377ace0050201409ec1b7e829 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 14:10:04 +0200 Subject: [PATCH 05/26] update documentation examples --- docs/cache_nbrun | 2 +- .../auto_examples/auto_examples_jupyter.zip | Bin 99990 -> 118510 bytes .../auto_examples/auto_examples_python.zip | Bin 68178 -> 79057 bytes .../images/sphx_glr_plot_OT_1D_smooth_001.png | Bin 0 -> 21372 bytes .../images/sphx_glr_plot_OT_1D_smooth_002.png | Bin 0 -> 22051 bytes .../images/sphx_glr_plot_OT_1D_smooth_005.png | Bin 0 -> 17080 bytes .../images/sphx_glr_plot_OT_1D_smooth_007.png | Bin 0 -> 19405 bytes .../images/sphx_glr_plot_OT_1D_smooth_009.png | Bin 0 -> 20630 bytes .../images/sphx_glr_plot_OT_1D_smooth_010.png | Bin 0 -> 19232 bytes ...glr_plot_barycenter_lp_vs_entropic_003.png | Bin 0 -> 14405 bytes ...glr_plot_barycenter_lp_vs_entropic_004.png | Bin 0 -> 33271 bytes ...glr_plot_barycenter_lp_vs_entropic_006.png | Bin 0 -> 70940 bytes ...x_glr_plot_free_support_barycenter_001.png | Bin 0 -> 31553 bytes .../images/sphx_glr_plot_stochastic_004.png | Bin 0 -> 10450 bytes .../images/sphx_glr_plot_stochastic_005.png | Bin 0 -> 10677 bytes .../images/sphx_glr_plot_stochastic_006.png | Bin 0 -> 9131 bytes .../images/sphx_glr_plot_stochastic_007.png | Bin 0 -> 9563 bytes .../images/sphx_glr_plot_stochastic_008.png | Bin 0 -> 9131 bytes .../sphx_glr_plot_OT_1D_smooth_thumb.png | Bin 0 -> 14983 bytes ...glr_plot_free_support_barycenter_thumb.png | Bin 0 -> 19601 bytes .../thumb/sphx_glr_plot_stochastic_thumb.png | Bin 0 -> 17541 bytes docs/source/auto_examples/index.rst | 60 +++ .../auto_examples/plot_OT_1D_smooth.ipynb | 144 ++++++ .../source/auto_examples/plot_OT_1D_smooth.py | 110 ++++ .../auto_examples/plot_OT_1D_smooth.rst | 242 +++++++++ .../plot_free_support_barycenter.ipynb | 108 ++++ .../plot_free_support_barycenter.py | 69 +++ .../plot_free_support_barycenter.rst | 140 ++++++ .../auto_examples/plot_stochastic.ipynb | 331 ++++++++++++ docs/source/auto_examples/plot_stochastic.py | 207 ++++++++ docs/source/auto_examples/plot_stochastic.rst | 475 ++++++++++++++++++ 31 files changed, 1887 insertions(+), 1 deletion(-) create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_001.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_002.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_005.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_007.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_009.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_010.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_003.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_004.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_006.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_free_support_barycenter_001.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_stochastic_004.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_stochastic_005.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_stochastic_006.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_stochastic_007.png create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_stochastic_008.png create mode 100644 docs/source/auto_examples/images/thumb/sphx_glr_plot_OT_1D_smooth_thumb.png create mode 100644 docs/source/auto_examples/images/thumb/sphx_glr_plot_free_support_barycenter_thumb.png create mode 100644 docs/source/auto_examples/images/thumb/sphx_glr_plot_stochastic_thumb.png create mode 100644 docs/source/auto_examples/plot_OT_1D_smooth.ipynb create mode 100644 docs/source/auto_examples/plot_OT_1D_smooth.py create mode 100644 docs/source/auto_examples/plot_OT_1D_smooth.rst create mode 100644 docs/source/auto_examples/plot_free_support_barycenter.ipynb create mode 100644 docs/source/auto_examples/plot_free_support_barycenter.py create mode 100644 docs/source/auto_examples/plot_free_support_barycenter.rst create mode 100644 docs/source/auto_examples/plot_stochastic.ipynb create mode 100644 docs/source/auto_examples/plot_stochastic.py create mode 100644 docs/source/auto_examples/plot_stochastic.rst diff --git a/docs/cache_nbrun b/docs/cache_nbrun index 318bcf4a6..2781d81cc 100644 --- a/docs/cache_nbrun +++ b/docs/cache_nbrun @@ -1 +1 @@ -{"plot_otda_mapping_colors_images.ipynb": "4f0587a00a3c082799a75a0ed36e9ce1", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_otda_color_images.ipynb": "d047d635f4987c81072383241590e21f", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_barycenter_1D.ipynb": "6063193f9ac87517acced2625edb9a54", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"} \ No newline at end of file +{"plot_otda_mapping_colors_images.ipynb": "4f0587a00a3c082799a75a0ed36e9ce1", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_barycenter_1D.ipynb": "6063193f9ac87517acced2625edb9a54", "plot_stochastic.ipynb": "e2c520150378ae4635f74509f687fa01", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_1D_smooth.ipynb": "3a059103652225a0c78ea53895cf79e5", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_otda_color_images.ipynb": "d047d635f4987c81072383241590e21f", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_free_support_barycenter.ipynb": "246dd2feff4b233a4f1a553c5a202fdc", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"} \ No newline at end of file diff --git a/docs/source/auto_examples/auto_examples_jupyter.zip b/docs/source/auto_examples/auto_examples_jupyter.zip index 81022749f68ae40050fbc2d99aab15da58bb3566..2325d595fe85b87793691ae591df961ae475e27a 100644 GIT binary patch delta 6532 zcmeGhX>1&4bw9^xQYX%#IJKSN_OmzkZqnJw?z%^CvtZXwEaPKcuS1f0!)A7O?49oH z%rGQq!g(u2vikmp&3*|Qc(wwd$m zk`O`s%5SXC$T%z5JS=kzI7=Aju4FikH?I$)-9~q=w$#T@3KEZ_ z<#qQYM+K2)=y62`QZ+o2<5dt4yjglMOBXe{sAhN&CIKxtA7@xkhwuEE&;iM#`YydI*KvGiqDVUDHbg?j?^J;;cCEww2I7xH} z#9bwSkFq9jZPrIba^&ZLyCvS@*ZMSv_3$dbaUK%iV;$Bg%`uFHjC?T`%vmSGcJ zmt4RMj>4A1Wg@*>Eb!KrVGBKQUJp7D8SET1<`3jXdVwdDCCRo#Pk*uvc&6uM;G#?z zW^)tB(-c|Nso7Y3o5g}e&s7)em@QT!3>%`2fWaAp5?H3m;xwNkc9zN(IWfgcx+*JR zq(oZ8#tD4Feyu3#nkA%zHn14B!6hY)n@TBybxqc)<7?}7SPeE=0f@W0oKx3#awRBT11)X`?y*JvEBj8F|J>2{8+8!fX7;T z68(Mufw_E;z!TMs#=>)ZR+I5qjRg<5uT5paZWs(gNs*5`V?i6^WecLPV*uYZB?s3; zfD@G*7dTQzKM_dtI?T9xZ32mxVteI+LX?n(8KH;i|m3;8W~#oz!@wGi>FxC;YyG~CT%I2AA+JG{*XrRJQ0Jk@=ClRt`3`ir^r7j|e=9Tc z`-x{Vf8L5Nv(=I#FW$<$=>PG7q*J#OA4onWs^EsgEF@cLPS500nsAJVnNC=__1Lk^ zo0C1OmF* zi3TeNg9?}xp3%vm>Kn^~W3VR{*cn#+fT&iF3xIV=SfDdYqJoFm|B1*@Scj{-SHI^b z;0~!aRQTyT>|7TfJG-XFDzMK#xtR`LT1YjuKLG{ywI3}0U|0O$>HDK1tfGRR}fRTMeZE!DvRaD_BUQV7(f)UOrngoPeu zEz~J!3=mG1Rg<2gxqeEYQ}|dQF9slrLvAm!lfo3#^uY%i(ghVJEwA zVdI9Hg}QexHSGYIzwzGZuimKl`N-Sm$b3@ep&~0Pq}Vg=?+9JI(2JVTu4o@*OFUF7 z)(SqzX&SF;IuA8q8X6!ODBa*2%ai8deJHSPrFCJ_{PKN}n%#Kut>|ZkX@Qq;0^~f0 z_fFFu`NFe1cl)Y1YaAao}(H9Jl zlp=Lzxn3t_J87VZ@=Pqk;2gk-MN8qG82d5Q{+iW>a!wbDOO8u2^b*8im}T$-@CLKY zPI|PTD{2~PCIRh$*}~nkz}*3Y(SnAna!_{9&OVMXGm=4=#ZY zC&0isDFY=sjol8a*_2>*`%y=UfFM*u^+BLh;`#)Y%Rtd!Gt)wzUP2t{gTUqJ)gt6- zz&W^_cQZM%oA6RA7J~5M0d5NCu)P~vN)U@%V26; zO4SwgSh`!Jt6j#^rQl|!Fu3Cr(p^ZCeok8=us7v~>lkon3< zYc-`;FDx1U1m=~Z`~f~!8loBgLy2c1yJ#5arP)29$a zCw>SMtFE0v<`*F#o8NN|qSLT%!+G=G)9BGvKYj(76M58Pe(5w?yP?6?;5)V2=S#eW H0QtWG6WE-Z delta 430 zcmY+AO-MpP6ouzHW*`_!n%YA%%4Z9StW6LFrBvp#KUXDT6cOR3P0rZuy|1LiXy0|&rMsGwUgG;4>eOO2hMOfb1!^n-VdwO+XmBUgzBw?pQxljW846e=^ZAW{%Yj3;pCz#e@U<^I(-%s^HY2lN34R z2ZKN{rpVC&D7)xvRFMbgAa166EIV0(ppA~RxzZN+?R11WAp;>FWehm;4EG!YeJb>F z2u!Nb%^~nig&_`sWfi(O1g_>l&^a@h&Vk5b@RkP$SuEzj%c0!#D@SlX4;_pPOL-8e z{7TTMK@;c0HjO2BKLm$02zVH$WbceMx0ngxa{T?w|8<$Vap92$qK9>mt{%P{j5b2J z+!a&KR(#XI?_vF<@Z$#XfSrJMPXT zfgu<6Lz9O3V{ei-O&!zLZAcZ>Xz8D0MU$qnA6h}0wpDA@{xNBrwodBMP`5wW_r1Hb z&rZ@5G*$a!R-W?iz3{c-=pTddiRsV6pByQeePYac+|tGi#^)W6l^!LbPlYqDx4 z4O2~L1;domytYVB^zCTj5~U>~E(keI7HQY@?KJ$k=I3Ab6)XgRC#q&jIq8&ON~*#M zaz@o9Gn+HWtg4e4(Mao}DH1`MA%>Wf(yC%gikde_P85v1E&`mc=7^aU$#{H{$Wlrd z^hKWId_Et?b(4X-nN{_Ea#)fjK_Q0(Qx^=fZ~Ywm=4aVA^`1FQuYb@;|9+*81~0VG z?&;WGKpu>bjZaMulgWvJSYkXrF*z_f8jq2&fys%{X>uq&K@!7bqv4^cfg@ymB7X45 z@EE<;9^1odx}=x^U)c3q0_oZd`+|r!1T2R}6N3}Oz;kdQF$~`cra5BHt7Jy9l~F!A zs0dG9+DQur)h_O!-(J&F;JT5VI4db4=`DklkOijHRESZ~R1nx8^I1^`Wy6?Zh%;={ zQ1g0P1Zrpn%0!KDkVZ8(i`NSD9hu9u*flpF^e0h*$g=JLd3zN8~2TmGi?uo2ABeTiGdLx z=m&fcG^V0*Y|R0GLsNB=xx1qxNnu#4nh|wx6J;DiB#j(FNroz)6q6Vs$(g($Cq>27 zRSlvGO@k4N48VdAFnQTDz$7-EC}EU1L&zjG$vUSin2qoXgabl|fbWcjfMh0QOBJGL z17Z65u9~f7a|Z2Tuo$4OBy?+to56T&ax@m7N>ur}3J#kQ6;T&t$HfS6!{w5ON?x2| zc>)zvksg4>O0jTvt(N1 zIxsX&eeWOTAcfk3Qtz$J^y+UL=|i7tr01h#r&vi-=&Lxno7)I*T5me}^l|^+? z!7o=-xPg||6aP=NSco`YagT`>DiK+S;O^lgTuLz0*`y(z5@BHvw=@Osxrb`y<4wVz zsf=eI%fKvx?y_0|C$31uOYd8jG)lF}%4La@j-V*Pq{;xD%<3f8rFpf2US&1H(Q|j;pqm={#! z(Yr~0U8^QPDr8!%uJV)0(e>8syQjBr+=boeo%%m5ytU5b!GR4c>nh`u$;eRB$f>HC zrQQSm92XfP_UA7$e)?SBIvRT=ylr@FC`3xh8B1OZ2=0Ve`?K0wZ!di*_biS5Zh~Hr zYwHt?AZ*g7bM42S59>BOd<5Jvla~eEX-PR*$ffXl?-j#)xDg}AZhGG0VE;=(3ykV3 z`yoSO#c|SH)WoQNPWDrIe}BQqRbCAx_7-Q}4-Jea^F~&k55Sb`-nEOA1YT9fh!~E1 zsEoc36;kd6_Vn7NHn?WHx>gib?nNc>etP0|n`OtJoc~HQv*UA(!h8R!^LTLF@7Qrx z7oj=HYuNbEGi|%5*5{{BPqjSQI|Su}2(`PlM~(`HA?k)HLPwN>K0Xb7415!HmM$JR zNdM5+xD#Fp;FAF6O2E=A{o?iAgG-(O9+yr^qCyg2-bJ$SB>UnG{5l{>8V}7KFY$AW zs;P$aypZOPYxMOiM``@b3Hq0xcNbzT=QBru=E-_|NXlxOb#ex59(%I9J}*j{EHuU=a3B3Ymj?d=H?(oK{?iWuxI zz_4(0`6^^Zh3;7n^zb3l2O}^O3Np+QA#WJ?_5ngG7Vbb5DmKLcPiBHlth9R40hm$E z06>Sxz}}?9!`lgVuZ9??A`KW2FoKeX{*-n77N3QrMBjOIGgWI^3P1xzh8i5HGs%V| zT}VR#ZL5&+PC1-WCQu3X{ctdLtOynO)+O`4;bAUL#q)|2+ zFKC(wM+Z4AiY2?+m<|AtrBJrgxBs!OP~os;Cx!daU4ex;ZVqf4>0!pp=Tf4MZp)60 z{>;j57xr{gQY5p&8(aouC!a$D1q(!7G9Sj|3^vd5#mo9aP1B&ncM*I^U!V1oG1~aD+Qv)_8Z2C(9=blyq96g3kqZ z{Md4Zh;@E=Q($`5n%n4|-!v40EOgL5u!E+B7&;|sABiRe8OB&zl_C08i!!j&gCu4- z0cKxtNk}{eVn^fbc zqyCgEr04vg6+xd9^{D?Tm@~4EMg6_u<xma$Yq4exm!&rANqFIBU#MrZS8o2&eg}TzEnl;>`Om+7wcbKFfBRq)TPxmN z>wVOkHPw0_X1m3aTJIoxFD^b)>y27#zpnLu!kRVKc@J5;kJou0*|_92x%jO*Z)>Nk zh1M3w4|~^azR!BX#`o&t^L5^iH7|atc&X0YO>pIh5$)~wnmryI793nV@Vj#M4yBh* zw<>ND%as}yI3nEty=4jyc+hrJK$aahy3fUd9S)y^&RFs<(;Me^?sp>~%j#Rv!MSqw zM^|l@?(ivUwcZYPI8~lL_T?6j2M7F>epk-k`YHYF3tK{NPAJ;$NR-i^`K;gYI;XMS8VWjaBQo9`p&;;)6LFs zwH&{?^!szSHh4TZDy^c|d5ah7yP9bPy{^{DKS%NOH58$!czv zNg&o!ds9&eOD;502qIgZev%C$wy7Js s;LN;L;?K*+zyQLMa77G2&(wWqn7+`2QHf8GL6D(}g@NG^Dgp1@7n$PO$7qPtI8%~o#M zli1s3in8qv_&jN$S4rd`BPSXYjN}h1 zF(_}JoP4l$Jv=cSno$km2U61_lNpxmVfPa)x`qehsay zt)2IrqK7x**H4a(jwWHIIpMS6?zX`1jUz5LHnu7&bwmVQ?|t+`iZ)zA>b9{ln%LOb zO9TX;&d*NNq=VqP+q=8Zb932^KRQL+OB1I%J3ZK(q!qTpS^rT=$j!}tbaKKjF8+~C zC>XBO%U@_kWMN{$n3I!3#=sC2A5S)rDvCcpKQHn0pV-5(va{Y}0s?~Y=xCI>I+2;* z8YjPb3uCkYVfWj+Vc&8T2odtSx>o{EHgBG8caU!H?|1zueXz6D_@^CaLa6oB!`7UQ zJi+MO@BQBXejO>I9FNNC>gO>rF~gQAH)1$c5{GX~YbYyUdiMOeaL{=GVuAEkZS76P zSjGtV#cmmoKoknc!^2~{U#OKfw&u|oNpNs*sD2BzfH5l@8x|$EhFCh~l`Ai{rW+T( zYsv}enM_PfxOsZs)z_!y4kk-jUtV6m%E^iA*KD?SKm7BT>1n3S%uEH1y}6az%f^V^ zzkl7f=We5vlo(6Z5#OjC-Czjv3(CGrHimmCC+j*bO+@Pe&k9Q&S5~8^s%+M_JUE@BD%r!0K7S!$|mUv)X-m6LL7?PdZua zDs&(WUod&1PA0gh>EU7Y*Nou8YpfhN2L}h2mG0Qk|D{PiJq-w9 z7uK}PLi~7dL@6#V-rL)IT`Dsn0ja4u$i}j`wq~?&?DJ=)>u6_jr;Els+kP<9VYHY^ zF`5=4@6tfJWc9dVPHt{OQj+aB><-xA47I5sbI+9K__k#mSgSq_3-@dwGpK zElsNUPfZ0=C%DlthD(<(-w6n4nolt+R|*J_zH|3(RDimJL*dXdqQZGnyyFJbmG&D#;iRiEpv=VOFLmUZ1xk}dkuLV+WJfeoh4dKyw zH`f-7joD;~O0NfohP2($bk8A5SRwe-Uh{vdvhDv?pvj_8mcZK+%Or0|8=p#mgNNmR zfH*&ITOVypbH(zL+5YjMZEsCgNfpJRo+^Ti3H6ib_@s(|W}5GvOTlG=8yo#A%O50^ zD_oA(wVG*qqTTGb&*AUyU*tUbad@WLpIDBNknklQF};n~`R63Qe6D+Mlwr2CcYl4! zk72k;exgpoXGg9s;bYAopmKWJUEK{ z9;;w+6sgguG(7o!wBpyyp`a9%g`K$9!}7UPCGSO}&mUD46_w%XMxP{-

))JJpNR z6**2&1EF9rK$)LYkEXqAo5jTtQzU#w8#E z><0Bed=3!ceZ$*;j!?h-^)QU+iP*9Kw_AV0Cr3+yAJp>73bOI0rQLM38Y?qR5w^z5 zeDaI#=;$aL7A8D4R@``q=f({xSgkuryn1u%>yd$H|LE>r;V)L(KRcXNN)|LFI&Ab> zdq&Q#IEVScmp3=anVDU}=QDg}g2Te_8JU=dAlc?BT=M=i69XalsjrVt%Hw>iZ6NYV51mVd?LyWfY0$>``J zZq5c!_Vx9RS6btnJz1s#01zkp?-C@|yR|OU@vmQpe)u5v!F6_KdmKuc<=*O$vWA8@ z#|P3|K3k0XWhN2C4B{4$LnH!@uFpI@oYro&e>7I60E5{n4?627yQ>xWZ;d;eS%#h^ z@aU>WxyVLqo%m--zXA8y=U~SX;B_zk5d?n<4!~8;f;ww$(f_FQ=z3hFQk=G9jVp6e%Pe z<60MIudn5;=e$rw*Y?)FD|Cx{t=@MWudr0?@!tH&=~(mAs>e7qG*tCZ%SqW#C7_Jl zN?+1$f2h6$Xs`M95VoxH!bfT&tC(=QZ2qaR#5T2xCQ-P>PrN?;C1}hwxjY( z+D$d%Qhil5wU-H^4a|P=434=Vi+o5RFiislArDYqHkesKV-VqwZ*8Rr)dW-do=0eh0LJ6RV{v_s?KlPMi9C$!ou#BkFj%d=J)n+aC5VBaCEL3x^oU9 zSXo&SgEEJV7{oSa=1&|&Ezl0>TJ^Dvrrg<{^G2bL_J-C98eyuwC{B;%}kT^o<}vt%B1_ZXlndkL`6jn zo%P(as(X4OKJ#RSiBZy{vw}&+?+TQ2g^o~SH70WvCnqON*>##}qB}o7Pr2#J{6^f_ z*y-7Ec361>PqYnbWMyq9_tdRjC} z^h@0!Hqs?M-}PqII)2B4isUd-IK=+IT{JxH#-mVJNIIs;MjzJ*cLy#B=L<7Qgks_b8&4cOmgDPS|I4 zk;mX9K&t4f&gyu3UMsO{rbwuA_ajqyrlW#zVT za(1_+Uh;Gqe`?6@o)ItQ72}v=VBe8M(Fk>?irQa)^4BI^`bpLJ?&0R7eaiL3H*X>V zS}(xAt9#F7@~_Af+DIqA{5rKudy7cks(h>Yu?isE(zqyQ4oPa;jCh&ELTc%{*WS_eYs& z6r{}6h=u%NYb<4I0YQ>Fe;S7$M7|D&U#ur4v9a;O&;GQCKE-TDy<*+lz!U5SGh@DH z+{#smqE3-;XPXH;aURH$V?jGGogA-ZX_Xq^@Y$?_^yw2&n-{IEa}bf%F#&0f!#!MdW7H!Abdi*Pm7J$&zA{PK7 z803((7aWaQH}SN zN*)F0na1vJngH77lST$bUsg;^%IE{?;9#r%e(cvmH=P53=c@wUr~ch~K~+25h+f*)L{XOh?mYmv@Gm;hL;V1!Yl}H`Y$2Q$e*qe0a^R3YF9{lZn zs(cFyiq8ymKy3d)no{^#s~J7H`xi@H%k>7o`qb8x(fJAxU2S?u63QMq)YSUtIaPmm zrH`6m1P{Am&ke^iE$C}ZeO3$1JUa|#e%KaEis1_;9l3Q5clz)YHch&S6lq zs7@NFj*aseF>h6uIoE_6_cl3*y`iWDuz!syM};yIR@buq1wp>lp-N&G0VS8k_jmV} z2{y?AKs;B>6@DLO0!ZD~y2J~CdS|!36C`qce6UGrYnPs`esYT1vl$*9COUC zq=3!lETNyTnj|9QYG%f~vANmLlvSixZZ@4a$gM)*C1sjATToRvFqV^8i5t(aYG!6x zDyzedj-f|BUJoCO@1dng@Q{{~Ax=w6V*piRsFGK&nDypO8Xyp%adD(T1?N^)!T`X0 zUVXA8I0*Tqcd0H=^)8s_}~V}#L(+R>Wbl#yY2@X;w)G4~UQ2IRD~mw?JJ0>K*B z{|wVfTlNSt{IzS>uKWFA31C6A4GxliFVMtC9R2%;g=p~kLlUEiEhi_3i2E46?j?oU z<7Q@NZfT!1 z0?^Nf_)%6s8{}j@S^1XWkl_g#fO-DzIal%jkd10~= za12G5b|k_)=ib_h>z?=SqGwnzx>)hG3b#yQZ%3`9**03c& z(#pz;`66`o5K0gh;^T1=ySZ0|>$gzvS**hTzMSne6 zdZ~HcvKhFaIV25UMAbqy3 z?f(4wmFt9bV`1SLpdq@gv2t^kM(@pb0M$*NKw9nqkagW{PQI?LuI=krlFT@x z_<*gc`V%N|ARyq|yL$`>G;ETMjg7g51?{EZ zfdKG*f2GydrjW1b%O9VJ&n;M06{LyUlfV;)!jPvRJ3o2yB+lyz9u5v|q8tJv#(}Cs z+{c3W;4p-xK}vKEp#Pf7R9!F(jZS6^^11u@>9KZCazaAz@3C?WxO5wU@)rM%Dj&*I zinufV`dE1!2up84r(FGBK+34LqqMeGkQKNg>HPCU@bl--=K~!au9ca$#zsdI`TF`w zAME5Oq^3r|<#GXMD)!v+T177{+2mRS02A35E7IxN_T@s`VsMaRplpSG+_=!6f301P zKXqRv_w|x3+e!J9rHox=`)*ieLm+#+L^+Tt!vJH#D5tV#dpZCaKCenAi*TgZy3U4{ zm%AniJSOE1dG~8;D;5CLJe1H5V0G66Pkq(X#EBv7F|w&zfRj<#z9oRPL=HNp{=q?^ z!(D167famE4OhelmLPX5k|WA}HQq2k*YELMu+Sz~mmk{ZMtX*VS~^8qb#5TZ(%THvXFV`%a@e&Hy+x2 z7%kMoMp(GIl4fWaEIfMR>zfVbeZ1B+Yu*qtHwlZZ$-*K87a22iETFB0?fDJ~$V0F} z_14D(`am{~PfoV4YxVhKrVHu)+dse@0=Y)xuseD{a3VT%c6NR{WZoqZf?@Li2wsmE9!sE$Ut_=ybbwVTX%!aB%`;uNiiT@3TZT&8Fr z{dj*HgfU<#J6RW}_&sqfN`UQD157L|Sf#u-!eJOz5HAQcfKxIE`B3UY041!~uakjD z(GC=D2-3Dmy$3FXxD$q3ek<1FgS@-2F;OiMcq##87~8;Lj7@C-2KFuC|I8^6ujj*D2v9e-=oHW0&;iRmr#>dT#4-BFMD75?5 zlw`oawF1DFujW?x~%`l59-Iie{@0pAir`2M@dPkuCY<> zuN2GEJ#tJmVdNIr_(%VKm%IPlTT|j%i(kXk%I@d5*?ftorvwB!97N=)*;y8NV^^_W2@%0uo%kzzeUIyySdzaQViAPaR0NHEKV#Ky}8 z@r70{uxWnfCD*+>lOLUjN*~;8I{n*^(dI!lh{?p{e#6#48CdivflwK{0otaMtwvf& z4-N>>5TFfKi`_BXJ3CKueAoIM^TKZJ6pd6>S7R#n`}h2iCV81+^}eq`T1G#pML)+6 zrs&p4PUAqBY+rQct&y-7SgoON9=cX zKS>b0;D44L-WOq{07Sy(*zaH?0;n1<6P{Lx1tF^uPCiAOs6A>-6hP;j>qw4KcuIDq z&OlpEG(6nn-;o4Y<9J3Dpp)eds9-%qic`PT!yWlXtf*-$>E)NZVZ48CMDWrR-i^102k2P2@!h;3mU%DspFcxkK`#IRG?8)X zYqd}0Mo5ysta>jSgRrsre6Yf!7op{(9D})yo;PwetnvyG0PckU(*~4`hX%+MW`W1H zb@lb1y1HT|JUBr&}snU z5-I7;^zyOa7-lWzIE(|R0@KC0bLUP4B*n-^GLd?GZuGUJQ)K$3J1Eq;^#Q>gB%kc> zYjgASmR?hUw%69y{;RjtxhpCv>V9(Itez#y1eu}(YTgiZBbxqx<{Pi~w6CmO`t^(L z)~!hg_T_8;MRmf%N4j}`Bi8r*5YQrN25FZCI^WpX3Gwk5?EfMpgzC61C52W!L#k$Y zAuo}q24|{cX-rcUYio-91_5*^2T~_$|JTNl)&_+Ti1nPA=GAuh#((~7pPijuO^5zN zk_4fIloY*@kx}U8aK4&tJ%`w?6rBhvj;nh8tK}c?@&sc{ zrcQV;J|KW}8oCpWJ1}r%@e1aSRB*|pCTUhlqm8r&G!@m=w8@t$sN&%_44B_6*=RlN znl^o9CVZ0-AN&aq+aTpFf7&vSQJgT0YLmr+wLPc-jF(kKqi|}w|VoY*N`3)(3 z3O7BSznc&245{o~=sezE#@P4u%bDkX;VrFrs(_{;Vh(S;AtKWGZYX7t!j075O+~^R z8-`nN1E_a4u}t)fR1%Lrnu3)hL=PCdpd|cvk+|7gdm)x-hzA3 z|B^+bxP%C}J$sZ<|! zRoeAUCs0SBenrFFwLhnnA8;qA3v*|?1Xl*pBk%IVR0JDTAh@bM=BgtiaHF2oR~!vx zn0X|C*}|07pK0G8X`JcI!gt@i5w{`A3 zLGi74yEcjPHdq%Ji?-R5-beg=jrON~gv7l4Kd&kkMcaBzacg4X;(qRi+{gj3W_J(s z)0P%15oNPX+Cc~k8xokyi3V@tIzPRQTBjl>e%t&}>h7-~3qg+rp2(?hx|Ntd+^Fqg zS1M-iT`;fLhUPGxJr-uQF+=SirjY+nsMcG+cWN3bBU0FgTye-I58R^@S6gdXe=K-g zD(^M2d>zDoEux_TYyWrD*>9VaI zfw*q}l~E_`o~;EBrMwNsG}4=1$c2oKin5Li%>@6(oaCdw1hVF_TRt7tNq#9Rj(kC97}1W&n3FSW|AJ|Kw|`5 zj2cTsCxQb#fbf`@5Fp$w06^IWvp^I98W1XM-JK2kD29t-l#Aot6^0C-<Pw49Vil?m;td`vAeJnD!gyZWURca(YH0P?d|RBQd{%$!O&5lI!@W!+hZF9?d;}M7PNq!oSlUqjudKlVN!9CPJyiD z-d^6)4>@!5wlDXF?yK{%%5$KV;;_#C@h}k^z3^N?*GW_+z3Yz8U;^I*3WaF)EAo#~ zVB@9H<3Lkk9vdSr0Vu+OHcD|1#mUC?n<5eEjB~%sgO~e* zpX0{_={NgXMww4Hv`sgL2s|q)%K11f)EfR}hI~Dh<=NYy)D|lvfHV>? zFfiEI*w8W!_V%I+3hWc&cJ}u8cTPc3zbYz93F?pNsY${2`3_RKPLQMApmnE|`5h`N zaLDB*dOy%hQ3~JI(D`b?1eE9xV(tUoc)kZl*+D@=IR?3kJ8{VztULsU^%RDcSQ4Ii zhK>48gVNXo=>)*MCCBcdB6Yer$Up|f!Nt8QD?8%`UMq~k^7idpz%pWDBLI!YKRTz) zpWdAD{SV9oHb;~Oo)^qQ1HP_V5DaDh-AnHNhzFAfuu|Uec1uzu{ru?6CdnYB%Mk>* z%ls+lL9Gk!OhEP05-FKLz?U>^odT=^4P+Q8HcJ3PLITlxK_Y!7cHQCrJi>&n$|+Ix zyz~?*Zf9ooSd90z*=8UO;6|V?RkMoZY}2KOgx}$dx;=W77|NKOT|2Ysq;um z8ohx&i;cZKHxm%I@iE|D3DCeWT~7g%1qVV~UtfPhC^~xSmug~jGY2x!>%3`rD8;NJ zbm8YmR|6>u?U3JNoNGx2okGN{DqCBLVvk;POgGv$jMcf_PBaT@-oBBZ&fz#Ctup-k z-XT58E)<*+d6Cre2&mg_7@-PU7dUu$3m9#!$~MX}N9o~1-r*$|as;$Od;Tu>?|ivA zi)lWB1EU)@D8|o~FBq(Pm4~3WpYo;L(!QsF%I_Zw2j8yRF0xWdfLQvk)Rb`iCswXf zlnRTMR?g^G-GBfzOVAb3S5n?r7V(r~uTUx&uAzIa9KqZ5isVk||4J|w44Vx1>>jVN z`Q`K9QzyC}C{0Gk)4fe8b0-mX=%V}TNPHw4S@BSBIePFV$6UWqaGWd!RX@W`>T+kt zMd9A{o!tkV)`&j8UIFXZQq-m`f*%pu2`;nLvm}bqWPRpYvR3b0ZO_8KIiS=Q%S>}z z<|eA;8@=U)aStPun;{n)Rqo;3-@=mh#H)L(HeuL10C_bC?7BvS zK>p325f{-ie&NfHLP>Dn-J=wEfwCdTRDf@5m+cV`9%30be!Mowr4sU+iSnw9X|(@% zqru2uXu0}cJhgqaJ6ecz8b_$V;n>oAgA;Ic^`$%;ArP+t=)bjP+_L&I#dYsh?7Iaw zwo7#NZnxE2Bmx-=b(A=QHYfR*lAsM;CG5Epc~WhU?b^)QQc9jsEDV+RDmMy=%xNjj zUyzU&QC7v0@NhW&H54 zT)jp1*so7DLz2DWX}KBh=~?h}V{j;OQf#sBb39~;0rtUxm6H|fMGB8Ps<;!z8k(<( zNa!2$`I|>;uBpHJnM!zmvAh-CCO@?KdpX}rH*TyT&QNLm6Y}WT-eUZEECGi$50oux zjy^w%wt`Hohocl7g|RGv2aCPN%CUu-SbyL+P0=3h8)Vzv%g^PNdGfAGpYO6yEK`XW z@FGBDef)WO2qU8$pT1f1H3#0;iXHA~eLik{-yH?vgTa2a_lpl2KMrfj)SESm@lOYBdjYmIucS)(Stn^v1V$ zx^5U!M{#L`Q`Lt0eg26-H?=$;yGq;keA{aQ^vjpDO7^kUPqRi+gsrflg-5L-Kwg9e zXoc{H2vm0Sm7PWTz?Q1Y`qm}7L+C`&!Pv-VvjHO6r^ajG_q+mg zzrdlw?{nEu6KgyhIroc8wTP3OkBL~X&^!oN_Mh^`U^>rhgK7?X;_WXt*^0h=#xe_} zt8>4*Rv5mD(E=8L#gAThazg8uLacZ=h%w?jP(g35)XJ}!R`l@vL{&*wn2`|_4Cr-f z%~k{j{kX&-;t4p<-2-cBg*#Nqh>#0Sz12-TME^R8Q~$)U?*2s0Q@%H0VTHu28~k=R z`>nAfdif!=x{M|P*Kj{Gyq=-);WR^raHNFWxCg@kiWh2Ji1{CI9W1-Yp=@4bhV|YV zD_p&0hFu9odetai-Xk9VJE{B>NzVR^w{#{Yu>tjS*BBJorS{@7E3(4o! zi=FsY;~&V7GTs*_5ec3$nX4H?Ju;a5*!JE?RVnZN!%@_iyZ-(bXMUA7jO3}rm^*f& z+$TSlR=Ho}lrWsynl5o-w87HSVtZL`#$;GOEXDOyTH`+1_HwdS(5bJ*iiYjtRW?9q zdDkS7AM!%TGf@tObuzy9`Ki=+_h&D#puT)=I^D*eTg>%B{jwgvJ|s}~J>nmF4ZM9Q z6kxu~!@q-{o^-aPUouMTjtQo}f%@}Sn&FM^uPModB}5x{7Gk=Qk0Gvp$N@#%`Rj|q zUv41=B~&D!+enZ~Zg^y5l-lFQhdGLc^p#K1tMVqM@vWatw-CPwp?WQM)ml(6=fPB; z%B!AvUwO7J%<}dUXu4gucvJ#2V}(^{H8flxxmE7EYv%aH5+z9h zr#3CDS#lzi z!h(_CbO{$mBfgboR8?LpRZVIaj(5ViwYsweuvFu&~v|b5dYY zuv%4jFt__*cJaqj9ieA6D{C>#Q7IQB`ziMzfnEPs{mYxSpuyx!#izl^n6Fx`3nM&SU-1LN62271TYNrB0`BQ9cgn^f&TI`^;}TJ5M&n;9$<;uN1h2=qcJQdthZelnWy^rOv-Kj)p+dzjL6d+iG|fE`vCc+ zZEL#igQHc@{GCcaT)p>)GuUPUTIwNj(N{RF!VB+Qhc|K#o;wet2K+d!H}J$MZ@Na7 znKv{0E)r{K>V%LQ!61H(fiximHcL_@fkofa;qteub2Bow)|JNnuaWNVR`S38E?b?l=#_1| zRcc>CG#zurzkcT=jiL^Rhkr9=Vll{EIs5i`Rb@&E1g!JaX@Kw{ns=h!GvvnFI}O}B zcV5Nxym@*+M@Dm&-CDq!a^UpNNE|5;WR3&y_* zHcY3VANsbd!BiT}bc-6~9WYlBHZ?V2`j{roel8axG4e-Haw9O#@lPPEUUy$WF-mz|0>!fngruFn{Xz!6Y>kpi zA9Oj7m6<4%a16=`xhx+>@v3-zFpRGEd#v@h3zI|&jYI*gVPY_(x;MOVN-QxiHu3k> zt5-2P-02B+)xIC5FCpx)q#Vt+kmmQl@$~~`6!?1s(<{exT4;pKP|%8EX3&9-Id~7^ zlag=^Vk!OJ7i3XqmG{4nh)B|f?sZ$g8b@DhYPx_akGLzI-yYe??;pr!KOP2Bszi<< zkwy>Bx!;70l2~>1JWNzYjB>4d!&oWF$zfoN$SIk+i6>t&ngb83%x~9VV`Y^C{&DEr znQa^+F!uw0flt}4qesw%0GBu-#57&^gVbZxJrfnIg~g=U?#p@k$me(wX9?`7r>P7v zct^h&5>8F)5KX%z$&u_LNT6-tmU^yH@H{LmY{;FIloWbKH2P$R7EiDSP91^-B^$aPC2)-1Pl|SXJD5|YNIRhy+-pDkD3ab#q z2u?wbk;@!89$E@mhC_dMcQIyA@SsA&p4#6G&T7D%5vA4E`fw^1x%~ANm#lo7C?i1< zAHziD&`q?n**RgvK^+?l6{(AWfLv`CnUgQhqXLOZSA&Yc0=#aP*4EFV51hLQ-KcHg zfPaNSy3Lm|*Ekn6YYGQnbCLu#>;DjKDQKJos8o2J`uyf`ZLPJUzGfi({VTb)Q$eucZa(w`TPOuin28ZfcIee&OqV$BAT`uauYFU&kmzPE(3&5Oh#Lx6Np z;V{I8@kE1_lU6oB0^^dl=_Nz7fd`MAiOE?4teis_pB?7J1h9R}&#!neu3*I}p}%jk zvf>QPpHktIFt&kb`cj5Q81O<^Yj&`bCp`L~>v8DX6U$clcGyxf<#NtNY<=w7UlZ>=zV- ziP7ZcfA1ze7fudE4e)f{o#G;Fhgd_U)t$e)fKQ+wh$3zicYYPCEVJjA?d_~}$9}A= zUC@#@%z3g?sydOQf#PC^G@m`E3ZPA5r>GOdr5P1Nf3JK!rzWcYbBWDR|%jvT;_~3_urD-Iee2z z)PsDZj5(-LUU*1Ddubp8D1*)A8xO;&?l?II>y?1*4%BMp8%GK1RFTW(pOrKahkx(^ zp@>tDCUVR*A9hMrjTR#x{ivA9;&dD%Ns)Q55ywR6G+PFVpBI=J@4%NdHg}{1GVlHR zDCP3np5NTzY*MUZe#<%i(O?jYaxan!N)1fayMr13oL6yXq@d97@W2mj4pI=>A;+6H zwcK+Zb%fQ!J}YWu2A%0mNa#8aGFyyXtGt-7cZ&R|OCNJ>g_4m72ln^gN*w4N{vzl^9jBuI5Yfu*M9&~(cH5wi#2f4jiIW{)OzZK@5I`rk8 za8;mayeJKliooV^s5BFXBU|+=orZ@4>O;k<`EG}0%I6{?=+^=Yl@`?g9|LA)7Sakz z1-1d6UYyqsgTyERu;r?_6Pe6)Vg@Wtxl%8&bvt|frh_-*=9PCQ40Ugp(=2{kQelxh z>$DpDk>_b|@s+Vs&V{kUyR>SDEETAp?$z@Xb9V;1zEB#S@aQYGkH#V+xpbcqP@){k zZr$1mz2Q{oh0>jvd1|0el)$0&XJ=3@DK@-!161UfjqcdvO-38lCu3q#-Z+_lmwP|+ z2DlboilV{B0JllkU_sL>#9>!*hQjp$Ms&HMA*!Nil42u!-(%kYpiw`%(RG5tVa8<5 zf&aNaU-1J(NNLGl{A?g4UjQP93Q8&fKii3)SnlrNv$W!0RTGMEy^q2{!;GWx8-x11 zmJU5T@a7JjZLNiG_4Qc|E8Pxu@ID`Fg-9B>JzCr*)QW&Y%&ieVF?W2ds-$2;4Y*Jx zzkr6C-|n#75f>L3Lm$B`@FeucZLiJd?PrD3GcC=lc)!|o5})`-x!(Kw)#{!?y@gmp z5-8AIH4l@HCg~}#M#{^*#9k}p@~9V25C@psy(@h6^jPHEd%Er2L6cuG%v4u&4VmqZ zJ+v6pZ(#L(2KfHc>d>_-aTeSJRD{fiHShUZr5Ppsske8?OK;tH#LGmLTEZ-Yw(ak{ zS%gan)+3l?Wi4RSHi9My3d*h*A%SPFV!K6-Poji3A)bb?OCGPp(vAczg&Q7QPKsx{ znC9oQdD77FfYB&LoEY{7lz}S{U+P?f8dKhDY~3b0UGWc)r5~?(xd;NQh6Mo!l>>?M zl;K*TvOp*){`sGa&OqH)hMb|jmoX!b=MesYH@6fQ$(8*4_{^trs#LGupJsLX!IisS z9u%U|*x0a=BV1DSN85KRFW}r$jshm_Ab^!qfcVCEi>rI~aI*v^sx&5+>JUgRpi9 zBZ&|`5*H6?=GCplAl6Hu2wPbv#lCxHYacbya?1y+tjub_eB~ib-qPO~%p{&_EO3&h`t_NLm7hpi88I~- zyg8{*Y0suJzFa$tp0j|}Q_CAdyyS}bAusQRd-$81i;3Lm8a#<0Aa$Y7GJXhw2fR!% zk1MPBHax)SCtsi=&ipbmj)qcN&>TDf=w|=mAEmG&{L?AIP{Obd4syQz@*G5tl>ur3 z3k8<4?dwbu&^`}(Vsyl=lyGV`NCwS3yL?y3^s?7)uI}^4TSOZZ9glH~{x+RA80vLT zo9ccfC8jF*LS{q@rKQ(vkv{7eDg~`wqhI}9x2}C%P5w^ zAEoK~8cCYWKI@C@-Sr=w`5tOe7?Hu-xr~h349p|W+!s5^=(W4U$LW#v`s!<`*vzz$oZnE%rnSaigeV=O^{OH_8e7 zI&03~r~0|bh|>4Oxl+zC@p2EA%dBAcAtzU4{`8M>nre}n(_Pf%-94Q1quh#A87@3H z#wNTQsl0qd^Ez{UC^sa(>Yc{&$_L4#Rdy|wCx6T=&I9sudGed26DnJ_pV2zZHq-3d!*U`{DO%AzMw{ZO|S(Ae=CL^VM`X8}6 zMG98F@-PfqGs*Ba`~ck%n`YKeP5r>(n><`8@<*%O_DWXHqoZ}boi5uWH|S#Lv$OM3 za-sK7b^~O#6U7EJ)(FXi!2lu#Jn577*G$E|3R8bnei@{hZv6CVfu=~2*rMyQ#SmL% zi%^2(qaW%V!R(6RCzX|uB6IZOmEj<_c2R}|^7Oa4)dk@BZCVi)V*xlhmy^66C)X+U z$M@z1ML&YM3zF~><7f%2KizMa#5ICneS_=c8~&lh@V z`>(Bre+FA79GyT1o$E}+#o)dXLsIk4satB}LQwERY!ABl`0V(^nzsJ>J?*1#wv^5& ze9N%%C;D(JV&cxdH&@E^Zu(x2f5p*qdpkLNr0k*I(8&48A1j``-(w1gZWh^*k3{~% zr{nhfg{-Q$5Cf^$zE6NVB&nC+p6{{<=LyO(gZWlf1MAN;WhrY6LsWyKq@>loS@4~A zMM-+2`8AUTt?*9TL##}G_q}Y}9mFA4$Iw$z zuV+f?ELl=z;>R!#c8~%EdTl6xLv}ndQj`<69-&O(c3M|B zNkfAVvPy{D?eo>CeQ$p(XOxl5l-IN&TwD3+Nn~d{Z%BS%pd0}g zdfCFURUSB;ab)1p?WsRAOmIq6e915pG+W3hfobAxKC@tik9!htCUjZcb(}S^WofBB zORtm{FNB1JM9kI9(w)-i)iW&N>aCLU=;W8xmE@F4X8!k1cS?1X>S;^S`A-9raVgt8 zD)P*;Z#+U_YuLS`E!#goX}dUMnOiONvawMG+7Zo6JXLqq7||1l4`$f6)H4I>TJ2W- z)N^CzT~AY=V}HvHbEx!Pvaxn`R2immqwJtemsSDb)SDbJ= zD!ASK6QOtxFy=*VeaZ@=?m0bE=)bQVUR9~prJ_mGcMeF>cy(L5Lx*;j6REkf75rsJ zCQguJV*yM0Fnu*=eU#A6Q-{lqP0jmPw1e$z1yaJT&9}RvS%&Nij@K$HSK^D%s&sA1 zqO;w}EB`HTT$~@aCS+#Df-P$x?ItO(K=4>Y6WVg2GosFI9t(4>6TJPH12LglYKbqv z2W<@pSL>eaa>02uG?3FAFw5shDwVd%gZkIdWFBNXo@@VzuK}N1-6FYMA(2D)*5QWH z+>yJoQtU!^Y_6Mh5Z2ealhtEreJsCyaC0ZP<90SGX$2VZ;r45R9LBqf-MK5izTp=I zNTijFRZx(Ye>EJ3i!%rr`FHHBTC9RtTv)&;EO4R$(>RCYg`dE5>Gp5Waiq-jBmrY9 zgMDD%+1WXlpKR6+Z87Lm6Jb;ku!AEI7+WjGncv{WgE3HpTCxBK+LcvRpIP&~nH>E~ z==CSlur**zaA@K1vE4>dJyF%^US#8KjVK$=9`yP>CtCxxsv|gjuHjIXfeO5FQ zNWWBjc4z%0JAFNgByfmpb_nBgE_v%|4^U@l^?t76vKa~aG`EUX`)H<&{GDgx8tKH(k%JKUnv;-?!1d!?)4< zUi4spFWJRW+)25UH9K|r;h~VzjZ2ph^x~*so9AEB6iT+=-HVgetG2Ux^ex+M_kcRW zvgV-^D@U=eq$C@Gv^Nph^`f@BoP83Q(fsTog zl(Yw0o(SM@Jj$AyN}$vb%lW`ZM}Tw(mIAdTg#N1+MU(M0etaA<+267Kn6i@*roj%Y zeaWu7!BhS@A4WP@&h(HtQ?q8ca|`?rcV+cxw#x`dig6vz@hyyP%}sfde);!xtVsL9 zap@!dnV{{X=abKS_Wmgy?*D7QSHRcw)Qzw1f;8`YL=eZ5{{F^`xYrNrrW+3(yv_8D zOKEBL=5C(*?V}#aFLtvX^Kt1^<9@3y7zfh)n01+Y5mHpCgkEv@U_zK2HzQ-GeMm+I zt(}EE_uu=a`cC5F3!bQ%4?o+VrZ!z{uf%+o3kv`I30FRRJpHl{lV|n)#cs)wrYF=l zTr$H>O4Zy3TW}5^B+q&Orbzd6jcmP{EJX7I2@_c{0BSJ!}e}w+>_0m`x_IHWrKf^;x*N^cI&6kjB*IvQ^yFD%h0rytQ#agkt!Y9FEC&yet-dIL*!E5% z!+5@2r^LX2<9m>e1Lu>9nofNel}f7G*x19H+-=<^29qLsI`^~&b>7&$&3O~g>}2Ox zK~P-ys}SFnWlD^GC+_c@-J=J-e19eE(MtEf!{b1y5q0kylsAcPpbN|n| z{wWt1)1Oz~f+z-` zeR8||uIO9%EQL9v0bO7C3=oRJWLHrUk^3vb&(c6dyhKFA|5q|MH#epssTyqOo114# zG<&oHvcAkmb5CB%2_+Oc*5q8R@_U@mel;gDA88R3 zR03!O85LE??Tgu&>29&dAKeibhaoo$?wj9HyXrK3r(Hb5+MCRbB3b?yb=B&1#e20k zTnHxgMa>c=bDyWGE0~&4XAD)6{=3ce)kfrM@C)=EWdzbat>bOqz;$`cbt$QB=RH5! zCz<<0_O}IO7{6X5i@iO3%5Ac8@wR#Rpe1gSxZryPXoCUpc__3D44AVK2!w0%J~d<< zFg+s?*LZo`!2nz7f9SHbvXWa|d>M|I7QTOvgPcN+3= zOa+Y7VxwZ;5oKo0^zacDw?6mx&+q%~z*)WAmKL*#&Y{^^(%hX^76&_9+xgX@T+C^* zO2_Y9aCkVop}|-Zn+zfDG>)#U6uv@D-M+GW6;5UB@9)2q!UjiWxN?b@C&`>wrzhCZ z!as!lnWaA_2A3Z>c?byum{-}@GAyw%p8=I8`ep)0glYQhcu98}<5>&8^JnYiV`lB` z3S_|lRma(fLz(Vzd`7dSw&P{hroMWulaKeni(h?=3T5A!mNKxne*z?ah*E!cU|I9Vd^W4w<-1qbQ-E;rG zpD!i8NrO~2X%vLx3q0`!q+D=b$(C7}c*+$T3FuKi;HRxxjmB$ZLN>4yyE@C9)~hE| z#tH?DSmp*9$*-K>chCYLu<-^9GoTau~`v1 z7yspR+-cVJYBGeCpY?Aa0AE#G;Y}GUei+#5{P|B5KIiGr4AVba$d7(wH2v!IP)Q42 z6CFBoppBORv0`de@_L7}#6SM~DrO0P{Jb$jZKN(-qv+DaW{9!0wY4{#5#Kr{)Dcxx zRA8Olmdv>2Gwt$q_MD+7C%~abhKnOF!HDPwF9RNRiP0+U47z} z*m7S8K6ciRdo4+J^^5lAQ z@D(2&74{fy;K|*%r(!S6 zj;4XumBI;%fD#Evd;NsvS+^mh=@er#v*h*+)c}C;%eRZax@Va8G2w2arl#iN<(2W> zcPg0M$nH1@DwUL#(`5N_r6Ab9M77}kT%4wYLZL{n`0^5m z`eJcK$H2e|JM@JSIpzU)m%AT_H>sPrySQi?<~bk9kFFry0J*TcS3f%>Je)_mAr>EH z(!ITJ<2~OF64rNKt&Kq{&w?@2U7>IXV8E_?$N@kNjEsyN=Z3ymS?skT<3G1(11aj_ zMJaeq+u`!EGWZp7hHZ2*JClGZ-T8{lQg_m46#aEz>H*fggvkwRW^rq;A9bxh@6JP* zNVjnWxP|wq%AQl;?&fwC6YYCGf3e7drGB94{oB2S6GDIg*Ql0mhHb=~ z@g#Y0ADinQ|1cTT^hk-d=4Tc*n%dWQ4AS`4K?*WFke&_0 zp&bn|i}`C!ejC25m(E{`0IF0|Tl+WfE_M`Trx-z0m&oWxaGvqqk7UT^w~s<)uTCP& zTNYpTN>TfX5RMsm{Fxv3Zl=yWa#EH+W6u;{R(UDDeHcCa{emT5k3QkiJn+xNk3ROJ za%PABWMO5swNO-s?svl^;TUEg%0*gx_Bd{@8xAE*G~y2WO1@!z7_S!!zo1eRRedgz zS^Vwz!0zN1{u%immND0TFJCSTf?TV`9%I`8;)QWtO!E-^7PGYCM)g`)~o zzsIYoGusrozD>LIkKUrWx^CMk=O9^yO#@&H#hlB&z8Ywjv$mm2Bx=V^K%*+&BVRtS zIj_5PRm454ZE5+gNXjPafq;y6lEx#<{rJO)_jjqQ+c`LF!jzIqrABH=PpNdhZ8BF# z7#=sh>=1aO#U0c@_j66@bh<1>2F78sv7&;KB}1hxm=C&0g^|BXw5Dcea$8#uRiD^5 z@%o!Vgr6s|bJl4Y8QGw~yCsqv3!iFecnlGY+f8WpajE{nL0#CL-Q;j8{RfRZZ7z~C zjHX=>h1vNc)-YtFM993p)8aFrkT>B~u{Q*PS4$!3AI?9U(S7v~_Jb_0XYF-3j=fcsk`uNVD1 zqL()fekgEeL_m#Q3QfCqEf=h1+S56YXTddXnhTi$Jwz@H>X3%7`w#yAq`1ClIP=T8 nA>`E7|5_u2{?C&+A4oCZT2H>-uW$@bnIuQMqet!?@=N>|b5bZ` literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_002.png b/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_002.png new file mode 100644 index 0000000000000000000000000000000000000000..0407e44ade8ece78bf27478a71db3def901af02e GIT binary patch literal 22051 zcmb?@bzD?!yYA2pA|ObI5>isqAreX>EsdmfcZog^acbCM_3^2rb z7Vr0+{r&dd=fCs5KNV(Xt@XtH+;LskJrQau@&ve)xG)%u;Mr4|=P($`5%dQe6TH$l zHXjN8L3fpYril&y^TRd|2fyPuJ=JrC!H7(uKPcZM^K8J2!fvv!6oLe&cWmXZ?1{ zwnT=m{34STX!pK;Tg6Rfcr84>d_)DDleg}yfY3H_s+Gp^P z?4ZjlPxxxtMMbVrPN9N_I_Y7z-dNF!Ps%Ttup-IR@+Z6 zT_WbYB(L^~8ZQp|KJ!}O4h;|Q4?ZC>J=*y5xMi&;j)lj0NoE@TNS@B0e}m3%X=!P1 z+OfrSw%%Q$v_D0V$l2NXaT9G4ckedgE%no>CSO5JLhA5bK{^$I2zPsWEe*2y2=WT7$97c^4 zO}>bqVRQi$Beoywgrr%rU-_O)S~*{wIyauJr6ilc$FgPd`mryM{tkO>=I0GIdb@V~ z{F$v+Vd=FJE3c-h`NezwEdkYFp$<2{^&o72f4{rCyOqXs1_gGy93$!U^R5*P#;lUM zkt7nZ6v1+Fa=247|2CUdx5-BU-f|s~>iqNWQx%n;;)t1$r6n_JaUar}Sr4ksvEq02 z?ptQt6J@ugt$*)d91i5TuK)gK+#<2Gy!@xx-#6p$D_M1?r4F25X`DO>^H61t``xTtc>a|r|!@r&(=FLkg`(r&L5RNb!#U!A76N*RP zw(8=&DRFtEkt*hWTX5D*eU0VOyOY9%uco^p-U0-fiXu%Zc6E5cQXR7 zgwuWD!j(3|m|%HQ)|0SNqQoc=NsiS7KhXMxKhaIw_A?2e#@gxSwnsv$9N$!z};0koUotwE-~AY~_?k z*}e#P^7&Mi?YpceVdqDtZEtW;gDCi|Kg^Gh5K;@#Z;lqSlr$bFsB3E8o2Et+oD?{V{z<1|FU=g>fn|uZI%n8%(6+zF5CT`>($oj^>PS&UlethPqaD+h3|Ay`BwNby?9&DiGHCt-x9?QaQSLEyOC+^Nyh z&XJ39I$KR#4kb5gt(gya_ag*L=Zu<^mSQmC+Y}hA$OZ88x)qjDrqf{Q!HG9r|DBe6 z-qqa(&HJ@-HJ+uVL+HxUG!BJj^6f zuZp4(y#o&T&A9}R&KM88zVvK78d8KU;M`jc83M-})>`rW0=Ni?oH>u3DU=|qsV42> z7qFll`54SC?FTDvB3Z1s3W|#2?tvHkVGgKC;2>aqHKz01L%G9c5T37*X9heE1=uQD z|08u^8#%q}^^0$*9-6kH|4J6XzhrIglO&Mv<*wTBzp-A27EAi zg=N1quuUjJP>XutJ2vjWwRF2nM;GHdAWn`)&ebt#l@SGu3VMR|aISLHjMeU36Oa8A zzk&bpCGqpUtyu5>DFS{NX?t;~& z5O%p&QoDrvo>Bl8w%5yEYO>m!P>? zj5h+Doe1EIiK(dADIeLfLKanK+K$;T&~km{3xy+M5|Wp-q5Vzv#TVK_2#>Ost8+yS zNw*C(^#%`n<=GU+X0{jAc5G%ZU&0X4{UJFiJ=m!S?J-4?Q`L zZ5=L=2y!sEr5MSp!Ac~Eq8PCKUwi|nO*#yf(_KHspovVTBh_QUZWJC=e2EAz$jQuv+1S`H_-k@P@A)Q+^YFx? zq=idAh&MiTR;MN=jwJvFPplVuD`=CrSVrpyaHfoWJ5w0HlF;mCujegz z#RrS2occJW+$txVzC3KrD~{bEBPFG0W5YQ+JG&rED_ZWrG3g~;I9m_SX1v~cQG;pu z3+8izZ#d6tVtFyQh@BSBI?{YiTYF}?5O^II2%n>&cnGWAlg?CUGU>ZxGApuBH6COf zfKt-iP=Jo*=lFoe3_n(cYl@E<4)9*ZA|M(enyj;t#3X0 z+ZstGC5`&s<^EtH`G*X;sQ?XKD1pTdO<)fWxLiT3`k!~lf}@?_>o{K0I&O^C)8kTq zwOPo1HJ8SC8@Nq%W#pl%$%0ho7xdaiOp`y1^pC1vt=FEKEu=WEeDmLVK`+`MSFf=6 z4lMXL=7jielYl*XkVv%7)Q!%+_4t9&+UV^P88F6Sa&@tAlF&wZb5EZYVw2-n^gP6; z3uu|z#jU?R`vqEaVtSVw;HcI1c#SdUc#sJRSajmn4N!m3|NWvG|F<`b(g);_YC1Y5 z!N&?1=|1qL;jg4k86KLw5o<;mWd>d^q)q>g*VsMY>J#7MZX#`T)tE2?vn{~U$U_zN z?3Lk(W5K$cW1{|)N;@OuZ+|i?jruNYPAVP_e zgpOOI`n(U7oTFGDjYyIshR)|{z=zE64(L7{U%$GfP{Q8dMKd>lvsSQ39;hqo=8xUgxi-a8>!BZm%d=A=rDjKyg zBVUiY3}mkbC5Sn+tJ5bEtgF98!7UPpao*E$#~6E|2)XypT&X>UwoohV*4!U&k7}jk zSNB7((E5{m{Qo+(*n2p#qC+DsSnlJt(5`)hzUw+rd{5*>z#uG$+!)<}%N6-VAR01X zkzD0C$=&+GHQE@;Z>H_$KkL&(SBEFM$8Iiv)puuMt8}$_7r86gAb2&Jk2d2PBjynZ zW0<}%vIm|{jfHX5!-GxHJFI>CU^2PVsM6~0dd!lAoAAf$$^4J3BKcfS=EJtJ9I zOIhWS|6BbN?3E@NpH=VWx?w$xMl^XgrPn!dPq$W0Lh7wu1axINE}q4l2aJO6=S;I^ zXDB)9Y(2`?uS)zcUqXi@p~@uKkHh8#&MG2)Va*F@P$y!@7bxUI65Vj zj8E)yJ&&L}KREa!e?a^tiW24WJZUy%p}Y5^q}9NuXD;1$Zr%+3o>gQz2wA#va}#^H*Te*6P$*B2|e z!NSV3g~r3662pGDa=%lcn)f*dsxS8&@3mrIj zN7#y>RY|Dv6aM}Z>%#}wjLSQ)XTp(7{ksyjcMcoEgrQA4n0dGOmN4P*>~Dt#f^QmF zr>o>9s|vu9P@qM7KHWfmdZgjKP1`i3XU6EXRebPSf8xfo#!hXO_U#TfcqYzs%cCNe zYGWiZuMm=8;G>Y8t!QhagG5NIdRbc_@V6+@#ux!B=kZ!`-gn4jtW;YQ?~NO`CRw45 z8#{V9O52XGp1Gdbo&9**26?5}=|1kh3?}(rx6;@zs&r?M*A^cC`#oYrtdjV+eWjnxiHYR&a4u_s#So+@KF)c)9>(+xp}^cU&PwB3;d+rsLCgVK1KE%v+j zBVOCnfbTXl6y5#DC7kqq5ctx4Jb#T!^$6zd+!{`7iTEjEX4V*CY2+8HYKlh!J+}^= z1${>hO8$p6+}a?Gl=2h%?#=i8Rl;ObmIBzA?Cwfm!SCh~Vzkgf)m3luIoK}?LWB_M zK|xP8_b%Ux#;DIR>TmIJFtRvg$nU%i)Rs$22jlKr&$pQm8e>a#6!Q@$tD~+ z6_$q{MPliX2w1ru)kuDU5&_1LTdgDc2VNtrnI878ND>E!CV&fJpUz(gdCm(o2!08H zKGY7TFL^fhD8-qB?H`M1^UFcD)vGI%gVk#f~VisJ&GD9)%oqk z)ax9#K2vZEkoxr_q9TENkHPtFel>m)ka%@8O#M|KAFSmhmHhgTPW5^VaN1&<{7>!z zCkI}64g%@mlY`GWZi+W|aH$LGqK)gyk#lyV>(xX_U5bi8F{{|ydE(13%4L7y-rBSVRico5SSwY(uVAs3CFEP!^hi&*=~ zq5(ZxygwNO6uzn6%nyA)N?DdMp?gLnLQisXaamJ$$pF@~JS#`O>4)W#Or|!cEApjI z2qp?Bv@kGQzdW-U#I~^{8(|Z6N>MS88cMk4ylt(5n}F}u;JXE<$R4` z;{afq#LyXUn-9FkQ_A3qvHFd^wA>HwQ@@A_Dp~XA8K&()L(eOGN!6h<+n6TC77})= zb*Bbx+{o4=hA}Z4R$+zq?3t8Gv}cD31LTkwcmBu+r-@p~fm%m^S2d1#?wTk@{AWJm z7Ibv>j{61Y@=qo!f>+En8lG4bIhRd}M`A-qBi+T-VpE+VXt7;*)Zson zA5rffOh6S>_Oc&-lYnIJX}rM2r{xGa_g?SmU^eGePKNC^GQ}ACJX^!gq=eGL#dVOL zC9to$){%2Awd)jZ)^9cD9E!qW0oSu&JE(zGh9<^Hpr-pM(6(IF`@!(^#)nnW4C}jD z%8&n|t*ocaGC_$%_Filp8vb3z7Qunuk6q^WfBv+#g-R{|Y#os7Yudbj-xAUL30fDi z?J10lWjZO-EWeFNUw2WxdEmDd6MIXaHeXTJuG2~+6k|dbdQ2lkU-S6#nEXQ$4u@`Q zSN7YKUrGy?h*iFk^rqa}zt}Ry-+bH#)?uvDp33R(SKiNp z_75uB_G7=DJhXg|@IKbag(2qpLR}t1RpHp-sE$;gN-KO;>Tr$svz7VhS$5o9xq+)SxNNpdy10cn z9I!+@u!Brb03;*^{sMaoA-q*vgINcOej%8ai1)9Cj>pmF{aI?NFVEQrv(WYq`Yw!` zD8WK@8%Vu8e}rU~p9P$JWpg@%*f zpAuYR7_9GrLP&FPWkx6bJfKD)mgzpm={BFRNX)yqEmi>QIoOLjw{6dbVt^Bc+f=N- zIy^L0gQZ>iiAX1j|5CaZZWGIvL$h9h=Xp1il+ydjrhDwxqYBZ3TGq*s=r1!wf1KxIjbL zr!Uw)60po2F)%QmDkw+?1W4Q_A?b&!m=jA!{{+yH7t-EjfL5=R^?-pUMhvym*6I~` z&r;;O;J|BrxQ=IFUJ0vIsnNlrSd%ZB`&RO_JPoKcfy11BDMeJ)9v1A_lAt&Hi7SCf z%UMz3<9wo(h4ZVl0?4g|5CwtUbDp#28*38fX+h!2z%M1ml`|_TmI4&~4S_F}nkxSA z2?hkA)SW+jjjKWBflooNQ$~WZR5Kq`=L#_Dk9RRfH%Cyo8r42|?5rGJ z3a`U@dKh*X(L~ePoe`cYC*an;!-pCeDzSMgZ{ zhpg-YvZqaYVT5h6xxmaU=nm%!D=VKybmUY`VhcxvbaAC-^u%n1tbTQOP)lIo@o#bx zCNy8WBC+VGgyFM4e-5lP1`4;^QNgLy`SK$U~`Q)oFl(MhHeN#%h&DNO$sEhKv-}6@&HZ>+eOFf}%3c z##$*gJ#NC^VcRR@^d|F@eT0O2Q?}RjwuCl$Si7%5K*xgHEBQO{KW~v%#V-z8l#5@? zh{&D9eSjG_1#`%~fvKd&S7^hR()%Ag_*kJ2PvS!0fA*34)xpDyCL$Yc+P>mxE+ccr z8tJF2v@>Oi_|p4X_icE1Hzqh+;o){c8gO%8xO)b$MP|gCaK=z1LYZ|ujW089hepH= z8}{MTCrcOAaMmGe@Y}Oz&;9{;jGBCoVK4x#6HH1Lsj;)NO1*eN3BXya=@sEdd1Uw- z=Q+)sI})l=yAO@BtdTF;T`eR;+L3kyv2g8_!m|k^Sz&hYvx3j>>kNZ=PuOZ^%_P zHDxF-FIQ^`@E^(7z(T{smohR+ed*Igm-8#y#Q_hKQM>v{ANpWNS62?e zl_$QNhOE0Ypwk9kIPf4M7U`0-(nq&YdZ|LsnAqEu1ZDarAgi}DxiP`6>q&@if@ngrw`-&X^f@FnQrr6k629-1s z3$uYj%b_pNvI8#9%>Y$k21p@@FUbb)EqzTiI;g|}vj<#VXUo+w_dcMOaA0QpOP$H% z?5>hJ#{N~c3$O7y0Ak$qA4&|I|9ad z*3-cE7sKf8BpUhT&yO2&B|cSFCL0h(q~^iFLNGphq}_;^^Uc~YQ#*ps>d!cL(InSj zT_WExJb8=F&~`1+hjj$@46wK8u(E(lAJr7@=2L0bNX9ELzaV4>n`ik~Kv>$%)DnyP zo*az`QxhI-Pm@Y_{_;fz;2$rlqVskK*Y!1ewvAEsfw+vAi+_AppoT^)eOV+G5*|E&dh z3=A>XUO@rZ#nrWc!?KD)_d5)HwC((O%ijnb9{5xhUTO3BgYt@s{cffhlgsnt+UqMM zfW$)pMdt&5vb*b0JHrHfPbEkQypr{30a>aF3m`FgY=-VZ1SZVRHNzpHE@NiKfZuLH z?a&9X)?jYr@xGQ)EVxeq!7@?r&aPc*WbdK#`qg~1KZUptKiKTIwY5SO4H`@aT;w8d z8$p0aM}q;%4>~1{CsVe7wfNT4gqIG8RJy~p{`QNrL+3f~byM&&1)n88pr-5!k(IYq z>f$&B0C%mDH*9t6YGg$FTtfpaj1$Bx0D_>iH-Y`nmuDoZ{(z{9eD}`zXahjBPW9_x zZf$7=joc z=t<|Z!2qoW8Wy3k_jMTqX1K^M$*voDm5%eYeTm$Nkvan|4&!F(G!b{+GOJORH?7~)bG`$rwMe%N_3quf$>Y;C zjxie>*8SqZ9nwI)J;fLPCkHFw{4a~$T;rq$v}nNGy`tMMX&c=BE>+Arbw$%yPgSzP z=$V+%zz~vsIY1~-QBj!y`v>^(p>@3ll{^waBn0`xhl_a;!}%I45QRo1=x|i2S7wF* z?FC@NyjW0;wB^m!A;(r$Rt5mc`8!~yB;erJ0CM{durf=};umt!)NGKm5uEp90_5!i z8;ffCQRQ78vo}vwRmmatnCg+;Eil8|H?tfM)+lu$XS~>T2GR(|2M-jKlKG!)&(vxB zN)c2YDbP}EM8X@=9|0nntf!}E2?!AG=vUhj`=1|`9eHqxgOf&PmF}HuH9ZBC7WXLm zt?7S8(`?z0I3T>YCwTVTi6q160!|;pZUKIZMDk)UWTL_<=2o@~!u5Dm=iRSgO0jWq zOu!B~0hiNbZ!43q4}8!&h!`RvVd82&H7oPjc~Q}zX%BPj0~C*#J#dWo;Y|o5^%@65 z^+IhX;SZI0wKft0ip5ceH`LVG)>1rFV>V``Ep2Q-IEEbbYAdZF~N- zwku)YFyck>_~?2Z5GxT#g#h z&k`c%m3drKdYi)05eKwgpGLbxn(UWz6vVom3znyTo1N8bXpyf*5m!-nrZ1ygF~Bla zCRJfi-BO=daXugIdxS&iIE@~Lpu~w(8|}NEaHpPoBOk44D}I;j9!gVzjZhxoj{!}8 zKC(MqLj+_<0%NMUs&#d(!t31>>Rj{KusU*nPEG>A3})?86RU^o@*Zyi<{WI-&RGSL z+y#*BXd-7$So@zTGP7G~1y0F5wO%KZ51S+6CjCW1+GS7SlH z^s*(dPFPESqf)Eth!9gCN1yvxG*q?eiPrk_s$-qfX{^z*!fk)TQQwOT@?puu^MKxC zt%DOq-`PmyH-vam^>5$mp#uVxH)53|BdeM@?zJ=5Wm-(vl=XJ*p(`yuTEk91fBpo~ z`4Ooh6P1wR$u39lM>^GraA~G{EvTb5LV$(DYfX9UI`U0DYXf!ivu|DKeF?OB`K`@K zSjeCHHD7n|w+}%f+}colNr1AraKQ253&i`8;DzY1v`q=h2r@a$9maCXS9xOzwK*6V`^v^ho)wguhJkTNX1p?uni+?lH=5z&?Pp0YX|f z6tYj3-tqXKyQKo56_6s}X_0s5g2Y|Yc9ge6I$i$h zE#B(L?ucZ{+>vi4-m1C(WOX&}ydm769&Z)a^cNvT-g`FI$G554gvLN1oTbZZ#q+ED zvFYxf=~+d9zbo>wj5#x=8?JBQ<^4cj0Q25kmZQVIZ-uW0jzB8&*u#DNR{pZ|>Oq^rS2kJvWj~a}a{TFrJEm~tH%P~t&*ZMQCji%0 z_??Y7ws`Wi0$28Ro$KmAVF}oz(dQ&KW?&L%N+esv5;s5go%g;>)^+9585WYx`+mF} z(~6ky3oD;-4x4OZVB{r76A3NuiCZ1Gx(t?!`n7{c96M?EXi+M5shuboF`rn`^|DL* z@LpuL;TOwKCbyvD|hZgn0Xi?CsP@6>3`|BE!2yC# zW^$dVyl^-#m`DPa9!NV;t3Jkt>oo5VfL5tA5dk;TQC2|?xvgNh2G(chG1ut5XCzd= z{5Q*+55TXfeOmGqZn4|j-NZ>T;Fv-12{|1RJ{6|e9;}5O5R@FiJnJs}7M5dHt1GTA zuvpn*kD-!%1yIHWl%J>N8MB=L$-y5HMX6;Lm_}$d#o)iLPXY? zWu5ztAaA~y|CmtIF{8eo6U?${{@lhaq)ydvj8ECFN>Aw3i&|S!_z4{26L(_p#XIhx zY{p&N^>n-$KR&1BD5W4 zp^FIL2C!ej&dM`D!~JLo2wBqK!j{#8j z<(})gf()q*#o)8?p19UrKg!XG2lA$_f&}% z404=gjBENPObrnp_Y(mxikfK1jEK;;r)(PP{Td*U8c_3i=`J*w1HZ+1<}t72G#j(N zca3{@ygjKG0hW~!i22Cz)4aFi9R9^=&WyIU(W?UdIXG-C>j{CS9TSiPKg^ug4QR%n z*j#9`PZ5lL_ridBu(=6;1`bRAbmwQzZm$#T)SqvEti`E^Iw*G_v#4(T{**)?_>f7o z+z1Rt-%8rMo;I%1-Ie*0mtP1L8a%gZR8=qmZs@UN-t#Md;7&|5p?yn4II9=MVEeDd zc3!8#zOiDEgq-gT5BrCB`qcN!&&kLDJbX4gG7{)Q_6gVLZwlnpW>S{5MaUDjqJn^jHNX63vKuz`h1t z$vv`v5LfxFZ_)~lhlgQD1RO1FG#_jlkuQ>l0T;Ca$a;5wG|!YrQf6k>NM#wBv92H^ zG+aFYyuKPc6hi7jM>-NFIyIN8v#EvITAr4zl4p_G*17Maa_5tntMMVr%&;+I53w8)8;oKIF#Zz5xy&8H1uUY?8pk<<5{{NV>9fO&LkksGl|=p2_AJ95 zJO0bx{AJDdUOM9%Vj&oet-G+_-s% zn()l9M%2mJD{F@GCrc#I15GmWW|H4Q-5T#(xSaI_ZWYOF83C}kmCc3OYR+49jw%`X zn5>bOBi2GMtdb|n9{}Ixk8hZ)yBzAW=?UCtr~3&_ahT&kVP++%ZWXR>vjOH_D)s!j z7t4JV0O?zK8G9uCvZbZ6RS5(rSV8X?ivRQ@6F?i!dIn!2t4hCq@d`m$B=-ENX(2iQ z*{rrzL(mmszSVcPN2=L5r>5D#aDndn!{bKV@rQxYf*4`#SxE=L=>I*Kb+csM$xk+B z#cifDU(7Uem43*Q8@_q-1|3waw}4iv6M$s`_PBU>u?Y#Gpfb(@sXxU-6WGDQ0cum_ z&(apu%kv&{4#Yfnh_@!`U>?!lVwg+c%;K2;wRW8@(}3+L}E2T>m)pf58^=$GV6hX;ZjfYfqj(f5&m4$En?!(xXj-S<`x#FU^==@KJHTMcO?VF07M}k z$i>P!NU(Xlh343VG2=nCx0d4acqUF2)6FLG9-%B>l2Dy($WFjJfLA z6y`_POh-VyY6`F~-8z^1$^14;H*#BNXP#)FhPBB^Obiy#P+P4B09HpBrgF7Ai;_%|097r1%z zqX8GhUh6a_b7FO0`#B%o0dlvx@Df{{Ojj$3oEiAVfesh*w@dKC{;^S6iSGkE;wI`Jn%R4C(Noh%o0wl znfp3C_SK<-{+B(GzU!#YKSn4VHs(|x~=*4$dQc^BUEy`J#qO`8u2 z_$hvcR%+y=ql$*bQ@e%fA!*M^Hi2@vP(m_cQT13qX8}G)^r8NTp+8s7LP-H1K0JAx z;B^D@Qz~@NJoQ!`tii~ThTP)EPUKgp6)H{$@(xhs(qX@U-7rsI>{@h|X?kns(s*1j zvoNGl-N_Tn12!RkN~{~Y#Ap{A}b!}kh!X!tCz^7hXtplCc0FMffN zX!L;Z_kLMEh%SV7bc3U$vdo#nNV}wAnh*00frvE0Zh%_ORE!OwV zc$c1p1H@@`bqYYEia|^^c+78uicfhD4+d0jMMeZghIkiyXh13esbI#6%R$$|9O98< z3BdumQTNIt)6T^=mOBNO8I`-6p1BdDKOk?zc;js*?}*rIae|=q+`mX6S+_9aG|0&4 z^85hD9_TA2@fhe1%5CEC_u%v`p4@xL-EttALR>~s^=X~hPx~ltjrj@T6BCbu91<;( zv8E}_J9lOr?y>Pfu(cuNBASNxba$TUTZSH(#(HWF0q810RZe+@MG4}@XlIa-GSEBb zHRh)ahb(smbLt0W1Ppy*k_TdRbG_QZ>1Gw0vxj#*gFIul`_gTn2=r%3iO;^e@hO;} znYEcdgHnTJ0H#Euf90R`l*E=3f8()cUi8fPTwO(t3iiT)q<_c-cS|=B3^1?RW3^?w z*3Is=^jut(h$k{KiyWm+fEkG8)4r%5F(AqZXk&!J4)e-`BOl#;46CLqotLP3Hv`Yzh(c8qa{XCiaN@k3M`EeW$ z(l9JSYqX0`oGw#WK(0G0qBp|JYi{B={=31k`5DQzo+!x38hJ8-P9}D~P|yMYXmhn# z(*K3ZbYaLvj3lb>NjJV%gD2WMa^LCk(o%xGq$J)R70oYKoK7MF8sFXy?}EZ|RoE}j z52VEepkkZ*YpuVnfu(r~Dy$L*+wZD0YL^J`GuL$efJLP$jnlP1_L_uy=E3l;9CE~> zNxu_0QU&Y+|sLkJ&uJ+Fd3J8j`4Z{r(xx}^Y$U!EFMyy_IDpix^a~#B8@}aZ% zyIO!?Dd7QNO>{uR$hL8yVYRZtN7XN`Sf|l6!9dejM-E6aYRn^SVsaL`N5jocz@vOj zf(M+UOngV_?m-zV#X2|)w&*i=ww*JeT9~dvGc%J8q z2=|uKk2f`I;Z_o}_PT)pNXcJO3^ILgXQ*kbviqA>4i?%0AsNQ-`l;{ygv#0}=qe7AOA?j5ElWA?+YAQco>p_S?ypr^>VMvr{AT6uA> z3PjX>%LG*B-Wv>Ovq)vZo`v*JmS$aPge~t9j^wr$KQNCuWr%2pkfH?;BQUpox^_7lgo$s+0$f8zvw^OMXeqaS3xn(MnoBYII*if(VRhA*0qZrKp zDPYG+K2dDIMkjLE%g(#Nj=Oh>Xx;eZ@+CcuvtkBB_E9!zUDLT@v;QUqAjIeaLJllC zAnanO=|yp|JjhL18MzE4$6Ob=y1FtLUIJ9R!0}Puc}6Hww@FRqvfd|oT5D53FX{Hl znD6h!16RYq;a#6`vSyN~M^3#vE& zdaCM=Ze5iuI-QTOZ5|fn&Ceb~FexXp{zuk4xAJtkt9A33b3wDuVE+GxlzIpp!yUyg zDnUz2;Lcb3EnkA;anvb^Q`*9TErh>%TOPcoZ1Vf<=)oTTC@M6N*18S`?uQx>8^6G9 zM5HSP4L3C?`2c_Q6JQT+k*Eg#RR&TuHY5+t!>K!p44|6#p#!zkW;_s9FqS_8)J8nm zRFJD1Hmr>J+OX~Y;yXa$W!J$(ylBhn{;TNeTo9RkdM9sKgH(2(RA{7APg~PHvRz;E zcn(o`p4psUFgL8Nyi55Y^2vU@3-_stabc+~hP2nayx*&wo4H(zZ1whrZTkF)w+;&N z6Z`Z>#)C~t<@Z3 z`RMpSped^}YaV%>5gif!s{^!dct3mATBOH2J!9yJ0<>5xDlo?uPS*jQl=iG=Gg+rd zzrsYnp9MB%1h)seUxB<8Si6M#D`4-M%*sVoPH$99m!m~jhUc=gL2pwK&&ywMkgmBy zudf1C^vf4m_%O@g=;z0A)3XJg`Iln0LN6e!2Xo*Cn_)@?^|%-mFmy8{zD3(|{p+52 zfq}c8o1oW|l=Sm79U~*ViB#VAqwNYQIn3`M>@K|nvcB+czf_mJ@0tJ!^X7eM{lVZK zqMOO(L9+sBr`6Of=ipz@%TSjf_))`eY2ns^qlOGwefVF^_Vs+UbQ`PLP?rOYjOtGi z-l^KM#StGjDq`;rfKJ5?r52=K=S=_yEqcr3hO2*x?89o=p65msk`T-C0#HdGNS8(3 zV7isvGtIY%lcF@>q+=z`l%GY&PEYiO@$?gZeQjGDEHQudIe-W*;od5G19G;CMp5la zxE~9=KgsVS_nUg#dDQR&fH%d%VDPZ>*04*LT;v8xWERfRI(SLYao5-WS8FYbT-M z-Ad33k7r|icc1~ej+S4J#vc_vN~M-C*<{_E8|cobpq)jzXtCE5RB3&qVIs;!WYFf9 z%Ho|>^a3$jw;Tjbj@Oo5Bqi!pA#lRluji(v73-)ytbYfKI5r6gIZR7IGIY4o^PsuxB3mfuCV<&i zsv1^XBfKDzGzi*`e+W$)fWjyC7NNBx>| zaJ!_X=WB^D+V=fkMC(l+q9#b&lAj`=zLX{w^j_QWa<_Z_xRvcq9;C zKyr*mz`c8cs#^RQbR2nsE^nT|D?hj0IU3kQptz`Xn56_ATAlY34Q>~4sl9QLv?%`a z<<%|;;nx}T^v9chAR^lW3>+Mdn(qoXP!+Vq<6$689Ywc)lMc{;xhCHnK*uMa|4R*^ zF<+p?4%#nY_9qL}uRnP3K>G3H;M`khBw8mimzAM(wohd=hhOtb8-u3aNA^>1jUms|0E`STaeEBl=^XG4DGFRUMB?|%*L81RKNPYv5 zo2{y=w5|en6Avq2jpBk<%ZH#7`4$aL)M{Vi%hn(iSkTUN%}dZMxB)~vnTad~C#|YN zWbwu)OTu~eY3iGb>^D}*H2~@Z%Kr-YtMht?An9dZ2ucU4Ah3|uo3F-8q5wAIy9p#P zP@y|gr~^@LwY$woQ0TIhIOS!2pHku?j=d}Wkqr)-THmxUf&rj`KKD03A!P~_7Fo6Y z|Ex77?#8^|Vbt0H)Tb)!$_#pV^+*zPuyuBV;F`Uhj`?2a;$lM`+KsA)Cx0%Xg*5%c zU-t7RdE+cy8}4`!mC!;+&&Zgq07R(zWo`5^;obOtQLnCaeHS|NV3naP906DwF^b1AsD?0Js6-KC-XYcZR?HjTtM>0Ko3e8Ao}@u3Q8h z*ktuKFldXuTVEooDF6HOh!urM`!!Sl9Qo>kVa`Bohuw!aprZH(5AvTbcrm61sxzof z?>_}b^5>W@(E@cH0+YertpoF2+foPoDP(igtTo0_X{l6xr$Q8+VMZJ4<1RzWcfF`@V zPGTN2xtX6)7QoRtsk2A`?gj%wTWBeI(-=RcO7p9nZQKFnQb@y1iA0aXf3pz(qFZh% zw*PrqUw*veGDYKG&k7JKOZ=cZ%Wm}Fu3^IEIP2Mef7+WL_fXaQZ>h9?O}67pzrh(X zH{-mBKux>(01WeA)Ryb#1m-cne;ybVDrtLbwCLd7(tG(WQ;^r1WYj~cbnp2?upGdx z&H{k4Z_XGpdk{MQNGkEtkqKknvQ`PaK^_0JXd>mtQ>DONMTnaaa4(f9eMXZ z77yr{p>@fdVKa+xp|b*LUps@cof-ln%WSI^;Qw4QV5O3*%f9eGH#Z|mLMrh52F7Q; zF*ywyxqokxz7h7&e{C(Xh%859g-eF@@tsaR0cE?dCv&{YMSg(71DG!`yyBnr;(!dx zRsann0Lcu_L_Y%hIFgzf7rf2!(wNgzuS)yrJ3u6|*U0q-P-l|SfJ$YMke~&KV+RmS zg*e+}zamk=;9?Pz{r2vOR_~^PN+-zF1dh`YtOeN;H3f4F@7R0wXWUouQp>Few)Q@` z>?~-~Qxk%GFD%>Z-S8qOq2qq4j#i!xK!DZ_R8-YTJ2e*6$gT81u21NwKI%JPx*2lr zQ{bbjFAzA+nj=K2`UmilbtPoji=62qi8bF+>fhvTRJ-Fi{xOj5X7l>r(@%7@7n_{_ zN0n@1O_OUEDt1|3vTCXCAcDrV~o=B^7F*1^H-m6c2Pc2OFh_hlk&KBkMdMc8Cw$ zEEMBZ4dvwCuIpk4gD+iJ2BJOL3<-Z2P}?680u|GD^Pb!I)Itvjxd5mt+Xx(XhTj1W zq#UAhY$PV2dL(0M$vo$^Ofaz3;JGUY07ajZ?Z5eoKn4x8L;&kemf}{`v@c=ZA+23J zYG|?XNb}i=Z~Af6kOQjoJ#i?oq@*NBgJ$HrBY;mMQu$&%6?}~g_`(hf>v6E4jB>3g zO#m1cLd>`dxP$LIfWA@%8wM1I7_gPq)hzH<`Xg^|Z|m`rG`MhA3|$NeJ_8we00RB= z>5jEd1pk`~KQsB=k^DZ@2jt>oAdzrhx(m?_7F4+rAXh@v6(oZC9u=;a$YuE5AL*ey z8%-lRSZSjHa|t#8!n9A^#&GW@(3dSNEDXYA+<%1Io7pfOVbOZQ(nLLfg6TL9D+@wj zF7sL3_Yr98CxEGuV!ZtM{s+(^MFCkI=zvFqw5`y0H-Hv@Og}W4QLU>*4!N9TC*abK z!~mlY=$TT0G#3F@#Ji*y#G+)d+7Khs`HuYM#p%A+K@SU1jY1~%vik!=`Xivv>;x=^ z6M(#zf&Q`4+PRQv8knj zx}xQ;C-e^}FW}O`Ql6kb$TB#yjaL>0+KD*s)5@w5>AC~|JwMI`P%CI}DM1ASnj6qm zkoTh04}%up)n4QF!|OTEEb3dQ;3gxYnWC2tTe8l;M$9EZ$_2ikXdzxymP5TKrXszw z_VG+!Nr~WGo>6o2_9cpHiw=nXV@MS~Opy71Tf3u1~7N{;;=WNV4gZ@XP`KYQt zoKa2ac0Sw4Uj_{wJOI#^>|r)$0vA`}Rj{p-_h2v&qW*87 zig+8Fa#2F=900qjSpSuIFu6tQwz2g_c?pyjM9=#EpJuN8AIfcw54F?HEu@5`%;C7S zX}e!bR6CiN6ABY!J8~O$CgW1-V0235l)@k?6~>V^jf_#vlv1N|8@F-XLYQeZOpMEZ zUVHnT(`WYwoZr@b=3Vbv&+|TOJXdSw4V_O+GakFK7ia&ot@k$^TvjLX# z%2@C*8jlfN^4>p2t1g$kI{jT_;D{6uBPe(*G2kp#)vgU0P{HakvxNv0iF2iu6iU8z#OMM_k^d4sBy~hG7>JW zX7tw>Gb@J*^^5_1=d>ELI#v|!80BvHoN9iQxwV6fBIc~Ucb>n)u@bX7I0Q;$Jdph~ zeyuH#dgpGOG(by;KhxkGAc*??V<;mxnisdIp89~>?Y89QCKqm({PAW0;;aU)x#OM! zPAmnWs%x5U#Co`-S$|9}aEWaOaB)L$1wAz{Pqmfmy$$Yc?DO^Yg_H=?zS`HN2ce9z zNt`Q;<8x7G!1eaiMcn7WqlIe3*a43CWpSoW2KB1 zL$7ej%K8yfaTHRIL}_SgIee*yDsOY}uoBb^@7-(sGLn*#V)x__?0CTv$*sht1(9JG z*Xm7y?REr+-b0H*7{dH`K!IU10w8KAEDq@aL&@3LEXX_BCDm`)3g6iSNHs6uQyp@* z1L%?vz8=8xX&M_Vp)Nz+7UIU!+-zt7ImcLj6!@@4HhX5CR#J-gTf ziGHZ}ELgKX>Ew~+Jb4vtn>9AS%O*buAoPB15hbN%?0o6O-91J|mveG5Adw~Eb}u8T zWh`Po-6pX)9L`c0e=#PvvB(Uy-SXhB)oEPGUF-jflbGD5A=s#>;qqS3`(ELlet(a^ zzO!j4m!o^vP8iG%>Z2nF6A@^pvz5)4#7!SY=h(!{S5*sgX$)q2d;9%lR6|Hq+$c~p zWdIo$v-e5dAW$I*;N}TYJQHdKTy~n8@pN1rQJ{%qB&mt`eVKp@XU)vSZcKYl1etr5 zBp%-z$I7zaM$&p~Z*Ypgu$XQ^wbOSQCAhar3Z55F`Z|R)z43n6M<*$FcXtZ_RR48q z_%PCaX5x4qkndQHfVgnDl1ZEs1|}@b8LQhQY~lAYGN-4fPxq;#($l%8T2nJm1axRsFW%O)=Iu`i)_ zT>dXQi4JLt9X!_d#rlnlT`H8A#7WckvYkbz3*wmq*Uxy-{p0&4 zDQob+NHZNnue~rv3)sytwbpijYhBON6x~0Nr^jffVXX09r&ORH|NSEj976>0e%51{ zPGBoigFl++F+@hTic%=Of)p9lI*-VbDiiAD+lW|8KfE#xvmg}bkEpYlj?7^u(_|8x zDW_n0TGm}oq1yzCD+lfNN}XA)M{7Ag9;Hvq?ov>A()gd7L0(QF`}J(m)jNoHYg2D< zuv86nb!areU(d);*j--Yn04;nu}%{MGxy#3JJ2RY(s1R4kFDSdz9tw}VhwcB)&5LSZ(JMQK*(J5}-$z)!SGqtWMH>{Li{*~XM>4*1pOoRDruk`rR zmFzBbc2`#D29a|}LMk5rGS1Dm#@ev*;&LY(v(B(mzt|oGPy|UDu3A!JikE`d^+`0z zBG?8lFpH8Mc|G^L6y*$9^yRovTU5pYbi;nUOWJ;ZDupfRKC_0_&eYr24 z9GW}B-HHk)thYez@_9vJ*P7FYaJ3)!8x1R4MA~Q*O(xU86AMcKsNFOqeo#Yg`uC7? zK@sO{Vn$LdA(<>Y;Txi#MUOBe7Q8DKN9{Qc>K1MfCs_p8*uLOvy5wnFYf;~BKF7jJ>#pCiWOhznW*4t@f$iovXvlf{~h%54#kCugS5EE)? zX?eI_q3aZE15s5L+)gql_Y^ggL2xA7-drVg)cuU*feVWO-ZuZfHM%_5Um^et4(*0J z9^{lHB5_NBZStk3K5}$i;^$Rwj8rZT0NItHs!Va8$P=wmat%zYq4SY0SR}GgmJRLy cu`w^3vXJ_CjxQhpp)2Z;gY$msKA)7|04$|hdH?_b literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_005.png b/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_005.png new file mode 100644 index 0000000000000000000000000000000000000000..4421bc7c5cba41aef704a37d63fe867e55f3029f GIT binary patch literal 17080 zcmdVC2T+r1+b13r1uJ?GJ4FSNt{~Ej1&|`WSCuBcgx;}nL;>l&s0lqFH9{cRInoUf zdZP3mAan@q72ogMeRt+R-^|YbXJ_}E@tnx>JbCW>zWVQXUA)lNR5^0+>_G$qaYXg* z9bE*1VVVAic|ZK5nMjU=|1lzOsp>PsKS9hkf5YDoxZgEFA`mPO=zkdU74jV5hf-cj z#$I}Ec3!>@JZ%v!54_x+-MpL~9&-8EdLkX%T)9Mr;a@?nM_yj;(jp@N;|5_jPkWK) z*f=*@<&DmOfnIkED zTK~TCQys7K`v#Rx9LqTKRp*Y*oo_lS$B!!?W@f(Fbdfps_4~ZOzqkt4Vw`;QRJFM> zOXi!_keZn#`bNIH2d%U4*ur^llO)>%2*lGWW*od9k*Jch7x4?hD2+fIRs7%l$k^Mi zuq&9{j5f0L|2D6y9d&FHv1fdX($EtnLCV+Dlv28O?V6gFmeKAGZH2Z*-kO{6tciBo z7=9@-EA?7*hnl@R=@z<`K4g10?uP4N{--BQGhKRG2CZr01{HSqGD9|}n%dfkO^E`{ za}DnbA?8wS;HeE-oKxna_lR&y`dj{-yL??XTcb@AmKz5T$$<7s&eWfVz8vb z;$lJCHnn|oLSeTcQ^wcv`>Qjx<7rOZs-^X-X=Ep>;1z@5&8fW2wT9g}EG?rfNrJ$yEgqsVt-%#2uhHT7LxOOk{w z3hi3c_MwEI9y^5Kcc5*q7{Z=0w*M%nyffRWQ%rTwVXtP3i;IRYPYM;+)zuwTSlgJ$#@=uv%?_=Or@NWP6{m{X z2Vh+Ws$11mRm(P4W=<`feV|Y~$e`b^rzMBp%XIWnQvx6TNXba=8DjV7kNB$4-4MBr z(RhX}4G=6y#A&=GRhqWk39ro4%#@zOQSkBH_p)S7?xo)_aCR=P^_eTo4&CXatQ%js(<; zhYufC2CPhbPISORbKz5gQ%^~V5DhjbATMtjytPVewGLkT!AoD+y-aC?BWJH)SqswF zPnfTn;IOr^@x#{BRtMDX-7}z&>gxxlyNmK>N*gRG^=ny?FJH!tSe^OJ-88=k@w99Zp~Vin0;GU_+F;#k2<)z3-nZ8o)RG*5~<6v3fWMCO9|XV z9*yix&CNv%USW-01$qYh`ltc71`9BWLJM5Anz}k|wZN(YfB9Y-YNiCIDN?uan7*UL zq@-yOp5eoXZ!c?Rtfx0hfy#-y^y{}y*W4)+czA-L-1`YIaZY*uFbs1j?q&FLZ`)ue$r;kCgZUN!3FaOA~s4gpvY zV_%#N8jaovZu=+pl8|c17KfyJ&R}3PyA08@#+;aYFFgcX4fldBp-?E#yfd=xAcJnV zz=jZ7F{r#L2&*b9V46=oPCRgRmMq)$`SUIHxb7mOQqT4|QvELNG=Zb_3KyiU^}&LVD4zIy;acSH^;#bWo!0Y zhpM%*0K4}?c|`S39`V23vULIaDE2$0V{PcCzivw*=7B-K`3LEtmn?n z1aq|A%GsNLLd!kiG0iwyVqNQwon0=u{l||VaihM%HM6TjINw053#raTf*e%g*i(Xe z`jip2t98oUJ)FDX{riOvPX9DDNzVtv$zT>o8lA?P64f*{iR+6ap=;t-5i?dDSdGrh%hn!Z4zBC~ z2a#xGSpb4}{QdbEn|#ClPkZRDw05aU;EB1(H~iMT48{Uy*e*+bHQ%rs0*ax(0^MtV`}S=rT4uhZEmMY;HBjZ0JYPrE>@GIZTO0Dt zzQ?vnt^9=%#lAL4LQiCe;s^1dW^pa~PKjj@E@)F)p@csBY|J(5?~|On>k&ypX1VZr zd)_I6g|h^-*YVfKaQ-V-uB_D=e9DpNu?)le<-(Q2wli!*ZQ&Lu*E^ij@ z%-&h%m0Rt#p6;v2gAfzk(sRR!sL`3HWdvsD)$fq!uM$}ysD4huwQG5*lkNENH_wlp z3$Q|h#!qJ;+kOgR2j7BD2C75~@bUe;6eH{TdF9gKUjG+z2z!$nPjq*wl|s?YC;JVf z&WaaTR$ec%Y6v0vl7rXMOJ({7h~*U(v}%9XQ-RY3dE3?P=@O-b`3_*w)wSL;c0AnN z#twTgJSKXa)I&@T+yA=_p8Mv zvj*l2Jw3}09y%ly5#3Q1+Hl>cczL-~*JH74&FSZ@vkI2eL?OSbH-y=B-0ef`h{tn9 zr6_zb+A8Flf|XZnS6)n4NoH40c%>)0(ywfppiW>>xSMSLa5Y=nAo67e*5|39>7=`? z=_E5Bazf3>N{C&OOWajZZY`s$B2WKkcL&Z_Jx2Co{rX!eY{>6tge{8tfde;1&hdVa zZjdoQ!G!p<^gBW~hU0RJNWH#kl^U4!@YQ6LX%)(21l6vP{1+?QpNg6vLVy1Jix~AD zQcK0FE$O@#$S5f*QbnGFLt`T+*$L+rE5D_orh08?CD~$iU}8u|2+mKtyV^O{^}|i+ zAmiFqQ-^U4zRTlZNh7lrXc7EX%xY;v((@xlak|IxAl`hn2$uA#!EWDNm19-a@`p#v_u@t1XPhNpJy>pn`q z3<+IAx`4RzqY_D$>a*ggMh>wVEqT7V-s9V6?+d_6`JKq}WEV%!t8d@?^%_@t)LjPD z0@u>CRjMG$D%#%55}X_46L;aKEyk>NA3uIUZZqE``?_j>RWsi7m=`QlUs)%1xkbz_ z_$xCXe-kO7xF={3|2N*lO2AQBhR7YdP*Ll8l=m)=Xqe3{mn= z!gWcL2o`lM*#~euT9MJ!SdJJ{J-Smf-iLDI(vLT$V6eYz>KC6cQ`_y{CMeK;%sU2M zyo8Ru)Ve9wewT@*-;Cw)W6-Dg2PSyp#`_0$`90c8p}V}|uFmu7p<`^gqMOH{>~R;B z-|2mIFgay1eN8r@EB^uh(Om+vT@{U9B|hPYn(N~azf}{e-++sOgq)-8kmt)YWv)Zg zV&~4Cr)w)~l_z?+&wd|+^y4?0=yb*rWYI+p^SHsqc# zr3a2ov?nJCSK-d;Ux0Jg{7S@t?%NF^qootXov*CSIT0PuGG{?ZybnJ!B6s~K+H@PE zeT?$c=ZI#(!I{E+)=XV!Xo0H*yw@ajGycRmCwz*a zsg18V^HtbTh?Zs6^6G#cZ5}s=L5ofk#jWeq3G0ii#K&Qm;N@!?S%U0R7c+gcx^kn2 zy7i+c4*ig!q=@jlAErOu{N^^^tow6~_x#V?sEvmZo@$2Kqi=!~+)~AxHE#CjgnPA$ z`xvpF?&}-(XgVQw_vra>STO_$$rOOjvzSR80ts+k03 zi&wnK#L4RS%3z=-@x1BC$x{|KZ6ZcYSuaOOfm)kmrvjZmse%wbzWZPtuwh#<|JAHJ z8f~jS_4p7f?l1C(6=oS&v0qCDp9@(y(=*a*r5jG#9JIEPPp{?Fxu@)~Bw0(pPqIhP z+B^@$Xu?rg*;KoTSveo`0cC%U`u4I_*C&HIjZ!{BRZ?CGF1u+A8mGAQtoMk--IbXE zvzHdGxYnRIi$OJiuH@t>22k%+gscs%5+CMmuC$&y`@%5bG${D}rV~>O52iAZsH5z& zCEqQxM6SEx9q^M}&S0~J*e?<2WJ}SRZn~npd9v{kx&D6R?UVPQDETD2wuGf6ROR)l zekTz2bw7NsM#euv&JUg{GHC~!BrOjj?c`(z%#ZD-e!DDZ(bT?XVHWlp3_Tyev!*bW z?uP0$o@$eUN4@T-Z0%3;pO>}{wwtfG z6>)w*03M|sI|3+y>3;H(0vrI1*U^V*z(V@;E_@`9?? zw1Gr2UBJQVb+>295fpYEh!IDtuu0lJ{SFXI)~#g!eys#+3%PtRZgoDfP4af_vM#RZ zfJ^AcOaJYjhL*2F%qH|#kNvtiwK37UNn2AFPOe{hT3cd)u4s#kj68kx##itOg~<+` zEw6J^Q+3IBc>SiiF!h^C++~f|t8*1tj`OUr!p$puu~{Mg#k(8rc1_ybc*}Z}T`Ot` zhfcNvOFF-oev97(`&3>wO4=I*xg9QT;rJQ8Bb=_p>|jG_uYX7Z+Thd_SMHk-Mq<)e zK0QIN`vuM%kdPSS7JtM=TY3q05KcNf`fnsunL(1YMax>#e6^e#0U#1!PYpnZ}(;FIMkC~k7fXnx(g-&8nL%jOprb*7`eW-Q$F zFD?WVf|Nx5AtQ#Wc<%aL$3f$!W@=Oviy8f@!|)x4&dXB?dZ<7OxcZ3~FRo2=@QB@S zk7i#b?%l&4ws)>?0q zjKRlf#QgYi0;^Wa$^ll?%FG-lFO7arbBuyoyPQ2SJ3uWmvK+n#H~QBUK^^@iqP5^i zb2;v<<4ZWm^GUY*W28Lq)GnzNsIcG!Jmr(sK^HZYwz79qu2CNxg7qNlsL}K=_E@N- z?r2u0CiUK+C#9b7>B%Zl?;d?e4|YSW@&`j3mLn8;&9uC!znx#E_>xsVJygO8v*u5wkgxTu z?0^G}INE2SQw7N*v)0Cj-J}k@qdu`@ReN|UpwvKpbNrmcx;wm&o_zeyL*3bI*cE$2 zDo3B`WqgBvaC@rTs1*{&^lN*x(eyheD51&YtzuNq_KY8+0&f6!3dT^w_oA~yKok)m zpQp(t6(|)>@fmQ&2aJ!^as+Bj5B9bELxjBD_>r$tG#EBBr<9cL?#_6fzfZM^%A+Ek z+u#uSHUKzUfl+|I<^YN}%NGZK@g}<=WGLFp&5yBg-tW-_P(@vnARyUMj8EQZ>nUJ*~gr zWsz0PXM(88bsb|V1abTTRXM69-(BOy^x@mj*T;)EWejU)goP6hLGV+t*$T_Q!8r%p9h4 zkxmbFVyB`TwmqLm%H4$fw}Q4XUFeryBTJv58LbquxF7|E{G zoHS0XrftoY2n&Ksd+gTDFJ@-CwMzK>%+53M=eyPo&+m4nbnRWZ@37%H6{p@3H2qFR zy)`Y>Nq~8k4Ea8DG(mT&VK*^gCC;=ej^y{nd1jy|LxwhEg`Ru_73P&kq`}G#a&V9N zu^R89n(DV6)>BZLw5HFMT;;A2d?~>4%h?rc1|S!|prAfr7DHqDB1yKUBb2&J^-GbJ z4)J~So~f$RJDWxY_s*HA-}zg{>n_0Nt+eSZdS3NE@BTt2;z)&dAsW^;1)E7!; zj&KeeoR6wih=Z~>_*sp@;n)o4wq$$z&Z=lu04{+P+*(9*l@N2Pz z(}_<=JcftIt{(MOP$haj37o2~xpSM=Nj6m`mNc4{zE@>eWr4%KDi$IzYR8)3@#Etj^X7Zl^AD1C z%ea5aD;)j#GdFSAp{lEp2cn#**vgFhnKSq#O*=cZ=`}^|*&(Nrv4v$pmmz+a0lR=q zpSh)#J2gWDd~o79wD84S{Cs6R9diwy2<9Y@k;0wrxgSTLdlvU34$XURgsc`PTU@*t zG^2t&een{_>|_@4`9zuBJ*t~t#bs>tCx58_iI~=@x>nJXE6dhPw;|4v4E)qGi$?Fp_Oa!nUt z(6;c~Au&>Gk$c#qvB(KcRb6G}=dFo|d{>|O!Gh7z(VQTtni~NQujY0Dy5!~-r$FzZ zD^^rgG$B2GruP$4Qh6f(Xrqa-aXyd|6ms@`u8!Y+aBjM>qoX#BJBtf<)zpShv*$>k zf2S`O-AP^Jy^_sVskH}zFnIn4P`bFgify2^&R+~GJbC6!L5T&9pPw<;pqT&sJ2CwT z>x9BakNsPx&or|G_LKAHzfe#j-02zrA28_8$LJdmJ~N8D4jPx0l}-1Sy*nvl>Fle@ z>oVJ0COuPJk&u#-58Mm@Y?h`Kc2Q(`B_$=`y$my@y%S!)&H-3EKPTs7ZlnNZv5_;m zd5rM-!tJ_&4EI+6F#e=7ZPMP;SA>N%F{V`n0HsHQN#%la%N@5JJ95H@hljf`W)c`P zY}@xpEpt`X7s^p*(Ljs=uv(xRe>q_JrwZ-+4HoRk_ENKmcejBNpPZb9aI!i8=Bt4_ ze$nc?LsTp1M;LHA* zcrE!dVyP8nXadd$3&=mFufpC;z_9pz34YU2KtP~b+HWBzDlt3d=Q|ZM@9C~G0Cufi z20#2vlS1YuzJ7gQZg-nX3jRDN38~<&F^lX%m^h$8>TxRoL2t^1$~GeVY?Dpk5UcS! zn@&!j9`7^k%)N&Rp>6I%$%ArwulCuS0dqvkR##I4*v`udM0>-KO%m9=3T_kXL_1cn zxqNlD&$>Hb=L`L!0FmgiI^{DG}9bBGm_CfD$yx4%sa5{2bAcS+P($O@%J*|_jPJgNP5yirA@2T5vB9N2aIJcC zjpAlvxXwB8Gdx7Lu_9o_Q9Z88=Eq+YdCuVF*fGzVVj;6?{o2d5gTL=a9AzgE(CWZV zN>HkS$OK^b9dTWAt@I<;dfHV6qS&00s!JqI4!K}&FFhAXS=DS z^4bCcY+CJ{nj~nVJ1@n1egshS>kb6&Bj;{t&~=!8N_2oeGCG*k>VNeq<`}!ocqNC`P9$GJV$e z@u>z{4*l%VseTJJ#j)}6X#m8#^RjQOjE*DzqZc5gu(#J3*Ie)y&~VcoZ=S#!FR3~X zRAcB*CR+xm?%jX*eNF90{}~JxQjb!n&E+XzzR`Hvs@ahb!SW+AIHiG`qkLsm3V}*~a*!q+Iy+4Y|FEpzOfhd%M*JJTs58Eh~u`kwdE5MYNebW za>WA8^m+U=&lE6`W8-^bUcJ(Ha46uOIG@+JcwP$@Pzkh=kVS15uATmFVDP=cke8J7 zH_N5D?zE;{`x5!$MVY1l7@HGN9mF{-*%ggK8H4nFl6`c6NweYM!Mlj3LGI z*GC45yf4W=FEKUMA$VtFf(ZWE8a&Vs;4|W*42&%MiUx%QwqraNhrb!Z>5GG2IRTMI z1P0rc&UXX=rBk;hyR$w*_p2*(K1IN&q%vT2_6z}wG_d&?#z5rD%NVYAaUm9)7{a5N z-(MmE*A8Gu264WnRY4n`P8&;ON!&9)gjFSpSh>3NSNy0gv$J4E;LhQPM6ojd15`^^&ip2P1KL(zv1y*RB8>=SkVRQ~Nyci3=} zEjxK}cCe;%x~DXo?!Lhzm|!8XsPd(d!nzul3lIoNMeX)CG7hIT5r|u=9eZf466CJ; z556ofd|`2dwh=lBRSWdbe53*b;XeGBI7TY7R>|}xnglFIIaR6R3B? zMn7o6*w`4~wQD-U$pWXxKHmh=8C-T^R+i;_p&7zGGUu@1$eHKJ(SKq|E)C*`?V)D` znh)v~+`v)?gVR60XliX;!MSb4{XOGcykGIdR;5?&5YPGnwVdq9s~Ogf(cQq(>AD6& zcL+qe7yN$5qEIJ6^pyOlPkeBoWMUug`CK!@JJja86mXZ|59E zp}6<3kNMq_l{VePSg~mKAl%Dy7&l)W{c?tt^<7Fz%Ke1>Op=~oWtE?e_UIv)qjStJ zjDCF}d0bjH*=&LRn46lf*eYkpbE~f9K`*YR!~GT#p{Txl|my_{@K{S0^&6s_F#dJ)4l% zQ&@k?2s*jnOr=V<^|geNk9a+{KHi-(TiR_Q%y(OdFP!It>}v zX_^_C*ZB@fd-ck4$e%zBBPQNGi+-=C%{AnoXTo{yanS&S;>C{Rc1u*W>kx`v24#pr zMR1hkE+UwZc-35T9vx4+YK0?ah=tAwA$O&2C3}zFeKvEvfn@HH%>}DE&IOO4GKJE4P$W)%}`^e|h<0H3jOYzBH?qZwwE@6eBRe*o>6L zoa1%rx2Xoq6gznF2zyhFCqmMaQTlPod+h*<9CDy9bXS1=#*^m-mU5jJIj`R>H0vRq zW#Ae-HpzStYZkB@%sQMMbdjB3Y}mfYknrmh;hsb)QA*qJ$Lidly}k9wrEDA;@b7sS zdd*^yXXXZDo+Q`PW0U!!=@RP5i8QX=$x8(vde;W0^3;R3)OsvJ zgr);YmUS2y)*0f4LTJCk<*(3+OTn}%Hz}{K*<>LzwNqBk-_0omB{j|JJVU6Fn7#BTKQcJ&4Z^PzO#0XM)Tc=SAg~iSHQ?4NMR99L zG%Q{?m(naC)cO?5`%%X0{?{7_W&_6BCu}FvJ_?^B6&Y>q_v90}VdzLEF~S{UqK|?v zZP(yUe_Lp6HDT-5BP+O7)3c^Whluxe3ViFwi!%yEjxuxY8DbD@KAgTexZ8yIIg%r8g-Xh3JN=>b-WBBO6 zynM{ST#&YKdt(7$xnY`9*Hz3c5kuQs=QH<4}Wtuz1Csf#S-pmW^O9_fiXi#035AG=Q(Tglv=bv=ZOGdtxe$pexPI zN~Ha_p|P!1gSt?R>DZI4S7Ojb1@AyG2Qvn+UE${^Ti}6I@^<>RrJ|C4K&?%-Q=zW2 zQ>y0(qaI z+ne~w)2_r<0xb-P#M?QXyv?FQ&RXt)91<>te!Klu!Qpcb{#a)|p3D2Ot_Z~y#T=uL z<)|a)g5Jy>Sa2EOCpD5>(GVlg&POPgs;6yLxe z-qy(rs!e_gu6~TC!iB}`HX_-;cMy`T()ey--9#F!?mU(1nL9A=GuMK7&~jxz;=Nhb z;pMj%9e(`9N;-7%u2rx>$o-_0)1CJ$Z`7Gp#SIV77MxLhBsJz?bttH9q^fR)C&n}m z#d~A(d360w>jlzE@$tdt=t3Q#J@u$NX$n?pGChobnwlH_b@B1&w#?S^q={^|@8U5p z%JM7`2+f3ddxKXT0T`O9>Os}X?oR0H1^KYvM0Fl=v0)1#%mEF zu~rX^DZ#)f^%#Zl%)gF7KkEBCjpR+*JLv#yqWoCkPNr4RS}k^?N&x>OJ9r>0o=vAu z;WEOgI6F3S#mGWpQA2JJ=pvnpE~iz-uTPA&HZ z*9NUW%kryD_vr;pup^uMDjf(IY}yw701^=vuP@y((Vks8JL?=wTj`Huz@0xg9b6ghjriB~?rul5|K(3Lxc4q&+J2o}ojreHE?dUK_I5PUs+_x5}x-g={aXR6Y863kpDj z)IpZnUqPYa^V%5@4PXHE>dMN>&$eoYa&Z=-Muk14oFA+i5L_9I%lvC_ zzJQfLcZhIt*Ve1^QounRq3+E3-~EGup8oXX0|gJglrmz7mjRYRJ~ z2EF2!hhN&!eyX66ZLyc{iB{w=Aha#?YoEEAB+cWuTyahuR8osgI~wiX1kGkB+b z1S%$@;LYV&Zj4EVa=L_@ArvkATi}^you_`?bok0FcF?-FTj`GPoN(T|^LChV!Uj?RQF(53c=-l@*HRQb_3N zZIN*aP`cA0A2^^+NWd$hRvhwd7J}-f)5GF-NZroTsi|ZulzrBiC3D82p@iZ) zYu~SrQ1o*T%1IvcOl5eaDcAjKN;s7|f9T};t(`4O>xTt}oh!5vPP^=X?iMH=BG*m+ zD?srX!BOmsrg$po$oSGbldM98gsg;x%8@*Hl`FFjA=QFnKbp&JFaMIe(BNMIuENfL%Y{7C z+1YBaiZR_tIw_QLem_FHig}s*+cR~5q$%}nuxGvunI}Sj!UuC;w@!9yBqn%ESy?SF zbDVPtW2zc;HudEa0+BCRJGl1|S>9nx4cfi8lZS8uB!vr~G%k-E@Y8DE>G5|t#s#fy zgpzQ4c-=t}@lLZI|At&&GlG|$kBp92jg0ZF$6oU_c8l)?9h#GtF6@3`89(%~$0{8S z*w_+g(v)h^ts@H@elilo}!4*7NviLTFU z4q39PaPutpTJ6J!QF?VCx6J~lcAm3#u&9inD@GVv8UqCQu9OrZj)zdH*S7^-sS3Xa zDgkeKVnzJ{0Cm2s(N+@4+qdElC7{U{AAUm(Z^hb`HVf^ox0LTZtzj!M5wl9B#a<#5 z8jO?HGtN_Cv;qIXHBU=oOGzdDK81L%cKu=JTVNsZ)(m0O(TWk-`B%u@i@qd>>N%2& z={&5qN0=<=&7$DEzq{tw9@cqCOqD;5$jTxZq1jvVL6-m6M61}T-r${@nqMWwn=AB$ z^moV)9=pK+T*uf^{mg&tLKjLn9Utxg_;=s0^tVg@^VZX=pIp?U!3M=bF3HH7-WCzg7)a4g&Wauz^&itVSVaHa|jtE-_TNYF_tVe|t) z9p6O6F%D+0-nOwgKy}O&vCgSo4Gj(j?diOk-bvRV-ud>fhXD};rD_5&xjmNgH=M6p zPV~%##<|J(uhQz@<6PwR5@SI;5$pxX^V?9#6{ubWo4v&jS-3}cbi%gNI`l~ zV|9u*gw#(x=9C{i?7SDTpptV5Wf5GJy6N4)MWyO#r3#FztIc8#A#NSH^zFhZ53f2a zZ`#jsSKPfcQKkL{tAH^!u~pfy1%ukq21`hd&>N zaxp4=Z>zJLjt*g_RQ>kzUW?<1r$_g&KR~-#Azdw?<>cy@<~{BlMF0;a%#$hPxMYV< zfhTLs@#wRcI*$7UtgUA1aY|}?LIW8S;ub@A^!w$}cwNIJNME3L$H!JtUU z`(^?k;rAD4s>qo(p|f@q%Fb z{k_J(qgLz;`ToHRpxR$eyCEKVX-9VpC9G?5UF{r?Ypr^Rj|hO)R{A zDmjwz^?)1}mf|-d>e0M&lN?~}V_D7Z?M7Z+ zl`t!@U7h!z8R0p|2s!*mV-*vgJ3^ay7^1QRi9~wCfY9_xkClI0Rd2lUekHa2vA{*~5j1*?(97$d-Jb@lWB zF}pyYxS@FO+qVz0n4$$a>xT~$5)wwSh{nHk#<3qzU-8n2kD7_|o(=26FIR?iI?d^c z6n$!gK0g6tO!+{}rOEh~0K9)mm5z$S99J<6Tp6s6Ff{N*JG|MOU&7Bm`QpV3>5*4r z+tuG18;jsFX%0&YC;}oQx4+5>y8Tt5jUNkyAPU(gl~>Nm0v!c82#XVIfmwm`Qc8F3 z{HaNVg$>u{hhVhn>;0hXh0yYW;7+!Ewv(-h9l!uF%69Ukr#$=Ehap|hauWqVZRySa z7His$`ClFu$BGz#UC&NxtHd!Xyc#=-2-^$#nb1LT+Y?rJGY9;$T*OgCHyiXr(yssx zivYt@NtOXMhQI9j_n-gUE&p$QR8-s(+?*s-yZHSaz0jjGsX%aU!q8S-yIB%Cf+OHA z%&2Lbn`gkhL@rQj`-a~!Aj0+>o5cB241uGfC-T8SyqeYrRAu>(pP}RExOSj13t(Po z21p-Wpf+Kcr@KDTmyL~$t^tTJRDKiw6RVc&8^D3-BUm^gAU1JOE6`zDuv2XybP~Ah zVb%-a_3qie3i^DBel;TkQCJVv7ddn{m=5grSomfFZeCjLGB7=sY_%%i;4z{+HZf5I z_&v!5Izavq)Iz5EeKAZ3#6iUz7`nO%6D^RHwJ!hQ&3@F8bF&u4uCBZEUsu%)3Bhyo ziHmnrybB5nNE6Y9=H`OffjKM!5oTTFl^h7{inP~c4h-Ggjq9&=p%2YW!Tz8bZLj9E zTw^qQkqU=DsvHfKj|)^jq@0_3=~JH}1E!Ua-auif9tSKIw<=gw$kvGyC;YNy`v1*P z1$eVb%A0SkQF?$VDgp6K)=}F!>9bM2 zy}eB#vIxZM(Q@F0aetFXV6p^CEts9FCF``|gLNOiHBoR^jC@HA-7#)ZNWNo!>MK8k zWNRK;Y)<$Si*?QaZ!^6A`%}RGN4`OON>KzxneuhsK{<^6@Iev=uI|LhZ{`a&FU?z< zByj{xUJ!rOp$H>H(?m=<5r%F1V)i2t4dA^M7QeElU3ZAH3|ds80Ra>+{DK#90j+5u zx)$cC@X2v|eGx#GG#`}Qn4>&;yNT?qjr zQ4*D)E2_EP@~(rDa_hgI&}X%{p}Eh>z|pbLu00EL&h^8aavlUid(NQtSqNRp<_Bv` zaXuJs2N;_&{owva82ZFi31GkUk{h^Nf2;U^QRR+5-~Q|EIS{K+20Z~z1 z;JVJr1ylmbFQVGi-k!{j&duGd7X};L8vF^AlYzPUEUjkSbia)#Qz{+?*Y%dB2NKjhl8fa zw)HIfgt(g8k{JT=vCLre{HB4C1+=fK2#AU4L7PGsOm?mS2T32)i{qvzGPj>kmNjzd zfj6Qn0t{Ny`&D3;vv8RKoDPCS-)sP#oWL?` zVPLols9tET@ZW?22N*}QKmIPx+_3M$(5;03K8!ULq9V1ms`}!E9ql6nw43g3{1<`n zPq_PEjb%t5_jLGm1T^~Z1^ADM`M>%V|JOXGm@u^OJWF#qx2h|4U|j83~7t}+IMOoBSLeu{PVBUL6L^-w-C#4&59|_t*vy3X-;@AqVSF}V*rGWrKKh4 zi@K8BZ0jqKQ|3j97QMZUpr0|J-c#Z+%z)uY6n&)n(u7 VT}MvchM0m-Rnojua_j!%{|5f_0Yw231SDrklAD}CK$3t+&LAQgBsDpS`N`xedhU@YQCy$k%B;|3k z*UOQJpdvky3RhJBiPnW?LHs1wWcDeNMM*+Zehu5=eDgA$V|?o9L+qCVed~9I(*_hQ z6YCU@y^f@hxzQOyAcTa3UV?OGDD;esU*^o^SQ#0|kyu@oazLHLhzaj6>+8P-*)= z*r^^l=wr>!aa?YN1m5572e`{zcVN(&oNi5O#nion- zefsp^_}E1Wx9#qV!=Yh=^wFb7D{+dnPwebC`T6<3TMUpkU;aramvArLUAVnI@9YWN zeOyeXvZ)|`4*FugIhtF)8p&~RJR+0#Bp4kA?~bMl<2GzG0T*Ukd_>CYSFsUhaF=NV zk1924Y3z4?rD0@*7uAIv5D(+;d9bGIIF-uNiVXymeFuruS*YTg(rIALYv-8hZBU#awLum~3^pNYb-4ZDN?RsCl z^=J-KquVxc!`;*St8E_8RFl!1CuGf2ZTELnW%_mHp9hiX#l`3LM&Qfxz!2xAyyOQ1 zJZ&bcKO+z~%gM=&);Styh`Vk52xR#&2aDrVK4Cd~CPaNa6w??vlB`3Emh;Mu9y0NFFpes1jC(QcB8W^l^37 zO!8_o4+JII7VlG&N}ZkIh?tn}_h>l0PAjs5nG$5NQfK6xq&Q%rJqZa7HNCsJBx@dK zd6{N%{AXyU$%Ci7^=fP2s)2OeBWTiKbDMiXhxcehTu*E=<*0n$sDc2A1 z<>7k#tJN+t;~F1_zvKD6BO^WGgiI#91C;@Y@UWr((^ke9v&$M9yLKl^HC&({!OWl^O)`JVGmvCnDxVFdFqdtnIm4r zvqaGOUpz@jN_rz!2R@n2d^d&3@EA4gKnVK!`hJ*I&cwV*;eA3L{VXm$-S)g13=WYT z=HZ`oN9^DZdLz%@XkpW&BqYpGDAcZ}?P`kyNw(CWVcfkGcqyZ}xL$^sOSik-bh+V= zo*qTXgLV{{`H1B4M+iMSKCQuq_lE~mERb+`cEHk}XOsJ`0%9`VO5`l(LS6hakvtU|HY`q8+KgY@P`uIh_dW=ZkRYtEe3sC zdzgK1kj!nkb0^g&lrkFOI+!L}7SSRu^ztT|k%6IOZ-gZt3j#vW{=vm;wUvEO42^`P zvhdV(mB_NM0EC{0r=pwh5ev)I#e(vphSCK|sc6KZh3cAU1s~_3zfNERq|8SEfy>Dc@KCWrLbN2Vv~pQK{NPw zo_gLhOniKgIUlO%Ze?+9_Wgl3nwmL^v9uRw^NxsDlmuOeO+{`5IX)i(x^{<2u zJMm>8pCb0N1MV8WW}`vCQsBBXLnvT1{1Z%nwKs1po8SQqWY-dv?-m<{^lGew5X+gU z?}byD@&0Sga}V7`pSW#4MEo-JSPbn9!#4+E3om=Q-kB)|*m_L2*T4cSr=m_P5F?*m zA(bpiiWZ;qXHY2r>gsB7MhUmZ^i;7{$-!RJzS;QK7l=p<{PM%m(b0f^3m%O);4i=YHDiosrbt@K_vQ~uI&90nR|uXt5Y$~A(Vd&A$}zp1bp%% zIUlmsa7LvMH!CX!lVXg5lhXm3a(($*`@0`52fDU) zwO!FOm@06HXb_kYDPk^vo(8ys=i}+OPF;`2^v~6f)jOM)>Q4=UV0Ol=j!r<=W8ICZN~z&t}{tQwe+5*0;TlSau*98z=750}}oOf%d-&|Ll_ryE}Yr)moZd4MN z{+F7Xhlmsd{O1QS8_g~bekW6pbQySUBwm2`j+N<)Al|V(Ro1jV&kVvBHX;mzc=h{t z7#-|^zCfyq179Y$p*U25@psGlQYRw34@>N?fC%->+gtqVbi2SU zT-e{=U#9`ej4%&~os#DZF4jxUV$v5Y!R+ue5b;3+yMPPux^AlB(n?-@Uf$oXXzRwH z^9`gBu*?CA2W$;2e&WDic>~R6qd<+#1p0Eoy%Zj`XduY7<{ic})1IrUc7saR2I(tfT|22bAz>UIZ!R$*;a>>x|MCNC62oG(4rlM+pn{H03RowY8H-~G zkS{MU!=s{tV`FXShE+Dd`T&>JdUL_Z2o3%C5m(S*VTO6XD@3)?%8*EqiK(-wB!ZAo ztH(~5Nm_cTNSVkOmstF7R_!1yE$wiKssi^$|Ge+cLq!FJuP7klQ`nQk%=sd>{kT`Y za$Qy7YrcF~U{_SoiL1%A`^t$;juuCbpAQ&=pzD2%o12=L&yo;reWpc$^dS(1dj|&A zq+FqNXlSzU*blZ!WM8~Eh1b4A8%#xc#M;CyTr9*T?J)z=b!e?|02=xOk!*&|^d;#Sl zDe}v7WXEQtlf4I`TMzusI1d(F+Vvg#e75TrkbQ532q?FXzW*J!K5XbzbyiR)KiaL6 ztuW$GU3RDX?!hx!5WDsk4-yyGzBAk2=q9T}{@q_{w3_u(GJLMSj|nj{4L`08Qe%H3G3bypa1L848nP|Ls^_kpFGQ`P{QS&KAX| zeSF)Ft$&-RSz>{&C}@%yd1Hxss;NE{aQSv@EF(_oxk1u!KPb>XmNy)LfAkp9_F-5+ zTgDX0r!uSfB8Me-2gb%H*bh0ALGp%r94{`!X3UBRnOq3_F&Elivj(0<2?u&`2JO@c z{>2}vl>wgZy_VixMBl_Fri}+)ynX+EJ)vxJ2pP^II&jOH^~v~AFUP;1C_fFQ z{)P@&>p_W#DEC@s(+Er81EHgu>4s*d1*V z>!N*pjAG=gzBiJFmLa`+MgCj^@q}8py$pVp-3EAIyR7|c{kc(&p#;5*F^k&~`@hSz zP7F?eaGf?1+fneX$--js4}Rc413HlDSrwafdN)7<5dJQ&p4@X+s6oa8du6-CUeaR; ztHz$A1l=XMBMC1wVAn4LT5r&s zZ>kmoRct_n^C*P|Vz#VOG@yjh4pv`)ipT8x1k;+uQTnm=6Yl|E`znFMq--%8yWw>o! zi1+V$Br$7XzVb%vDQ&HU?E*Qu;Pbue#By7Nos-R$B*pHUU9566Sj+N?D7MLBEe6(+ z`M)Y7t_o=xaKh~|0uR?}qc>g~c+fZ<56M17V@(_5L$o^WYMr=&)5cd4%=)P@14>(X z%hRZJGU9QXe^&|Qba&pKSnraVHfWwNFtvqeNOQHNeA+`e+2qeZL+xj~va*3bFOT&! zT3e5zFzMS;FmvrC*Ioa;+SEQ1p91+;MTI?Q^7isQIx@-zS^Q8suxZ9egi*}+1;7lB zzc%lAN2P54tAYpai4iE~QWG7T5%cdlDK~2WKv22^@*HeZJZ-MhpW*VxvuHKE?>X)_JD3Z68nmS zXc!s4W0tS)iF(7MBHEK}jGsSyZS1s5N5v_jM2KE*?JPa8n|l=ID|J;kH6|L{)@E=< zqSpHTQx5`LDUK1EJ>A9m*=0i&RUJ)^L>>(#fwlM`I)!kQ-na#Wl}>yxQd!kmf)2PR zdtB%6k!fL4C^mRDqhb;#5;jiIR9R5DVQtJe2c5P;-vcBQVOuJkNlM`EW0#zy`IBj% zk;!rAx;3;N8qlmKu^&JF^deL8KbNP<(eS9j1|jfze_A}P(VX}3annfl$mOCG^}pLo zGk<@05dXq(gw_*+`2g+i0!63I2)Gd`!Y;pJXi(miCtOcWm1Kp6p~#2z`{9`$TO(}p z4u`DYXR~gJeV@k%#TH&)(TZ4s=5;o!5dNo|m;l*tW;#C=)hrV)(?=0m#?{n(d^{E3 zV+u@CrPoR=>V|Fo3$q?hTbAcs#%I31_T}kO)B`VSM5jv{TsGDU)uD~rj^j;rH;gVv zUvJFhX%S%t69RKcO!v-maa@J7w)H~#$*BGlPy;{z+-t%QkC_rCEt5P7zmYS)h04>0 zf?FO-Q0c%__F`#D>^b!!W0H)mA+T{N0z~h>JeAd@aO!*@8-}N+n8&qEmIh`58O;$n z=;8Wee}7=za?|Rse1=e&CG+4P-}W&43!9S(+Nm6SZxbHQGJISoORpED=TQEuFYAC!Yg=mk&ce-L|EQYNFsn#>7T;-$NC)1MXIgKELsAO^!gOyZi%5(CT*?lS>pOFc3|08Q#|4v+QWE(XL0y8* zm*TI9S*)p|By7i!>yK5hhlAH)h`X;jbs+0-6m8=N3-0MtWA$}Cbjh*zw-pBUp$nwI zU|z{z7*~cwHtyE@0y}c-CHKnpMRLp)bLvwjIvNpC?TA}Bsh8~~F;U=?U|^S93f!Y8 ze8^xrMutRzy`&~$VLPHFA!#qE=)b+cQRJpjBAYJ2A8i(M0!hcPgr1`OBq9RuA6~-S zmjh7L)!RGqZE2$6yp%yN;@9uCD^T+D=ep$)F)q%70NL{|bAyZ}E&pL`B`y~q)!AZ5v=Rd-~z(=P6o`7zP$t?tNXj#9%r87K-)muJ^E6B zF_>aRh&N1+=R>9T51cGip~WrW-lBr_JAn~MXeekP1dPe^3MHk$g6yPgjc?!yc6rZ` zK(3aW+P`q|l?_;Pyx{UUC{HoyS#+TDT20Ke0A%EKDOXw58JDXX*dfBn|Ef8Zf40l= z!NbIx5~gjTlq9#FC*@5Kq7VQBgxC?r-3?}7t*=8s=Fs`Uh9=to@&dxs#(54OLbkWLOVE}1P|ICL#f{t&M8${nj?_g4sS;I$KNml=uyfMbfvs0 z(5R&*=J`D?y2&tg!^2&V&GiB) zSE^(Pgw~e;%z`qeBO`Q_@79DS{75!7N>Q2r7JA9~iB~8X`27^WOFJi@OGHy~+~ZAr zt3270L(HZI|Em{lwLE&L3JTVgcv{{EPx4Rh+EHX}ilzwvr5i^oy1LLUb%ww&I?JNP zOdaKYkYqWwA;q)U(EKOc7|~Eix>>&O`?}Ovn=uozpuE=I4zjUZk>vyzRJBYqFdasY zK`M523N_r@7-+bNY--%*&Ud>Tl?PMAmMV4_F@{!`t2is6Wb1c7LZL{cP-C7}OxHb5 z?YG;DRJ{We;*5*`o)edZj!VI~pI-2_*AMFG@84c!A!|T=aJ>&L_0~||kRICMP)aSwJisW;%K9^|fqQOTZE-VMXG*q@!e}J@l&t_SAKq`5q4c#YJt|)ob3j^ zOkZDR7qINT-pEK_^r657a6X86vaz&KsZ$Dpz&}G4%h)VuIEa2sf7c153qZX(L7J;U zlD^ZSr4oF;B;j}T0;Iy*kNaq9?AY`-js4jq6tYAauHOjSV@n?6I_;!P5jHXh6YO}& zUResKoARfAN=^Qdm@Seb=j*FPN>iLHAj=_DINv(#$n z5O8NBv;LS~)_-Qnhi9~{ZKq3BlPcgA4Uh!BhoKqjYFvU3>-WSPYVA1&&bjme6UO}@ z?!P@LkN~kYdQ5Hbv${r-LAA;hWTe<(=FBf-hy z`bFI2I@S%IiFtlJA)ZnE>mJRv(Rk6avbQG^yTMqUq3#H3!NC!)|01GUM%MuMAxYmc zPhy)4*c4Tf{3_41BdK-dk>QLmDElG@n<<<8ve;ztV`Q+odHVP~IYNqFb`Jx!7uuSg z?R#>X_+q*7@}jq=);4uCV(a~`3@HRQVhaWu_PVqzsrNbHHfGZzV$fID5|dQrSDm}Pi=?#Sc8 zpRnbx>bGE`c4xP!?I5e2VHq&{%!UYd`rF6coe} zTXX=da5lv6>0bM#4OvDrF)%us-Znd1w7CFJY5`y<1hTreCKMAA-aM2lU}eIeYH(zP zfOP<&hXSFNa38d|uQV9?hu_drP*5~xN`_4r(k(eG zuLDVGX^{ZgX5{3=9UB`%P*Z37%Z?tZ&dz+VU%y6RWTT^M0K})8ot>q8YT(1uazccQ zj?x`V=P2Ms%<3-e2MAQ-;TnG41DSIvm?>Eq#nIg8;UcXWIDz!TAB87mrr5 z(DY|=`Ij%q02`J!Gh=-J{{3jFu0S)`h`YO_`^>rB-5ih9U+*;$l96EqcLb7fyqS?Q zj^73>NXI7zc>(~0hKFNH-W+s_dhBJmAU{+PKLz|MCP1qXm+$YiZ|<)5R{>cHtVhTw zA)&uL%B>7Q=dRVRs4l?Hbpbx0E7N0%jfjZoCt#86;2){QUjOXriK?}oj$HP?ez^dW z_0?`F$6vf#19fiOZxBSB^N`SVxbs@~Y>dy9(4Y17aKLwk15{G&Ykq!&d>Gz8^5zB* z6)+bg@4w6-di{(f;rLl@*z{8h>`?(9{8U{%?n9h$8h|mw0S$LJB(fY15b`L%!9@Yn zB8Z&1;lrBk8-O+c)OaPuj9?9rWPL9;lHEt9*S#IuZru?eZX}mJEIgV@B$A_|`89w@ zXV?z;a^oEg18z?lnVGxJ;E|Eoz;djwH8g}i_Im*;iVYI}fJzvXA;d7*ApgI#0KG#) zBmj#wyFA)}xd8SNA4%43sady#mq*#(zZGDz4LU8}weKIt*4oBtjXKA*lE3(P?--Z+XIIcLp2{DS_ zo~?7thS0<8=Pf1RfUPG(4}L-|w^s^V|5b(pPU1|uiAm!|Rh^(c5>lP%JTbF^{5t&q6uW?&Es1|YjA zcjsz5CH9-meeMo^clP%8S2aBYRJLlSxYwW%a(lGMQaBjwRRCB+0s*;d3OuoXEk**e z2^TMW2bBV^ex{&+3Z7>o!3vrpEiDajC z6P-e|;;xuDq@3+PBZv`fs2TX)bEmRrWq&^w%$nKq&awUS0s|(9N-95^Wi-30gZ^HZ-dk}5C|AQq3qP+xC zymK)CoIg^D-~r<2nTbix)bC$dQC;r=vtk0+DoCLF?wl#$3OuiO>-Ye=9-Zfs^-AXU zAzainVHcuGdj^iH=g_Q`Z~|=`b?+Ey=*t7%dBIr);2C7;j8J} zw@h4CXd`d~NKKBJ|&u=)~%46vIe7~pCyhrj+T9e0q44@=UfC*q_V9q1_ z+kSbXq7v}XS|6xrMV%lB8VUl)Kt^HVsXfXeOM&t6amhcFNIBoXfA7~@0lW-p6k4GF ze+DceA!K2};A=s_{IG7F0}b#WKv!#C)4y9Ri|Kvochtv<;GdiC@2<@NRk%8)NJoMQ zX~2&_NE;|r&kN~$OC)o95-;k!8e-4E$yt*r09}6`_vsTo7%5i&>s=Ah!AGAze-`}M zc=oGhA@tzJcA?R&1lX8Fz;ciP1D_T#ws8o48j#PqyBWzw-Y>v17!DW}rJbb~{gb`L z`LZwxbpx${PU;wqSCq#*iy0j!W2 zfLYu}^f^iS?B@gtiHVtjY((LFZ?OxI(?XGFM=3*=d=3ku2-_f|pmdRF8!%*fZ?UPr zer+bvGg0n>p!DwX@u-AVFx9KK0nPW396{VactG;|_iqF*#wa7R%y#H}sfkc9IsKJ# zm3r9;Otr3RkTjYM=(7l7*40$2tPViVA)@pbpi9y6z5(MkmhYn5*8+(0O~3>%d2e$; zs(PG#eI>hNXrkCOz8M@?agpNi3kVRBlA;H9tVBA!Pz)geN(e;*1A|1PIt2yq-=8Ba zN++B^^qO?vk(+QzN=V50`t|1-e61%|o1*T8YZ1@{?R49pA5avU3M#DseWRabOY@#4 z`O%4T<_7^GA(9cPbA!Y+kc$9HxT0FLPr$+g2_&ZIC{9bhOptY*(TfXDAmwO~7G-24 za~>!%E>O*k1U;I&v%8hW!^gLhD_}2uv9L^6KU#s|I86|j)$l0ScuOz?SRV*QoSs^L zMcLRm8k^>7%OWCd_@L~K`PZ3J6-qa?M|y+zTw!U@!afZ=4?aq5JONt5& z4UJsdx4uM=0(H9Ykr2P z((eCayX*xC-qJ@Dzuq+(@key&!jpoyelBO^{@h2;*In&$<9n{J9WQ4}Q(?{ogf#xgev<)Ys=Kw=4hAF?uP+8Vo`5hQ)gf9fnx=s zAEe@5HGoWt%@jup3QGGRr|^{xHrkiRrOQa?*z|HqB!`~65~&y(tfFAjcG ziH2IXhC0+WqqAwO#qYUXk3gV8YP(}6v+&wvD9dAD90%ZsS81xihIyO6Z0Co$Ztzs0 zq=h~vzdNymzXgG@_`EisL3>haL(2B33%ETb*egnuw%u(;`Cg)fW@gEiSa4;PVw3u0^P|TqY}Z2aY&9<5jyc zl<>I{att+6nh1ul18RBm>+Rm~@C6*@y>*!X4IyACSfG&ldw-KNJMQ>mu_mJ0#;^uE zI&xplo{-|fa{mXmUW;B2q@=u|`XT~4sE$MXy>@k1e7>j>?Ue&Cy`bA!X-2Hyncd2!x)^u28IM zii<1T)Sm$tNZ;Q`Ac;L01l#n{+$uL!+Wt50<#XzIfrfBF+r!0jwKCd*J^jam z7FZ`5XSa!!J3lJk)zJqR=cVUrMhq3`bgyaXd=dY~-d1u}X5pn?%syK(aJ=TSLjf&PK;k#*wU+*V6PMPv)xzU&rNDlX<>n zIcB3}7bUMnxPkMAdE8O!)8bpA4cgCT=go^JHCvx0l@B!mCsWi7xSkq80LxftEaPCj z9cc3L5QBS9mk0KJeOaoYu=D{dlbW3q73Qc-V>aX6de4q+c%?#u=To-jt8Y_CHnQy6&r6)C6yy!n^ zqdnPXDP3$VPN%i+f!hDMsd3PVvUo=umF=2zyC7Rl>9YIv2Gdxbnr=T2y>ZgUtxMwl zLw~O>C0xt=n?09uwbs(cM-_Wg6897sq)Zo9|ZSzz1u+F!uhnPU!1 z%;XV%!{TU*ygwQw03#%9;9zm385oGi($8!@-_>A&s^j3I&ebJH%%`=lt<7G26F0LD zEtVK6%I0w%HPeb^)vjIfqp7v_yRmN~LF(@@NZrD*(M|E?#8>xU`l6S$n6uUMN1rqM zU_e_HQ?#U6QB5@*dh_uH|4*_;VTd`m8h3%37iagGpw5f z(;m2@0tBFX_VfK^h7t|1`t0nrrfkV`;P_?J=J!qv`*}QAqJ?qPO_W zk3)G{dZT!*ky*`)EBGkR>M(g<{hQ{1I$?Qp5})R51#ka3H}If**F*NCk<*(C!Qu{&JUM{^rI<#$uDDo&1vRuO(+q<)%}*7^iQfWt{0m zO+qVEgS$H-~u5@zs*oMk|^SQgUlM17m z`_*D{i1Ke7IMuhdyZLqbMGD`9aA>~d;gC!C?9<|;iyn)o4m795jUDhr_5oDObPF%3 z>#s*fL97W!x(8VKnsnZBS;U@76cY}TdCg%R2D+blG^1^_Uyc;+(Tva@{tPiv789#d zygb|OAN`J#I6zEX0&7ecvBGy@WGtp(IiVzygMBZHn7{HoDO@|=p41?M)ouVi7y;>@ z3txoT+eFSo7IS5kf!Ri%_@Xa9X2fwy<&3j!PyEtzNC>Lxk~9#J(L465@_Y81Nj2T~ zux+#oc6E%0Y}c)!RS);I3s2sQkh0N5pjq@EY9u<+tXACkruVAM`^&Yo*Ide8dQKdoD}1zDa@qFCxF-OSu6CF` zzn9|z=FOGuWP~m<^4nB{%;xzTr1$Ts+gJ!2)M{%YCmiU-^Tj*m;vr2{*G74;j*kO81>+n=aQCCP6@EKEFIu ziUy(IRd~NU6Tzf}!*Ei#BS>}?`ry)hk@r)y@1`i< z-OE%~Y;3fq4~0_$hch=Qmkb+wy@pVbsoMbZ5!W>4CbwLNuTzD3aUf4GFmczALeA{v z@t0A5`B~oDG*EOyJsOoa3tpkn1#l93c{f5O`HAYU9a4Wbxo?OsDKu*8%E9zqnj6{7 zIeJQ|G`Ev5NFQJOdnwsS@G6#vWd%ID>>U&%wx2hSE6hkAQ*i&#B=D|oR|lTM1iLMf zzpva~rezH4+xZyzo#vXMHQGMlmShMC!ivX1v-2YcmE)R1iGoj5BMClf;VGX50L+ zLZS)gXb&He32OD*c*_Z3`1pnjp3x?egG)HHclI+gAom8Gml5mvSJqn9O(3$A1y6w4 z&Ay*3(atL^#jRU(r^3cgI1OM`NeN8k&_+NaAWuaBIr&(Haob#L?NCRsY@GuFv%goq zK5Neqs~T)ILmRE2+YciqjBBL`adNQV0NH9d&`ATm;%Kd{_WH&~F34eZ8eQ4YamgVN z1V}Jeti=H^777snFg-P%uoLcl%g?~WgZ~@;@@-Ze(t;~70KpAxb^uZD3s-nEd3$$) z$mlh{V!7E2)6WZ_Yr!dk+s0iM2}%=Srk`7uIkq_RPk(&q|CD^=xgj(x6qmofV(A4l zU!=UZm~Z1SE3j`f50qpbFKnKk#m-N@f)UNG-KHF;rD4bSy`2XTD@~S_@BmbT-ltemQ9?2rAe-kI za|2S$%xFI6dtE@U`0i93?5nx}a$+AKoIZpX@2&apVEG;yUlP)Mp0z`8esf&wZOb?= zpjc908^@osh_?d(f00%Vzf9FnNO&4xA06_UW}X2+cfX~*a1|-!Kd5Pc>qj=tpTLs zF&EcU2Z!>-O8~3_fw|PZ1*j4N+bVqgy7^)O*T)A_`q2AOvOp>a2r1{Mk{qz5^or7} z8x17@2>-YwAM?Q+$FO$EPt z43^QJC^%ho)o#V}Ph}UAFZE|)+}?Q(!j`)pg+cBIj4A%ii_4}mb4cphyy(HmM1$Bx zYO+Ig)%$%&6xrzBn^N$1e^Rkfnhmtex7d#_dDoyFqw|{Qy~d(w0BoUFYn#*?OiAgR z19?uv#)qb+rU0>%d-H}glAYBSs1!XfeuwcnuPT%px6%In`xopOMFFPq?pJ5aH`)N| z3pm|M?ezLPtNeWE&85^iB$^Uwt-H_0I4X+gP7gR&*0(7vzmE54K4hM*}hYVQMjX1BDP@ z-z~OTj=P(uy5ZsBl5rC~xznLI(eiBwKDvi)I$XASerp=Uny8<5xlrYf%wWLRBkXDu(c(Nr~yG+V*Z6obb|8^TC^rz-(l7G zEaw~Dk%pHcuc3|)ou*)pg#20N%%^reXBk>krZP}Dwl*pbZAY9wwQ^QY4YoWC3$}cf zwbcH3tm1j>m~U}tnj0QGsn4bsyK}c4xX+I-uaE)gEyA$QE3(}PrxHO9!yf>U%tX*^ z^~MOG3DU4CiQQaQ~itjqwK7#`kBv)Q`tUo@P71k!n!9g_PF1m>80zCvR&H7MO@>_Nj? z=d8%tppoe!m|q&qF9{)kueH(I|JwIy!t2jG4ml^1GSg~Ft2k8b6~+r{Y|&u~9BZrQ zKPT|!=f@U7l$pTImvxf*73A48K_M-lsE@ngTz}YT;hkpD`r8ywB2X?DR60&2X;#+p+ zYt&(H%IZaN2?-~;SWcpN$=AQvJ&RticP|mJNsyQ%&O`x%*t4C=<>4$hUw`XD1C{Qyl`^ht?^EjRSIJ=jEmd%n zTBRx7`(`vdL;zC$U-9`DpRbfsTML86@i;!dF{-N%x_QhKrKz+ao!fs>`^vb_dReZ5`{! zPHWN7Y9eG&|K@j}@7M4z(Gc`=QCF9i{ZQRIG*tBWV8|F)PQ)#FA<}SR}aHil;#G=vvMyDV_iwiYRFK?lTQ=$;=EYg@i)R$Cp~1fyG&Y*jj73kL0Ay35s2R=Vh$y zm-s?1-?Zk$RzS<$wm^-`hvJEzt%iw=624s9pCkA{S=6xTkquq2OOl5VJC4EEA9wyu zDk+v^V36IOQhMKZrYH7wuX*xaMEG-f%IKnsr|74IMC3{gFiL4HrE$Q&~5@1!_>2E6dhNrHP|<0e_siaZ~m7QcBc7?2YAX zrL}y*{(zIuyt*tr+U#eA2ihL18t#7VokeP8I=Ym_TQl0ZA1mvQgo?$HiubXKZEvR7 z%(d#Mb_VvB`20!*4)Yd*FR%KCp+F*YzEnaz(x*;ZI9n+%y*JMqHdkiIAyNVe`lePx z2_UI#$nuRMZRUBUux71Bp<#YiSU$9uSW4slYeRN2#jUVhSGOxV z{~X6u?%YgT8v5Aa_>WRwYcusslXgt>E9LmufV(0UmnPRD$&qDamb3M@IX)h+Ou91 z$1CxjW$bGnY;ziXhXc1}ONpD?Vrnv^Vpaa)+NIDdx3Xx@$$O9BE19-;&ZP6Mb`d;QFVm?(Gi|@<31|&>bDmbs9mu!Reu( z;QALZ(L--7k+c2Kn~!6t*)e*RRsi}FD}!g?k?FDo;^CKLoq?k*x4B80#b35C?WBzd z#r#d)t=4X{OYRFg!7#I@7O4h?&$K-*H0UZgC$;ApM%6DD(TbwMtxC?$?dGw4Vw-LE zMrYv_g%F@MQ4Mt2E`yF!F)}ua0=hn<1G3=Xv?E*RC&BwR+>XA~7$1O3Dyhg1Nepk? z!o!;>0IZk<1gL;hx;W9egmYA&l5$mLXSaR>O>b1#$~sE4xO}I46yrTYRibM;q>k_F zhW$EunC9i}I}eq`YQtK+%u^wQ(c?_eAj;>@AxT^)fICS7nXhuv3hT>NY9a-N7=VQ7 zH^FHePPPlxk47q*8GQyzl3%hgG7djfq-}qT{AVP&dPwRhoU?`OA!NVJae6i>Jfo{) z%TZ1$yQJ}CH>aR^kb++QZl#S$W!|^$`W!}!UPI1JV^e*@ zYA>6{$B=oGl&uX*jI|e^sP-VB;facD=&Re@Fi5rTyeEKQkpTYuRku3ur-E4XZnQ{E z%!lyjJ}R5*aX=jhVClOrPw|pfSs1m6zie3+In_r*_LnuQ%(83t4D^>cY{4hfpUwy~ zlSWk)QQ-D}15s$b^6E4mr|qp}|KSz@+kpC7GO4YtISdanuxR@OSSJ~Xwqo6{caIL? z*=|zJ3C{z#b0rZvx7(6KEfRdUcL3doD0BFEwNN(p$v-55fzwt#wB0BqFPqZIxrQ-R8;tK@=X7;%%%9+Q|ZffV!P#5 z8bDH)92tNV{pR)-Y)DK!Bw1L{b#-;|jCuY;H)ROOG4UY8H0vRx-p`()BMQ)CrLQo9 zf`W#_vB0kFsgY5Z{XlQ8Q~&m7X^QCn)?q96M~ua9%80$e?h>dLBDTw$@LF420a@7v zHr2dV!_*g7SB&62`T6-ky-<7Iu(MBgsy1_{x0~iBcL{uCe9v=R$H%SpDypOLz1$JCrv6~z|4o)Yi3bXg%eDnwv zQ2wwrL~TE!x(wKoK~j<$QB4Qx*d6MBf0%2P0lbOZ);4JM!>;y6)osEBx#r z?vJ0tPb_OK8m1U#ejDt8oeV;q)VO+g$^sS#z?RUy^1}z(etm=%{(mY zat(h@2E@JL;jRdkGSCJ6fBHkl=h0X?nHV4~p#wvO3DicQuJQnsea&W($(dZ8{6$n{ z0<951Ej|Wg;ES)70n1>jKHmgP?Nczn0NWq7-*!(6i2qJRsd#Vi^Lepq%b_2ja2lvO z9htbe9xyO4AganEqoQoD&%l77w%5UU4vq$RK&c*W6d4bUMj7nGcX1eaea`G8Z%-yR z7n?*Np!ir?Rz(FD6n+N*SyKg!0UQ+I)dKeLp!U+%6-YV}wd<~~f?(es=CS0}b9MtN z$>V^Y15DR>zW)eUOu@{o_45Jj^Lt{VD^NE5-J}Cq&~b@c=H>teQQF@_>w~Kd3ONwE z6C{Y4nc0p%Hw#Pm*}|ogl9GvV`mQjzx7esmc@IbsXvAIHL0u~n0N`sofjs08bkH1t zUdg9vMMXuPdkvt}i4wqw(}iw0EkK4+zg1ka6I1(c5*w61qd>r{LxxmUSMLt@4G+Vl zJX%3bJR=X!2+ZQ`+h4*e;6;WdZgTqz4Fdl}WII4;V?F*A3o`qJTUeOXcDlS)%27By zE-C55*RPMlDkumD0)f!82|zsI#oF7SuR&Y{yB85NAWEqRM`%<65f-Oj4JJ4=02xA# zi~f;Lh8D;W7}G=?V}AZrP)Qel;Oy)SG;6QQcmlyQGCqwWj%VO$yCFj0LjZb<1wTU& z&Y;}3GE=~2{L#aQ4_APo0w6Ek4vl|V0J)3}LeqZ?jBG+6hglX}PhLHX3yj~~ESa=i z6zKvF{Lb58tb>V)HY;QNznh}}RhjwU)r3IA{Xe9I|3CczpjU7vLyE9HCD6hVK71I0 zsBI1y?{9afQ)zm5} zyhz};kU*fsg2=kN!xl#@tgPmxz5J1Q11>&qv_bIC|a!9fvs7NE&M zm;|Bc<3p(a{)wl+2@oG^Y6JnQDE2=sy;PIoQmL1yV9HkwsVHH)VRE;5-Dx`b$WN#EW^F;NZ~zU)Xx= zhDY)0f*3ug${rah@{=cLBiiTJ6P;E$IC+m4TXg?}ZHp!YrS1QX>TbmH{(tIcSNC;R zJ%wfR>JOh*$TzNFk^9`CR3AdtU6DARK96Jhdbw#^{f1f1B{EDHC^Z9fQ2vkqwQo5#AS*$VN#4ascEiJWXC0qPiTLTJCmt(&eNF?4iUMsY2-kv*oU`k-7Vf$1Z ze(beP0lELl{r=8Z8t&gVa_E`S`TP4RwY#O^w3j5Ui+JXrjV@!B92>GH7!ZGWBQgZ( gJ>LI&{<4iwUTi#BM%n{MZ$Vx>RaGdLGkO1i0buEXm;e9( literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_009.png b/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_009.png new file mode 100644 index 0000000000000000000000000000000000000000..c5078cfe09b10a9a7ab321bc5489d72656c0306d GIT binary patch literal 20630 zcmdpeWmJ^W_wE2vN{WIaB?w5P2uLGRg3?2GNQXoBAV^BLG>E{^-65S4O1Cg{cXQA9 zTmPG%?ppWL)it_i-a2QWbN1fnd7k|SDac9T-zC2bfk5!zNsB8%AZSOZ4-OXirEhFL z82op~UhJI;4*27NV;l&+s>+Lft{x_M?Nd0n7wqZQx*M zW$R#NZb;)~0<$-_wV`>*4*s&zm^nDu@pEwej}zE!VWu4ZX@BlPAT*G7;%`)3lDB4^ zT^@{HVDIhzIK_WTc|Q>DCwE6&9Fsoq^JnzC+I#4AH<>dnYH74i2xd2&uj{-(2)>o$^uE0@8%js>@bFM5))jKtouk}szHJ)I(E06;|77oCvzSgmpkDHq z_x@iA!P6Ogv#AOua4ymP`=6PH8bAuwc6#1%!%+-w=w;55ns0BWS1zNYqWrRM9?wZzb#!!OmXr+b zyg1sLRQCJwC8(gF0CxHE<;yKEA@^@DjQk-qVbmhJHq?;Fm>8ApL(+#2gMe*O_b)a7 z&5-X&Pfu^y0!KrKtCtxE4V*GEGTwvG($i;;j8pJCbG$39)sB`8A8ft6=&Dh*0z0Nj|N{} zHm>wZp8KVf2Gs#*V$v;~_R6u!j6@

8FX~tu&LXCw3cEPo z)H+Gyv&RC<@ii?iEvrcJ?agU3@|XR=^1Gv**(acDID~{A3@# zKbcRt;p(8TwXaVWwK!CFsRf)0)+Wny68Iev2_oK2k6sx1**QCtU0G~DR! zj3#=u>wR0!Du(mv>g*HRzgx{X{Qh8gakOqYR-o~BxhFc#^Bx&{MRK1uZ8Dc>7?D`u z$cWN#t-UERG4WG&?HaoQ_r}vXcL{y{bTBh)LvOW7*|ncT0tqPj1HnQLdKb-rtEZ=j zauWIEpP~7xxP*j+pAH9jL!9S5)!rw*l<@QS59W8=P?uS%citrhOZ`5iy+EU!RYb%- zhy-r-`$uSCaPWQLGJYfoxmTfV?w6J}@952Nd)6g#2lDA}d(hqR$6(%rRYSq2WTWRO zvxZGb^&m1bG86booAX7^msUK9?2GUCz&rcQ!_%|l`@86NFk?FktLK=fD$MQMPPe`$3MA1vwXjuQux^vbx#R9}^}H9! z&dyHj?5vK%#-DeBw^xUT$lln@+}zxm($VwU2f#V(?b!{NnaD<>R+|lQ*XVGU<54xX z>8UDfme#hmj*bvAwrQu`IX2M3c9Gk2`M#=6Xsx@eYY=c-nkg7?m)q;p;&U$Z>8e6b z^3ZX?6)>hGkaj|mD+L=pC`nyTP7Z1ihKGm$?k%=Gq|%!8^Xj5>4vdPrpYKU0`ISgf zQ4!g+g-7vP;Zdk$-|kU=B3IwF4RUog@@nlCB6f*AL@zR>6}n)BM4c+tlLCQRQ&EQ^}mVk_p1*X1^mnEvXol-RHgy=E_9 zER|*8v*E*L;=pz6_p%f(ly*_QO%wJkx@_8+tv6cg3|*V8=LP)@1#^r{$n8k9(d~E- z1e+LvCWJ`5^>o$ZOs)MRA-7k+f3bEQZ;amC-`_u5&q;$oOb1gtigfBZttL4A{QT6z zENAPu>zsGP(!6hKl|%?3((m7kXGw+@{33qv!1&nPq%T`G{?&O33maR3RKfV31h-vqlIZ)Bim z-Rb4onf`KjBsXa>oq-r5g7z@r2Vbe$_p+c{NwC^Aucyskp+gJ}4Xtbjdwa{QWIueU zeD)m~uU@bK!b=CMx$-?-aA-|WDw zlbIbKEkzei;dd;!DYnAJ!~3)B{A+xi3|NQnWOqIstT*U|u|;oN`*u)O-qU-!Pl74$TezDoK}_nOOoXZ%I{cI!N^=UyTr~ z3a9$2x;x5=+nEJ#G|kPKP=nCl|Gr_b^Pr2!NK9MHiSmW@6a;9JO6dDEr5=X?{RVC$v0#I;zqkdVKm_zx23;M zz0*@}?$MQabV%HM&&oiO8b^0Nn8-xHNT?}tak3pk?R`ZI7OzudC+OJ9d=E&$^w)+m zc;@Z1basw{=^ZjHTo!z=?SK<4&}*JsxdGV%D%nB(Xu;gSkWXl|vKl-w2% z=G->fu1=iZP_hiP6HOio)9K6%PHx~GjGX7b1uteB2gA)4|tJugpCL9mP3 z`)g~fSl@}B*EuGL)}qC_jSvWMC}z`DY@}?O#>e)PAR+@dzzg!F-(>^3Abub3&QlL0 z@pgd-Uur$glkdq8jSH5gn5t?Vbl^*4BS_;CI1SLFqNDehqvgjY93kfd)5Ursvd)e9 zDI(r;Wpi0lgrMD>2v3POZ_tF#m!o03^>&NsD7!W^GFl<(_acO;Xj~% zVv=psn`)a`JK);YLm!+XWVEip{W5m8Z}fhV4`dr$B#f8|)*tqk}EREQ*g z_>dknT*BD+JJ??gIbO=ERZdThW_?Yp4;e^!(PrT;BNGgv0b|cL4V)6keG(E0QBgQZ z6d!`-R5&CmIrFkGF%cVeg*^m|tyP~>{cpjV=7#6Wp$CYA= zen{fssZUS5KIr54yWd4k238g=4UMP^h@PFHPeMwKy5gQN71fE5J@r$sbI6mHmL>v8 zCGE3k;&@bo>dC^Mb=unbYQ>}}0?wphHPJqQE-eW9Zivcz!`wk8Bmtt6Us6&Ml#EBK z^zKt}kOH+2WxQp%a?J(T$h}W~t@z4jMjhnJAt0xXOh_;*&;RyKNHUlU)eAzQqX-Di zj}J)6{^ zij6jN%5LKi6G-uzRf{^n@206@2Y>REol^F{2IkU&5e7MR>E?r~@ix@KqK|}k?;46R zW@*%Mb&bxfK|Wu0a#RhHm<6v5?C$$DaLH48OqVl*^M(d_YK@VT)8ZNT-MV|~jpR54aihnlv(DSAJIhfh zi&;!1a<#Phh<J_;gvqMuAXrvr*&?9Ou9FOyCPb2!A&VT3WdJwBOQ{mi22k^n(VgB6tPBXR3 zxk;@s>{*Go_p#A49T2u?5lkSGT_$3b^=U*iobc^h7Wa6qySlcdzbPYyYf}NtM)AY* z=a5u4nWAti{G)BlX8Zd3KE!FAqeG2s`N@TT6%9ej@ zxyR9cyqX%V_pF=#-;HF=^R|9qL6*8OK7FdRpM4h%55(bnxS5kS_KUk`5rsib_N}J% zc`Z6_Kn6wh+{cekv2{J6Ma}zIcIU8dog@k@REvckJm?-(F0&}|#($3YTZW0!GaMDqdF66iRxPlmUWNf|;- zZT;8fNRj3#T8+ay21ghZsxPD5-okeKv_my7_6EHz$O4j{?5!lhuCv17{qMI8Gc-}_ zUWF19vjyzeJx89kw7s2naXYy)RTW!_wcA{5&8m`*Y6xPfd=Or4>XYyYWcL+ek|*xG z&M8S;QmW0-vj0XI@z-!6#d-MxZ0dD&r#g+ssyT)#m?C27rK0HKTTl;y>Um-&zkbRn zLdm=gPx+DMRxo>YRsS&$ADMNRSG}VawFF5OSWF>k*O5_nT(9 zq$ra@JBpio6&KMlVqFI*gK~1NGSMLAAJG`1tM(N_jZl*<_;fD1m`-YJ<|ucR+oOh} zbO%hCCr{SNfw6}}r^>O_8#PZZK_XC?m8UKW*#mjT>=mY;LkL*#Ym$l40R9m5#hU7b z34vMDv~M|%K3#1|i9bri;6R)C@5{NJ7!*)&w^`&=1{)d4>!uJTyyd34HGs>17Mth@+k+jEKKR?PDbKZgL6 zlX}Txa|gJ+hDJ)ugz?^ky$C&V$a#l2j`h;h`hOO|vtRev)2Df*GOdo-2x0`YyP9@5W4A@s^NP>Xcw0idrYT%1ZZ#>e!->F$5NVnDk zMx#0;i!$k3CVM!7kLs8u6SGnsg3o?^rodY3yyN?K@hTU_S=5ZEi?eNxRgRF9KqC|> zaC~(V8S_k!j5We{If5NElsbJ4t_R0@w^7Pb8*k>DM8*9mI-Sm8sAhq^7A>M1c-f2N zvcB==n{06P5|Td06ElW`b@>R@DrQ4DCjeH8OIbb%X%sqtwy?u)YA{_bziHM@fI4o~ z^9!r#Osps=jc@ba^@V7fFzmXGurl<^)@NX}?l_4MIB?Gr_ZEukE5d$!OlZ#axZ#UP z$_LZk8ntTFxDsQOES2u-bDBMo|4@5rldi$F(EBj)Pfs3d&FNSVkT2{R0H6HmrTC_q zMcB{uue&#k0TlDIJ^zjm%sjGLQ%L-Cyp?u)2OS-bfenv&P?(irfwGK}><3J*E5)KD z*X!n?>yd39{yf~LI>w%ES$VympASUN9NW>8O*4$ddb3iNBCU4 zXtOk5Q$n)>0z#aOZ0x7ao^_N(6X_W-RtGVTH_#g0Eh#^2lXFQnv8&TGPelAiS@fm* zt>-zvMGVExXzbBCU2}J`0ONlhLx;0zEoV}#&cwR7^>Vy~A9VQtbEw4W&q{qTeD>_D zjfQ)>BMS18Uc)Fi={HRg)8h)CCTKz?Ae2=ANF=*+0 zZmuiCI$tC-Pk5X?tuNst1`mYkh=HZvbNv0;B+b`lvZOUL8X+BXEm4ASFreDwx7XAq z)=w6eFa(cd#)e-LaB!HUCu)?xzLyk@GWoa(dy2@(BO-EyHEY;P49S57yT-|X~VE&+3~``F`%*lzv)P#L}5Zlk8u z(nPAKY7>ATVShZq$V4-Ua@Vfo@72L#KvYX5azk&X`mCHylw0ruts>JF8xn$H4W zg@$5c;SKSVcbRf_a|lB?ZK>?e%Yftif;z=9CJz1frdr#3PFB+V#85AB?>Q@wSInop?|RK8ma8j}DYS&Q`)zWy6| zk?;cE+zi^1)J27nnF;@$SPb*v^pk|wibe7%cVlAA zo)E^OT-F8S9YABiJh#*d4mF`!l4u472c?*@>jWs5b!6LdH{0Q+p9|Qc;p#fpbltYG zL#fUeHAy{<)@Pc)L_*o+yRFFeovn$VBejiZml%UWjKJ4AKSv$VV<6e1%JMEJbxwtM-W?U^0#5 zw~8$w3h!RZL zFMbAh0A^ZOaH@*3`tcs^>Z&4Csu&9&eX0r*X75uyKgLfUkBX@mT#n2UiMX#UvG6Dn zj;}6|D_9MOVcKcDgsDyAE0rTv{`xkeQirk$S=G=Y$8lIcI#VMqN zX`p&bE!O?hNJa*ZO$Bi~9^t3G=6VFLwMVK{h}^Pv^)r6>*JD;KtO8xOCsw6M$8GZ| zmBbp8nb$NTdf-71P!DR0Wsy;GUBq1YkyH`dHQI3XQlVMc?yuj0c8bNre-q({Tlw!nMcY~Q62#%u5FjnWl` zk0~lbkG7ZsRxsgt%87rrzk&gyP}3y0JDrtzDgQ2V(6Gl<=s4zO)Xbl}7FmuLdDFNk zJN~%7^by#J=xKO^!N*LIBR(3izZ84Ek@EpVGW_FPJ^_?#>?()R59N{AUA-R4jeNiI z>650E#L3ao@3MiBQyPT z*yM%hDDye}PH}TZSg$#Vl95Kh+3(a7x&W6|u{o4+@K*Sh%4T;i!|@J&ffi$Z6{R3f zg)L#jt#Det8X9P=xh#(UzG1qfWnzn`rw@RSb&?tyE5pJp-io1@c-C)yQ&*tLU)pU> zd)qOG%GXAI73s9-IHSGwhmdhFQ*UKS_L$}`^V8D8)4Zax?Ww6J!!jlAO;&FAJ}k_# zNA0LoE>E_j%d;yju?zG#7}Z=atBBJJyU7Po0d?KDI#4@e= z$_l69ggoLK!qJbQhvtqJRYVhVWu?{Z6)htpHUL^R1C})XBC_{Q`rw1Y7;>pG)A(3? z@47-b(5jDsXs?*GuG)>_B+IRQ&Yn7~A zBxi^6e2D4bhcKmwTv>|39P%=Tqx`c8QTIW@2gkg(yc?Go5I{kGHs_AC6#M-4>*1iE zoC-$5kfpSFUcrT+hx!TSTZ)+zyGNUhTBRh=uHmefOo^82`Ceko zQIOzh*+j}tSCv^g^8WoVEx<*SxiZb`8r8SP0K7zdzZOg5N8xtZ`*2}|zIJ&T#3mS@ zH&u5xWaPJxa?WzpH|8g7lOqL*tZa^(4Ed6LiFZe1+5${I3{iV`-)ub$u8g=$BUk=WV-=IaLafCN3>gtLvb(TGdiJ*~{*q-Vkl+Bz{ z)nu04TA9ieayM?3m(8C7n`~pl)04Q(xw$g_`QOS-ZZ6&5ZFOg6mN&m~gQ>&)^B@2d zjy#mvJBZ4DV4s&QM@hr_KJH^{8`v{teHB@QKC#s_Laj@uowHiu^mz{ZJ z!j6qj8D~6Cf3cU>f$7p}SCP?o5g#AXBpz5T)l-n$YFL`+_E&0r`BLW8r~TWc2u*oB z&|F>eqZs4(3y&HPNl9@PV&6A%q)WTSj?Z|%V)OxE>AwUNCA|RDnc3muQT{zrw zCg=PxN3{rQsRoGJOmb8_yl$xo=KgY;OZcD5Os(hX zx?qd|=RyNa`v2$*aH{|Fm*^q@QxgKEfM0kxA-~gBAe&Z|8KqJzKo#);H6g06PXidb z{h_ynivaUe?RxOw0SyxqE+7y9W(fgAa=_QGc%igKP3ymN+VnZ~ug>=4tlet5xJ-ZP zcSk(U)v9I(4COEa%3?KLHBhF9? zY;J}~hLSG=Qlx@>dS-Ix5J)fD0q7dIwq^#HNmjk484GWd9Y!uL5?^dWNd*NWAfb2x zP-N{Uk4a&)yR<2qKz6WqaB%d3#SrlZ~bzw0|0>S z0Kyd?Ocj!_vMQ+YI4?sc!SdC=G{?!QI>^C;Zc5CHOqKnRlgX{pl?P%utGAo+LL1aSSsckkZCc>|a+7#Qt^ z_0%i;tg@YNvFbQC#$j?s-N_N7n&_8LZQ&n^adp_Ts!ljbpu#ck|$M+`)a2&E}gLkqPbX;x)Ck27n_N4SUo4_9#LY z#liq680ZTODurli(E*qL=Q;D`i^TVjM7#v~op-(hpc)-`@!yL`L7=VB$v*2m7>-v9)POM-F}g0b1LqdwZhN(t$cV ziMT1KQervI{*_vU3J~peb@EcJ%+4d(faR;HuaCF9 zP6i|okQ0PvmW97C>O{%1q~E=J12iIR({yxnieQYlwyg4(Qr1(eZRf+lWL%8XvhfKB zz!nq~EOFY_>`xIOqoSe$LN>b#_piahV!-HyRbUz7<>lo;^lJ%CZ)ZJsYF9bUN1mYw z&_d11R-^a<}TFlHnjncF|4NMb^bM2BfemDj0#cnJK%t)%h?ZtW!5&= z=w1pe&^H368nFFD8Ia;l)Y`AYX7LHBg}(xt5`q%&5Iufu?idcx`-ukE^4~LbkYyw? zHt8O4)Rce*gnRA$E_iwRJ5QO>*woYrWLR-VUbolI3GW#IBUO6wMx|bZGSc^-4?8&_ zP4hfSM6usz0QjLt`7k%PI^e^4auu`uhRq&$U+o9Hc0VaF>FMh$r#SqhEFUy6p}r3^ zBq1p0C6~gF`j|g*JkHaqy$6K|{{sKC;nqtZ7)OCG?zSMqI4)sA3 zZ2)2$Lm-AgNpr*kduIndPiGmy#A*l3bq5F+644AFP^|jPIqzFfu##E8Om9c&R(PzZ zzB@`ov07Hj>=woPUYwtw8v=4N6STf{a8O?GYOn1t5DQFUT4Sp*Ita}y0qxRr%_=LV zhQ>w-503`*5`CXhly}l~MLtA{e^9>zvamhlZNRJGDhrsseMilwC2`>A_xAURd1oD> zUDmVX#SIKHkdI932LU0NJ4jsS3V+8t2y1YuiCWmz;z=IJ3_MRL?CxgzU1OJcIyaFv54$ZG*J_Ty6 zOmKG;s|e{P?E*Q&BS54A`qp9K^xJ!e@7dW;IXQ{2d^31j=_!fD7JwTL3=3l)--rv8 z=CCl)e|*T99L*?SWmP}Mnf&F;m*=dk6<3!)$AY}DzCW7_ly4fx(>psSf&Rlpk>y$@ zGGqLASSq82Y#ko`GXMR<0H_U-RcZW=cR@zYP0EPcF{Ya?AT8JXq$fVW;k^t1@d$`LW?@HV@sB~ISz1!qxOm`SDTk3`_+{0S(7foxz2 zM5zuipr4Sv4*^r$P$fo_(%Tme^0%qZH{##3HD%W@u<%;W4_Eg=cmYZ%N-&=R+PtSUZh8FCzg&irlKH_zLeXN`m|BMVk?0UYwm7#6)c~8h;56o#le2T$` zxg{nZRNCnLyW&0xKVReFDv|~4p=w_`9X-u)-b(PWo>2JBc~qDwe1+wh*rIZNSn8JA zy`wJ1m~(nMe^9AN_usGOehL?IU%nXNwS009ux%iM$!&KN)6l&oVE$c{GB#X8<(s7R zkVD3rD!t$yH1_J)f6*jXa2VeRHzj!rWbfl)lxWn{AKpHt9eE(Tw)}^bEvoo*F5jA> z&a~uucHXWL?Pzv3)-f9K$C`aIzZ!Qsbi?mF;qFQKEBR-DQ=bC6lT546U@xaiqJ2C(w0CRkW*pxc<*=|4j7KBLx3&S`4w*1K#v>V=pc8B zggYg(YVIO_;WH?oTS66}w&iZA(1T@KRDYu*(Ew_wo%SlIa5^Xu;6t#N>+7P1v>@;e zAs+5+A_Z$+YC4%w=nfBJd30KXUY`FaAPB#(X~FAvqIv{*NWm73Mp$<V4P^zqUnwnZ;b?~3UQ$Q%5i3dn`vfQ`p?e(S z@9lbHOjq|=V_|SQvF?E_uqeE0KQb6YTOrWRl}r7+6pBYA{N~IovSD4q z?mTt}-)B}f@8MAsyiaH`MT(2Z0-U9ioe}%&#(i>ot9l;(w+vlHJ%KecoE+27-{J`! zab&rHSdM07(!Hxa-}ir6)X*g)dYe=W;V+EfT~yK8_ApwW{1oVQ6LfS;m8&=w>igu+ zbq~~(6Nh6|#28v%_pR}d-eb6^%k$Bb)>(xUFQk>fAwAXc@ytP=VK;}8wKBAs?D^)3 zg=@w|2lUjj+Jd6{X8Sw9r4cXk@>;%ezl^*+2pP?id1Xrg7-PW$oS}k5rx*8$*8$o! zInWUzDii$vujLp-DolOXc1nd|Uy2%2vto!rl9sm7P%MYJuMcCa7+bYC4%cHuLO$VOY za}Oyt^Q@dXV#e(`6b$$Jm8pnp^i-i8ddv~Uu9z}4=jXj{Z_eWmRKuT4@TXb;LzW4L6JT6 zTD%LX?#thq!~tNEFoeqx?J?KrS{~JMx)tf$m|I(m1`@*RSuBSwoEg`gEyiCK4hRLz z(Z0;@1;v?m%{!$liKBQ3Rpd@8;xrHOSGLjQxV}djioct+#c@{&UrxEof|F?##-Sv9 zU+BPtb#pHM3Jsz=*-QOJDokl$$B9W^qnUMFA{8N{JImkHJ_hG5@Xy&W5_5hbA(ywgjVm|XJeuk@-?PsI=N-KdNt5mTs$loSEmaGGj3I7+`Ybx_0j(0;Q@Er zHvY@QxR>xKt|`wyCRSPk(>__NFezLy)@n3b;ZXtk^m)%ALS~x*D&pvvRbzNt_WKfX z(VBnv25Z!O_7EwRtyXjpxt@}J^yReYKy8epd!$Ax4)G_|U82^%?uAa1m9eRPf(G1k zYTchRV-rpUoA}e{UPyAbzf=`YNPukIB|kMYOe_Cnp0 zZ47puGEWaHtMg^bCw)=8#F2BH83MTgz;5w5=(+5FJl*B))~n={#50B~`0TsW5<}h7 z4TN#VH{1cld{v%RwFMUUF{=&2RGP{JI___neRrl%+F+&L=u#3{sY3%7jax)doi0Oo#*e&qOkD?pCNnRMAu-lD@_40d?=(cFaw3| zIQk;1cQ{3|E9(N@xxT8xHb2PB_V;?wEpH6@LU=XCc6}$Ym)E0> z-nH@WWyLhPZrtb|dkAjhx0hTdAqSKKF+~RB2=?$07QGFd5kI#6puk+Wgdvu9I2x@y zj5ddxJ<(t!aTV`Z)h^FwViG+vyL18Y#fH9E^&6api5K+dNhD{r_Eq7wf26Ben~|jF zQ+1UTzmrFi;!gTSVnyi>8|pA?GOT9P5is7|k79>RD)_T*8mi9j2!EI3ZZ*UV2N}!s zV0II`;Q-jWN&P zCLzw@_hh&mw2I1X>N4?kjf#R-S#66#a4BIB#B99}h%h3zG0LA)Mf7f7^YWe-Oefda z)=D_xFMTxx$P0J;`!ygA7%P0~TC9a_HKE|8Pikwc@u5g=u22)Lsi|u4op@z#=FO&r z3B8gd9Vu#s^voUxTbZq-=5NrYX1y{#?1hpS>->uKJ_{&*{u@^}2zuf!`Fy;dZQ(g& zL9V$i&KmP)uhjNWGbF{PP2FQi316X)iPjV@)LaPKN#dfJ$F?VszjgY$*uySScBe{a z8}ekR79EI~v$I>KDpAhY2T1O{sBE){QRw`l=V}T}+uqi8dKK(LVXx}s)-F#mLP*i{ zJkY*pYwU&uDny;8IQNcJ*Vk_!0@#a>f0q8}9vQs2DJsb0(#gal2X(%d6nK;59NEf; z#)d9Z<_^gp)2U} zOrwEbrY3kB7B0RBv=pe`Ntyp=3MEy&nIiA*%Ksa1>g(NK>fG3b=!7Dy*ha1w=8646 zf^cC^xJjRJd^w=KiRp}+Z5iwVP8My!cvNXQP7C0zBp&Nl1T#^&#;|u8f~oTh@=x8FKRhJmR-x%JGIQzmVNU)ho#%<2@?YN z&65kqV7@N)aCMMQP>=#ugrVa+`z1M<0*Im)QQK;uvqOUb5J9~B<3P!$CCM45Y3p$z zQyUw0AUp;-Y$AtI(UlxIH0K$#?>~AII{}R!<}7EdI=n0ITrKtLYw)X#qHkQ?2VdWe zx^ymN<4v0FDI=;3Vn!$F4SILwy<$cV1bHP#y&E$M>ImwXrpvZdFJwYav3;F2#z-1W zes-<>a7gQ6hHB>7vKL@L)FVg7%C^ImL)kVlyJEV~eHfRo@1&|y@t*x)8r`BIi$S;; zJXTVjrPWtO9;??z^&|%dYDepk)b$v*f-r!p;HY5jD_CD& z2SA>fon6UjDcDL$%ga~0rh@IvPqSB=aR~{JlDd#9y&F!VRVsvp)$@(0*-KJi1(TPN zX$9b32~h1@q?m$I27s?*BIm)DoG03Cwywqd_TJTDT8sA$-IMmleaTAp58`egjYPlQ z4Tyve{#8}rxwA>1ZLP2%kzF^<`xbiaDakWY8-u{Ru50*N7YcEx+!B}ZZi5oz78vckMHB_d5|b)t!bb5Cj)NmucOXm)DG z8k0Q4A_vPU!@<26$HRy+)zQ5IFK2NlmW=SnTv#ls1)?%CcQ?k1Z6~Qf{a9uuEkFvi zDAWD}uq3S>fZ95+D;-se1Z*@Yu_LZjqwy(HH{wiMB+gEU4G`N-01(?|Djj z15|CGyiH@<79b!%nOX|KkE6|TLWtek(9`cfexS;xMjHhoG)%bNgV+ooqOw}7=kUH# zb6lnnQr?|$rp{rc&%CQ``$*$?+YfS;x9{unWJ*&JH*;^ujLm0xb(kozb7i{Xl{VGK zyo0T=A!k_`BSVF6zmJ$+J7ux{n~irGs5?i_ zUS^E@SsuS_P6Z@W^}O-z(Y!Zy5moxHfe*iae5Cq){Y${7gmZe8cD3DW&6trLZ?Y87yqLp3Ib(n0R$h^imxci8 zoO029urkqS)oSN+L&$uNH+?=N!BYf$CWC z?cRaX7!FH0h4JP9=*qFq|z@DX-Bu){BSk7meIah3*g(+34`S z)k+gSm>27Qr|Yy8fjgJHtgH-J@3=nR`RBXgVR409T9rz19|vCZ;Q_TVE5p$y=Og3l zYPVzKW~cHHve-Meat8r~eamTaSXUSMu!4Glp^7}mDBIDyW<#Ppy&&o$*i~z%hmn0K zsq9?in5=5t_7VpAvhmB6JGShT0e%z0sR)1Q&i5dhia=hqjwc>57EW)|n@t)k!n8T? zposOuwwTk^FD$EUII+~oj;AsYtCN~v`hKeqPzu%6WS%#zE5PGfN-R_vyi8UzJQd;? z+;o4FCwa=3Qvq}CQ$@@~(&hh^cypd%gk}P#IwxFB>j;JJ@RJfjX1waP`~4ull9|$$ z2`M7j=OZ5FAK@FeseysrcS+pvfyUzE7zw+*?mhWyIQeB~E_DJxc@v!YwiQ|fR~Vx zWl+)UOx-|9XX3kss1)y4Tpha9RMEo~*yGmVDJbTex0b`;fB5 z+?oFox~1eiYE=mmH~aT%1Psq{*8aR>|0o8^s5BYR0F_yJ9m@j5%P_@|km#UBYpv{g zkL!!E@MEB?7D*UNf&ZjQ%a@YE5ORAyEh}SO*~s6sJBObv$RyPw;6-t^BY-@sb1WqB z5c^DF+~wPhDPFlMxnj%_1O4OA0&>hZ+-P6MC9*fB%dNufn`un6N)_`2IPR+64Bf*( z+SlFBW}wd2t!mzW(%briNoQS=A{~)Wh7dk6IbGTLk=&Q=#gJ=35m@H#i^xcZ9=;}f zEIgKarnu8CC}?a{`*8p+MGdVo{m4x6XKRK@?{qg_XM3z5G9)oP+)5`c0^+dsd^Os3 zDrOKF6qt-pQb+K`58^z}MpphA{oG17W!ZT*j%|AYdUCkhXA~;AFs2oIXTFq*hl8K%Y`qnh#WvA^Ns~#bhihu3(fvjtCeEj>Zpdis|n=SZe?kf05ilVq!0=V{sz`_UQVE1jDJ#>@tpv2Z6k}ihIJ) zdfmn!w4FvZcKFL;51C*q{nN|cvY)f^B0ZQ9<-ca_!`}l&ukX`lP;RgabYLT~zW|YK zO`w#8H*8V!T_vM7c7PPQouv}$o;UWTSjk%NdR03Kyk%e-^I0BKB@E?tehKKqa$;hFjU*BZN8rxuLwKwpouSe6$3Wlw+*w@Q zVF@6L-`>e$0QvmcGRY*AAcETmC@cgoS?&7RPHG82!9|f_QJmV~?;`S|hX@M?`^pA4 zD(7RD;SCG-J}1Y@=8J}G9)Ei%v?qU6F2I76M^P2YZuJVCHHUOn!!%YvF>%doVLb== z=&1RMR;xWe4qeZa9=oM>m5Of-pO{#O8h~!U^dUR-@;vF&r5KL{)k%qzl;A*n2;}Tn zSDR@8f!(pC0C!ZfVBVXtZyDF?^X9d|V^!A|681C!2XgN-f77Zh(40fWHn{O{YZb1} z&h}d8|2dYiQp>t$FYDrX>><%LWpS}@CjxSpY6Tno0{p4EZevS3X<|c zfXUofbW~9}hVon{5iv~HTUW$XPp#;_sT~%a^sU>_q4afg*MPcbrxHD}(w480#D&v4 zz{tZz*iGFJ_aLMkSe@ZOD@IG(_45FqFBT1B`BmZd1=`^XP%E?6*Apw^*URDRQW>&C z^8?H(b!;k*+^eCP{*FDmF;hj9G?oB0{k=Y|=K2F9o1!*FKotn$JwT3ScAM_Ccl7L7 zmwz-zVbv!9t7gKy15wWDJ;uBT|NGaHT3)}){saKtHo=YaW}VYKt`FtI zXrz`^`k@C-`gUCEq>pAGzDdVCWI$3YS7;=qp(HPl9Y!(CPfkm_&6yFce7KJWQj|^i zQ;UCa{_7GvzQ)c_AAm^%SM?|)}c z3ZcsCC_!=l5;Pi0_J2q#@PzlC3G5$67o+5Py<6Xg0G|~M7?CU>zfhfKe4hYERetvL z^r+W6v5kz33{~6ex$Az@PAD$+7#JM?&okIE^qM>#1EoYKW17cjR3&@W>hkgeD6=M< zbKeyLZygXqF{7X?J`hM7^ns+{q)xDwQ(peO_whKG?~`m9jP&#wYQ?&swzy&nY^$6e zkdbLwgYsJ`D=StWn;El1Z9qtM4-8al1~UIuE1e~@2VxrZz zEh{e{5FbwlXw1SYz#-5G3C*sYgW52ECgmR!bgy7Q6(uh2^gIK_Q-R%L8xYhiE-e{_ zCvdtR7%wj`tH*(@$|SPkyZp{hFTbfa9jzL4+Yi+wK=~3>&%o{hE_q>b(Fg3~4R>a0 z_W&6#E`BFCI5;9D#rn7jXjQ}|C8q>)s;hZFfBsxRni*V^=M^H$B67t=99g7N-`fb7 z`3d*YS8AwDgolTquFE1OP=mDm{!L;zR`90T>ly+HAfObpuwVwJRGIA~`I-K0CxIRa zvZ14LYhY_)Hd&TE%H!?r{ijfCyv(ybkQhbogSU(jJ$T>;s_{^}t(xtsX@t8gEfD3= z{uw#S16%*kNl8yoavD%-imJ(^_Bu1L*8Zmb?;S4sM6LTG==S#ZKuQuB9o@FNt|Di{ zuK%j{_{w8pqbl*?^^JqG`*+f;XS9tP|6%?p`u^3UB@De&qiAjd=-fvz)qg9Cyk!Ip zMOj&#A60|`q(tx6mXCnr6>tCd_1^z>?0-4&|F17j@77FzCI193=TNA&(LudF1ib!X zqRKkSq?ri4xaoo!RDGkwNI(KY!3S%nie~`sapGx)sfkGjP%rEq9kqkq=x6Z83RK}V zU|_?L38;d8aI6DWGz^4QZS(WsO(933fOB=^kO$_22qN4+JI}dd1O8VX6fK!(0X2|` z4vr5fVO#?Btdih00T2kPTpc{C1iS+T2pvl5o&sE>wgKQP-e-&06}IzK;eb&AvaHC6 z2)MlPd3)I{fJ{(ZVt}@oB!QYfpg}4HnxG9`kiG}%2l%00TY!?8n2mhL1y$%lidmA2 z;B^9>nGzuo2*6k%;PpW``KJJBS3l7yEGZ!ZNQvq_0JuO4rl31Ov;g!sT|m5s2EoO} zMZJGS_~y(AXaXu^R+D+G$$z|0RGR$T!tML zFN>9Su>&tCC?I>Ct$#0Bm+U_{0S@`j`QGn4Z=T-+t+^elr=8SL1`qNF0n-vO_qp_> zi0l!DC9lBX@Ll%s185u`e&HE8e-e!0mA@m+R6ZFNH=z zyf7}jF3{on^;}#a(Bb^qB zWE~s9RU>m)kKoew7}ry-zRsz~$}XebYkvC>_0unS(HWN`%wD;huWu?U>%EToQ1&p3 zbo0W|cqSU{PUxI4IW4j#&^k#7&6wSrH=_}lBaVMH9G)lj`snEhHT^bn@SW$#Sw@pX zlpS+Fvd{VC>p39Hm3g4i;3{H)!zRD5Fnwu?HvmA%w-T))NRoa6v=5UIi&m=D9H`ZT zqV>Bfq61?4HCHAUi}PU3NfZ|20+R%z(6bDX(YOcjXG*}AQl%t~~yHTl9 z-2xrN;>v=UmxMt^eR}Xd7!0XJJ_jIpYgNFfkt3QRJ;OXT>WEl(wEJ3T)vT@Yx?Cgv=Y6FfQ zy0*4PtOhB=?& ziwr#FI0kvB&)mcrVE2*^`Dwr_rNGgw0ydI3kb49Oo6lH3@cE0t8Vvx()SorYhO1st zQPB$PJFL=_O%DXwW;Dgd#E{8ktRJa<6dXQ^>1i%-fzLpjL==N#;eDvNW3Vun-KgKDFyh!mN_*`uxIxIUC(L znf%1I6{ literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_010.png b/docs/source/auto_examples/images/sphx_glr_plot_OT_1D_smooth_010.png new file mode 100644 index 0000000000000000000000000000000000000000..58e87b64603478e2aaf21f7e90bf3e5f3ffed838 GIT binary patch literal 19232 zcmd74byQVRv_85It+Yr;hlm1FDo8h2fCz|4igZeM2?!DbBA}9@w1jknN_TfjNO$*} z$9wPZ_r`nUjd9-_?~khk9h|-Q*=w&g*NpG`=6?HFQJ(N3^+g0h2=CvMd4eFQ9rO<# z4t&x&Fc}2@VcALDSH*)r?sx`)@cV^V_cZJfg!l#e2bC_KW(pq)+RHw(SFtv-cY0xK zh*-X`e`R59Z(*v>=xAtbXKHQ5$j1eLIT=mt?OzFTbN}xXxU6lBx!)xA;Ufqma$iPL z)j4iu+(k=O?HqTbGjH7&KlnNx*M+sKW+tClQ%zGc48=@Lim!ZrXgZ>Q_{_}Alq+Rm z`<9z+s}^5kep?^kzQ?4%B}r@)_VAnS=twD|K^^KhMMq-~p%$#`_M+kn!;puuC7QuRYaaCKT8U+m&6??0rF^f)XI%k?`DJd^nKHM-F%%Q`;z?fQJ z55uK*Mjpm+6>aD|(OB>!ky>RAEYzzHB46lDBhGx99pruj6h8+<|Y zdsgS8#WWN$>3N(zY+iHtm*%@>3DNoKx>x&v)5;L3q@?82(SRP92C4$%&W5U!3=%0u zZf@e7oSavVjybOgHH$5NvV@7e&dcMudi5&f-Mdux@82IPwxm%^6bn^JQ&c;+#opSN zp~7oBdoNDZt+=i`TQN;qU!U2i{j*xmzL@99T_O7gZw~bwy;^Tn;M=#7a&kBnTv~xJ zy?@#TChI=jP(hI8foy3rv&^lLcwr~~hL9`H$Ezizq9-#^iipIX+JJ<;xc;G55Q0zYL4s8ZWQ51X0aHkr|AS9g#}$Lgc+^O7i374rt?N zk$?B$Zh+_EmLV1vRuU|mk^E7bV*Klp5&_r!HIGIQQIDhB)OXCVyu8jYbzd*RWJy~7qys7_o)${z+No1!>8s`5^O^tZD!}6Q2@?q?qUa*g- z1Z}S(jLghZhlk@wpR%52OTkK_haeY9{bF^b$mzrdsfBg6S?FR4p%lhxs z0#EB-Q{$DAzy%IN0?uq7fW2+MK0)W=;&RvSZyTL%jm?bQg1r!@Mn2Yh^)Z*(z<0D+ z7#JF&5I#OW9*ZF!zc+7w!Nlw?_5W^U@Cr#zW-i#j|L~!7jpymq{5-CgmltdRz4Nov zcTRKxBa_zy3mLComGKJ*n6!!A*m$K3<9(9I(Mc+VbQhYckWy2#UsL#e75%g0T7`#? zPgY>meuCW0af2q3Zm?zE7r(H0oz}E?UrkB;Sy|z9 z-CattC@^fLK>HGu#L0fmxf%tN-(9!8?+7C`zs2>Xz6=)h9a0ryuXQAf=ZXk;ow?6d zg~$?6d_4U%+Fwwn_8@s#YxWx3|cM@Aq4!5z9?tH_C zyp|)kd0lr*{wyxu`1SjDyDQ#6wkDgFmR6m|{y5t;r36kebhb?OT&_&jjAYu-^~oCD zoyA^xgrqlBLB-Rvfkhoj)+jJahPBc^IoQ-c+F49ij2HUV+Pa)09_e+utcxM>mSuMO z(xppSh|Sh)^QBIWX}nX%3D09ol*Cmwwn>``n4Rl2((SPVl!=~486WT3BsX<*Pz(Zfl#cv6|hcXYBa z-w#fR%;+%V(_h0HV*eJV;95M~aJtU9|nLVG7Cr-B^Vj`J50=DT-?R_wt2 zs3eaHu(74pxhcloRR*iEIXgM57%(ER6c?|#ly>C-zCDv4c-^p#t*uLJigAz2lhw1I zI}Cc9?hfku7ZenL>!kSc+=vnVzipqK zPCng+(-(G+gsrwA23<)2_Q~(iO8&@HpW7XcuaPN2enWJg#Byc+qgoTA^)N^%YWBDx^{c0zw z+*-AyI}=17#u=5ygHcH44t|Bh&g)hCUAemA_R9mSIl0S2KUj*b#)HxlTrVE)uQ$#% zN223k-**kNEHJYl9xh&76^^UF=2~MmN6d47{{AgJoMS$i6BrUwcYd}nj?|_+jLEZ} z6x)HwpqBMit=Jrbg^=S)Ali5yi4!A%!NJnt#M&o*cXqDljQ0=b>Z;EGBN#J*(VK86Qy@uU{cL^f(;{8i!Lp_3ubk)*~ox+7nu+K>hCA#uG)FO z^_-23?dr8_&yCVn@X&@8;&nUpr>C$X;h7sL1%=U`b(Ib=f=5Vr)8P~@``|#yrS%x2 zxv>!!g+e(W{0TrIpFVvu%wb|?PHr20n*E&omQhV`^Z}g>j196A3X6#OU;SI*2C?26hcUS`}*c#L_|c(w$lg~JNrfS0ysK4 ze%f0ec#cYX5XEkEp8a5Ec{!_PeJq~f3Lh3sUcI`mhd+eos6&U8Q=)hgmrL-Wtb~O3 z@Fhx0TnU{RRMR=d9kV{~n3$O1Z=fE0f`T*5}0*Z;#h1h%s>pYV!?SH_ndNIYvM1&nLgx8h}{o zk4_nW`QxW}-awL06!{^p>dQv|EVY^0IGj&>+4JrG!eH*CXjO6H^%LJ?Yox7B07sBV^f@pR1*8C zXU2Jj6IS@WoFyFqv6cI8IF* zU@xJQLv#$P+#S%QaOs4oI1N4m?3crV*Yj_R;nkbLR5 zZ^{;$^} zR(H<^HbMP#eQ-OM=MxpMzNLZeV1Y?@GD>b8zr;j_Xl`AdC6`f(o6iwM$LrL=eyQ(5 zM@NVATG{;C;VtlPX!m=vH);(YTn-ZH&FNt7>EFcSG9^~yYt9`GP2o&U&CNf1mBd4v zn(occ&%cB`=UKTuI%M)fg6o!(b{kUXgM*nc_!SX3+4zml&Y!5LYz`YIGKq-L{th5k zFOKIkyh!hLVpG@9pg&dXQ|hvP&8Q>pLY0oS<9f;F{C%w}y&P&HSFZoI-t9uk?2 z1{&)r$m-F)7Sgwfgao46$^e78mMAJ7J>+j^Vi-iI7`GbB=pgkWGSd!l3Nnde9x|cS zcl@%lvhawAC_IjK%9c-i=c+7M2b3E^N`e(W@zq;YZSEz3gS)Z(j#iL)dV1O~EG#Tt zr>fj}F(u}MW@^ynlFGAZ*WVCaVTN?qPccnpsdC(y+^ge23^t4}!YFn)OIEO&pPw%S zS>C@0UxnSi0FO<W*O z!GattZ+gAvoJ)Doy5{s6I!6)_74=U{OmyCAW~+zt?16=V=ZUj&fsw+W*;xZed`;7$ zi%kFSDkb&H(u=-cyV_kNgo;-ReJ9A^@gYGZrKD6}$~LRlm@d9EBYIq-x#rk9wCZ^# z2a$&oygMmGX){7P2eC{3|9F|my%*oS! zB%Q;pL&Zq zd9=BuMask^y+1Vvn`&Ve2^nAU^z?*^KcC$^;qQ#B&41PT`Q%avj_-(Cc)Wg$Flof+ zjyTlcPF%-zoV^uPjt+KmvNy#|?*Imzqdjab?f#tiD~LRdvbCkv`EQW6HDzmAuo?N6d~b@hJZB&o15-s&xPh}1?yAR52l5Z3l8wQkRimp8Lm zTCe9<6>AGml}sXDUc=gxW!v$c6_L{VaHd*uFs09Y0_Mew-a1v@hOLOxzMEUv(`@fh znmOg;V$0e<(x@lw!`!gK%7*OM!(VtF@^uy7$kUTNw3ap>Ab3{#*s!3=5k?>FW^HUdysMM_xzhNw zpp$cd!k`3g;ZZMou1?L~7ku32cOlyAyjDW5oFgc7pB85(zE5HGJ zw!1(_S1_@+rlvCGCL1o5$TP(?DWYJ2kPPliA-*`M!$XM}t}XtemgL^%KQFYkeeRfh zM{#hh7c~7v4~Wxr*Gw=lBrT0Lf7kJAt;Pe@%Nqll`J%SpPM9T$-lD(f299r~0wMB- z5R;kt`*zt^c}z)3TlRt6>iiDl_w6sxtJ5Md*>wCXOBE#-nm;k`>W2BUv1PC3oN%o4 zMOEju*q<;t`F>+sE=7WjVLhj(*~f?6Rakx5_}@}nE@(IXLE~PWFZL`LZ(K-Md#Gb$ zWto#x8^F-AH``p>pEZ!{qgs!i-gFv)M6I-;Ls-lzcQw+}+n?qC{T)1tDrs3+En8yK-a@x`aB%sq{UXL~ zYc4lJqYl*)ihT5@SC(}@z4L1E5()Lio#iygJ6qLGGud{D9@i=+o0-seX~{}L4h~)p z(+ggDWv5a?|CL_U8;8)_d~o)j?JNm;@#c!0d0(x?#a*APr|i#Zs2jdQbxW>T{1B_u zMP=Nz>7NUmWAa;EaIeD??8~}&I9TJo@ybQ_Xizsxn@|GaW0c*XcDUlp@-?>ew5+vzL?SyOJ9_XLlDj~5HE7W_$7Cw}MoV1p7r*2x_#iB>dPe}W-T6rf>dJO~)=1jr==B$0JOyUL8#+0wb_Fs4~-UjZgtud|K z?BA}SZ!g^3DKMUC)G0qN*B;x-ea+v0E6Ayb0G6UV{`)hgG{$UYOy?uhqO2bwbux!{ ztrKXk2Hf^R-0xj7B?(eqjIlAt0j5l2d@FT1`+#|8V9V{}0tozOSOI|gWcIJw8b0FX|O z(FVJY=TBgvvSTg0&dSP*!e!C6`k+7$1+MwF8CIb=*mBhG1KGJ)Ywz!z4(4Aj{(I=m z^d|eh&mZv??3V^qH0WKh0)sH}3k=gEwf`M9J9V9^yHGnwxiG4}YQ`R>XiPnMy4@*Q zT@nB9c#AWymegwkhnsF^F13y5C^3{LxoVb6N94A4LP!-*lau_+abd@W6DoSxIj?=|3CN zqb^BUAwnND8Rna6Ax|<=n94}&%V{XbA&w5){@cvWZ{UQ!t=ui+mPSe6*;l#mzG(^^ z%KqIlJgk57?@~O(aV7lWrcDRk+pMe;X3US(L*d%!RY0YZxUC5?@;n}Y-nZ5Ba0@?l zvz73ln^iVr&$G|4Aik1pb<^x3!3SLvgg#}I3BB%>E)tTcjap2JM8%I;MvG4l zWdl}lV34$$k|-YIcNW51-DS#;LQeEm9y8V~gpWfgi+HJ7OmI&T=e4hoP8E!wpQ>ia z{Y=pMMF9(}sI8V1(wo}ssGnTP7&1#48&1N=T5oTO8Ww?D3g*#9{y zkN){@+Fr7u65^r4`>-Yi=o3D6Bw#Jxp_XH1I-*L(&&xMvic;nJVq_@k=ava~~2 zdlzRZ8IX^nG^IAu4tvfJ3L0J?*WO=~I6bN@GOvx%&D16w|2OlE zTXVIGy%I%cwY5HG>MzCP;(e6A8XWg3`JA{rEPr|O?@94ck3L@=^~J@Um{=NkX??Vd zY1W6FozWcZX%=ODc>8A4f2M3(H9txpQT%gs$#$s7b@XF z5o_SqL_)OvTn8d83bj>;9oA!sw$eiDcIw{lLmKOJ?a`7&nPXvo$EF6GpS7t;_6{~VT!Gf5+?W^5Gm(@Fm1tK2Q z2S?^GKra~Jy$bNq+b+k4pBk>F1#R!)Ot{DwPkJ#lH7l3UW1!QK?3Px{2@myR`LMs; zWhsQzSdgPNH>dvCysrk9)|1*Pj@yxlYc_!Oh6s#l)y64iz6&L&*V&)7G$4&WBPoPH zWhex~txJYx*wfub%-hyP28JjG5AZ)kVdyd5dVvw1KqMoJx^Tfv{j0X3Vr?TsE0p)O z87fNyGgGi+-)=U(LxDx_eYo*2|dhE4OA<3&l^bHny>;p`TYcnj6>iSV1SRo+CFqO%k)W?xu7AhJbaZW|%J| zei8fz#<5a!*(KgW4t?2;-Id2&kFzKs5HD5=X`s!w@K4pg_qVGq);kN`X6iG}?(W`7 z;!&&jBfY=M_h&bv(1vk#x=YF9QEt(hKcQ9 zEmwxi9WeQB_2=9xfW=o|$vmu9F$QHu`tzBB%C6KR+aZxYey6|6*Ux19a#& zV1Uvj!TnNGdsJi&Rjw7=sCvP*Jflz%*{xCQT8`XTPm3R*jdIj!@qH!XQVThw5cRWs zzux4L*aefRiuGCArS19FO-!mK3UrDx8XZSaXiXe<7v<;Q%p%IbP?VLtwa_C=)Q*pk zUE}GyiH_;T9D-MzXGv8)S`RUH*1tb>-Bs(oXG?YsS+D&4xP%0@+Hfk1JirGZUg%U5 z(~`eaNjCeP_agOhiA@np$1RkyMFUN&T6A*PAU}T84i`v_m-Dr;F!$vIaW3u-8tzvp z;VNeGXysCOlt|nVe9i7;B zM>R+E-Y#Ymys|KM#TmR+p}ExS6Bga7@{uTIL)WDnQ=Q^-*_N<1czJ8vK8fV&5W$9f z5<^n^%U_~5m9JJ*)TdKCri8z&B1@Z2L)!j!o?A)f9bN%-$42q9y8%H}^62wBt34zt z93>{JC7yp?BtA}(+!|vSe3!&H<#iq@KTl7;B@`qVI-6}dJZz?JOo?74j{u_P;hyJ( z2)}i7WS09*gotj(k72qPMO*@Uf|YT6`<3hSD(4F~$;#H|)?kcR zU@Ck@f+<@a0PeO+gPN$cEJK@h_;u4g7r$!TluE{}9#$7iS?9X|WY+rQo2i>b+DmP; zVD=P$|IWFv>uO+R^sBQ|Y1NiCm}JYu{m^!5IoD@t1uGOAU5QLUdgjk#TWp=IT%$I+%0%Q+q*_|K>tq&+$+R_v}FW-BPhpXq;;Oz1*1j zRx+~TBE|jGJd%SmH`tMf6^66Z%mFx_E4+tPbe3c@C%3xZvZFAo-cu3eFK^dfa9Q6- z5VaL_Y&(f&adJ9r+?!fDDf%xhz_77Tg6N#uiVV5U(&aooRGz*+t#aO728OA#u}k%dzY0#x>(6cKw;nhsdvAv!d&gk`j7JwDYx-x{jmA zhs~2}y1Iw;y~AZ=hTuHdeYV7(#&B)eIjB{{y$?F)em1bT8lB91Xu{J}{F5=}msIbQ z$BZ$RA}*eM0+dj6Sb61+jd{E7&MH5)FBD-n>y|qEaW$XcSCak*jax7gZMaWjoL2R| zon7S5wKcBMwY7ZV$$mAl^3tX*0WL+wEt^wU93f@H$7hWgwKLm%uk0e_Z!~<3W>@p} zMqF-_QQ`T$`TWlQ*DrSa%hCqqgSoBdf+3>7+oNK*TXoWQ>{XOhpHjSu(QP= zz){1{KIOm-{BC%((<1JrIq~zc)qeT(vV%}>P3Y=$aAahL$1JIyARCxl54*zyfKOc9Yznh$l}>?|NXW^_Nog4M6y7o3-3CwU^Rs7j1>g7X1InXn z3Ofu$9aASDt8hn=_5=#m(*QvLIf_RLjC) zU|`r;879lf$Y58~vWdK=@LDkq+~w~N4$p@ggDJU_fzwWZnoSM3VfVNDWGf>@4_$Qd ze15!aM021UJ3BI3TC|D@A{qMi`yF~bQ&syD(lRnwaJq7dm39b&_=JUpo!e-q_}Kxb zlGx!@0L_wm7xT>e*$d`d^Tihz7X!n>0syo=IXy)a!ega2zxl8)GKW6TH+cIB2*LAx zuX8pc1~E<@*G1Mp>+9SAGxu|4YXRPS6(Cw}B08a~K>o9p+b=Tz`t_?Wlt$o#rH;q0 z8k(CP$kpWrtqLo>^AxH(Re^>)i>n6cra+h}G=0r$zwp?ws%rhEt800>c17{RWKGRb zwMPYz=^+OI$=7A5q+%U1X4QS@2^~&vcz<2p0j8Aj4O!wS1_R@gPM^nlA0CG+P z(R&$@0*4Felr|So8l6a#~t(`5n#87i?^7hRPkXf}%7O z0g*&{XK$g8N=o_+i^`XZt?dc&@{$6MduNnVg66o?b=Rz}u5Rj+ae}0t9%J&? zubcl!kwj59iW@g>7#*h%E_atZm{$zTBPPA6gs`+>Kw=@t-uh%1km)l(V&W#npWbF~ zJ+l}uCqFwo109ZX@!Q~F-^fU^V(UqrKh%Z7GQ@&~K)n9a<6*phy~)Dk@ne#Abi%1m z)S^{XRsCN4e)Gk0wAf^jI_6LUmOLalGD@iczJmN=Egu6g@mYq6ZsV2V1ch(xneXr+A9X)ADS3$-3DMbi76>5OG``jKp*ju_azQUDM&6~ zHrPLY_EnA$}uLaT251`TwK@277?q1nb zyzgNF+wbitp;FvkpOGSSOtdhMgqGH#I7~xB1MLdNS6GnQ+1U>t@yB4;I&<=h&xs)J?x*Wr${UjP#Ps3OsD%C)_^cFZUZM3Ha<}3*AL!OmWI;~!Y|Kj|( z^kpN_pXq64v7-eRkeA&50sPmWxjEMA(>+bY*!z*!E&xHZ30z(vP}hM#><;g&YNg!2 zcaP+b`GBgGrY86xG!sR2$LvFXXw~Zc?($$gC>hW{*vKZREP|@s_Jg+PJMo!Xip9a0 zDZ0D6^^f;f(NuD>=jlF^pTq!Z&oMey>7r7( zH)5U)^gKvo9*Ugq^iBgcwM1@-D#0nI*n_?5bs0Q01$Z82KE5Yyu>zedXt%UE;kN!Z zDTxvEP+Y(QGQMLF&v{Zb7a0}B`i6*(9evM$fPi$Bw0F+)@lI$R+rOtkbGoNqJWNcI zc*@16pl3pRQc^TY2B{|jWCq|7$C-C+j#Sa|%Dg2(`o7UkxXkm*}^kQ5%)vc>J3`ZLO`+Fz&5&h_2D4 z){zT3tgNh`#!JS#7q5_KF)_Q94^5OR=;^4j`wX;??)tvYufu5EmE65sK0y zun`cLQmmmD(Uz8ZZWJX^Gx*}}`1m+Xv{h)&JsEI5ZM6GGB;IFF^PNs-*^R6y|p|3{zFbckVk|PfCcGneS-a z>~h;*3q@-oSB8Gv1Gfg2^8=#rCCV1kagLWsZct?70L-xbW$tiarA%3ld;VTZm(BI?kB3u-FS4r zYJM=VQY2;dlCq{LP3G|p%kdY2m5CjLjXUm3b6X$o$(&EYGy2mBdpoWgd<^hMd7YqS zPiQ7?C9s9>OZ1>H>AM$C{Wh==>~AhQ5))X+ zlf77ijViY}OJli?4vE%iiN<#lxjOmg+G#5ApOXK4B!Y0Ai(p7Zd6oY`P1y!Ke{ekF z(SdmHG?5s_FFUA=ayQ$jRPLAmM!b_(Eb!GIeIo*|pkd3G=OLVD8Ee{HV<^`q7wSz! zH~VpUbp+*FB~)~YRFE1@VrRo0DrmesHCocztZYS2&HlSW8h5H&e(u{1@Su>bN-0N( zOjdbR+^8j{4fn0OJU@$d+loMB1L-Qiv(Y8JC1&IJHL{4DV%anI$SbwjWRwmrbR^+stzelO2czJ1mga$S}n&WGY4K2rT68&X0?HMv$@p5`1dcP9BZvyKCG9x$K)%H zjrhxccAi|%C5Fm{h;OVkd)uDg2W751)?fheBRa<*b*|EUrFG{B<(_#5q z{v9iGC-&71-S{X+xyh%9H%Im(FPyAC{`Tpow|3r}jvCoMnvPWBR~|TAxgDyaWnPb+ zqWy8Fgtg^bxiNu#6ghdbV2w558W|hn`(5b|!Cx)rNPmlJXqX3qN7QCT_o9u+m>eZ6HH7Z zg9--9vZ+?w=hnp-NTxL(A&c9eD=NnZ=1wW65(|Qe#Qx`Fg;BXr9mbX}oKmK`!koG9 za<@HxST9wk#eetq(UDwS+zQ$fb$e9uW;~-pggJRu*$Fa;UvYtf>~DN@7=W4Fj^Tt;S=ifSQ+1mmtQjn)iu_(&*PAX+5Q|<7tB#L<=*0k8i)I>`RA7a5YR>=0;MTdmW@=SkFw@ zJpv?$E%5`>L=N5jrsLI;5>(8HVR#e0Vm+GFGl_9whQ;kt1kjNI_P&HeN9U zYC)sX*}s38q1pr0mTy=XvFqN-+rGZOAkV^2FB`qn5~F>8RGyU+*ilj@X$t5a+Pbt3 zzs3eCXRF%!jUWIx_x&+Fpum83gt}tO(LAehq05&qPyJ}5mv(e4&Tof~mCczjasAT`C(Wk$fWcjEq_*K%gS#x76=t$tf+P6bt^zN7KRJhkSVZ4(9RV$ z$=b-Nq+xuOk4?SlU>CU`&vq4w7q)YKBHs`^-DD)#9Q=o?#;BZlyeim~BHj4+9)cV# z1uL9ASy9?+#^{x~bn84?el4J+UwNQkGcKbrc#rOfYX1&#yY}Unj~@d;X-5G%v)8$~ z+%WUu@87=$DH{d?x?&t6T9{EeJ&-jGRk;b^5Kws!4Gr=6yJ%D$UfbB8M5|PWJGQpx zPUn?GvHQMXAfRIp@Mv!@8j`<6N;({J5%-8v*WIVB?NOoiBt7VtA4h{YoPG3BEI*-= z$R-wgTS1=91no;4Prs)x$j6Y-5`<7O87q#KC>8s@o^3O|Wz}HEkXL z!51}=!0<@s&0nPPw!;7jjs=m@1J`-5Y}y4JFXJ=9px|?e`~xZp(dlehe*>I2YKwAu_GLsZefw#s@)q| zfY=@ka%s;p`&G8L-(5dU^ujRiYf+=nc{wb%C9 zZxRkwUKuJT9IBukDv(d``P?cm2F0UZNa2v+W$@w1r2mgAAoo}Nc2Yl1^E zHiH8;Hca!u&&3XoIMla!hz}vNA1RuXb%6&Uujg{YFSkK!@a{TyxtBR+@2q;b&l>PG zcni=EpWn(Q)WC!Ch4ix62nG_~*R7y2Pijd0Ru=l0~-K0EWdaP}u8KZj>78YN15Ijrk~H?3y%3+XbE{Ww#Pr_q%TYXdAt zJNCV+_N_suL@sWaq12x+sx@x8JRHAS(0_?EqJg)|G9;0KgocBXg~|J2OdIAI6mXV_ z@q{ZwOfl2U%m#S^)>h@#)lYA_L@+>rAg&l&efHwZN-;P6*6}{(d?#dKMP`3d40Jbf zhi$qK2ElmAKG|I$!a%->>z50hn%(Lx@$k)EJaath-Km`Y{{7;J^7pJWfyQ{RcKUzK4w92w|hzrdOFCGkJ`z-Z8Jm&mqN%}2Y!dv(+&Uf9PgHD5rbB*&#zz?!JEENZL+ZL$j!vrbkSg}u}*e_m{7 zeoX$w+Sn($9%1yHVMiUhS6&@B8^)NB0mH%nyZQdaMfIBMjMnNrlDqczCTMCrD%?dJ z+ith5Cd=9i3kY0Uv9XZ|AleF?=-=H-lm+D>@RmkeT94ElYmPFtoK`=J*up$6E~aWM zO?c@NWo~c$<{J~X4`-R$6cHhf*oFFY?URkpAtB8ywj-z?xl1{?cu1Ugl&`GO3AflR z_d~gu9AszZoY+%6krdR^LB#K2=X7XX_iXZ;dvAH@@gwUe2Go^u_%L3_+=I%k+)C!o z`t?cc^4Di!;@+(>KCBOCF%Vu}iS>!vTb=1NYcev=>!Cg_J#intS>q|XF>0N!t-4Y? zFpxbbcx;@2l9J}Ap@+r?HTsy5)bqD?$*)mJncAcM@51x3%yKn@w+$@*e6owu)nY9u zVzEz{yBcg~hdEM&*$|3(cJ%O_?S4I_#PQzNg6Fa0RH%S=9#4{`Cg{W%S!QyqAIiu$ z)k>s2prpFaoi~~%*+DLD9!=mLPc)Q|O(mpCpAkl7bF91;7`V^@&y#sy5eLdykTSVs z(J~rGx$S98wF~$hua~sV!@M<>$7Ovoa%{Dx&M6Fz3kGlb;R3=#D{fd+&Kat`CUcH= z0j1-m{Z0}Z5w?PyeNoRUsZ6@1bXaSga!1slP{qX&%1}(h6mp8D>{=bhtZQs#*(Id$ z22D-(*M|&M?*aoKp{-yMYR}nwXo|gNxgYay`z?mV>hEyCfF{n}BdVB7rsDv|xYs7- zUir7e;2hnO=h}1NdXo9@@G+ygusshX9orLySSzOFL*HYLl8{CS;s^~FrX{>rsUf1i zdM;`hRH;9al#NP*L_UP2KBB#M8BJY(ZHMNe71z!Voa(dZ??jbk_I`e+IdyL4+MV|8 zTX_A*j-N&`KD)2H@U{Gcfq;&)WXIm$X$(#+JOY|jM=-=gtD0R|W%{A~ZO=$jHdLi_F#Q>gzvcPeSGc z9WQMI|3L#0XqH&r+^yQ$+6s?~GAt$;f7dE5pi4pV9}pp@EyEE2>3PPT^uRk6)Y$}iJ?_WG#Vc5Ll*-Ax%lze2?Y3_Pl*5(%Nw3epC5I5?q9OXd0OCMqOifR} zhT7l-v`a$!wIpQITie?}yuH{f@9R^=!o`g_N&pNS8pLjC23j>{3|as9nWTeWxy)BF zZjepC+K4vIL1%i9&!hXEplQw@8eY)s6|hJc2msvgphJ<7pT9VnK?y6qqwg;%V4Rs3 zamyirq!zHUDDD^?rGdgpWq_FWE(y>~=w5org#(zR-@s)QP?$)_iYK5oyjUCx9emK@ zdRI{Ji*aW{6ClmdPl@gu)13L*i~@;KAQDefe9p!Ly;-hR^uS$uh>~HUx50Kwfsld8L`(MoSw;RQilR#e!g01fdB}%g~+p2U-0CnZ^N#^ggs;I%7xZPsAkbUm*VFq zx1d$%H4x-jYMH9a#h*l6_>9^<`aoNn9&j(vMlJ^n86F#}*&POzD>K4H?%^9Ientfi z?jOays`I&^pWGCmiO1u}z7m=X7Y4Fvkf~VfYP7|oJ8I?=+;WmxK@1^Sd6D5uu1*y- zkcQ5GKN+Ko--QLx<;=yjY=g}JKXnm0mOeOuc>tT-0R7P%N1KqEV&P*QeY$15QBSE0 z`QQKu5D+Hz+HULbn|c zbblif_V%}dxc5W1-7ztJ(OMU@nU)Em5y(kSA%!u9z!(Ri6$Lt_Z)-wVoImUk1bOZ2 zi$b6vG#dSun#$feZU!s|6zrZ%Hu=Z#4@zw? zH+G{|<7jJpdruBWPtWY_T^oYbE=3G{=Xjp#c){rIe~3fSTl@ddmx%n2*&v)=4BGyBY3~7#JdkH=1E&P#eO0c}Qc#Jz}Ehek!CMG5ppoi1e z&h9_ANo`89bsoIT0NTF^0a3z6fUtZC5Cq&17jdx{`|s`064PFs<-y!WKy45N-8T-P z%qH|(Vj>+0qQM_NT!vVBBe#2b*953Z=qP>uAAaH46rKktU7MiM4BA5BRRJ$}s5ZLg z8JNVx=n;S-Fc7?p7x~<@A3qM?8p}op-I$oP6JdBuK(Zk~45rWh!@6pY*M!k=6WuF^ z7CPwt#CQbn%D|`KyuOcqRRHPvWXEaN?dSj-TFon4G9HzZAg;o*#`s;cK28X53bf#=%V*{iFoLV|)BnVH}KGBcO#g{&tA z7wvTh&rH0$AoZu$DOp}#mTbiGHo?R_otsOMlbfJ7f=)<~VyUSWjjn$F{5dl?ICyZ^ zszejIzKinmHewoSK|ugo00A0g!vk|tTKD<$%$b>)&!0YJl$Dj0mzQVu_Vzy4)Xd7v zl>4fzsj2B;Z?6h3KIpe9S)Q6o`rK}G6J8>7f8n17o#F?Y313)8-iijK> z$BVnTW>Pbpm!EGv+1;EO-Cfrf7Y{qx5?8$N?J#?PIZxjCcflBn(K`uK0+Gb^MqU#k zC@eYz15XISBC$vC7#9!{iLU>_Cmfg#VV;nkde&rSmXEK6v;C0=f^T=RcktAz1SG*F z%ab{=)`O%H$#Um(?ycivW2#yG)O%Ewc7ub1cSJ=+S9p;#vUTQ#DxF*_Yio1Ra!`jh zAV%E9AbcqD+pI H-s}GZ6pZ}3 literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_003.png b/docs/source/auto_examples/images/sphx_glr_plot_barycenter_lp_vs_entropic_003.png new file mode 100644 index 0000000000000000000000000000000000000000..eb04b1a2a7442052c1f202741d60cd6bdf75035c GIT binary patch literal 14405 zcmcJ0Wmr^g)b5@k1qFN+L`sxW5KsvTDMcwkC6z{0VkqfmY*flYM3GXuQ5s}GQ4r}I z8Ubk#kj^=4EPKG`F#!K0qe*L02_d);tSu2w29XHF3jMUSbbr;@! zF*#M9b)Qb8qxj%gs-&Lx_8rgu=;S{;zVF!C2u+qqy5kogK2y8?@Zm!{G16+N6TjH4 ze+X}mhKntF%X4{!NxR$`qe}^Pl#iP(4XI+aq(l&W@lenTJP*?Rfff%x?mk9n5roO= z|J^U~I;D$^vZGE?GQaXfKFyyu@f>P)Mk1CrHj`Wuj4bu6?ZGEzhap?^E@b z6ifjyV43!QkHM^po#hUSW2?#$zhAO*E4_}S7d$FG%L6_u zGc6__{T;u0xF&+apBwSBM!3VkRrM8|z``$gZjYSLI^m z{Yqbnnq?o^`bkqd{7fkSb{$JnV&eBv=h{)34;AmzGcqEgqS6x+6Ax@i*Mz@*&DzmK z!xWH;U;|6Z8#&}wPLIBKq7_@(O>(Qzi9cPCNMWO7n4T+d-n^M=O?pn;o^`}k2OTD` zjnDdx%MQNaWoBX7Fl=a&-^@&`_VRx~!`S(FANx}OoWDU@S{jkWB}>yhyx=KrS-p4k z*RSKk!kPxgcOSXW4RAVXk$1M2>&$jOcH_1O7d3XrI_SPf~ipGr0%=Ubnw)TpE066RR z?c0;X&qX_{gW2B(b1KdxU}@uZiZ`Y*Bw!Hb@Gw#0HrjdP< z{my0mJw(5t1y?Tuxz z0|Hv-e)|+k7Ct>75aqwUvCbuG`l(CxOvPsZ9JaA+Dm^2pYUosNk>e_7_$>l~fDQ43 zTVEo0&3vfwtwG22t2X?tpCo=wnVwZKr6oxtlEr|+>dqZ?f~n7}gje}M*udbddq!?< zZo~MM*Qb zz#_yr|2RRcftW39ZEGvAtYH}ZP+xyJ%cM*nqD=aoC5<^Fr6LkjJyi9C0vlQJ!Lr7- zJ@s1YN)Ij~CMFAAX79PO;&He7u+>`ZDyhhE@XlOImeE;1SYKidqx@RD{Q9p0%ad&?JePu+A)*g6F=4(Q z!gAxah7`!_p$wcdi8@#0BqkPN#~7A4C+#eR224z4xe@Hd!JQ3K zg*xF>0-w)DYgrn5sg>-Ttcb$vc@lr)X>O{SKgy&2-$b|j50yj$Vf;{T|*;0 zG5+4kgDBo&&vya%E-jPHrdu^cmpNreU+U!FX<+N<=vWUaU#MnpD12_y)Fo0jbH?i& zm)y?U2&U$U|C)s~M+m;jkv_C0;ldLJDvr7zKeQbjvghU)6n!n&SrN{utfGO|&Mc#j z=H~d1AJ3qJs(U4@10k@qF`XkMEiFAU{hPSykY!w=9ckuYf`etk~QCU&Xk9yeEg^_5a;_byL3u$baXULBT{4oaN*tZGzqsd(|vTiAIU8_ zo^zg>Ng&hSJToUTkvBX%+){+Nc60GNPbj5b(aph+8PYZt=bzQsW}UWVB@ zeAXd)eI~C7Yr5Kl%Xy>pfckJ`9dqvN52{1P=8b?0@s>Cn_SY2v{&zN(Ci#Vg>L7!> zt`n{3L$`f{se;dnU0a!loz74d?Cg0Zo;j*?zpUdcF8HovfN!>`fNHv+Mq$0i18 z@Ll7l#$MZxVj%aoy{7oTq5#!}>`Ff6rnB97DgYV5YqN2{A7t1qgCI*synQQ_BKCLteg+zn>cGm3IvJ2Fgs9g1hedXea@m6=_C}Yj_^dkQJ`6KQ)@JTX;{Oyq0 z#Gg7*(kgLP4oxR*$(n5iB-4zdL4VnQs$fPGg^qosTZ1U+fUMLrwm9AtmxH08wuVhX zNEB<7x{#rth31ybmIM`*o2qaVYbD(=B-^yykcx^5Qv-02)sbPKVkw0nU6(pa-O@d$ zvtT+T4@LMP8X6h^f}Bn#Wo3<+nVDsre+6o5Ye$tQ7Z&Qnnh|T@Ljm7t1aXx#W8S_L z>$mw*#<$p5Am-rgP-U`R9$j&9@%6)p4--WlC}@yCmDmR~?BqnI`=^xokg;FCQZqA8 z{=9zU#v4H92l`}Q8`xhmt`lK%IDlHt)4H%?`$m@4_w5TFB#~6S#B=jf^YM#|iv_o8 z33y91a{c}NpXb~yL({i_w>6BzaOYi9d&kAQyt!q8x(MSD`OJp5XK{;T4Ft9#ukKG? zd5}o?(mr^fwfI6gxK1()D0iRfdN;VUQq)uGmJ#bYyr+DrRihL(?6K1v2y#JyT{O3Q@u*tZlK4#z)RD)#L3K>v2AA4(9X!izPKnRO% z!0=o2tO#N_WVW1u4RlgYr1Bklbm#|b+wkJ&-+%7H|J%ZnzF6}_kYOx_>BY^rdX=z$ zWDP3=52AZWQi+P`#d(AhspQ|f5EqFAo?=2UNba8h`ktQk-|w*$+{}s(Lx3XVHJh=Q z68|13Dr~Myi*C}lwAL6Mj4~@qp1YJ4>0i@ve^K1M@O7#nRdm~$A2^9s`u8+)mRTxt zi~}+wVt1eA)UikZ$7Kca|Bi2eF(WsI=^fAR`S&)FR_vvT-CH~ipla5jVzPkL16S^& zWB7NN#mpT4UTsZu%bbDxi_-2Ou)itK)3g42^gU)p!%AAt-C@sv+%JCY;qL97grt<| z{yxiV3f2F-Hs)Q^bi{(^`?IWFY`fn|70zlfGrc>ud*>Qzc`WyN<`0OJY_OXAEamcl5;rwa2xmO=h?`z#!UqsnB6+H{39C>?nkObJdv=~P=-rig#@kJWH zzdKURS!7F#D4t7z1==Hvbar&uR6X7&c>K7vw@!)3pY#ac(<0~{RZ!sFN1N1}E3@G>BiG#B-76PnX6)?y zOC=_7{yU3txIvrPJAEUpPe&WaZa_YPBkXqqg>p zgapQe8q>ogn1MIQy#8+UciELI=N2AHI`pL)n0j4wB(5j_E*XzyF%$FKaOIS7{k~cN z^ofDvG=j8@nr*wdPqxmmHgj1RAV9*>9zLXmd`ZP2DkP+%rKQzO>bqORSqh}xZMJ{} zbX;coq@JGMBn+g@zNnu+CC^L5Z8zqJ7!Dzb(I3ZEnKtdwZWVggcl2f0*DqftT2wtw zOHBOgQ9r#5^^WrT`nr;tj)_VC$zOcDysEa*BM21N>*;7bA7hI%s|YlQP;*M?eX5j?}6)X zusojWDG-Vu_JB&D4(bQA1T--7OA6PLQM0TLYAIhGVBg(DE}8C*yHLa=9i-`#4Y>Q` z`*%Q~Cof}Txn^OTIi2tDU3o(+9)6-eF<|n$O-pAvO5%s##L?S9>q_}g9y9z?J5yDT z2kgLP^pLJ&F58`}KF0Jg5Dlz-*B7_3MwRs#W$WG0#phsOzdo)q+(HMTeRMaBD0VXN zF+{z}eEfd4U0nKUL>2w|_zh;o!h1@AyJsotP@VdahE=6!{r41os^&K@c~y=Hn?HQA zdz-a%zo$<%dn>PEl>eTBmlzDC<34t8_gis$ine^l_((eL^U5eBQ2VkgZ zj$*?6h~mSi|M6RwtB@1~_J!R;v4VIQ8UNprB~b;@{vGr^VRJz|Eh7pF?C}spe?KMC zaRVqKyPsP3&_?+o`vD>VYn$7#S}(%^7ysV>ejz>$Ii|deft3cBM7ZoOm{Fi$_U|Es zbRjU_zk|rk9bX!x$t9XrzqV$em%O+;vik*iKDGRN`?0%sV9KOAsWu>k@3Uzkc09dFFIy7H)Y93T@jz zziOvCG9vpNinL^B#nDPg8|VOc@>&son+z%IYVolJ{(oU>3^)M@3${Q=+2p+QK|e^& z%*?zqPU`4Di)DR%{Z}l)hKaDfr-9b#-nny!_b~;cSii8*zvt^lTYEb!nCkzIUrgDmo#VPvj6T}f z+TcRM4f@v&@%!&Xu>OxYh9>jTx=7sC+JfQ7TTh{S$wtePt~X47josAiVE0f~}QV!hP?Y1_I!Si1Gv7uoD=tqT*A|K&0{ zKmlEU24axFSaW7YfuaW&Sidmfp&ZgZfBycDA3v}mkr5Fm1Ox;oaA;Z7rX{PnM zqxG;=^t;wp?T&(ZgI_kFkh!vU(>8R{|z3R0c3A zJ{M~-M3d_5p%*MpkiBC4H*B^+;OKlMY~)(C?`&#%`i~+(&o2-6M1gWNx5e&Itb{IL zdz#L2w^iI^!`Z=hP(e~^!v$1s0zLft(sC7fxuuWN2-;&G_tnGn6nM;;HbhJ7Bqb%W zow*hGO2lN!i1j0mBqAN7c_R-p>aNDorg?S}MyfwIP%hy%rQ7dZC;Wny0YOeDrC}!y zAqQ?y-fzChi>SB0JfS0g`^U@prmX89-gkf4+Vai1k;kungb{YpM{In@N(8WybA3Rm z@LD3)^lKBVrhow`jfoGZFQomtDhFVL0*0ahspl9I1V0soIeIKr7=$@B8iX;%IAL>r z49`I{uw_a*S24WE-|%yFHU(aF>hD4GET`C&cwBc6l6IhaqKZ&G^OyBB*HUGnd$T+iuQj+d@rS&rk2A3KkK#l(C6)!n$nkM=X3gmOBUlCpQh6W$$t9djJnbi-G%C zQ7M4jaGiNe-wD7HK*%nX(Cq|85BA5BV7i~EKbLEDd3mR^r@(H|4w5?Bv3-r1G|ueaP51* z6&h4?AlTw_HB5s9xzN$guOR63HI98qG;8Pi&`KZ7*+)tMfaUOYLHgrlq|2O5cRYz1 z%MEoQ{(&xXk)3r`1qQ=eHvixeH*)hDE(6ae_;tw3Qpv&; z;2N;z6relI?9s=(R7RA)qxUwfM23}gkjs0e8fSkpr3X?~dM%EnfwZfxrPYb%afkj= z$@1S&a=irgH^RX5aN0ZW5Lnr-G9wGBra6g~EV*CrG}D?WV}E{mM6U;A;YQvao000^ zA9ZzY6D-7~70fUoe_>;Rm0opQ6a4w(hq{U1a)$gIhW+y_e!ElUW4gbKwqFg>s$u9x=h$1df)D}ZowQ80l2s{Q8PaD z1~ME_UutlwS>J-D5@e8l?2?!H`1puf#-B`cK>tAT<<5AV|HkCT+DIrxNWcH)Y&vMj zJfY`WZ>GBZ2d_L`-LobwB%z_bD18qx_ZVQ2y!Q%-ysHI`;%@c#_2~f#-!-RT*3;*q zh5&jRK}S!|r*?q<@>M`NJ!9icNZF9Wq<$`gTtsM}k#aiMnKh`TF0H2B77YQyoR7bI z4C=}dPFa26#vS!<#Pkde(~n+wY(3eUM0|9#%zc*7R;#JPn(t)0#Ih|eltc+;!hS7KCMa6oles$j||vD5y+|eToLBU83Ili zR~MQ8RUD4l2+2DH$aAxchDiW;SK%lQBanQe||`C(gJ1m5~o7uhdOso3?ZU{VY{4Clsts<)CG$X(Yfx8AepKW-b=M@GlP*p-2!FRPJ`@yUx#GnsK_Q7aq zV!~waA%T3FMfahZF%Jm`33NY(4jQrUr*5Rfcdnd5nCLUt{Q!K`(EH|4MSEVRe=QC7 zpcOWcriIV+HP8y0nn}YDhmqZbr`->ebt`Crs@&43QWs!^05=6lgw;exuAP;lzb{$o zpH(=c*BUdT%#D0`wRItuc`I|)938sabOt`$cbwHy#??3%9@4JXmYiIy{qpDKu=ae; zy}R>OfVJinyJTxU@!jI{7(5IgF5^(fwva>vRi;DgE0Slz84)B)J`4t*>_0bnYPD9pVdxM zD(#-7K-_xL`6|2Pxsh4W%GED7`)RrqmP!uvIZGQ8W(KKE=WDU$t8uIO@9Zw*Kf!YU zFto>%858mr6h=*9RcNs0(I+xQ!g*)qKA!!-v*$`KU3}Hhe8Ih0Uj_3}Qi7k#iW*@> zzjspxLu-b6uDBIyNK_tsRNdS0m6nZTdf2`TD)X7vS9!uUC~#pT3io#kdNjd+I^T) zjo0Da0ef>Z`r;(I_~3D5!;A;Z%{0En;?7Zl0=~Tp62w#e`gNKJ)mzx5U5y#|?VJ}e z7i94BUei5HNC_v$d8YqSo)|6xZ9czIf$Zxx-Kp7M>ZSvfIb)pX3_}N(c1+QvS>OjI zBv?L1$KfghhG~}$jKRHnQuWrBAI1+ffPFpod?9U>CC**Q+zi8)uz0c ztRo_67+Imy*<5^gWa)R=obB>d$5dNNs7T4Le*n%6fS?&(_2-@U?kXw0MO7*C)C3z+ zbDqA7Tsouh(Tpoc;8_BONt5X1w`Y$tFE6EB4cXmE(Fj;vBUHxW{F>Sp7VoI{u_dlA zjtfah=+U#Br1joeY*NTU3HgP`ds`+`;<6Q>%kgKI+dlp3)O_Dk$lpC%x#dB|99E9R`5NlV>vouwQnn+#B~*PgGMpdg+^|fsBlZ{`wMJ!@d-2=A z-~W$tBI4Dn!bv%Yl2Mk?u`%k0-z}LB9TMWM$_Vb9Q!qKCT%jZ}NnJ^N$~h z&1DoShuJgD@7@U&qu}bjrs0BQ)wtVZNaF3O@3TLY+M5W-Hg!-k#dbPSSltC`L;K$g z4eWS0)GAPDq;!yWc2+A$AR^_UZ3F0axo3=*_B$k{q|o@j^UHiT_%rqaU$-n`xQcb? z#1=YGS+&u{y9E;t5Zu(qP7r3~3=SxIMhW7xC>2-!-bGDKjZM<-`kpXcCxRS$g?a%h zu?#pRm0iWv2eeQ(=n|uuicQ|vv$#r;{kqbZ^pkpLb*G(Ty87zrt0$#o0XQkPS^ zk#>VH!`Y5`SVQO5*lAcf10)iyPA^`(7$tT0{bR->+534eSwnT2o}P|w8(tfzNv2>G zpFMxhr^a}09)G7XI_;3DrxIvms}0OE(2Op1oopQ*=RT(|^uf$q!A)}}{l|uS#E}yQ zk-R?JF(jX9zsv~F%^(<>bI-u%BWn5Tr zTWHA|mb#`nT71toDf{Ir$;=+-`$r9$PLt^w*>s+9!1gAgA0PBJ%qhs*v3%u7w`kgj zQdjLMwe)kkX@91i{e(u0u5p=ct~Jf!Y6|WOV&@LHsby6=b&I&aDV!Ht*!Sed&_g1!7q&c;Wnnd$f)@0px z;>aJ;Hv|u(dEkY)31f!3ki@{3oaA@>QB_zbK6^u|%b?nDBh`DzKM3SF_q}+1da3J3 z{utsNY#_n4`G|ko`&P;wA-NMKwR?h%c&<@V4(s%;V4xO(y1_hpKF)|=O(02JKXRtH zGCoN&KB>APoYR>y+Dc%DS@B8LPzJW=bSedHT#@D`!ex&Zkg||QzJ6e?oN1rIkGQuQ z(svCxb-8oJpXN7b&P9hXg?u3;OXGmU8zwgcPrT{$eZqJ7Yi~XW^2)@jL5DNvBu&ygt;58EkKd z8pC8i3xgcNG}lu|`;g@n$T6$}nTQ3|v)B`IqhS{ytD@lJVm;g0!=ad#hP5u*#2o2O zj{M4@$lX|g+YfcytRfP0VCOkKZ|$gSnu>ZTethN&9bUK)A4+`zmmP1yQFc}3&)W=} zDt$Tp{Efv8U`4I8_`C6?#GXTsGZl|^dkDQADa6}*E0_!7k&up8EV-aPorkMZ=zFTV zB~j;VW~qnwe|hBgwur^3^682L#^~J@y1kR`eO+u2u7;I%l)>MRA=UTHBlyTQh4lCu z8_Z_my${{n_$&tElYq8q2+6 zL#WfT^Ts(8g_hK`KMLJA{5uFgj`PJtH1co1V?bUM?4+G+yoVIOH3O4EC80 z>`GR&a*2F1mk#c6US!J1%v+n~fN|S$(ISn%Vq)^*cP9qY|ckQvbBemH1S; z5F6s{JJV^H~%IULzp&ESR^_$;OY zv80rLqW55$J}~cPs_1FMvaDh+p*v48_Zt=AW$eprlz>Xd#E?AQ5{Cj4B{Q*w*C3BS zk|7Mc|B~%UNny`0OqCxjT z3rTBL*UY#-TX>yDkupDt%1)1lo$c1Afe=>an+WDq^$ooQ6aij0e|q$j9WcWdmu&{ZB(|7$-)p}iz;rxIkh^plQ?+%}tg}U4VI`h?Eztx?1zvDj1Ty=?0ctXwntfzn$=p`C-)trEv z_Ms&s{WRC<`i?Y<=v8)R>)aPplGFC4jHcn1f1M!YW0ZxI8vBonF*4bY$n2cR&Fd7@ zfF(Rrk(r*oyoqQK>L#_F&wsQ%Cm~}TaQ#i~8%~K&VFi4tkp__&nWdK>NEGutdF)BL zDj-~;B9kxM!}C;QZ2l}ELpa~0*#X8RR}sEk2?b*r4Jk!&B{rk3PP_W zg>x8OFs$?moryS|{Ou8Q%tfOy#IR{Dr`z%QCdP<#{98op&D;W`t13a(sS!JKL)CLn zOod0Infn*M9?f&g=B-_5acQ+-%=hF1`OgPdJKFKUL_3RNrAp`#8>#n@ijoA9Ji5Bh zTToTL`b}ZC(9e*ay*S9wSh3x!jR+ve1SKoD^|n-|2s|b$J||8~_wYOusvda}#Eis6 zij-YcpXFLIUcoB+e4yp6zH#qe5{uJEq3%N)Gr7z`bCOPKHI7hl2#++*crKE+;&_nv zRi0Bx)4`0%4weibAE7rq=0Ewm{@z$Po?VVdE zlGeXS8dh41V$JvFjlC*~7IAa&z%86BVvBpbvmq$KkvYCU7QOPIU@r zwKC0u+2UpWoi3%s39(CFd9V~v;kf1Bo|BZ=nPU9&D}YRQipFN4I*!b3;;E760;L-$ zPN(ZhhL>%;9J;3h=14VVLD8^Nog@C4HX6XCi_P$q~>D=N?;wRO0 z|L}^rC$OFy#3qDK6AtQ-^8U_K`{HUsy*SSk8!rvoXx2ep67I7?#nlI-jIwMgvBC>K zYeY2$XI^Uis89sRrME*d zn^sZtoi07PB64ek<2YCHPfLkv>tFP%Q>s<_%jK8tmNn;kKPPbrXO%3 zlr#~0gyB`&;Ri>Xr(fvHx36uNka_qDh{Ie0Aqy4z`r?I>Vi{F83)QA$3B=6`%(x-5 zq9`QuYrwfr8W&$h`5!b*(Wc?2Pv=k@<>=^Vfy@e^%xqvv$u1dVv+v1QgN9;K_NPDU ze&Cygq9o*_VddvBa@K}#od5EScSpOAM6ORZ@1$Y_k%80f_|_a%9~&;gT6Tt_>(xbW z@M#tu;-*)6Kaw&yneZh0M|jmyxeE742cxa0pG*(TT3iHzph~kNoa7owbg|D@IY7cX zP>f#=Bl@_E9LP8lX-hGV-IRO=8m}ZsF41CEA^e(AiQw?r$0n`{ZVLlj+jN$b*O`{K zRJgp92gy6DyN7u*0 z(^0WiODJ3JSdsbwjW2@unu>O)P7=?c>NNSFQ??re%yC2&>w!+koYGR6q~v7VmiHG+ z|NId0s}azOPKEB#6j(@bD^Wzh&Ggh%RWKkda=wL?K<$-`3R|Zpc3a2)_DRnBZ7j9y zHX8kJu4Ef6{IQ(!ZaN_Ft6cVL%Wqu*DK+Va6N4I;no6d=z7^TAyTu~eGx#4v>8ydH z9Wpb^Vs6q}VX1dj_qngXK^`{PB>wVFJ6HAY1nKNfLT3^+U&iTQ>twdIW%67{^Q?A^ zhOPO7qSP+=4e?;VRIjn8iO-(V-M)28nRoM{9E}rnsQ-AL`_agddFJ+iNS8W>hHOh) zt*xyr3Mn8wf^KS1TxEY~B+bC~@|NX~mYb%hZ0nD#7>$gF6-8JbxK$BXo6$KQ&d0fp zWis38*C6EGee#%E?a2f2xx!KP3q?K=?Ui#+txxY;v90L6!#uw<*#=7QFCRNSSJNwgL+0a^w;XuUy{B;N|B?b8H@ByORH8|F!CfT_x8pcnlV z-|JXmB6g>~8LWc^o(nfob@kt?d>NqTH#}BykPTd1dCzaHSQK$12wn>9%OZhdh21ps z*Y(FsVbni(z%wPakXe7=X}3?|K72$(@Yyf&EpL@5z&ykc^)$5AX{Y7v%4ok%FWZ7V zJ=If?!4Yzx$g4On?FxoNyW_wn96Y#Ysz3 zGZ^i=f^jny^%jD0DHBxryB3{Sv^I3`;yF~vdLm=f9^K2&ivluPaHzQp0Ot0e7w8^suhPW7O5uT27=yzX!*P zz)!ARkO3_p3^tz5J(;Ya(BYYQV0v9a0U)-`cykdOhjU1f)r zK#Lbf?KRJyJrl=up0w{P2E(-%+SZ09OoCi~F}UaFY@j=Cn0F@_8lA}-8{Q_)wR|8g z{E2Zv8Bzo;<5i|D}W@7w@(&;K0zlQFUY|9&~ispHigb8^rZ7_F(9? zK7INW3_e9mpjg?0uWqU{>+M`L?BlDb?H_I46yQj(b2U*xI=x^*AFTpY=cF5T2-WwUW^wW=V?Kk?M6Fc^4u@Sf6 zl|#aTK2;C4;a{@u^FNhPJ16Rk3t_$4SGM)1t|7;NIRkI0u+b7)4=WRV+Bl(6k>CYN zpN)yEM<~@}E8b1gSG?vS9e* zO@j^yArV?NsYIgu&(av^&P??diITD&XvUtq0ajeE%7U=sOEKT3b1JgIsXZ;Au>KVG zr?~6HRrH+*;&{c{Fg<8E)W#`6L3_a}L6~k=YLr_w1{|A!1r6s#jpv31whs+QQC9b@^NR5S&kWbg9I(9R%j;qk&boEDQ4@`6fbugp+?iTD+(rH?uL9< z3L90zf6G&Cn9c1x#0K=*q0L9Yp*?d~o~N@ahKYyvQ+AP;13wC|-t#A8?8RxjEl` z)-YR#CM`P~c=1}?1UTCum;Srmcoh`PXc)QL;T;*@@sr>^H_b8NQ3;vp!gx#&4zPPI zd^;4}J1dF4PP4w$cBR3MWMXwjOia_p#wPy>OOZqI5Ow&A7Z&=N*DZ)U8@NFOH@AYh zXo!e`rP*E*T(Hj<5QbktVer@ZxXRu3c{3`zy`)sJ>qQPRcT0@NVAdtT*I(kbvp%i~ zwABkNdcNa*0px9dF|oE!;87n-2$eshurL z+Lup2C6le1V#mNZnKj3eeXR!G!4ZEeX@3U&N2rgMcBzMSQ4e8j6J*mXu@2(2BiLqb zJF`u2`dNmzp>VN=7j#HN3iOy<=1{qn*OR?PIcnH@QHk+pP3IPa z=AvPaUPIHM#dW%~Au%~Qio7#NmNX04c3YwjzJm$FwM%bp&jp+XUMuNP)Ef=hF_xAR z3-K|%93}g^xayXb6?;*yy-4ZAu{>DevQk52V--m z2LmZ}q#U9|i7YD)&u)3SH@kLcd$R!=C6^;bOfGwSm!3FzQXI$v=T4qf&_b_1IE9hZ pq0q?t|M89*SV;e;H{Qm`m;L_~z0Y^{-q$(Tb=uqBWvzFu_x%meb3gZeKfjP`8fuheEMy3RP^w>4(MAwF zEP`OhNr>P#5MKJuE)al|)7X+a)MSn2aidok1%d@T*^j)tz z-gWgby>|z(H+6Ngb9A+{Hsf@^bI--v(ScJ;2>v6;Y31tbBqJ>Rk2eT8-m?@AO6em< z5Kcs0<(!UZ(&DI>q0Y=c@oLuxM4U76680osLKQjD4Zq6Q?xJTtR^PZ>m-$Y2c)Gfq z_j^p{*GX+_?Qeaz2K(1yqH{t{x}Uy>v3KrdDuATLS z*bniuAG}tdtp4=+w0V|{D*&N^KZBGRWwJ^t@aJk6=2>uXaQi0_gcf~)nMjEn{>U~X z7vWV4OC}@)US6cY=Y&@yUz#Gv;nfmx3M_iDd(i*&#S)jv83eJ)X;#n8DOt{tJR+ie zo}BgiwNlzOlZ7t@SMTj+C3}-Sc<|urJwa}6EPQN2dl2QZ)N3bSKUPhDkdngj>eZ{& z<(idOsj0X{bHh4sdiXqCv3Z+dw|S?{Ctn`!9rTv3+DtSBZcRsN7Tx{GvOC3bfFK{@ zMDgW)Hr@$0>~fbSid!CW7_HVV+^qLr=Qr|MD)WAvKU(8qzPUWQK9p5&voJhVX6wAY z_Cr-(fhLlR*wzCZyx3V}+Dy&Bz$+gS5z+Ro&PUYj9mx~cv$TAg$pLTQinFq^j*oX& zD!vL03!9jn#N*@3QkDNSDlH>pu)d{Y;V+GMQAKZa{1KJe@<>&s>knFmy|wE|W+CRv zrAx{O`+E~Vevsa{al>_ag!!#y7tuAZ(QhgHYkY{(l`Buq^w*j;6Cu$9f7a)E@U5+_ zJ;xsqk55i=FWp*aQIapv3mbfE**q}7c-o*8*B;5^{O8x5bV(RU&-t9J+$GzsWRHc! z99twTG<3CzTo^Yt#$i*&@>15Lb=a|ik}E(wKg#uf%IF ztxvT@n7<3And{GEWDqhWDKiL%N1A-h;fEluOGEVJj6&~fy?(E*^=g{quowhe@4Itp z_`i8Pv!Whq|T^o&w?_NMu<9YbfF4tsqSH81zcooNcd+~0 z$;G9)W~Dw%D_xa~hX=plRs|6vx3l>6YqgtznYnpS!7Zs>xD{!*L?c-)WM`$J;nNs7 z%^=A+l|F(mg~q~2aPwoTfv>I2&F9yaM{kjEz1#isJ8&W*8@`GJncQAqkXZKLS~bNe zrdQyI@!Z8Km94faL`1SjD#!`y^eig#`&1;s;`j(Os zHu&k&`URgaUn=J2tZ1mIIpxR7?Gq7BBmX_OboX?%2nMo19c2}0 zt|m}aY_RcXyj|lSZ6wtPi^FE6r{vD%ky@|o-uvGZ9VaWs{2nzlD8dGPL`crSM5w}D zA`HQ(PjGj||KPll5&Lr8rcqR(tgP%5%wJowypM=!6T$AUPGKhTyA(kb%y`ZWQVz9#M3gf3fC$zSO#xs7vucuH1e&2=+*- z+rk(9T2JRk-@<~Y!yy{xJFI-G(=WB6dHC?5h~KVfl)b}9rI!7zix)|d)Y8(UNcXD? z8%QfmNMG`5xcJ<*05A*9sS%B92;uCuSyY8*Nw$?{cnZ zUDMKfke@HOI9kJ~uC5M=5;tJ%PZ_Riey<^roN*Ez_SK1ISi#uEMZ4OA{T-`;H*DLR zD^#gsPrSUnxkW{392^|1dR`GWH8;~7J=&LAUvAS+wzspXcI661Nl8i3y_rksx=`)x zyOJ!&j6OB*_7z>10rCwF%S2p){FLbr3v z4@&NIstlLg2O1PG>}{{psXb-Q*+?#1FPIk-Q6|y4c8&Ayr=(N6ySoAD>FINQIZ>Vq z1r-4rS>iUtxanU)L7lxXVq!vLjl9+2smP_IqTVj-?Ru|B|#VYN$&!vYPwzZcKdte)s3FA_^EJq?AdH9zBYKU2!SH%iObs5__Z2 zD6pZSp{(W{Ac4NuLdNw^+?R&p*V*AUm|ukdfOcebv|!{I0ESns(J3iZ{{H@_@Z-;y zW3DMKEi5m8I)oVR&9t%g#UufTAVmK-;&-sO={X&#Han{15i7 z<@Hx?e)B1YjCk2K5Pi7iCT>hob~Z_4W21hZx7*7h<4PwCjC0#~<0I$AucB!3kK)s8 z^%(QD3|XdzC($}Bc#m=%5;|;+BAE)!D_2ymU89aUeTxX08!8hx!YYl0XbxNaJ?(82 z3B6*`pJBoE_35ansmA5USC4ch{fe1G@UPniV>hSaD&*8C6!_kNDfFO1=_yV4ZsVNtP z^C0uKr3qB^cfM zy^UMPPn_U_4cZxVx>@nykERgjyo!oWV(6{R2Hsr0FhhK4t8PvbE}Q$KeYX{eC|Lp^ z;TcS>!qVDEd)2o#pt62Ek>3Qqy2eufPba^L7#fdhA`Od30t5q46nasJ3F%NigsamJ zb#WG4hY%TAOzWDV4z{Seesej&L zH*&x2hezZ3l#YC_Kc}H_1oGD54%^w<8VB6NyZL8$Y(FR|iFIvdj6<13M@MIT&@!dK zjZB)03sYFPkx+&1spow5gq)?(#tjgOAh8!P8JzZ+w2@GP=llo(BhK z%lLl1o`X@lIx~=umq{e%LqLsgKWa9%@S-A-wI9920yo~MXlc;^;6o5PJ`FVCL_T|l zAZTXkvzhT(05)QOPc% ze!RKy&nFVjJZ#Q`qso~sZ~pxGv%0#f1ZWM-5Tg)LUbVXY5n0tbKF*A6xe{xvAgcKU zO=kI{;x^nd9~5dCMPRS9&Sm+qy~Ggjk#H7bUI+cP+wgrGA3w?zBfz7;_L=;(<*%7i zBWw=BVXgcoHk^k$?JT;$IsL!yu$GAFhCIJ%Lf|b2trQru0ScG1p{t6lTr3 z`;a3so>3nYrFevdj)a7SkWf*zy^j{4p{Eb*&C+Zh9Yc*s)=c0cv|R z!sM12S2(Z%WPQNlzf1G<=~D!Y!zmr+@b(Q7QxQB*A5tbYN_qwD`pXUxR5WfF~tqe~NA{)=h@3wyy5y#A6QbGiQ#Pw?1h^VJL)0md%ie z2sI<4G#R#Q*&!wL&MHRo&8Wx)ZN)h&L2&7^X5&};kP9v;|mM6 z_fjP7hj2YTH2l$*hQ5^9-mtiP_f>vAg@%Sk|AtmxKcJuQ?y+z?eiQ=Ob!oyYcSU>% zx;r{Z)6&u)OvIG`aFsdE$H&9X-88KLu(BEAcv|m|*Y*tu`?9bk%*A#A{|uJp(&Mm= zM@8`AIWA;krzR(h+?Nb?7mN>@AYT0(ap_9S&c2vSmMrbe4dE|iqf3616`i^ty;)P6 zWBzSWf`y&99Ah%ymlHF01U9CSM>kfTV~j%y|7;XPAM8=0S?zc8B(3K3IphgElc=Tuf+4Bv@AnuK*Ms ziB3F;XG$*;{{Y?Q*;VGS`I*qoujK-%xI_fqdau4~F%9<9Zvq zfBQz_lkmPUK7i6E7xMYvml%>5a3Gfx>lKgt9PY`FFa2J0S#eqU(u=4eIr~hA`bNEs zJ0T5ehqU|IfuY-6+%~M+S_xiCV%RCr=Zz;jU$ zDLt1c&`3>vjfXtzf=4L7bcio*65(@pB$&?iY7)}X3?|*9yTA!MSNV)@3JNsTzfffP zo`rFf%xiilCbC@^c%=K+EJr`p;YAZ|1@}&05-8PMq@>Z}iDY;vNrPbY@UGXv?dI#U ztxuhVyE$&nHJ3Yp@bfp^Jt5Lh2NxRj=R zQcmyTl#^q9e1t8x*Dq1h{-JUj&OAc?ZqA!$Y#jnZ;(lmlP~NUXFM_*dVj~hpfcvjN z1)EmQ+gs-0qep0u^|YB6nGu-(&gyl!0~k2|iT z9Jn3K^+z|4Bap*cuV-F42SsMJ+d|O0cPf>Yl_sOrZW7Ds{WhXdRo89|+0J#RJvvc+ z&OLYlp^f|~F1VV_f_N!HCV7i*a`Pth=g*(1nVG$2uSQ>jf`D5>qO5ffCAu6P9j_#u z=@=1u#+D~DiLM~Ywjx}5CeqGtlFLWzGRFD8M&>Eo=T+(2 zC&hDz3G*eW8Jjh#O#kx zo>Tonp|1d=;dXjlCyqLDDUu(1l~73!bG$;pR@%GMyCS^hVJP;Nky(W-xd9$!~;w(9ugf?|gHn&VQW;3!B`+ z<;p0reuOT-#s7*$w)fsMBHG&8HlrTRL6kA`M1wQ{#!h10PdjR2-jc!c3wPx(p~E~w zuVIbh8T?GFBvpoQQ0|0x%}dyXD?p;=f{MjWxFJ<2CQ70`@_s4c*oB_1I=K@dFRa~8 zo*KCM_LhoDjBc+l76SwO2=<%Z4>d&o<;(6Sbwc6{*y292OtdtE1n?@43343$3MxxA z0Akihp9ONNSX>7r5)MSV#bx8wG%7!B#Da^2W{~#pw?9`!ZnK8(Pn&iB(_1^8$iA*> zqO0vH#7_x4h$scMESXqX|J)^~{=QweEV8dXbDBa#S5+hf;R#6~ij?0&W5@;|rN91} zYlJ^{xQm1T`!{+RpK6_NN1p29{^=XlNwmyqNYs#!_RPKWL{Vc zte}M+cZs!IF5dT}B8MUAx!()T3>}>A5`wJu2@~A@-~%^HnRA)GsGOqvN5UITG%UMc zBr#nQiaWijcc;B~j9C9b0-280`TB0tihK;8=BCo^Tr5V2@ceocVrA*KXUx8A{31Y8 zTiBpR;BJohUdqIP!Am7m>p)a+V=wjf1@H@0KW8Zi?z5RV17k6G>0U6Uc?Adeh z_A9O7@0FY-Rv6H5ynMBJX6yv=zKVA1bGU4p=JL6h!5@yREa~D9G&q?3t593K1j>e} z2@WZ>8>Bsbt6asx!lGcQWs>ptSO4rgYE@Geg*hWH_#fP1MJUg6;B!X46gM0n zL<2DzLxG)f_*Tp8?Ccz;=&$g(w-+d_lQ`cdiKLWvqOH`CbNJvP(!r^7d#xW^}cR)u(JbOm%`r|XO2*C=zJ@^+jxjN`|{*iHH2f@WuaeKfOjGdvR1?f^T8{*uy+RrO&AHE~A- z1q99;7_e~j@T}D4XrubV>&(nAKjfj<(lRo73e;%)Fk9}0ejMNIkCp_y)U4l2JDAQ& z*d?_uYzf7F|7q~%uDPR+x$pC_*TxgF1oAH3+y~T^QZiS>9{sUAYxHL~=zc6yP8HeL#yPjDQw80VHbyg4&OhWj zq_gQF@{h_`1t?pQz_j+!b z{XcP2AD5~}dm;qaSEf(M$1W_jF6&@qne7J@2gdj{9Nvu75^^DyYV^yFW3<@Xtoe}k zD`jZx?8IHe|L@#jqk~Hmo&zMG?c5+WcAqYc;dIlR+chAtxerWb_uEv~)Etw~_FKD- zqhT{RpMzX_?^bEV*EKTgFny8MD&x z;KgSOeetksl6fFm?SBx$!(c)97zZIJPRfxTK9UABDG)Q%1G$))nXmD$SbUVQ{gMix z9_TGe?-URl%o`sP#>~;`M#dXI6e~D#KIH$<1e@*-BrEKjlMRv;K8HyZBw`y<= zx-%#3{nQD6g?3I%Xg9N%s94mXdF34}$G$Ub^bJdn5&UJ2x_>N#DAZzYa*;RH1*s~2 z>DbR+HZypPe8eMDdS1?(Czx;8(M2+^r9tqwFogi!{_C@sKiNvs!bQE+Xd!Kml+t-Tyl^MAn~}*d#uUlV!PD1#6O9`n zzoe!8=8-nWdcrb?S|w;UBv=s5LKh)q1}G?PjU73<P1E%QxS+U&&0Ehp4!Gqe#d)8;JC}xn1oFa)FUVBxbfw}QAlb9lF{^qEfMeMvT zT3EQXAy&j|jZK}pl#E%j0tX{i^;e8MNg`za_5!3|F4M&vbBG<@!>-d0?gw%0xtDG9 z*WNl=&~1=mtYUFNo8HO(I&PcaWM3_E{wb#W$Xpf`rCJQ~M=x%E<@dtPsiUh9pcp$B z{BYa02)@H(1!VP}+rzLZGG*kTrh{Wy#a%5I?~OgdHT#j6>?1Hn*fV8c-%BHx2#J#L z92kTWQ=-#&3+I|1=R(AJ%Lai~S+pM0G2CwnviwTlc zg%Pi6X+84tr8_dZnko!HtJoZeb%E1yJB4gjT8~esssw6`8zjs5Ia#^k5uS)%U>N#* z)ah#P8t&z9-ik;A?h*urGNwqW^BsB_!_K@~q1W?$ue5Wp{+;iw39Ft6F@GDY$V9S* zk3`-;@{KV09+p+?Ub?n)k%WELTvm_xO}JPZG%e_u5c`n>2Zr-}2qPc;vU7o-u=<|7 zB<}i~5Pt)9L(YpCVt*T%}?%&O5c${Ib2i&zfL$qsu)F-}P7ZTe_Q6_^IK& zn#al=XYc}*wU*qf=pT+0An#VoCdE#_=bv`AHxCLqVX`*lE%SFY!`)#IUJN~oEI0|9 zV54z5mK0dYH}mq?yyv$9t#9L{CbrUS=L^JY;f6j%MLnYRORmV8zeC#>(ylyTLS6c( zaq$TGx$LKK>q%$I^v@$NmL&wDkhoiqk!)@L@ys{1Qz5K)CV_g71u7W5BqazbifH57 z9s2KZSp`0XZ*xSyEtAYdes7~wtg1d=hzE;|bEPXkv-LUw)rNG=i&ZzNz4OV@I2HF? zA@Xy_>OWmF$>kwZI(DO%yW4xoK+i$=WC89fvtUwwLxbbhiU+;FYwJ`^z7>4;mzCbj zHmcG4bd5jHIE!?oimzzjuTjN$Y#U`%%qDHnw*lE=u1U|Y3L zgv;E1ey*~6Y;5xl4^}LfAZEGW@ccz$icBojjuwg(SuSk3g_9-$oA{aDCHe>$KqOFK zLXQ*or%4zD+9kMIvD=Va#}F9=CmCN-Qr zW#WsxXw3dTs_Z>u>yZgbN`r|ISMvn<<%iSJgy@+l<)~_C$ojo2C1P#O6(lwuetxpS z!9m{PgRQ9u(EeC?uO^@Z#bj|Cdoxt7L1TV99|7hJuk|+A%O%+wic>wiaiZuba{CI9 zMwZXTUqTIU0APa%LVyGD$Nc?^Q^6r2 z=Rh<95{-nBkum>P#V3m$5G0A=Ia@9Z*9AbfGy}=6613G~n|}Vwu8$q^?43=|W5g1S zYF#)?jwRsLU(S$3Ds5Ra7T9N~Vd3D-Yh&_({y3~f(F6p9dvHWVZ276b3)%i@g`Aw6 z;IJ_9AqJ?fL3jh~6ZTn8CpBB7YiQJ}=!tE-(|OV5-*%)g`gVO?od%jHTiV}$QuSNr zxcaquTR`A_;IYu2OS;+%o30V&q$Ag!G}RvaxbIW##Y60nt@OR=M-~8yN!*6RS-1SV4?^;?^+vaQcYyCO51NDdtC>R!bxyiLo zifGIPID6PjA2qPYD^+G!{B5TdcYdiQ1Qm{%>qoN>K28ykFd0Efi zBjE7cN;@P1RaDA~{%yfN7a19e$!KIz1w%uNWr}amS(opq7YX!oI@Cr1{ILF^ilw4M z9!UMGHuWS(vFz;Z?VX*EYHDiAYJh1}>B|<3_th7Jzk%1y!biT!Z@lEx7ktnHxJx8` zzZbuoF0jKlId=|&ILV{NxDo*%U4R@GS&+Bzp-la6ot!9ea@n>?;)P#bBNQ&b4Vv$U z&R%5qOrCx)oAYPt?DNO1(wcuO=v~>Bd zlGFUi(G@ADzbzLp`zx!Bn;O3NABH>~@V)7qENPta0QwkgbU=pLS$?o*hbva)I`F%$ z|88?RPWADRTu1q#s24$;X&m$s2%@R(83PP@P&&p~n254z%SF;rN zNI}eB-Pk}^N)TuR$I4EfI@Jgqd{4ETZDn<}Szopm)DI=v5!OFGXMl$UEMq~X;j`IZ zmG@@IP&Zep!zc?_w&n)k@;zle%UvfFfCCFycjnb&pkVWeiP2hqN-8#sSPIk2YXN@; zI6??4EiGLaztTWuAXZH**rnCG1M1w*cAf~-fIt?A2U3=}cb(AebZhuACPhCvkdeSd z7or};n^sg*bgF?8p}nvKX9;K&Ow?}nU z$NE1+x617r;cd?A^SZn1h5lt`g-Ziq9r@Wv%#jM_2i0M(r}-=2KPJu%6mqb#u@$?_ zYM@3SSj^|)CqoiGgZG>7=I!IWypv!@Kn*WoV!WoUZPt=J93l116W{hreq*j~p3|>s z_1d4U$2@<3lsdF?*?T@sFaqfg=C&9p)2PCMnWQHiitKF>9BSIywB?RtPgfca*fkaR zT(A3*dyt6b05N6;eEesZ0zCl;9xBSp59xg_1eLsfONbQvANX+vP=hwq)YGE{#+M5= zF7S;QC8%``@)F&1Qd5;&=lj$_p$~b0PaFz7KRFlNLD&r=uM423Hna}7$-G=$U#AB{ zR7~k}eVey1NNLwjz60et;mvPllBY<*H9ftc($X`)rd}F;ap?rq;*kjnHZ94K zX<$P_l=Acn5CoFdNnv3r8OPhzuIIq+=k+b&D=b0L`&&-wE|^tT2}Wc8J&C5Krd3GL zpk5uT^Vw{LA~0h>*sv1&;lq{m-_sKl4?rhN&f@)C;b;sx394lfBfGo5yHLX)m`#bW zv)N~JJI|^EeUX*L2cPy@5@O6X{%C2>RgVV<$;{$Rr4?TH`}|q)WACgQgdp*O)(he z(Di`8N2FCJMZu?g`uH5HTOJ?B0%sxd$IBc!elr1-K);V%%x^4Z zvtG6`FqL3FXa(~W6)`cfw6wGdIAA?DM?EIS#}N(=j^y;asaF#v=e`sq_LM_-g!O=r zymo0!dGO`;=gY#TFczpy6oq)G`4q_Hix)2K97n55zMqDc~FXr08F1hflV=kXD1;e6Z4h_B@e_&)!8K&Cve1! zd)acM9>1Rpg$aQ_Q=I{b64GKieoN3GkR)Kydn?zy-`#>DWJ4c2%FqqET5oLJs` z)!-gC59lGZHf082PC5tCL>aXWH1+mg2QAQ`#@2nIYBre;k{I`i6Bi6?+^>2cWn{c; zpX|GFv!~wIrx?tN&eQGifHa`ca_4`w70btCcnHfHjpFpg_SigM>YZGReP`&82}E_4_7!cG71?|gGC~6 z_17<2*xx06L9^LE=#L%^1~?oFKV*p6pIrMuU=<6i`j|Cdt|C`0`|Cg!$-#GFU`u?)cKVb*$ zo=MJA#C>_hdTCiA2V5W~KsSNk_ElMpvI;0XLu{PfJEcw&$^?Xj=SWanCoDV+>I|*_ z^ZnQpCefy$QCnI*jU=3HVO`LC-+}>CU zgSFN?ILHiIHnKbo$(_c0H{tux$gu@kC=^^#>h`d)P~^EhT5~?V2iMj{+$Hy$0vK%TwS6$iGl`lJ zpl&}{bV_g~)K*)NJTfGYN!sDSLwf{)kt;gGmi+uVciCW-3m*{$6PDq$0q)~RO4MNZ zbE+-;>3ZLF%|>vQ&VG8?+)SlN0anbzxa{=(1M?FW2{MQW-BxE%|7+`0Hn7#!RwvPN zmzc7GAu|tf=y@n;0;th&2yWNMO-;&jf2O0f6VXzSNA2mmt)Ej`kR0KeCcu{722u4e z;cX5>&`>zobpc(i2_i7;RL@@>d_PfpG%QrB{@m!kjYP-#bKr<@6@*Pe!=uUxhH-HF zwLn}0dnxwy>*Ko{!;W)bi+Paoc+2EQSTHElZrz&+{S)N+Wj6Fr+2un4h+`lgeij82 zb68Khn)&C~>JSWCK|WoDC+C8231-(ed@4CCdgZ9cSPNva9aD5X>jR zlk&CRR~Eu008`UJx=Sj*xWVYy4Gb$G)`qIg;IyROSChW-%F3^EUN>*XL)>}nx!On^ zUXD+FDMOo8(Qm|R2lhRnAZQ3lUxHyh3UjZV)l141fT{@yXN<71Q9;AD5~=(vYsb4|wts&iaFWAM0E0?&V;=m;_7wvvPYtPzW`k5OMD=&@lmco`T*7vr>6+ z@#|3hG1*5zyhPrC?d8c36d^hYH6Y2H4S57lnYwkIkoA!#|fp2seRshr-{Z zWQ52#xGJe&g{?;T@1_s!%nt+5BZN%BBxXT!@7}%FYF1V!A%vlMIeib+zcKhk7rR!f zX4%ocli9A6hJ~@Ka8EGQq7Ea{>E<~){P0~jWEl{-%@G&Xu63UKu*uj!8d>qa0M~EJ!nG{&2c?uL&0GPf&ZOAZx;WMi0%Ok55ZY<&0{J2hA2X zw)2nACkO}#OdzTQvTF+eUz(WtwAfkEj%^ez}1UHhuQUkt49jUiOs3H$dfS3K{5Yr85t@V`SGBbx+0W8# z5~1k{#iJ5IAGgIMp64hsAOI4f-uj$xzP30>hxSAzopo7-SoaFv29C~m0COC^?9fKm zg1M2~hT(l@XR*(w17zkj+krQr6G3$chAHhtKoMq8g01_l00bL<7eeRxBO?}|Dca_d zKA;xP5(rMre1o#wq55r_8op#tJV?Qi19HD)!ls8pWPLf-ub@76NA<#m#?eu>%Q1rI zyu7^1_P}N6H?aAst1A|-%&03_K23)|JhL~XT>&+^8 z?#G8vK0^`m6eZ6fnQx&^Q0P3!H>zU+a3SpXXC~I0&30>b!fLcyqTFuqp=ooFZp~9i z=z&2aJ`LClAo!a?JJLyh{wC-cS%sQl3NTO$?g9SK58_>%Fh$^kXg*IRPoSozhJGzt z8_KTKK7yb)kY@~Y2&3aU6)yEGHkKHicf=g`sUi33zr9O|`aof2aiEI`^+rBFLq#HFPX(`m(*(qk`?8m32M~X|InnAW}{52?os* zjbzq?^jra3bLkN(&`5&<94L%vVAV20LBXi&?~0+mo~2Q+UI{%VwFoCVSW$&QC5Az7 zgf66dQh1Dsg#`iC2=>#TUdmebEyF503c0swaPVejRaFR#LTIe9-%a3Ib#3UN83_j1 zXo(4JZ-AdOL*-x@>q$FLoTi*aXdOfNszy3n{-gIyuFLc3` zLhUU{WCtq;{+1jt{>09WB8l6t+p? z{3zo*NdQ$T6_yI{$D+gVCe(I{Ez0wk~*SmS-lhBuY?|{ zyr1r1s0J^zGRXso_FI4c#Md5p__j+TM$m)^7QrveL~ylMRQ3HoVo-8ge({0Vs;jCn z*}IpWJUlAyIie7e|4G7J3%8fD z`-%iAo2~(fh?ysYH`DY(!-EqT>(Gi3n$IGWlb?={o2Xp4z$GhN)9MREh%@-^f1u&@ zpIRiGAR@+z-5~=na5r?h0VC1W(n1LS$2@0_KxK@vvGEVERGNo?9gT*j=XRVg<= z4h~`a>-^EdPoAh8_C3%uFmQ8nA~G+JK;5GlBY5*6z^lYzHXis5_%<1QHD3iexw-~i z$|!M{YJV7jxGxiUuj73XY~{&Kq2t3Ilfv%r6^zn77yX;hwJ)QQ1L&9} zddoC7o1z6;{b?oQ1#Tb(4DFxpBCmQ%z2q!Ln*>Y01#=<+Qm1Tp5D4PC>MGk@-sW;sw)zdf#z? z(ajtCwYdO(AeeTk$2TvYJKqoVAfwBo=S z;&=bg8cv)0+Xqix#KzvL;hiE|Hfp6-~b%{^gr12N84~B z6BENKzIl@aEzvaH5e1zgq=jX#z6YeJ4MTCD*N9wXFpET_|GgQsc}}Jlv=%c^Jla2e zPyr}F1I{tjAq=woTNMur+wRnJuw5Gg1s06bb61mVV4`%H{KmH?c*OPdNsdcOG87jV z^BP}PR~PlJH)|ow*Dr3;eq4TbW@aW1I(^Yz0tkrB&CU2gP`gD1OsM@KVEZo76nI(sK>G)fUc=9;d&gvM$voI7i~SlgB^Mgmg(`v@1^%y zpj{^UB@`6>pWsuW|4nrm7?(gOA~=DlfYPx-yDRu&;rx{(1N*xAXKWKkMQ#TB5-4$D zC(RaEhg({>UCu+QgG>tCP^nT@aJ!){v6-A){s3bM57Y(Z#Sw_UAw^}i!R*(-K&3E- zyLA`T)k%%KX6TRwX9I#tAYa)7|0{A+JJXDBKVQF1(l$`znBEyMBL1??I>5kx{R`lN6T3AUzdaV zH8>k1O{aEvduYRs7QPc_Q2s*>xx-GLS4870rX^&4tL=x~J}kIZ4`Iv6?2gq(YKM(H zI-1HzMutbS3ujQm6VtgV;)uhJ9UV|cFC^EvY?w?DnpibCh;@O$I| zX5<51{#P5&y3YEhkU!P+zhBp4Lu=#YO2STrvwE9(vy}->;Bsdzyny+qSSZsYcVVqv}Etu z0MGn~m$DUFJAL{rEYqz|m>-S#AJox!tK55c%A_PAmqTHHX>nd!P`s>>}NOY>hD47at zXaX2;yFLYp0BStIE8)MsLBs-uz~RLv?;mt5DHZQqaQz1h*X{5ft1<($P=?MN78%z$ zlMsim1YiV(_`S8WGX<(D^ave?&b22)hV}QEHRXO1$jQt10PvODo=aCvcZIKwleA|+ ze+f&q_Sbs>C`;eCy>MF{Z&W?E0@3Is-~@2~SeDA4I6(;P0pv9V3w67B`!g=!t{y&q zObjjA!JzNv)KTMsrlJI?0Bv)hoqY_bT)hxX^E;@N1adOkzziLvKO}(U1%VHytr3_C zXgLI?B2UX0sxKf|LV#ohS{!xsDjw{L1F%8a0Pr&LK$Q#)p64!ILenn*M85D+A^jo* zxn^Jxip~U3YZm|i5Xah|M3N38!RreHQ_zv61ONtfHNAymc(x~?1Wf_j zL9n2{rTHK19~RvYyCHZ0gusNW;v*-a_tw?*3`(&;#YFm2#;plJrXXP&>eu^x@q4_u zWs&``BwC6fPC#0s#5a080EAui_yM_99RBBGRD%LU#{;Z1h#zPJ;!l9bW0wpNO z4528u0ywu3#oxeFPQn*R?7svQas=v|W|YVF-Em(WYv6!oU$DLsZ-)=j!v^vXxwFV7 zCDhfx#-qrobQI_%fZ}3RT~MvBLh&#Gm9LwE2I}>rjQNH_mf!U)Gc8V6oeErhF7rPT zRw2(~aC2yY&j%F^gdx0)j115kfP0Bv+Xh()ERCyO{`+(wcOgZ7d)~m%0_#giCBH@u z{ps@W+S;as{r`|7CjGg(@Lg&JZA&0TL4)$Mznqv{@Mgg3Dp2>seL77v5yHYXMMo~J zZeC{R9KrRRW>p*LJck5Xq#uY z+!$1Bjexjc_q0MM;yBbvTX4LEh|{>zk2rJ=pK+akJqwOEv@Yxh<2RxNWAl0d>H|2@ z1MPL`1M++w7_f8*b$hQY-+N_=H-r%G6YZj`s=dpLkyU^#vaO%O!yas;kTPG9%TA}0jfAj?8A2_ajntGMH*%r|d zgb89ZJV&Z>l`fWAg7S1vQ|Yd^OHS=wYm0BU)P)RpGESQb=*<`OojKk6;r+Z#Sj?T{ z33nYXh9yLw(kH7d<{3^J_xyB6A|x zrlAvE3fO}Qxc>O5Qz29eTexR51#gOqsLKpKHa;STMlarl-CdhctUjKeakV#cbb^Wn z6QuS;D=v^%I-Pqi(xma^kv#MLSCK4ih_|;ls%Anf0!0)B^u&TRfBg7y!(v}>4{gEm zAXj7Lfl-FW{Z%-o;0sfq^_c{LBfBx$IXdh7&64yG`O(D)<={OK;HH+AuBIsX!Z|GX zkdjVta^e=d2#JZ`f_&Wk$2B@S`gKM|4;-*ypy&uR3rY&sLKQIL)Jz#{1I zf)+)FSsjqVzk&R78Md#$RFm?~a< zKKQ6k!^Q`?9_`Z8UM|ytp#1~d@*$d=H3g8??rjW%HH8QQ7k}PuDFGRog!k_+L3p!J ztu6}Qj~gyI!Kx_KW@5^>{UB5CQT;aOBh53+DSQs=#>t7%QHjRy?KyXVSU{t=Ltee*_c&nTO8$!qT8L);!!=8Kn&ax~> z{pW0K_#q9>7B=kTjYq1nbDcdK50d-~V0yp=OaVa4O4_oB7mdN`J*dbUm6`{c5(MPc zA6Y30FZ|DW_(7qwAnm<&(r0t|4)9T^iuqET7?3EVVq#jMt69Is-9CH_!dUGQBShiI z7O>c+(pe{UUDvxr4Ib@M$CvGtAQk^68q2Eb!(NLUk)81KNk z;vMKDCnGb1#7Mz%CK!~f81P~Q0T-48u^s#+??5K0`jMFktcC>~e1e`)0?kACSfG4k zfSyI0mmr`rL)L?xng;VJ;RmeVN5IALXRK+#&pq>|W_j|{d4&V#rZ=F6$44~j~V`WU!)3b8sODdmAM#F*__iGIfbez z_$L#Rfrdl_7QmoWr%&Gj=MFmAKr|2cT%~(;Gh2b2$+d%-6bZblPO7gTIVz0LW7qZZ zV>r0iokraTMB%Uozx_X!Xh3ZCa#9X%?cs3Q+r{nuO6k!Kp_Al0VPbmWImRvsc=E4x zJ{9SSTq8<7_iECH^jk66mwvKS&YwAZ5V6V3OZjQErRAg(&0Td#1!ewX!8+sXnA4;j(jMT#v3+fl) zECzw=1!fnFG6{klkf0&nIi?S-oTQ|jhU%dmAS`qblxlUVxSWWVo}d<64WL&?<}8xE zzB7MHI@=70vU0h40Y#>0p*Cp$n1cD5NPc{9{sXk3!1|RzCojskVSjr8 z?V^GB2X>>Xsi(3O3kv&N=HBb`aBhuMfk7F!kkC_b?=^2jvqls|4G@{YopB7pUbX2c zv=r{Pu1Mma!GZe&9fO?nVh^Z}r+|pjZUZ;)1DP>9-+9)`|0CHB> z(8z?{1rI_;Pu~KEfZ1*3&&M~zBBO>)3S9LCC<7q^fDZi-nuYr+5>>?c{vPP6cLn1| z2}8r!eh(@rnB);eK{A0_354hP+lsDp*8l*Zd013b^gbjvID9M`Ob4Pq8+PCk2#Aek z1UCb;4?hGZ5P`Q=EtL`@P?*Qnoyp*Ab(w0{<+0JSQRup=U6L@Sq zy}VEh8q``}L0$%_81+8F+`!V<8avo;15r)deUS-+!FU?)x5PmdhW*(YN-u!AoFRHn zC;Kd?K>-7*Tf&}{fRNB#&~Cvjd<5#wWzhBRb|rrVowT6ezNtf3N9j%mq|?cO+lL$a zG6A-wr8==(R@szmYumuT0oYVH@gf*zkmYg(hzX$WzJLt`Fd4eJPDo0|z>)-)3bd3{ zfmm`vLZbiK1^nR9P;NLVXLTRW+PKr3dG-Frpd|!($lW1@g~C7+9z2G`1SpCVyrA8L zSSZ_{u*t>%4nt6ex49lld~`5iqzO~ue_#Ltz!%qi9Dz~FG(Cnow;)toe!T(Z1I2*Mb84e?7L%EoDF!(PtrEcv z22JMyU?@uo)s6cvUmb8oOu&jd>dgFeKDA4BTSBa}b&YV4aw#+Za>2zz`Enzfb$Udhn zD&mf9N4B@-#GIdQ+u3@r^{7?B!iAfLBVZ~&ky5}k-hq`1#7{E(m08RfurMmrgCHFT zhOH>UNhm!A%k7UrK{pNXv2}PjQFghq`I^nfzr(!XM1XSy!@--F4ACJ04hdL=L%WK= zm2_X|z#Ii&AUemDUN6u~tlcb#k@SVL44D+}OQU!gv`1b5P*826KF_$lZ-KG0_kj`y zo;xAG*XoSKzK_@6fcRG#^)(b|I{9lIQ+(HNr9B_OC#@6K2onP_G1b)J9 zq%sm@F_7fYvmXI41g!(R{vBYC1w1uqa1Vv+x8V3Y6fibJ9S`L7M9eLRG#D2+%Pki0 zBLFc{99Y6Wf=z^!g2Do{eCSEPH;%&qn7s(GApC!|_SI2Ub^W?~Q;G;EqDTlLEuqqg zbc0Apvk{Q)*dPs?SHV|81PN)Rk(3URk`@qYX^~bML?q5{`JV5b@7^=c{p&i0V}S0x z=3Hyd`OD{d=Cm0A?k2of3lVz?ZQxRHWi8^OkjW}%J%reA;?cMRm~(JceXx4sp+WJlI}l`Zrg6@LA526N3uK#u6N4C92D-g=M`V!lK&lcByInr)vJ`xg zG%kXeloSd2pg}1D#1L@Qs3q3oJAeZMfFZ5FBP>{V|JZXCw~CsnB~*yiN0VwOZg$LE zAWhdSaQkZjbl*Io9o^a01$Hw8_QxlH!<3B!3Lz3PW)jEyk0A!Abz5#m0Bhcp&p=}= z6{@}f2LYYEoBAHm)w_4OIsDA;>ICtTRv+=PPDHl*4586wiBP5CtOE|Hnt*$=b2+6i}O5`%Ky z{MrhRE(V%gpqbbUZfaw5(-g2SmQ_gP1Urn8mp2M37krQ#71i$0krK^*nQff?pRQ#c@8**!C%`U=}^{chGYRySqt zDQRM9tVH^BzutjaA+zZdBkEIL2ccu#GZ(@?Euo+dJq(p#z+S7y0+9WJW_JNIxa1bX zaLDp{05JezPth$@lBh>fr~6k>0$qJ4m@?5M#m~Y^pLpu%t zKuXzAaYGx4Q~@3X;6d@9KWic)s({gJ2OY4&emdwg!-r>Kk3(^5W`T92?$YxN_A`KY zh4dDJH@8;5h#+iU9znrS7b*1Jd`8cufh+~I+1 zPq4W#lrbARt%Mj$EeSU%U-E_d1?0Rf+|_SXR81WNHOmgw=viHV65t}3TZwTDz14`_L# zqZO~okG=q}6Vuu00)ma?@b7KK^TJ&A^2&|PUCby->A$^SC?`3eruO{Tuem>jxt?7% zLzW)|SN8^R?Yv{Cd(u0q|GRnZOI;{Wv3IoZ&9?^>@ zz#)SnTaOWf7z+y2nZ>vmLdfsp)+;zMRpew0*7ldd0U}MmLH8>g!<%0!^xQC$#Zrz;3MYRnl|Su#~PgRU<71rXaAgg@!}+L zmaDTS>l7vFT7Gd2$EC-|K`&oGc)<(V;dY&K(~f>MzaiPFqa*(&|Cs8is5h>aXI-dZ zH~lj~kInSuGH07gIShdx0THfb0D&? zP}j=zaR{AFljwajG&8GFF%cUhJh#p$GZFOX?GWIaYht38o*!IYK5x2hA75iuvgy-_ zI+GarpA*FL-Fw#2-#<@Hjy5#!{@8;O^uGa%B>syss7$Hr+nfjz=OB0LI27^Rpm6TX zHM-v60P?{YbTnK5`IJc=XKJXW3ZCTbL|DX@0XHS3a1nR&Y}iv7e{n4>J&zOQZI~4i z*dH2nHKwP)tM4uJR+fGKf~U~?=i-9Fe|_NlT9FTq0GB@X=OYK_HEhj!dSI+S#*Ya$ z`EbD{6pvwL7$hVRg_kVXoF!4!^@Xk@G?cq&E0lP5o= z5QoEJ=lONx%za4`R+g>eiMePxpdteWbO=w7A|uc%puvDdS`a8&R;j6~T0k)k3ZKbf zT!DAr#$7eh3>m5e*kj#m@D4r<6PvSS@%oo5TmGWJopIA3y`?V z0c!^Rc033|b&4N2Jc8hLWP789d;oxeP}OP!1nM)Ld=?g#R+^skMY6C66|pzai9R}hQCQojkfB+r8WwA1^9K@%sDAaaO>jqSqa%hsL%R~C3PnI8WsN5-K1 zlUR3uf7WuHu>@UGJwXAxu0I>~SDp?}Fp(Cu_mmsc1L?#`JOMK83z$-SAa4|}G-!uI zy)X{qnU*gJ(DrKaltq_s(elXHg#qaZs zkH*P~3EW260}Rc!A^{K{FXw?(3YEFRgE9!R&5?0H;|v3;W_Ld!x#e-*S`0Diwr;5ZbP%en&P!}=pms30k40)xed52l z06dxnmOR`c*jf9)4cu6*mB{T{t~u8{f8o(Og0pZ@+PHu$g73{AL5D;Qx$lY9sZ2)* z3_yT49(pzX5T_s*gnz4=f>Vu3N;=yJP>BxUb9t`U{{)=V%_PnxXrV%-ULb)P6PT_w zxgxb<##5Y`xnfJb*Na+l>QL7(ojjZ7FI;7x=X3eS1)dL4XVZ{JqtAi@yzU)n##l_f z^MV%$#b&2U$4T2)m!lw~Of=Lk1$FazNbp_SuXw!r&IT(RN^*u7O3fEviApJdX5vwq z-nA8Y@-&gBEVlMu>veW0td*cudePBm({kDJ32-Qoc7p`mFBR8VJ~$IF3nj!HXcAiIeJP-@ZIn(fhV%jKi{l^LHM1s6(ufl?Q~F&8T7 zKK35slm4M$7>d>@j@Am}(!1H&UQ#%MEp!?V2oaYS0M#2loSU)oQI{biN$iDVQLKx%dWH6{_Dyx`LIzY{G|?L3Shba z>#8gY3Z@_ETbfc>X1bIoEx4tEtGi({mY@;80Qu+5hpQCMazSh8Jr4BZ{Ia75sdiv0 zTmZ?x|4a+{;lnVC$s9qb*makK^|@7&l$6>L*e=okHn&!bkcYo#O_EIdt&1>DKa?@M z>t=@r!PTLNiATo5@`^)my^*IFHrp4^%IoOWh+>-XHR*vN{W=QW`b>xa>(lSgC77d( zQr>q9B)pk>U8vl+5OuSyn+2b}p!YLH$#JFzBNw~~=X-5zie8>e55PcJj4|oGaUd$$ zbcNxD^fmE@ZC}5e@OPlNr-mn~dtVbzB~DsCIK%L>@Q@XXwt?sRU!}ait2z_N=${Pb z&)@JS8PegY_w2uY5*BNT$|B$@=#8SdsYtCi7)pREvV_j=xAU(=NBX&Kl2-U|XgqwW ztk3n2_9#0um2O&``Hqxsg@d4#1P%)`vEK*2*ZI{KqSVbW=J?asR-|AG*!_~VUmfS$ zD>L4HymDo7!c8h|)7whx0a^R=p*;XtcwEgpS<;LqV9|-lmNcl@-DDsm%h?Bh3m>e~59Vj6#Pt}Ve5SjM&rvTMVoII{wEkY!c7gA3S*=VpowJ0hz#1g-K z9AnYtK&Oi3bB=@>h@=x78nt;G&K(83C>MLyTq<1`jSHU^-9AUPo5rA?lCt0=g^%3D zXUH203c{duOhHAZTXA1V2*g|=`%*LWZ~~x+GH^LMWd`qK&!7^w``?P}zDyo1Bfw;L zE%rvNnQtUC`5uoi-YMIruH{;8&X$-uRe+TV-g0H<8mxDGE`u4Aap1%4!k(r{>qpN( zT_U%jfLU00)ZEM2`6g&khELW@xw`T~;~`isSYnsh zMBge93s*^cTs_{Xs_^ywW;UVacsC^B!w`2dYyQp9v1#$MOO73B5>^eb!^ZO&h`f8n zKgfv<3E*EwM*d)9iSGM1&-vUjYP;Vm%JKc!PCcJ(5z7pA@s09(nWrl$$u+6p!7$AH zV5=HN&9&FJwOdA9m%2T#h}6X=>~kMIs+ z_ZWFr@`_%ng^xgcVNfOmzY(&Q44wQ=P(0R8NltbcBBrMa4~B}s%cr?)epg+(xoZ~( za*}^i$z!?EtH0U#DZO`Y8nJ$SQ}E>7ok=^xvroe&&aUk*k+lTGJnJ|6wUSc2ba8?N zrB=cA?AEixNYBv?K8BO>`1bqsP8(Lk{O`i!L{{PTGJ`dbgunyB!$H+_S@fuiJn#BGmZv9LJevaPK*y*2stHw7vQ zFa{c3R~ROnf}%*ux89w>*%j9k#T*-O$$#0eEPC@<+jDd4=Z&)ErEDTUM^zSwIg8%g z$dh+JVw`h_)wOF9L*e}J;WgmWJ_Hpo;NL_)rT6|Diu$mu(XXJVg$-X5Gt|*RuzkQ! z1sA&s@ZOgxDZKzUFomcPd*+NApRyE{p4&>M&yO&4+Gan7p<_kF$6I!qA^En52g6w8 z`+Pq?_X{lHFyA|?`TBIiez@2v?iz7f-KZ+&^H^i@$zQmie%=fXsVDVQshrf3rdQ!F z69kpeo9F{%X*_5qL7kOVOe`5{cr>iRP+D~bCRNKG=nw*qJOLz2=o7N>RMcL$wi!;wccU!Lm$HM-l-Xb8D*WworJI~fAt+?mY-CPnmPGFn zoqw*!HK8ZdlKwX0bK-OgE?zG6;)ZxIA$Vu!^HuSb6cqu^`54mPy|u}1uu^ANp)RFg zW*I)~2kgy|bj&7{#Vd5MvhHnxL7QcKM7Y?&c4d|1?YP%25*2nioIkX5q%E_}#)qEh z^V0D=80_h-80;I9*k12BAu@UJ{f<0FEd4=Db(br-;KbWNlW7zG-e2*jge3mfjF3=- z?Q#}zz{r*fmH%vo%0Gqc)q7CDE%tR$H|C;S8|5<>iJBTH17&x&UgYYGwW)|TRuf&< zq(|;XNshQhlzcI-Ne#WL_M!ZzQ(v&CV46;z{?CEiI`kMDeS8RuZeBy4Jwyd({4A9M z9>gDyQS;#{u3XW+z9=Rg8@*&{DWiQNjLjatXG=>qHI>#d_JXD5^}Es}AHm6%bt->0 zuB%}l?e9assQx@9C-c1J?fJLwoVQ6(cc*VBCsT{AIubzS0oOl68;Sa)J*b5z?jo)G z(2ccXs68xB)G+*R>O9HmPs#bj6exp6gO=CQhD~CLYo^;yiT$|(zHW;O<$E>`defhj zCo=FEEbdm_iq?+3wN)Q^xG_RrAwnke|zjgiFW>S~t*7g97X7)}pQ-6ud0U z)L;p5*Q35s3{1j}SqM*WtkPbDW0`1@(%sgt_ZfV0)MxK2S*)epH^ zwMxuF?(Yy2E&opRug5v$!&~88-Kf|YrRH`PMJVO{4co~ql@e8N*K*u* z)!#1c352bSyl?A!D}Sxcc&;z*LId+!vM^bSNJr25#K$?IJNIPO3C>HMcRRfziDPZt zNakU0|FtJe6tH*_9#==zQcQmj#|j)vw-I-bN@T*kxMq1~lpEoKa%kInGB^Gx2450; z^ld(??#703!1AyP$}=dG>Y`+;6}4S_)sB~cgZhtN+JIxKSDgcf#&eyeC+e>Ys~<9O zDinU3%Js23JS&%{T*SX8O!w{L2i>2(t*Yx2AJoPqZuzacz1$64Imcu4*+^JoEkk@J z#z`+n!>+op+rheC2d^;M@$XO~2+RMxq(+QQ|9*WLA+F~w0Y*PBF_Khw59l`9=$YM- z@dgLgXr2D8gX0mABoQ*}_TTMs(o5@}H9og)+FvEiB23~D?y*V5P^K|YlaycdtoAy0 z>2h{=HQ^%@Sma@~mRg0W+6D%@Uua^gb;Ju5)C7<`La{Ii6 z!-+dBx8*eUIexQ=-#KI~_Iq%T(RpT{VaLmi%;{*3d+oc6mDu}8XBr3$1tAjUM2dI~ z-5-KTUL*pmbq_r+69 zO|>Jv6qx8}t)aP<>uAyYL?zkcc#C4X16`DIvkgAS-QiBt9eIcMF_T-i@9A{iHRcnJ z{ol4xqhqyZ!$yR%DRLMp1xTGhropXgwxh(y%l?xYifghVns(}a-~}o*{=*iz0VKx) z+bQU=*rz*5pq;wOw_tB!a@4O;NE8sTJuYlUT%FBZzsYO0%tXu1&TTUBbWZW`cH|ic zLXSrcFCU-WR?JmUL*e1)7lrF43j{xAQMx?08?N+WFlI*ZL0sHw+h5g$_9-RtmmY8n zJ0GC@boLO#OFM3gqgB0deJDw(_;7&aoJg3?P}&zyc_ zJ`$NJ@v3)M*GO$G3v;}AETOl5Bu!~WeUfguON^2##Wg=fZn`4oQh1!G3MyCPt9}%H zUO_>Zzo2`??)~oA+TZw(yDiWS61!qY)8G60L?kYJrE2!roW50f!mkzg_{7_ydyB?@ z+)g1H$NlSGo0Nm6iLmI}cvHjgV_L!>g(|VG!M+?#9sS{rw$ttTYQ&?SK8!0@(I!}3 zLz{ljnlge*v2<7J>)k!XZcV+<%P&mTy1ux|#;JEQ;2m6aMfsivS-p&RS-^__!P7mV zv25`silv3y0`8LC+Q(t4aQh;SqZ_jm4^iw%8*$z7YyqKlnXTScQ$VE6;-`VQcV<0(UE; zZ$X_=7jCJ0$WwHtdL_hxn<4BYh^@PkQ!!4$7F!PT^0{ zH5M=WJ9uV1nH$A!5XW7Ed$h74-XG+cbYDuit)kr6wwla{pSzw>>0p;K`qe(r8~@1v z*u&Al=R#jVPM!Evk`#7-+UTTZWMJg`UaWaHEZ&{9A4u>Q4s~?82kH6md`EBM~jU}wWpch z^AX_OcOy4zEe-H^in*+siU@ZMrb4e!i*9UgnD+dzQ+%${rmDSN%;7`&6oxEXFU?KIhInfUuD{g0~ig^jvE07Z##LM5h0Ecw*lzU4{!&hgJLHjx3s*@O?wVEX2`rGa^JZ>Nu{v@ z>|4|9vkRoDU0;c`;ON3k$cN zMP>q)+2bSnZyn`KVJo*oTpdKz);$w)FKTd&)jh$sF49byn2H_*W@--klh8okpDP3< zFpxL63e6ut7J!sF05~23F&26@uO>lZslf`$!bp1@00FlEvB-r1A1>oab9vEGOE~HAkjC*f%F1ujuPQfPWW6rk{qZxZ8Uf%npW^%Z&$9Zqc@F zbQY&}SePYH%mwO>oRD;)LcB}6>T&;FdOl?Ws6F7f2SFYVIGiNT$^a1XK=67%8f8Zz zB~O5fm_gGYA%xMWQmDJX*K^2{o7?Sm_SeU9p$$K)t-*mv=zzo5=@vT1nCQfPUZrCFS;aUfOTyvhBW87f$pz5J*weQW+xw)U} zD~HYjPIqExjtBD8HVFRS?zLBBCM(UoG?ti!zpt}ARKQ~7C?wLmISnM!J9wWPV~qj> zc_gmLpOOW&VOppx1!*ZW-MDBBiVuK}L}1=Pwi4t@1#~xH*n9y7qI-B3j{bq7?8hXL zff6n#f2xW9dIF#9|Go%Ca!p$|X?uVVg6JB+2hX1~Ni@Fu+aq&(ee9lZshb8PCDkgc zcR6{XSKZ+qqf1?r8EfT_GmM0bIRhUp8@M}=V|y1GjROMP@>i~PsSb^G$8V+7+uqnd z+^ky*JHeqQf0k0n!Jb65eyjM))k~knfKoD4n&phe8)fCZ%$+SPb&Pe-58XiL*3`9_ z!leSz507cqrY&C!1wf`zLuKP}gSpnBC%&I*uXXdoPp0Lu6@Hi5hLPXcN6Bj)f#02v z2dqR%P6g=9JtDNA!Fyngl9V3wsID7Yuf)jBrxYBp5UIHn#!=803M_9&^kr}SN)@BN ze=8k7q1V-rS9G; zJ~K4Gn2<-=T~^PNmyY?V8~XI=+D{pW=O^f2ziK&&J@wDsJd^J;L*_*9Z(pD)!SqiD zKL3MwcrPmDe{`4^ibVk?VDad8K|w;mGiWkwgQA#FWzFtZyOTcM?VJ5YsWunx-K?pa z!fc7Qe#y8f80YoNl>2&lxsMa$3!^zfT^IVxoi`T8x4VDskscQa+88qah@lzzJrhi> zrV(~SCE(rLrql}t@y}L<5+qK|T(3omjm3JAj`J4VY*^{PIoy&F?qG0t_;kl#Lbxp1 z)M>LMgI0rFhXXy{0%B@PcklAQ8?iz;EGKlR7cuNVSCwd4n3!Z_&RjDXtijgWzvkQ6 z3l?;+otE#H))9;r?PTO+&t1D~;U!{jHU7fX{+;)dRq^j@m;-KmzDM6<=ma05>CNi9qoTCu@0(a1Yi+)xe5c-N0rOQ)Bm(n zULD21c=5v9fjq6>`qPrrx&@n`<5FwNq4f@h7+#8`h{gyCazH` z+U_i#X2fU%h`{H+A@$w=AnKu)0#^i(*~=ejga9?SCk?2DbIslbnxfEPGvE5wxwASF z0a9_>U7W@0T3Y6>F5Ut7FP!28oqi${09gS0K zwx<7US3F(8(vsCteld*{ur7csi(pIjjRK%#5`Y*Hg4idh5Zdu8AoGzPOz)2ibfL7n z7jy}kp!G_^poIyY97EN@;-Y9Z%b!VC=0tcEMAl)yph|!*)3^}#*ZDu6RR-KBKv{v+ zmsANods`8|1Ad_V?bdo&`z;p>dBSNG90EcbpA~wg4mw2?B?SE7$EHh1ne1mk3<>x` zQ|69xGQti-p8zDBUsT)Wm`Vkz0Vn+l!plsHSC78YWu_*G!;dCE{B7+Q)QbB@(3F2> z)GLQ4iOl{qRYr;g97Ludln&>Z4k0HGd3fX$z7q2JKL>ry@$==tJ-k2DK1T|X@;_f@ zLR#f;*P)RJiWuHb>z@w0^y%4$%&3A^0Ny}zs*f3O$e1Lt8;-2*AL9jPKopT$_Dxm>|dH1A;pj zr>3S5_z+o z%mV<=iI86q=2eVxE4<~0rBhMjH9&9&(I)1rS8*V10xC1orlzmO8i*id4F};HNvP=o zAOv_BpuW%w3Yu`@pNrc7W*CM*_>mHa8~AW%832ehbgT(NK)iy$r1%Qr`HK*nJcQd# z68B30RL$*@p(2DVga81M{v&I5Rs`KT0OtVm24_Q&zdzhk0eEIJaO6SDA;>fl4xfAm zJo#_{TK>WJ`T0>pdl{(Ut|r|^?MP1$fFk<9xCUXadEj?_%ZhvO5RPjKcF2tQUYwiz zH^>43slf74J&PYN96Cq_RbALzqoCP{KwFJZ4&v(HOJ9_GH3XeU3pl+f_$Sy|WoU`V z06PCvrSj$O&Q1-K1>8bNI=ix?W6{^y+1I{+atw9=>7qBNE?{ub4c(2?Qdds{e6t)N z851dJY4hPkNEr>v<&11Zy!XB%cm|pgy9xsqW@cG0fM$_)g8dq1^f-n`(`aneE>ME<2jS^~! zg+12j;4uTTEs=|yjBH`VIKW*!|H&-?4FWTgn&0{y00s!I!Z~-qzyS#C-AYn2GFFf} zIN#%@#NfMu26aE+mYjsRe^yX!0cu?*tOD>s-+;qu1rFWH8U->`NF3V?pfn)Ml|D9PLx~@5 z$bi0F9|&*33KauJjTImp5h1z*MZKVCTn{1^V_R_$694QUry`uIEq#NLF%XU-Dg)4C zQSHk0mMs891AM!qr$=Dy!9kBd@}5D`3z#T~strsS1PGcC;WU7z1115U333|k(o}t2 zXDOfx;d}t}SwF@G{40w<7`1>0aR`i&OyII2r{8`|5D0~(4v&EY9s>}9i(cI|(9mdt zGj_jEIZ>bzK=I;#BEsexV`~KEG(Z#41Oa4&(hLZx_M7_wbZir3YnQ74W*r$H&v9hQ z25^2p;1}^h!9Q4`!T$(O(@CGL*omBj1KO8DRM-I$>EyQb35^450yyf2pVdHD8IYp7 zu*v|6?1JSJlg%Hp1t)pcZ;(>|GaK|ZK<3ePV@9e)5Mgq`8vtuNTGjL@+4ZZe`2GyO zTt+`Th@NVIDM?389Mgm~6b+(t3PL>=VmqH?lub<1q7o9`0Q|dc189$e_S?WKy$;%6 zU4X*P2XeI}gufbqM5PUUl5qZ025iM25u|{?&&&UQ^@RVR*@w^K|}M#e(IgRh|AX}rJ(ba1sJ}rlivX+ zeI?;Lkw+kK$o`bdN}5a9P{~YW2?c+Y$`^EHpKu%izmXfm+JcvTuD6j|9N>>P$FsNK{|`Fd({qKvc+8;xSTdB; zt-&v4(JD{SnvRxejG2oC%-#&`Wao&svwnKc-NMDy+R@?Mb#d_b^10_|w3D2K#Q*gM zaYq*`i2!^zCk%EDhWzK2){BI>VXp+E{T>oKlo3giP^_WfK90YCY9HZ9_ItSBQQI~% zs>{>YM50H>peW;e@p{G;RcmXC=HlQTSycmD+q^*iwT!bJFIDo-xqL7{Ec}IYI{2C_ z645-j%gDEyR~O;66p<|KP1^EN7EtzTc~-CyVPErAuWDTZl`~*>gALpT`XgyrF~|Dn zM_BTqeboPc{EJ2Izn_GTB>(qb#L@r%m%u3hUp2^&*W3LKN>TbbH-z)nana>M5*{SA zK>=STor22IX%db$ye^!_q?J@Ds-AWJH?sUBu!Z{my^xrzqwKU$QgyP6m@-za36~9u zFXwqrTw2{~^Ht)LaUf6iJ*n_?Q=;XEO{B#;#Q6n@>U^{XQRVke1i=no9+m!j$+?2@ z-N0-$RqZsDFJc$fa0!?Z5835^kGZb4$dptq@GzHny88NL(x!}|?_w;6g~_H??yNMq zZcRjoO>YGEjM&hB^H#;kFP6JLHW2`)OM8qN*biP2qBrStg|36v=|#$nr9kC`OSz@z z^L*B`U0Y?Ro=r4p= zO1RXbk{ypWFJs&|eDQ^R=USoO`Y2*Dq70 zl@DRhraQk(&(F8WP9;PH@_Rl{&y)TAR&WJ)02@t_-;u@V77x!ODCHimN}JU@lizB& z)leu@s3NW3dnE#|UN}IWp0z2`Z&lnN8+uNE(E|_j^z?M8IVd{LWKfvIu0DHm>9wgu zjB)7A-*4B}*2a@xaW`HvUJfEV)gC5xbAvn6@3TWdF!!pYay@77GEEXy3X7h7ME9-r zAqV1>Ju`M9MJHZzir)i|U#O%n7-H9Zkhrl>d2wDtr(3Pc%$=P{M~0>GW(}_h(s=15 z?{~cUaG9GdaLQ_$OvObxw=cHVaN*DD^&<==Hk9OO5`I8M!FfiN|>ITqGd<~F-h zE5NvVNjJCoVtT^$8D#+4u;2g~9K6t~S0`p`>! z<@0=ZXIBYrSn;VOFNaX2Z7QuV4}4h(#m9^8DuJC=b6p{cP6;rV1zf?kM3BIJjuS?U zp1MlwnW!RPioi~_K=5`OxDd?T?6o|2nM>JPow6FM4sgz_F@OBzmOOu%}VN96RA5RnTq<)H3^rB@{F=E@iCp856 zY>LjhHeVw!8Fba%vt!FY*m#}|6j%_;c^lvuLwaAJSG{CXev|856_eos3^OFa+`=%Ye?b7`q7mMKj^K_PW_DZ)VY9huwbYMQOEm2-Z*T_w~5`@x3 zjw9CAp>k`od^yCi8Oj+hZtl<->H2~a@9#E6gAU5dgK;9afju0QDRwu88XRBL^0_Ql zY)o>RY~GH#Vi1M${(Ve#^z||KX-fzK-<{h-LhKTRf=HZh<;q8|ojA{mr09w{i>6MAFV$hV>a?hKsryS}Y|o6f6eHW7-sr;>-MMQso0cqCn02 zauM8Tb5yUwb6tFFZn1PMl$ICP@OR)@+y=M@VXafmm4e-{0Es|Ys^M%{Hw5?pCc}yb zFQ?KWob=sk@J$d5Q@HNvvl@?~OQRH){}so3K?x@`y|{?Nt&7LuYxA=COC%t z!QbCsVdbYF;djubmElDnnLq)b7a(>VpS32)5_ho>0_B#?WR=fo=QWN73M8otV5NAC z(2t@dOp*#)|j_?>>R$j*K(TnWXLgWs&& zQ=$*FO@eSB5l7Z@X?^9ZiHpskGU7~j>P(vXMwS8~RM?u)t%^$tQ}RroI-_O}3R+b{ zbmiKYEvl+=9DT7$SrqT>B3`w#;=Ma-(&jOhSkmOGoEX95h#7X<>P}aZ&fS2xD($Wxgv%*TjIAkAq-9%DA{+P3bD~Kvp6(qDDljK6Kl#=` z!GPK}&Y&;0nK0K)rj{E7+Hk^ZE1*E$6ku*PKmaC00;O%`W1hFL0H}(q3z#Z-Ha51c zmFOyk1=y~jz}7t|z;_1lyLvYq$T3hL5~!cwUw0fS2R8>FY)%JY;=SF4Zv~f#?$VII zLfM&=S*_;raoW52x~C##vtGsp9CZp05^fbhfh-^o|0pfLL(Q#}r(6SHwFk@-(I!a{ zC|gUNkp<>;=}_UFP+atA>!+Lomwj=j$g*(YGLZxP4E?zf5C4C~Q;}s&;;EY1oex`?xSi6R26b5Eg)oknjfUts;gQU5|i2|9*V ztBMHT^$4tAa_amyuakU#OaVjupOiiPpS{R{evkZr{3ULofD;x&;vfDdO)=WKXN>(_ za5+vUd(H(0OD@x)#O%z;Tj+MkTDGB*=#$SD7#6y$ux50~U6)m5;U*L+>a3=_Gz_KY z$Ndl|-{;Vrx4Rxz=w93Fy){E${b-`B7`Px)GFJe;ERL~mL@FaT=6){ZS`(Jo-Yv+6 z!7R(zeIpIGlg2ZmMI4FW=WJj}Q80M&KIO{Acjc>>`YdXD{e?)wVGfP965Ed|S7y_v z`oD1A&jryg_PnXAcPyw+#FcibBr40m&8UDj`K&1dI^ef4h1|t=F0-&x!Ypz>j?-K1 zZC4q-<=1xELK56J8Czo}dLK4+$3h77jt3sQb;^w<6}uiDBS+XHjYMEDt)^eJ-Z3@h zxXVgqWc{p#AWj38?O(+Omsnu^&iuLxtXg~RktI&e(fj7&*39~}!1M8m26$u@Jw(!l z{5Pj7iHOH*Cgq#lu!H|Js6^ZQIQ5xZM1wxFr}I?VuR&=dSx)ZOGQYH8>H(M-!jBt$ z3OeS1QvXl9x2?sQmhr>sSK8_vWu;xMFv3V$yo|grvlZXe6efQGT)}WN=cDzFcwt>G z80^Gjv?gae-nj2;Z_4{_7~;h7Dd)5?82q*$_f?hL^05wu%1mXo$+p%vRi01Fi0%y3 z5_!OAYkU^fI=A4t@Pv4+M5+8!>U|bi^3yY~kcAy`;x%Tpukd8zy~8jqgggS{D$sr! zM2_aTiBEwTawSeP%1Wnifw@Ygln;1J98?ReWPG}qeHb{zezQ)8WxMNA*_si!S61@1 zt7}y9J}MV0+VA2LH6Vwu(yAKqy}o3zg%2fv8R;_pfX8ZP!R8oZeG7x?s7 zs{Vak8TVSccDZUbf0jA4lV-`UVpA_%J`P0=4hM25ep>!NwQBt}Qq7`syNXg8@3 zU#w81@3KBTyV8ElK!k7`2Fob@{WN=bDy6Gu*i)(o4$FA?+b}m@(fUSH&VJM5z<3c~ zspoxrkb%#9P#YOOZ7aJ|6U`~nLP*BOdbUW;4H%5dq4JjaQrFdb zc!m;)3!y=>ayY<55fZh&glA*BOW&LLb+OAac7|ic9aMmnB;DjKV#ZTmM;@^As zQ&S$xKt~TB{X~EPBn3`GY6Uww&P(NmOmDQt_Ixz)Sonm*`SN@6gOdB<%-zy3Y9(^>r|i<}?iW<%G-V@Moc-e$QJpJJRhu_nlK%Cpk# z*keEs&hY9HMX)2h~hjEz`72yBHs@?ufVPibd^6A;dr{25rDUv((VE>b!7w9eKnl4kDIM%25b;^F3Zl&q zS>*Rq<=XvcfG5;nK4or6^2FhVSG{P{gro|z*~!-FVs<#pFSdzeBY(QnpBtw2_Q(Pv z5NImuFW>e18dJ0ST(&>dmxAwob(q`jF=xAKdIcNStJ5yZfD`s(Df8xG7P&vxzWRvX z##wg?19jYzkBMx<92<|UDbL&0&%F8)1%S|%z3iaupF8$P)Y9;H=kCgRWr^dr$`wJi zY`$0brq>fga6<=ef78J7X0rGdoF4rHNBfAh%HB;Hbe@|Fe|bT6sSe7=%eAXoZPK5q zi@_ciSDOivfd$$B0tf&0j-Qg$|B4&-gUjkQy`PJ6V)48*?BNYTvOl*Vf<4AG;z)8y zQX4MC3EeO?jX@>vX6X;fpr%%maT{90i`RkgS1IuYy24s1>Y>r!K6f_P=rn z1~gIfVMk`SFhZc{cSYyKepqBqj7VfDfrrWgy;n*PGUMtY=$4Ow_rY_GyOPWYr zMAV{;bzX;do<&`O3KC}!V9Wy~jEeL7azRk!yvRd)u)r+NoQ@%an?N~x@bSJuQU0>$ zk4>!V+E*!Jpnot;d*1J_WT{e830+5Bkj<3^NERU5j*UlY-(lHaAsuc*nCQ z`&eLpjo;X?a{z*2S*GJsXSqH~Jhvu6-BkO9b3Z9ZxpLlHYr(UYUNdIG1ZTJo0lm%s#HWj}_*3 z|CCe>wt0}H460r4?&e118z1;{52x9z%mLpdp>@wIqFfak*KPpRNh<;v4e}C%C``*A zqzpUoxVm4wKvEe@5vd`@x)un~6V?n1@$WUSfQl>&R_$Nm%k}UUWFn{8 z^gMMv~g)rCZ*A0ue=`ift z9B>Dyi{CcFSj6@|&Vug|5X;EjBR5)jV}KFx+k5V*CT$%iZn< zo+pp!gEBPZW>_|6apxN14S;A`^%b5xRDrp`mX^G;$E=$pe-_XR)4u$d384G{*sUY{ z{5q1Td?4d0h(4uKi;PtwM?t#&5i(_EDd4d&kpD!C3JK=j=|>h)bjx)QL(zKl1bnJ+ z>M(YWyl=1E-c&3zv*jOX$9rCpWrV-^()}uE^Lxek$%qbu5mZ`OjqNQxUe8uHE-B|0RouM zfLMSZ|98|J!=Xc8!!B8SdwqJb`_UG-6?XOT;i{kd5>_jks#!d4vwRVUV3F2N|FD<2 z{-Fi+nH*o6xZA@V+5dz`K+rY(x*jq|$Kgt1>M4vP1ng-v?llj2kS=D>z4{C6&u!!l zC8X}aDu(?l-S5P;SZ0EZ|MB`#S!A%I0N)<-cpm12r+C_Ni-c6K%&?pS67Y|kX9Vw-@-WXLR6vl_f9jX< z@g|K8fs(i}G=B?#U)e>ujM>7*oRqHaJ!Tbrb~NdxGK&}r5M*u@KVuqW^|lvJ8PIn8 zrqiyqd(ItA4nub2=K*eUq3c&W!4QMO4Yp4u;9)&LmOhnoHziiS_oN^>`)G2>UD6(1 za1Y7_K59sNQ3d69qtuRJ>(;^czrhvEzt4~=?Pdgi&gFWB%6%)DbHUA>685Ex#TUBK zO+nuW`?1f)1l{AWBw{q2qY4M~Gd3V^>|*QGJ}ROPx==>HB%}G&l$DOIG(*z!*UO~K z3yFz$B?+z>@(>`txdk5lWq4E=JovtpHyq`xr0WgLm-S%>h7Qk~S4QFVbE2#us`~>i zRc`yPvsT}bQz73o6m)KT0+m5=ogVRr1>{om!w!TAyIg5tNzED6;- z)Kef7uIUqsIof$64N0v*2;Ye_!11t{y8$L>i#0SvNBlpVQDkw>v3 zT1d9i22NG+`x7{S?ra^ldptRev;j&>$y>2K+D-L2Y-^)&7O*hG783DY*&wscFegp>8YTgybKaC1=swBA&Tp z6jcRoD!+r6gu0+ydxO>HVRooDC^!We4pg2_9jDi27c0n*h*0c7pfGEbH2} z(+nSAd%ps%s?!AkSlUlR(m-;A7J*Iibk=Nrpj)z}Qb_f9$463@fM~W4PQe@7sVJ() zC?EgUWe`Re_|R=*p?e6{ECc|i;mgR!)Tq>fK|qZj22>9RJN5Z8CT=g#KyBstJ zikMD%->(}`!{Ra6^|}m`&~~uhKWMc}^v4CoZw{{8#XOd+Up+&gkPX~riQ2(YzQ5jG z832vM2tPA+%38t0cg0sJoJ`;CZ77@)4NSsa7MQt7sg(7gmOblnBgNrGW*0OVw1n~Q z64AWUbFqaP|Ndt2J8kBa;iV74!>xt?P&?G+-S6yw!0uTKN{>D6gx@1E8eV{iHY=Oy zIcrw&!Ux5z-yWeVLz@Du*>z@=9&L0~yXU!3A2zectrF{Mt3_{Pnz___xz8`?FAw&P z^&Za2W0FjS`FMTMb*tFGl7(v9CO{YQpn)YT z$Jm_(miW1X={*g=VnE)U?4ciWcO_&)IC|ITl7jM1^SGk&edDFdim!O(+ zqXT!$0qvdBDU9`=swF)zd0?|XKBtWGnU5#^PElo^RZZwQM8!6;}ahY&NY+|NOSa;WBb~9Q@ma$a+Fk3ipr*K@>5gGT2BwUq5-d&^{ zi^6_5&F2cUY{yKmu)-RVrW-fX zypU_vR9vmFHXc>b^hwNN$7W@C)u2Iw?ns(mjEkAd>5Fhx!k=ZD=wo=8UGWjxeW+$v zHkgon*zPmCKlIgy`!gt_=Rod1qDBHf)H$r(R>+-%|MwIoK*3XWC5NXtv~4?a{7sd7 zew)eSedE`KbvTEQS!o`E}if@>3t_wpZ5Yk0-YcIxC4H*u^ve z)*r%rolgKPG1Oo%Yn3K_yZN+ZvhvoTe1v}vsYAln4UY;~7$D6u#PrsJ$4T^vCM7A^ zJT_Rf0+ho!)D;`h0s0-~;^yly#utrwJG6tYa1cOb%EMqM<;vfneNbu7V@ot#79|ZD z;5^<(m=H3GO1ul2^&-nBeMO2qUAicuCA&l86(?a=T~CcF`P8Sf!Ypi1M`s*zSkMlv zXbu2LU4rFPr~kJLaO#xZc&n;Di)RBGbRb9^J@>xP+MC{GS(AGwFDLHwDeUaexwed4 z@oiO0@_eykatszT0*nBlF1HDiQT`FsT}DIg9E8VRrHjigfTG<46#Ogzy@ICGAIAdZ zCUg}Cq7NGwU5@{-outl~A4bNJG96J#yIGlD^U>Zn^=Ra0v)kjH7}1dW?ur|*tGirh zMwJ}q#U+%F!C=DAxk79tT9HAkgaAOtivVgS)z9BCA~%Q|g?nO;HkhE2cPCp~|9(Fy zgk1Q>jcy*ElH3VEEVM7^bAc3?oBH1!@uM;sdwok5KE@d+C z!hF5z*u$_NYwe($A^(Z9v(EfhfP+Gn8GMo8hzE=%Q3+QHt1?@k?{=6E{F)L<>Q z0Ct7ts88~Tm#@`M^ghlLwPJ1v6^&2&-sdkbCVRsCTA#6RZ@Qg^SXstR_RKJ@_Qd!- zX3_uNEq;5ITF>aVAr(f8Umzx2yU4l*B-Nj$DS9r_>hD^@M0Jh(<$MMNgk3izN|I80 zSeRs)l28fytJG^x928-QsnfFC5goQBsW$+Xx={U7TcOVU4!hi5QLTWAsuz8UZSqS= zI&s{le)4TyMXY3YQqB+`!FPDFpvg?kaJhlhn~wV;T3ny5Ti3)e=q$Xd2ddDRZd2|7 z7*z_er9RL|xv3)*uHQpn81$gr-x_YAK*#ds1OVDfYq(A6jQCXM4nW z>8Jcv)-~(g0d;ZuL!70{@7ai2yotLCQEpczLbyT1pjVi}WHv&_6Pj;@SeW`=xA$Sn zxh`e;<{oa-o=(K|a%_xoPk-H=dh^+p5&B7)y{kKsqQPG#5-Tm?vDMI&Yq?QoDO|N_ zl`}S58L6;^AgqINlKDgS?NT?W+uU;&Pfq>Z8BesUz(Z$nYsG%h?+k~XWbq7iPZoIk zn*P1-xsa}5zns$8FzNH1rW`BBP!Bzq@%ILT|1ihe_Dp!3b#2)e;{o&xEnNW2#C@g( zQb9)+06WQvW`SVp8~cVr@x>wbc)hFX@=Y6fP`t-h=03Gl`@UAFGH143ZB3< z7i3p=Ep%7cjNN@^m(!Wy3O>37z{(S=IX0F-Z<0|eFueLggRwcWHF!9?QG9<47u3Do zhn}I*M{`!=P1DK#XxOrOIYBZT&d8Ih$8MiKd#_Si>g4YJMYYKV;H8xOo$up%R-!HS zp@S?iS}LSa~qO2@qJuL2@BnQSEoV4QMvYt?m{VRv52nWT3;FCZfsMggK6I>;%If=kp=Vg zCeDn~N_)0DVXuUBS=EF7v}KneH(ih`mUjbHyY$Yo7z86UqHv}s2R?f4Yb<&DvQ!a<;V@1LjH~;6L ze=48f3XC>9EJ=#8e?{0-ULb8(&Ra{xW%kM2Np~#$>f>I^2XO@$pv~ZsWWFh`uE*CN zWZ3@WH?ri&|K}`UJqsjeOYGXd=ISREp?wA><|2;q*bl>;`ULr)W(4$DVubUwf#NG9 zZM+@4in@W*a|J=H!0oN$(ixA#Gw!(535Y^Nnjp{vPcnMI@?YuEp}Ki}gMV*FF}S%z&j^-9or?dBwdDXFm?>m~rv zwno9^WI;Adj8xr=$8c)or%kUC3orJCI6D)x+bXFPeHfI*jO3O()mxT8H1`y1otPmW zY){0)PC)%B7*B;r)tZOZaKq_=`6fy7OZr`tokX}E$f9h^&t(3G&T>Fx%+%Xrw zLqJ9dUiulp_&QX6#b{kWRQ{RgKB_49ekvw+IL4kW1ea|_cA)F8jPH`l>qwdKa=Lda zug|yj7xcb}1|J|Zz#>wqSu;KU8V5ZC9mxHi?}oAS6|t;q&KE~y-~d!k$eiYuip$mg zf&QKj=~#Tidt%wu+t(_0W7%8U67;&p&ToJjiX}7{xY7T!jep>YyKJy(N`A^6`qT(u z%2!H~-l3P4N%?vAJJo$Qry+YD$If%FO*=c>vWhhbc3S**p_0~*>f)>a0!=RLYvtSA zKGjM|xv+!nitYd(5f>j;tr*ayy?*LVKiHJkz*rT^?6J{v&QPSn=R+Mu!iGPrUB0j3 zt2@x6Ue0^i?Gt53B1hcI&pPc?qGFyZ$ItFrD)-t4bLG?Vzn{9LuraIH(<&?rW3LQh zUQZen(;ZK!%M%S6x{|_E*x(uB04_LGei-g+?Wzm<#K#)M?Im}wFm~rxM9x?jJ5~MG(2eTzELG=>l4=;*LQ}ZWK==jFbI?JkskP# zM%IUkJON)@%#BVnc07`dd3yEQ&F+v32mt}!4F5xXvIWB&n3#Z|i#KaAc+BBl^=>C% zuxMbg7*!dE7D2vk&1~TY`1K08_V;|O07%3AtM8I}u8Jt{sLw8UV}vT+H|1DdhdW!Y z1W%PLXjD#qhMe@!Jy|o2Fn?qLeoFm2F$(ld(eCU(=RvG<2~d*I)T|?>i|!clzRK#h z*JqQ<0FkRD7nk)UVnHLarcnt05-4z0V%4jxOBt%o_F}}dcWrx6ICh`@GR=*xDkFF4 zh{fhr{V?S%m(G$(=#uS|_IFD)lib-oMGqXSd(#7|n{y`LD7Tg_(x4h3=N_KH8z%vf|0;dpAa5*5TPA^6z;&>6yNxu9+c%&UaxrXVs7gM(4<)#jXR zFm4XAK9wvg@4!{+_PkC0#72J`PQJ27PHB~GqW8M?%sSk+*Oqa8pt1;XN|CqR=te2W z=LMaU8Vd+OL%oAIyIbyd{-w^+bA6>gH#8xVbq*-Xh(Ms0b7`V2QGGCM-6s|HGFXM+ z4%HPfevl{J3dM6aX|3<_)J}?{ZYam?tO-CdcH1tWE%E3H-^FdYd^RiwgmcB{V*LAV zMBSRbz^P?tb{{+|%>gs}qAVcIWg7Ha>fj3Fq?VzTrR_=~>o7UILlE~G7~TD$v2#5E zJtP#9;O5=y0dCR*NSDOT61SZc32GFpoN?iR9Xqu`@ouT)dQcBby!>_OI(V){n#+eX z88Jrk?ea_X1my@F3xTa0*FB6PzZX@d%O%Ex>(D^A^?y_?& z(!51J;VRC_XD}Ee zwcwGZjR$_*TA-9$`VBugCf15lZ(!NG+_SPUM-(pCGiTVyWXB^jxl%L&?@e%1=qhXD zEcA-#@-1}RscjQ^aO{|0Yta|qhPq!Kh5M-L73UEYGR438pN?3l1?Zkd+Ec6K%gX(N z20E3$^@aIcn>xu%xv0b}Oe*b3!gqoyes#$rQ0~FbRY3HgDO6U;~`Bp;8X&IFBu!SOHX()2s!yF z8$QZ92vd>Nr9YG=yXTA>B5u3{5h9Xxz}QLsGK=tQ_NzGY@q?> z5?tn};V!|&mgQ7>%N^cVQ`3lap$f$u)2FM&{(#BhvQMX+U&|q~SdeFc+ib*GSHVa( zKxyFzUxi-?HT@u&q=C!=F1I@tv3}T%Y!05j3zTH1|z{ zO^%UiVBi7ZB^fw7G_XM6_ynHdg*+A{(|rAsgrMg+zHq{lKDPJTE%dKqw;e?ay_#~; z??>g{3-wUxw40;0vs2H-hd8A_TeX}o^+*}3c}L?$vuu}wPDiUd6lMfClUmEvA+W0s*gMwfQZIS&yufF(vkA5TbbI_tu&Pr+n5a)Ug+MiB$|k)18?9SiZr+j)Km z&|04XmO1YC0xf55p*M^PFEJ?|E*d`&>Ff%UIpgX5w%?z)*D5vW{QKvIm*O{o?(GbA zO~7FCM=*vScNi?yJgf33bm_*$cC34?n9;u&tMMCCqKi=WSBPhE@ZqWSa_MO!Lx(Hc z=*?Ktr*z?0yQCuCXrseFV(by_Z{Z z?RP0}Y_kTO+S>%{0UD8I`Dac#*fPQE=jgadYnuC@Frh|eSCKBYugcohO1A5D*gbPD zc`yhd^BxophKjF&K5@g#$TQ-P*?P40O|o-`I8nfurp2h3)NAn9Au2}>gIp_tZYtggI#E2nrdnmbGY%|L|u?=2pc&6Zh!!E4- zbkO@+r~-Q=%GFeuy{0Q&Dk~30?iaIE^J4eRW~=B>2UAUpsD0|GquDP4P`grac4%5_ zde@+$Qo=TAFfJENYXyok=3LUcGuv*SL%Ph?qAX@<+{AFX#GNHcP-+T&uIYI`9q7@b zARX0D^2gcf$CKAKAp8=m^J#nf`UYUU^b!w)bhl()L9*3H165JLr!z7tKP@8J*IM~$ zvVEeagBM!IW&~Tu%E~YdH@`!mu1V_WGj~9X*IfF3Fc5xK23mQdRa-h>H!};GVq<%i zBgs3coH1U8F`)<@1e89`5sF;pb|J|$@C{Ixzk5(`JLPes?{^P%eS%Z#HauCjH-QW) zmI0Rkn%Y}-I499o?wHx@ZVkiK{d0QeJV0O|AZx2I5DEDa+&ki{R9jyn3g&3GVL4UR zr#4)6sH-^wCqrMDx%96#=BBwOtQ0>R!9Cl3Maqee1VP$0V+%%RdNQ+*uDAv=7;eUX z#^_`|poti{C$sewx_JrKm92Ud5{G2Y%z*8`XQ(OX`FMH)P>aB@$MQRvTh&?_`z3J= zy<+&mu#NVfQeb)jnwCzil1Sl{aGS5=>?S*26XmjBvi zg-QXXybQ2{b-UBO)=FT%iGH^>l-R-9U#OV#dyfHuHH4V_?c&3e#XWquIS!mv9Gqo) zTk5?*RqPq&mNE_~ry%Q8D?uwJ*S0zm3-~a9l_X&-9(ePcE_UcW02R53Sc84kA^FQO z{asYl-8@ARZIBnLM zin8b`fPi-w>bL^TsIt6U$_Ro{_BCz-J*^GAdKR_u4@5HCgKGalNW1?$U{~!5cz_lfr;M zlUEm^JFCjOgH^0_1^Cc_ZZN!r4Z8!uwiem+CPrtLuIZfgolsRL}6wN~vyJMx<}YVs`UQReU%05`W1E=%5y#!<~L2XyWb_n6pbqni;pXKPPL<&JF!9ST5|> zYKWSbM^R&Cq#7$W6|Nqhvp#|Hk_(*;hZ<|}@GQJyl924!Pqxl3#X@3rlz3c(Id>fX zuH;sSVpz0M>zey~9jSMngtPj?FS;6l=!0%U>g?Vm42h$Y^#j71lCmL^3-^J`oaqCF z!V28?mO+4fGA{-1=@lUIrQe^sD-hZ@0n|dWlV`#6GIFKHO8g=LXLDgBFni%>GAgce zofO9S?6!kr#&y5BaLlqAQg-a%zD$%GaNXnJzZ1a>bIw88=TXw#zkh7D@|wiff0YTMr{>s%Dh?3nr<-{9&3)*mx&I;>3G^v9VU|`vCA* zAKH_+ng)_{iwcsdN%C(HZeZGgZdBRI=Nur0U?}O*Hvz)3y|?nFLQ{xlWVWDudwh!- zQ8Hw26y<+tW~g$Ndkqjp3P9++%uj5H4P`^apfY91{1E{WX+UyT=Du(?il-lKy*cC8 zJd-ssx{d{!F&Ov6`V=dCFkFq!83XEW>cY_C>v-RXF55)?2Hlz4>{%(N?&t>#zbOD) zjdb}7G0(X~PH!g}Z#X_D2jxoeW}4jvTdV|+o^87D8FRhxO_Z2X6dau^rRr>Ra!V2+)$mxJ{PX$lL;0>19E>2bWl}?oKi9 zZOaI;=iLjHPY3Nxo}_Yk^UQ-@awOS94{%AL0cYoahHGQ*0)k@PV*0csAZ)$c9~#Bf z1h0+JlYYwjI=d-tJC;NmH9DNQQA8YciWwi@tNGFgn%++m+b*TzCeDNkA|d$6Plhuu!@p&FebKa z@LpCLkzT80O1^A6X(C zM_5RDQ@}i%W6$WlF0(9_3wc%N| zz{?TQ8;)uzFTIF#Fpa_Rj~e&Hm-ikX4u7b?n$rFv?#Ke*c91A$897RC8_)xLzj}9! zwg8fc`&ON^<`QZsSCE|%w$PPyO;}EPR$VZj8Hf{LwgH=1mR8byP=e%(COt&D`y;e) zj~jk5;`1z6ZjiixWR3eqoE}BD!j~zCN#>1soVBf(MMapD=z*nWeZctMx)OeqbFYO< zWn*6PAkKpWgj<5GBj#3nsf#v zCMim^F^4^-<3<=Y_vQ6<+V_{;Sqss_D&`p)^tO!0};e|6w0!XzPD^ELT-#;=|$H>FM05?}9W5V#0kfhs&iP z@xD@i2i7>--iTOaJeu8#r^#gM#Im zk5HNfXZ!TdC@GI+)Wu3Rsmu+79bb(kx1}Aacv25050vy)w}uiNJ19^|@#SkNz%!CP zM4Ya7x!cYd^CQ?<$ee&l_DwQA!73U!FpYik#9BG9!h0+Qj5}k%{%L8-?9TEb0Nb~= z$VUXp^kNY6l1$+>!vm2TZsXQD?naU9hkK2;+D&4`7R61p|47ux=8;o_7WE z2WU1vu7S~$FIXP{LJpit2V2T9&H+H0$dawWHocXWaSa@{ds2kFC@8-fh}mHC$_Gnt zMR8y`dxaSY?gMH+qgf%3a(H!=OQ*AEXWHut|Cv~ViS;5fqIf?F*Z2f$Z61^ z%kKYZW~{G`4rXaCx(qe#kSPSjiz?J>Rd^0fK0 zhOM$7H+7jaEo=4^kJnxm#-R2(WowEe+&e18+(M>&bgjI?5-Lqk-G0 zSyt1`?zx|vHaOY3(D*)}Y>nB5(v3EJ5J=eJiC`QClv5;qM}MH_;ft;PB=T;As)POf z9rl>pDi1G0#HA`Q{?bYHxesvau{(jh%{K+*(*%Z|o}=_MacXATfoH$`UVnPZEobnfGg+*i)Mee0L}^6eqs{VLU$-d^CiAU4DEs5Hnp z&$#1~?pm2dvhi-?iHEs0ZfuVbw~kc9Eslj76?eWVMmypt0$s@X1w@m2XW#1bPjit7 z|D`nSb5)FaO<^avGsGen?7cyQ~Oi`4p=+thxRVY+qm7N>1v(3vi1HN z#r9?Q=fI-nZC8X%Ikfk>C4kcpYuyh49>YWo?RuA@fHT-Y#FbKLFTfqvGIq{ zFxo$?aKsP#w^A(q>L zI>;)Rn}v@TDX*gsKjPaj++qnN_@k8ZK^fljUu8W`jfni))h{&lCn`U2^Fs*-)JTSMm zvttp5(EYdmaejI}z1{fTyZhQbv}4j%3(A;J|1PN`Dol0mVQeggyj>3&7TdgcaKHWT zLNubpiW5_4K_n>8yWe6pHPANVnofNq|0jr&vBk^bhl0p*SN_&d=k@Kl)ne$RZ!R6o z^{6r5J7@R<}&|tEsQqvyKEOthtp1=?Ld7hKUpIrDB zhC77z5*88D)*eE28%{^`Iw*TAvLqar934t~lv;BqxU0(j{&w7z!Iaxr`L+K1H(no_ za@Nk8Q(~t+W+2#YGO|Wrl*3)XkEWxo8sYo*VhH_RFQDkDKtqs->ILE9t>odH9bsA6t6`7;9Y9{3D+a29J?ykAK`} z$Q&rsEBcqxhP;@FNN?oK;BDULI2LoYPW25E7utVe+EynfItQ`gem}osN=skEUxA-A z9WE#Ik6J-r9fx0z2l1e`(`74u$_H>hP3U}I$GYXq`n)dy-!(2S@Lb5WcVK^ zRej%9(0*L3*2HvZHd)E&PE7&coNPTMmMDFHrS!{&=>4sRub~_WKe1t-NXVg)GS@~$ zwSVURzL|+omi@9JAe!m#S^X8^cov>jf9)>oum+OS7*P6->)?t9nY($n_kx(#!TeEN z>erp~tsh|0kF;g}2GMSQ?7wK=9`AeQ;+4v8e&j{ACdrrTE-U3dR~a;L|-FUh{HmX8)|p zw*7v&gKH6w%Vys1llyCl>=4#j@cvSJN^SSe#!Ug6^y0CBtvd7Mz)0&+{*zierC9N` z>l+5%S}{*+U!6FkMLw!Lq{J%(E7tDGPbhgK@2duzdslc9#@ZWLH$N2UZfoW&#AupE zQyYKpZgfa|cizz7{f_=6ngZYariY6N)2uqiFKQ&+6vJG8U_Er*c8uk(@B+1vMbg9T z-(LN^N-wIlu538e)EX!s+I50VD5Qx1+E$QB#AFYweeAM!9y@!2K$m>je;q!T7io{09HW zuD=h9HUk% zg$>=BK7>Y&?8e4DV1;KyWgoagMkcd;yLc36WSvCixd@>|N@f1hr!`kX>#Gtw6m;N6 zKWjf6?`5Cmc>)hDa_LNcBZK6R?w)9S+;>Dr^>u{wl3Av+=yboCxdOTbtI-Wx@|7Kl zsMTt#;cwpOSsZfonD$EXE?54IP{d#VeB^y-5-H>zGOp$AyuU0_zjW%j4!K70GeE$z zd?6AJ#xG1oT3h}pON5}UY3M=5OLM}xvN7=Qx}o!F=oo)u6uOrPS*tJJh^jxzah5yq zF5YUcp|5iA)A{J3-)}Gfc1ON~4Z;)w}sypfj}X%P$V=?xDxe1hWNi+gtlYNv)}v`>bnrPKJFAVMqM9ieg0B zqYgd!g8p2i(F2N9*1TwFn2f&ze%~3tvQeIcCW|To7DuT^>Ucc|thv^XFEY5+V+W^S z?)y<(KKwe%X0(-Z6y|jv6!GM7P{ix|h(gE`qi$mj(GxXAf1j7SCzFJ~fQ+lK2~^+@ zD`H8si64os^y!Tepy9f|W&+&8A|627 zUk^_*HUmSSO=JVO2yk<>cDu=9VTb=m<;{WVk~@0aze}EF*UGwaJK~f|Yh#p|8uf}i z&!QE?gpDqouvFvBjdtnE3FYv^H(k7ti{Saf3a9-78K&)hOSL#;a7?H10q2IkxsC?` z#I(P7kGv)3$#VB59o2U6TgwuBQpNCth4^(T`7h%q`==zugtK3$Z(XN@qL+NeA$t5G z1FvbezbqC}(gyy?e&k)KuwQT?tk3Am0|OfNYkaESd7u5j`NQ95x`;VK);ieC+ieQx zDkSfVHGdd1y1Z*$R>$&5WB-0N!O45h_Nm_!JBj9BY80|lSbsH$*#ei6cCgay)ffEd9>Pi`4IDy>@u6N?gB8sTnrLKjIHly*P3RO$qV=|Ln&m za=}w`^c3}MJjjItH5h9>?l60i#1&nDJ<>A?H*^Azg^L)5r?#7>`;a4Y7u~<;!8L{( zH9m}-5rGe1lC}{IdC_(6+xc%Qb!sV-$WI-exp^RyJ7!U`nuGCrRqb&V=P*zlrEkCD;rEKriuO7=>%Mt`tGegS)?uin8s( z#^DizTU1aGP*SA?1Vp+Kq?@5rMWnkM13^-{yBj2i20=hd8l{g&Z^weeQi6$KJCy7T?Qxvham-b;%Lx=JK!>_s1gaU%Bbx=m3-qGkk&5 znxA-2FQt0T3Io&AgLy0{f{*K_8f_zq?vUu375#jQmrMSZiW68AhV}^7Zr@J!$bMGL z&+Ig>>IweTPWH9lSKqLh0`n!d>ZCh1kzz`yUW^@nJ?QsHliP?KH%Hr}7#$CKJs%C|tXbvGy}h}sAq>8m z>CGY`Evo16LI=))%xK`EQeS%Ju88+S_p9^)tehj^_i@H*u9KhH*9Gyl21#0bNijXU zU=MyDB&gTP@C3cdm5`1yudk>boF2GwfW4CTqvwGeibuw#Zp6%vvy5W3h}FQS)F%8c zE>*x$A~+kkK4SwN2JNHw%ol6)eHZ2tzJCGc6;G9n#*S%e(!Sa zzN4IC=$}g%(a{fZaIB6gGiOu%uWa6lRZ5E0c5cV6CnTE*YkF0nceXfi$A-)B+_@;(=!6{cqMeJ%d=gGC@997@3N~RF7;dU7m zHyy&gAulckgVY}P&WblWs3z7t7)`_2doHUv?dq?PV zI-hc2dkY6Q>jf;1{FeS^be_}adbzTS1eaZGy9WiJ|(7Sfko8wXj>d>(mMo+X&m^n9?;Ql zWDTs4P&kowKSgA{sP;>b#VisdyEo&ozvR*gl!UR^rhx^voSy2MOk0$a;))Mch2}2FR6WH_4v5E z?ACJ0ZIM2`m|Q|3AV2V?{cx$D?G9G9kt*$p&z4K+E`RpZ?v)>iU-A+d@c_8Jk4~b@ zK74;sHr}l4TWTrbq~vsI?>!2m*0gb01%HXERV;n1Gq&?e6{$u=>`89lS+xGy)$5*S zl{s92EI~5j|G{IYKNAK_Wt>k8V81s@G>saTOU+SzdyD10S4oNJ>wn~bw(%%!Cfueo zJCTkV6gzhFx=X^SeICYYU2qqO)SFF0D~9ygNU6n%x8oQ4_{&pg=}obD0XIC?q8KDo z8?)eWMb!tTYc7pOpsYU=tkVQoiT>pUK|uvI7!$L__J?JEFl>BceS?BJ=SSENu5iQKKJjyS0(Yo;xWG8kbm}miFMEV&Zq9uD?K<2#1tKP?)u1T84onsvzWNtw_#qP}U_M-s#hq6Hg_S zRFFxV>*_Nhl%mg&a*9?F!)&0g!B=^xl+?uk$aH`R^{=TiU*nc%BFWBpUDYtJqEc7( zd3oIUQw1|m`mbt?3Gq|X;^$JX4dpq+zBE1r>xe&a@re3j4mPpj+HzS;mhFK$iLlAK zdERCb%V%BK8mvA&?=?>zgWZl{llLzT*O$rR@?AvjHs4%s*6I6nK*^Oh=^)PG!ANCW z&dq&T-Om_ou1jx6V(Q9udaSToK?k5Td(B}%GI-GDC z0^#Dlr}YuPNFb!TztYtREI2vfCVecMP;X;mLG}HkCMkiWgt2KI)2rh(`3TYa^ZdTA z3^hd64>XV0r~0I7(+U&9e67>V-2!rUz6D7=JUvf}c)<}|p!p!cSRWm&Q^+1rQL!AoX0!|K+OIWZ;o{CT25OU==o5 z=`~lWU1ous?_j=`Pu(oBn`@BY>rmY%Yj!&tGaWxjygTlpn{`l_oxE|+(7i?1Q`~Hk z10*rd3Z}O(_nGx_pj}^*hvX}(zT{hIghl8qzN!$pxeX*^K}6`SO4(KG1mRnk*^YUov@IUf%k5dgDMkrU$?AE5{|fna?dE%(!%%)qSUw zk~HH4y9*poZ6tiLZm7Hv|6+YZTar&DDeI|h@#T3X2a;Aa#F*`eZMs`E4%)}1F14@f z%UoVq*4(x>^^`LAe<@5qRI)t!fPKC9*tFft`81S4WAlu^OB*GYXu*}|?QP#n6(2h! z`{*H)@aS1t>Aap%$Ls7QB|D4QodC+WnH`ig^(;k#N;SKg-f8Y0!R}72;u)FejAxr3 zEesizXeOE2kv_C2`E6dV9kFRKGPy!mXZ=klrO_7;?_B=fy4jfoxcjTo$~tjr*D%6I ztjCwX5WR?yOBzeZ;2Vw=EIho|CY`jXF%FbN4qthPxI=hP%()&!Jb;Z{wt5o5nXWAd*~ZS=bcoF<3Olh!YYz{=KMTnJSHOUw$15|s6sMU&hM1H7KMd- zODZT!ru9B#8?)j^8M>aX;+d{96%|+8sB`h|z49(h`A^kVShk-cFTJz?@2o~$*pq(i zgk|?^oi%?lBBhK6SsTO_h~5A3MhJSBy{_~w{7Q_UN-pNFJ`t)tY_{*xM2UH%Ev{ti zkL~{PU8~wGZCM#hE_SA3SBxYm#S5Ehj4V zM`f`Omw12PR&ovV9_nGYI8WUd_FASjEhC0a@cP zO0QF&QIB~9sTvhzW zEOM8mzm&{;Vvt!w;Jh3uU^bDx8`k7I6`X#JCx{NYJh~>Wdc&Y9g?A*pUMF>5w0bqo zFD=boQ7adDP=Y9<;_SSqlhm&-YBv#_58TWDC)SBa$XD!pgh6TNjAqA)8#WZgQpH^X z1e?rVX-jVbY~Jma_ceVZ-Sj%G=P@noXvI~l3QV>(kzqA#uoD}<)?!F$p)ja!G zrnPYd5n%8+B8w+FI@;II4=F18>9wAo-0`0KiBnmi>yd>MFIgq8Xvp{)`+~MPO3OUR zcbp8rlDD17I=kxP>GZ?rl0Mgwp;1rEjP7O|Rwp#%B55`)Dn>mf5}vIpTTbc8@--tJ zqK_0gP@3Bnl&B8F{5i&F3))vjrKnYtnRUaM@E3^sQ^xVkn{0df#a(!1%El&?>YYXn zLwOYHdB*4-r@TvPe1G>2Zd%co2VR&w_(Xq{K&$;G>;3)%33#b_TX9)$VfcsbJ@-X& zfi$Ez?PIF+w6chun*Q*m6-lL6RWXa^NWXD2$sc3sqDLqAiS@b)1*tT<&LV-g@wtSQ zmu@11S)}2MN|J}xT<>dP%kjOkV4D3h!}jir&{xY<^I9zmX*koVj3Ju-2PY z)2%z8KkcAXn3xS2c)N7jc(S~IYyCae;Qk^7o$A<$bNA35cj=!I4WB%7{dxT5m!b(V ztzITC7c*46FFQI>cAeM<%>|Ege2&mARKK-D19J@(o~lQeM3*natL*_skhlZe$5>y?51I{pfS+rQ(k@yhYn8eXBC+N7 z*a01U?wl-g9qi;PhDFHF1c4)Nk6Co1E4{d@WrXdF6wc3n#mD3ijv?>fAxay%Me)R^ zr|7~k0Z5mv`-x+jg`&Gpe&PY?An;$~d-yB)qL}h2PV4q%Z6j&q#J74+%+58|w?vOT z3|Ar)=&Y}-wu-8%-A?xKt>09!TN*;C==kZ~Niuf5eAQCRI@BR&su#zk+*$^!fH&ls zp9Q|{lBnlD*c^1Pn_dTCsauqpQqX2ZkN3*h^$ZHe28t}BYD7oFr-vp>NzQ^3Qg{Cd z;X96pNc9!FrjwK$dtZ|ET4+Z3)kwV#&mRh;FrE=tMYbxiDOcf=EF1s+p%NFE{cbjj zh&zy0(#cn`K!{XSU#uuo{#$~OS9R{v`fr-@OqnmnwC}Jl!ozFC7Sr8d+TCNrdqS(( zhogdt5oRe~^^I3n4)rV~rfv7dQohAO?u->PrbR<>_KEqy$Hl!FyzffV<>XDQUSw49qlr+ZSrA6iZt?=yXMiMNQV7H6R(VlMaYvN^Lf|&AbKvV;zgsRPtmp9EO zS9CJ_v;N$&=Ds^)`?#V4my_~G_9mPLZ%(6T9eQKS#v-lHrKz1rQvD&8j$$df_-0h! zPBVwWm)_&v`=*^d@BO!Y-wOp0^gd4(HCg%XGh<}c$IF^CYDFI(qCqgl$gmUDI;&uw zEG1@x6`p`h8pnv-#+qoSw*@sIT_{phgfR$fqNVi58Z$SABd@g!C8~9nq2?eg;h@ev zdM#dD4AJn2wi)HiIpKw6r%(SYKJ%qR-TR5FSoVwbKjN7(GsT~;Khj&F4QrZ>=toj! zwo-Y+zj12dq!Ih`Rls~3>mb>)s63d<#{pxtFU9ox6vdH8&#?@@Wvmt`XLh) zh4zP#B;g(=z2&)s4-tDHslP*r(LOWl%dr|PM%LR*sGIlw`wR4D!6Ru1v`_RWzd6yZj#mbABM;6$ zUdJ0KHA2?z{N$mD7j&qepnLpS-qG=}?bCAP*OC%^e0+U7bWc-+r?WpWY4juRBV_G^oNoHndqGxY>*v&@g zO7gd6Tj{yEHF)g*^gxT(0YXfu#LW%z8Deys$Jx+_qVwL1g*w-(xVS z6$uV&*#rEt~W{&ZL~3BR2TeUVi|sbv(QuWNW%SQ@il%TgOnqLPM23=y00oc6(N zkbuhDw;2wajFD2RT2@~C7pFD>L~N4Kb~h3ZW2x(rHMB`rSQ|q{Qp&_}Du9jk25?Mf zwT04{3>RoaWA(`0oo)dWxEHMJ*SE}P52ieZeeO`OzG}PzJ$+>_4m>V0VI6V}x)acw z#aOc`B$L3a&Q!Dcp3L$0CA;-;^^ltWN}EOF@d_&LpQ82tMD+??V5pOGr)i;sTx zlTueEI=a53=O1jpT_s$~&P-5z^Ck@o3yamT=fV8q;_6SH4W*K|U8Nou?hHCLYGOfT z%34}lYjw$g7cp#R698)NhreGmtao0qRe$yBmGj=9Dx3K@=f>CZaV?P-FB~@r2?$pH zlys{I3B5-z!-lnY)5FaE>|4a_Oa3fBHyNkO&0@LjR?%y$^c*-fL|&-PT; z#w(Ga!CKTEWtdkjQ}aRN?wDu#zH(ZSeu3}ndYqLV@2zG+gYnhl)xrb*bLb6iwE6oR ze+SrFnL#%hn5F8$aFz@yg+{pAHeGBQmDcHub%(DvOvrfb zrSmmWLu|uZslz%hUDc=1nqiSEbQ|uENt*tyitOmgC>On+ATRaJ-yyd4J5}pwdDm$^#nBx3{%r+sFRh+yQD0=p_jc zOA_e&ueG-_*x_Z8=QYR1R9b!%{@*>CTcUXan*@m@RhnJzG)E|Zdy zl+3Z@(Q6GHOp^#Lg-t0l8&iRnu%%1_`34F9p4VT3cF<$8oT+RdQAGT_dQdsElB%oEM@E zSUt{N_g07HguSr`;W!&k{f*yQ=n@?C4RBtU%|xD^91Mf`7sBbIhs8zzsu!V7mU_wC zY^R+CIB&hN7IoRs^uBt0M@ls}lHGXVu}t(c5on%0d>Mx~34SSCwNM9MvEQnB(Y`wT z%a`BCE*%YU2(IgxSFb8p=*WnA+Eh=3_*?bFvYDu?Z+-oIUR3myD}Fw9mJiy(6A8H2 z@Sko9Gia7ehtkLmfx9TMTOA6Q`gfV-WB(ImEkk^LeJStjc`|8~ice2ZAHzAiOF*!o zz1YPu#al3JI*=9o>E`_uI07cSOT8K;Zvzrs*0~bxMo|`p(0^RT%gYPyCwuenH}L6I zvMi?R!l_q-R7Jvf7s@GVA3l73855f~+st-tR9U;)e((bhe-<1#QMZ%*LHfd)lvXmA zKWRFDyQ6#NJiYdBu%}5bDw6MrU_crgW^p^L=OraQ0JKr5#kj#;?XWR~Zmd6E=mwi> z2qQ15z(CP92EO=+m*4f!GCeJADLqn$?m(;Lwd>rEVCzb)<5q!l1@rinlt-j|&bt+} zaMvMe*4?Dww}9~Ob$gs6;ZEig9N^cDb$M7=`dyyC&jwFv%^lCbw)uB!vu-H;i%cv@ z(1Byh{X`~&+5He2+~>nauR_yuRa4VE^lBL-IEjA1#2MNf)-9Zyds7SJK2~~?KY+^_ zo*fC;a?t>ybZ}LM8+8 zha#e)8l?XM_)7uI|9XI;?3x;0fL?M<-Z(T)e}C9OD|o}<-@m5j;!;QNYophV@R*pK z>h-FQl`nsPltuWTb$!W#MtkaQNql4PuD_{pwC;MwiaE5u<6iNRj1=%it|9~q{#M2j@jn|Tv_NScv@RXf> zXvPo*GI)1(N|%{WjGl0Pu4+P4ig~nnVTq;`@Nx)csO!AKS;D7oYWhU??j^+I59|qc zKu(}tc5AWt#H`vCX!Q!OrR4t(8gT!g$8E@j{O>^tFZ{o+1abBL%O0{8wHPBI2IOO3 z-qR8n_j&*ReI7R4zH`uj8HJ~F8wi3u$->;uyIF(Dh>$cuv}iB=cctJWYeg_f5x1WX z6-Jhug%(tb&bUDH^(+%zcUpY|sYu98QX)L@^r^e?aB=V6zc0~;8?oic3t>&c+WIRc z+SLHsz>&AFC%LcAO;II+ z_0{{qJJ8}*P(=x%o>y2T4Hb>lEn=t^Mf`RI2WYX)%g;Z#Vu=9cBMy0lP%x6)MQh`& z{=wy@!9V#mS9-p!7+Ol^=`aM4Gih6YE;WrF>_rHc#i_tD37Q=q8BjPeN+2^OPYyJR zp;hlcrfqF~#d@NTCU~!1LL3s>bng84A?`OsLTr-9(E_$VsyGn{nxOKvqR`{b6E*qYJR*DzvDgjW zXv%TrBbAi@@`Qs_a&q5HbKjVSCNXsA`bR4rZ^;`+lMp>lq@LMt^>W1zGX1TL%bP6d zkm}AvC33v4sdt{>l2(5)5tYarjW-G;##|nK9WUVcDg%HF3lFzzFRwHnq=PU49$qPg z)!-)yn_*8<`=WFrzc!p80sQHsdu+yG3GTF2*2+f9%{1d{_S>9cZV(%IFrqan zrOw%4UtfPG>+HRM&^f+OU=j@*(X)v-_g_m33#D;Pg}wif?sX%*o4QZ0T;c<=HCkbny3iS&DkpHJghwr%we93`u#N^xZ0@Ir)jB zIUsR*=gu9w{ZX3LPL^&ZIMit5m@B-cna<izcic01n&1Xoo+oA_j81^sdY+F%9SPN#Jz>qv;E z`1kK;+pmo-Cwr4AzRG@+FhbzIK3*v)Ev*Cu6M~;|LHt>`s!le{xKO&slcQRNh<-ii z{1M2TJ2hHIL2%w*9g+aD;AqTlNul>B{3EvGz8u zy|DoQFp@xSmm`1wo6RjPbQQi#Eij@(rBJ7K<;@8inU0p3>^0tC$^vtRPa}aC8t;yy z7pFf{ZWu;W<=tSc5QI=W2!o`O;KH4TqXj(b(BX9zfQ%xbU^JatjnFh#P*MtO2_UAC z@csO`H;&5&t-6@~Dte9@xAuGe`ZcTBDC@@RpI^no{wecImH!6zV4k#fm8Pr|58fZ`Q6+u;brrpeor{pTOjk{(R89`Cc^u4ZTV z#jy2>5XK)Lf&+Pp)}$`c(TMp5^6!oD*-QKS=7dJdN=WnyoNwVw7?&I6eox?Yp_55M z84tEEy2JdOGNb+sA~O&8%=uu#p$wSmEfP-o5Z92YK_?jUgl3!;H;w@ZN<(1W%og%E zoc7+^?U!3!$t{eaL_==?d1%&Gdwmy>Ur)9B>(?pphh)H<8))9G+gG!}Vc)p7$uVyE z0ZjlCuQ&sTQIeNW0_2@-HdfAd&h_$tHwibeX(API4+&YdJ~&$R1z!Mr9d8PwZ92*R zE`elQ8`VL7U)rf_Th61>aV^?MjWK4I5q}t1SdhY>ZuY{Uo#f^IOw~$rbMpdFDCk{H zfw4@ceWmpJ_;G;q6VL_=KLX-0=me?z~;z;n^`z&wTKF z-HXLZGb(m~-_W#j?*~N?_~PfFF80IRnqAo3lRRB}ax|u&Fi+G6UmB7IcywT;TS2#{ zu{MG3>@6X_M61;uY=qi3BRe>dN^`Lm5T4WSP^5u%>9m?oO;)4sk~5{xr5PF=%O=`g zyA{&dlpfEM9zeXx3E%_jLU;|OV>u#Y*x45Hjc4mjqv!02`(xuP(3=`%oDH-WI839Y^S?G!la?zBDVeNgs)1(m6G2hpssM}C&zeWct z6cbEBs?gO8LDLf;LPG{4Fn_IP2jYM-7+hurNxA`|Bp3eV#bE~}*wLCT#OY0ZutiOc3iAw z-5B;R6x7+&)eehzvrRW)vRX9p;#Xh|pzL&I)>xFAxNjkql)hZU4kKV<&*`bQFI!jy z-tw-Ab~EuO-&lMPXQm)EbmhNdd}9W?OHjwN{P@1Yd6jUn1nQ&0%6 z4i_G%697Z0sNh5|3jms4nDQ4E9i0seB_aBCEU%r>1h%v4Xd!mqy0Se#G%oHB%R)tE zK46hs_nr!(c?^tg8mMz~L2D{#c;!$F3M5)s;+U`vMH@M=Q5l#0KWL}~0*Lxrw-XEn zGdexoLJN{WNOIAXvp++Ie>O`124$gx>&(mytK;TNv~UFDvgDnet1@Kcb6|jz3_9F_ zVcEj)D8sf8D(8!{gWL&w5%9qIQcShG9}{j&jnm>U?TL?EaaIbmD@F+3LL-u2eGXIi z`-k$=-A>Y$`_s8>(rkV*%kHm_(?(CV>PnM8!B1qhFAX6vy+oN9+!PnzRiZqRWQOZ z47deonM?05$+CL8oz}{RjlrXUTp9zxlNC7fg!{=Fn(WuCj=S!3`TG0+Rr(+mKxVxO0NH)A9pJLk= zCj>Ec@(gk6--NXHBtl%G0*498QTvY{^1zG-rx9$5YLA4{hN2vgbmziSEyEmqJSIatDg_23H9Qh$fu07-!v` ztC+9ID%V};a35&toeNw9w*=-pnUeBI_V%)Ak_!$Vy7JoPj1I${p`&z2NQm*kObx#y zOzPYNwf%@PQ{gp`T(otS{c&uO<&u4O?ow%Q)^^p^<1BZ#+XLQ}Asbw*mtJWT;3WHV z1OrW^?p-EDyyS^xzu&e~!8!Y4?MHB*MZE-5{S&^Eyxk!WmN3ii#5Bwl+oM#bm4mji zGRrxk_^D&pG9RPl`yMgLZpi)Rws&%pAv#BEckEUY=p>GpDCj+&ArQZrtZf25I!6Dj z2yvwc6^LcQBo)JLtUTl>Uo%(NW2!D>u2QLlZnv-Su7jn89SUOqdD4{B7_zs({ON|H&0n zau^D7c@;D({n^IYMSm}QZi#6i+sTCCUY+0?Q91nqkwUUU6>6h4X4EBz(#WBIk?Q^| znv*FR3_VG0KTU9H7kEqE^B>1-Lh(+AyYg(zVz5w`{gsaD_1$g(j*MK@VN#Icz9Y(8>3 zXe1ru>%jai9E#OQgzlh~${_o|opS-Jky@(~F z%cdQ|>hi-hKHBnaSs^~|-IR;K!@?QOOvwOLR#8uKx|9jmOF-`Ofn?!z=c7?_62T#% zZsY>^*LP!-k~V%#yIj1$T_TekTy^24y1x4!!{}gr1@%w@kA~=E;rF+gd|g5a=26yx zkXAfN3U%OXCdT=fQ~hc$)@!-96k>tFM@1tt%v7aA=ER!ZdL>|$zo4aXgu9?@L7PvG zdtzzod|0fH3(Wz;HOf0tea^EjAxEdKv}}V>g%Bf)&mV zf1m6F1g1JL3HjCC6%IKnZ1RW*rb73#Dj}c;h?C_1%RJ^Y6a7Q0^EK|z`o<(^pX3G3 zktjq`YwynJGm#yvVy{0{3*E4mx+Z!5`B7?$&fF^ zzhAH2*HfL$&U)n$PI)#<-uLMi4L%+Cb3w+)-8PyQ*QvUeQroM}%lm8C-gikEL`3d) z$Yx+o-RnAY5>ANoQP7?H{ z{aflMJgb?;-s;fDkvi>Xqw8=)T^_!WpY|qaCU9p*!k=Dh zF`eRfv~2q|L(CCD`7T#7X;}2Cb8DdJd(E6G3|KIW$?>fBa+2HHI>Dh5NkK&V(z#Me z1_qHN-4de2&Nhk4^ST$$LY4|^6z%ZcWWr^WY{1$r>AIp>#BLF>7IEJkOZmSHzh$~f zbXCDycx9wtZQn!SA`xwHuRpv9;I76;({Ow#5Kf7D8_Y*`dwoi<9@ z@s`AbBK#@byVzP-*#@(E3Oi%iTDW@I&C-6x2j~w5d`O6aYt`#C&>#F+v7D~^;R?5> zAS)zw0OP_xAO??VX(a&9Aa!(f;>{0!73-n%003HCBZ44r2k9nIw)fQ&qN1{3He;5o zUJgA?%s=(}qb6ltHP5i;<$bjNUt6o98?NPaq+CsVeBjE0+F;Y3dA4^ z{i_L;E0n|7UgF82x=uG^qCq8&{fgqD^8QB|Ugj%SsjRyM&51{$fP<-J!xCKk#K)^A z`u5k#%DEtB(sb^x)w)Op5EJicSKULhymQ}7V$Scn;;ax{s^`tD>wI&Ul!s2B*t9^m zA8R*`#AstO#4PIiL0DKw@j%D3F;wj5%^0PYNZBNZ)wi9h;et$$zv#I3Ms4&qMJ1SG zxOJ1IhSct|BOcs_bV4>riD>;42D#FqDKDhz4%7`mvnJxQP6O3B36uyUNPY7w&xnYK zpb;+mn}>&v6Ce!`ahS)UC%{Ug#_Byh5?>s_^xd$?$V^B#O#EFvNYiBSgOV6hcX95b zZQVu%iP&O*$dKYA1We|>U9hp`$m(`%3;bIY@}|bUDPGia34h#Nhw{|9*Gl{Ef^w1} z6Knk4=gwp+ly#uxb70%FkkSXurXLh)x7SvjBl4)`|Cc(Gp4UgNvM0W*N6eqPdIvIt|Jn9eDoKeh1#{NbtUIgG zA!+ryM}CbTnoR68`;TQqS=PTOitP^IS)8S*>IARXs&dcXoZVv3G`6#WaV$9C4CxCV ztJ^O`x7hYm>uD%lb?(n-*?obxZv9>PGNSv4oiH zriNN1xABm;sAzwtRp?QmuHJ_uaBqiACaM0Uz)C@AXQ6MWo4BLyxV<82>qT_<4ud99 ze`8|^^Pfu({u?cjQ%dO`nwJpD0g&d`)+#@HL0l(6p8PwPmu(1Qh zJ7|-sJ3lr72~9RL-aZC~^;%mza_UVHnUp+6XNn;ACJ)e_NK147HX(W=Qu!nsXO+{rI~(AYT&@8b`nC`~BozeS)rvfYaOu zwF8CZ9;XWMe?8zwTbP`?3KbYg0R7lxyjkE8Rv>E_ObJw40xb!kH2|p6Sb>6!-rwIo zl-2suZ#n$=m5jrGDCkGXG=xs`!V4P1ODV4}3W_|m{ul9F`CI)GVx?GOd-YgMQ=o5X zAm8}*q#$aqDt`zyT=0rV+hM^jrv6o3g4RwNf&bGMi`8*;4OAdn@!yj%FDQNO#jMNy zPNy8BmJ!~5lRqlQBV$dVyD*s@3YvuI*HP1D9SwcGB-MzUOnm2+O|Lo~mL8Duo0eK_ zjFg<(bbfb`!CT5zm12y%BL$vOd~1nkto%OyW^iyFK({`Y?t43-)c3qrNa|89_l#-z?1i z?VXyEl$VtytH}wA6Hak!1D8c)x%l`L1g}tf{v$ake`Q&OJNe_?kU!_=htFbV#DzR% z-m;&#^ONzuwRf;zjE(30)m5{&bJVy#@%C&^qCZ6U#hf%R8IHP>dU)N`(x#!-kVnt_ zE(oxx3pb;}!?&6WJ>HM4;jLlkvrrma;nUt%v~GTnPg>_BnLcdAT{0g%8xfbs;% zR3R-b63`7Y&a#K7;6kONp1y;k6X)Csblx7S9hxAOE&-Yfbn%Al{1VXagMG+d-V<== z&6joi0rGU?iJGe`FJq*i^AP4)_8N^$%y;;OERU6rh6=0ML#UdHhWiBF{P7kav3_l z!GinzQ-u#p92K9~Y*m1s@v##B*)sCkSC*_h%1th>)zE(>ZW%2w^>K+%3z6wN;n{fG zVS*bE!{ANS*!j&Kw?%4{+9hX+outKi{Bk|i`yFbT&Sw-&r@0ELOE#{TZKZY=iX5%l z{{CEtRelmNfpX)CI!Kp={9Z#%1e;8d{{Cp#0slxBM{@(q&O4&a#R8ZjRvSxvXZc zc)+Od>o;!9=HwP^^Pe~22oxFhQ(G9Cw6(Rpg0&&xa}I+%zLT)AXHSnjxBVZVYJZgn zP#a>qK0ZR6#01+8B}8}x1fnSO32`Z@rrE6`y;kgFHFB(mI=2(YKgF%^UA>F*v%7ci zehCk64n&e0tLnP3d7O+*8IG3HLg~O8sJFRE${hyb=lEbl4hmChgCLlGfo%6}QqnF6 zU_aX1>2Uoo$MHJ#5r5T$LJy_6eW;>nSVK+y45LLZ4HuH5pR+4(pOH#jPA)Sk$@A_M zj+wNNE~GOR6C>l|wB|TLXD$XutB5LWSMniAv;8eX+3;A9@Xj5vqMYtAly|BV=Am_e zBw~DEJp*fOv3ZX%!|b(Y-$CY1Z&gr5>MUtmMoepa%oy^;ix)X$CX;K=KVZ?9e*4%t znDgy3UeTM+l}vP4GqX2P#TdJ8C(vR13of-3PlSuVvWrS^oj`mlmss1+Zfbfazdtpm z1nzq#NrYofZ&~&`n6BTru4izFND?5=$e(!=dH-XT&~+=X+eEnS(-Uk~)fQB|kAjTG zbSU0_F+4v6$9pom*1h4|n(C(i zdbXZuV!b_g?~$H$blrx`uf^%5&yRm&mz&z{G@jPuX)xfRT4mm4B2cYe1Is9ky%E(# zVY0Yde^&?oJGb0#U}`Y0*V2}bqI|N79;Y;>`d|kw2m}ROim};?dSX2IY<{`cIU3>i z4dZZP1FLms4Yk?D@z(A8KWfD(mI=o*V9|a*`+dcg@8aPJgE3t?9IihX0W|0cg-12Y zQ}C7q+dsd8LHbJAABSCy8?HOqU2X#Zq*iUuFfuY?%W0>NR#T${JowE~u}e#ajJ3Op z8#d@tE^Jcn?@(PLgf^F*RL!+HVs_IXpKcLH@i;I-DcrO}{Rt@ugSa;co;+Y=3=F4N z4T*?o0W)caN`-GoIlktv`W-(yJFmQK@xRYnw6MWRmGWy4$;>Rmr0BSkoq3Pt?M;@q zoi8C$^B&EGxYeuj|MxKR%)8fn zI82{1i2I%KJ$dx#k@7(HvZ{n6owJ8pRCdkzmRJ-^rX}&z7e40RCp+8Hdnjeka>J8H zlWJSnI_#Nd7n{<%{o3U+G%TIg>($RETo&r`NCiDq^4neyp0@g#*Jle@(mM@uJl)Sd zxv>$neC58jlTk}+(OSJo;!f((*S(|U$V1nm%!RrS!x-e-+Q-l9V(sL5*E}l7?g`7T zrH>1o@Y^I}`qU7~$=)J6TO!S>&agcB<9K+afT-g55! zxiR(>@3jUOg|+CDNNH|LyCk;{C!X$4v0xTQFmxuE1qK!7(*H6Oxk2ETl%4|2c3)2d$H-iv&zEM^7k_yp4}90y=6GyBX2v&!3gR zGQKYk=4(bm!H3f#9@FE;F99!UnU;~$ilAK_WRMOaTOk9k3o2ru1T}UYDgA*OM8`ds09`uFe8YC(O)zt1mO-`zA zy*t_%C@Cp7AvxI(AQ?6ch@M!m{n~tZNQjW6Bo>Ia`cOzE9mDz=JeYjG1{;(^`kI0b zxWFgB>OBOYCTK)`L(2El!m%qht~rXU?QL&3-XmND*o==4g_@0Nxdo2JDd*Lv)Al07 z{q{F;y4|8I>|L9NZnDT}zW5leYjd*SSe^y1tyng{5Th?)RtM1T%95^|zWGVH1u6kq zk`W#Fc8Z@<-3(`T(ci$>x!1Q|bSuD6w~)^+Wz{jaD77)=up>8~>)QALidZ6hk9PC! zrd0fk4ELMCVxv|-zN}oJ>J#~!@pq=KbIDD^9?nQIvx4Rin4ak}+atv{MpcMqbBDb2 zH_32LnNn{ZHQ;N<+@9JbLST!rzgqWrxc$rPG^dMAq@~LFsLb?=M(NKK;aHPPNCu9~ z-sjk6dC!BEE>exE@h964UR;wO5t@->}9#ybR_9ZkGZ}*X+J7eT(o@O>r^PsA3*WuQz z6A;<^9OfjDrugeRnm*l{jW$S_et(1UC8W_^x7%oVK^)ftcs>qP2VLdMYB3q7lCQyR zHS+=r1AcOnyFeWD@$q>%^ZoPbG>*sSq(>W7WD!)q@}K-+A#>a9ebjB#n{pLEcQWKq zNOf8Nb?d#(+Fq$Skt;zHOv*{GKTa|B?t;Kx+=67uW2e?~$9Jw1g~`M5a; zq#Y^2uUXBuFx&r8gKt1S>o;WL(1r~O7Mp$kyMJB_Hz%duh zJ|xD)Nxywd4L&&)D)wH8iG_xQG=jyqLILp)$W}|k?Q&WEMxfCV)TPa|(--m%HxaTz z;QZ)|xxl^oUt?Y4B@>t9Shc!^+B%!rxNhgQy?Vn#d-}v&zV?z^?5_Ugkdw4bV!Iw6 zIR#a-zrmUF)g`dnZz*|*S{dRJt+Mtfewa%yM=QwrZ{jVweIMu?<8+ujik&t57W1fH4= zcu$@r9^OgNzB2K;a4{ekYVhg}a9rcea*72`CORe)nJF$C^J8#{8E^hjHrGUwa?*07zHA3w-5kp?VXxI1c!ILNcP%;rKaJDRW3Til1 z&VTZ{LAVX-3XAoecp$le?1yW&Dxli17JnH?`BO-X%>yZi`E+4C>lGj1eE~D2`*Y1u zwbqv|MM&^OO%MtIYY)U;yy$_i`}+EPJ3X*Bp)lC8mDB<1qA-adYC@9g9uUiet&bnC zpc8lK5gwD>*hasVz)9d zeYBWp07eR~5&g987bjDZ$1D&dt)YkxD)B`3*T%%wM$7JVSyMt03+qcp+zQAdSAzP* zWxI46o}5ySZ|^SDCe8q_oQ0=<1GHnHKs%NZdf>nL@uh@Y=UY36l=4ICFOS`m>;SzX z{-U?BwJ`(Pv?{HlN8L(^IEL(=RmFDn`WGBpwwHIxf9kadArG7MJsz+Pia1wAV`>uy zfs4I@N&j+hnRV4}+DpVDk|fDR4fV5`*eJ14q_r~b8&wVWp)&X2hSHnr8JjeV(Kiug z#`xv#m_C7@L<6L&w{H>q{yeC4Dp4n>@9C~G<1-&A`t~F=)KBMueCnr>#bn_HuC>wV z6FxGv+R;41jo)KA;p*qR$ljC1M6B$t*^$|Sz3m5z5kdl^;~j3xE4wO zX+5B-zgEG)eASXzHSaJXvAn6~$jSEDz(C95^vXx;#rTDjnJk6P9~7I7H!R1@dcLM# zAD-Stz@&?ztGIw1n&;X=rD`tV9U;^3u{BwsT1d80cVeDh2nf9eic6z8tsWr&Nev7r z6;v+7C?@JjNJ-IeogWQ(3o(O!U@-DkUu2yail`ji4mYQ7lJnOb_9MWnh-IH#?&tbl zcd|YUAM{&WP&+xh<>))E3h|Bq@b?ErUA*5A5*Oiv$y(RZkrOt#l*5o|9TGVU@UcJX z4xkDRtb9#vKx9CF;Q1@PBm3w}Zb<5Q=Q`q{!6YE-wAbo`i(RoUQRP;+@?2|U3=~K) zTzrD&7GYxb{f=iFpQra$>COHDC-S<4rOfg`S zJ^@~f3G_7aGGKtL2 zz`5~ZD8HLG!=j$8f2%@^`t|`nna&}R!0F4JZ*uyq{=}-bj80F@)-T*MuOo#V_FwI^ z-}tp_^SHS9sk800eK#NG@_h}jFt)mB!j{*!PfmEJ z)o0)iLi*?xR(AG+`@eoPH4nkZHKO!U(-(6o_n=_G8&4ObCv)ErZ9xwU`Y*;4Slg6z z1kN3&U03w4E~)%ByZZZOPE)>TO)1vy+So&Z`pxr_TRr(JI|Bp#Q#ezIiM3DfF)B{X zZKfDdQ7Ze*>fvhwrwC*Q)QM(PO=d0?`It{gJL-Pvyh>Dy&eF6a|2;lne~16!13kJxW+M#NyCid;>NXYl_ZEQF#c_CZZ2hP zxX_|SS6*H%_?Eu+F4fhg8w64MTl;G-g^r7!B9CfaIBJeEqKWw*ek)aC`i!4csBx7k zF^25y{6xmiS>pBU&hZ7rpFh_c`qDIi*}u^YUc<$Gxgaer`Hb+*{)WY5Vvl?c;R`z8 zl(d?F9n@R+lUhsl;mm=wDXMyxt z?Ek~ncgIuR{&63Kkd=(glE@C(vm&yyw~w1eowwj`#y2PIaTbgCoosHlE^--M2{;Va55S1#YA)`sr{51t z<7@kPSBlZTxpB^pyJ=j-cCa!z_lSEmz*+JLbIObmw0>zKEJRiK+Rd=)ZI?oMF<5um zc73gn^lx1UKzwG0x@$wq8$Tv0EhP(nYS6X|!abZf6q)4p6lgMdA5hqwTg}!_#`JeA z(o;g~npa5ZdQXhBPCMwl<0r4D-H{DULSo7idcmV3ojtE8#_T=Mmn=Q0#x%!q+CfcT zE@rR>C=jPzAT@j$cTx3bt2*WW*)YF-Tg{srTM1QbStrKoldhr7P#~6=!?f2kiQ83KLfB>)%)y7|X{TSxue zBWEs)iG&9LC)%+Y67j>hqt7rCxOe0eYZU^{Y&_>F9b=7@H;4yF8Th*cPBZQ|@I38J z1of$t5VL0W0sbxua#C_z>v6FVZ)vyz}Ofp4xYDl>> zvISOv+=pF>_>tJse~x5P;r{xNKGAJ^P>NX~^d?4a)SMsjiyn!}4hdu#5DoxY?3=c) z1~q^wXpBVJgWDA)4H61U0;?cA&NFx8* z?NbqM;cfmgkREc77g7%@^YYvz53;`xsiR?;(8AhQT1M#Ct)9wg*j`Ur@%V1X1zE~_6WD#|CXJAlt>toY*1UHlfF#Mut=P}M7QUFf1qUmD{R#T0Oxyc7Zza9m z^<5>c<;L^CZd&6fk6vQS&otro_`*A*5EA#mzsqy9vYy7QX1FmqeV<~nqd@#EHWA-A z`}GTa>oJ>L^+C$Tsc%PTyo708NnZ-MEp2-RMR$IzE3oM4W$Y(d;b3~ces(+C;2NkY zutOMNeX`K{9zHfOpaqM5M?P{)@=Ktu#Qjk#S2A@XkN?c6(D-=v8^T-pEtbbZ%QhQ< zftv%4c-1u5p2>$5n|r*Ly5U#eQ-5U$^}`#BGW-_>=Wa(XHa zCOM|Raa2(`D5CGUAb=U!8v5l$o@Z^}bYuyPHzq5y0B@}^;xXc(1`254I|+)CI?f$h z2W^?>bO`kadJs84j5`UU%hO3+|l(= z0YsjEr?vNZZ_2&?)(RO8!c_UCUMA`>_LMGrc0_&7zL<<15<0*Sy>NDmZWxqiRh1RjMg{GsOmi2c!MR2n=LK@Fc%ZN`zkzIWZiW78BD3dXr_u=sD4p z(r4X=u|>eCn*j)dn!+Qax#T<=(W}b=1Fex%aGx^W~cT&qSPN-X3fLUm#S1GvB%MdN`l5q;Ws-pbUtZr=4pdXsgkC zkC~tUGk`_E13NO%=P3f)Z`k|y=|FkflPnqoe$%VdIO7R1*e!q_5r7JMpgc?k9X}ftyQJDEpFL+AlLRIR_=m>|h>d zECuK+j4dGM<$D!Tf<|ARvl@f9$eC`cZOl!oBUl!t&t7hLUKZ#_R4rcw@#{Kgr_Wp| z;M5Li``0L1Oyg)F+J_fFdLxwZlc>GPfU+$jK#lxH>Og;(954i+DPU7NA}s^6{L<3$ zyX`nXjEdVp7C>gY#%`2ozXJwQQPIFWMKx7b;Gw!12>4MTPwoN2R6WpuK|}$-<$&-V zClHuVU4Z{{8~7W5s}ry3bXy7V*91R+$bd%D`vEZ8aRP}e8#i}E^d0$`El*g2m>Y+h z#MYI7(^)3{W`9XQ1x;;rGA#lco|}JPp3&lmm<8Dyu)t(=(>X$x$n78p- zM~5old?)QIzXc%x?q34N>?55p#)w2sz04oi{6&ujIIHl(hojU2p#3p(CzS!GakO<_ zKF~9<`ggXwt6hDlW_xK|TY~0dKp+Q{ZS%#@`;!*haNZM(n{=dhEF4@P$cvtQsYAu6 zwGQQN?({FX>(T6D*3-%eD+)#im@NcD!?uJX#(E{D1?~V!>y7r7uTzq^dokPPz z;2?q3fR*+FJffmB8TJjl1wKB<-CU`R;741*#RaUgEU;W`s46IT3$EREeSUyvHTHd* z*iLlFFsSKuj68ZBT7>&(SR-gw*rgNVrtfITlTnlFuDA~uw1x9hO=2b}XB5#!eL>nG z{@Fqpkay>7Ei4||+Rk4TgbkcehcdB(%>@%|p5)>_8aszK}dXx5_oGw*lE&bm?Icl04La{t{T?CH~|Yk-RF@x!fu zgDv1jl7RLZuyR!|CHYPQ8XL09PBy%#nf|VDn^p>1Y)T_Z-lYye&^01=$@3ZRNTWM` zMz}{QfQZ8JVWZ;X?X1(-WZh4lp*GT26dll*)pvAoCF*jiSD&Pxus1!aW{4o7Mz0;d z1DQ$*)wgmFzEi<`{o~IlrhWi+j#t`H-@JKK;&ijk!rq}b*dJg{0F|9DYQPK^Py^5P zBGA;#18_txf2=ctt`mqMegn`;ui_OsaPee=xti430!g9JsP;2ZChDgl= zA3TJIAsyR@GjqUQ1)6MtUDsRbw_CRXgp=Gpa81@R@4%_485vFHs=DX5tJ2~>A5pR8 zhWLI*dMp0(F*iUQvsGM=LgaWBIKB6v>Fa&2~obO42b1{Ux^wY=-}2l#AA_1 zf0vbiY-u@v5gxgJ(XUbOZkH(Rpb9piV{C@BFF5NUU0n${>Nb4^AZx(5z#s^Eqxm8g z$ez3m8x4W`s0X;ndw^a50t>-3m;(=xoQW`iF@eK*D@Xe5Jy4BAg9+XOzz`0rD`v7$ z9D@G}WCNng9+e0#9&ukAbDC%Z7^de>zo$n>CIi{arNLnfGEj9d3f03@0@O+F_7NJ9 zSba9rB$kZ3IjcNDDJcCi{-{40ZT+V#psFMgnI|0Z;K71h&8EH$`Ldz5T<128sqgo2 z)kvKD)%dm9PD;t0dpcEVgWZX)(vdp4eBPPTQbN^Zcj+1M9~jRyfj3EUSwev8RUmZ( zz}afSwFnId!r&Fao9zJac?^KisJ&EyZ{!ddp=rci?}3UFC~@ekhcoC7ff{@4y9E(Y zT4e&k7|8Jy)d&@^d5$pk8wtV=jKJT0i;piFKzWfM4Sq^YB>VvkalPQoDgoUC_=p7* zCm<=tL`Sy(UR-^p-wD8L0ziobd}v)=UC+UNER&ImiLw1&A!> zAg9)#?7erFTEHkF)B@7*@uTaK(>`Ong8l*v9OmnRT0vm9#TNfCmN}*^pDZ#jYz$^^ z11ve~?eQyTL`~8!c3wf{!8g6d%|5Lll7YQ9#j*F9*-2ORxKNc9Lv|1$svQ>>_XKbY z;io=e<@;9!A-)$7AdNd|h9FdTfFHvlfI7bUGz3iLK#`#^sDFM_>KZ)+ykA2U8zA1m zB`E{d4yGEKnqI)84WLKTSA*HaV8~X}ts&PKB@#ec2W}kTgR&Z4O5({JIEjm(6tx5n z2dEeWl_sCp_MCtYoEoq#P_9o*{0(|I5YVP8M@?|RT_$)E;DQAS;7Nh@X1$v6@;>lU zY=fd|2h@o^X~MwP>8xF^bfje>otkIj>W%57o*yZF~^a&vY!wCm8kF>)s@0IxH-0X{T&^ zsWDClv|4})8mQsBu_{Is*g1Q9d7foIWvo-U+V}Cn6BMW4N9Q{8+D-+}+gPNG`%*RW z0QXiyEbNT}<~un0&UEudrP(Lutbs-IdG^)DJ|O2<9Vr4gZM;?B?4>Bv*FJAVHZgpT zQSp>=z300d{T1_s!6&~)o-v5p^evsk+k;7ggZahBxi0+G@jo1yuIQaB+9Df5idbn=cZf~&H^@hyHpdpwy^)zeD1>^Vw+`U zIcPTK8FeUFXKM70OHd0D!=4Y7%-Axj997sXVo#k=itTWK=TpXlylvA~9Q%Noowoqn zZyaMWN15!8XEJODCa=#dWWI?Txp$M{N+Ax@O#&X>KPR%X^omgZtd)Pkb%+%y#QH!Y z%A|1({NZa&g;=n9|6-LUarD9;(0_(C$5O(r7A?xXH>~0J3n>?0>DS*Sh$eWsXtguj z#H8k91pT2fmoHjD#r;dS;E>Sivgp^Mjp}S`5H*7tx&Gq&mSM-JE*i0BXV6!FkW>0< z=Rhdx33%nxqCzT6cYwZXlXzO@7z=HOa6U5V*UgZcM-6t!B2}y=*GL`N-$4E|CV7Rt zB>(i}l^^4Y4!nR&^y(Masl9n+S$fsW7fGzdA8~dq5^eG7EnN|c%0B%}7kZsBh5+Mu zE*TJuY6A;QF3kzrO7V*$Tw_OlZnlnRg|*9+@bIp2LTSpmmlhV|64#?2jcjD>o#@Bv znbi_T2P;3tH_=rM3u_A*mxO_c&S+Ygf{!>S4ZIzUy-4~no+z>E_sg~qdJEj5S3Slg znZYx*a=v4`Zk#S!qcM6T$lZ|+lBPoQ{FohPjn6>o1ezv@sfPijQ=OioEucDp2I&Qm zF#&#yjF#5=;M1vUN<;7$ux-)e6UuH!vb!!{T@J80v)g8_$}4(DI5E!eqdw-irHm9xmd4!`kH23y ze1F57!})r&fK#mzkV{2_;yM+Zp-kV?(=)bEqB@sMRAKqYe_Hd{7cKj^H31mXAA-#v zs=Xdq0r#3Frw?LlKHCX83bOg1{&EZy#Z6I<)+gj{<|;DACPx%gy9#0*^MKRnY!4K( z1+I?lGgn3y%l=(M(>~eu=|^jffnf^jhIKa>y{?QDSNgC}VrK86TY`jY9wB!(n1DS{ zCP|3w`pUbti5`PJ9LA_l%ER$E3smWhQw$@SrgkWzn!(h>$2q5eyq zk%k;N+Nmk=z4?s=u%!ugthzhO39ys>*h6(rY8Ka!JJ0O>k>!abK0RmTL$Dtz_izjR zZ{6^)h#0wEPxceviA^3vZuP<6%RwXIO$(>-8j-(pa)BoZY3Kn05dfzTaM{kw{w3Gzc zaSUJ`?*_$kPWK9{1fGM>dWG98;>X2a1{^v5H0jEF==z8?MZ9xDGTCK;dvbgP?xD-2%(=8_k<O`gu$7k3652~hdGt~>v{|GlxFnG)A)rq7T_E6#LiQ494>-mo**hR=Q9MR=q z*kSKpC0Nd*JYCY2AuNgX(u+q6_FrudK0yhPRPovXX(CLrQZ=9W&ga2Hyq2shOGT>{ zcs(7Yj8XXaM+@;R(qk^4eG6SIO*jx7_TQ*QX}4~0h(Pxox4+L0@zJ*)enV|?e^pHa z%V%F}?T}-vIlCm3V()5rUuHn_k5tk2`8TR5s;Dt%QJ1QoGB*jZJTpuH12If59P1Ij zx-Y3NWiVv>FqiX7My>pKjQ$~m*uDNig8-LHfE@oB(ZQ{(|FVo)EK&HFCPYONy%aqj zF$a3bzMhz;_DUo}a42K`7@tn*&B5MZ_4|$PR9|%;s1q~!TU(%p3z6lYAM1zOUQT~< z^Nb6eNyI5ISRdbM`kVH;&OWg+q5eZh*(-0q_;TD~=6bUrn1mBTEu*IvbW2>VfDl@M zTmSEVl{?;i3BxoV?@A5 znxLRF+Z@tN7#x##`6h=z`;?r@ zNEh|eNw!r#=)?qm7W3kiC&vEYp^^L5&6&J$N*WM2H&^cCpQE~&gihGQXS_eWhGqHp zBh&P&J4VB*j;p!v+(|omSHPDP`>CSzd@3hufP_K|3-H?@ciz&uyLS_NcchYN@nQ9q zc`pO7%fiBN^v!C;yzrynylHhwTtR_K1A^KW(w5Gf;A^=wA49*e^JmY@qK$3>LkGB9K}b?0kiEP|ksXs}2xrF~R|; zEn%Kf;E*MG)P%2xZz78w1~y#uhwXiYrPod`*-bC|l4tcoMsC`FMv2H6Nehqb*kO;~ zX&3o_1pqkyzWZ~;f;vdNWj+dEPdPJw(1n*s*D$IFV(wYpgqKK`j`&2ItEc8%hDMT? zepH~C2|M)1(p<$NC%6TrI1V7d&&Fn$szUT_RN6PAxGv5dK+Ak;QgEHy#Q!bwEaLWq z&=UuRG9M9t?Rufzb)Woi{wbI9cSQ{B2$&9;?>iz*!x8)UMAV_>q%OBsVPu(Db$e2m z)G2;ht1~4tJ~^6`rL~QSw4peej675mRJa=CtZI1Gbl&@KzwBI#^4WW1**i7HcX(*t ze657Pfge<~PDSwp5_!eF8C%k5A&g6PPo*2AEp_$>^({I1r|6WH)E-G#=7?&gla_|8 zDD+i)8Lu@m2-H1qzjZT{RZoHI0)9G7L>&ae*bE(~k%vGW@rle>^foirW2la6u0;VE zktHghQJU%Y?GWuXtf8N0t6#TZt_-D}3(;C1TZJ&|U(0Rja532Rp)BCpi(UCLB|1f= zem-q0#P7qy$}gXc<0|6E=(;LlXFr^%oom~Kb)2WO4}RO76VP=CVqCE-4YwmkS9BIw zS|<@`#m|KTq-;@yTU#MJ@o6PV_HPE%4;SbTm)R~FEO94l{s4s*@oknU!;&KN14jx`GuErWwAJVWmX}*cR)Q9?J|#OHC{(BaIkf9byL7cg*xreuw3|L)v3gen$#Zd z1%o{t6Fbz(u=`9q>+J2XHZDj?|M;leXmEe~4i9*crI8DJ_p8~0l!ZB1C%Y?!&3{w@~F&rUUBqo zPLo|XfSvGI9#_+?F-C$Tl8h6Tv*eqcFXM4fy28=pQ1{gZA*rzD!=TGhd=35LB^o9P z;hhnnonw)?e4(5Jv@rTu+%<52{p@5S81JFRb$St4S^x$;x}TBe{|1$0{aArfH{x2Q zj|gSH4)@X|qJqL$sveh3HMP`B7TQ)-zWpe$Uco7Hfs^^}oUnaM%)I0N^whNhi@TPhUveIMcwroKXN1iX=nB3fS@_L{y*DAJgCBx@KS7QD}JL1Sid*Oo+8K z&y8g0APl;5r@!X4 zkt}`03>_9gd%~`|1Pp*cILUb#E6B3kc69ihDYKz`0Ebj3hutf~rIrz*&jh_)JJx1L z411mTZO7`XU+g=jW}hOGLn50FiGUXDC7ABX+-E$@vr#Quc&9t)J_%Ov;u>OT7Z1b8 zvnw)6hqNAHBFe8(4Y64|W|tB8va4(M zJ=|s%Vh>u012N<3ZXHio1_aP2tsHFR6 zvEwh!`nf_$OUBOhN*vbv9|C?tle5>-#R7q;ip=7dJbHe;hESwzOXF|cdbN)Tw7672 ztl4$CSP3F;pS}*<2WK~!a6lVEgH+9M=T{aOWEI7i>Z~9A+u=#uPF`DH&USs>_2~l& zTsUhf>cB`Zu2Xg*M#M3}lMgt)59$&=O_o@(@Y96?K255fxELTN|NWuy>1QeQzW zG)?&3qgNymyl2stf=T0&nTmpryOuC2-;spbPCLer;G}#>0^c=Nl&FRaTr!KIouUIC z42Tf6cKSIu$k`CRNdNPg3v3oL_H{Tu3ZiHpKq3FMCGi58Pg3$~#J})NEU?UI&sge zjl(K!L}E$6iYj%lGP)CIFgvC0k0tF{60X{bd$&bIJ%#@=0(R>5f``!pgiL0vmSc{2 zLh<+bq@WGeWXq0h4E{WrVu34m!{n;d;hf2>t2nMud3Y;98tuBB#NUC5R$%`b8FIYW zyIiuPZ6NFr@G`G0v@L`hZ+fwD5K>ZHxr9^}ZH`@IZh2s?Q5&g?o~$9qPxqWpMSRcP z=GV%v73j8QtH|gHW%j@wVw&7Z^Zv@cm2(^~sggM)5IVc@>zmv^1iDb(Y7kP#RG#Gt1JfSZT^YZqNX}@ZUr0-{BPgh(5V-PN1U{V!Wx2#? zSw9)BaFcMqiL9clNFn?Ix)})?&@Ho5b87XHiela9OW`JQVWeC-aq+-3%pR_i%`Z|HpVZSF%{{$$@BZqswlfVhg@F)n?JNZpqulA&2aU}!ohG30?eh?0*)$wD!(yot<$cWZRc^o+T zT}KHW&AcY?ao3;$w}~lr0SpgU8P( zkJQ#1_4C0rth2^MXxWEFuPlv}NhF*QL3@-E+8kXyTy-}(w?=Po6aP9h{fHVS>q4PmCmCts;DdN+z zmiOK!XX=I?%f6Kx<0r|X8E9Y{IwuI+Tm2^@Bu7)i>mPpyZmc_^x5r1e6xjRHu~GBR zf4*4~T@_?|6^xN6g0d#rJsFP&0eFKWi;jAFX2c(w>%2H+JW9VC)F51WG-Wd-pv004 zZa11fbW%`!qr_8Ybqxpqk?a)^7;Q!;_^$xesZxl)MqAqO=M)Q0B5|M?tElOI@bNnU zVu++r!YSgE25D8mILh55G~P5wK-YK;(ijg|6B}(LpYtMI}o*7mtVt>E`7XOI56Tv6m+h{oaOV%oomW?)W*ghGj*N zkNY__7uxC)zn@cXV6%O!mhV@uIX`!!I88o~v4V1`X(KHxZ15F{tNhL)a;AeQ+HbVK zI;4I9yf(mi{Fng3dZ}Gq{7qPhPg>8wWU_20W`@N3*-uiZDW=8uDnF zsUk&^-n&`Z*sk*1MR2Kb(Se6pVsLP{oP@y2CUOkSH^gcO`8Pp`p4LBqcV;n71+fcc ziiD2!dRWIZ9gb^ySsVVnv;wBj;`hsH3ZE9fL2fc~V~I2fL}OPYE>nquzOP|Tb#7KT z76`q8ckU3esc^IP20sEb{T0jy*5@|Fs1ZnK13g-Lz~&C zC($A<-WboxX+JVcUqIn0Ux002ieX-TU;lxlqdYUL%}1zY$WMG+TXN!|f>bI}q{-+j zg!Tg-GLTz zy%Wm5`lA2@a*@lpQ63wM`}(yd3ImA_MJ#*y0|IqEzupa$5RoQ*)Vb_s=#6ARi^CXv!KU+Lihip1t9rkG)Od6^z*Ia@hBP!7^Us{bx&_YqWw`EoyE0>a5DNHGV zSzJRkQa{x^aI#__SB8vARDUCW@BDq3h{~3RSuBaTs+<=V&b>J zqYH(WgYkpAEjIMH0Q8p=rC+^ZRq`At9&L|)C4X5Ruhq#~6Zqu%n#nEcJAhuo!v@)9JQ_YE;52^Y9N4p&yMMXG zC|?Fheh5oui^{nVcmI95NCi5z*yn%t~UD61+^oRr(`%x?T`PCltBf> zGCzN>{z%=Hpe^J3FDnu_yIL*2C{MW-PLy9`g0{(g**mC?w;@F^5viu*1&zaXb}@LiwA$!TL+G%qFXBElAs@t@7e1O z9opf%<)~+(X&Wc8DSmy_w?J5 zoglhq@ER?!Xmk1=Wf917-WyMC^b%SVHrwo=Ue3sTke7GgN67J3tbUT^{bGbjeW+_4 zu$BD2;kl=+S6w`3*K}63v_9DgxNNhr`&S3IsL7*$R4#9_c16M9I>~KyL{HP{2Q4p* zaCQgOe`v!})rBzVpD?jw2U}GtMv~jNvtJH)lgh~^1MFrt)-}vJWwuZ_cDU8J`3XtJ zWe4RtVkn#0u+T4zUW$oPDR5<58K?M`Vb;%hIE`O(I72wz`!UVx$GIV_W}roG*j-6Q zveNl}tQ-PBOMTB~?#$XT#EechZgxty0%a{3gEIQ4*qDg358QNiHeUE)H-gUW*L9cM zPYuAODX``>%lIEI{>G=Yb8WA4Eb%Ya-L~lmd=V9N*nw1!}aW zP|%-zgQ2!gy~2KT$V#Eks zD9PYf^A>zoJM0A?$S2u=*2$s{e^L(!3A0${Q0dPp-hQ{+if`uFuU>V zm^vc+2J)GHvds-7fkP94LnCgzN1J)nSHgV{bchmf(cu>8f)D@nhX%ZRlO1?OdzWNB z6ecNweBAPM%-1m|4Uh5`bbMouvQzJ(s1QdxWZF8oVhK(o*FN7gq*tQ^6g>PNW<+Mw zQ~4HgpB>u1Y{9A;J3uU88N`(xfkVJ{42G&}$%sn);0BU3tZZxGi35=b z?h?sDC~z1x8IoYO+XAt}_EI6xfDQNxX0>H;z2)X|LFHTeoumPjM(r)oD}3pEM_g)` zbo6F4CkpVlNtAG2ee9bz{R57`aN1h5Hs7k(3$d^s`%!B@DKb#c>C2&LAz@c*&b{@@e{!MhfoN)Jh`|5&*TpRG7v#aR zL+V9=haJ^YxGBuPoovd?-ak?EHFm*;*wU z)cjkmYcT2vdTdNuroLiRQWeVT$HmRA8;e3R3a2@o((flVty7yUA?^27&9u`y8SCHP z5tY|#aB-R^eX;$rW?NA+$bUKnu=Shm6ml1yqPl|C35vVmvT0pS5G+vjNscA}FP~Np zwEyhV8?*e}KUXH|!!_|e4cxU}As&K-*CIMtv!(bJ>>o=H z@V9?kcXm<$A8Di3U3HSYq^q4S{0|P+q|4H*PkN0;t8A@9(Y?30NKmNP`^i@657z75_U4P#xXclqWi{ z&M7|T%C+Q4z6#Zt?Y{~MDvL(k6LC;Z;23e_htxah*}Gv4m3$7){cjIw_4z9S5q098 z3;~2cc+{Wmf7dyrEAyj)HF_VdXBBX9%0!9%CBMI6mQ_LQR&TbZ=Q&62a*`f8h4SDO zVo*?i3p%9@Q+J_jba*kW+Q@T|Q2W~YL;dl7%nNZBgQ`Xk%H{Hb7)dKb^@udm3*U2d z!W$z#mW|LEe{na>ZI!B#8`$h=QB0v-gul*EzYw&VS~q|}d{@dT@c-VM$-hp)m8QNi zte-x=IC%9tN1k-h+8-?ioO%wt;(l$eU9Wn!P{db>L(b36_Wx?fQNo!fOrpXDu0jfS zRFE5Gy=FC?eI0>`R|oQZ)l}uKx5X|Z>U~hZl)wq^y+A{Ukmj?ZnFCG$o5U4zyo@)f z5l>?R74l_!9VYS?l)T-&+=ah3J8$PN5$+}=wCYpu70i(_s&(vPsLAs#6<>Yr*3eCB zQ_6=7sSKA;*m5i1!$)6kN3B%~uhG z6>TDy7#KF@V@^&DR{t%qH1NaotgAv-$g$Y}`Y`>zrmWU? z(%E+VX2Q*E78ljetMzH)$-iEH4t1Gf5gm0w_y7Hv_52}xKjbda z-HyM!Fa`8La~Dc!d1WL-Q~H#&Ls$J;FOYXfQCgeCzf<$YlKu35?NlGJ%E!RWcK zU$Y^#b4D!ugW6O?0J4m|;6jvL!zOtCHL8Pfz?h5P29D^|1rb(T+5|3qQGdnwFQ}}aSZ~kr%uAKYodPh!jI6i4m z**;Q zh_N@2@>^a*`qz&$O3+|x?lc^jJ~QEM*df`)5ZBfMlhJ*L)WMAF!i6|cdmSY0QrtY!Gc(Ll*Igb25)QBoyFZS7TkN31 z>>i}(&wTJ_q6tL>WV5E+7lh68Y<_JrKeW<(_6RjBxeXsJ_F3{gF0k{!HnX2S2UbHz zxac3p)uPS0nCbcrM-WE-WK7S+m>t-QT=h{5oOV!xW8d@{W?A4 zmoHqxqeky;%Q&bP-Gqf#^A@k=ehY5wUjrVy8CLu%N75^|c>8O&6vzSMs$?^5qOQJG zO95?~UAT`#%POdUWWNQ@kdjA#UK_^|uuNEgMLgiM#~*JRU?&x(Gq4!oM-pfiQrr9r z#h|(}*lC10o_zpoGTdVD*=gH+Z{LPjGk0CUrdo~3bG`B#lOmE?aJVpNvZ?XrPFDO% zJE-wREdNx=!7B2{8P!kRM~TdFkIjCm1Wvi!TF3+1WMq%3=<2BSp_r4AwhkQUhK?f$ zO2+lruGAbDc&L8~)JF3`=jiTN{*IovwkX<2k=EruT0KwMzT(2G>_fm!UIWH!z3A@t zEDAFZimDR(z)_;bWQql+pIG$~Cq2uRuTv)?lUwOoxeH#>9UzTr4qs^YqVgzwcc1-< z)3c9>!%OqStF&qBmrfGevF>MMW+o{uh%y}I$EusCt~a8=**#{D2ox#2L~ZTO^;^D_ zyRT2#3UQmP)24%i*WzkHqV}3{Nqvh;@WIk3?GleB@*(M&2`F)9URZ0eK?Bs3F8i!kr#4fi=!r4ArY*G7QKT^f*yZ!$4>^Y|1vJ>f^1a02;65VeC z&MD%!UA$Saxy06}bBTMcig9m=ItX8@K}|oC8+gf64%pJIc)433uQ1U9yI*J{<-C)<<58_Md=mM~GM#>=K zC^%tb4cgPbu^Y(HE-_)1NfRN*Bjq_Li82wP4cy&3`z5oE;QT$yw^#(MaGSg<#PY52 z-Aydu+MvW=g53e3B~64({;#O)7$j*8DhV&(ce1S1X!x%%dSAsf(TTag9aMGk)?#Lk z7PKOfILaK%_~b{0h7G;56c~klO0K7S^3l;dCv$YSeijs4xTs_!kWg6?k>w5C$xJxzRd~ z&OF9y{wSMD?kMNTYl>1EJ^zasFYj&6dzQg}VQp!`8WX4brd3v`M}S+^XaD1njJau= z6sydIm!gdo1{X289ia=hd56n-gNT_ zAR_3*B{|5WyT%*Fjf8CQz*pGyMc(bxkL&nWC?8~$xLZeJ5}LVdu(_n9O3KZ@y*(8z z|NOwd{8Z`gqgV28MP*7b1xnw9qrv7L!I&t8S5U>$r6Dd))o)c1O^qInmx@xxY{(W@ zCsczZV@wv+4Xp-jV;gvV0#q#Cxa3}w!TrVYl0JARl1~coh?UWMUj@MT8w~E(e+0=O zNFsnyh5w}7KPu{YZ#u!8S!9I9V=4O$hZ6#1)!l{!sPk(cotqgq|?3a^$@hg&H;k&VT%_5^!=k-M)3p)^#%d{Og_Jys3sA9wYp4y0BI|GrKD&3-uOj&AuwZkbr^xlJns`z5wlE;*H zbcJL{iI4XlI1_;52v+DCsJy^cmCswS2OssQif5!Sz|~R+_4O@|V^c)Mk1UUb)f2jY z-|WQs(@ft$Hx@b*>ag-B-9(-c8`rmLuKfGicJn!I3>$v1)k%!m1Dip-NuPdO=@Tx{ zftSyclfS=#yHsq3zr?WOF&6MmC>zK1s?^3eKACFHoI7N2M1M#E#Nj#>41Av+P>Lm~ zf8xZAQ#;NJN~zIfiyHp^zLE1YLaf_AjvkdHG8^=QF6KXmhk zA{>MfIQXq~ZhevRvMkqc!0X=`yCKs}@VB>n-0)Ke!$k=P4%9w(^@r~7P2iMz`p|2` zIYCuX{VWjU4JKA_Z)&xhQv=md`Trbo{O>rf^;#lSo)Rqq{cj1tWU5j5V`K4p4ffI^ z4kqdFhxN7LmMWfYa|^x~(|Pwxq+@hdEq(U)KL@D)YJ zkxVtmM5vI#*og`VqcssDG9HZskLULA7GG-blF8MD_|zEmD$)EeE~UG#-M8U;yjB=s zUyif;G=}5|&kZqYr>rlE8@FqAGU1(>1%zR`Ei|+3m7}d~q)B%D)El#=eiF0PQM~6r zg8~V9s%?W*Q>H3M^KFy0IYe*%{1{|VITdd@^`0%6F*;1aGY=ajxUUNz-5?9V@}}2? zho&YwBu!G4barDJP_`50d7p7yMWH-l_?p;tl<4602Untl0l@(rtghaov9qWD_h?yF zu$$3WVv7t!B@;Krrmy7clDcEwG6it$WrG2AGHu2juS#Rp%#vt|a!-TrTmb6u=aj51 zY-w99LpM9nn<3Ow^&36E`uWU1?5l(e78z0-lluL>Vbytu`MRpR;OmCuTW=^hUc^DwI%lP$N24PXv-mAi58;iO5gF1( z6MEO&;Nt(*7wK#J3uQx1sD+(}pm#>tYns0KLnPn!yS&R}Fxq-}s<=M?xv$gD)sX47 z^qoImpERSs_Dlc#&};Z%^3@2J=kBxevz3B@Cck0QihN`Do7ZSxdKVGXzz|iUK%X1E z2{?1kF|*eoMr*0%7ZdKjdLADY!Y32@4FrY6MzpibaJP;uQVy$bHRJ@WK6azGo6AbK zziCd+XClbM^$mix$qh{yea|Y#BRgOWZ!U`arFplmOys8&Bvg6Rp1$(_i1xfQRAQ=) z^N}|%Z*wp6<>wXKko9%XS4+q#QUQV9y2X$XpdJAho<8D=d}0P`RwCO;+hf$~%aX8m zY!C^ahi0v>etr6ya3DkG3I~vE(CalwszN`!rH(#)uD^+J_!K+8tMGx^4$Iqw@$|T0 z*?@+v)hi4;XsVdV3fKDQ%SL=a<(428Y%j7`H$>R z(M1_W!a@_`fOGvdmC3XdDcdEIfrfg8fa6S_>Edk8=Tw$)btf;??CI#$ zUI+MOH5xCfb38~VYe);INn$L0kM1^Xe;5QBm^}JsCiiuI1RxYG@R!{8oRAfcx`9mr zpJkCc@L(WOYENSF4>XSoF|>E`X6Ya@uAxPyc>}e8mGR3i@`-YQg5sM}wx~RN5u>k6iCnMfjM(KarjvJ`dPC z($@WYs>8hc3(-q}OwQ`u8h2<;oWy{;4JOU+$UibjY`fzsv)H#e6K;9Zf+ zjTjTWCr0Zd8ktaa(synpg9JiPY87W4I>)HCS@cHIq*^L==EG%*5C8L4K{hk_^!yu^ zH&;2LCW< zU@a@=C&|XhD?p2Z4(PFA8HRh=4O+k6s-h`*1bp|GqjoE(MOO84-B=g;Lj^~i3^sjq z5*1~Y4c(+?uCGJR5(qsh)6T{|`@wNEVE4ZXhiWS9Y!xAZzIL87C+w}XcrAXlJ3$lM z{+?*3E?;bI2nzg;$alYhTTX46+ld6}*1HBqNr@e5T1Y6Wg_7Ut$yp6(y zWtZ*jVulnc_Z!yki_FU3-EiQMk3?QP*=r6sjsMZ_@%YyJLDk^dC=W+pr`%~|$t%Mh zAJ}A}3%5?jlRlCz6;*L!P`}v%7k8o2@*410|5l=0Dt4SYUL*sGCZMEFEt;$y954H# z`xc0r#fAj>aqBAsdNgqB6nqKo1TjAcgcC<((DlLzKYurH}5s^&HcbX2dB;5Ky3D^WI&L4)- zks+eOSou;V&PhTom7~svk$J_F5(h>Lwu!Twa3jmj=OW82UBCHP(^qlg!el8x9Q}$Kdx&M6Z!rTjqToZ=lT|UH}C!1$08~QuzN9yXq zea5FJ;tfianMr;fNU4TZcxFJgYr(K=HM(j!OIu@RbGiyl@g!04^@L70Sgt zk2#ufV7(6&XE9BB7;dB+O|K0a0%W>D%|8=5!@_=@oV^8uy6;vjo{%!!ZN)Va&-`L*)D1{u062_)-tjb8nhsz*~dXq$%; zUKeDCG+s6~3IJfHxK7d(5f;`BQcv`ukbi@y%S4l;>+;O*tNam=dc4I94{WCgpSj)6 zVN@}g16P=+l5#~VC*i3{y{-x+4t8I!IXiZR5uVq4iQbVH6&9+l+tmPdN;&W!m)fU5 zWivYwAoh9ghzG}t>tYWqm#UtWM0LX?`#1+411azD%0PvVCd?nb>yw2+4+FgDdH~5a z&x~|zNl=fb)pi7(^hcZs^e}4&Me?T2q9s$)M$X#f8VyA@W_R?y*48Z9(bMO=)qlF4 zDv>&aPJSO&11W*uJAlTepqLr+yO@F^-NDpEN(k#h?Etnp*2XT!8l-py+~Jez5r;c! z>d^Xp>RY%33oG@HJ|PK#^GPXoDU53Wsz!t1+%nEz?DJlR%Pa7 zZ!}LznF7|Kqm>?xk8O#|fY?%r#DBhU{57^NKo>-{>j6j;K8C9aI_qT0;*FEf!^*kvogQ7N$tY%#&<$)h=CkqCa4W*+$MtkpZ4A}D5`Gz8*GvY z2nYz0Q6wlC5y?S85y_w+IZ4hrXAuqLX+uccKh7_oqK2I z!+e;kse0=@WyvY4y78Q|&)RFPUsz!N;e35d5pi~Z7{nh)~W0b?^*HGX{c?KyGn z-qVUE_o+!=^!Pdn@t>bDvBrJW-(C~>qiOzCp?w`7;ex>wTGC`A7$T>P3;K(tqrwG; zcGe9m@!)lJYY!E%L~n7seky{@&LuFDUx3TA3tPX*klO*aDYBcpzjqz3&KUy(g%T)| zQ(Jk3XnwqX^FLgG%l6vl<=U%v7i|^>i7ncqxiimj0YF;^h_5mw8sPn_#UP&_4Nbce zwFkSINHJM3tz2WQFtjPW7;oX6V*Hi6mHdMuVC%`I^0;EFJL17qAxZ7wv0sJbx_-aF zJV{6SZz&?NwJLiCJyKNNdL<+HPM}$25OV2ghBP_tW7T6ij*67<%doN_e+3CGxRfm5gpDhfEIoPt z@qbFXYpsP~gOQWXVF3vnWhwS$Jz6Vch0qmri>dM;63E6MeluA0g4@qQcjJdoO}Y2@ z=1Yn9HkjBT<=#4-_qonh_h)6AZC+mT*v{jcYw%-q#fb$y9(?iJw*PrpKEbWz<(cLu zoQ14Zeo9hxW~3F1DsO*9$^3e7|6(f++_?e!K?5DUdXOXiYXw$1-UVhKlHZPYwvd+e z{3ht@kFT6Xabtv&MO@MQ#4vR|W{cIA03WN^1(v_Nh9{TOjHELjgUuC<6}v{iA_BA) z?_~Fd^FEDYEOlYm^K}~53}j}uzj-~eMGX+Z?kZIC8hgyyt5ax*6t<~7^VihT>Pe(n z2Uh1AzL^>?pAyOmiPL^q{A;nW6vc4LScPyKv@s+Kz}r!WkOWyS@J|9m%2Fg83K7pligb z4B2CC<8d9H zMniv^;dwuQU$K0jR}4wqp(Dczc+0vM-L`@D2vDLi?=QEu0@o{#xMeD>$Mok-DP4rS z&@VT!a$mczuOy0One8J`Qpr)m z!9~eTCb#UANaFKYx)7*(-*t|q<+d_t@Tw~u`tL^-02(x@;-Z`PD<)i1%ecZV0=&U+ zdmP|<%DAcTf%VAxtxjze!`9w)(;?21)?d+V3k(9+fDIn3WY(MW)R*eJ$Y&KcUgOn) zI5I}dTVgwp0K8n`H}A)%ztsiSx+Th`JB|u)g&KM(sjex^6yA}BHdyi0h1SLS(~p;( z=-b~wPs`?by1$vr2ukWC-X-+QF2Dx9Jp!4%TcO80{ciTj5jXGtWXQ4}?TfjeDaHF) z-*2wL&Ve?+8uulyEDzV-0sKJ}wpqzjpt$J8^dkROt{-{*r5e%olg(Sj3u0Ho58Xyz znHMJ!AL3&>?o=fT{ivBSvCr6?-8JGfu-{N@*^z$zQ$c=e@Q*qQL^*v%mgaTG^nQ0M%fSG@&Bz|qE8<>F@HC( z<8TBMf&oY&63{x>G(QJ8AR!WA8ZDBSI}R8Ao-n1gelSd={kwK#q=5P58M~f)5`il| z$@ifctcw7%w%3g(FkC8I?VEG_UF1>tb6)t7lC;%!A%}xP3XcJv0`zi`$yLTwR8-u5 zbR0cDcaWZY>EXextlD<;8&c`yye5K5x+&sA-a_-Mq8j>__i?9dyO%^UL3~N!j*%p3 zP=Ta}DW12JU(MYKpJ{X*-NeOCX$KhNyAb{{g^fj4+Kg1q^2iIw@)dT@DU!3<&SHMQ z4mHpzIva{J>bz?v@|WF~fMEvjuU3ust!6xFv#M}f36YXCLdT!6@KEDQU!m{nf2DmC z$XU!cee56eX}WO|w>Bxs@%IC^i67G4Ar#7iyR%pUgkugu&WM^56K&1YZaPkNjm2=@ z3@6h!<(-N~Lt*@6PQbE3E^e%O7D1}X`tw=f?jfEG($Z?#9(trKPoS{=?au&=17r}1 z(a~hSK}Cj!l<+vpDU$hRr*#l2zxCbKskBpz-gLQd$c`A|Knj_+sBH>|6P?SboYZX; z+)BW(l>S+uOhmWazdis8AYBJH??+p5k# zIqA3<3KR|WPPo43R-uD^0H9>U`#Efs&VAVHWfejYaZlJY3j{C}eVXF%wQE5v( z!vKoUVURCkb9jFMv0ImI?rAHb<8butVc@Ns;hWYN>nndl(vA*QkZ} zWe?Yme$>#@Sd0+iDmEMg+(ReZ&|iDQ&EevB*5h_VN?ZA19b)?8*NM%0`+|B`eu^iJ z2B!-+)LBQ%&pPkY(5$IrdB;_76^#%ghaeI>nC6jqB{ad_0>9b#%@zGi(xC>S&B*a( zGyOHu$8YVg_b%7H$AnJ>`Jj>%jyw=;Bq~FF;AW|~@Kp&}#GoIPX$&oGZNgE4^fkLW zTIH5)uHLFjoj}SSuOJp9OLp&9Q$XjLe5Gy^tK`;Vh)^F*z)EM4+@2v|@_Sp&SxVwo zsaxej$vfyvbD;6ybb|!4+tTumZhCc~<2^&8bk5g-@&#ZFc5J=DR(kb=K=h#){| z0mcetMEYbdddh=T&70#V>pzGA=A{Jg)k?ZM18IvR8flD5aXyv@GAn0?!X`&8Ju^v) zMVdn;h6F;*NOc&tPcIckmcry4D)BuCFpCwTkn$By^>v=uMX#mw&#v)GP`Fnv^=zob zL^H6Cnkv`tJa*B80K&-g&(7}R%;W*LGQ_$_oA#+) zZhrrj;?|hsoR@jSTvqpFTtj#p>{{3nzsZ=(Al~>BCgGcsR~WqKg?L%W@0UF5cUMn( z&kX~YrfXzMu_f%MYGn4jsPnPTGY4S1hWLIVn5^GqST%_8vrR@f7}<5_rf<*vt-I&m zXX6p)F1IjG(5FQyxCSnt|H=Kpe|x0cQlo~LuHx|ld_*q%lIzim)ZQzo1hBu4TZ;KN zNLPl~?^bGP*H8&1;&BAQi30>D8>t4Wz*vDfH(X%Z=ExBtr^1xxf62FRS;32rv0ZlwV<*AP>NcdJl(?D2)ad z1U_IrIoYLVQYNW0Fw{&SHVl7Zn<6w= z`R5v#fw5eCemPLG`*yVW^`oNUPi}_#1c~-zVd84rhe_2Z5P&J$jLEuZ3YrndknqLSNl0Zcq~oqhJZFnl(fgCL*<24vP> zJipB6;=QDMu)M7pSWPu6ufZQYFs^F=jVGpPe_S{9%`du%z2Ne$_nOuRH(fcqD9M44 zV27`nk)NM3C=-u2T_Yw`tU64dp{uEJwX4^4rUMxotCNO zs}v)SKLUi~U(OXd80O(G4m0~{`1~O(JKP5jWccr{En`G^Y8c%_XLT6kLnhDjqYy@k zR1gc!R|Zw6B^`vpN-Xj-EccEBz^?I7#>2U`dGs}lbgP%HV5-AVO_WePUI>1N#7QE8 z$qN^aKKUS-GiWjP6o2C4P&!gkDn`lYF+V)~$s17`Z%YCKb7G`HQy;+5$tGF^vpOSw2`|e>foU*M3#6pTgA6>by zjZCxqiH?1eClMq-YJQmoV%Oo4+X9AzwZsANKAw^?nx!g_D= zXphHTvNBdzrSV#z{gJYn-n`TIMjKW!rm3D0o4h|wYA57~nk?=aJGa8o#STfP^5gU> zTOT93SbXKRWD*a^P^J^n*nCBLUzos|-H-#)7DmCzPZVg8cf)L|&}wy>fSfTCzp@sh z4=T3K)xYmCA#Si;l|u`IP8HZhUjJg+6WD_VZ4XTMgO*eN#_u*RgBw*g_~S!7751}W zj9Ue&703GQ`dY+RAl6)a%Iu2r+GIZbI@-iCpEfp+!>9U5@}iAq9bW z%^vD31Ludn2Lv;o*=M@^ma2|D*ksX;{xLpBbW4r_JAkI?<2-j~yD_t3)AP*@V=ujKR<>lqSD?N6LR|QtyG#iW zvtCS(rAU1T&%qg&3NsQ6u*}b-j@C+)gAV(>sT#d(*vii>hgUz-^BRfslrZ?C{>O6u z8x6$H+I2DJIAN$xm8THe{QTisO;a!gultec`;zm3 zpJw{rSgMIBovfxj#y!WZW(_U`Oc#OPO>HN4GclAjo_x?`Hi3yD5|0LL#vd=5)1P%C z1Ngv(Xw5RZ@P2c-4)yqu?I;MpZ})ypKJ>8#UA|HXziGSJgk@~B@l*g9a61(gMU7Q6 zr?c8od#LOp;wzjp(2yXYn=bGE z5nGCtl4^4}+Ze9Jw}VZ`dx|yuLo~smgg+p7fZUn59T>G1a4Wvs4bO+E5L=(6dS?=6 za?)IkmSaeP5G08R$3H<^&=3ODA6S32E*s0cAT#Zm)1RL&YmepB`6;fEl<0=b8V+|h zWGP|)Ru9@eNpP5xl~=hJSWQfabOYB5e! zI2t?ZZ?dOf_b>g3@!>AbeR1kZId5KRfCnEcV+1@BD9Y-ud&yU1us(sd<2e@l8*je1W1=yR- zEXOVu+gW9AZ`a;wCBVmYNZLriYUNDk06wQpIf6rA<+^*gbcn)#0_?*d5l=v1yf?UU zwX%H1w0wB#nQMSiATdh#ekDrI_$u#fb|D1q^%4(d5W!*SM?V31duedVKYzN zObQ<6G9ZVxFsf&sT+F&raIe;e3A5u5NZbZ~A{%6{lgh%ooVQpsi2YE;4tr3afqO!? zc^Yrd1yz&DvB`jz81(*(te0FxIe6J&nqfH^RZef)ej@qoG({U(DD$x&lD%?yAU z8Ia?0it4Lv+ATknF417GZ3586@_kNxfEp=VyOV>$_e&h~=eriRcdKO#VCAz&z5_$1 z?22~sTE`Kj&DWU{eZ9qZb?}>N-A^;;8;k?qw|zLf=jnVN3%MZ{KrJ`2P56~jG2vwI zYc41@c7A8&cv0V^Z;&dXjV(@=)pH&`Y8D`45RV{0I~k|MWm@>n`ly zR9+{Mq6endF$GS@#CmHERQE}D`_doLtA)dEhr66a1Hw4Zqj=7mtdm$-6029;w%Sug z+N#IPc-Xte^UqI&rX_sZwDjV)yKv z(eFN26cO*EOs@v_Qe&J{=TF-61{bQb95SHFy0AYHlTlb>(u!n#NvAQHxasZ$6@x{(T1wh>v0JF{kHC& zUwcE@VGjz4VQ0@Rr*5Gy3@cE-Irk!(=)8ISx6dZT`{nTVl0_N=eP> zZDS!k_;9Hdr?JnmI}e=;%^BMFymG7KOGOyOj5Mz|yVB$>ly`zJQ~c+zRhsoA?!lG* z!+Bhzy~;M)8v|`jl=_Oy_*P8%Z}STuDq3`FJZsiDrnDfDij~ma zig|2Kau{Z)Vvrt|F0oitl40J@C$)fgyS3>gd1tFQ(1&{F8Y<*2YeMIg?BwFfLd&6i_m9+stq zzqUU0g;_T^bT{X)(AVQdF=Tbw1p*e2Ot~11@1v{iQt{?&49>^&Tb+Lg*=gjnxVc0% zLDDqWoEB?Ri;dc#Q911Y5|)fNu7Nvi`OW6{%B!9etwNf=Q`b`z5$XU&D5Pu zh7vD~{-{z*VFxG^D+^<-^@r%%Kkz5_m|$T|BAl(ZGv3juxVp{tVF5=o=vjE5$khtRUW9F@(6e4zx!3kfJxdTd>*^C@ftp6-zh-C6n8@zR7P`G@RptK z%Kw7>Ap3yb@G?SVNkTxs zRNfU%ppZ{Xj~a0#$H8IwEBE!)pceZ6UFPBb2IjZ}kXA(Oh{acaePmt??Lp1Y86M+* zJy65w1)Rb6vv~KX;OD1XpKE$-Ul%Z!&VH^O#gRp2um5Y~N+RvVT=CtahS69WL>w&) zW=ki@sIn$M;=gE6xP2J3UkU4*8Xh)3vKCm*aIt_LO7fGT5m$Yk5ehs`-ma9+$l*0r z@srdf1@bqZ1kE+;6`lre-i^~C(L~QpMD(3*D)~x!!tcU9E-ZyBSp*BsKe{TDKviyZ z-eFcJ7t2so@o=Yi`rCtxZ3&CF;ua~`kT*L|tF;4!8m47oY2GcbDUb}pL1c$8CLO$R zZ3zRF2szWs!o*@t?%J*t7|8B%;a*;CgFgJPf|^ab3D2VtQK3KkyJz&aJ3Gp8VVO0Y zL_(F0HC2VMPm6wv>sjOGO;k7)GAIYzlrqxICNfyI)Y z01=5kxN|2NpTD>w)PCyH!YnC?Qz@k#1V0{XW@dbKJny)~M(2lvmwPuLG6S^1`4K-n zmmW(;brB-J%G9jzhJSJ;M0Iam-RVi_1gXH@W=Y9=Gy2HVlT1M1na~8Ehr20k| zVcMLBf;>YxElY~%hjdg{&udQi?+XB7vXC1fi3Hs%86OhvWA|K!td+MFo7x~DU?!h! z_m*y~i$v-RcH4?1oFpC7^2taClzr?_7-QGrJX6_2y5VMtzGOV0zgvK8jquz37?hm$<)~Z0hL4jz zwsUq=Wu0ia{XFuWzyOA-Hk_>_xL>!Ptm-;b%fYo+LM!17#Kq?JfvYO-9NsUXED1II z4VBl0!~{I2jE+|tjP&a)oi_{Cq#DWYWoWQhWK8w)ru0y284%3-X*El_Gm}r>%8;9h zm(ZmKy#gw#kb2@Q!+d`;^sG!8EL?k-Iz#NQ(eYk!qwB5$M0{@+2ef=@N+WWAgBZ;s z3G5gFXb+==A7_n#VN>=%4mhV0#^Amu>UG@Q*W)A!=gnRfi+2I|YlWnX#Li}w>C$To zdHMVP!8%r9zm^Lo?v{r~+#7Chss%87+4{=YOEMH_aV||2k1y3+BAMn5?|Rq99cBC# z7hp_eWTUKLibXr?P$7i>#ZibubI?>(8l(2aD%IKndgesLdO}T4{M=;h`wQlcj!C|q z2V4QzKw$QGR*rE4`GOz%icR^Q&n`dgOLs&NKsP=MrIL~p5h-PW$(ZKvJ+IJtx=)^B z-=M!9aA}+_lb^o1Eqw1jH!(1Zxw`C56(asFPBEVn-gC8jE&UvAmE1h@HH=-V@4W9w z+1MuJIs|fyMqc*GD^fvk&nCyw*L(rZR;Yk6?X@~|54-u(=N0CAtvGAzYOg-uVFs)> z!l8RyMtIbF8<6Vl*{As(qH%AYy#|?w+>^lc6dRrnOc7Au7^+;u;6s;C+43$}8Vl8R zZ0fPQTN;u7a`IwmE}xm)hmh#*y$)MB8Gzmtu-E2;!r*AIEkZ)D3cjOfdltExiZ-N3 zuPGT%N0gkUci7MyEbZKL`tVyPLNA@Gsxm{$b$fF1=T-CI*77XT+-iOC_+rhao*girK<((SOP*v*DooLcio@M1?l?XFYnGJlxqoH(qp4XQ=l>>FZz zFTi{}%U)b)8BeGAPYinbLI41WgqO)EOtppFCWvM4K(uuHs7WrqK_}Es#GAOTRip_< z3Ib*M02D$VT^JW*b5zy4L zKXntNyP`{7@APo;+zW6cJ-{(9hD};@;4?|bvXPM1KLXO{z9c>%)H}Zqx+y2~ zq@+?entW2I#=Dsu#y;~bpXcQM?tAolrNRQgMYEX8I|bay2EUV6GYE} zz4GR2!eTFPf6iz5SfeBB!}*R<4%S_RD9?I$9I;np&z?5U8Z0 zajRl%Ld|T+Fs0w|B*pmFC=L{{0G$phflnQ!(#vR*&2AgJD+Y|qwUT1C|% zOpS*#{qge*B#yo;ioCnJsjXRBE}jYi`p>Xs{&B>l3*54W$lGsgAT zA{dDgEe_}X0mn&a*oRLl9#s=d2#4nL4!n21B|5j4;Acg_zVEw+(HZk9P$F2Aj`+`~J|ule)5P zw%ynmD!bF#b4J_wN4sg#p-0fLENTSBnr%-(Y zeZAiOp{=yy#K?GvgwF9g*6|u*RjLBrAs{6#quDG{;%=7D>6N?AIZ|TKVtYciCbM#a zuO&pJC4{)VG}_gf67D6>2q74rZ(gvQ8nNqu38b3?LL2?n-2M%?cwqjZXY!g=fA3>H z0`>pN8gs01u>nnzK)l92v_Az5z*rbx`k9w3{Hns7O{978eT>DWXkR&(Gm#4hE1LCc z!2G~4l3YA2CddippUjP;V=CE|TY#KWhp z^QurE=&pNwx%IAJp?CrJZ7g)Ie)M~aq?5@iQ@)d_@bMdpUravV3Ho4vI09PuL4bs9 zpg#*KzCOP~TdWD$PRHY>)TfmA#bYZ-g!-zwP>dMhY?u}}ow6lY_GK#B@G8-1W}9W} zJOYEEI&2G|gzT2F~#zQcRig<3*sx4lmuTM%h}4>a`W*QW(mWU=ob zKJ0s!Nh3glMqMNBn{T^D{Ke#Or;c$EnBL@wsN0wNWw zNvT6CxFkjX)RHBi1YiF3-dz=sr$XNRXqA+dgc<2O+u)&5q`5jx6zT0kK6qoA_>Ixk zQ7PA<-<_2|<$VMtLnSh(x_z&^Ridv-B40~Ts{huqa$cC#y|@~*eWST2YBRqR?u#e> zCjMD#d7so>qeardc|@Bb{O-cZ0xwei&6mKIJ3-P}%>@VibR zA6hAy^(9-39afNS5kO{Lr1|A$FD%8`IoNLeHt*xttH+&$Vz!{Py$(N0E-f{Xa48o8 zt_k-oVO_|34zr@>Q)dl9W=Ysr^Zo*1>oxO6z>_}Zaq>F)?wK=?f$psa)i_=y2(?8C zW!^LlW->H^fWJ!y+Y@fKCKxRq>UjDsRPjoz?WORNG6oLWwGOPDK$DMep_)%!#_$ca zkx|d%pl}l0J5r?1hj)0#Swzn8RDoVX`X@pN*}@dny{-Cb`_)tT!m~8gJmM;ECCz8Z zpX&+k@w)C{&0>yAJ=6Jnvzxo)au2j?PmU5y^9~ojC>c|0zgt~Tsc;+B$TZ^w3eDA* z=tL{Zvw+_6(qsK|ZYi*-0N&}XQ=$po(uCCDEMvo9q3Gf;kKEoxeGdJ7F+kDL#qS79 z=@N0eCnY6pv(QDSAX%_c8I0|DqF<2~OA&w5Z%!OOHG0d`(8q3dm(%D>yU~uILTG?3 z|4zfN!5Clp5yj$XfSM?4i2ZR+mb{T*VSi!v>`;39E`0YBw%gGb73cqi_+jfDU@ZSA$HZ}O%uid^;v!2sZO0d@5|Rj1e=%kS?p z#D<1a9*{4vOB>DSGKGsrL2bbw6|5kW-ORkW&N93st1T7I18WUU2VPNvmQ~aKKshT- zm-Q!7Eh}3or>?KHlx-@%lDIu)IzS(wBGUICt^8 zSsB4zxxzSUK~5|tM&HD7FT-C&jon!jrVHg(?$O3qN`)HTw_51$OOeL&2&|KA-a4F5 zytOqv{ioJhb+B|MVGj7P@WkJvCHojyM^s(m=>K!-ZC7@Vwbw{tirgVpsH^b9j{`eJ zE}dlQeowrxB@OA(G{u_z-=F!n6DUW?g0xP$H-2sFpm)c{?-XV3-%;%tO*pk*JLqJ7#;sZ5&f zOC=@|IH7j^vKqmuw>e6*oc1gvhXpqLwm05LddIxVI`oH9puR6O7N_I=>*G0J>25#6 zXRA0gaZNr>xuHaIu-=U)AC@(_W|wwPm~Dd2lu5I0jEPDFKKvB#^!^ui-tI-=H`#-N z!~LSxw$Nu^U0rS*sNhF&Y%7cnw#i267;!Y(8iN(!>dIs@wt-@D|(LT-Mfa7vs35~Ngb z9R+jVGrl)JsdYx-M~UUCh-O}B30%v>q*GVco8;Tq8=Bd>DQ8xOEe^E?QTS2grti1+ z6M0MUq2u9$TWwoMF)=HwB0UP~Sy3ypyrUWv1!~;U$p!MSO5$J4(vHd(seQJ7U=S0d zczboKO365EFyTh0uA%BjK}o1~VY9Ie>_H3D1L;!2zH-HAv*+)%3oPm9 zZrv|Fk}Jdce%V3>A7K?AT_>N7+!;=Vsa&;g7=QiTZBtkj(*g4r)!Z)mweNZCc6)!} z$aCMzmxYxjdRu|HCqdELL=d#$qu^72i0Rrz_J#S^D+U2>oXYrYGS%t%M1ArjE9~X2 zwqQI!A}~3_3AG&@Fj7G?0=#7yw&p2W$Lh#; zA6p`jH#_k}-K^H;PMGKXnC4z?@|4@rZM)S9ib_9aeq?Rg<#VSuxIZP>=7;bDk;(1B zrOi+r|A|@xLZWtbsXMA1mEIE;hTC|$x6~m+_;KV;G%br-8Vfl=0O$TPZAtzb*~#sT zitY+$OG$@^b)l=_RLTy3q7lyi2{rjeUsuGs?bZQm^`Zu8TS1>JuDv~ojxGB-9Kg0z z)9%CbP&%;bR%wFo@s~jZU=M|VpCvHB&=6uXU*sFtG}aJ3j!#S))=54$=rB*>Q(ow< zsJ1&2t1Bvj3xqL%+`+H>;|;LLA;}x>F3k4h27+h4CP__(9UI_x5wdZlmg5@Djfa`$ z`yam$%Ube&LHAqyfvp-w)-y_2y+(7mv!_U}fg#zInYA3{tlq`~INkNb{C`l0zP)cbD0j0aUK|)eNkOm29knWHWq*Oq z=Dx1`|GfA8e0#@uKfGf+p5q*w&EBlvin-=I=3K|ILX{OC6XDa~BM3qyCoA;~LC}2> z1Z@@<8-Bw#H2DW!FdZc2RB_>-C+@2dc#mf*tL1X_M;I^?h;R#OrMSvg- zh@8|zRoCS8DK|~k*O%hkhlvI=*eaA*m{<<2gg2$_`dIFN=;`@Rp)j$&VzRHQ{rPjY zmN(x7Cx?rJ+>@fzrw&Cr_U%)Xl2>1Uc<7u^>*MqE-W}eS@4UP%Zq3CO#eZz$N$x$` zU3A!VpqImCl#qgd#32@kdTm9!D!L&B5VBrrnlYlvCMND)iYJ@r_+rd zSzf0HRUEhyrlxH3^Yew%-dod+(ad;B{8r_gw@C9JhpO-F9zHd!Jf;?dqDSzgpflS?f^tx|h=9 z!^2k&gucICeoqy>UZ7FZ8O!oyJMHoe2jP9)b9K_|a7xf=^}X7ui0v$5-1o5qkyWpU zmf%M<3$*Q$=8Luu`rcX`U9lM066Sd~)^(AXBElPjq=!>3X>)64KXVKYH>apYTzP|u zX~TAx2HJ;*ha)L^Ug+u3O-@d(>&gTyt*`6+eNbClYwO}t5@f#WOmy%}Ss7tvWo5g% z-Wq+rJ@uGKJ59`s*XzVlr{0;!Vx;g6r?}JVRhX8+^4Cvb@C*zL$dy}9C1hlR4N|IS zyswuuov2bKZeQ*%`<_(T^wRMER zv}^me*ZF7X^MR6F`g>I_TYBwx&wp1Lbwy^F45ZpRINTc_9T2~KODF2yGBrh;nwm;| z-;}gJRn($l=Fgv3Z|TM99zJ|%>+CG^Ge==(@DWLzu(#G?LzVC5ejGF22OfPH7*RuG zW5%=3yxwQ7fBycxR`fzsGvtGwJ6=;$)Arup*TIZOb_<;m@@s?Q0x1ui&=F{KdYewW z%rI!keW^dC{rqr-L_k0Q6B~OTe&nexX={`Go-A}_Zf*|sU|U;WJ&z5(tCW;9MH(y%xP7z`mF2d( z82nMseTC)E($e*!T%TtBT6-)Ku_Fc%QPDf*zt~Vui;Rqvee#6EBswczTE3NjqVf+T~UuEBoJ7d@a!ia=GVu* z2s$p4GRw7<8noN)%u5%(s3s1lJeYCI0hyrbeN8yfB+2dqd6Rr%d_1< z^U4GfH~Tmzv->otjU(!D@bz@7IjYiPbUuhm&$qr_c-nJU;VlgxetR%c`%;=uWSLP{ zrp0Kn=};yXqAO6OQKBa+FW+`=KqO$XFKMC04@;c`$>T z&-`jwSXim|xw{BV(9up8{T134yOvm8j z>^RuzmSS=UpT)?_Kix4Qp`optQ}sjxy06Eptiqv5qt3V2Tu)YVp)(|i#M7s54N}1N zj9PrrsQE3aQOznO@z3p#>UT}K%tZKM;GiQF+FU5lGvjkft0aDYAJx#$TqUESOz9fe zolLDN4?BZf@v2MNL!TQ+m zQUeS<*Ey{AI%#R?-xX$8=)Cq+z;z*mSYvosZlMeVc62~>wSZ!>px?$swGqq!;tLHK z&9?Z3goU+zPrR3*%tq*wcYZKovpiY*MMXia@c`wrzlL5Js&z0CIp6z<_?DLPA`*GBW;^gGy?U~C9s-U1CTYLNb ze|!x2D*kz?FPc1S5r)VcLeJ(Nu*boSz)& z^s1Ul(%-$TO!|{=BOx%^)J3P=H={y2Bd%X>ij0b)LcZ<}h}%?5cgNi9ZRF0mA!ILw zkoJDy;W-pN->onoW^XSC7f41*%79w5_VVEZ4T2y^M(@)NfvgRfSqC%;FarAE*Nlve zhLbgR!6o}8FCgqmgTKkH#NXLkyGBjTR{rG+QLljYBpVU}JMwybqI>aDUlJ>`9QkOm z?mf<*%`>@*DcaWOU@&3J%cfbcXS@zmhCJ9gIG%vJL;WfyEzPE)SiOMntXi!=or#}+ zr1Yu25jYvC%ZqcOUhsE8q%f;f%g4VwRzK%Tfk8>TyVniR zK}=ujpzV1JGXWhPos0&?2RZ^xWo6&JJx9ltA6SU(*^%9s11)!Y^GcePl@*jjE!Jzq zuhh005rge%dQ=To3ek+n#l?k?UTm_o!D(#-roR*Bg{T*`5B8RaFd}I9B;nz6LnZp+ zruS*qXPReTrBvI@1Zx+`MA3=9^;Wd8u|ZnEqh9@jd#5C3 zrds{%vy`Lbeb_!md1K$c;XyF%fK}ysP@G+|@nt~FV$TVhijIjf5R^V_zC0&Ew&%ln zAS_k28*!14kU$t6->!W3?#cs~O`Xks>xn9^@d`7ey@vgjpEwBNz>C+n6h2~RKQnXI zg$Nv!o0~hg) zxOn?$Vq#(fp9LlCrKn%ORI{A=h-`e$c5saQlS2b=NaC;G%TX_YxX(T{-O-MmQzQO$0 z&;$spCkGqh2JOLfWnFY%+|%7(zI<8xQ|AM>E;{na_I5ACUSDpJ{xos=l7@fy5Ko7) zpHLCfiBQ8dN=rycWOr5WRa#9q)DDe;9iXQZ^n(AWao(W0iXSxhD@|{0q==)aT_;Cx zOD2Nmnr^K(OjEMB&vfBvJ=4h?#-jOfe%#P#EHk5s$fPNuv7sT8@%IEjtBI;Og4Ne) z7C1OK?~F*&T<7tgCf>z@P}uSI+P!r3f*sVTvOnnE72!Ft)f`I>Jvkf!-^{M_xJdoF zo__l3XcLo}nHkEyeq=u>b6k1$ZtcC70;ktSs5uP=1D`8wPhYT4SJxVYvF*8byV(}B zhLhETkhgCG0l`5m!6u}BsgASW6UVVUQOyI!6c9u}#RPazQBm;-eCZp&oQaiDVRd&X zxTqwlFN%iEhnjtS8V<%SZjCms71txn*efKo53ZuZyh)l@aE?M!+t3ghcpCv4k*(F$ zFz~KM1F51%E4gW8Mze~})PWDaeRBdN{kEyr9#?l*lZwUhf#wx1`<6qLeORC9S zfk8oxtgJZaC;J7CjeSW1?HwIh&1e6@hxQmy{<*qXGDBjf$!n{C^oO3kq z#eH!TrhkqKuv*K%u|q)m)fBR!PHKjPC8Pp6+ZWXdjrWh`%L$=T4*zzd%7Dizg-(b$Z z4)^vr1vcc&;v1?Kf9Qvv0;1EZ90;3!6pwlyn8j1Y?PLf>BWjKD+Lh*ULp5V4;03-s zc&YuD16N=R%n6s+2td)HPjXkjgP%A(*x(pF_n7s=nO#{4g#;kZLw`Ano`NC>01KyP zDIz2!^f%JLJpYV>u-0=CK-B8;lF=(pEf?z(Rtg_A_0ql;d6QJQtKrnEsci!2SrogL5IYG z`tB=SI@eh=K_MZ7?r28W#Y7YEvH?8JXXM`A-Zf5Z>JgWPs2mbZF&GlVo7~*QDk>^~ z4?9+V=9ZcLyv5ASoG$n77AiS|ofLwGfsI0}D5wkRO4#QNv&FffpT zkB=hF>)@KdzyDyPhYJFQ4@|&l{*WRw-n(~2OiWC(*}IX^@?$$V*C+9utqFIGY_}Q@ z4ZntvZSU_(gAepRSz&ct8zD;b{D;S_*AUX=b!vFDJ!d*vOnc+TjcrKQZnCgo-IRHo z=Xkl;RJ9oP_U%`QqoD(0r-Ts8@7%fbyV8ORz`ft1XF(V!GrP4 zI|cx;TLBpDtbZ9W1UIxiQgr=34H36ajc>$tfqBUF?|j6ZqV)9iL=6I!j^4g~`)IqJ zgp7{PIzj$3m;o*ULA%f8sXj9cODhZ|Nx-J+D3cbkb##Q0+}!@gnkMmCbsk>spEP~= zKn00FVCWUrObAWXLiWrweCC1gSe2M~ct|)jiUTDxS~T>%f&j`h0YXOQT#%uG0hR&~ zbaiu^1D8=+QqFH0h_>s>d7@A~w@PGy;j}D+i03at+-nKDb`N-J#RwTW6 zq`uGj@E>|LDW@<|ZqZxiEa&&BPTstG_YTTyq~L$4!l`)pKlVs&!9>i*JfBq*- zez))tQjl= zxLBu_>12P6H8~|EsJXcrm9~C`+)F_b!)SGBaN>(e6x4_)0MtX~5ds^JjEagil1`L8 zkd#SORQGABh*pK!PZ_WVf;f4W%&e>qm;nwiy&&Gp%3*Pw*SSr1_@)%Ry_;NjI;fO{ zLcFHng9l;0z6dJV0Cf0aKd=Pp;ER<3CDjRLMsu@I_sGapuoP28Lc6FwxMi^NBRlv7Be_c7!tIw# zOyx;~gUX*ieL^LZkmB*zo#K)W-@ujt3t~!~qyF!!0m2M#W3TO zVHg=d7lKl1o_io^jl&W#>=yGHDB$@A1Z?PHlaY~W&B2V~;^UXQTyt(k zG>J}D@Qd}EiFtT z{Qs&_D@X!kCmYir*KY~slTc?$=Ry-X^F4?{XPiQ=4UB3$|4(b(-qxvzw;M){Gombr zND|d)YPOilqd4mQUYAMCGfs_;lj|aZgXhv zCXxCx*cEX>(s!x;`-jEJ_h;7+ebtS|oV7w*hDG_Fzx&P$%SxuQ@u0cy-!{%NH=$7D zw}bs|(*OB`tGWqa-m7Cw)|#EVzY6(JJ=^?)YQzzv7TJx@|6R&_-TYafT(`2oHneTx zDlgHyU;o>Uf(_D^){cK06)X~e*d|7AJ|gt}PjOtQ!M8hxGPPd~@!s%FSL9QVPySz> zSlhv$&Acm)DNoM(l5UH@@@4}SFWIn#nG1f|oGepS=Zut$HQ9};Mz59@sa;)= zWLm+O$=#m{r5JX2l@o{rYcc#(B;Ki4x_GLQ@;Y;rnzJcK6NTXC1jW4f#hi`Fmgt?X z)X>LZ#be}5@K2KO?e7nk&-T|Y3I-h0*vl9jXBa`bb>T`^K%yT&ia!4AlJ&W)uR6l6 z@%X!2jcD-n&+pzrV z8Ar!`&s(HaNw_B6%6hhO&L$>YEqbp_{@n^y%n;+#rBRu3+Pf$LZA;L~1gxaE`0}cE!sA+kuU*7$7GIM@9yehJj+7gj^0j<(l33T7QfvE_ zzI_!eh2vVSH02v{M46rW)nAH<2D(gbmknfFnq>BuJB;74RmsPqGS+kUH~!QEfd#*L z5e9+bI-|I&t99YOX2Awk8s}F{ry9H^aceYdxl~eO>?t*O*_4y@j~g9>WCW_G^WXUH zJsB1@mNVF|%6$-;>kFMXyD}S^HER7RtFn+Jk3xb&Jc=eitQ%WC%y)Of_ohDD=Or`+ z#@TtIife?9A8}o=k)&J8ZD~SYwi#&nTSzlczMigigL@OBA;O&L{#t5jQPXYvW5)!a zT5YpPmfkZx@5O{B>OyL;e%YF3FLz2Lv>O#`Bgp&)q+zKCB~O6In%_z5Aaaa9V9 zwl)qnY+N-@{3Oxm4I!*=(`BmSq@2?o8P{xv>7~yLofN)a>7dUJ+Aq_kRn6^wfb>Ip z1qEpT++5bPv$Ji$KnrjjQtqN9r5bb`bZJiha#P3NdB@#qqlRdv)W1BQ6}=NZHxlK|#|$i;Ls+_nGpgIDC{m?|mi^ z(Y;YX=qHJUCb})3x9W*}Ibn-roi0vc3jMybM0M%7y!!G81Hm!z(2(E@JVfVa;o>3! zEc+Wu^X>=hT7OR(J}|_1WgAny?8~sw^jfB|PP)?({*3V8Sd?rp%(jMpy0MvjiQ!&oy|)8pT(U@di1dse zk7l(lx@MGR>uN8)XZQ1T9^Cup%650~EFy$6dl+3n2}#uO!=T6b#%j?VEM|kOQ2C|l z-LdfsBHzZtco11UR@YrDh)vo;z|-Jc^rG4jl4~f}O9!nbt|HhtIKA$KXfdSd;V!yu ztRCEtvMAWjeXe>1I;gU5KfA2owk(PN>p%5vO-s{@4Q*oHCPOwWskrUu7@CqJerFyx zqv_D6e;(0#vi+UDBtBnitb;He@%LMUP3p88xK!fsf3*xzwD?8&HaH4XFrtxo{j-Ul zI20>g($&={&HQY@%reM^Nqu-T-Mq%L>$fyQ*M4yCc24ug_1;F)ZMhdNM>Cog8M4 z5T1Xn2_IeKYboI>^+B`c&>LO(sgIw|g`GU<=h1~Gs{eON{FTHAnl0e4qs1hfQpnE$ z;4lekxwKov$zuV;6V`aFTAk7y7ZJ)4#c;czW!?8aVktB;Z^&BA!RT>4u%1U8O#$im2Uv z#w%IP58nEd_oBbYoc-DO!S0q^#L=3Tan#s^rwCrki=%|(y6hN_zeWTc3k&^`Vq?D# zJ|B?yAcKF$dU$3{M^p|O#$uh2KiiL)dZ)hkbRAJVRyH*NH=G+-lJj?7#yC})%2F1I z-)s(>JH-01hCWR-A0T5LY21gQ`B4%b6>BrCLfD;Hv)vD;D)I1?vCuZ?zc|pUj@r>l zFqL=r1mJaZ{L&Ql3z9?+;}o&tKy>7KJ7NO=x$M~5E5CI7K)OU!BmF;IfG^er8Y3b7 zt?@Qesxe2E!}VLmTs6mtQ5B+SeNYszDgtQm?u&=%nEGFB^e)~Hj+5#0U$y~Ba1cb4+(N~6R(+tZPU`~HPWXjfuh6YKU# zI6n;4jVy|G)WAua-}>wScR|<)7EndAu;_leJo(_w20UZp(7eyjK8vy4#_YGkQ1l^~ ztj$iM=_t51Xv|AGO|`vU?MeP;KKbM4;T!lkFXydW8q3bj)7^srgME)re4)DGr8yyd z72Vb$|EQQ&g)yS^xR$!1>G-PRl=5{2uB=OH7nlUgQPKwfbfOz^B4|ucBoQC)&q*XD z485+34KH?D^e=y&PmB@Z){$&CUpKvhUEzUiyI<@%Q|wHr-flie%)koaV zswtzM5TOD3Oyv4xx4(${oSm6)jXJQ8)ml@;NB^D;)t=>Fi;=nw47CJ-b!!XxPr>WU z_6yr4p|O&>HNw>t)Vrdjt~SR`n>4tBZs^kSQy<2e@Np3IL377<4_tikmbYE|XrpL2 zQL8;6`j9>FxNgB*ySO9Qo`RfovYX;3oh1gEUtd@3_of6Xbl!{?1ZA&Lql@ zba;XGc|JUZGjkX*;m2@G{M*bb*OJ#Kar(HxjTFz+orL!om-O%^X$vFKs~2bD>||PB zJ5)j`7KF2OpO?rlO+A;byXZJGa50)LCAM|AOK11vYx}hsarywBPASH^?499odAT;< z5X928jzH|X6OYaftG!l*e{o4UYtv(4gGjDG;zg*T(b8p7 zc`b+?9m2V|uo)OJ;MnmG!^ddY&qB7Jdk{-Z&R?B_K~AFC`NB2FggR4_My-Y(CmX$t z3@s!ASHjqu?1uwBc=7FB$6(fy5tbLv#*faKZ~GNm#FZ>~e6Y4|BGE>Z9*f_YDGIe# zl+2`QLu6mwJeH;b@9|JC2Ai&*7ml zV0RzhVfBvm^SA=((_K3k|ET)sL~2jUm#*a0M@w3?bEgZP+B>3UvZ6Kf+`Z(ti^Y@@ zH#!}ZSH;I*P~p>+>uvq`XtZ>$+vyL*`Ke#Jz0=q3E% z->Bh~TnhpSyhLTR(!^2Y)2er7`!6SjotX)#6WaagQaKgGAW0x4VmVz$+~1O?AmQpW zHHv?wk?OpBB)~W3`tS2Bnl6};Y#U@$JkaHS`^)piGiSoJ&N7*=m+-be&tklrD5HD}%aYThzbK6gcGBs!4S z;g&i(tFZ8Opg2Gw56)5!xZju$MNGIYA79X^MxXY?AcDedwnq`(%C$Q@9!&MervkG{ za}siX$438pp0WAuO!&?AkBq9k$NBSmx%0G^&v?1u_1T#*PINc>+QrjAmglATNDzy* zrI>eCjyw~SL&Y+h$f+XMrjD`R-HPUwaF)R#*n4mB|?LyJ_ zxCAz@2@p*?1~kjMD`Q#o5B#%^WYVsUYTJi)XaMO9Ov(;cQr=fG7eX4g# z{xs;c!t{7&y8c%>?eXiZuS;oT+`k3Mh>QY6*xS5#i;aQ z^?d4&O5X<5Lh{4WqPr#0^tf@&){Tdx8GJXVYry@}>`gs{LW%cFgt45Nri*O4?ch&t;#2jxqyJzdCWlP={LV;lC>*l@A2^kY^T@OLh z^Q6LQmtxE2CD0Z11|-X5T2vTYdxyy&TU3@Ozn|^hx7S+wxd)40j4X6HKB7qM;FH?p zvQtU(xVe%FX{E`4#}BZzyq+>;ov2rBRplm5kjU zt~rIyrFC@G+6j}0PS0RG@eZIMA1wY%R>gN)~hbL1%y7nn~r5N z9NX(3jcQU8O?K=!8|lj~5=^X(7xsuMQGbvb9002wO#Z_G5{hyy4Q!0MiFS$)xP@Yl zee*`NPim|V?Bw4e$u-^+|A<0E@>)^LpHcay85RFhr_|tZO$@NFVP@L zNo&R>9A>82dl3Jwk9*%5TlOb$fKOX@EaIL1Ht5{o5+g=TEB&jpZZgFRp}zEt>gtO| zEA^(=6V7I1)Fa=SZX%Av`(>Vwz>0VQA6RyOrg_I%FQ{F$0qBa7{t+YEVbFcaHAE@A zn&p4`KaT0DH5`ZGYpdTYnb`b+0NcgXd??{j5t6z(-S*=L*sULgvGNR9Ue2bw8n@Bz z7(@&;lqGd^CGBoc;hN1GAJ9reMtdjSt8X$YAtYp#1l70I(GilS)c(>xk}o5WPKcjQ zBB+QbdOg6yUlnXK_(_hvddW@ScC^ZmPG&l@sk!KT7d9< z>C37Mb^4!OQ+P>f;jIE!vWA*dnul&1@KE7AT^~a~)oY}`jIiq4ek>)0xN_8(&lSDO zV-oJawGd>ZC~-6J+vy%Vi|&$*?VFsV=DEX`v4>_~jHoOszz4UheD=-#f^l_(Se}{5 zJRMg5KLsF_*B6Qd9X%L$zg_np{0n=_s<-*$2aesH4A*pB1cQc5h3o&`6pP(loUKC^ z)fxRf!QlbubKZ2OD{BT@m?r<+X{+ z|Ao)3r%QxH39DLR%bRJDrIhs^Z#| z$w)~#(Su{WHeX_5Fj+1hqpSS3Jj?h=1-f`@T~N`E02$Slu$6#`MA17?EshZd$E7wm z*=H$IyGM%u4-`1$%9+E4{f{<;mgt~rsg;cTF^^mlx1n@XFiifw@yxtc zUxw6rV}kmZAgF4pVL)_b0qFd7xI)L2Gl5g?b9CuH3CW0IRMAiuYKL)daoonAF8JLbl4J^^2rUw{B9i8`MAiE&FhIK2KeAQ?1g+O@3NfLICkZO0~=_^ z3H-eZi->Mvv+{Ir9M#wrGL+@ zCEMC*lXeblp(iGHV6>TW&8+Sf=7uU%%D8^8YBocSex#%wDYO}D- z@2L>eoc!Z9C@vSG9)v~j!s>bGNyrq?h?cHH`u@VLMv%SCRf;)v`B%e1I8?&R5uWGF zcOP9LF|l;7;)rB5HrQ{)To?S{-@rr!-jfSTpO#PA=vJt4NlY%};i*$yN*ql0PVR1O*+Y{N2?^9F9P`SH|Kvx1cBkqCS zmlqMJZ~8F@mag;TyaKi%5u~w|+C)%U_xSKLox-BR)#~SMPah^c`Jh+-HgCww`3F2} zTgu9^^|>xCtSSe8j3(YJgiV^}eR3O4oZ#TeA5OW>fE{_j9oj=GIXkS7TgoDahp;#B zCCT7kjWfMtH>`4_CRQ(r1&Y?g9OcBm*ZD15dU=}PLb+uAXlJ2jDb)iG=fiq7K(kCv$LwvJE|G z@9QH17Qz=7Gu0m0CX`d*8XUgw*CnCFX8~$tT0rc@ffJp!+13CRW#yM!_93!4udXBE zVPUrGzwZFoZlLsOhBE5>UeI+r{hJjK4PsJKtoG7BI*HyRY1UV)u1U&$&kTON2&}k# z8V+26n-oz|ao=-)SOb7j$Se6OG+t3rTAB##i;D}H-t+VGnB-(j`y@Daewh928eMB^ zYo$tlp{{(R(XcZOqwQS0(**hO`{d*s4TsYnq>@1P5pq~8C6JYJW}HAwBjAkoA)Has zjh5(FyT}pgJuDkpwIX>gp(sUPvotQ z0BRE)w7;cO{i0eNscy5T7GV`?S>$-A6r~HvIMo=o1WbvPw6p>6z=B_E7g54QO2W?@ zn%Cl-ZFXgBU8>HA>E(k0amEvg|4AJvSDof|aWjyO1z2J*APr~#dXN6~@|4;Cl?Mt9 z-GJ!f4SNTNJHY;hb-c87dS)nUHNlx zY!y~0?E9)I3okLm%|;;gg~tt_ivQ4xG>N}&z04not-z7$1Tu@&vwLKTx84kF<--Ahn)$-en(-TP2^acl@M}ls_U=UL z(yH}=qzPhP58lf!+ztiulVX}!1iklB#w357?(vH;J6CBqIl#tlc_5Rb|JKRpmSHQ8 zkHN(Of#$*KjI8>^QoBSJg=XDlzS=~wNc77I!;p1Z@q?1R&-#sFo#@_hglwF4!o>xY z1vu%is8ffmL-2P!@>mfEKGNCx)Ak% zqE6D}#?PJ0CB!%D(=lm^Rz5uX9GxERJ0K&S;Zr}Jm}`5Q_`=n>&#s{QaxDeT*17bI zn@-9p^mCcdYc)Q~=#W*)NVGq}i0Aq!iIJ zrbo9Z;tmVL{)ZB5r^i+!PWnH1YN9X?1DT3$3u5|s^~})IMdb63etj)%wB&}2&csjo ztno$M`aEk(OwViWnT*Rt88PqPy=!iH3FJ}QgRPk;kcBX^uyhn|rqR{=N~xytBI83) zqL)+&9hu*NsF)NvmFE}sc4}hsdZheXoh!x!&hHu;rk6YO9l$TR2805`T`!AD?WbvC zwD>{jz$`?a{r7ENtdzl+_OUS1X<4TF1t#0RlhYJQJX7~3QhoLPX9rpP7C|tdi9M^M zjlrqE>5dm9dP{2-Sjw)0R`()vIJhQ3x$yKJ+2X;ytK@^ClT>rwseIa0-v&UmLb$tHq*F_7 z)3{HmU1e$Z&g;YGg;{0Y3>PEj1LyS+pu=lb@H~F}c+zQ9m;ZBkNL~(1MNG+?d-9yr zm$|v9sz+gpM^M$j!>?^~F|KBhJmVOZ8PWQ@CQDtVUKRb4`4u-*jx`Fr=)>{bs;KG=+VAPkwQoP>SBJ2Y zyM-QK1?BbR2Tu4v8*B$Disi_~lc;l!Cs{+Y;5lT>&GYxg5i%9pufl$+0bIu9;_p6n z-b_39Bah(qNSKyU7UQ`9D7f8P$rnS8| zbCZn?1b*P`?=qvf{>Pt(%>i8b0rBP|p)UeV#~lc13oz2^u>mQmgAQT8QVdfU$e@ob zRo~C4+o-uMwDJ@BFkh!|y4;g@L92#<04|!QcwW?QUMfzvrKirveI1=#<ucR0ko{%5y_ z`E(=P2rV=(1Mqt01CwvDENZDId>=lS`2r`l(p(=43+s24Rg%Ig3e2XW7h_jNhguFy zmiff9i&F9m30(t`Q}#+q-*;D*>Y4KgAk%u$3JdJ8zp9ouY@W3Fd5j*f2WP6!EoAgVixX2bauGy?oyxk(^vLGjptq^t>yz_HW&E_y%`sr^sS{;riY z%ecF{*Zw6YCO%ruiWurI%yP=k`H z()|Tw(EbpVXZ1;?s-CMIDk(ujq8`8vt0-L+nH&^4T#ZY?%d*#^x~9iA5me(SS{E4EMiK`&XoBAH}>;fPe>l){E`3=dsJv&T0`67 z5E?=X+lgQDZS&w}u70WbFGSOVL~|V>k4drmUE2EU=s9~F(BSSL+uGXtlA@zRDJ}ag zru<7+GF-ATHTVR`ltDmjyU` zR@MdJXQKpLHeEd-AvCvA(Qh%;e-!oL2LrDCE1yjc&UC40A|%8dLH%7Hkd;yTAMh&g zPg7;GTIqex{2?;3yd4Ind(q|}tI3+7&S6rrZ&$W3C8a2ZK{Pe(u_cOIX7B&5FkGa02(eWtB(6kW34q&hk0S zL8S!(4oqZwvwn+7TzsaV0zS)z-2K%b;C#DY9511=j^P7vrZ71II;}}DF@8KvM{V(t z8L4oAy~f4><&XkJ!34Ua*-q6~^QBl@d%GQ^Js@O2>VCF@V<8(BkDdLht^WU{!Q`uY zdWt~6!A1TTX;Vi>=leMS&6^mY+XD@oFSDGC#*Tb!AS{Kp2v|+G9&9*bh8W8R(Dm5b z4(cAprKVb|P}$D4!NE8urmy|;8dN5tdI`mXZxYZtfM4?jPp$vtC<%O&ywElQ6?dWI zrWp7trhI+WSkocB7?|XKxw5G*{ri7@OH)%0E8|5i`U z)AOOB#8vdwdLQkgk@*D_GFCl=+@4Pv9=X@!jK;Nb0l}dC5w0IF7QfEBL*eaUTajV7 zCGqR$Vs@`l5{H#7;{WAI!xa}mghZ}e@66{pRp(@}w>2}9xp0MSn9|!DW3dt^Bu{V1 zoO6&uA3)EJcb8E5utC%N#`JLbeO^-)Ch{4 zu79c7YC8QsZ4Kg8<qtcue+8A#g*uthn`r<%dd*6Etb~@@70C*%REp0@4I>VQPb^)jasGPSC*d*#< z{%CM>$SM&P5kU}806@l%>c>g`!w57Kl{hmW+?%F4sCZww-bzO8oG<`c@GtTIK{fuL zw|Wr5Ul~CH2YKNEcYtiw4O-d^RrU>CnUqeTvc9_cACPjBgQIskoAg^M=mr5lzTG^L zzJ%ihrgAc`qg_zsCna4McMVyGsv8JUKIP<~BOm##%$LGYm1HPJgHsIN9tCB+$A?GE z761|uUqFVS7~XL##cRL~1e)KT(FN)@0UbOtw95-_dy!%@6l0eE>(3@BCk!7djxJz% zN;$nHMX%lsi+Q1m?qY&--`?TRn`>laR{>n8(83u(=c17Sl+DqLUoT#Ze{)m=M{jI& z5%~T+!$XT*8&mZHD76p>4#quaq*MhUsF4k$opR^Q)$(;k>wmg^*!cCk$oJ!&8AL@rxdS)(YqG;|ZMJd{lh@UH+P2eqq7l{I`^S*B$7hbJdn1O()OgmE#T? zTqN`R;ePMGa6anhGo|(V1mm9zr$PtaKhi^vs8y|F(U z!K8HzN0T3ol$R#BW%o9xu0PLtddHI%;4|c^hHZg(p!t{DUF<`t-P#YYkdrgWk)tGp z2?^AYgQP>X2snai1}PLA>Mau!6U%}xsx0rkeXUbwhy^<+2r5XDvCNRG!RHBuJm6)4 zu+F>KpF-f{EdJ>B}hJWYL@m36a7yV4MnHTS>3xc`RI>e<@13=PFR z48VqJanVFGT&+OoePjT_iqh(8R%Yfv5O%B`6y*05YJEY`@PGUuhf5CN&IZR*3TaR} z61guqqTtu#zTKp=-r%%iPGW~$KI5m|5(*^<>&o3WjaRc6ADuZm( zbgD`JcI`7Qi+>uA)H43avs_MJS_E|NL!7%pN-6;wa=4me7Nq^nifpM2ogs?9q);*^P^O9TTAwsI;kXeXnwwD8OLc=PbZ5>)(D?P0}BI-=nP_FsrmWrVyEl(P&C|~ z9Rsk6KY#v2M@RpMo971NE)bN9g20MXx94h{i@y z5M@F+Ee6!VC`k$I!3+>zy`>e7hr2AEgR*ApHwHTT9$jvBHmH1Z!+SeBgF*3=pP%2| z)06LVE;&hj4U037RK~ux@Z#Io;jkWd(~)0o5<|=N&Z?!EY^rK%!?g{GiDOP&?_KU9 z^D;Y=?46mJOm)s1`D+d?d?rh)D!*c4V&IAqC_$m4Za2x!W`QK9?#0*5%}qdvD4u4O z}iI?$FTC`)1EX1&nlyK|z<}9t9^p)B@JYdOmG5phK?|rI4f!WCkj#0kZYVGS00Xddl%ySWl7bF7 zG%BhKG@`=7_1Ed%B`1Fe4E!Bbh<>XNZ&GpV3<}E>43pE*DZ07}!VCccITfydxCWjK z1XJJo`i5yeAe)4u+UJPoW^vGX=YZtc#WqNC@>(qx=T|lMe0H|FXHs$6hw;RW)*AQL zZdEu}E$tMblDkD34*x8vUSTB(T$ks+iMxctC^8Nc$ z^%6a=DK>o&-hpCM5N_6izNHryet%g8>L}D+Nq-pdyVikKOG^uchNM@nWL;;2RqqR< z;E+{PVr5|og1bu^y+eR;3OAU%h0=>1X!hZnlTh`7Y!Ks1IMKI7iJgQ%m_%s?L0GS! zdwezbX<{45ZbKp?7hy_J8y+NmJq)CF8gl4tPxXf4m`3Qddeeylmdi5<9$NULUW|OG zdk>N~RMq*O5(JTkWs;6f?N;?f;vd{U`DY6vI0LxI!EyChDELTztMNdP+AE8i8bQU< z^K_#cLUfsN9}R?&Yz=SN^^m}&={35;-7DWgjzmbAR9VRh-aIZ+3n*MEY`PVIi`Qs zD-|@)o@!i8uflHpc%CNmbJ+A-8fm6oG^TRGCw&5+*W>+W$S8~VXuc{(t&Vphm5-;& z33eDZnSJxU-n6ygs?eMVWDUkXef(Bei0lTOvU2@K(J3Vp=)eO!{UPpi%&KOtR`g9j zLcTJ#@QK!^KRKj-C{;bs7*}uq@iuW*T5E4Uyp-3m=V$dkHM;-#O%`94zv#8`N(yK7 zPMhQ1y*%7j3JLH0f)*ZjNL+s7x zd}X^&ur%bH!u$6recp^SctdmE#W=mwXKc?fDQxqURa8SviY^g$=9XtU&2YbJ=PvQw zk&JS#^1pN1$EvB-X_;x;V>MZX+Wd-3Rm{gW$g|jwJ(1h;q1Up`uCUwHpqKmSg#ItP z7a|8ssDCw&WGt>Tz3uy|`^=p?TRG)f1o?uud3@-7mu`3Oewc}EGEJH5ZBL7U@4RE| zwmbOWqbma#Rt1`wnUtE@Y(5cVxmwF2POs|WU5@;KX`hloPGM!u@7Fi=M#e81DRrz8 zT&;}T4~V!r6`Ml;q`HfCCgA*zz;S&qxgjp$*xs$fx~p09iaYkFMVZl;So1XO#NW4W zdBeuWwtfHpEV)5$`FS*ph$ySeR5~gT9l9I6bnGpYT&EVOEP5fD=-iwXjfkO|mdc1<)?n!X4SG0(TkNm}p z9c(@PFe(DjFbA@HXW6g}W)Gxwd)KaAp+}tep?e#SEI#n_8VZtep4f)o&B~GzMih3K z+4vM39kXngV4mhY{oULC`t=W8T@m0DPzOtGPo?g9YhDK)j|l~8BnxmCY8cVxybsVb z@Up3-M9xV-y8Z&_H8iX0=<24!_JskB#sdv8D?k;(>I6_R$8~0+&Ty;XY85=`44;}u zy6z4~H8XDyH2c3&;$h`@n#ElGDB^p&N$@&VZe}lOjZJgIj}Dgg=O=YdHP(Uv2e>j5I2UtVy`=W*>?vjZIA} zSy_c7B?ECONrwSdl;BTconUUGaPnkJo~@v52zlj3j${TlR;%A@w({b&8E)r!r_%5s zVOQ+#_XQa{Bc%ogx*;9eXY%16STNO~0|=eVrYMrRRN^A!s%RfbshLDSJ%f~OMS{`G zqQFVyj&UiL&}c#E0{$hy!TGl`x3#~&ALeOKA|krBj1zMz^U2DSS}^+gtJi~Wd>CQ0 zl!pcfR{#vAWoDLFR50`N^CR`%iE27(Fdo>E`y7XLuqf%-*_EF@JqB*W?K6;a!uIXk zLF{?qPcu*nz^)n;xOM!vM^_JkCw8ZU{nyskwcOlFSUFtOI8M|>uOfjJQRN` zX2E}@;FyE8g^9VGQ}*b;_oZ#?t}D+_y{e?GK_dNP42%(6{J9igQK_Sy+iPoURa32A zc_GYcDq!S3{Y!G$Mpn zM>9QYef~C6F5sBQ1oe8vV!u_!o+_j9X!hM#N0aj7>`#u4etmm#%1u#mIbOli%E}e- zDjC=ybmsl2bRAF4zkh#uP>|P4|F>SifdCGmH}1m=V$khtdppyU7cZ2Rl~*IfDFcQ_ zG=V!pl(xTC;&xc&5zB)HueX`At}7yipQ(*a-QQnLRkgL3=!3KtzX|%^zuQDbAK`bRmax3K zx_ULYK1?UzRI{2->H&N+fL|2l<(C0n<=)u}kAozg^t(v;z=(nR`8?#!vtdIed<=-M zU8VnK3!pmC-o*GxV@hxyRXl{RKB%uu=cmV8GS75<#I7a=6G#oQiXPaY8TLI&y#H(+ z-9^ssR#(@zB`e%IPT>qK&v;bZDU)4NzkSr+XW5+|+tjPw(}NRAQWl>!_Sc4;fD;yS zJ5v}~!J>nac5gqhZ51(Ji;UcihCUOR2DtR0j(i4vb-&M8p2_Uc+NSaeLp=bD@8gB&=YUsN9=le{J(+5I95sX+TyypI^z~` z1shI!8~f_$Pbgu6cle3ZFxN=rN4<4Nu>G)XL0*aNl3|VVUb7(%efuoOLeZZb6`Fc_ zXSB4q5nyoa&5#T-DluNs% zE?X40Ts71qz-Rq>72#|1jpKR2^E4gzs|yB4BXd?*2^g1!6lM3*CPlxlRy8hL6|>!4 z{y~MD65}JKA&rKeT5+kSo#I0xDe(nnjwcQVyVr{RZ*DgQu8Y5nmAk&&ZsLk4Ubo@oZFCG4*iDQ(k8&~%Ece`UF?Z8Etq zIXo-NCE(|LqEf(tKS`s1T4r{pWgO6ZAPs-V)bK?G7JEB_3J?Es{*|9bUtXP9ouJN^ zSF7)4$;mbuT(OkKJ+(HO>4;RJi}9(`x9LaRgR^KcZhlAp6D;z*)XlTtm72Mc=Fn~W zwcI5nQA2d46_@D~9?yqr&jxpz@>vF02zmkuMyt&jbuAry;ncdNDpIN8_whd~roTVj z{M-I-Nm7K}hLfTvIfOVz*y)u2J(VH7O?z?}@o%k^Qo+jZ+-&`t>5l zrjKY+!lHY2#mM+pbSU$Ey}wp|eg?pmFUV|zf9H6VKN5p5?t^|gi}q4)sfJds?1l<` z$D|5BQ9QF({`|Tkq9Ep==UVv(UR&!pqSfB3JNIQ(hnZBAMy&bcTQBKwebn>%J@zTJ zmoeAU9E=wWXP#*VM@J3RiN;4o?QN2%cH$IwbRPGju&8aIQm>~EZv_a}3D@s2{zGu(R&-W2 zsP-GjqKcIwz2j+1)*dFEF#Wya4x38cSMFE-T!b9)n`L9{%75`^_I}_qQxI_o9^EMs z+M&$4t45n+*F;%rFyCY=Zp)u6Z%uuzCiQoGK&UEG;(70dD&^Mwcm6YPGS|0K+{ux3 zZp(~DhFtyFz`)Ixz+)FQ4GnFF*LpILN9#-Bu-@t>G^DAdc-g_bfsOO&+H9?BaUMlG z<^?nhWU+aCe5lma6f~aZn?PZgLVmNydPK@P!-^jG_sGO9Y;}3 zC(lugm_1fk`#{VBAK7>rVQ{1?RxHqc4qR=G8mb{dl;192PEU`|Cpt=G6>|0izILGW zVV4#PPs=8lJV7mT69%&h@$ts!afJ@5k*X<*0$GaoD3p5e*xLvYjPsorc0(vjwGS zzQFu`fft86?tk>m>3VGz?jYt)QEOU1P3do8<7+|3^?B$+5T3|sy}|J29bezo1!ltk zkCE;fx^epdEZu48P|GQ~nEG>R{6JArLs`^E_!rNi5;zzh~UyoVh`2sde%&x1!9ET*sZW;Rog zkbi&eHV+e12ceV0T{pfwt@v4Gk6Uh+g%t z+czd{ydr*$AIgdNIYTv0ROt^njlSsGO9;g=oUJQaShgHJS|ImhoK7#V9roW3G_3de zRq1B2DLy|hl)Z*bmCv5-0gu~4x54ZGpE!5|3bdyHWPp$HNlCFeIS>kLWI*;=0WTuZ zkZdRmSioTw{(fe*hDG1_85tQ}{F@pZiTHffQ9@&Bud1e|A`WOQC7nuG-^kn1YHzdO zS@bdq@y-;VGV|VAM)48#8H=Cq^Qk%bSz@IzKjb@dNyDF{gKWMu5SSI$ke&Vd|gD=>uw?9%1Sc;v(%*f#0` zYL1YD;N5xo>=`FYnSW;mE6U5$uYTQ!fL%7;Q>hE@KE32%EHx9&jpf+vfDp3v8Q3rK z9J@VFNe(!$4@T&YBW;S%XRTo0*p1D1wIfH3`Obs9>R66qyTTbSNQ@zmh7Xt7@9vTc z_R}mT@|=p_e@&kMruCI2k|job&4K?ZU<>zAKy;)5mEXQaJ{3B-o`d7wqngcs?i@aN z@HcK^{l<;TAVI(8QbdWw4XNV_>d7;By_(>m9C3Tr%JBBg<)mb5JK9KVx)2TkP^aR^ zDDFYbAz@ar8cfM*#|8N>6_>P^>1Nx$ksr2TVBm8hGXeyVyIuxKgQ8=&kIyQyoT$SM zUG%Qqw#PHxK2P)x&e5o`qSiF1MaC#cQjqc9m z)K>zD{1O%^(yQAqdP9_ZN>_QR$l-u`ECBL{Z5+kuXJMkTJ}rW8=hd$KFi_a*`1q>r ziWVH3u9LbDXo_5M_`2nBW#pWlIQ!>clzDS;%MRA_`v(;A>8eugf*n)qj-|xHviCO>f)i#xlBH^9olSSDen3-3_5u4(*zn z+xwJPfq4}a+;L~uV(8HDqWKiZca9QF?f^H8wVGN%zT% z$)~>9eB<^d%Ip>O`Zy$|QJ=fgkDkwT_vzYH;Cy2$eE!;x6;eJ*;xkMKpSwQ`%QMgT z+pR9^HhrOEB$lQvbwp9^TH1BXw9^sy*G8*t_dq1c3UB`VxpTW{gAXmO7mM`Hg&~cW zn8Q*J04jbTCvbf4)98d_f@qn4l*;JPaeDBC_eNWX-z%m%_=m$A@T z9~GhZh?MwHjzHP$E(BBQrR$l~q%A~$p8doxHIw*CWYyAapAjgR2mC1i?sa5AI#zv& z<9Nf(WECU7uttevZFm*D_jI@vo)TPbf_;xX_62}DpA4rxKgtjwWkCn))N}Y%#wOKRFo6l_tuzNTcfRp6|}6dkWf$X zVG*l_Ny+DZ9 zb2Tto9?H$hvitTpFK>?04lM%!jT4i??Vr^(HTC8#tA%*&ZR^4KRi>0iR0$f6v-lR zuKxxjuBxW?svXs12;%!8@r}W@BOM2rm%xFe4#zh*Y2ZHO2<#q!XAB0p4tNS^1*A~i zCcj#M@&v$F1i3YXc?*=e6q`fJr%oMLkKt%FaUEz(jV@0voEf;9v*Xa|uoa`PHR8)UnSJzovk1^E|j?)ZCsq9>o z!Tg+iE@gtnVjzGeAYeUSi4!0t!G9j7Bt``VammTi+z$o?2RDMbES%}*Cubc5W%c+q zGh^;ctj95B;`~uMCpa%*APvY(32vrRQMD$H$w<%uC%3@Xw;!ZnOL73wXhgV8>cUR_ z25p)-O<*4#S{>KQK1Efe9CdXqW*NuM3VG3?2jafor%$fM@g9x4K2%og7<>KM*Kiop6G7y9yR7U*}*aQ1LioCp{`Po zyX2L1&FPYMgA!LqM+dxY?T$!S^`So^DX)Cm$rI*M6*tJeG^|>t+59?HQ>Kg}F|A!G zewZp5Xu&r(Q5LCj`t(B=EN*6OZ13a2nIWSk>J=$IuFq~5#*vA%nAzuVGYt4?CpS4O zu(7kJ&|A^rLB})H*3{J8Af^|~zVRT^1I>|^)W}(UoCtXZHk1a;UMV#$o1A;sQLx7N za1gnb#__sOp9)8F5H7e>5xi`5FpCMnJE{3ei--((^&uLjEE@!PrBu3uLfCb!DKhN&VQ{E1 z?OKM0DOp!&XBH}tE!vmv!>>SG9mIB`_~SX!kUzy=zI@rGl8r~=xZC&p8yx(NT*noq zrKB{bTI=f0k=MrV=3|^5R7g#(SXm`>P0o$xoj1t11i26O@Qr?DT3ef*n25;dk;o&? z8GJlE@wbp>Mq_}5TI%EME|;@pS-P_DrcphfKYjX2v;`Swxa>>MDR{7Wd@+itG`%G*7r7InETE$2*$Yw*N`n8D!+CKo}Ji6#~R zH}kE#cl)CFhL+bT{Wgv*Vq$&=zPVlyZ+_k!_v6R0*%d4P`Dei34?Nt8@%_I@n1kCr zgh;u4HymarE+Zv@n!vZ~J(;V7|FF{~gM4zwprBhx5>8v)*RScE#T^|lPy)o>rL<$s zN%Cj!=txR)SPjGMqy(H7s9U+T!$7UkS;Mlr?9X<&QtAezR&g_BNA0f+Gxk=M0 z9)@MxyPc4t<*LjhO(&tlx@8X;eM9D|7`o9lQEd1XY46GAN1 z;e`AHW0Qz0&=tuISkslWHq!gHY;FSQ<)rE)$ z&*fQ2$e%Kf^9)h6u30AoTp2f!|9$gzc6Rq96E`|to-WooQlIXc>P(o^g<7sGM?Bf1o3F#N;{>x*J# zQxM9%=AWbFNNMvpW#SKR?{_iNnt{iFe27^<8YGybr@$O$`uTqw&mO0H_>vqCN;+7Q z>lC<1!&7=Kl6EM!2IvDpUECL~{p~JAa=Uc8gQq;RZSt2havwNVAqswZ$ zjR37h9KE#+u%!f%&f(r(C=dxn1m@zifRVoFCAJ$kZs2mdg|3INs7Gdc19Qvjo13|D z`U8`^Zn>+E@j{U(Z4(jTn>RmgjKc5VFQ>Tw1|jj*w(~Gv^rdGp@%*gL=87>~KQ?`E z_geI(6eXG2ROsz_b}_!-GaHHrvUP5&H@;juYfGEej(MfW7!w^$?hGv)WzEf62Qpf^ zx)y`Qb^kpP>Cevb2i6Wylkd+Eye?qA> zjyLw(-@|B{mqR1~n-!OosAkA}q`dc5rrT z4ETlj*uq~96tZ#^XsQS(o?tk@O_35l6jPnadccK+^Al$m|3ofz_w}J6L$nn~HRbet z-Ta81dy|3n_3Ig3g-{QW1PHgoBVo*d1wc31A52eaguOLh2p)`V!(@b|O8l03hz|hu z>~3PpO=@1K*I;92SE8o|HRuR!F@f1f^+EX5LY~$M`tpkaIhZxFRZ8j^ z!oXl5kxYxVW9}Dfw5irXt5>dkm6rB9w>hT8@D>}?dl0Fzu(6ec!bG3k&}92pNF^%S znb|jfB)^_S6YTVQ4@Rc6tgL=uHX>!kCy~Ib5jbFgzE>RA(cytreLoE4yCJphedWE$ z6cYb;ww<%VEygA$CCGvYz>t7TQ;2C8m_7bHJp3)_*x=o|ccEVg^R$f0@di%&zL2K$ z{QP+m0%AZqic0>V88mW89=ugv9)9}lSs74~L(H>ENH(4bp5WPQ`VXQMM3lcWnVT!x z+rv>gZo(ECvb8v=q_ht~RCaON3=Ks@_j?H3nri16QZ{J>p%-y$^w4P0((MS>iPJcA zL7L(=6F`J@)@`Y$sq@@JKW+BnU*O^hV#{s>;vS8t`YBAw+=R?_lF^MSq zM2je|dGR<}q|Bl$MomhC+T#BE`A&0SeVtZo!9}rozqJVxT*yKW`$VfohVS)>mYRNG z+%WwfZMM);Vvj;I9hP3Y&MAyYzAS5{^7*EBnM9Z*9m?>6-Y;H#iD!F9Z3eGUn}7Gp zu^pBT??&BpJ>yf+jTsmapq|>hhHBSN!W;y|Ny(QTa&wM0GS$8#imiZXks|}MTh`>t ze!L&RddaBzbyCJ^eO7(fjc%6FR_eF5%XhrOLx-q(XJ?}|-NepL9O}IvS>$gc0-IOv zNDfRdUF)adrmqPZDzJfVl%=PHLE{H!>wPQ=EP|_}%v16bLpE~A^PI1{HQq)$r66s^ z2>lupIwKAqJUGyNC^IXoS&Y8jGv}6uW*j(fq*kbFZ{axk?LQQ?TcAQ_$lT*7?rC`w zEx5T;u{ja{N^Q6JM3Whchyo(w;s+cL%7-RFhJLEXNDLJ-d_$9^)Wmlo&*=++a$CSv zc&-%&Z-9Tvvv3Fz^)o(t_*B-zDat&c3cQ8T$*rWunM{);d#MN~?OD?|8R(43Pz^OrF4V1vd;ZIpFTs0cqE`~b0}TvQZ+YZv zO>sLHj0(J7)JveA!3EH$6B-s~Zg6B5P$=pW^F5-I~Ho1!YfKUl&5y~69B?%uL7e}ezSbOQYP9Lo) zc28S|x&%{$tp4|n+cL8Ldj+2Vx&m23eDvSf#F%L($VRNch|dQIo_qx!=iC8pg^cnZ z@^lBNF_3&50HiU z2|Q;&7(%)EtcqvPXQ5Y$QBBfuJ? z8)|Xd`UwQ*Jc?cZxfl}{Yf$FVMS}`xj0*OXUzz}nUAxthZpQOVUw9cnq>L4K1xkK%asUXmGl5j41h>`SO}d^+7xZz5>y84*}*ty5oo* z6o>VYA^HjUNNlxYOu7eNI$ES!tO)(AA8^8)!aEFYi=^X6;pCLm78*_lMUcL{kY^!* zkXG-N?`Q{)N`yBcL8Tokx+F{#^##0byk03_RfNRlA`P7c} zJUpjRcO;W!?hLj+LXjP^z?v;jj;+(wbVhnlz&HlEqV)q0$DS2I<;6jJdAoK@V>=1r zCT!njpN`xEf{iOadjN6$-PGRN%5V)HD5oc;c0iv_OtP#{Un3)7;3Uv8a)UyVHodg0 z8^gl3?%NlD{ET#g;59>E!9G|hy+}X7q5aUu#}w%{)?uB#zCO+)CJ*#optBk8t@YQo zHp7r!X`8lZ*kxxYEKG^=&l+22ql}|3o}xiW)Y;OUaX+5Dckz%U0S9q`6R1wjpfMMr#$7X59A-g3v6YU-WcvrMYJ)48Co1yQHK;4}WgaTit`7ce-3LbVCp(3-pU7Lk4FH7scEa z4BWMyue*C$xLPBQ7Va(%&h8Gj*N%ExySmvrI~_eE1b+pO-f(w!5f>KzV}X#ftBvs8 z#ID^4auiXLm(}rpK0V;;t}|L0IzPMD{E`#b?cfK8XLkLxf98N@(9?UFu5auVQhAb! zetP{gAIH6A7emE82Q+WoKB0HNsKY=q=-Tdk^ub2A_r9SGqYvA^)9aTf+YTQsXyZKR zcI3%L^YaO--`284?Bf!oW;f5g_Q_vq;bv^k7o@U=KJ;Zw!|z62 zE-a45n%%`7z|aLTCiVDkOcOo&9Eq8lDVKLKF_DT$rdjuyc_&xrM<{+h1T*2#I?Wsv z)jXHawMqV03Yx*XUKuK~kA)Ygt*i6+{`K91 zTq*B4a}nDP`6V(*-@ze!ePxy)=JxIF$UNr0Fz#{|+awJVtk)cKa%q}4gg33kCUfv` zA6I*x0gFzYKCSuWxT+R>tk|(HeQjY(fR|U%o|LP*u{`ZD;6a**);HZ*;&l1)-Ip(4 zF1}$_55BREKZz;P2xk-RdHa|v%P%33x;a)hTeb1kUEDG5^8_xj$1*}HJvEiv+REz0 zv16BfS7y4)XRETFKR+_y+2?pLcVSG1Y6v^(hW#(DlL=&&>Q#jhzgyCY9Jl6Vt!-?` zaFO)!mF1{sxh@8i%_O~gv3hITd1>9IWZNtrMND+MSXX1OYHIjN~{miuIU zm$MHtGh3#mrs}M()rB(YfBd$vmaUg#WXOE{YTis4S;!t79BnFk_H1XQmDKupN=(~W z*4$cc?IrtfEpe~?Xk;!vcinL*sieeUq%lH2OD_j3agdXf5EXU6v9I`~d3EbEQF3vg z)05^=EqVFi$jHb=%Es)DDQ!yscbi1N^u(kDo0cJdc&t$IX5rHM5_zldyi0AW)Z54K79C4Hul0-M@NU7K+2jQ zX%vu_Hr3SBWEHWCsxWn~VST_N+*5O#7IrU;>&$$_F2OG#AYh&d)|?oLkmC95MF@7E% z1${HWqU){kX`a))wqM@dZ)$C=%q}&%HLoDGIag=bTbSv;Qa+SvR_(tYL0x46|6-Q? zUb#(}j;CcEP$eeyZHhiNM38`xN-u!ZRV{gyx3K5+^;q7^7l`%tp=tjN7-C$9>a1VA>+{*FRCE-NxSQUb++{?mnKRZ|b8!sQ9iN zg4^Ekh&@YPdQDzC{pyFW@16)GxDD6bW|i>FK6Cc$mW%_3q_;+deP%rPc1UI;hz=UsCc~k-dI1 zd1;*}Y*hF*@_-B03w{lYU@47#wlVR2q!m0sXxM(es-@*B+|bWg zlcnEz?fYm9H~EuIV&$;^>C>n6R%QkSw))dvxC$rcfB}2r&f0ADg)*>R7dyfzAR;1S zPOb9WFgj^myyv6dr!6qd(JZv^#pi7Lx{ZX3>UqZ}=g%73+Gcj=nn+~97JDW-aXEd? z)dOMo@9$h4)PYRki{TbHbEZRCRki4P%TtTdu`&I!S$I(P<#1L*b;83=T2PIV^i*Bub51bx*pHT3KLyFZUbIQHq-Gxg#E)Ce(}a#5NX}gxM{AJ#`8Hn=3^5(Fagc>YCGurTig1aUyL;g@;VH-IYw|S@_HHara5d*I*3dF- znpCnRp;vr2z$~$i{m-ITY^^%(ib|^3;^WbZ?Q$ z*2W5Hh_WmywJ}uy^{`%nAmO*}4iF(fQ0CD&*`2inaF(GM!7({l>09&ZgpyIIYuY1D znOuvyyK6)Sw)0mx{T3ffQ&ugh#ouQYpy<^sc|mO~DJcnT_8LmlVB70{bQ_x2wqR=4 z@`1^La$>sbv!C~V0%Ki??C9v=m%Oqy9}y5mBInEvZ*A=`h;2@rn{yFy>MyBXX69AX z5$huk`De+6GH%CkPe6r@zSMOz4T@aIQpgmU_4yuP!8 zyg1QG*`jQY$z*wudtAj6dds~C%QFL6z#I4h@PUb*p5EsXKv=(pR#6nS(7N^Z?G^S5 zE*HUA*)BiVs*y~*61XPbw@reZ;jDh)vk-idLi z_$>F{16bEsIGc)b_igQvIn1V)`w5UShsSYq0zk~Cq z{It{s8zwr&BjZE<%TtEaeMI&9_wQ32A#$TqcU2!s-8@m<4-mWv`J!>K2NfAm7m zDwliB_BaP@7*|3xmH|9@bgGKJ8+GLamU;N_VZ3%IbL(gcZ(u+{et!Ng+~tvxk?sl~ zH>z)+F%BTo*gdNT_7k`fm_Zaey_nLLF;6K9`hSkXq??6Lhs8EmnnW%G5r@BlI)Jd{v^;$TG z@6_qmL>V)-^A07$ODL}blA6@fmV+tPitMWL^HmyCClYNtFT-Pc;3b(|;x62T?0vb3 z8{j&2Y%!6#mWajz7!fn^DMdvp#cJ21_S*pkU%p)9;pQHH;X9*w?Hc-lMc^s?!oqD- zj(Ks9$?=GQ%@i$d?e0u%-f&hCWt4U>9=VVNDam*I_+>!dRpNUSf~l0$+Se!8)z6_K zF2fgr59b*qPJFEMn^|&2P=Hmzdlhv2S189eAED(?^F@4 zOa*9~06IoEU9B+NW9+QEwZ0?*T?$Hu`1$xg>=v#_0-`|u;8Y53Js}{V0vsc?x5ys1 zy1E*8R-pUl`l2lW(L}s`?uUnm&vGXOB=$Ec<+yZ83#& z>k4te^BJ&RwHK0^qs_7QBMsrKXRPj(d63hArvpf-Rj+pw_)Quo-0j+vWR1$)GySO> zLs^i!D0u?bmiDQ@hMeFv_+h|nCn7g#_1)H=C>47#m z*8y`;PK?&r=%-I_Kwp$sTgBM44huz{wpiG>xMdyS(*dx{5F)$?#W8XNn{(mywik}T9P^u&u8!tq z8)2P(LXbOiNB&J)Zzf2~1?>Ic&p-2vi}&`J-QJ0Kz7kY{yW0&`l%A}vjY+Dz0z4hB^&%Wg`pPk|lb^PO{jvv39 zM4Rzp3TyN$OFhlsp)>qNnc{!Z$0zS%k>N1@lhKf=Qrk5)Prk^-|{CL+$*NuMt?z$}%pzk4q;Gb~X3ecfn;zAVAAnI8nh)F0cSe|8=yum%$iW~YUP z1?wsEz{#G`xU}7${qfQ>S(E5DiCKYAYZ7^s2D$jwrHLIuX!p7!$exSsG{`AL7LAl` z>`>ypG|{POT57P&lT$7o6Gt|*L(u8nfW|JFBlB`oON$P{wDJHu zdk)|e!{IaXKwub`3`De`b1rkA_(Bai1I4kI3NRJoMi$DC{ zYfrGP4c>{02dJL*=8Zhs)GIzZvUBN%h%)qf`-v#+YgpWFFyFja}!Z+!yyOZ=|%xwTuYGX51HXyM)` zNQ7dav)Te}pX?(N)Doq0GBQp;KYbNi)ji-BH8r(IsHH0^B#lWtBts-wxXq`E_(YU&vnJZ0pR zK9aXJ_Zd}gZ11H9?Q95V!vX3UmzI{Im;k%c14@H7?Mhk^98yuSu{fa86Ki9MO!HPE zivIppkB*4FoEa$JAVx<=^NEV;FO0RtlE~0`f3(hNbsIl*8U1{UB2$h@c~5og*n%yz ztdbF-&DRWL(1%$!$4sDV82DaJs)H%4ZR`n&%&>Gwr0FEF|0Qhx1~58`3P7s}P%ltB zw(>27ZU!^fU442=7D8z9QvnXUGLr*N!-ES_E{E?zBTz}{KJ;v4syApJs8t|?yMZb1 zRnsd-#o_GVMe?A~3)r3mIIk3m5sC%%W$%{>yO@U$_dtV&S9tIhQLaQ86*;K;QSO>MmGWTPsDeml`dTm} zhvW(9pdsjQfa(RCfvhT`o0UToT{85a%6`Vaw&aa};JguIC|B1=4H9FW2?8z96a577 z&Hi0Aw?vMO1J*;&m&`#+$A99)uwUKK+2NkJ;#|@3PZ(oTL1)>%N;#?8?S`B^{W6&R z2I9FcuHpUN_mUJ96;;Hk!)(mV%wKHHe~M`2BKA#FiQAF%tbMY=GOeZ*FL#>qxdV)W zy+OPze=0@)vOfK{7tM{^Sp*G|KtJV^l*FK#Bk-pwBUS{#1fP@*Kzm|~+HI-{;;6!= z4IKk0!>Q2!etac~ASLw1L6nxWZJ>;BbYy6zbiJ}vL>ngHUhP2Ats1{0$ndcs#`S;Z z^H-`_p&C06FE9BHlQg}j&*lSbrL?p$;h2MyFbxt>9WZCP;5qfQsi~^ zD&D&JGa|ERc56bxn6z<|TJB)drq;ufco!SId)I>pyO-!s(JTIE6RH1-ra0`x{y!M! zDF_2O{JWT>*q9i8nEmYjSuoF13_)D(PxijLVrPek-g4Ri=7t!$7eCUf_(-xDKY=7b zAd#sbN9KdC?Lm--`y#m(K_M;02vO^S7yN!L$;QemBO~K&0N;rd^!4DiLtNar{scAL zb2Xb2P7tzOpY|_CM(&>;C?`?pK^HCb+wg?$6Rjzp{o5d35#yjLXdTctlM=yu_32S1 zWfc`|=m^+FX}}3JF-c5^PF;+#{`Beqtlm?>^w)gy%bM>va*4NSfT1{-NR6gPbDkI? zh334;!rN~e5y%~v;D1(?|8QRTe|hKVc#_Ta>v(;FY1pGjs3d)N&*7H?HVS}#0Xip> zrw;Sh3!&DD93XA{w>*r>lLLEn@>qP}VzdF2M~ zv|~4pXz%RoEOHxD1H{I-RR7`IJ~7DCqDPLhoT5(82mLo3(N=or&Ydj%qFh{ZK7zvY4vLmZ4W2|YQ+W{cu#IBhlD*^kfQPSpMGKb~auZhs}z ze=tH%vRo*)l2EJ)@FaTdMTo?kvWc#3O-)*m{{RF@FjQF+CR8rRvoF9j*Dh}~N&-RX zPx{BgxBqm8`wyScuM=`;RxQN*v=xm>Zd*m)q#vHc4!dM1A{0l^%K=rk{j~`Dzq82crwj<9qunm6e&tF#%qgOQSAmV~V9HXq@LpmGB-_5zoDdv$ z%U%ne@}3(GjIe2Wnw*_22;5i+RD)f=xn6e1RymaALKrDU$Hd^BhpKdE#+I<7pj~qM zN^(dvB1lrtt5JoU5}s2UIyzA>9K0OCkpna%6KI(3Ok!LdUu^Seb;*E}L<71upJyD3 zD`|PU4;41U51+jZtOAvK@clA>ay>ihdizhVO=x*Wl?Coh0DY96R`@I|f@Z2;R^2%f z)j5&2F0=uT<3i5@6po~WFLT>B+Wn->YTUj83^naqrtADPjXE7_ZWJHj?+x}{Z1W`r=5r2bY($Y7`*d?X|y=5;FCY_Y& zm*`m*iM7+o95i&F>Hn_y_yHAx)3S+TZs{NvH$-qcuXKPPb`{e}2@9*Y$xthx{kS%k zk3zP?ZY&VFyG)$9ET-PFp!XKq8=?j(-Yz92WrC_RppgofLCubC9NAfdAc4*Lq(=&_ zuC9fSedj^8)3v8Uj;kh04?IHCGXFDuWm3|`YRVE}X)=qzFDY4J^sg|OGkI)mj0`@2 ziAi~Yv7uoch*Kf~lv_TPrsxP61M*taggc#YC%mN@5R2cr>NW>97!achJt$YY_W*D5 z%-Urmpag>MN?WXO`7$0(MI0=qMFIux3?0}3`RU*jy|DuBrzrnGteSoQM%(!}=QwiT za@x>nxFt9qwjpC5(S{V~+TikOcc7*I;93>K61}e7p-CDSbV~L&XFX2!+40c2eJ&I2 z$#>Wb&=Q8XZ#;%hr{PS*2K7Ntku~Z&)#4~3C}!xSm|X={HJdlPjr%T7X)b(g?M_!^ zW8jp=K&M?jOo8gn5y3kQikA==akdi|0jEuXyzs+N+ZJej*+lv?9SjCD>H#C#QPGM4m9Rl0D@VSh(dubcqm8Rf9Y9mL4q7%^=syYlGU%4HzjEYg# z)EuLhr^<&t+%qjHlF&HvxOw!;kPc6zbG!u@GQi)8jP-O44haDogPm>;Pv%HgW_T9B zKDp23zC*xLudcpH8ai))GaxyxoVZRtT&L}dDlJ+vDAFhyKxZ&^AnFgOfb;pcu`j~t z$qoj>>o8APY73xfdkuKRg0Ohb;o~WZZ$Qqv_b&3S5UMFgu&5K{c$gpJ*qkdgK`hY1 zV4nYm5Iy!{wT$NVrBpT7iFnMB8ZG&W3IC~8JnBIfd)`ep<6P? z=b*dA3_#y>v15H2>VYcte=$=3P;!9oaKbc8X5&*^SB54RI#ox{u@pNE*fpZ1fi;NY zJI<^2TmuGq?$EW_k2Xc4XGmU1`F7=5$o+0D_ja4scpgv#>L0Ld5R04!#6McoAT>Pn z>rop(Ez)51B#eJDzrf@r$5<5AX+2w@CgAzTlLF@JSpZZzL`awv7~k8sJUtC6x_=rR zyeMrVqfsOIA`l2=$t}R_m9<-F(}|v$P||`}E(AJ(b{jz9vKGbT;^N|^{jhnW0CyCg zajr$cbrgAM`f|%>#9_o)-9)zf6MyvFGom1Wg@C?8Glm{Ge0Y)%`V`%E#qkK~^$gIDQsIS^(Gy5$#|kH1fL#5K zr%87P;Y0!|B?PQBn{}1C*=(%@P>J8(CuDuD3;o9;^-`4%cCY?qiJ6kRM`_SuSPy&s zHFdEjM&|u~!RCB!B}n5pPihW~Qe&E^jx>Q2NAwuH-)w+L0q36Nr0DkOfI<-*9IO#R zgXm+z>C4*2v@I->VO9=j%PvVV?lCuv0e_?OvhK{fvnoi7J{KHsLxSp(!6$!}8~q)0 h_kVu64k|x|sn>mC8}3^D3pllhC@HAP=Uy@o`acgsxGDeu literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/sphx_glr_plot_stochastic_005.png b/docs/source/auto_examples/images/sphx_glr_plot_stochastic_005.png new file mode 100644 index 0000000000000000000000000000000000000000..3d1e239ee753a8dde7db46e805475478191beaa7 GIT binary patch literal 10677 zcmeHtcTiO6w{0sb2qUNrAlZZ{AP5K&1Ox*%QOO`QB9bLYlqRaEqaa8V1tdtOB}mTA zfCK?0gCv_wlT(vvc>Bzq_nWF$bL-vv=H5SE)zz|)Lvzme?Qie3*Iw(qzN4migqDpK zg+d)c-@c)NLhU0X|7Z@um8Ndu8~Ad-Ndc`z1Ajbe9{vX3A9lE{?}S1zm>~c5rOBmQ z!9_{un|jWg_U6uRCXQw(TN7u8NA}K-tR9?nHFI>bvbQ@aA_#v4PFgxUJ4gu${q+Gs zdq)eQmvNnRDAY+5`i8vLlbE?dcjwO4ioK}lF!?`Q$Cjb zVEoRfeHG`AmJ77=w|N{?>$)cYg84T~x^&F>otz_lnWs-H7vvr+dGU;f26tTlh05`V zRn3#@)ZaRV_w8RvW|X_iJ=rYz{R(ljS(-7%qB5`6EI@ca3PrT(s+NJR&~VCAqpJ2F z;6$P5jyj`I0@qsip>k0F>5Ikk98%7=1tXLtB_(^xZ)IaDI`O(f_2wB3`BoicjwM+$ zE(0V-M@RUtGpRMfA!tAKF=y130ByX^6mgG2)J|37ym|9xy8FsR)K&LfwGUEEKP)I) ztBxgxVN%)$>6is*rXnt<$}Cn#;J>0ciy>i^#aRQw!+>_&W|D8^shwl57nth*|D;o`-v7j!IRu4SB*+AlM!8JG%e zhB2X1Nm+Tdmc=;qp3mMcWx74t|6^j}>S7H89vyOSYq?3Nz-!yJV&%KEl-s=FePaSK zTanBC1{{WUe_`g!Usz8E)hB-Zc-m`csUExX?aJzN?wxBkJy}N#Q{eYAjLHgQpNt$v zYuvpXyf)jL$i%NhBDEz(Nj(0D@m#uDUpdKFi@L_MI@{Ypp6y*J#ngAEYrgGpQ&o-- z6vH*QCS3n^h3LshF8CIGB|1vXCJF)?MaLqj^<=ZNvvX$G%NUP;pIKbIQTjdCvhB2H z;;kbqzf*IcK%2vvjjypvyM9W?RFq0OlkSvcb4t4kkUVvC!h;{4Q;V_O@%Aa9(9zO1 z2e67hD-^RE`0)#eM9x5^MN6#Mb7}^0T=TPobXjZnwlOD3RW4(z*l!z4qpG8IZ&l&g z(Mn1pR#sN$goK1F398ZJ?{_KN(Hk327&$p@v1F2o?9O6MyjP<_k=p`B)N{juk(=9o zx;xWmcbl-+zd`YK+E_GkYLQuwEH0MN%*M!wdaTXHH*sHm(t2COpG7FEa~5`a8TOv{ z`pp{=qf%#K_A7P*EaX~$7IyT+(C^RXBaDjdJ_JAP&b-I+qww+QEvG%oI(tyP>FG0P zRF#z8yuW1fOwwcR(F@{aSZHWyq>RT}BqOhy;bS86MT5w`0-NaS>S|hotk;(FnXfzZ zZUp?|j4nGlcfn_KdEC4&-zvqV=H)qY@$O$(MZUyHI@QHUyL}Jfmiu{@hv$7{2TJ0_;C>IW>+`la98LuyW7UDw)?Kt) z2E8q|bA1JMn)qMT^thFbE;8> zk27(&w?{PW*f^5I(Mi>NjjxK8m4>=;kAKG=()UZ@4dn#*xvV;w1}>_3hDwmMI@y@a3z{jU;aA+<5G3li zTrvg>ayvP)+q0sOfU4_*ZgGHvmz^e>#)=5spM)pp@z{V%h?~FqvU+N z@5f0xO`PZ9xq0zkVdqRXA*;vOr(&REKfp-W{9xH?vuKNDW9S8@@4cz&+;2Ihb@cW1 z`zpQ4&Q3K65jsbMr2baPFD|Ylx78NpJl1e*?q@}RuoynnVei(y9|EUN z{r>RbL&N16Zvt@uJCm6Lm?W?G3sRA=MKP#px<~xdj$Y(8MXLVF%?b7p9PWXkpl<8+ zpj7oZ@wT?Mb22hAIhnbNBv{9luV25WTz^GhH@R}Kkg(jyFR$oZXE=Cl%Pr{3+melU z8BOCN#(+X43oA;ES*FvS=@EnWN8&4^7nK5U(V#kr6`LQ1ltDTsLw$JK(WF{9aJztzSaLn$eToL4L z$0vPJ$Xo00AEYe~(Q{aijE+9{7LS0ce}o`LIVM}UF0w^-yZN?ANlA(PHdIH`4MjzE zG_rp4osA`PSXW9?(pgJFiPIz-8u?bfp8yeX8u{`%zN2W5STb;|RJg93+^!7k2PEcS z_40~y@S`_WgqmxI2BdxG&Yj^Nx7i;FUfXL^ymFhbp&2HJ@TyNkeehkla2FD=0DxqZ zvK!yDQ}45*I7B#e`gCWBlLf0Ox#3LE0V8{V=8NRb$vETH=Kez4j-}ChF)Z2g=B-+M5q@Njp%H-qaRRk!#8^k3;u9w@rD^x+ov58r0rO)W+K70+K zKT-U_zG79!Wx5ls94>IUPe@EmTiSKD^*MuV8pPTPAdT(nlbq=;e5$UomspN*Z_86(Yq`~HJbU?UI;N7 z*WS_5G>E2b^$@~aCi&eaDTC5K{QM3ebOd_xcwro%4ld7&vf3jBVQfX?DmO;x&@2n@ z2$`^>(#?tJ>}BSS)S6ceHeY@_rlg{R^ml;S&O8fsbZN#lqs-hY!zudmv^3J2Hi7{Y z<u}bY-gBYl#OmgL5nOje!uxY+o z6Z7fVG+1dh;TLMUqGF~T>Z{1&GW#ZfF)=c&ca;P)Ldl{2) zKA0}NZck#6Y{oj#$GBb2$F8=vRzAYE`_udGPx^^sHr=FDIf_*>p-9ARMv{`3MVs-; z165_taCOmlzI;V(d}3m{V*Mx7MjoJ+3T2qVr`2~K)qX`{p7}S8SM;2GhNESQ=b1Qd zjizau4JR^GKMi`0vRW3;9 zX?35i5Da!I8DCma>6PTeBO52QxK;$8CC&EcW$5QkFbS;__O=PQq}PnR)=+}umAl)- zy~+WC*wn~eYoYDE0^5F_!BQ8^g`X7#55FEyPEJlYYYN9D8I`$C{q$HkVhFue2aX3P zDBI#);5ygGGc_V~sPGg}jqZ4PDg=2ENQM&Y`fREwvp(R&cIm#aUCB5zTEo-Rb4YF4 zI2rI}{HOgzBhNOR^HSS$$fg5@#>Ecu)C^o&P%2dY);(Dl(NYlGRyH%mO*7Z|fph>F z6#`|>{yFA=ZriGKCh%hGpXDVwS%&F=EILmfuJzeuqjB?<+w(KB>SpDXwf^NzPr%}$ zXMxK-nfG+<}Ip5NS?-T-@@ug5AS@m zVB~V7&I&;enBna?US2%(7+3}_2_S1K{GMGK97B^#{&_U7T1>IsikM~VHHf7=@6-sV zjfMseJ{}fNX$-tgpwRdV-*TG#UNN!R5-WpO zm!oL$s>ha(RJL4Q2~dlZ&1_3ljPM|z6cSPwwfL?TEpB`HVZ%F{*m^Y6Am+u37Y5}| z9+!BTK6ubbG0dt3a1{e2SB< zAi>s4BemnP*VW-y36y@q1yNB=W3SaP7)iltnpNpG+Gq`~gH zCo$;KWAr8#<`APpPPNHda06OBCVU z^N}2cQN?Pa`F&$kQ-|03U@BB28i$NpJs1zw*RNkkT{2M^%GFF!X^WNdxNOrc0I21` zCi3t%=m*YQWGh=@r4hf*r#p_0xgS4%e3rEW;eDFA?~T8I0kFX;-ddTZFO1mP&-Gc; zYnwl5nrvpCvir77ipp*Gwy40dsTvx_z+;5x`irs`uS-F*WOO2Wt-puOo+#?K1%B~} z>&ei*JXlwiteO4f);x83Qfg{+WMrhH4UAPCNhv9Zz8lX`HwozFR9&|1>nt9$>wqxR z%IN`@rst5j50wmlWxRxQcq`N3HQ}6R>OOM|ES~yg;{EClp zbNB2k%wV*zfGDVhoKtOXelPm%<4ym@iosc!`pk!_o}LpF%&KMx-<)^x+O{#9QHhag zyK&=2B#d{|b49lO;+hp$7f~SJw1gHQThS1KNa=<0mE0o5juh2zwnc;H0m2i|azt2J zS)tR4p99L+nRd74vUO)ezzN}M4he_&>ZZwwi9ZI3a~Cdr)yl>Uc4lZd4Lq*rG>5(f z=PW9}?Y&*&YA6`-IwUKd20|4N;~T%+ zG1{tinCPLeTmQ&OIKyqL+-j2i?AbF%pEg=l#>breMQ`s)sFIqi zM^K@YtJv|SCmh?FSqC_E_&g$IWMyOHsnXhGum}ScOm%n>1vsS4x{P%nvNyaGPOru#MjszVSnkdf2dB&P@wjUpT`?^ zT80uNl7X!zMbGwMkd+4l9P7iaT zin#)Wac8r8*eB4a_y=a|>SpV@38zUp?dh7SXVF|iyv-q~s__p}E=n*loXWlq)$--b z4Rrf(%`47L?phrf6o5=`Zf?RD%&;z@%~qs6?jWs=F)>L1F8^yWftCqMDMPz#WBDEM z>3J=_Q&2bk>A2!dzE}O}%Z>Bd3Yhv}Z4~O79*BV`fuq8}W6_o1%+SbQh_xApc()MwXI%&Psy-Me?E`wH-dk9v>K z2WP~*WxrzG8ZVC&KVS+_DOR|e^y!m;%T)W#$B!Q?si}2?WK-a_@Y5kko5u`>bD)7w z8A7MJGoydHPkw-_NuDa%i; zVnN>%14eR5U01BcP!OoQ_2SU)@aRVA$0L5wh6_w;4y}^f&J2udxg#x8%qE=6eJt1^ zNMjtPJUnn&gPi+M5sKkLYLy3(;;@w}6yIAwd46D7z}}wPf^wv3U=Ss{yD@r6?a;kn znVFSvrame)I>4TR+P_y)QtE`oIs|F*m_2-G3GGB45^KcN^Zr|8B+Sp(g8oL=hXFm! zYilaiB#O3hahn3&`&p^mLKY10ejYJ=R+Ha9fD#uCqj)OxJ=jTx%S`t$7rs#+9)Way zc!X4`pggs&QbR*SD^M{qXf7{3Liz9@z4m=JeML)0w_3+;e;ybIyZED%(?nccTs9nx z4d}3-7dtxJKBKpRmFgZlc1+53RjAH=O&AIM474^k~MphL4%2lW_k-jgrhl2F42 zzYpR?NOzVI`;UqBZI~tuV(V+fgzGE^iXQ`~?gAYq9=hdAkE8`A0#PWgg=JniBNX%| zYX}DHNO1_6@{e%K8p0@CJQ1nPkx(N7$)|zEmI7)2)NfBPf+M?&M!&ul$iWIp6FM^T zV2((TbJ&H%Mq+~K;AwXgFRAGifP`Z?)t-#V!AvYHsfmg~O1R_4kN?Wa$vH8V5e|g^ z$canW-m-}ys&KfVQO4>_j}4sMFjuD1Ykzp_fvztFSr+R) z!OAIv)#8+LZY^7=yf^>C@k*&}e_=Y*)zcMNF79k{YAQc3FRzNGwoGqtFD?l*?t`|* z`=EY`rRp2^xE4x<({w@l|!qx6elpZa-+AP2O~4u7@G{w$3!8Z2QhklK%-sg}w^!4WdyO9Duj07`zb7c|{_7PX3 zC(Eb+X8+W1aH({MZns7V8D}9x7*Yul{Q8RQvq5{E0nuAcfB}WdstS%LY>fB=0*68p zq{A39Gag~A136y+(mQWBHQeT?V{1#CTy}Z+RVZ1CQ=4^HXn1%^kle0B=lBvs-EAHo z7Ikny*ihHBHDx*vs>NPSZ*SKC89~U>qXN51o=T0=dBPgk!V4)Xv9OB0&RK)CXi@t7 znPso6Sntj2!wXkYz8O3M*^VuZjT#CH3PWQ{PpXAs2i-K1B&cKU8#nv{Ii;ENDInZ| zChPqo;w$(fCMG6BpvZDhpFp7oS{3NAAXFoxM1f7up~6jyccxJpGOgnmMeK_1!BNQb zqEHTV3f}ZaIMAMx$Yf`i`2l@I-U0fU2!h^Q4$1b{&@8H$B#x88E}H)Gnh`tk-olwo zx{CnZLglty2}|QXl6T?@Sy&# z9(5Uw3yqDtv+@Z}l#g)V$VfUugtL0Iy>h3o(5P_F6ia!L6vvU=L6EB0)U z6zD1TIJK9YF{+lSHXD@k)+|=^y$K`xe}yOdzmEs14dT|Btjq%1$puMCeVEw0VYeS5 zkDyRm8V&Nqe~%U%=beCnhTVZ0{0S3p{0bO)z*2NDm{@SHj!iG4Q1Qn(eCR83a_-^?K$;6f`~#3Co93h6zfT88s_KHA95Efa z&8ZhV@5+R40d^ESIyn`9Jt}6~M}8CWxNOj|Y%l>MhC*$;diNZ8QnGTyH28#C0HuLk zGJI$R*qxo78>sf9eEI1%PpyMu0GX5l@-xEIhVnf(9sex=Lk$SQKUuyZ;P#J@^$&;p z=(6!Wszu63SzPO@={wr5>fk{=4?Sg{@Cqff*l`DwR6mYf1@hl0{u2#V5eD@V|#2cHMn(C|YSm#-9 z`3tNUz92Ww;c#z|5fRaVHWP9dQSA|JYoNrbz+t$WcHQldWKc7NWN3B4a+eYp7_fmH zP~66+xDzbQ&8eQ+omP2i}6P;0|Rfl&`YGWfBs@>KAlK{_sWs_~{Pmwfg(} zi-A#Hu{DiHY|vT0TKu;Y#^$DfRt67-7*={Gjl`=0NO@(@byhZI|I?mW~Mtc ztWOTgydzcJZ6pJJ%psxB0tO(&7g4`K8PT2=dH?=BpMbzGG0Q6}*EwM&>;?^rBzJdr zDd1#4lTZB6F)+wLW+~840a4!k_8Uzph*shKbM&il&nh`T4)ULzRlXmgAn^F%SKx`wjS!ZU#USu;cySzc7p`i#R|Y%GJ;S4VShA? zko&$retN4;v#0kUU8S?D40RZn4Dww?z<_hm0jE5czv@k3rB+-rNr3(~V3i>MI)i5zJ87+(aRmtjU zNF`r)Vl@p2p^F7`7tXEQU#Kz--VRBs_VSdC^OQ9nD({&AJ^wDu?I3u4;HYQg;n8?B zTe~MH82;cvwY0i6=wD&)-c=FOY02Baw|p>iSW&a+aeBvp`ZQ7#%h!GA*J&cO%7%$G zz?N~N*%-VwK0NA*eHM(u#*W;7kbya}HWdOYJ6 zw|zF7jLC`Il-n>m0gH)bT!FwS(LjSB>`@kwD~KZsF6$s@g%DH4f4h? z9Wp|q`5ygKCH!Zi(8)1E;h~}J@f)vBDE27dCXJD>YEnD*tsrwgB^2H8^YBx~F3dQn z`{HYl{a2}fz~H&T8bjU<0+OFdB3U9X6*#$058&-H0K`2RGE^`gTKn{1SrI4`oG_tU zfiH|8!k^KSB!MFmT0h!0QtMCEA0=+fHk}LQ$LF{6ZX5L9WM~32;JkhYO~9q!wrC1W z3zrAtNJawQuC&PMy1EwHfdiX~sW33D3uyD%o%ES5f@Z`cG`g}0uh~3TgWL5X-JiIi z3-jqJ*u2U(yRtcP#AOvC?Bs&4%3rPm??j}i$8k-=>HGT7Y|>Q7KR;v*eXz9<#_OrY z;hKnY6?5|x7}lv$cXoE})aPKnMQJ=DaTlDRcGyHVPrHDLZpau507#M3qsqx;&siqZDcq05bo-6`*(J ZRPH?T;cgUZfS~||zNvO2OX2>r{{`sTdzb(K literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/sphx_glr_plot_stochastic_006.png b/docs/source/auto_examples/images/sphx_glr_plot_stochastic_006.png new file mode 100644 index 0000000000000000000000000000000000000000..335ea95f4fd32846b21640c4fde6ace164feef62 GIT binary patch literal 9131 zcmds7cUY5Yw*L?d!YDRGL_iTlM2J*r0YMQ#nsliuiWDLA5+ER`I2ITY1ZfFPnl$M( zpaRm77NjfEd+*6T8Sl*Qy}NgJ?#}+T@!>(jNAkVzd(N+&{H&p-xQG5IJ%S*6l&)OT zL=c)q>KENkc&4tS{|S8C?kKOMO$QH8y4#Q8=iPQ!t~(+K<4x)pO_FS)B|ItNq@eGl zg)w(>z3FfVvAOAFcMs!q&+^uBmpcxQmKfXPLIUvb>~RYxCp$?L>Ms`vU>xqE9^u;< z5ac+bbV*LzEpn>YJFLN(Oqr_|ba*7_DD;fu!>Y~hm|voDt#048c~E;NP2?@Ed0&Ih zmoL`myK3o{PKaFNA2*n5zkEh^{^X+HIbEDh{HJq*k6#Olh%AuFpC!9R9(^rwelya8 zAvvd~E<~@mM~xf{FJ5uSOH>bv2b@HZ*{8Y!owNwzQ@-B`L4G~{GMhkl zv_MhQ+Kf$0ypo<1$Li3D(F-g&jw5Qlj!ozkn#mOV66H|+{arJ1G&bQNTw*KZjy$L>FQd3B|?)FZz(WH5|=n!3RGp-@w+f%5xSotZHmX@-eO zNvA2K%K^ud)uJRV;rXsSn~0-g_mVuO3lp2C&fn`KF!AXg`a-_Cu(i^kN+4WdI-{*& zVUc7#A+t~~Jiq4Im1Frby>z)t-n6d1{;X5)#8Qz9u_8DkA~iEJ^F|=eT(FeJ8x!JX@gOAQ^RXxS*N$id1wjCbnsxDBD?#gyN!`^ zGr|_l$5rt%z24pl8S|GtEUgGuKcX%-e1W@2JWC@2t@2pBZ=p6M&4 zXJF7G; z?R6W$zh%ALSr>Qf`Y-r9c$C@OtH5cfu9dbrzvAdtF+rsF*GlWmCBj%!iTd^xf zC*A1!wQJX~i=P!k@ObZ(MmJY5H5PP-)kj`-EDxzz0^eE z^5ql)fzT`iE7P;GN?Bi?N`-qG|LV`7D<^j!>O6jS)~M3*#dHFJK7l)??d!Qn94X_W%8D;CW-YGYSYD32RN{gw*n`Kr#4y6_@>6{|zGMU70 zn3sgxT7TFv*`1#eE@ByLKUl@I?yru+l@&QpyxGepX#p5uQ0R~l?J+GOYSnh-!=pXL zvDLJp6*L;BBBkA1UVL91Z=ZxUEU?lr}H3+7?t;cIVk-1+w&f(3-x$^5W&o zlS=fAjKopg2r)V;YO2f2b*v?!`I?FUUN$Zz*IsA6823gDWjr-wv-^zh+fm9)Pmd9s zl#2>+tpW30Jb=74;~nbusCc?4^^@hJZz>UDsxo+W*M6^j@^U_r3RL6msU&U;Dc4#r z&6H^3+GFo8voR^G8g@<&P(f>|D>v6|?%RRh6P%|nsDG{fZ1xR{N>_dJrZYg7Q6)SI539{KL49%nCJy!do8E*a`f!MwU%4uItS$U?Gi zngO7Gx55gXV1yMZJ?-&hI?}Wh7uWZ9c~TTKDguwsNH;DXFJ0+t1!jAFAWt+E?bci_xURhC5mQA-z?9S!vaC*2K0p?I?#Jc|vDE2w@~u<^dhk3f6p3b1kxreDSj0FQZd-Jb)O1hi>7 zZ~O@-KqcB}w8vtPW0U3L=w~Q^&~Jl-Ol)k%xBEF{RoRm6)V&%D(KGoBP@N9E#?8ew zx-ml}ep~9wwdNV~Pt5PtOfwKoGb+?1896>LavF<$_Usv-L83`1HVC&`x{6=lTximP zOK|*C%)W3pp8(U}JYnJ+uh_-WHaA$!;5F5aA+|TiT+~U{On55uaKlm3`{T-BoKm&D z$er3?&W-56MxY$pq9$m(@v@ESR@L*p@c=i!-q$OBLlN7af~$SYevC2&121OQ7Mhu{ z22%TgAwJiJ@HqpoJHu&y!doh}rRZF>>B{*WDd9+uc9C+KY=)&|^i#+ywgJylADbG| z*8XxzHQb^xQsU^j8$Rho@;c|tA=k-H!P2=ZR;#w8Ynh56T%cA|o*xx$i3^lTfvV-@ z0fgl2Uh2MKP6>A->5{;g@(qM5P{ zDgdYIWtdpO)miy$g0~*1;bqc*1(N`HBt4ej%B+1q*npQc1$-wBRQRDhqOV%^6lC>z zQ@koGE0YcLZ4Cgc?%)Mpi`&N*xz40_cIxk85&B56wwA$XXqQ9@C_g$0Z8QcD-O|!> zh?zN2&(uo?Zo0h=MSN>$Tc}`ZX<4+;DCLKa?H45(#Q|I?!VX;nhKu%`R}!^sxs*}5 zZ1BQsres0w`4K_+x>x+I<@agZiQbgDGGgUZ=80UANvm*^bR0nLTD~l0bKyxqfUdl} zZ)22{-sBXIYIr>S&$=dvTUl9I6Ubi7wkOG-9eV|jTOZreZ&$U4Wa?e|O29Y;?XjE$ z0Q|7eDUl0mF!$aUA*dT2b?LbWa47Mnu*vJIgMp}t$_I1;fd@bFfv~-hT)zJwtJOaJ zou`-%9XfsT!@emTj>Nhj%}*^t)iTXK5u z9}&)fSYiL?UKq@{jFjtyMDRU)u-${6Fqy2aH1Fn%R(LJneACd$DU%1OeWR5a4>DK% z+MC&6DX=1T5B7Eo3B^Btd_$ck7#(tEhlj6_KjA}O=DFx)T8&dbF8W7)_}Up$qNxj(!YFmeh^8!~x z#pNzAIGKuPoT-Kk814*oJLub|hxzH3uOv_;DB4=xGOz6(IU@NdlI=61civ6&CqoB8ort-SM%&|^>Rt5z%Zn3#K zr+oEl>u^Ja^F&&H3Q$52Iqu(kg;MSSNu^11%EHl?>KV zP*CtFFb8>aM0S^ZQA^F>oWtl)SZ&X=TqopMXq7w4{EP%&41_t2($6MXNUWuTE zK^e+Cep&J4?c1|T4pSdQ-qtoXkxJYbsP440v-3uv)*0?or^Z44q81mtQU8g z44YqA&;idV-)-HN6w@S2k-nl;@x<468!)LdXjE+=7V6#QfIqFQsv0kzDboV;k!$x= zUKG!B{(_fPx5g@qFNLz$4VzjLk{fQE3RCdZrunmo0ec+EfKS-XUElbvGEBByu!j-=lk5^ zybVDLQ>)Fg^$jlyrGDbX3B4S#5qPhM^h|AeHil^ixwXVJI5QBw-=x{o9}kKjmGLY% zEMSxbPA?U7aRvJra{^r8?(SZ}9;XfJ{%IbjKRwMbe;ox&Y4xF@&2gUS;0q}HxL@*_ z5)dj7EeNs12-_khsw=m(P2b7LehdmL1a!0|7;*B%#`07v+!hm@J1lCa{ks-!LBVSf zaI}N&N`nqylkwCK0+p(5TO=sE zxw*X{-FWcuVKR6f8lspV;X^PO!7)&=*l$1cIIYg!%(ZO24Cl!=FJJi17LIKkq8dp;2&6YJgWR!fCdkQBE+puio4=VZT`}=mXgCi+2)sqe zE0k$ENadX#IYNH@7pYNIW6W=W5ed^SyPP1~t;-V7{v&!?$mUU(v+e^korA`!%`FUXIm+6>?Hj5W=b~R6YcT}*` zgeGfmM@vf^wJ^$h0@wRW?>YPFhX$a`97go@&iLZUmdgwHIEI3UTH;78y_&$be<4l# zjh&1b*8c{<;ta3SB0g8`xJMU8n)F}?tDdpMQLQ&r0XU)vAz|TOeRc#f^5v8BCa;Y+ zQ?^#DX9p@E{32e3AzGfEB^?>29HaBA zsOlFEj@||0YMF^NNU+!tt?>ZBGBmdyv?#qz#a)6+hs;dfJAql-0Go=`C z>>30gD7T33-*4Z!b7u_&A=~``8sx(3!*P(ser0ws=ZxXn43tkOM(Z-=DuPkO?I!PXY!`0|w{g=T|-7@99XW13Wlj zw{;8)EXPI7QKk~0Wdyg$$WyZZC!Id+Mg3K$+Wy*EgX8WuEE@RiD5P9cw7$y7veV*mD&*U|#i;#0VE=`=(GSy@>IMNY}A+0c3iU`wd61gOc7 zSFheQM4X@KFvNfWEv1e~&JP0`acjsl@4zlkULRejnraAoY&tXL_ziOCoZJzRJT$wu zszFNS-l*6H#d1bWEU$A58a6mI^hYK*4E-4_kzR7z7HB`ksPG*OTpsOZOL@q^oB}6a zIgJkr;>0(N5I=tWSU_#?JFocUFkLyx)MQRwc1s&lS}hP2E>m4PljNG3n%dghc~cNj zy+`0oh3eo;sL%`{)YTvexKbh6w5$#04Hq=4+Oe{NEuF`f+V+SdNVCp5dePU{SAOIZ z4N~6DG`k-QMMQ-iK&mr5Jc?BP5iV+-~C?w4m}F#FDR7HN!Q|fOaLMeeP}1Z&MOI<*K5F1dyEcKdE8n~ z78Lo;pNx(OzwNEBQx86U2O3lxM9ak>#!-bB0P1(y*$l=2mLYsIRh)lO$8Qcy z!6C=;;5}QO7sClVe5FG}s6mZpWhrawV2@sniv88e(y~!cmVe;nVor|89dq;XDpt%Q zrVdm+9F>Som&nl25HA;3e6tPI65u<*bq|7&`34A(J}W?eh{~~{Dvpk~uOTfp<{E}O z@}k*A6;2>j&gSr+J*xuth5sG6HY2tYtz+Qm3+B(P;0?0P8`||@(TDv06dRW7tl1q# z5=e#EYk=z#!C%L*wzaa0s+o!fNpF3HE7)W7b$ro?0ITAk;gJ8$3Q&t+T5AXA4i$-5 zcho=sLM_k`SF;x|Vz2<`LNUxK;j7yQP4AFU0<#4@&^o>PFp4&!(QAzHo~vZ0=48-q z)LAH-xZObP#t7^)OhKA=z(s{Vetj_)cQr(#4M9n3fmViK7yO7MFAq;*XLo#j{HKwH zH59nNAChU<{#doWV+DAC6i8mNAO%HlfBJ=C`ekTnVo8ZKWodHq9t7v7`S`Bx-@o5B z!0fVZx_03_BgJbx7-nxh?#jh*1yBK5&G>?6;$4s|3pICPKToM&0hlaETHBEQX_>Av z<$%|@&XWT|h2-&E>x@!e;(B`qkbK{*6`0sio4+5L|IVukqCalDjn@lie=wJP)lF5g zw_wW@IlQ#N54V%IHkPPkR&~4#Jy?Di)bxfi0&-m_S1;s{cGG}-ngrP}b*KoFlzi&! z6^4X8|9y=d{yZj{6{hq)$n3w59Lz|1PR?l4p**TOSbQ+!2T-tNedxgC{wGW1*EiIC z>MH+9*7yfT=xTMEWCYo^N&PIqkGZ>^FK)E?#IN&lgWMFD+ayh75KSV^V_eMOqX&Ta z-t6n(*W0qp6rHDgu0tZBqpclWw)%|$^76{xf$=WhOBbpEAoZ2EA&~JlV=A0H0)jOy zam%85L>Q-~fD|eE`iOOLz7AC^$O?QPV9JdCL1s44nYRB8N!2M@p+fKpVKS-brk zM4Vg%-JT4*^DxgC=2H+MUC7E;g0Tw_J|!qRntk-huuckBl;qNf1kHpS>a@sd8&EPc zomp|9mW(aBA-K^7dc1`hT*AUsnznR8sB-Yd`}e-+9S9+ZewB_ol>7W>4=c<7#HV_T z^{BK0Q%cZQqg9@uRJL#1iv=d6<_N!L_+Q>7L}SN!A>p`AyYnYIGnrqvSawK235{LU zfI&&mj~?x-`@132ANV@T$T_Z`ug&)KlpJ@MFD;GWPl=`10EHvp>AveD~@N7X;zCg?@9SDW=-O zo3gGdMy`7JJFf1xoUIUtTdsHQ@vio^w}tLmIlI{69fi)Egg+;QY+POM%1KK8+k%sL zXKTqPacx@>Lyq_`;2Qs6XXXY6b*JAFinfRuZz8NO<=u1_(fL(Kx#SKu ze(O;>UGUt^qQi%OCcCz}$A(14+#)ZGS<}B>jP;shIvuLni6HZ-)SsxF2=ZWPrz?VR z3k@O2zKcy9$f*bMoQMUY#D%;=e77SHIM(wc22R`I}tJ z8oSOShn-6v7h*TYM1Am)Q<(q8sS&4up<1RTC0%y!@ko_(Vw)LGs&r`xG%rmA`FBZ?%DGAr&-0hb0L9&dTMF`i?gGd zwPB*TrPOVDPltCWwItr;UXJTu%{Hj-Cw64~3T zrP%)M{iE>6$aFse!qw4^LOomCbZXX(#2fi{Y+I7Bz1~`J3fb~wC6`oGR2Em~$fO!U z9}_s8b~umgCMH>%cOMr{T2>i%m19sY_NS#jT83 zN6EQmh|{-<$ReL#pL2+ENna}^8RdR>-k$}37fQR2_ly=ec6Zd))j8MI)&2DL-u%QZ zQE~Bl?A5Dx-_CyzoHkRClpGKBp$EC0&X2)(Qa3+V&Y?_5u1!g58XHHsEYD9Go6EZn zX@6Ys6C{3l-v2pTcDe!wyQ+_rcX#}F4y$QqW|r+8a!B_3&(_xRq0w`6AH{%igz^2P z`@2_K3JaH4mgWq-yee|an8)GnNmK~bAdMZ5+V)}yl1mqucTR)0EUpJpJ`Cn*l2*oJ{7U;sqkQS6lQ+!>yx%=iZ?EK5*$5Lbk! zo3R)M1_mhw1yb7%NL>x?`-MiY^eo=BYnSU>w>xdAk~sN^kNGt}^(1+D%Gg|8ON(c% zw4mTR>Fr{MWBKSgjo1qd6*xB*Rb%(jYiV-0zhR&3n8gu62 z784U|{_R#3>^Eh&HI>zgC%41WwjzhlE2L7#ZaMG8;nXrltY=%UrRr#Rx#8o-j}J)M z{0euNL(RTvJ`>el?oN{^?s9%#ljpOxM9*|#G?opgylz}#zsA445hL$TT^c9*G@or_ z^o1x=J;y6kD=IEvb(NGJUI{*wE*g7ZS+a5_^ysx$@qINRtWrj7>&hIRq_{Gy)mwkk ztimW&Gp0p2oE*ViQILn~Z_hNu zv8dTh_!+Y#VOn-wUthm$uE+DB>yq^4J9knXO9%F58|5m$x6rPwtV$WAjTq{1g6)*S`5z04sk=@T=$cO$ki=mI|YiobIe<9XCPTe%Wec3)VEDVSFtWBdhe13IW z6E+oNT7FNKqPSKeTSGgPMn>!zPeo(z1_T5|pS5nhJTmvi zGDJ2sTI2OO6?>k?%8k8MepRW$s==4NOx?N$%q*w+YlB6srw1GOqIvnMO~)SWgtIz+ z{CLYyb0RdP{XI}w?%MBhAYq*yx=M0&aB{&e?-QrPM77jH z;fvW#8f3wSb@HPrzaGBSR_el-Sm5B?cr}zblPIY2SucO3UXsj>m!F%>$jWMaF04AU zGVWs@+&4t=S#^12J>MKcyw1Ayr0jF#Sydw09Bt~WEb^-Q+AMx8MJMr!>4Y=ds0vtr@37KZ&|-NOe^yt;aN;ZRMxMK#kP)1#iV^mjLI zUCG1S%u806t{n~)A=4$X&^gE>L`OByJY{K0e1{D6V-tlI$e=_*AaUcFGZ#OQ<=fnaj&wF&8{^Vbj+0 z$yUZl( zM{QS^7oyHs1?1)D56mqMOx|~;VCLEg*Jv7WmZP1;w3iY$ncevMmlDjTH;*zy-V-W& z0z1Z**_&-4_6Ou#)1Z&0h{k#8-nel??dsJgnz>K5Q(v`d+o;>vbK<2vyu8@OF-5+m zxpBqu-QCRAJS%nfINcn&Hm%*zJbSXQ1~>WrQxt$pUS6IE_GYo8ew>2$hX|~?x}K(H zu*fityvkNFHE$r8k>(Osr+v$ue%Ze7Ih?dXw(;;ZMUliVgl=;sn*2RLTm&ns8SVdN z6+XGWY~&`sGP$eEq;lfJ*0SkFd1-)|?)!Z~g(p45o*k0ag}Q2n8+Yy@`7BS?bdYTHE@EhVFuvqb^x7;T!8Ug$+6&ttKlgTlf3#X@#WM<6Xt}U(Zx7GBXL^pNgUl z6t3aDG+G>FMlvT8LzD1t7p{a#-Tt`Aqta|;P=@SeWj0*yc_tt*FgzxvVP~28COL~= zXsq^$-YRyZ{P^Vxk&(64@wE@Ccxfo$@TjN^fEN{eMS6ZhC3F<^1QFZWk*^F)6h7_A zTl-N_#f7IRngL!KsfGvy&36E<&-4kd8D-xrrfLzV!md!hr$hjeT ztA>p2hhH`?&UWIZJ!kFNz^SOFG#-Wd_&c9pz2Oq{(q36)x56e1aI_p_Trh-!3^b^J zZmB&{l_%S*(pZo<{{|Xo>yYfh#k@kt?y_N&lYGgwWLJ)Rlc@5a_+_0hlUGLZZtePp z(uBP-R#sNS8JRgP05v%z@~Sa3>c#GHBH!db&!D&7OKPD4-ZMJTm`uz_hI3sm6cuwu ze{GoC%#e=ve6QaWp|WhWsB;F2pBZT#+nlD8_|w==Yo1|8HCod3QeA8K-H(Zjt6Mil zH>buCGi2yqdMLilPxe(UH3E90iIjv5E3j$)shhYos-~qyL)#R2ZHc@Hy~?MDVK)Nl z1bIvvI3Mi$KK>lOCkucqGa*4)^6h*A0C!Q~YOIdmD-2oS-4PuVlaZOxPMYo4ykr;P zByy5~^&WJwG2keToIDr4&94we#l&hCXg({3saaWB)Ou>LpyJpwLB$@dhKAd&-MeF; zyUEMn8@UVgw!eRH@X4IZk`<28k!KZn_Ri;hsnB~Gts+bZAp(v2&)#{ar>m=&>*m5d$AXE0e%! zN*EX1MNx%O#>#Oysueq8-&vI1SlV=6pr+J+35y^X!#-O6bqR9ca{sIA!1g)0wjYBN zZ7=?^9w|N_oCx4_Tv+&$gz;q`FO8;KEe|=l?7YwHMWj@clarZ{h;6JLuCK07-{OJS zIm9h|NXe0X+{brpDw*w-TF-y9y{jQMI{I1@hm@@&=EUz|-;w{V2Ku|j(*KEt7frIb zkdx_kYPGB&_MVH=t!0J%lOG8IcOJ)A6+L@qq=iUn@$%{_D`%zJ7(mkj6?tCS&w*?E z)!N$J*mX8U;^-D;EFCb>T(xW|mHNxs_SbP4D zUpX&>7Z2&9P7iP(7eC*PkpHhNg{o*El^GyV0zyJ)4>&jr?u~XBg|zi&85gR7PA@-m z=1l+O{TaaGkA$S7>GAOwQBA3<8wwIanlNKC+Esd%YAKBc4a5Z5Gr!FW*b;zZi&02> zf5WTOmjpso^-``qB}n*g*X!|`*3gKN({D}DXa!(xPt_7cfd>#OS0Edko|SbS=#7;7 zSeH>qOA;?1pSYx?7GQMq)Ih!4?8uF62hUvt-3e=Jhri?|qKFA^*#Kgev8gwu?b?ok zl9!++O5Xr_-&)}@-B#|7H>CDi;Z9k-d%(e@lgWdhBZaXUIXMPGJDLENW(3zJ1y9H3 z*iPNQV4U~!(<>nY{4AZQiYh-IaSX=v)2B~m3xlsMF`8i!Ae|U-K4v@@CN5^F+ByTX zcU@uASjiD)EoUhg62UMq0G;s6P9wPKR(0fA>w;TV8wdLPeh^zLkeK@yMTU*!Mu{|ga}}6V+_Lb z0eL}N=)jSfQiThU9Q}bMW1M7Kr=+n*ff`8~;%-lXT1Pjoy~xJ@E?k|0?J+oAwNS6aunp zZ1aqZ?9+2h%hf_r7YJ0hE%-1|GI+CRqByy8_Fv-j^3It0tgw3>;2?mrg+pi(wU3FA zXq{<=9^CwQ3hck?0v5Nc3VQG9F#sS6QCRe^nQS^1+-LLs<5M(Tt23#J>FN2qY!G6$dM!MgzZ<9m3@J` z?Pj~2h3-(gG*<2g(h0+E)04YD5uZ~zYYc)Wi@JLts+`TD;U>Pl@1535)eILI7#y^F z@4Ml2RK~E_i4!kG!2dXQdue%LTH3Lz#Ao@UhS7~1kz?iK3f|KVGH_2&ip8K@rCf)a z;Oh1ha;TH|?et&##3m7eOQf6}DrC@$7cWFYYId`nEFScom-CoPf{JfT*szA*U|}A% zX%SZJ*|h#PW+V4;35fx>Dj(~+jogN`gXeJJnXFRVPu?;g3BM3zeH_aKP4X%TPFbq& zRP1&sX{o7&&U8!Cff?=7;@k?n4*KK#_+G?_CgN-6BIDV>7+UApd-xF2uz?30ga5e! z`X}s|Y+VG`sJ+z1`cq8}4$9oP{9g7=bx!2L*1JcBKyRd^fWu(hnqmtE6SFlnp z4&GH#VNSe(ss%}(1@%7`?Qmx?ryg7Zp2n8UWcm zKW?S`=2ytic`pEvd)(8SF`>J5lb2jn9>4f?N2dpZXsBO{9Wc|@79!IH6*jDUX!MK& zd9YuH3nMM956m2jE#M1rsOfMajy6^iQA?p1dU$xuUpF>BFuD&xq;NW1l~(mHnVrQX zg~g%7i6ZcGyl0wK!HQEDw*m3=$U{tgDlgM>AL&qPGfX>U7cDG zu;d^>i+3AJcFmNJzrE?lBS_WL!X!W9;$e2+NbMkD>@Ygp5ya#`&U(|(qngoaPj`!! z6&^y6l1&x=HNyOz?)JMv9&3&XO7E!5U`bieE2T9`JG-mjt5ldO+*bek3I3U^QEyB$gk#TQig}i5nqjf3Vjz3d zsb7Tu(op_^NyeWyk+7Wr2I%74I4LPf1f40&3^jL@x}+Y=heFsGAU6bPj3Q)|G_JsF z!5Iv5gQ_Rn^sKCs4^E>i`~&YjgbGlJHvi4yA+VD|0N`$~>4xT$JP@sS?3$+f`uZbS zP)&}K+Yp4ggS~UHG$S)p+Ny5PwnOK&D+%lj7qa%TB<*8+6a=|9b{~Qsa;K(Ucm^yh zhwd_cu!=L>$-chp7FJd##6Zu;!YHdD7^f8XC;EK~;6>4|a%qsk$b{eWf}ZJy<3^CE zxCm5YxuF4q95^;>o!WAC$u* zB5+OdN_Os=w!zRNAk+7|1|25qrSE@j+$moiTxw;Ld^KM%!~}R zKt4$WNEV={tS-qtTg0GZDO`_~WNP3tU!4Z9PDhR$QM-2S1%=TX;T)`b4&sxMx@&O{BtQXeAmEhK4GYDK4=ID>H5^n&&<@6e{!EJbkl+a1!W3_ zLi67#`~t>VAiC{(KRh-rbxsCc?|KC(Ep@R?Nm5+A6$VtPsI3N`Bn-$5bab9S+0M_b z_JWIZBy3*z}OI6lPvo3pbT(de3KQhJAE@V0R_-+SLD$wFm6*FI(W`r z8;Dm9d3AB3C?n%|Hi#yd!OuF!_Jq<{K_$;9j4%o#a5e+((_Dpr=J2H_Fj^J4-3eS1 zbWAcBta%2Xp?57omII?Cu$jEM5{C~f0dq|+gtIg`P@xB*+gLJnVvbzwJW!{e3tLO$ z{D@PR; z$GrOKc~E<$rw>Ae;?K+M9fon8!tz8FS>gbrE)Oku6EQrPS{;Qr#vdqV;=#QFPBx0s zITcfCXrN)7oaw#>o!a8mKBsjE62#}$#KpZYe#6$iHed6sj-NQu2Iz@;t;493X_f-f z1xfC;-=VVw9y-WEp9O$nLvt|XRQ@20=bc>MqoWC++5{LOvfpv?M7ziR8xrttT93|u z`}=>EsX3jPr>k~td5rSIYO!b7GJ)GJ6BT_@8-*Fw)+VNud_o|UMr|Lv8i;XaZt8ic zkaSZ&&RhWwzFM|5$&|P-PzDZpAxyL7=KcTxM{@vxhLn9Z4fbqz^h z-50=KUt**&hu;msKJ`C%w&6dg&yS}ifU85H;ksd7YS)_bV`@F_J??2tCRQFq`Tj=# z#p$LHLB$-M2Bm|T5%~7=2C-{IKdujvU-F~ z1n@b&!_4w7y5~3s<;3pYZV^Bs+`8Rp!+hlV$A94<=EQ~MEnBy?XWx_orZ)UsRiGIi zp2A?Kva$Xb<-;2uz4u4ATLB>ffn@+96CEX}g~DuI4kZ!bSLcDkrg%mItYB7VTK~lU zkR}+Dl3;*-*`C!?Sq||xWc(jNAkVzd(N+&{H&p-xQG5IJ%S*6l&)OT zL=c)q>KENkc&4tS{|S8C?kKOMO$QH8y4#Q8=iPQ!t~(+K<4x)pO_FS)B|ItNq@eGl zg)w(>z3FfVvAOAFcMs!q&+^uBmpcxQmKfXPLIUvb>~RYxCp$?L>Ms`vU>xqE9^u;< z5ac+bbV*LzEpn>YJFLN(Oqr_|ba*7_DD;fu!>Y~hm|voDt#048c~E;NP2?@Ed0&Ih zmoL`myK3o{PKaFNA2*n5zkEh^{^X+HIbEDh{HJq*k6#Olh%AuFpC!9R9(^rwelya8 zAvvd~E<~@mM~xf{FJ5uSOH>bv2b@HZ*{8Y!owNwzQ@-B`L4G~{GMhkl zv_MhQ+Kf$0ypo<1$Li3D(F-g&jw5Qlj!ozkn#mOV66H|+{arJ1G&bQNTw*KZjy$L>FQd3B|?)FZz(WH5|=n!3RGp-@w+f%5xSotZHmX@-eO zNvA2K%K^ud)uJRV;rXsSn~0-g_mVuO3lp2C&fn`KF!AXg`a-_Cu(i^kN+4WdI-{*& zVUc7#A+t~~Jiq4Im1Frby>z)t-n6d1{;X5)#8Qz9u_8DkA~iEJ^F|=eT(FeJ8x!JX@gOAQ^RXxS*N$id1wjCbnsxDBD?#gyN!`^ zGr|_l$5rt%z24pl8S|GtEUgGuKcX%-e1W@2JWC@2t@2pBZ=p6M&4 zXJF7G; z?R6W$zh%ALSr>Qf`Y-r9c$C@OtH5cfu9dbrzvAdtF+rsF*GlWmCBj%!iTd^xf zC*A1!wQJX~i=P!k@ObZ(MmJY5H5PP-)kj`-EDxzz0^eE z^5ql)fzT`iE7P;GN?Bi?N`-qG|LV`7D<^j!>O6jS)~M3*#dHFJK7l)??d!Qn94X_W%8D;CW-YGYSYD32RN{gw*n`Kr#4y6_@>6{|zGMU70 zn3sgxT7TFv*`1#eE@ByLKUl@I?yru+l@&QpyxGepX#p5uQ0R~l?J+GOYSnh-!=pXL zvDLJp6*L;BBBkA1UVL91Z=ZxUEU?lr}H3+7?t;cIVk-1+w&f(3-x$^5W&o zlS=fAjKopg2r)V;YO2f2b*v?!`I?FUUN$Zz*IsA6823gDWjr-wv-^zh+fm9)Pmd9s zl#2>+tpW30Jb=74;~nbusCc?4^^@hJZz>UDsxo+W*M6^j@^U_r3RL6msU&U;Dc4#r z&6H^3+GFo8voR^G8g@<&P(f>|D>v6|?%RRh6P%|nsDG{fZ1xR{N>_dJrZYg7Q6)SI539{KL49%nCJy!do8E*a`f!MwU%4uItS$U?Gi zngO7Gx55gXV1yMZJ?-&hI?}Wh7uWZ9c~TTKDguwsNH;DXFJ0+t1!jAFAWt+E?bci_xURhC5mQA-z?9S!vaC*2K0p?I?#Jc|vDE2w@~u<^dhk3f6p3b1kxreDSj0FQZd-Jb)O1hi>7 zZ~O@-KqcB}w8vtPW0U3L=w~Q^&~Jl-Ol)k%xBEF{RoRm6)V&%D(KGoBP@N9E#?8ew zx-ml}ep~9wwdNV~Pt5PtOfwKoGb+?1896>LavF<$_Usv-L83`1HVC&`x{6=lTximP zOK|*C%)W3pp8(U}JYnJ+uh_-WHaA$!;5F5aA+|TiT+~U{On55uaKlm3`{T-BoKm&D z$er3?&W-56MxY$pq9$m(@v@ESR@L*p@c=i!-q$OBLlN7af~$SYevC2&121OQ7Mhu{ z22%TgAwJiJ@HqpoJHu&y!doh}rRZF>>B{*WDd9+uc9C+KY=)&|^i#+ywgJylADbG| z*8XxzHQb^xQsU^j8$Rho@;c|tA=k-H!P2=ZR;#w8Ynh56T%cA|o*xx$i3^lTfvV-@ z0fgl2Uh2MKP6>A->5{;g@(qM5P{ zDgdYIWtdpO)miy$g0~*1;bqc*1(N`HBt4ej%B+1q*npQc1$-wBRQRDhqOV%^6lC>z zQ@koGE0YcLZ4Cgc?%)Mpi`&N*xz40_cIxk85&B56wwA$XXqQ9@C_g$0Z8QcD-O|!> zh?zN2&(uo?Zo0h=MSN>$Tc}`ZX<4+;DCLKa?H45(#Q|I?!VX;nhKu%`R}!^sxs*}5 zZ1BQsres0w`4K_+x>x+I<@agZiQbgDGGgUZ=80UANvm*^bR0nLTD~l0bKyxqfUdl} zZ)22{-sBXIYIr>S&$=dvTUl9I6Ubi7wkOG-9eV|jTOZreZ&$U4Wa?e|O29Y;?XjE$ z0Q|7eDUl0mF!$aUA*dT2b?LbWa47Mnu*vJIgMp}t$_I1;fd@bFfv~-hT)zJwtJOaJ zou`-%9XfsT!@emTj>Nhj%}*^t)iTXK5u z9}&)fSYiL?UKq@{jFjtyMDRU)u-${6Fqy2aH1Fn%R(LJneACd$DU%1OeWR5a4>DK% z+MC&6DX=1T5B7Eo3B^Btd_$ck7#(tEhlj6_KjA}O=DFx)T8&dbF8W7)_}Up$qNxj(!YFmeh^8!~x z#pNzAIGKuPoT-Kk814*oJLub|hxzH3uOv_;DB4=xGOz6(IU@NdlI=61civ6&CqoB8ort-SM%&|^>Rt5z%Zn3#K zr+oEl>u^Ja^F&&H3Q$52Iqu(kg;MSSNu^11%EHl?>KV zP*CtFFb8>aM0S^ZQA^F>oWtl)SZ&X=TqopMXq7w4{EP%&41_t2($6MXNUWuTE zK^e+Cep&J4?c1|T4pSdQ-qtoXkxJYbsP440v-3uv)*0?or^Z44q81mtQU8g z44YqA&;idV-)-HN6w@S2k-nl;@x<468!)LdXjE+=7V6#QfIqFQsv0kzDboV;k!$x= zUKG!B{(_fPx5g@qFNLz$4VzjLk{fQE3RCdZrunmo0ec+EfKS-XUElbvGEBByu!j-=lk5^ zybVDLQ>)Fg^$jlyrGDbX3B4S#5qPhM^h|AeHil^ixwXVJI5QBw-=x{o9}kKjmGLY% zEMSxbPA?U7aRvJra{^r8?(SZ}9;XfJ{%IbjKRwMbe;ox&Y4xF@&2gUS;0q}HxL@*_ z5)dj7EeNs12-_khsw=m(P2b7LehdmL1a!0|7;*B%#`07v+!hm@J1lCa{ks-!LBVSf zaI}N&N`nqylkwCK0+p(5TO=sE zxw*X{-FWcuVKR6f8lspV;X^PO!7)&=*l$1cIIYg!%(ZO24Cl!=FJJi17LIKkq8dp;2&6YJgWR!fCdkQBE+puio4=VZT`}=mXgCi+2)sqe zE0k$ENadX#IYNH@7pYNIW6W=W5ed^SyPP1~t;-V7{v&!?$mUU(v+e^korA`!%`FUXIm+6>?Hj5W=b~R6YcT}*` zgeGfmM@vf^wJ^$h0@wRW?>YPFhX$a`97go@&iLZUmdgwHIEI3UTH;78y_&$be<4l# zjh&1b*8c{<;ta3SB0g8`xJMU8n)F}?tDdpMQLQ&r0XU)vAz|TOeRc#f^5v8BCa;Y+ zQ?^#DX9p@E{32e3AzGfEB^?>29HaBA zsOlFEj@||0YMF^NNU+!tt?>ZBGBmdyv?#qz#a)6+hs;dfJAql-0Go=`C z>>30gD7T33-*4Z!b7u_&A=~``8sx(3!*P(ser0ws=ZxXn43tkOM(Z-=DuPkO?I!PXY!`0|w{g=T|-7@99XW13Wlj zw{;8)EXPI7QKk~0Wdyg$$WyZZC!Id+Mg3K$+Wy*EgX8WuEE@RiD5P9cw7$y7veV*mD&*U|#i;#0VE=`=(GSy@>IMNY}A+0c3iU`wd61gOc7 zSFheQM4X@KFvNfWEv1e~&JP0`acjsl@4zlkULRejnraAoY&tXL_ziOCoZJzRJT$wu zszFNS-l*6H#d1bWEU$A58a6mI^hYK*4E-4_kzR7z7HB`ksPG*OTpsOZOL@q^oB}6a zIgJkr;>0(N5I=tWSU_#?JFocUFkLyx)MQRwc1s&lS}hP2E>m4PljNG3n%dghc~cNj zy+`0oh3eo;sL%`{)YTvexKbh6w5$#04Hq=4+Oe{NEuF`f+V+SdNVCp5dePU{SAOIZ z4N~6DG`k-QMMQ-iK&mr5Jc?BP5iV+-~C?w4m}F#FDR7HN!Q|fOaLMeeP}1Z&MOI<*K5F1dyEcKdE8n~ z78Lo;pNx(OzwNEBQx86U2O3lxM9ak>#!-bB0P1(y*$l=2mLYsIRh)lO$8Qcy z!6C=;;5}QO7sClVe5FG}s6mZpWhrawV2@sniv88e(y~!cmVe;nVor|89dq;XDpt%Q zrVdm+9F>Som&nl25HA;3e6tPI65u<*bq|7&`34A(J}W?eh{~~{Dvpk~uOTfp<{E}O z@}k*A6;2>j&gSr+J*xuth5sG6HY2tYtz+Qm3+B(P;0?0P8`||@(TDv06dRW7tl1q# z5=e#EYk=z#!C%L*wzaa0s+o!fNpF3HE7)W7b$ro?0ITAk;gJ8$3Q&t+T5AXA4i$-5 zcho=sLM_k`SF;x|Vz2<`LNUxK;j7yQP4AFU0<#4@&^o>PFp4&!(QAzHo~vZ0=48-q z)LAH-xZObP#t7^)OhKA=z(s{Vetj_)cQr(#4M9n3fmViK7yO7MFAq;*XLo#j{HKwH zH59nNAChU<{#doWV+DAC6i8mNAO%HlfBJ=C`ekTnVo8ZKWodHq9t7v7`S`Bx-@o5B z!0fVZx_03_BgJbx7-nxh?#jh*1yBK5&G>?6;$4s|3pICPKToM&0hlaETHBEQX_>Av z<$%|@&XWT|h2-&E>x@!e;(B`qkbK{*6`0sio4+5L|IVukqCalDjn@lie=wJP)lF5g zw_wW@IlQ#N54V%IHkPPkR&~4#Jy?Di)bxfi0&-m_S1;s{cGG}-ngrP}b*KoFlzi&! z6^4X8|9y=d{yZj{6{hq)$n3w59Lz|1PR?l4p**TOSbQ+!2T-tNedxgC{wGW1*EiIC z>MH+9*7yfT=xTMEWCYo^N&PIqkGZ>^FK)E?#IN&lgWMFD+ayh75KSV^V_eMOqX&Ta z-t6n(*W0qp6rHDgu0tZBqpclWw)%|$^76{xf$=WhOBbpEAoZ2EA&~JlV=A0H0)jOy zam%85L>Q-~fD|eE`iOOLz7AC^$O?QPV9JdCL1s44nYRB8N!2M@p+fKpVKS-brk zM4Vg%-JT4*^DxgC=2H+MUC7E;g0Tw_J|!qRntk-huuckBl;qNf1kHpS>a@sd8&EPc zomp|9mW(aBA-K^7dc1`hT*AUsnznR8sB-Yd`}e-+9S9+ZewB_ol>7W>4=c<7#HV_T z^{BK0Q%cZQqg9@uRJL#1iv=d6<_N!L_+Q>7L}SN!A>p`AyYnYIGnrqvSawK235{LU zfI&&mj~?x-`@132ANV@T$T_jQX*2)4bmkI(gM-~(k0y>UH|eM zt&~QuIo^jVFIJ!aI8{g^+f2)u2o@PEE?+;#V?1Na7>^YHMf=H1HglNUEBx{)WeHT*8M5 z13?P{IR5wO?%q#Fz9%W?t%|^tl=8y}y+=o;q3wTfD6N&wKlm;o5v|nYyizpU42b|~ zG(2n;Hp$>uD*t!t|7rxd(~+lTEiKo_iu9^g;CMbhpVZ+80FR}n454z zJUl#hc6RUczxfxZ+0Wx_W*a7&eSMjjn2;tWCgRu)xOsTUIgQ`u=dU+cx0SOsx1iB_ z<>%+)S&e%UX&D;MzDL0n5fQPef zCh_sw5IsNt$<{;#>x<&g-C_GrB7?tZ6=aX3c}2-F$Y*~-kfi(V>1taHq`aB>wtcYN z%b{OW>VCMAmPS*n-)}z+H=p&`EV_k!_h+j3&Cdj$nL20ng3;Z^6GH`spSh_%Uq`KW zAF>5VwwSUEV`#p3vAVJ{%zxj=Nhnz|-OkSLqud>;7vC)qGY#$)rd<(86qJ-Onz}`? zy~}L9u`w}KwsTZ(>+3I$Hph+Jmt!I*g(FC~GV1C)CMzu&85slPHjmEZnVHGM!xI`B zs;7{*CRCRc-g zy2>3?RNu?}u25nQ8?L!GLX=}AT}gu4<#$rOV1`RgQ2d3>p0(48ii+~^RDAuqvDguM zbhd1uq2aVX`~az}tn9&q2S*dqaBmF_4SGjDaWTxz{M?j{;q2!y^sip6!Ce*?7a=rm z86R&=z$7Pgo5_zC8>D(2bT@fl)Ya7~C2%iiMv9S%`!qB*UWrbr7K{d(RuawE@0Pwq zkLBo+rADl)6&ghnvX)xM4VKBZSyoLpdY<$r2|CU;xaTUT+6;SB3OTKHQTw)E`4Fk8 zskvNjk_RsdRO$AWZ++pl{uCWeUA{~y?2?t6i#)jQRMmw+*Se}FnXOg}UokwahL4XQ zAi1!yF$pUGNlZ+v-gURQxcFOn`E6rM%UYN1NjN7#!Q9-u(-g^6T{Ga#6sHZvtmke& zz2gdvAZe;^#Jq8y#`{2eY^T$`g*o3F@AcvAz-knVE=?^hDq)wxuU}c1nSV@7oWZb+ zjg1)^8o~&Sym}1JT3A@nE&5hd<92zvAID)N=6mgRalCEhwJ)8m=DzVOzp}FO?c2A8 zjUJ;r896zO3=CN?WDO0|Jv|?m1OgFRYL;4BWBKa20ukigFMq6$3mg=1-nHfjpwGpHxt=39+A% znVIUjQ+s`NL0)_w^ZB#CzyGVMNj!R)-&0dYjUH9-DGwfWbay}G5 zwWOr{Gc%XEqnTcm7`{OuRCWFxXWP|tDdN7f9UaRBB~5j1`zG7$aJBuxpJ$DRH?Yor zyez-Gyc`g}X(%jw4UoDA~#Hh~6 z(#pz8LZanjx4C50Dw0C*U?GV5tH#%o=IiruBi}d0H!qH)k<-2m&Ni-%VLSWy-F^~D zwKjx2=N&}*^v;J-Avp%-hY~l}Dh1@1lRj5=*O!gB5oEky8ydX&zVMEYjzSVUIyq5R zRJ_{nqRv)Z&w3WkZq)SJ#Kfd#FiVA*00X7VetW9gceAK^^4l9>=Z#49$`rfB}X7gV&pqG!wgF}n3+k$ zyxdN9W_o*jMMXpmea_5~a&mH7T3X({d-tzSP*AKLokIZPkaGK*O++&(!w8Mr32C#$ z^ej7ASgb;cz@id44Pi<_Lr3T0<8?#LeOQxTXPhD{PZsRK6O5RsYAKb|E}oE&rEQRn-y;c5bwGY*kfNQKOdOg-`2V_B&)$ zSV-{F?R|YkF2odFq#j+re*G%tjad3Dzx?gZlv1)#mE}kdO*$VqYgVru$`JbATiih$E~vlHy77>)-Rf^^7v` zG5smhmJbcRkHn0~go&tq!{&V2{&e?I74SyM%`db}jrFIBr^d#vtgaFh6I(#h-`;*> zV{?5pZX_%$Y++#mGaw9Q^zZseN=l0O)!*oat)lc=B$11)3Ru)?EHOgK#hxcS$ak@V z!^4mE_q%&~%FD{Q^j$y6F+jnbsh(tt1dC9`l)v>(qq<#HrHIO2zmjCxh6#Yn!qNAfDl)H<=0deINk%ZLL z0nV`O>}7xtLe3lQ<*%W<`1$#%*?u%d$F>zV*5o`>K47No)-zWPgb?& z62L*lNwYO_^PF2P*q)?iMw{~**(#HxhZHkcV{Zz%5f&9W-|N!KO8r^~GZ&X*YTwH; zuQLa0>rFrdfGCz=9G1EwsR5zLXOr>0j+f8A%?bG|EiKIt6<0<^rf2z}Ba|41Zg;wt zhmTK7b9J%z^6XGiL7}y^)x1AxeRb6Wf#7mlQ)wfwP8N2xdi(_ilgMdvY&+(K;RFm8 zERRw|8XaW1% zN=j}A-Kb)SL7GZSKlR)%T==w$vH>095p71kEmP$E{kUEcRlIf1Z85Bz@9Qc5L*&^N<9E#wu zFt4r4+ZnBka}yP7bJUSZ0zW3n8a)=aCd|8~$YcvfulL$;J&(80F)$#Hi~#85;pWDQ zbi8R0)PZ`^X?W$y9Xm;?VrpWtGLUMduI@OXG4Ii6STfGUz(7DujC$ve$j#+p700j5 zBZ{s!(>43^Eq=}xYNJ+F1EMGTP!a9z?Ik7OBQQ^{Sf}fpt)UJB&hcpU`ST-crrx!g zN%N6uyv&Nkt9j;uN?rdT(-j4ggB;a-g6r$wwfHC~r4`n(c7N>iHNGl~UlBa9vDqm% z>jk)s^coN@Kq$3*r}Mw--WSI+5bjo1EWPEhxSq?&L55tPu62aig9OI*=#e(2eka;UC2Kd69O>~aGze9#a;A(FV0m9G2Bkb|_)w5^a5R#Av6QZL{ zt*wPkJHvv5gW-yt>}*m-69-q<>WT_=mY9f$2mn!h)6VfRF-HIv8n4ec0igdqIiUtD z1@(XcBS0oIBs@Hs*Ln zEaCkPi8+GYlWhMxXu=1`$-RnM)0`QBh)VLhfe+L~=lM8qqLowbjR zxj>~xM#aHGL;GD}5xKxFi3AlKmWN)2d0#x2X?b}$Afsph9U2flc|6maB^@$n=C1dnZJ8vvui%F5U9I9%!DGVLq`z%|$8eRg&h5D>7uyo~hW z!w1NYfwHDt*zIMhPEV(Hm0Wdcz8o)rm`>o9siIB{L$6fNv8X>Nb6){^m)nn zbB6o1`iAvY&<#M%P*zrUb#>+7;Aq1ah}ax0h>MFG2cQD;2t`0m7#X9toQjGH29yCQ zL4h$!4%$dK17BH$Hby=@-&FbB2O=oFVah1QnD3NHZGM22_d0b{IxV)6v>XZi<8sOzCPZhKkN@5 zsxlLN`}PegTs*hg2LO)iP9Y&7C(}6=*4BC|Dk_?qnrdnehbxM0o?NkJ%MNF-h8!Fm zR(>XoK-sIS_&8S)7%oLu3z*l?Fr})>SwiAnczC#cHVYfu9|3k=-qD#E1Ng|sr{r&= zqespTS8ruyXFnvsXj7C7RCh=!>rZf^ThiW<_r14_Ore~FC2geeBx)Or(yXLKhn+8D!>lntTH+{JUranb6X1MPfAXP_EVod6~YW!779Yb zj`FR&g*NQy)xKn5egT0RXp)eiaC&=t=PD%p>kFUi*;6pZ$VY$r^v!mzSS=s2XhTB- zN#NP#;Q-WQR9q_ksfSe;W+djzJuw{}9f0qlA#z&?Al8CB5E~o&@#FmRvYCy|EZ~}2 z$5o|NF$2bE%g0}U5D6gi*a>CjIyACy{isp6K}af+7CG zp5Jb9oNaO_WoIN}xQ|Jl+%IQKg!~ep8?aOZ1r^$3=#7_GR^Z2}sYY5_=BJ+!k^x3O zXUhS^hMd#yU+C*o;NwTf$7}28bldCu`1ojOd|p8N@g#Goy{pT@+&!0aN z5E8;)va+(IWMx-ZSIKX~U*Qypbn;GS5)(KBP}-lBm4Dq>SJyaWgZ+{Ww0v+!d;2n4 zKZH683QC}FDkK1SDOd(=ofQ=o*yEzMGj*B<1_md)HVh~Chw+F~O-zh!a5zftHnfit zZci-@Klr;d^Rf(0nIw>l&A`Uk^xvU=AzNQR?jaZ<4CM>Bj1QrqOp0G##vArb{yXY+ zqPMTz-)N_+IBic>9YqlEbTM$x1syCbV;GrGPAM0}ZPSJUZYC`-&n%6pn{ zDTqAQ7xPPwy9AlIxf&VjOj%iJId>~n>_ZXIZpd3aNJI*6TU4~?a&Q=|vi2)EIob-* ztNs`_{i+esGAqlU zr+-tQ?qxjt#MqeD8jXhbN-$Z_^W>k{VYXi z@8FrA&Ys9wCbFO_zI-LZD%z-TM8x1T;(gQ<2uMd3oC3 zUQYmgDkvy`7W-f$6QAOH$4;QJ&4uPeV-wR7xf40TKQ3j{ZD1SrZew zx0RKTA;;%y=o%WbN6Bq%ZDBiye+hgJ^ud8sEf4NL+a`Y!BVYAuD8sht%p6`f zP{*_V{nE#eZ*eG%ZLZ_>j7gk!Bif|~1KcF3-Ve|hTBLgOK~e#L0~3r%%-#U)xSZUN z9K}RNr6gb+Rx)KHxv_ZM_Ka)wcQ!ZS^_?0GsYysqcZK<+`DJR;fPo|tty3jmpCYy% z&&axSd@RyIm({UQQCe772z4B)_A6*CcXkXR(Zrv745mo{41tG1`wD3RN$mP`$>0A@ zw%SCkqXiW*+5>*#Y8zgcx`5fnsF;BFxBm@h@anrvA|fK?Y08o}mj4~6)BiftzM^AG zjDQRa(Ogktza)y!pGB@8NctUbBM|TW?>Mcus{GCSQICX=*$l5fi6)!ip+iwEeNB809S6BR><$u*??45dfsTe2*NdG`q zMexR^mkK$}Bh(EI=LNEI4@)0P>N2ntcFHUG*PboSeO8Z4AQcg@+a|+Jq|1`dXtg3p z#>vlzTdO@3C*PXDx3`b1(Bh&kx<#m!`8gK)fJTq~ZxZ6-?OjicR^IseS2Ad5hpXv+ z*c@+JO7o_s{v1co6J3pcfB2IMf>+*(MF5A2s^QIG%dO+%;PB=Df5Cl16x_(bM@N@- z$H#U~QVLkMADv(>|kEi{Y4%|o(tGl|%s zjz*Z=%*@Ls`eW=njLm&Bi_8WJF)+L0Xe$X2}Ku6Se8Fc5w! z2+^j^@${iRU;pI|3?3ea2m1{=lDbGNgg|P;1G0ugQz5|2wSB@{<~}`_L1JdHgw9inUo4>=V?Iy zz_tHNe2BKdg98U7@taFW2?+@^vuwkXW(#_jm=6dNAHV(0<2Qd+TF0x=U5ARuKZHg_ zkNDTWLf7r#63%B5TO~Et;S&@*8&MW_wzG3vNw9!tP>_(I(Eywp8XB6Ks(%`UW8{6L ziTLl3l4^%f87tJGZxp7i18jtj{;$1dX3opcU*ICy9Ue&^X_=}=cSTr-x@^N*VoG_{ z+8C_%44sZ{?_};rkE9FVABRd?Tw>zCYwxbFXyY)GBOlX>VFLE8U@OpIxy2mQGdVo8 z?i8rCD4@g=6B`%z4}?P-<^*jze4dOxw~YbfYs25Kn(fU zmsU#UDpfjMiA&3xcHvwelYjV-rqy62q)(UfdMp>x~6L1IS=U0OmkbLZ8jS z&b~9083Yg?TF_frIXOT%`2zMkc`cPWw3qn7NQiQAk<*p^%ejc&YX9k#D*;jK*f&ep zm%p@$JWm$=aMM(bmt?{yF|9W*L=^Me2h&M}2%g88Y-+up4n{^TwWm+<{#J_|ozs5! z>_jzFMln@v=GQMLV4naTc^-5#&CJXIEdQ!m0M+pJ?c1?zI&`(dMBiIl7Lr|O0o`Ak zzp~2DAAI%Y_)e_EIE;5x?ARY+Zo};Ccwyp^+$Hgwmb1fnuBGcYnsL$iT7}L{(&Z~cmAv%QbwV@ z#V9~%6NQA>Ir`;WM(>6q1`CKYGWF&>zZAT{Bk<>YV|VFhDqG+9_r9d$J$yga%#X=^ z>SA;xEQNs&Ib_w;4#UGe7SW|-+iEx@_qKZov8ZuuZIcAv9dEn;Hg5JgU1yrE3mD3@ z{OVPf*=hwEmH8t!Bcnen-*WbMLPAJ*F~r0K+&&I;=XxGX$)Pzo>`huTv#-3V$eMsk zqF}{RseApR$Ni(r_8?#oQn4?|;X|1Siy%K#glXGhXT4KP`qSX>jxf^4aRqL0#m^Yl zy}kLH+;s^G%7s6_gjQTRSXxi_2iNURId^abS0?b4jpxMR`xjcrTn$SD(%_wX;}*7O zyy)|a3J04+7Z<-+y1pOUJ8$1w65^7o`w48$n7@@zWqQ+;g?yz!dg)t<=Q?dct= zvaZ;ve8B;OGCgfRV_6~OaHlsGu`C}(GNjf@k-CxZx7r?-Ed@}2(BIH zhcRn28A}DWfC5sTT6rO+0ZwbI8;Y_PN z>E+xz>00isnd_l4`R2;ebb+H+o$;Kwg*%KQ1O;<%r~c7Cv1G4QfTmHkExjP=)j4{p zwULpAW>ujXhN%hsf4nGprYt6@AENX%>G|K5MB9wCCqEdneDX>+HV@3S_4vCOuy0nj zv3Yp(8(F>=Cras%<|xZn+noNvPtQbRWIR2$o^A?%@OhzbH&$e^6v5!lp@>(WR#!X<>9ktPu|Ky4A@I5DgO%8W=NcnS3 z?@`>&E!(?7eSfNW2(9!1aqf2IoSu2vd$7Fr8_#iNuxO|=45Pph2um%Z6fd<>r0eS+ z16@a(?@{L8>4w)jA}m9At-pBw()8BWK}_-KH-6A8@Q(l(2p26brfKla6>{IKtf46@ z`v+kXy+zggHa{)+da83(>c!>3N!M3R?TWk2*DOv14!#=NNB604e0^yL@bvUDJzX!4 z;*4*RZC<*29iS6&bbfy)DeIocKi9su5YH2|qRyuTNTSm|IQYq2(?@xfUYeK;SzHFD z%yP9-tjLl|f|1-zU*Cq4ltEQ0Y4$E+qqI7*-Dc%Xim-cxW0?lc5gBx+XXq4}7Rnl0 zbPu1+lVInJn|9xa8R<);{lLp?pue{qC*Vag=S2@M2Pj0g-UHA_pZCCF^U+TDh7}&s z*ih#0Z`g@^=y?i-5+TQrt&mH5HQy6x<{r@_~R9O2&Dj zq|^_z$@RtD&1{o*;t5hiy&ImE7R;i6OudVpb4LK??XFkxm5&>)_;QpwYV0LtEz=^! zBy*MGd7mfQw(7B^V6s9R0E`4Eb>0`-)rULm`5Nl#6|X1Cfii>+?gW^9S>CuZ{ztEC1Q@(!X^yJ&xD)p%1iZFE(c>etL z%!e9*LTy?n0yWgGf)ISB6fy5FOEo96p0+>*2BMZ2HVRq&VvaQf-69B^JT^L7U0vPu zbQlOiXb~bk`938li#l&;`1px_`|H%-?l0`4zeYjPWk1c)Z08^t7tibz;h|gho`+|t zwJo532+hd1@7DByIA(HNjefI_L0+ngm~9_`4NzJ^l|ceh1~dqSTSHpf_pz~91PPEc z*=jmkS}TA4+@S##qDaeg*1IHod~<1W5hy-r75{pOMz)YGElM*Jtc^Zjqd-EkwXL*` z7`qK-sJ5!Dl%J(3$FFa!0y% z*hgt%dZh(y6M8z!t7_>pf`yI0&n*-9Z9><^z*z+Ft z2FM6XIdI=#S^?n^y7Y+PU^`b=YC(rTdbW*KK3C^D73P5D-pn=#3JSX4Twj4E^WkjV zY1yjk3r_@>r@cM%qYiat^yJKl)l^6ga*BjPT~A-nhT$`nS`$xC`$x1!OZb7~LF|ek zJsqO?$W5FzXXq6$zgFVoR#k!js5Vv>7Od14pmW8<5EA@5UOoQe`Hg1&VWTG?gw?el zF|io%fUhjY-k!irq&tfINZ?75?pi<|5!nz{JD^R|y;eWf49r0!hL_V&47<$eR)xEFjrLGX?b98(CVS z;mD|bTvIl12Zq!?2E+QZtL#7l9>rW21Z�Fx3h1_SMPkB`2BeM zcO9XTk7XFjKuHKbmo3$-yX;TLt6&nsv8(0PrATqkm%(L)(JFEJ5kr}HWFIcQ(lbde zPnzTTaREnNx}|464#gF3=NXtk8jt!!=k!@C2xIfQSYJXW@O$WrC}db>7Ve0-eO1+X zA;L`AB|lsUTK%6tOTC3BD_b^8GD}s~9v5N4)8Oq48~yd8PZy@AIqlN$3gu&x!^=#E z^6{HaB`F*Y_B)2~P;u#4L0qYPCGD8eS{J!!;vcvue#13uKZ$`7h}||?P~+L0bMM0k zPQ+~ioH?J+dSo44JX_nXxk$%VPTwXs#=(1{EQJ>W-ehc{t0}OUo}!?nm#fuSgMQ$) z&6}08xTacDk4Yf;%J1$%qHU=whuEbGj2;T%Sfe(P_ze~Z$CB>a;oS7hP%dr+CBDg= zrY3w>9LLfg!fBUX>UJiV6~Q-~jvU2G0qw)InABb8O(LH&lvFP|$Wrl~w``k2ek#<| z@huthlKo5yQO~ve%e*mNKkK2G5;m;HrgJ;s_HGkvQ$B`tKt$=zk?##^thCC8k8q`>LF2+_ z%JB9~&;0eY-i1V*>f#u&qA;DTS@=6x_-kLbQ_M{MaTV|@NLgVy>C>UeYS1IX<6^nU4fsiaR3TkE^S`ZHJ1ddXQlrfEh zg58QjZ?k6UerH(AP-cx2dRq`ZyVBZYzFZ zZI*fPzJI^>OI^T+f{My(H!Z+ph4k{EH@VD9HUcd@T=&UDvMO4f8iQZ?m~_pT@d zqsbJXA-~6!P-l2sowIg55k%6rH|{eY&&R7+l~Ox@M8%7ch7zUMXsY%kKZSd^4Um9-2pA!o--5|8zg^As>fZ5Iy1OOS(*pKF zBcGOdE)qdC3Rj%5u1^nOyjoh&(DUao@892RK?R6y+t>!l2msbnBk+@=@iUPh{>S`OlPcLgSNaM6S>yb<1NpOu> zke8QNQ&R)Hb&pW!h&@GILc+tiUJ&lEBSGXQCL{#eQz=_*KV?BeUj7~#K;DnZ;RE8b zc6Pn`PX^lW7h*0(Y)gWAvmKZCq1C? z56n&xjJN=qik^<{ugBGI5HBOCl0Sd0d_BQkt8ZgvRflN13mm+U=`?*cbV{d7xD-PE zNfcou@7lT+W?E;FG&N{AaBFLSbW51$(6RCe(3>?(@Ou9Y&mft)$vAXAb*2#S@@=U& z7M(&*j=7AM5AeAfETN9|ep~r6NzgBp*na25>l+L!UJ=ouS{@P6g~boY>~;=;e#l#t zx+@%0vJ17P;1t_G=;eqcoECIzCp zlic>76%}-L+lGCanQ%FVqecRi1ifPR!aHqt6aqwSsIdWtkv;MR1VHO$<%#{X?cfHHKg%--RBsXAIX}ulzAiS)u#5lO}~-j07<@AH_o8Lc4 z;16agX>MPCmdDF14+=EiMmee=nVXloO6hr4mPwP7YwNVN-Y1IXUnaR5=8xRQg+;SKau=(O^cd5Q;twAYV}zpT-$6MqqFBR{f$r}0x#nhl z_LGy78!!rBN6t04j{usRoYVzRYfKLilHj;gO5{^yj6PZ)Sp`KsFxQ>}WW&Odbr9Zb zJPPr8Zgn3v^Ia^E%Q3K_YT*(MA`87mA$UtXkAj8r`H3F+@2RKvv88ScrR_ieC?6lSs+Z^ATBEo^C2nH-vn^;KWi;NYju^uNl!f`9-wXtZb$FhWF9k zkJ?X7u%9s*Gb44Puf%l3F6*p3a9@e3?)!bo$NW0fOOHU8wu9^e5i`GRfFO&4YPNsu zE$z1f8n}X(q?iv;Nios8&n>5iZ4EOJ<#!1J7hcJx*Br)idBw*+$*voD z5U7^#ZGLtCOZ>F^)U7840lMK|$nr+PkZ8~K^{a{jb`_cKqe|U1C)Y0{Dp@r~$a8JM zvFSGH0y)^dl?x;!VlUrP}Mao@6#TWS+U}wJj5v<)_X9wq7Wi!8X zIgcMw-Cz{?>t8q5BTo&HKC+KS!bq!P!{|N~EPNKt2AZKmf{H;OE;rIv~u84eD>N&D5WOH3U>?aLT`V{d#9Y&RfYCPg0lm zx(iWTUtd2*dA#D`di5|satPX-I%P+okl&1r=A+SG8vEC;m}G%|EkQ&p6AH%p{wb2B zB0=s1HdMtfdz)B7Hpq>WlF)9Lg{u&D}0 zjI29l1oxD)^_I)%-Em$&@`zXp9R`C`V^F`3abU zVepmJ2!)#>JrfI$gdZT7GV*!gmfH zltfNMD~LzQiHWRE+E0E3ID>}@oQy?=jdkVa|0Hk8u3B7>Wx>P4pNH8OlM?dNJ>hAOU2UEv;v?&dgfK6VF{Q(Gv%{& z8$FKxbVn0nNJGHEJ{R~%P!B-H^2a$92bTvJtCB=LkAtXvYCy3D?gbVl_>2FE4e(en z#SjS5ApM@4R7w#!gRld85YkwQ(eB2^ISl>IT(dZ=88NYIz*qm=rJb>LFynu3o2{Dux6%y4k82@NjbrqY@Q*@F2UqTy5>GtA?f~X#J$-h5roPIlGpMoeN6HXQb9vO9YdZ$id1x3YrXz{41d|=}QWDZ>&9cd}4FbctPkkm>V4&-0H z%o@CP>-)@%C=Jc`pFhJ8Bw(&cNfEP|7O=J51qZ)Tjokt;K;ZR<$@jQA8V4(?{PX7l z{j4jk+*tN^)70{*xLXyqDY}aEYs+En!2$N6!0(U&7^6wM6L0&0aS-+#{Ds{+d3kH# zI0L#cF#V@PZPJoJI6_FB{(Jdr2ZsZA`>|pJa(LDKMd@%Eb#l#;aq5^tD(yxq5K6uM z{dd9GWo-WW`5X+a%eHQ;nfUn{JrYcDZ+G{tf0i#G^xh~~kCHSAi=WQ>fyI6k@I{<_ zc3>VjHo^VvcI^%xhSmOLaJ_*c2fU3RQ&Z<)IDh_BK!Q^+0$SYyK}gRvf)xO<3Og@4 zptOQX1q>EgsBB`j(GtsU?PpvF3RJn|G1`H)<8rePxj1kL)^)@3Uu$LraK1VnsW5bnSi-sfv? zkv=9SUV#4#Y@x6-<~8hF0qg5Dm^99hHsg|#8jM?RCo5I^-dyiCU9gLYcp80s`<iusPNF%E1I05^!xC!Pr~ql_WP1uap))}A z!f4v&l|bJm0FVRK^9hrO6*XtYOC|F=i+e~iG=%`H#b7^dRdo=VtY Piu6ocNvc@V`2GI_yBu78 literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/thumb/sphx_glr_plot_free_support_barycenter_thumb.png b/docs/source/auto_examples/images/thumb/sphx_glr_plot_free_support_barycenter_thumb.png new file mode 100644 index 0000000000000000000000000000000000000000..0861d4d549958368a539e7c4e254a6719e24516b GIT binary patch literal 19601 zcmdpe^qTyd63}pD5D`8$11VT=R$0=c_)WCzonMT?X|2L> z!c+0sA9&c58|-jrQ4D+RU^Vo7cQW(#k@NPrf4_&o`BDE$-GJBU+0?&IDEj>=&(X3i ziSbay?jxVSjN`OgUnHD-ND&foeJ3kwS)$%Lj4CoWF+7P=yz7?Y6;I2V_d zl^t>Z;fq{gzL~M&N@@?eH!(KWRA`kx0(X8pTR+x6U-{nXalLP(97DXq7dFGcKY|?U zE(bHkInDb8-S%@dnEHEezaC-+85$Zg5pIl^XkVP{oSdBO%r!MMG+boAih^6Gq@;Ly zc_pWn)YfX`k8pEwN#zcI`0(NU{5&ToXM47xp|+Ooos^thoD}u-^))UoE<#aNH7+)` z{jc2%aq%-xVFZlF#KdIRwJ{@uf+smOHg;iSBW%G{N$Gy%f`Wp=vuDqEczC9!rsn46 zjLP|FXmT4HXS%vV&Ip~HoVvTax#Ta-&z;wXCG@|%q>`4ERVf-nLP9z|KE{`TxrEP| znwV&4YNDZ|bG(z4k%{Rx!I!v;ihNa$8T4;;D4RG!k^(OEsU{ z_!|--@Cgac%*^=t_)t+%5u)?WUT2=o3i&;~y_J=faW~ES|K6b>>*S%w5jRo80y5NB&&Dt(&OVz;euvn%WG@hmyExD{kpum za^lxDGRo3nxt-IZB1Qzv1U>D+g%Eexej#1YEWg zInA%nH%fhOF6NVY->DU-qM@O|R28X}FwoOSOHtpwd)J1ip}d@(pFgQ<0VdDud@cVW zox*6k?alR-y}kWY$#5wJh3%p2J5gOlU%%3`u*|jiv@|tcy%xE0+?f-yw%))Y;VIT{ znd|DJV_=ZURgRC3f6m8eGgHehBH}aG=r&vL1na|T)@$eFq+4dt1{>B*P)|pPG=1Ra zUl^;|K$@+w@xtG~?AGJOv2?G=1f1oV2v?SuziC!<_VidEZ%)Dd@kQPvVl!CoO+5dB zOD^oWG0q%A&B(xDWNf^(xhZ_Un$4nHKRG=u?7C|(_1!dEGU9xzX5Pri2pI)MR#w(c zFzs5SN=sK+d3bQp?(YvYR#sNhu9~;A>uYOnC)=|@SdW^|mXi}$bhT>UrdCwES5WA$ zv>Y+(PpLEOBNh>9DNxB*NEe5l2EE$)8F6ELPKM^^ebLG1b4Q@ z=O*CJJuc#imsB4=ek}j~J&D`;b9S~d+z9qaB)LfQyLn+w&WhUF+N`WBr;Ty1{cgIm zvoqN7EG#VZ-WOYGLLM;Qkt*wn&CN~NUAQo4n8NY#aoF7V$OKRShL9s8BQr2CkO{e) zynRcCkB?76;&FZHCLquN*G%`ho*Ef>-x>ZGo(zr<%)PkZQA^e*o(hxhn6V=Djg}PH z75_TIER$%Zm2;I%&CTzT@|D5Dva{RI)Y|uY(1#9NRYgQZG`Q?|UmZ;(r`h%;aT|9< zj#*W~!BSIGbJ>~8wRB$}Ex0(|g1IH(Fp={1ZdPT`t+o4`B@t$kG;UQTNBUAyGA}=$ zoX^hS@^sItD(Shlq-1BU{X(1!jr<6sTCqlpw~+iuTU*=S-X52HLR=g+Dc^2ez#Wdn z&6RYYGvjaQZb}(T{$^y`4R1En?&Asdg9{k zt$rx)<{G;_OJRS-QWuDL!lJ-^49KF0*p0TPtGMLJh1?zCv9(H^;gLdcpTx-It_-B_ zOq8Z87hJ+lgyE_es1g$s|I*Q2hp2YAJuAS&^Eq$r>f$7dgg25}Iy4IwSB^GW*vsA1 zvr!=*3k&OamGz?o%hzAn{!Uj}Q%gsZ@UpP8?_Hi91fb(sSy({a&mV!aj6=+|dVaLQ zk!bU~+P1Xmm{>vyw#r<+6Qlfyfb-@TArBt;5s1Q<3sE8#N&Vg3YZImV?(X$+v=`eA zJInp4MT+zgJMTT=KU5YGlY0L(Xv}-ms;a4}=|$%0^~DY+Cuh(LLsQdSRR+^**=TBM zyqE6o=le@N(lK$}Cj6<9d6vuHF%a~j>u{38Iv!x4LTKII-bNTe(n{!oqxAjz_vZ6; z#?Y)d8PgW;D^-TE0g;=_lX)MkpdXi)o^?8qkai)~!1Ug^bI0d+%3O{Y@4drS4I3vX z7A7XLZ)0QQ@bK`PA~i#zJXHoEK|x3poe?A_{Q^6+4Gli9)#X{$Pqu#7xa{b?e}51j z9u6r936b1~i-m=PFgIU;}DIDbUr!vOI=HSsl#ODj6Rh=719pF%~vA zgig&e10?AfSm~an&++k)P1y2H`z_zT-CkXVV0h*)G#(Sc5>oIjE;@%xi+q^uTM@+uCA{7 z`ue&ZEL&D-CFR+ZPM9D5{Pgq@lSY~4NFJqlaM_fNhsQ<8J@WO}7H{9aH8(#w7!VN< z5HKbRHvA&Yo=BB^{Rj!+C;De|v(afo?UU4hGo)WjOMSj8Eat*&i&INOQo1=@8-bnS zbA4tmB_(BIvItRhePaWrEcw%?Psz!$Bb6FV-%3g%!oo=S>@s3wRU91lKR%>`fcrGI z`>;hFkuheK$d_T6R2PSWh>#qaoFu}-GcY%=fzbK$=g*m$82~wuXTGWyzF+Alc=RYg zFVBH5<#)}y`FbZnO+}fRVoZd;r>5-rQs5Z4xx1(FJ6S>aMr0@#d?7sq7`4Bz_1&Z! zAPD^W?99yN<>kMH1r!vNqQXKOTic_d&cAjqsfOUezgJYePUYt|{S}wDLMg4BsraGe z-{9aN8W!Q@hW<@xM1<)!V%2GDnp;>{n2W3Ob-FNdL~!@h80vT#ny9X14%1%{{qp6L z^VEvCiTgIED!7SpMvherR1X&d?y_OW%H%@iEGRCXffE4`l9`$LIcY!ShuGNIfmDI6 z!_ti&6a+6XFQgTSegK3>5Ry@3Pe@1_9M_aZL_|Wf^5ha9kdZYzt_{N+j*pH4-je^q zmbuoVP@;z7tHC7fv>q1_AP&qi)Z) z+(2~cP2w(En}Tbj@KQ5vvxJiUQYt6H5c)1=<>N?Z9e_i zpDJKf?s~L7=IrdOTkmLTVZrBf?U^p@C48~T$&=h?}PLhPpBTy~9(9sLNx!k4g} zYn*CtUx3|)8T6yCFQU(^Wv`RuYw6XSHVdvlIBWk|SzAA1(c!cE)0%f8bU!;tOG9cU z7Y^D*_3d>tt;N!?tPCkrlVozO_*t;o9q7yOP}v{nxg?Yo7c((3Vl6TGSKh~N2i%?e5_jnLmwNAs@TpC^ja zNaiT$iqHJ^O`<=yPCAL&Ve8KHhB1Z1+_a@03OvJ8b#iedA;>nFkEoGs^Rt!rUa_DW&e1F5I=z z!%CDGp}^&ODOQSr0(UK=c(%=)bX650&mo(Sjzzb+$J!o$BqHW=_frD3l7&KkoPK{{ zCxWVJvlEq11519tGqyb2QSlm&febkeOTo}!;S9M8R}=Y2BKkcU0@3bE)%N3YX9)^p zO?5$4A3UO-q-5P@te12*%~9|AW>;*F%REDP(u0}ywwb|PC#HP|sZ;dfNIx|s(SWa5 zfz5XUnmyioV2d%9YPan znxpxfcw*iP-t-YqeU3$%PyBr42xVMkZ3Ghw!dDqNK^>_rm~vilN4nMwZ=dHd1()k? zZTC%cwlLFT&}@H^JX7()cQPzm;pEzQ?PLvA^RI<+dQP-6)7UF5Ar~zH#rOz{8x9j1 zMDo3J`Cv9=4CL({|MMS@1fB;w`Boy2{&=DHBb%c@>(%#<%RXC<)Tw$b8#|WajBkj! zlY%!${z&5gWJJ)x#Eg@4mITDKh|MBM+l=3JPARG*;w=rDdSs@%(j87mrZ%a%2$JmxL!-7LReM&Eq&cKUUXLW8XaAfWDVKF z7U%W?=#DiN56Y|whzYOfe`e87x5Z3Mw0HUjB?fO+MDG%engl4^Wn%e2D$0z8eWzGD zEWQIx^V!cH?Js+;VksW9Og8<%{f`KxsJ7M>m<5i+Vvmz;a<4L7U4;`UO&w9R$h#v6T4@5$h3 zCVpx-A^F+k*Ku{@?TBrs)?(y-PmQBZe~AajF1IEdIN}Mr*p|B+tva&A@0A3l_~|(Ze;fKay8J>7 z*(Akv+ew$r;6OARak*zm#f39VCGTkezC3(mT;lid0;{#>UF=2uMg#`1V1+)db{ty-^~Zn zi&vZ&SQdkp8P@cHjU$~BB&^2ROsNVdfLvsvol_obU5J67Cp*Vt8czJGlm4hRUQ4*TU|HCCh52m1zb z>RclIB11?Zhv94o7_OceY)^K^-#%Y4Fg`vvS0}&%=m1!mEH{QiuSako@KLak8|M=@ z=_Tc{M|Wab%v38dbmnuikZ@@}^L;rO{$+Z%fWVW7@(&(YYe3dH+MSp)QqS5_A_V<; zIPV z=o+Eq)-zJ7jG~T`#%Z(svDL4N>eg7^bXz88AqqG?UA}5(KP+=q0!jvqA9)e&y>_MS ze5`@&*V@zcM(sf*LxdaUAyoq+9%Qdl;Wp zEUGxB6qbXKFlCR3`ii>D` z{$lK83h}>f_%bYJL`uCAki=wQFGh-SEY#Y3=R-h7*t=LHOfG}nIL76CimKN8ZM8># z@DA5|w&@iOob-zG=R2}3%Lwd?NJjr#NR$|=jE`P0V;mKEI5oTdbLKjMvuMANr2fl6 z@ad!r`%bObRvd0WYk;*il11wjf@}1VSm#{>dp~BxfFaxEt1@R41e*&g3F}uz&+#~8 zVku?>Iu{xt3)`i~Do>fvH6<+;n%WA%KO;*T1IAJQ#%^p9V$qVPD5T7U5r@~?u2y2U zPgic}{zP-hE3?%lRG{6I-wjw696!zIx1TTMy8rfie*l*Y+pHTi2|WUtZ2OMpb2$MF zWNU*xicKNM|Wh^?Z{CH6}Ap`*mUX3_*qL?%-$V4OxrU@ z1^n$DBbOM_iXj`%?)kpwP3BC6-PJ5`{PkH5*_U` zJ41=e+^?b%OGN?gyXWrH8h59yKKOp<(cbIlU&YQY`6=M;cIjTN>xW069@JX+IOXsSw`ga$AmyUpymfEws%yEdZ<;{#r1wGY=1Im z`SpOsfBItR@EZx5)stLur;kXxlP`01nobmkhWEUKneQPXFg)&UHd0#hF6xKWBWHBq zY^z$0;dGYV`Mu3dZn1#GL$;-6_9_Uu=Yte}Qb_LiydGB$JM0D(3U(=JDXf`uKW&j{ zby0B|E>-a%W{ct=mg_&9#Jvr~^|iRTXrJ%5rParfWIUdi?2^MaGeY=ow`1$d&<$tO zc_tDwQVI-Cy?DiwJ|L#-s2{a58ycLKsgU`p$g#AZAC+Bj^alqOWU}9-zpFNhbAwIt z9-<&5hRBYyT+-j!w5`2bYIsLrrutJ8b#9=2dG>l1xk0PavJYc8O%bc77W?q~g`2Vg zuQrmzh!wN+AEM--_jfNt9$GfMB^>4Yn(j;i3>fQ*XW7Lyqy?+G`eMDh6@{Vj$p&5r ztLX}FR7;hwL8gv#81}@Awl19c$9iJ3*B%`V%!%3~(Mr!ml2oe?B(FQ438ADirwcMP z$dGwaCg)jRHFGoJDp9^Ec^-Rzop`U3+XU~w$_&EK?BDM@+z>2kP^xg~D)9x|Yw{%o z<*WZ}5lAaktQiz>qODTS8@(SjZ@5^t8>g%(Q&5?@E*Z@ejNBtN+n1ozUHrBhfgL4J zO*lUL%eMI^9U^Y@nYLcZmn=rpLY`;$#ipOYLdR=9D^<5jX3h*jvT#&2%f0MA@tFQt z_W5&|@x$5*?j+{`M?BbJaUXizr+GBZ8VSeMiT~17KirdAFYi@e`?>peycyR*;oh)V zMk|N%{cRpxLP6%U$!P?C=y%?g;F`+Lu&{_f8|A{DJek8WS~0`Xs@ak&V;$j|qIpe) zlF`*c+YgAJm7~2=$hkP_QmLW_0tP|xEGg^n7KVB$OBUUH6jCF>@;^hm>G%2c1scC- z%P579Z*X1gs|hPTwlId(6b&Aio?JA9)fP`~oS{`kaQQaS_-K(QJocK^no2BBNOof7 z-N@e}_oK*z-L?0F?aT0QQ=MpIg*PY?BV^85W?=;)I5Lbm*)RM|Upf>Klf_Fv3q5vb zJ8?QSZ=$}RKrk~brG&Z`2=_tD{jB3bdthKB9WN&_V(|1|_+7hGtIDW|57w*0c>jHX zDZtzqFne47rO)twFKH5b)!T^@WE|;l9-Kt83*vY}hdl_IRzJDiiP80GPOT_R^QQ-&4zd~ z`wvwNbu9;;NH01zsOp2bkZ@6Op5Fkae+mv-s-z6zTtrA!}lu{32&Hd5R zuX;w)PB5u!_N}Bb-Rm`QcPl&6CwH*K_@CozNCqa}wOD1q`_DDA)%~cFI$n>Zr$~*h z!pf#^(83ATjXRvH%p&RAw{JY0oC^nM!QYlT@JH#@(qvk`DCG`D6ZwXu?zW4ijr`EX z)_vsfh}ub{VO0f;*x2*u&r!vg^qYYLoEjt$Vy%;@*;U*hD<&3B{`1`q@w3SCa(!2v z1uGqY-DGt=JoP0NaQ{}Od!(rBorXA2t~1ipe*i@Q=%cVO>tlvU663ybm1j#X`_!-r zZ*q+ve)*iU@OHT;&Vq4y95g6gpm~7{4`xASx9U9YNl!>v+1lz`au9#caGN&P=R|kwY0PZ8Y0CfklnZS8zEmX zH=}~A^0xB}bH>VQel8xK@renMGfz1=ISC0g1ZakR$-Ff#njhBKI$J>~CFZgi1WEzM z*09t3dvokquIRhFsbo-NS@quYc@g2sp`tLU5}G3#WiA~2D@hA=l24!XI;-;|NO=1b zIYTUkHwf_YxwZ-f9ak0Mc?BK?f5Cj(M4bYfL9u29wrl%Wh>mN@{dJ?E90k)_KO;Ba z^1drGzxV23JnBL6!NhA^JxBWIMc>8bmHC1b52kL&{s=a-cwEHU_5xMQ^KMQ@Ny&bp zGXe<(eKkEQB4X@B71>vnVYbpz1*C|2-4BA@L?~f~t?3i>l6^BmC+`+V9W?opTXST# z+Ww1)Q(pV#;^9)^(aG|Q@|#+S$hHel6;+AO+fL(%U4jcIFUek~2O!Nraf0M4pUiW# zGoOC8qphsG|NC7Fx5rAe*TwQcIyn)Mg)hVX1+(ykz|xmhI=atPnr6x`b_nNtO9KfQ7L_Nwn}Q@Sao}GJ1d?yo zSKwxW`Zs&0Mvo7Go2Or!@q^*xcUT*_LiB||6hSu!5cfTWMHmdMOSurQF9tk2Pt@-&Naj}}5I18~RmFzm~*9jXnKC11-b;}TwG3e^kVxJ{xS zFVUx8k-wDNS$ME!da`4e;Pw98Qz-9F(MYML=l)_hY;lC>n>S++au5_iQUXT@e`Ryr z|3tu9_01dhC{TA@Hz(Q07bb0Z){9=~slvFB5{{0(kg<$=<_3>`s*KEv*BbU8(Br5M zne;z-kxymE^rPKuE4l5C@COav=e6ni%tLDq+Qp!AKRnE zTwQ!(>^>=Q*I?Z^X9c;e8Dw?XfGDD%SAZ6HoooBMn!Aq`;d;1w|3CrtOy99pA&?Ar zxkvvXp~w+mUVC@wXS=$1f$H0tTBUpso5w#uT~oPn1&hT_<3VIei7l7}N?Wd{H|;_} zh{>W=NU^YuaGny?(|cuYxR$u5L0_Vm`SexfOru*xJn!P-B3rgN43Oo)N1Zf9ef=8< z$j60`*1qr?U}0He-N7X_Aj3nYeDKjC2~KvOB*P{Y@}QrOQf4(S*D+1<5XAVN!|U%zf~-J?2~?CtFZ*%8?PA3t8u#-{Sw|0t`XOvS6GeyQ~o z5982F8I<{}{T|jMZOQt2;hm%p82g18tuM6R@BV2^N+Mp~gN^az$rD{29c=9f!-<)) zFBS_R%orOP9g>KtsjAvcmbI19P^OY%GA$PT`}c2ue?LjMy?D^zt2-Vl8sYGF2zGQU zY+%i>oo}9{IHJIStEZVk*6&MF4+l}7nT{_1YC{Z9G<7?52AFn8b#p+%)9FLPQ-sVB zDRN8~k!Oh;Vr*$SrEo;~a{=@{N@6_RB1~5O2|PkjC&8s5&jD z|H4K`N9puqdX`{{fMWmp?VGoQgfl9;0u;pGK`SZNZE%Ksb)I?Gz2)ZmB0t@`P`Lo{ z2bLD7ea@GD82d(WCk+se9`jVan{PIYD2A0^UA4GM08;{d#KU7Egn|_pO)bO;b^r)4 zNWOBkzaig^BsgzPkJ+s6A8-9mwk7eSkiv|bu;^+uC!mJrmaCGyhH!3RaHqRzi z#l(=-yI+KpV-`oQ^(JzH7BuXmsjb~$+C#W}t5AGOOgvkpgw6AemGxczIo@I}6xhC8 z#C;%&9$5!+T%RsPfm#gqBD!RCR581{nc-pON+$}V#c)SbLJ6h5U?!>oR!YjhaPhvh zxc^C8YeU(uAeL1mpdz=`J8h(-rh=bgPLG@FXAfI_Yhh_=RAeLzGcz|QXR?Tou$JQ* z4K+3OnM0XJG zHOh@7DtNgrgkGjqf=qaGxgtUo%3`D=tB}tZ?T!;AR$SHP{K(^XAV&H+yxWWUnyI1h-((ou}!-nsu=%W zlslgzBKiv76eU%cVfgd8AJTK?zof@spYQ%__vLd!a`Nxk-+w_Qc}#SwKpG6budu5d z4JI`=x3ll2Jvqv2F7sX!|2*%HHok~f=vn2T-P+m$`x-djq+{?gP=i_Sh~Ygoa`Xcx zcktW}!@m*(r~f71e~w zXoTRBU*MZ_{~elR!7MFw^ZeO5+FUr7I9{N1c$XwI(|@arYP|o=voxmZW@oSZej|MM zsy4Vzv&Q?wi%dS(-9I_fu^^-$_+*1b8}#BYgzc8Guu5`#jSu#9>J(?YQUCqZq6uq7 zP&DZ{uPdFc^CHh<*jp{plST2mA6kHUE?(wYXp9tfWMrhLus%clFqf{1%2UEH7?~XH zQ;Zk%_~3LS40Af&{d*fIhq5G~uIwF))?t}gbL{;KjwTqXfWUh`QUpCKt2#YCzyu~j z*-XW_goO8XI_Bo)2*si?@R8W?fMGzBCE>tTkSt1FU7ZdevkF9zqIfB4qw+89f5G7O z0qRMO8J2X@JAuep>{JoN4r6QKM$%8y4+dV-Ci_a_oQ)KOW4MsKlD!_mh42?f$UF`C zSzX@?_UEamaB`m>IMBc(0tTqXTX(8{3)C_CK38LNbKZczl$4afhXsMIprGJY6j>^_ zH6f>r+tv9I)N?R?P_QW}DZ!EnBa}^G5qiHY_u>U|NIN?(uYRS)5R?(`0Mh8{K6(83 zx#e&U0NtW7E8LI@gEoIKGT=VuFah;t-s@x*!ZU!oT8P6?2tyPF7_UqlE1i35AixC= zp_lM5F8YxnrR1Vg!J)U|lc=M~c_kjdgfYf}ysENsMV0^Am`cno~Y+3>zPF9AHr5bwM*=LM)51`AoP zyu2K&cQE|?*XauK@;Ep+5g$J69v|Nt32kj{!LtUwG6=8lwY9aYwE8@;LbJf&X2AvO zbI)gHux-?Xw?nCID20yqZ2+Xlu=!jCU8gJ3s))2ZVS61u7w5SEpfU$W!t{Vvs8gFujz zlOw(s7cV;0F%kAmOt`f9qm`~d+^_+n23tZ!xvEl6_w}&F-bWt|tmmFQMN_j3#J&;+ z&SoiUxH*)B9;UJSXMK__1(Yi zu()^qSLd28;2az+C%+303=Ah?r=q7{1#={1d}k*o99SM)+&Kuq;^HXp(>{E_fG0o@ z@jKFwa0^3}kd^Iu*L)_KJ@j8^C%`lCKS+cTri%EGA?CbJbU#UfeK(~q(%8)wx2|w7XMo+B$B~kC z$7HUXhW9g<1<52I3BoZhvg;r7T7^l>1hsg=xPl|Uu7pGo*i1(xOdqR%FI?G@F8*w- zff|XlN*~((BO&S}eQ08frg;cVGf?mFnDu^9S9A37Fe)cD%{bWE?z1Ef|GJLaY zIBWdk;*gewCh++vg`tyf?w zE$A_p=HpBD$GFXRe7Z#cDe%=Hyh-kwo@k4F=ve|fFRp8WU7x4nBpZ@xk**oQPBk4EX zmiUfhgUb%p7Yl*#4gQ7CcTVoQ!?oL+?yMs&F7D`f$UE=(@W~TqaC9;<-nt*b5(}Yn zX=w@ktbEU(dx4`D47b(Q)leAx{%#tUkT7w}pQQ>+OirGjt)z1{@Io0Q1h%it%r@|? zc688CQu;mCivRR!Z=pb7C3r|H_w&~;exK_`Q3}_SSr-*$Wr$WkRt`i?|Dc#vKHAR$sRQvXL2n@1 zq-=NmTFb!K>3-v4ljlRVMD)abzm7YDuLs(EI|4#YehSY1vIooO@^TDyVp z01kmQh_wm|xZsz_>nPJ;GNa;3?t9Dc3OkhJAodCzx?WzXsi_iFO5lwGKXz{JZR3Hf zD_=s75ClCftt3TycuK(QJ1sZfIyxzJb!QNHI?XB)2VUuDt9vXeF%l z{^~8vIYQUb`zPD-91OBv7stRbZ3o_c2z?_Q930>V1FO~;kPx^bD(dR5VsgB5%|f#d zR}9??z|Rcex}xIX!~LgJPoIKC5`y&WG(qs-CrwXJLjecdZ+Cb1`s%{xppO?aMRj?3 zcYpu!(UH8oe20AswKOfBt}bl8E&g|Ng18~=Ty4<_zASftkCmqwAFZF8=Mfd3nvK5_8rQp#L^uUM+Tg zMUD~CillBq;CAHpgtbg-I-^7PZ%AzKV85(|fk2pBl$TN_gT9J#f3Q%f*ZhSGVk zNF_Pq^Rq-~Ov}!MS$Z;KYMb;`2*>*rYUuTLPF*`+zdLdDD8A4TSG9F@8*Us;Qhic# zP`Qg;hUL0^0lr*7IZud*3)52r9Hk)Xeg43_|9zj~^CRAksWByf5t0@p1(d@9j7k49 z%7gqDQV9q`Qa&^o8A{1s3Uwg1VEi^Fn(wC{OPz)jvPi`{xa&&K>oYemysmoej_FD{BL5qmg5PrfRg-zkT?vvkGn*wK9+1fGH zHqvuHXlmv37@dASeg0}Rhu_Lhm2qJLaE6r?Fef{i;vx8$5^8GWuw8@ikzWI$1V!xP z@-hU=g9zR^K9_A$&dc@xK0XA}5YW{GY}>G~Fp=}sr)K%3z%PQ{0Bl`Z85^_#Kx56V zZ5Ry9(Aotjp{lA1+9R|yG$tW#K+8=3l7o5gm%odPj=*jJz=tZ>^K!2XP$-~uIQg?R z@AO~3dgw_+ybw@|VZx?XC__zgn!-vJXsy z<f;%3l8ckeV#Z=T({(z1N?gxk9H)}5!oa#zPPP&9gS}Dgw_VG=w|-aiYXQ7=HkJfg zr8wY{z1UTml&IvfZjRiIMB&eCLkpI$45p?><%eM*z5fC z>}+l2fkT}RX_q}|I-k9fo!u_L3}qD+m|%+7?k{_ZKV?Pz#uSikP>^lXXWeGHmAE9t zdsJA{>aH0$KcsYHoZfi7u}p&QMHF9nVtsx60#$}jQV0rO-Wu3iy~4rruV3Jyj@%!2 zREE3>dE;y~I|@9-1ejv2w~ z*Yh6uT!YA;DF#`}j*Jt36Z1uKvbPCRVElu2l8%lJ*icx6OkWENwHjURO-*S=IQEZ@ z0DWEo8oNbEd1E7+cFVm0*>;*QwgJHZXT<)0JLg`!cv1a!mH{8rO)w2~$nU0D6+M-} zJEW%0!lj|ur~V`b#>#7I=rn4E=8H%Ao^2}!9!Kk@DG&9-)7krJF2NXHtMk^?wKgay zC_P=jLcPZJ_wxF>mBahHpYqap5~9)Fmr~=)pOt$OrY91J4#mmj6R!%|ZIqStRTEo< zW_^W}2S^hp8xNya=i5svc23TVC!pZNY9e^zla1B)qHaG~yoaBl5m}1?Y&`&W42*21>*ExjU5M z&}oC9XJ$r&eh>KMoTo{+&B$0 z^+TgH#YTsQl$Z!T+}+pbErGi+Kba@+sE5{v+#a7tGNUIfYXj{m)l&k`Nfk!k^9V>! zeA7LOdY*FgmhS~#AhgX^h@dU50q+J5RJikbhY)a6Wrpq0AcTI8tkYP0*8S)W)NEu3a z--CM2S&|pI*Tlw9p5z{s@2@RPuH>FrT`tDH*0Xg3IhU^tZV2)C$Sc~0N1OUVU2Sb( zNC+0HKahtKED4-`rf=U0oA;9<{v4e3PTS-y*|bevC0?jlt4#4V_)J_2`nw43)apDn zKmQVC^2BZ6rm0S7B}-TJ@hTbGFcr!j!jSg8BU|qP5o&4^K>R?0!TFzSKBJdWkt?bl zt*!DY9aGjaTV43O+0Hdcnv&hps}#Gw_3U?(ZR4w2=VsGS_ZRCP>yi^9JOS9P^ru3z z1T;C(x*tubHgoxS>^nb@!rgoA5`67P=J(J_*-LQc)L^BJxj$|@5Ms1sHaoA+y2A6$ z*ZCtLB7xPvlFwYKXzbULLtZJ4n?k26(vKyFE(p&6%_G@A9Vze8e3bd|BW<4!Ey<(62>n?fD?&s=7xw!Vg$T*) zF{|4)Dl7FjrNza9@0WXH2Y7jS=IY+(PvHi;gJ%SIIQJk^!Dk{O>1Qi0MBsK_H=vgJ z7&&gA5wx|IoMrJV-1u0qr^y8!yc4(5KOB0>tP0BLD^2Zzw`@ZN!e zmiH@>kZk_61wfn6EkjpS1TNp5KYya*;&R5U;K%m%_MO=Vb$xw+n)ZADIzT-D!G+zp zQxPA;AGAzGK9iq#(1kZMq#!3pjX@sH%>RXwl093j-7kHZd1H2S?0f^p4fp zh8i7~QlOr`ekJ0zg6N|L-Puu5QE+iRJu)#osFxwRL29{x-Z^$`MrP)cf&xvb24r&K zX@@Pi0Ms|TA6Y>YGia9-2|em1T2+Sa=%HEF@8-RsE$Dxp%AjUPbuHNOK?f)R8Hjk` z2TJC#Erd&z8wF{V=s^n-v^0r{wE>*!+x&%su;CE^%@aDaC@Br0TIZ67g!%xr95M`a z<63ehLB$RIWtd%ipcerhC6zr?tW{N5UTzPKNl?By)HPOC9zrt_s8p?N0282zQ~;pM z+2P1*SnuqtEa=py!@~gHIiaVds7SlcA@@aQt@oAt{|q`Ez}Cjb#Dv=snQaWtAMo(@ zI!%^7Yx&F_SN<{ISz(P{H(GblWT$&lwnS&H4Os1+$?^a<&wu}Ygg$fOmB0{xe}AZ0 zZ{Z&>%P44;OB8z%8QVEtPkDaEKjST^}{Y6M#W)xo(@()1L74h+wm+u4G93L|X zy4&Fyp;R467ZI_UWCJ$j>|g~tyd*Le!A_)>s|+Cq4#-S{%RAuCU>Jxp&$E4~!9j}y zSOiGV5nvpE8|dh@v9NGG-OX%i@c}&zaFsJK?obg!mp?SkLHj;*88^W31q{Ge$GxnC zRn#|ywfQKB`GNgQhE$nXYg(T7q(70Pd(jhy{;uO$I0QQoz$cC<$Y!9Arsscpqo!63 zR4hE<#o5`^W-lS-a45QT>9{lnmKpt?U_1ghcrKSMnl}HK=-9%K$hzG7|2A(2!skhzdQ8WqM&1g z^not{&ARNoslm8Uk`fc)g8i_>&`p^)f--95^z!9@(0}g@?;?OB1x>!RKQa6bjx|Of z0rkUUJ6#Ebef8=Ubc)#8UJ0fbmW%m~kx4p{5b!d*EgVpN^ge-(fEWbgH!u(t$n8&3)c@;> z*3r@V@{td;0uUMU=nKorU{M3$Q_0UE!!gFoWGen#Ip~Ta_koQMBZmfcc*lZOl@={> zB&Y9bG-~YAIC)J^}qT(Hh-k`J|N=v+Ybpsq# zllzg8Rf;2~h^8^ZYjP9^X~W>{Fy?JEd2HUJ*Z z%+3PS50<*W8yh6I{gtpYSs54{oSZ;_0bv99_p0h@c#DAjsn6t}`iSrtt1>#Llsym$Amr9G+{ z-OB3ezIL}Tol4y>IF8v~D-5m)0wWl?@Ze)$;?&&e2!Em667Mg3un6TUTRyJzZ6Ni&KWxZRzd!NAsaus`(!i4vP9IfCCb`jKhOLfPQF396+)=jDZ|J2P}X z(Ltv?F|nNEB1r{nnD>jsyKQWnmMB#b>C%q|{@PV)*C*XBkG1U(xd>t< z&A0#wqaX0#L>b3^KZ%<`(#_ zcmImRQO;DH#O*L9qD|<5{^GIm`Bj=B+Et(ldN-X_96_T8OAc{;Xo8ZuIxj$AarM0z z2;sulr^dJ6LZnpJ(Xm-&2=^~IHWYfE+pcOrWY+72T9RQo?fA%-d+py{{|xyO!%0cG zcUHIvRaI4bd`u9I#2@W*K**Jfv1xctX!|OANDyon)YShC1~p>mDkml;cK70NJqL^i zEFUtG7Gob53N)YgcdN1%Lq}?$+zyMO3ds1tu_tqyN0!@O&elT(1cHznyaQ%!q$^O3 z0*WADKhhzkL9G0OrYz_GlIl5NFxXE(p8$Ho(e0NFjf!#s)jl)*Gmp^^W~N-_I-q2M zce)ze_8rCr0K-SB0MQmANvTd9v{|Kv$>eI)I~G(`Il;pLQ*rl*8de#~_51hB!2$%1 zU*h_dgj&iG0;UB_Y)tg@@J<1E1IQEOiv9#M zVn5S&??g<0;a?@4LDqq{4#BIEpetQYK>E qf3}0blFh)SeF_~X9cV`Wuzz6~CfPJc?=kSGF$PapKbLh*2~7Yq+?cEY literal 0 HcmV?d00001 diff --git a/docs/source/auto_examples/images/thumb/sphx_glr_plot_stochastic_thumb.png b/docs/source/auto_examples/images/thumb/sphx_glr_plot_stochastic_thumb.png new file mode 100644 index 0000000000000000000000000000000000000000..609339d784a7c041b1428ceae5bb8be301d0f82b GIT binary patch literal 17541 zcmd2?Raab1v>bdO$N&lM8YD;<+}#6#;O_1Y!8Le*;O+$Xz+eLbg1fu>;BJ?1t^0ES z!F@OneO~(X?%um=SJnBU{6!iAjR*|@0AR?h+aPe;s0TBM}&9e|U3jiRYAS)sI z%`@|)eaXReAbIuHm&y3FExy7=W6fdj^WLV5c?h9a-6yy(Q_-{F4SZoB+q$&y<7v%? ze^(gB-9i{fPhS_?dZ1Y}%}@fZO_j7DhcAn7tCEMB$BHI%LRt&;>|XeMnyK1lLWS{% zwBfrfAvI>asAa;IttBS)iaR{oJe9I<>Tr<#cctGLf0>m9sl5%u7&U*%nVFUTKORKj z`@$WC@(-`S#nZ71a2s4*BOV7j?F@3?U+Wo6@$_BH#9DowjC*>D14TQ+MFkc^F#Fn` z>|QxD{nM`3@;Z2{k>y(VZT>tcK!!of6HwI~W;0E^&xOn&co`WAsD7jj6xdY|Dnis& zgcO|CYw@e{qRtaO0YXh5EKVu_sUsBRf0*E+5KkA@2Tp=S5HQdULy$BPu%Q8tfvo$# zRj4a8fSGIA6O%Zh|XsC6m-~jOQXGki!vN!}tR7DiWZhE#o zSX|Plwu=-YzqMIIElPv4H(&72e6+;#>qU}M)t#^6uvyvPfBt676tE+Vfa)=>l9JB} zgu8v=TzwX@f3>5SRzCV(hCSP|MaVUjt*f>CU*|-9OFidst&cRhn7^~(SrCh$OVCX@2#4ZhxoLhhNLeUbm}y+P zGhmmYvbQdNe3J>o5l*T#a5Q2(m9UkNt26jKqXv59H=_~TN+Uqdcgvh%c2eZ(v6%xK z7O!T2b>;ug?d#Ue95_MRK$?Inv*-^s33mYCde*_2U#={+&RAJauy@f$>YiX+()ut_LAGJPw9ui0J zy(!8bCH=<6;dE|KM7V<%to`uJoBo0!))`J^>iMHPNX*8G8Fa#lxz=dziplEuTpDy8 zl*Abbfz)JNReRj{zf5yeql5`XB#7aT46o1{IWZydkZ6AD>xA7bKDuVc5&$Kn*HX z=|f+HU2F+HwKw;ZJA}?!<{fjlR`%}Z_mDcf#z9zLbJK)Iw>&JxwT?~ns3oJY!6M4{ z4jr3JnLDIZn4gG;a3e#oL(B&#{{$#_Wee6qHRt^4V^N|RtOAXHgJ<}*k7wGsBiK+WBHujan`tLT8WEUaVRBB=*8MZ5|7zK_D5i*nKd zqX)TXCWkaTo-A)ExK4@e{z^z7BTcg~4^a)xJeL$vcPZbL05Wg0>e)*Lr3n{=5 zQTRU?tsAqJoDhOvE%)<5<-}Sm`=aH^V4qfYV8}}KS?_Deh7ZBABRD89$T>AiOsjDu zC8#=6zjx4oX8@j(|A5OksNGAW9}}aUY6)! z>U2$Yl0#g=u_`zNUICGS62xvjt$$~-eIFNn>^wb~mLrTno-?~)7N_pE4{WEtWUbP% z$a!!%C;x? zYh%0cBjhNQu|SxGWyW}wv`1lBpP7}MJ{jKU#H z$(7Kl;C#4DX{C<#F?BLJAOt9{WdO5aK!+dnA2~cswzzxmh3vN9#JLhiXk|vu7Ba4} zDfhj7=rWOklDrU|n<|4Hv-Y*9nVPsA74s_-S?nH;;CB|@f#;|dn36jk+-$0Bt|?yO zlXo2@YaqaUKt#lhRU~%%B{AbAQbFqy1^`X|)AhktZaH9%_(5^v`5r7EkQP9f~4T(&yNit%i3`TGH@=Y5C|}TK#d=rvP&6@JuqASri~a=ty^Fve(>Q?$jPCVH_N|8I z_-?%}oUXRIZNR{=@%IL=4)Yy3)xJO^wt!FTh)K`a-^x3Y2QLv+*oJtAi1ys%eU#xV ztY?GxK++Ue$>)v<9gC-ROhhus@7feNr}iS!LO~lWDF~IJIc?Z4hv%y|6_9nu&q}qg zyvuAI_2b1L<`B>Op^DML&3jQ05EwJo)yPniF&X>HA^ITvGH;A#<*pH=7g-U`3!*kd(K* zWzO*~{nXQ90kd?v;Vn1AS~wCfAQ)tfzHvydLrJ*UXDMR7+JB7g+`1pt%KTqonU9Ow z2<<@d@*qBL!$14-K59ux>Z7Qu{NuzY?l!V_C2I<&ZYws^%+hZFDrb8|iTzKa9s0N> zV*JG+44Gx1`w)S~(8v)Zes4k2V9qQLZT6CEDWXw;HgrbK>!O z1$BLRNYLuO5`w*m&n2NJAaVS4{54FQ94Hl_q97!Ci@2(H^+6BqkY$78j|unIRQr`_ zamQMs<4(?D_)nTKtq_W!*riVn>5BFGs*Fth=84}g`}>N8DVWcH+m5oxpC2=h$X$H% z5k~oOzSO8O?=9H)r8lr&@8vT5(T4%I!Fb4*7OgtDWZGyl+B6pfp7PkWvv?!oz2qQ}lKYr1kN%`qy&-)%Ee)RJ*|1H6@U_0MU~ zZV}ee1J9Q$)3j}ZXj{9#irQD$eFC1VCr&lqD)@T?IZwPo zkK)^n`UL7wzV!oi1H~j-mA`{T|1!CEOwE9FA0gS^e(9r+5>+^pxZcRiwnhOi*}_I@ z6HlI!hF1$y&q^#QaeX!=yEWc*)R^gOty~z;ntjH9jXB^;7C*3w6!E=z1V_rySUp3z z2XAbl*4o6P?orbxPnyd;Gwd_ljFU=_*{AFZZ1uPRS?*sX&T#7dDFRVxX-JW9H=fD2 z7hbknEfD?-^cCE0LLwm0{Th?26a8|60{FRyzrv|FA5C2;nVx}wLT;VXVggN$Pbor* z8m4rSBa|+bz2m}Tx?kV$Jk)mSLJ^G3_Gh;0@Q{E;)VH5Y24_BXjzk?PARvvOQtbNv z#V&FTT@;~YllS*?};ts5R5WAI4#F( z!qInO5~Z?sOv(_$KBM(v&Jk98%pJ@Q{0z!UY(vU;H$p!W#E4@N{XL9nMomE$^AwVC zG%!ZT$8E-ySE8OTDV@tl#rKkuL%6N<9sXF1cwO38ROQS(5!Ez67U>Pag!~et$!$@<4oBQh3p~ z_l$ZlmIr4Rru0*pc#8Z3(b;1pF=mfD7VV#a84aSc!x?rU?L|1yD$C-8sPoF=V64Af zN`t;Y2=f=Zy9tOW>2q@pl>sWV8nn15cPV@ z&l>ziruUP7rv#EeWeL3jF0{GlKy4%&%)MFpKbtovtm011C?d(!{<{m1`Z=%G&(osE zSm`9r9luE=7h*p)?`Y4JsX@~V?pfVtnSU6n;Ca-K>Rx8wPMk!AX_!{IaWcRiXoqWF z>+|NO4gyP?dk2PZ(Xju0d6@ZfYiJCUpDP`^vD@Pqb{9#Ew&}cVe2*y-&|;HiQo*Q+ zQYxikAp(e2fEg&XzCN$|H6KTgvbTgoUgsPALHaXJ2FMGd;tOs?XtS9(y1a7K-RVla zaG$=6fsh;iju`!OWpU$X2+i!9lVl=}wXs}y5sP;um~H#rf~Jo3HRsYol#vA<+(6kd zTSWV=#)ay0k5s3i0d)l}0}_T!^|4xw_xzk#^60y3*UpaOWS6Amf+I1@ zeS!HRgGVnwnqmgGLL9cZi>GuO(+3%cZPuqj-L8;p4-3cW?5g@kikD;E#C;T@EE>%4+`aw z+|nO(-fa&hN{x`lz5Hu_{g(akX<-mYW^jR02GzB~L%8HEX}~rDu0H}IYk92I@4(*8 z;&5SKBm7@)vRs3V2|?BMEvQL7v_;X|*SZJRVnN>=yb6(H4~8pR_J>+!ej8qc2&54i z;~Ph&FWx78uWV-<<>CH4Kpj!qpm2L_#VYZVPA1CrS+C+2wdUk+EWf>1;X$2 z`u99BIh(N$SS0w(WG!3%G*@5tJrPof;z%jO+eSbi11c{Y^wu<9?83S{xKQj4uGCUO z%ExzhJscdBs3JB#YhbfhFiWB&BSBcop*bV>+N6XBZp&``C~Mo zeAqvZPmE+f0{V~QAD>KrXjxf4wN^QsQSNF9aYqq!#+X;)YL*7M5g;H>G-=}=z%J4U zwb2rG?#$Tmz1nDt6X7UxSsGHL;Sp)sC}QUX+QdFo>;WZAm^VH|+RnJNlzd&}4E|U0 zKA3SlIH1n50&dny<{}eG6!V>pexO>Z_!&APvQ&sNX5Zd4T%+IBd&@AP#2tD~TAegc z!&>N}S(SNRYzSzZcSuqerUj>a^bCEQz#@0yBY5q2^fMlv8|RWU+VdSxJ6KDwY<5Kt zUR3AthLyf26#5hJ?^c{Ggi%wiCYu%@F5mgOelYDaFqAtsF}>i1m>}}j9*LW8Aj&hJ z+UX(@4tH7a`Y|6Pl|SuvJbsw2^ct}I54xZayk1BA-7KhYU)gUMIBy*srRNTS-RH9&{;rvoT(l5j z8T%r#nztfCG84!&{gnqkoiortNO8(Ie^Z~4#wPyS?tv_n+4qO&e#ppez&N*Rc}w{g zTivoVD3!Avr6=9TkhB0|^ODzLyc5E+q zD@e>nlEzoNviwobXZbv`JYyL(rEvpBBKUhi18Ltd4=wE#zcE~)vB;h|hy7I|p};G1 z{=@pMN+lJGj^-<-tEIi6BXNXVHcKgj6SFxN4es|%il2flJ|m{2fq*VRS~r6YzQ$?j zTNCFnF}K!=NMThMJU)9o|W(X(pz?kTH5T1i!2z>uwoNuL_0nw0YkvN!u5VcjH2=UvyaD-h* zNS&&xDq2xp-UYg;`&d0@QQoQH)S`}|>N~qmMbg+QtC3aGd4BPx+MG;qeY!3{j!RBI zU6~!yEjwhM_<7k!>6XY44qz$479Ws!wd+mh7g3{CuOY31vg11J*p7M{(-Z%X1&+5Q zs-sjMafnwmkbdsn50~(ZIwj2yHeU?3DGAs+dL}X=W>PmSe;a-pYUDzX=%1Qyq3|4~ zne*y*{JQb=wLwfVoa6-0H6t`jY^ZCEGN4vzz@o=lomy^a98b!DGL}sqn!c z%w8hd>-QeNC<)LFvqvK^XCKZg|J()b%4-cTfY8UabNuNJE;4b~Ym$k{!)(a4NP5Ip ze1+2Z_$6e5fs5W_$c-E*;hYqj2dQ3KW{Q6gCyvTuMjEvm{dgzhYXr+VyH*UZZ7I5wGvs zs+7X&0U(>9%#E5#;W$f`!C@OBEWaEPtdvQf45>;V_IlYYKfy+7+q}Sm6|7sBinzwQ z;qh=m7AUEqna&NgScf>Xh{NkFB12`%zr{Jg7$V{8_EwvZYld6Y(f)|v`pY?#k&b%V z*QJO%nt3zb${Z>v3aglQ3-Nv3s^jb0l@D3 z#P~$`u+uK<%c}aX_+zY+;O~1xTuUQL*~750Vq*5bI%Rmvybvr6rM3uTn_u!7nd^S_ zcHvIEy`SZ|V!1xTwD{)r+MNp;BI;28P|zlg6J?p7|PnJQR5BelCm6Y2G6J&Kx(ZI?K8LCPj>FAoJ_4ls5?HapB>J!M9{jf9( zi*o&BrKDWfEaK=4 z6fdO=aVyy0!RHp+iMZVQg?hHk{h*OWz&0M{RkB#I-}4ANm*!s5nSlS4saC&iB$j?R z%Idq95>iIkw*jJk+)HVlVf?C+xL?3X3D#L70V!w+n#-xYoBeO;cTp z>+iba7xIrMxWkDIH1KW9YM8VvusDc?(}dO6Gtei@AcV!PJKu&3{O^?-v2Sx&e@|y~ z8`gb<8Jz4H2xg@@S<;Lr6=SGG)LtpfigtzGPj?*+x|1@x9qTEhBL-&HTX;~lB)HaZ z^k)QTD9%S%#8qZfE43~4uBN0e{~GH`#sg?Z`*K?OhZz1`nmlsy+V3fS!MgN}yp;df zLh$8Z`?nBA#c}<;*>KD1j7H_CdE*6yjW;C}d$zm}85^OCGlS;^in!-P6-ft=b;z~0EKI5X zrmk*lg4wsFq&>+b{#Suph$u1w5>$*Q!t0@CbAkH^DY!Zq8T9=o4rxr^oBB^YWn|GB za;c8plOcgUX7}}tfC-9{>M)s!v(i-cuN$Z(_yaC6p-coNk>$q{(BlSAMK$X~{ryQ? zhI$ zSsB5|RM->|=2QyGqh-T7%v_`FaomH=OgTKkwoYI3%UYH{Eh63+P+j%02FYW7O*+cf zu|0OM?c)!|U-%$^WMg}Wyr^iqw@~oP5iOh$V@d)4BVUWxqRXii=pjV5<3`&0va`X_ z8Q7aA-@92JJ@CCDO7izdlx4(Wzu*kE>J7i@!eik2=3p8cwiYQaztqm}(<>U^c z`^AaXsw`FTfaLYBh%Y9cXp~VBwZjxOnXe_e!Hd0OIVe86&nL8Bl$}1Z41$~alSNYH zSz?Iw9e5(}%wpJ)b&111)p-^DlJLT+mp)4?v6ZQczItCToh^wxtR#=`VpemPJZU*D z_Crlqa4+B8QUP4OBuMkMeexH!8&u>TngR@zaSjGaTUJvy7&e#(*jiSZ)M$AC4CvKr zSW=Hc@jLK!XSqYKLwic}q-*3_z#2d+cXWU>k=AClWX^3cx5HPEgbHYnoV*QssT^2% zYeO308`=3@tOcSopY65;^uLvQ^0Z-Nt9NFLmAX@*`^Os0Pr*!d`0;VOR`7{_pDfoG z5}Zc3@_?@p@D)Jt0LRO$DRDr7TB}j*jBNQ8rNoPSu6He&{3I=DPl3Aiy~0`6!PZ!J z_-me>pRLn=ZWOK}Szcs>0 za*u2)Mk3t)dE>q7u(p?E+` zlw2d>jad|t#_CqX--dd84`=icOBN-Zzcg+a&(V;_m6Eur4x43y9ZKZwZ+NoiMbZ?a zC>UCp1RpH3;)`SwFH~=jZ?=d>Pzuc76T}3vb;*dCgHz!`4AMDTF~{P&aNt^oFct)R z_%rNGPFbf`5wJ4iLnB0Xadf=21a;28oMnonYDNnqq^(Fwx($>#ZBdhVSe($!Q-K4Z z@R64qgmJA`5X9-i$D#s-sBwG@l58621~>97#j#ll?!Y?nkxknoDAR7o-F0a3vlLMCvLg&UjPt6Pqzfi~ANn1G$9S_ncs)TPsi$6q`O znvEOgl>>B1s-xuDOhC?K3Z(BM1>g2|0oqO42-o2wsC4t|j}J#UlxaV6LKKMfc+>ya z`w^EUS5)_QNB;iC$Rz%u;{Obo!u*ed(b&i_{b6Ij)C$zIbV*gxrE-Pw@sR*OA`nQ@ zvu!Q{oWlvt15|LReg>qfM6xIFQiOPa@#1_tRrgMw41!t&I9C?yyE*bQKB<0*r?2@- zomhfq^+o3XNhI7tLB0XdPZ-?)q`)Iqnf!#6H4`?Xb$ zYFId1GP+CPNVk>4oc-A}9ZiFE#nPc3;FZ8JK-bQ<19xm@)5ZwuK1ySzCQ6A2{iL!x zqpT?vnPu*}>i*Sg}0DRW;@9_5PZgr;o25m+B(}Vk6+xX)xX0`&y zsr$tXck+#8-j(2K-iTnuw`Cqlkh)OyY7wA)L6ubr6LprmkXKWw4ooQVv-LR95H5q< z(*=dAWkqJa8j?v~M0Px2$-c+f4%`;a_cW|h(G_@JhYT1_ zeB2JX0?zqI9)Xkjf^*th*el9==e{Vm8UTA)X({QId=~GE zo>0a67aGQxP;<-X>82<`K_K{O9%jvO-x#doEm4{qTl=iB@8e4}{B=X}tb1P7C_jV} zmGoF#Q%}OPa`<(KSCFa15Tf=VjLsfV^9!w6`_UXhMF=h@#s#w^b)h9Xg%7<@0`QGt zKR!XKJ=6FU>`0+F#CY7=LKO1n5?G(`t$p^(_0DsS z((V0AL4gv=0BYK>c%*~9qvlUmX}2m&5lUWy?*r!BIE_%P)Pyo1 zu>ldX-LaE}Tj;TwLaW_U4TjNRgwY}-?VY8!xLmKN+U>1CuF|wd>-DzVSJ5xe>@yeg zo~9}FpEJOxA}$~Cxn2j-rM>l^)>cOHk>|R1Z`uAJw}LI5JVdGC zk(bOb$b7#x6rR8coWL%U>aYsu$Bq?m@hCs0`hY|&qshjwr@(jdUP)-60puUe=Dk6l zP7-HvpCg=(iJno}XbzuYPBC_LPrcAUom zl4cq~l7~|0%_x*OTmN+I2qeDE@Ui|jY=>Vq>N;kCy>`w&ccXZiV&e_A+Y9{h(6B!v zq|RM7>q3}3o+vqa^hY5UmJo0$?ch*+z0XnfKgHzAm^?sMT-u$koKJPshp64~(FQEg z8bY?Fv>qN$F;_{s6-(v+Ugoi&8o(Xayn>ZF0{9xat<+)G?>2G^N*)AYawDT1M+Pm{ z^mc7CCqmX-lUfdi=*NR=khCDAq_Enigt1YtG$d4Q@c5*ycBG2*SA@kq$ilFFGYQi4 zWOzym+N{?WVZEKei|Vd#DE88eE}7`g%q`dn#n6;@vipW^30cnKl}pH}jlUt+3pHt* zw=&cG+Reu695o>tG2r9p#n{JAPo8IJa!2P(n`cw?=MuS>`;9ZOsQ31x0hQu7`9sN1 zye+CxZ95tnbi8!n&(AmExMO#A0o!70hGcnGH9_yTsq?g=*+VpM7$fogIYw@ay)1U` zr~M6he-asGQ7^Qj%-=KRD1JcRapz3kmebgl5-jyLyCEd6Z*p zOVG)@VE#Ij&G{ox1ciS3%j914nnK`bT6{UVk#*`D z+CKJ^E@29tE#qidKs{lD3 z<_7Jse6$z`Sv7~BLx?xLA61Z=ZH8vP|7jNz=t)${F+7!DdqkE4*MsCoybb95Xc?Mx z!T)MsGY(dSC1A-;avtk2``frq7~KL^q`(uS6v@s?%9|YqtO&R-yd1kRUsIU!8`Pjt zJo7H&tw<4%J>Z^y#ke5LV7GimZ~M)M1Zdxg!Ok^faN!|{%_C&vxn65+6ZiIERu1|Z zMLnmHc#j)pUI<2qzq_~RP83>RzZ+zUF!=DsgAsV7xbfdllnmc~sAdNjNYYUF%rYq8~;=5RhU6oyUqB%E!*hCpCzuiG4E?H17?`PY?L__6wD z$(c#`R$R`e61k9~v(8qoYhYR^0R|WpJ9c|X?x0k1#JDD}f@I@GA~S!d8L54>sJ$g_ z6rN6@@~sJO_0a=r!l6YtpDE$-`}V&rwijv@f8o^&M+^)u=4FUVR)m) z1NjAdO0wOt!wdn2c!SWWsE$AH%vZgl3!!0W-*vkVV2Z?2cACY4b9~BA#UmBWG2sEa z5QaUoSe{CzMob%21)-(JXI3`fV_*@S+I@!GC_v6|tts3~I5ThpO(O=5nW5u*)=BTZ%= zmyIuk%(2;s)_&qF2w=Tw^}jM~O`PSKbEHzM`9iz*{J8v>KJq6syB?Ih-_^!)^~n@5 z;@%Y7!*r~u(Ma!uP*kK>axR@F^^>`<((kmMuWyVUVgC!g-z}DG-U58VNLK8e7rQ5V z5N_3$JE}bHY{!w0nW$41i`LgtjQQv%TkdD9oKyX)UwTq+x_g9&=N$uQ7CE-=9??Xi z5pU)ey>{DeKgtGY2Os=(b4ua%OYhW`W3mnHfy-Mb_oI+uQHS|)6!h1v%7h1R)J1b= z&SbijCY7>eH!D$3?e$%P0DUPp3i0?$%+Y*Su}y6md#}-4K5~5zJs|8uMENwSRm--BhN;Bpm00azO$n+gR36XAsb0dNm;LA z9h_la1#-1(eMpKq;ndewQNMkV@s7?g@d*fQTwa^TTpsD8^r51lhJuDbzS%1^a3 z@C)OkqZgZ||BxD#FWoug7eW{ea|*oUz4z%&yM4bp!5=Ad;_gM~+TEg8U{xDg0X?)z zg5LqscR=7Ooa zqvfFpZ=}7KZtBU#&?_;-K#bXbr?mcvKt?WrKV-7$C8SZm%;aO5$gOVp72>wD*N?N? zgqPl)g=(^~--d63YBQ+y1pJKVD(WIW!Pof3luXm?))>!yc`l6tKculyQa@pH4Yd30 z)?|^$T4I%an5zc$#!C?&t!%E7)LbC1m^mrgh{CA=2n%(?ZxbTQ)5BTm3u)hTF)j!t zAnTGh^cX47Cr4NOC#Q-VN{0yf>XsWM=cYc1g^;k5G&2@LfqJfsz^-RL-`7?YR#%Ni2jFct^0>P;O$=mPcspc0 zF~7}NOT>WrrfgvDH@+rh!^wa+5G#D+Knfx#-x7N=dF4LIfXycEPEl2+{RRxN@&qzQ zKRjugTnus~nG6rIc(uiDoFqDHhQZzM{!2H6!IxS`c~V79$(th@1%8%4vg1^Jn@r+H z>816=51Gfq&{Dc)ce^?!%*oWmRfXrE&~--(SUXR;bDez0sQK=*vpI!Uw4n7R)QrL~ zLA-%Ydv`*(W;`A<rXHzHwrh0|r*tpU{hip!;Dii-3bcunX82CR4%S>U!e*&ATHLP|J$@+vPw4(^)A9I)XU=S(`ipG}uD&yZUE!TE*1(F8+YVqM&fYCtQ~g1}skV z_7LMP1Jh?D<{LXx{R~4Yz|gDDqzzwR_|K|L2}seDlb!QitU6_S#bYF;_ikPrw7SbL zs-QQ6#(p9cL=Wuit~h$tj5}bCI^=l&c4K!v>fNNf8ic8o&?$$At){I$*5kHIVZF*r z+~u6OmK{5gxCT~bN@VQ$|uO20D`pM>szr(%1AmYo^=}HT)tw`xH zzB*Jph)?RjZ;|1+Vfghx!T(F8X&2Qf;CxBG3gsQ#pOug$JDIBEvrL;1H+Wyk;1Nh! zrQ4`)mVx(9=uZKDn#(fa{CdUiEj9u2iG`_0fY(S=6r=px{$n1zkGVAN8^n%B{JBzu z4z%J{z&ReyCa2NfnnNX|dK`^&GxDSnxDw5&*W6lcWYi4*D5dDOnAs)ZL+hd0wJZJS zyj^unz@L}{vbw(3F=H=9T`BC+QAMUSwBErsW?*ypsV?`Jpu8}!+?Et0#ynuE-Zt7s z`0w2ae!8R(=0-U22!8<`WH4x4tWaQ(BtBk{t z0>Zon&%iUZ0H`4W+*~@vZjxXKqZ+-aSgMDL&Q{)U>{$|IHq8Z^%y+YVYlLHOWZno5x20%=BVulS9WtgcIOV zW)SxmZ-nknz4-cf6sFyp(xq+?8E3&0* z?(=E+rJc&B0E=`@l52$~u=Dc$M3}!cvDmC7$b!=>mC0_n#9r~wY ztOqKhvKI;MtzkD@n*=v1L1rT2kcqzLFudq8^>$%-!pP6ZfDdAh4kOlD;z*d3X_F?< zz}1_=!w=)E$ZAbWX?ds>p^bYN?IR$JU`tGQ7C<(Kwc;#1PQo%$Vf0D`XHKon%LNu2 z@_70c=s8W7w87ZGA=2G*u&7&aMZb@?dNJQ9;bNMS!iOcT;ciLSLQE>ZAg2-sZNt(aA@pNGwc}E4N_-&Q|9!!N-@1F8^L&xZ- zdE7Q@%X%RI?*2vU@;SyGH2*8s#;B6}^c|S`KqSQl{5Y!K#$i1?>g{+bSKG(>%sUJS z#$dJu5MJm$ugInd(2A-g;DmF7!tplmS9zhfpkr;DN+UY_i4pU`7Tq4+ms~XoF?je! zLUB!tO8B?U&;e1(T_UQl&6$zzp^tzHbUzBVv-q;`ftvln$VUIO_FL~m62dwE%=tZRQ;q^UYojH`(FZ_v zhQAUl@?CvmZ+byKqoPMip-EjK*&M?9tgHUj9-!x-(YSQp zL#sk|17`OEiF=x8Ynwf$+m2w`qA5P3xx=^O^T1$_$Hj7uG%5CVb6lZC>uee&!YZLb zO^ATY0u55skR|;J`j+`f-@1&ZM{G_noZ$uA=~Lv2d#BM1my8!Fv!G?B1uS(+p{0I) z@y;%KRlNQhUdorX&+oz~5f)W)@HJdS(ga8sDCJ=gUc5{x1*dno%#L}pDs_3TKIMtQ zb_fuNgA?(gj$Tc!yRcoIHxoQ0kOlDW9sh7Xb)U91-l7K2>03l|MBJ=eo=wc29e|Yt z-wnbhwZA3au*SQ#bd@#Cyd}bH?icmkSm;**=3GLXrs`#EiIf#m_h0nyMl3^^O3-=0 z!M%>p;qy;q-IfD%WqYA;ie1FPXAY}`D+GVh3z>PHM-zst>c+^eXap_BV3RO~o-R?v z=CL;ppJs4&l;29QQfj{rb%XhdX6rX+_qf)Fbl6EASh@t zXrG`uaDE4^A97(Eqp~Hje*uofq+FSJdeOz^IGnzEe=f)e1owk{@Q=zp-TRpfGZ9;T zA~yKWAP&(e*N7{bzn7(rDMQTf=&GORdDRwCXgp9X+djui&{%~Ld`thQa>Y=L)!paw zc4g$Y_-$At<#K+1U0nC5id%-9XgPPSAZY=65ncwFv8?F2c4+wSw}zX;ZkC$EVk)8T zW0P;V1Tz?ki@W9=&iI`eY*Ov=<}%ZTJ9s;Lg9Tpa)Z_`f`!4@207hLD^I4)#l^G*7 z*z)1_3`JUUE59OZWMpA1lo8E39i7-=*iH7dr1UB&A@qrYZmFx6CpiU6k|cl40UV~% zr3PLSHX+# zo5m_qhEvqblc7kj1rR3ck84^SF@#zxoTIyeztCxtEUsgsG!Gv3xTvS7L*B~-K~!$4 zj+RnzI&J|?ffJC30{K#P0J6CQdiq+6(8G-V0j^@oa(jlG7mFsoZw%{~(Uy!aa59lK z&C=)EYUKr`*t0mEH!xH>1Cxsn=00^YQc<t3^8IugBl`QffGrzV@#g};G{(u9+@FOJ;FAEV|LAL zdRjR=-@7R%cLiZoE#2u6F9Y6MPZ&eqsqr7Nk9*85J#fG@E3U`Q9Fsfu`|hwVXrm|QZueu8T4n4T(<;A(S})!4`k^>( z`h*>kGVG;~>S+>5`?3_Rm!e-457E>U&v2x;x!KqU!zmhi64fzZzv(kTR%D-kJ)-Y7 zzQf{!JAw$R{g#}}|ER+9L6)gRbq7|3X&F6-utvn`5ZCk8KA-DGX64RwQ7vZR^#OCX zCg|-k26PGi zSMlIvG&mTUG2(!Hnfm^%V7w}F>N-T$A*RQpij&&}IFqm;VIATowfwXBe49fl?iU}Z z$Wopq-RMQRv$WjgM+tz$bv0=>s&G7dr7xk|5TW1}yC2^zYfonHWdyvkG(=TGs8sL4 zn?e^!b6&wa9=du$Ya}UyBVop>H}d`cN$}UpmyZn^%|WkiZ%v!K0JJ34FN^$1A-iIQ z**xB8yu1CIK-){2Q@nZ({~JY@qKZi3rDW^5)laaDT%ZN$HYqQbzJ-|OV^`&!J z$>8`)xG8ZAMIk7o4wuoRB{HFNH;Vbf3jB`JhtZ9oemIN8-=qBg#T+ujrvAD`TPojO zZ-O07&=xv@JKBM)Y+HZfI-5aoy?0`;MpXN%MO%0wG|aTHk7GE{XLN-p|nXsYJP|Gs*g@Hv6mBOq$;`>|5 zG`+%izkZ0xt}mgX;^n)w!b2BcB>K)4ORQ*HuKh_d=8ZKJ=cqfwYn3*-LCm{0Cf7v^ zY{jIQ&Jhw=BmbW3ORM+`j;yZn9UK`mU~r#`i_GZKhwJ;1b8>Jte`Ox&-`TsAC3ZL+ z3?n*VP*g%mQeG80-n}(nv?cZ_fdre;1r0jm^HI$2 z`pm8dan=BvfN*Vvy+_rU9yz3i^Xy!i=C9W-g$>DZ&kQx6B z6#(;h2r7A-NMCX0QhW_T8(di75WybUQK7e&@Z)LF>6s^xhK4zftp2*pecKeJ;3l}H zc#ipy>Q}~?F!b7OS-Gk0%+K*dhwBvn&Q}GSIywKdkds|2PXz199aQnsH);@Yk(f{> zxIXz0Bir={bIjA@PJ1Sr8A&r3G&{ZvPH+Fy%|3ayVw-~V{YMM0EItuCk8^W^O@zX{ zPde|X|5{qdR2z5yuIj-xON>2dUIgwj{ZV(hW=rbg8~c^Be;(VTV|vIcUg+C4+1~+& zz69R;Z zWs@kD*?iL^x_8#s>u1*eeymsSIrsJKmG(FMB|91-1!bI+cm-6&9%{W8c>ex!@s#bG zT~dzy(|u!qP^Y7=`o_MC1W9Gc(5Bi?9J*}?z!Ffx*Ol(%i z6yP`@L;0a*&*P=C?=?5?a00H=!b9Gx#AV7h2Lwpw`*3Wg}vHj z-4q}ddz$tA?x3bEm)c!|B9DFzZd>BerEoF*TeGW@^x9S@;p11 + +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_free_support_barycenter_thumb.png + + :ref:`sphx_glr_auto_examples_plot_free_support_barycenter.py` + +.. raw:: html + + + + +.. toctree:: + :hidden: + + /auto_examples/plot_free_support_barycenter + +.. raw:: html + +

+ + +.. toctree:: + :hidden: + + /auto_examples/plot_OT_1D_smooth + .. raw:: html
@@ -147,6 +187,26 @@ This is a gallery of all the POT example files. /auto_examples/plot_WDA +.. raw:: html + +
+ +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_stochastic_thumb.png + + :ref:`sphx_glr_auto_examples_plot_stochastic.py` + +.. raw:: html + +
+ + +.. toctree:: + :hidden: + + /auto_examples/plot_stochastic + .. raw:: html
diff --git a/docs/source/auto_examples/plot_OT_1D_smooth.ipynb b/docs/source/auto_examples/plot_OT_1D_smooth.ipynb new file mode 100644 index 000000000..d523f6ae2 --- /dev/null +++ b/docs/source/auto_examples/plot_OT_1D_smooth.ipynb @@ -0,0 +1,144 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# 1D smooth optimal transport\n\n\nThis example illustrates the computation of EMD, Sinkhorn and smooth OT plans\nand their visualization.\n\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\nimport ot.plot\nfrom ot.datasets import make_1D_gauss as gauss" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate data\n-------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% parameters\n\nn = 100 # nb bins\n\n# bin positions\nx = np.arange(n, dtype=np.float64)\n\n# Gaussian distributions\na = gauss(n, m=20, s=5) # m= mean, s= std\nb = gauss(n, m=60, s=10)\n\n# loss matrix\nM = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))\nM /= M.max()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot distributions and loss matrix\n----------------------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% plot the distributions\n\npl.figure(1, figsize=(6.4, 3))\npl.plot(x, a, 'b', label='Source distribution')\npl.plot(x, b, 'r', label='Target distribution')\npl.legend()\n\n#%% plot distributions and loss matrix\n\npl.figure(2, figsize=(5, 5))\not.plot.plot1D_mat(a, b, M, 'Cost matrix M')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solve EMD\n---------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% EMD\n\nG0 = ot.emd(a, b, M)\n\npl.figure(3, figsize=(5, 5))\not.plot.plot1D_mat(a, b, G0, 'OT matrix G0')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solve Sinkhorn\n--------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% Sinkhorn\n\nlambd = 2e-3\nGs = ot.sinkhorn(a, b, M, lambd, verbose=True)\n\npl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, Gs, 'OT matrix Sinkhorn')\n\npl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solve Smooth OT\n--------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% Smooth OT with KL regularization\n\nlambd = 2e-3\nGsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='kl')\n\npl.figure(5, figsize=(5, 5))\not.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT KL reg.')\n\npl.show()\n\n\n#%% Smooth OT with KL regularization\n\nlambd = 1e-1\nGsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='l2')\n\npl.figure(6, figsize=(5, 5))\not.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT l2 reg.')\n\npl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/source/auto_examples/plot_OT_1D_smooth.py b/docs/source/auto_examples/plot_OT_1D_smooth.py new file mode 100644 index 000000000..b69075141 --- /dev/null +++ b/docs/source/auto_examples/plot_OT_1D_smooth.py @@ -0,0 +1,110 @@ +# -*- coding: utf-8 -*- +""" +=========================== +1D smooth optimal transport +=========================== + +This example illustrates the computation of EMD, Sinkhorn and smooth OT plans +and their visualization. + +""" + +# Author: Remi Flamary +# +# License: MIT License + +import numpy as np +import matplotlib.pylab as pl +import ot +import ot.plot +from ot.datasets import make_1D_gauss as gauss + +############################################################################## +# Generate data +# ------------- + + +#%% parameters + +n = 100 # nb bins + +# bin positions +x = np.arange(n, dtype=np.float64) + +# Gaussian distributions +a = gauss(n, m=20, s=5) # m= mean, s= std +b = gauss(n, m=60, s=10) + +# loss matrix +M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1))) +M /= M.max() + + +############################################################################## +# Plot distributions and loss matrix +# ---------------------------------- + +#%% plot the distributions + +pl.figure(1, figsize=(6.4, 3)) +pl.plot(x, a, 'b', label='Source distribution') +pl.plot(x, b, 'r', label='Target distribution') +pl.legend() + +#%% plot distributions and loss matrix + +pl.figure(2, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, M, 'Cost matrix M') + +############################################################################## +# Solve EMD +# --------- + + +#%% EMD + +G0 = ot.emd(a, b, M) + +pl.figure(3, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, G0, 'OT matrix G0') + +############################################################################## +# Solve Sinkhorn +# -------------- + + +#%% Sinkhorn + +lambd = 2e-3 +Gs = ot.sinkhorn(a, b, M, lambd, verbose=True) + +pl.figure(4, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, Gs, 'OT matrix Sinkhorn') + +pl.show() + +############################################################################## +# Solve Smooth OT +# -------------- + + +#%% Smooth OT with KL regularization + +lambd = 2e-3 +Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='kl') + +pl.figure(5, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT KL reg.') + +pl.show() + + +#%% Smooth OT with KL regularization + +lambd = 1e-1 +Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='l2') + +pl.figure(6, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT l2 reg.') + +pl.show() diff --git a/docs/source/auto_examples/plot_OT_1D_smooth.rst b/docs/source/auto_examples/plot_OT_1D_smooth.rst new file mode 100644 index 000000000..5a0ebd3e7 --- /dev/null +++ b/docs/source/auto_examples/plot_OT_1D_smooth.rst @@ -0,0 +1,242 @@ + + +.. _sphx_glr_auto_examples_plot_OT_1D_smooth.py: + + +=========================== +1D smooth optimal transport +=========================== + +This example illustrates the computation of EMD, Sinkhorn and smooth OT plans +and their visualization. + + + + +.. code-block:: python + + + # Author: Remi Flamary + # + # License: MIT License + + import numpy as np + import matplotlib.pylab as pl + import ot + import ot.plot + from ot.datasets import make_1D_gauss as gauss + + + + + + + +Generate data +------------- + + + +.. code-block:: python + + + + #%% parameters + + n = 100 # nb bins + + # bin positions + x = np.arange(n, dtype=np.float64) + + # Gaussian distributions + a = gauss(n, m=20, s=5) # m= mean, s= std + b = gauss(n, m=60, s=10) + + # loss matrix + M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1))) + M /= M.max() + + + + + + + + +Plot distributions and loss matrix +---------------------------------- + + + +.. code-block:: python + + + #%% plot the distributions + + pl.figure(1, figsize=(6.4, 3)) + pl.plot(x, a, 'b', label='Source distribution') + pl.plot(x, b, 'r', label='Target distribution') + pl.legend() + + #%% plot distributions and loss matrix + + pl.figure(2, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, M, 'Cost matrix M') + + + + +.. rst-class:: sphx-glr-horizontal + + + * + + .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_smooth_001.png + :scale: 47 + + * + + .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_smooth_002.png + :scale: 47 + + + + +Solve EMD +--------- + + + +.. code-block:: python + + + + #%% EMD + + G0 = ot.emd(a, b, M) + + pl.figure(3, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, G0, 'OT matrix G0') + + + + +.. image:: /auto_examples/images/sphx_glr_plot_OT_1D_smooth_005.png + :align: center + + + + +Solve Sinkhorn +-------------- + + + +.. code-block:: python + + + + #%% Sinkhorn + + lambd = 2e-3 + Gs = ot.sinkhorn(a, b, M, lambd, verbose=True) + + pl.figure(4, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, Gs, 'OT matrix Sinkhorn') + + pl.show() + + + + +.. image:: /auto_examples/images/sphx_glr_plot_OT_1D_smooth_007.png + :align: center + + +.. rst-class:: sphx-glr-script-out + + Out:: + + It. |Err + ------------------- + 0|7.958844e-02| + 10|5.921715e-03| + 20|1.238266e-04| + 30|2.469780e-06| + 40|4.919966e-08| + 50|9.800197e-10| + + +Solve Smooth OT +-------------- + + + +.. code-block:: python + + + + #%% Smooth OT with KL regularization + + lambd = 2e-3 + Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='kl') + + pl.figure(5, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT KL reg.') + + pl.show() + + + #%% Smooth OT with KL regularization + + lambd = 1e-1 + Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='l2') + + pl.figure(6, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT l2 reg.') + + pl.show() + + + +.. rst-class:: sphx-glr-horizontal + + + * + + .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_smooth_009.png + :scale: 47 + + * + + .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_smooth_010.png + :scale: 47 + + + + +**Total running time of the script:** ( 0 minutes 1.053 seconds) + + + +.. only :: html + + .. container:: sphx-glr-footer + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_OT_1D_smooth.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_OT_1D_smooth.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/source/auto_examples/plot_free_support_barycenter.ipynb b/docs/source/auto_examples/plot_free_support_barycenter.ipynb new file mode 100644 index 000000000..05a81c8d1 --- /dev/null +++ b/docs/source/auto_examples/plot_free_support_barycenter.ipynb @@ -0,0 +1,108 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# 2D free support Wasserstein barycenters of distributions\n\n\nIllustration of 2D Wasserstein barycenters if discributions that are weighted\nsum of diracs.\n\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Vivien Seguy \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate data\n -------------\n%% parameters and data generation\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "N = 3\nd = 2\nmeasures_locations = []\nmeasures_weights = []\n\nfor i in range(N):\n\n n_i = np.random.randint(low=1, high=20) # nb samples\n\n mu_i = np.random.normal(0., 4., (d,)) # Gaussian mean\n\n A_i = np.random.rand(d, d)\n cov_i = np.dot(A_i, A_i.transpose()) # Gaussian covariance matrix\n\n x_i = ot.datasets.make_2D_samples_gauss(n_i, mu_i, cov_i) # Dirac locations\n b_i = np.random.uniform(0., 1., (n_i,))\n b_i = b_i / np.sum(b_i) # Dirac weights\n\n measures_locations.append(x_i)\n measures_weights.append(b_i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute free support barycenter\n-------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "k = 10 # number of Diracs of the barycenter\nX_init = np.random.normal(0., 1., (k, d)) # initial Dirac locations\nb = np.ones((k,)) / k # weights of the barycenter (it will not be optimized, only the locations are optimized)\n\nX = ot.lp.free_support_barycenter(measures_locations, measures_weights, X_init, b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot data\n---------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(1)\nfor (x_i, b_i) in zip(measures_locations, measures_weights):\n color = np.random.randint(low=1, high=10 * N)\n pl.scatter(x_i[:, 0], x_i[:, 1], s=b * 1000, label='input measure')\npl.scatter(X[:, 0], X[:, 1], s=b * 1000, c='black', marker='^', label='2-Wasserstein barycenter')\npl.title('Data measures and their barycenter')\npl.legend(loc=0)\npl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/source/auto_examples/plot_free_support_barycenter.py b/docs/source/auto_examples/plot_free_support_barycenter.py new file mode 100644 index 000000000..b6efc596c --- /dev/null +++ b/docs/source/auto_examples/plot_free_support_barycenter.py @@ -0,0 +1,69 @@ +# -*- coding: utf-8 -*- +""" +==================================================== +2D free support Wasserstein barycenters of distributions +==================================================== + +Illustration of 2D Wasserstein barycenters if discributions that are weighted +sum of diracs. + +""" + +# Author: Vivien Seguy +# +# License: MIT License + +import numpy as np +import matplotlib.pylab as pl +import ot + + +############################################################################## +# Generate data +# ------------- +#%% parameters and data generation +N = 3 +d = 2 +measures_locations = [] +measures_weights = [] + +for i in range(N): + + n_i = np.random.randint(low=1, high=20) # nb samples + + mu_i = np.random.normal(0., 4., (d,)) # Gaussian mean + + A_i = np.random.rand(d, d) + cov_i = np.dot(A_i, A_i.transpose()) # Gaussian covariance matrix + + x_i = ot.datasets.make_2D_samples_gauss(n_i, mu_i, cov_i) # Dirac locations + b_i = np.random.uniform(0., 1., (n_i,)) + b_i = b_i / np.sum(b_i) # Dirac weights + + measures_locations.append(x_i) + measures_weights.append(b_i) + + +############################################################################## +# Compute free support barycenter +# ------------- + +k = 10 # number of Diracs of the barycenter +X_init = np.random.normal(0., 1., (k, d)) # initial Dirac locations +b = np.ones((k,)) / k # weights of the barycenter (it will not be optimized, only the locations are optimized) + +X = ot.lp.free_support_barycenter(measures_locations, measures_weights, X_init, b) + + +############################################################################## +# Plot data +# --------- + +pl.figure(1) +for (x_i, b_i) in zip(measures_locations, measures_weights): + color = np.random.randint(low=1, high=10 * N) + pl.scatter(x_i[:, 0], x_i[:, 1], s=b * 1000, label='input measure') +pl.scatter(X[:, 0], X[:, 1], s=b * 1000, c='black', marker='^', label='2-Wasserstein barycenter') +pl.title('Data measures and their barycenter') +pl.legend(loc=0) +pl.show() diff --git a/docs/source/auto_examples/plot_free_support_barycenter.rst b/docs/source/auto_examples/plot_free_support_barycenter.rst new file mode 100644 index 000000000..d1b3b80d4 --- /dev/null +++ b/docs/source/auto_examples/plot_free_support_barycenter.rst @@ -0,0 +1,140 @@ + + +.. _sphx_glr_auto_examples_plot_free_support_barycenter.py: + + +==================================================== +2D free support Wasserstein barycenters of distributions +==================================================== + +Illustration of 2D Wasserstein barycenters if discributions that are weighted +sum of diracs. + + + + +.. code-block:: python + + + # Author: Vivien Seguy + # + # License: MIT License + + import numpy as np + import matplotlib.pylab as pl + import ot + + + + + + + + +Generate data + ------------- +%% parameters and data generation + + + +.. code-block:: python + + N = 3 + d = 2 + measures_locations = [] + measures_weights = [] + + for i in range(N): + + n_i = np.random.randint(low=1, high=20) # nb samples + + mu_i = np.random.normal(0., 4., (d,)) # Gaussian mean + + A_i = np.random.rand(d, d) + cov_i = np.dot(A_i, A_i.transpose()) # Gaussian covariance matrix + + x_i = ot.datasets.make_2D_samples_gauss(n_i, mu_i, cov_i) # Dirac locations + b_i = np.random.uniform(0., 1., (n_i,)) + b_i = b_i / np.sum(b_i) # Dirac weights + + measures_locations.append(x_i) + measures_weights.append(b_i) + + + + + + + + +Compute free support barycenter +------------- + + + +.. code-block:: python + + + k = 10 # number of Diracs of the barycenter + X_init = np.random.normal(0., 1., (k, d)) # initial Dirac locations + b = np.ones((k,)) / k # weights of the barycenter (it will not be optimized, only the locations are optimized) + + X = ot.lp.free_support_barycenter(measures_locations, measures_weights, X_init, b) + + + + + + + + +Plot data +--------- + + + +.. code-block:: python + + + pl.figure(1) + for (x_i, b_i) in zip(measures_locations, measures_weights): + color = np.random.randint(low=1, high=10 * N) + pl.scatter(x_i[:, 0], x_i[:, 1], s=b * 1000, label='input measure') + pl.scatter(X[:, 0], X[:, 1], s=b * 1000, c='black', marker='^', label='2-Wasserstein barycenter') + pl.title('Data measures and their barycenter') + pl.legend(loc=0) + pl.show() + + + +.. image:: /auto_examples/images/sphx_glr_plot_free_support_barycenter_001.png + :align: center + + + + +**Total running time of the script:** ( 0 minutes 0.129 seconds) + + + +.. only :: html + + .. container:: sphx-glr-footer + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_free_support_barycenter.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_free_support_barycenter.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/docs/source/auto_examples/plot_stochastic.ipynb b/docs/source/auto_examples/plot_stochastic.ipynb new file mode 100644 index 000000000..c6f0013b0 --- /dev/null +++ b/docs/source/auto_examples/plot_stochastic.ipynb @@ -0,0 +1,331 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Stochastic examples\n\n\nThis example is designed to show how to use the stochatic optimization\nalgorithms for descrete and semicontinous measures from the POT library.\n\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Kilian Fatras \n#\n# License: MIT License\n\nimport matplotlib.pylab as pl\nimport numpy as np\nimport ot\nimport ot.plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "COMPUTE TRANSPORTATION MATRIX FOR SEMI-DUAL PROBLEM\n############################################################################\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "print(\"------------SEMI-DUAL PROBLEM------------\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "DISCRETE CASE\nSample two discrete measures for the discrete case\n---------------------------------------------\n\nDefine 2 discrete measures a and b, the points where are defined the source\nand the target measures and finally the cost matrix c.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "n_source = 7\nn_target = 4\nreg = 1\nnumItermax = 1000\n\na = ot.utils.unif(n_source)\nb = ot.utils.unif(n_target)\n\nrng = np.random.RandomState(0)\nX_source = rng.randn(n_source, 2)\nY_target = rng.randn(n_target, 2)\nM = ot.dist(X_source, Y_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call the \"SAG\" method to find the transportation matrix in the discrete case\n---------------------------------------------\n\nDefine the method \"SAG\", call ot.solve_semi_dual_entropic and plot the\nresults.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "method = \"SAG\"\nsag_pi = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,\n numItermax)\nprint(sag_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "SEMICONTINOUS CASE\nSample one general measure a, one discrete measures b for the semicontinous\ncase\n---------------------------------------------\n\nDefine one general measure a, one discrete measures b, the points where\nare defined the source and the target measures and finally the cost matrix c.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "n_source = 7\nn_target = 4\nreg = 1\nnumItermax = 1000\nlog = True\n\na = ot.utils.unif(n_source)\nb = ot.utils.unif(n_target)\n\nrng = np.random.RandomState(0)\nX_source = rng.randn(n_source, 2)\nY_target = rng.randn(n_target, 2)\nM = ot.dist(X_source, Y_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call the \"ASGD\" method to find the transportation matrix in the semicontinous\ncase\n---------------------------------------------\n\nDefine the method \"ASGD\", call ot.solve_semi_dual_entropic and plot the\nresults.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "method = \"ASGD\"\nasgd_pi, log_asgd = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,\n numItermax, log=log)\nprint(log_asgd['alpha'], log_asgd['beta'])\nprint(asgd_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare the results with the Sinkhorn algorithm\n---------------------------------------------\n\nCall the Sinkhorn algorithm from POT\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "sinkhorn_pi = ot.sinkhorn(a, b, M, reg)\nprint(sinkhorn_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PLOT TRANSPORTATION MATRIX\n#############################################################################\n\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot SAG results\n----------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sag_pi, 'semi-dual : OT matrix SAG')\npl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot ASGD results\n-----------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, asgd_pi, 'semi-dual : OT matrix ASGD')\npl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Sinkhorn results\n---------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')\npl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "COMPUTE TRANSPORTATION MATRIX FOR DUAL PROBLEM\n############################################################################\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "print(\"------------DUAL PROBLEM------------\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "SEMICONTINOUS CASE\nSample one general measure a, one discrete measures b for the semicontinous\ncase\n---------------------------------------------\n\nDefine one general measure a, one discrete measures b, the points where\nare defined the source and the target measures and finally the cost matrix c.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "n_source = 7\nn_target = 4\nreg = 1\nnumItermax = 100000\nlr = 0.1\nbatch_size = 3\nlog = True\n\na = ot.utils.unif(n_source)\nb = ot.utils.unif(n_target)\n\nrng = np.random.RandomState(0)\nX_source = rng.randn(n_source, 2)\nY_target = rng.randn(n_target, 2)\nM = ot.dist(X_source, Y_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call the \"SGD\" dual method to find the transportation matrix in the\nsemicontinous case\n---------------------------------------------\n\nCall ot.solve_dual_entropic and plot the results.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "sgd_dual_pi, log_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg,\n batch_size, numItermax,\n lr, log=log)\nprint(log_sgd['alpha'], log_sgd['beta'])\nprint(sgd_dual_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare the results with the Sinkhorn algorithm\n---------------------------------------------\n\nCall the Sinkhorn algorithm from POT\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "sinkhorn_pi = ot.sinkhorn(a, b, M, reg)\nprint(sinkhorn_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot SGD results\n-----------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sgd_dual_pi, 'dual : OT matrix SGD')\npl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Sinkhorn results\n---------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')\npl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/source/auto_examples/plot_stochastic.py b/docs/source/auto_examples/plot_stochastic.py new file mode 100644 index 000000000..b9375d423 --- /dev/null +++ b/docs/source/auto_examples/plot_stochastic.py @@ -0,0 +1,207 @@ +""" +========================== +Stochastic examples +========================== + +This example is designed to show how to use the stochatic optimization +algorithms for descrete and semicontinous measures from the POT library. + +""" + +# Author: Kilian Fatras +# +# License: MIT License + +import matplotlib.pylab as pl +import numpy as np +import ot +import ot.plot + + +############################################################################# +# COMPUTE TRANSPORTATION MATRIX FOR SEMI-DUAL PROBLEM +############################################################################# +print("------------SEMI-DUAL PROBLEM------------") +############################################################################# +# DISCRETE CASE +# Sample two discrete measures for the discrete case +# --------------------------------------------- +# +# Define 2 discrete measures a and b, the points where are defined the source +# and the target measures and finally the cost matrix c. + +n_source = 7 +n_target = 4 +reg = 1 +numItermax = 1000 + +a = ot.utils.unif(n_source) +b = ot.utils.unif(n_target) + +rng = np.random.RandomState(0) +X_source = rng.randn(n_source, 2) +Y_target = rng.randn(n_target, 2) +M = ot.dist(X_source, Y_target) + +############################################################################# +# +# Call the "SAG" method to find the transportation matrix in the discrete case +# --------------------------------------------- +# +# Define the method "SAG", call ot.solve_semi_dual_entropic and plot the +# results. + +method = "SAG" +sag_pi = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method, + numItermax) +print(sag_pi) + +############################################################################# +# SEMICONTINOUS CASE +# Sample one general measure a, one discrete measures b for the semicontinous +# case +# --------------------------------------------- +# +# Define one general measure a, one discrete measures b, the points where +# are defined the source and the target measures and finally the cost matrix c. + +n_source = 7 +n_target = 4 +reg = 1 +numItermax = 1000 +log = True + +a = ot.utils.unif(n_source) +b = ot.utils.unif(n_target) + +rng = np.random.RandomState(0) +X_source = rng.randn(n_source, 2) +Y_target = rng.randn(n_target, 2) +M = ot.dist(X_source, Y_target) + +############################################################################# +# +# Call the "ASGD" method to find the transportation matrix in the semicontinous +# case +# --------------------------------------------- +# +# Define the method "ASGD", call ot.solve_semi_dual_entropic and plot the +# results. + +method = "ASGD" +asgd_pi, log_asgd = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method, + numItermax, log=log) +print(log_asgd['alpha'], log_asgd['beta']) +print(asgd_pi) + +############################################################################# +# +# Compare the results with the Sinkhorn algorithm +# --------------------------------------------- +# +# Call the Sinkhorn algorithm from POT + +sinkhorn_pi = ot.sinkhorn(a, b, M, reg) +print(sinkhorn_pi) + + +############################################################################## +# PLOT TRANSPORTATION MATRIX +############################################################################## + +############################################################################## +# Plot SAG results +# ---------------- + +pl.figure(4, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, sag_pi, 'semi-dual : OT matrix SAG') +pl.show() + + +############################################################################## +# Plot ASGD results +# ----------------- + +pl.figure(4, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, asgd_pi, 'semi-dual : OT matrix ASGD') +pl.show() + + +############################################################################## +# Plot Sinkhorn results +# --------------------- + +pl.figure(4, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn') +pl.show() + + +############################################################################# +# COMPUTE TRANSPORTATION MATRIX FOR DUAL PROBLEM +############################################################################# +print("------------DUAL PROBLEM------------") +############################################################################# +# SEMICONTINOUS CASE +# Sample one general measure a, one discrete measures b for the semicontinous +# case +# --------------------------------------------- +# +# Define one general measure a, one discrete measures b, the points where +# are defined the source and the target measures and finally the cost matrix c. + +n_source = 7 +n_target = 4 +reg = 1 +numItermax = 100000 +lr = 0.1 +batch_size = 3 +log = True + +a = ot.utils.unif(n_source) +b = ot.utils.unif(n_target) + +rng = np.random.RandomState(0) +X_source = rng.randn(n_source, 2) +Y_target = rng.randn(n_target, 2) +M = ot.dist(X_source, Y_target) + +############################################################################# +# +# Call the "SGD" dual method to find the transportation matrix in the +# semicontinous case +# --------------------------------------------- +# +# Call ot.solve_dual_entropic and plot the results. + +sgd_dual_pi, log_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg, + batch_size, numItermax, + lr, log=log) +print(log_sgd['alpha'], log_sgd['beta']) +print(sgd_dual_pi) + +############################################################################# +# +# Compare the results with the Sinkhorn algorithm +# --------------------------------------------- +# +# Call the Sinkhorn algorithm from POT + +sinkhorn_pi = ot.sinkhorn(a, b, M, reg) +print(sinkhorn_pi) + +############################################################################## +# Plot SGD results +# ----------------- + +pl.figure(4, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, sgd_dual_pi, 'dual : OT matrix SGD') +pl.show() + + +############################################################################## +# Plot Sinkhorn results +# --------------------- + +pl.figure(4, figsize=(5, 5)) +ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn') +pl.show() diff --git a/docs/source/auto_examples/plot_stochastic.rst b/docs/source/auto_examples/plot_stochastic.rst new file mode 100644 index 000000000..a49bc0556 --- /dev/null +++ b/docs/source/auto_examples/plot_stochastic.rst @@ -0,0 +1,475 @@ + + +.. _sphx_glr_auto_examples_plot_stochastic.py: + + +========================== +Stochastic examples +========================== + +This example is designed to show how to use the stochatic optimization +algorithms for descrete and semicontinous measures from the POT library. + + + + +.. code-block:: python + + + # Author: Kilian Fatras + # + # License: MIT License + + import matplotlib.pylab as pl + import numpy as np + import ot + import ot.plot + + + + + + + + +COMPUTE TRANSPORTATION MATRIX FOR SEMI-DUAL PROBLEM +############################################################################ + + + +.. code-block:: python + + print("------------SEMI-DUAL PROBLEM------------") + + + + +.. rst-class:: sphx-glr-script-out + + Out:: + + ------------SEMI-DUAL PROBLEM------------ + + +DISCRETE CASE +Sample two discrete measures for the discrete case +--------------------------------------------- + +Define 2 discrete measures a and b, the points where are defined the source +and the target measures and finally the cost matrix c. + + + +.. code-block:: python + + + n_source = 7 + n_target = 4 + reg = 1 + numItermax = 1000 + + a = ot.utils.unif(n_source) + b = ot.utils.unif(n_target) + + rng = np.random.RandomState(0) + X_source = rng.randn(n_source, 2) + Y_target = rng.randn(n_target, 2) + M = ot.dist(X_source, Y_target) + + + + + + + +Call the "SAG" method to find the transportation matrix in the discrete case +--------------------------------------------- + +Define the method "SAG", call ot.solve_semi_dual_entropic and plot the +results. + + + +.. code-block:: python + + + method = "SAG" + sag_pi = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method, + numItermax) + print(sag_pi) + + + + + +.. rst-class:: sphx-glr-script-out + + Out:: + + [[2.55553509e-02 9.96395660e-02 1.76579142e-02 4.31178196e-06] + [1.21640234e-01 1.25357448e-02 1.30225078e-03 7.37891338e-03] + [3.56123975e-03 7.61451746e-02 6.31505947e-02 1.33831456e-07] + [2.61515202e-02 3.34246014e-02 8.28734709e-02 4.07550428e-04] + [9.85500870e-03 7.52288517e-04 1.08262628e-02 1.21423583e-01] + [2.16904253e-02 9.03825797e-04 1.87178503e-03 1.18391107e-01] + [4.15462212e-02 2.65987989e-02 7.23177216e-02 2.39440107e-03]] + + +SEMICONTINOUS CASE +Sample one general measure a, one discrete measures b for the semicontinous +case +--------------------------------------------- + +Define one general measure a, one discrete measures b, the points where +are defined the source and the target measures and finally the cost matrix c. + + + +.. code-block:: python + + + n_source = 7 + n_target = 4 + reg = 1 + numItermax = 1000 + log = True + + a = ot.utils.unif(n_source) + b = ot.utils.unif(n_target) + + rng = np.random.RandomState(0) + X_source = rng.randn(n_source, 2) + Y_target = rng.randn(n_target, 2) + M = ot.dist(X_source, Y_target) + + + + + + + +Call the "ASGD" method to find the transportation matrix in the semicontinous +case +--------------------------------------------- + +Define the method "ASGD", call ot.solve_semi_dual_entropic and plot the +results. + + + +.. code-block:: python + + + method = "ASGD" + asgd_pi, log_asgd = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method, + numItermax, log=log) + print(log_asgd['alpha'], log_asgd['beta']) + print(asgd_pi) + + + + + +.. rst-class:: sphx-glr-script-out + + Out:: + + [3.9018759 7.63059124 3.93260224 2.67274989 1.43888443 3.26904884 + 2.78748299] [-2.48511647 -2.43621119 -0.93585194 5.8571796 ] + [[2.56614773e-02 9.96758169e-02 1.75151781e-02 4.67049862e-06] + [1.21201047e-01 1.24433535e-02 1.28173754e-03 7.93100436e-03] + [3.58778167e-03 7.64232233e-02 6.28459924e-02 1.45441936e-07] + [2.63551754e-02 3.35577920e-02 8.25011211e-02 4.43054320e-04] + [9.24518246e-03 7.03074064e-04 1.00325744e-02 1.22876312e-01] + [2.03656325e-02 8.45420425e-04 1.73604569e-03 1.19910044e-01] + [4.17781688e-02 2.66463708e-02 7.18353075e-02 2.59729583e-03]] + + +Compare the results with the Sinkhorn algorithm +--------------------------------------------- + +Call the Sinkhorn algorithm from POT + + + +.. code-block:: python + + + sinkhorn_pi = ot.sinkhorn(a, b, M, reg) + print(sinkhorn_pi) + + + + + + +.. rst-class:: sphx-glr-script-out + + Out:: + + [[2.55535622e-02 9.96413843e-02 1.76578860e-02 4.31043335e-06] + [1.21640742e-01 1.25369034e-02 1.30234529e-03 7.37715259e-03] + [3.56096458e-03 7.61460101e-02 6.31500344e-02 1.33788624e-07] + [2.61499607e-02 3.34255577e-02 8.28741973e-02 4.07427179e-04] + [9.85698720e-03 7.52505948e-04 1.08291770e-02 1.21418473e-01] + [2.16947591e-02 9.04086158e-04 1.87228707e-03 1.18386011e-01] + [4.15442692e-02 2.65998963e-02 7.23192701e-02 2.39370724e-03]] + + +PLOT TRANSPORTATION MATRIX +############################################################################# + + +Plot SAG results +---------------- + + + +.. code-block:: python + + + pl.figure(4, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, sag_pi, 'semi-dual : OT matrix SAG') + pl.show() + + + + + +.. image:: /auto_examples/images/sphx_glr_plot_stochastic_004.png + :align: center + + + + +Plot ASGD results +----------------- + + + +.. code-block:: python + + + pl.figure(4, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, asgd_pi, 'semi-dual : OT matrix ASGD') + pl.show() + + + + + +.. image:: /auto_examples/images/sphx_glr_plot_stochastic_005.png + :align: center + + + + +Plot Sinkhorn results +--------------------- + + + +.. code-block:: python + + + pl.figure(4, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn') + pl.show() + + + + + +.. image:: /auto_examples/images/sphx_glr_plot_stochastic_006.png + :align: center + + + + +COMPUTE TRANSPORTATION MATRIX FOR DUAL PROBLEM +############################################################################ + + + +.. code-block:: python + + print("------------DUAL PROBLEM------------") + + + + +.. rst-class:: sphx-glr-script-out + + Out:: + + ------------DUAL PROBLEM------------ + + +SEMICONTINOUS CASE +Sample one general measure a, one discrete measures b for the semicontinous +case +--------------------------------------------- + +Define one general measure a, one discrete measures b, the points where +are defined the source and the target measures and finally the cost matrix c. + + + +.. code-block:: python + + + n_source = 7 + n_target = 4 + reg = 1 + numItermax = 100000 + lr = 0.1 + batch_size = 3 + log = True + + a = ot.utils.unif(n_source) + b = ot.utils.unif(n_target) + + rng = np.random.RandomState(0) + X_source = rng.randn(n_source, 2) + Y_target = rng.randn(n_target, 2) + M = ot.dist(X_source, Y_target) + + + + + + + +Call the "SGD" dual method to find the transportation matrix in the +semicontinous case +--------------------------------------------- + +Call ot.solve_dual_entropic and plot the results. + + + +.. code-block:: python + + + sgd_dual_pi, log_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg, + batch_size, numItermax, + lr, log=log) + print(log_sgd['alpha'], log_sgd['beta']) + print(sgd_dual_pi) + + + + + +.. rst-class:: sphx-glr-script-out + + Out:: + + [ 1.29325617 5.0435082 1.30996326 0.05538236 -1.08113283 0.73711558 + 0.18086364] [0.08840343 0.17710082 1.68604226 8.37377551] + [[2.47763879e-02 1.00144623e-01 1.77492330e-02 4.25988443e-06] + [1.19568278e-01 1.27740478e-02 1.32714202e-03 7.39121816e-03] + [3.41581121e-03 7.57137404e-02 6.27992039e-02 1.30808430e-07] + [2.52245323e-02 3.34219732e-02 8.28754229e-02 4.00582912e-04] + [9.75329554e-03 7.71824343e-04 1.11085400e-02 1.22456628e-01] + [2.12304276e-02 9.17096580e-04 1.89946234e-03 1.18084973e-01] + [4.04179693e-02 2.68253041e-02 7.29410047e-02 2.37369404e-03]] + + +Compare the results with the Sinkhorn algorithm +--------------------------------------------- + +Call the Sinkhorn algorithm from POT + + + +.. code-block:: python + + + sinkhorn_pi = ot.sinkhorn(a, b, M, reg) + print(sinkhorn_pi) + + + + + +.. rst-class:: sphx-glr-script-out + + Out:: + + [[2.55535622e-02 9.96413843e-02 1.76578860e-02 4.31043335e-06] + [1.21640742e-01 1.25369034e-02 1.30234529e-03 7.37715259e-03] + [3.56096458e-03 7.61460101e-02 6.31500344e-02 1.33788624e-07] + [2.61499607e-02 3.34255577e-02 8.28741973e-02 4.07427179e-04] + [9.85698720e-03 7.52505948e-04 1.08291770e-02 1.21418473e-01] + [2.16947591e-02 9.04086158e-04 1.87228707e-03 1.18386011e-01] + [4.15442692e-02 2.65998963e-02 7.23192701e-02 2.39370724e-03]] + + +Plot SGD results +----------------- + + + +.. code-block:: python + + + pl.figure(4, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, sgd_dual_pi, 'dual : OT matrix SGD') + pl.show() + + + + + +.. image:: /auto_examples/images/sphx_glr_plot_stochastic_007.png + :align: center + + + + +Plot Sinkhorn results +--------------------- + + + +.. code-block:: python + + + pl.figure(4, figsize=(5, 5)) + ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn') + pl.show() + + + +.. image:: /auto_examples/images/sphx_glr_plot_stochastic_008.png + :align: center + + + + +**Total running time of the script:** ( 0 minutes 22.857 seconds) + + + +.. only :: html + + .. container:: sphx-glr-footer + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_stochastic.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_stochastic.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ From 1ec01f082a34c1086ef2df94b78a5d640a66db07 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 14:10:40 +0200 Subject: [PATCH 06/26] add notebooks from new examples --- notebooks/plot_OT_1D_smooth.ipynb | 302 +++++++++ notebooks/plot_free_support_barycenter.ipynb | 169 +++++ notebooks/plot_stochastic.ipynb | 610 +++++++++++++++++++ 3 files changed, 1081 insertions(+) create mode 100644 notebooks/plot_OT_1D_smooth.ipynb create mode 100644 notebooks/plot_free_support_barycenter.ipynb create mode 100644 notebooks/plot_stochastic.ipynb diff --git a/notebooks/plot_OT_1D_smooth.ipynb b/notebooks/plot_OT_1D_smooth.ipynb new file mode 100644 index 000000000..69e71da18 --- /dev/null +++ b/notebooks/plot_OT_1D_smooth.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# 1D smooth optimal transport\n", + "\n", + "\n", + "This example illustrates the computation of EMD, Sinkhorn and smooth OT plans\n", + "and their visualization.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Remi Flamary \n", + "#\n", + "# License: MIT License\n", + "\n", + "import numpy as np\n", + "import matplotlib.pylab as pl\n", + "import ot\n", + "import ot.plot\n", + "from ot.datasets import make_1D_gauss as gauss" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate data\n", + "-------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% parameters\n", + "\n", + "n = 100 # nb bins\n", + "\n", + "# bin positions\n", + "x = np.arange(n, dtype=np.float64)\n", + "\n", + "# Gaussian distributions\n", + "a = gauss(n, m=20, s=5) # m= mean, s= std\n", + "b = gauss(n, m=60, s=10)\n", + "\n", + "# loss matrix\n", + "M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))\n", + "M /= M.max()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot distributions and loss matrix\n", + "----------------------------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAADFCAYAAABzYARGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4U2X2wPHvoWW1yFZEsSCgiGylQEUERHBQdFBRB0cEFVdcBmVUEHQQEZfB0UH9CeIwMo47KCqDK4iAICrSYgsUZEepiiJiEdm6vL8/ToKltCVt09ws5/M8edIkNzcnN2nOfXdxzmGMMcZUVBWvAzDGGBMdLKEYY4wJCksoxhhjgsISijHGmKCwhGKMMSYoLKEYY4wJCksoxhhjgsISijHGmKCwhGKMMSYo4r0OoKjExETXrFkzr8MwxhgDpKen/+ScaxjItmGXUJo1a0ZaWprXYRhjjAFE5OtAt7UqL2OMMUFhCcUYY0xQBJRQRORcEVkrIhtEZHQxj1cXkRm+x5eKSDPf/VVF5HkRWSkia0Tk7uCGb4wxJlwcsQ1FROKAycDZQDawTERmO+dWF9rsOmCnc+4kERkIPAJcBlwKVHfOtReRWsBqEXnVObcl2G/EGFN+ubm5ZGdns2/fPq9DMR6pUaMGSUlJVK1atdz7CKRRvguwwTm3CUBEpgP9gcIJpT8wzvf3TGCSiAjggKNEJB6oCRwAdpU7WhOQOXNg9WoYPhyqWKWmCUB2dja1a9emWbNm6L+uiSXOOXbs2EF2djbNmzcv934C+bk5Htha6Ha2775it3HO5QE5QAM0ufwGfA98AzzmnPu56AuIyFARSRORtO3bt5f5TZjfPfMM/PGPcMcdMGgQ7N/vdUQmEuzbt48GDRpYMolRIkKDBg0qXEKt7PPXLkA+0BhoDtwpIi2KbuScm+qcS3XOpTZsGFB3Z1OEczBmDNx8M5x3Hjz4IMyYoX/n5HgdnYkElkxiWzA+/0CqvL4FmhS6neS7r7htsn3VW3WAHcAg4APnXC7wo4gsAVKBTRUN3Bzqtttg0iS49lr4178gPh6aNtXbPXvCkiWQkOB1lMaYaBZICWUZ0FJEmotINWAgMLvINrOBIb6/BwDznS5W/w1wFoCIHAV0Bb4KRuDmd19/DZMnw9Ch8OyzmkwArrwSXn8dVqyAV17xNkZjjuShhx6ibdu2JCcnk5KSwtKlS70O6TAJvrOy7777jgEDBpS43S+//MLTTz9d6r66desGwMKFCzn//PPLFMesWbNYvfr3ZuyxY8cyb968Mu2jMhwxofjaRIYBc4A1wGvOuSwRGS8iF/o2mwY0EJENwB2Av2vxZCBBRLLQxPScc25FsN9ErHvuOb2++24oWmrt3x/atoVp00IflzGB+uyzz3jnnXdYvnw5K1asYN68eTRp0uTITzyCvLy8IER3uMaNGzNz5swSHy8tofhj+vTTT8v9+kUTyvjx4+nTp0+59xcsAU294px7D3ivyH1jC/29D+0iXPR5u4u73wRPfr4mlD59oLgp0ETguuu0kX7VKmjXLuQhmgjz179CRkZw95mSAk88UfLj33//PYmJiVSvXh2AxMTEg4999NFHjBgxgry8PE499VSmTJlC9erVD07TlJiYSFpaGiNGjGDhwoWMGzeOjRs3smnTJpo2bcpLL73EqFGj+OCDD6hSpQo33HADt956K+np6dxxxx3s3r2bxMRE/vvf/3LccccdEtfmzZsZNGgQu3fvpn///gfv37JlC+effz6rVq0iKyuLa665hgMHDlBQUMAbb7zBvffey8aNG0lJSeHss8+mX79+3HvvvdSrV4+vvvqKdevWkZCQwO7duwHYtWsX/fr1Y8OGDfTu3Zunn36aKlWqHLLNzJkzeeeddxg6dCizZ8/m448/5sEHH+SNN97ggQce4Pzzz2fAgAGlHq8hQ4bw9ttvk5uby+uvv84pp5wSrI8YsJHyEe+jj+CbbzRplOTKK6FqVSulmPB1zjnnsHXrVk4++WRuueUWPv74Y0B7n1199dXMmDGDlStXkpeXx5QpU464v9WrVzNv3jxeffVVpk6dypYtW8jIyGDFihUMHjyY3Nxcbr31VmbOnEl6ejrXXnstf/vb3w7bz/Dhw7n55ptZuXLlYcnG75lnnmH48OFkZGSQlpZGUlISEyZM4MQTTyQjI4NHH30UgOXLl/Pkk0+ybt26w/bxxRdf8NRTT7F69Wo2btzIm2++WeJ769atGxdeeCGPPvooGRkZnHjiiQcfO9LxSkxMZPny5dx888089thjRzyOZRV2k0Oaspk2DerXh4suKnmbxESt+nrxRZgwAXwngcYUq7SSRGVJSEggPT2dxYsXs2DBAi677DImTJhAx44dad68OSeffDIAQ4YMYfLkyfz1r38tdX8XXnghNWvWBGDevHncdNNNxPsaF+vXr8+qVatYtWoVZ599NgD5+fnFJowlS5bwxhtvAHDllVcyatSow7Y5/fTTeeihh8jOzuaSSy6hZcuWxcbUpUuXEsd4dOnShRYttAPs5ZdfzieffFJqG01J1q5dW+rxuuSSSwDo3LlzqUmrvKyEEsF27IBZs7QEcqQkcf31uv3sot0pjAkTcXFx9OrVi/vvv59JkyYd/CEvSXx8PAUFBQCHjZ846qijSn2uc462bduSkZFBRkYGK1euZO7cucVue6TutIMGDWL27NnUrFmTP/7xj8yfP7/Y7UqLqehr+G8Xvj8Ysxj4qxTj4uIqpX3JEkoEe+klOHCg9Oouvz59oEkTq/Yy4Wnt2rWsX7/+4O2MjAxOOOEEWrVqxZYtW9iwYQMAL774ImeeeSagS12kp6cDlJp8zj77bP71r38d/AH9+eefadWqFdu3b+ezzz4DdOqZrKysw57bvXt3pk+fDsDLL79c7P43bdpEixYtuO222+jfvz8rVqygdu3a/PrrrwG//y+++ILNmzdTUFDAjBkz6NGjBwCNGjVizZo1FBQU8NZbbx3cvqT9l3a8QsESSoRyTrsIn3oqtG9/5O3j4uCaa2DuXG1zMSac7N69myFDhtCmTRuSk5NZvXo148aNo0aNGjz33HNceumltG/fnipVqnDTTTcBcN999zF8+HBSU1OJi4srcd/XX389TZs2JTk5mQ4dOvDKK69QrVo1Zs6cyahRo+jQoQMpKSnF9rp68sknmTx5Mu3bt+fbb4sOv1OvvfYa7dq1IyUlhVWrVnHVVVfRoEEDunfvTrt27Rg5cuQR3/+pp57KsGHDaN26Nc2bN+fiiy8GYMKECZx//vl069btkCq5gQMH8uijj9KxY0c2btx48P7SjlcoiA4XCR+pqanOFtg6spUrITkZpkyBQL8vW7ZA8+bajlJMVbCJYWvWrKF169Zeh2E8Vtz3QETSnXOpgTzfSigRyl9N269f4M9p1kzHpCxYUCkhGWNinCWUCLVgAZx4oraLlEXv3vDJJ5CbWzlxGWNilyWUCFRQAIsWQa9eZX9ur17w229gtYrGmGCzhBKBMjNh587yJRR/hw+r9jLGBJsllAi0cKFelyehJCZqrzD/PowxJlgsoUSgBQvgpJMgKal8z+/VS6ezP3AgqGEZY2KcJZQIk5+v7Se9e5d/H717w549sGxZ8OIypiJ27NhBSkoKKSkpHHvssRx//PEHbx+opDOf5cuX88EHHwS0bY8ePcjwzZjZt2/fUgctTpw4sdRR7ddccw1r164lLy+PunXrVijmt9566+BcYeHA5vKKMBkZugJjeaq7/Hr21OsFC6B796CEZUyFNGjQ4OAP9rhx40hISGDEiBEBPz8/P7/UwY3FWb58OatWreLcc88t0/PmzJlT6uMTJ07k2muvpUaNGsXG+ZxvvYnyTH1SNGb/AMhwYQklwlSk/cSvQQMdFLlwoS4bbMwhvJi/vhQXXHAB3333Hfv27eP222/n+uuvJy8vj8TERK6++mrmz5/Pv/71L7Zv387IkSNJSEigW7dubN26lVmzZrF7926GDRvG6tWryc3NPbh2yPjx49m7dy8LFy5kzJgxh0zGuGfPHoYMGcKqVato06bNISWOpKQkVq1aRVxcHH/+85/57rvvyM/PZ9y4cWzdupUff/yRM844g0aNGvHBBx8cFufIkSOZNGkS7XxrSdx222189NFHNG7cmOnTp9OgQQN69OjBpEmTSElJYdu2bfTo0YOVK1ceFvMvv/zCqlWreOKJJ9i8eTPXXnstO3bsoFGjRjz33HMkJSVxxRVX0KBBA5YtW8a2bdv45z//WWmJyKq8IsyCBXDyydC4ccX207u3tqPs3x+cuIypLM8//zzp6eksW7aMiRMnsnPnTgBycnLo2bMnK1asoEOHDtxyyy3MnTuXtLQ0tm3bdvD548eP59xzz+WLL75g/vz53HnnnYgIY8eOZfDgwWRkZBw2s++kSZOoV68ea9asYcyYMXz55ZeHxfXee+/RrFkzMjMzD85cfPvtt3PMMcewePHigysoFo7z9NNPP2QfOTk5dO/enaysLE4//XQeeOCBEo9DzZo1S435lltu4frrr2fFihVceumlh8zI/OOPP7JkyRJmzZrF3XffHeCRLzsroUSQvDxYvBgGDqz4vnr1giefhC++gDPOqPj+TBTxYv76Ujz++OPM9k2TnZ2dfXDhqmrVqh080169ejWtWrXihBNOAHQK+BdeeAGAuXPn8v777zNhwgRAZ+395ggT2i1atIi77roLgI4dO9K2bdvDtklOTmb06NGMHj2aCy64gO4l1B8XjrOo+Ph4Lr1U1yC84oorGDRoUKlxlWbp0qW88847AFx11VXce++9Bx+76KKLEBGSk5NLnJMsGKyEEkG+/BJ27apYg7xfz566mqONRzHhbN68eSxatIjPP/+czMxMkpOTD1Y/1axZ84hTy4NOVT9r1qyDU9V/8803B9cLqYjWrVuTlpZG27ZtGT16NA8//HCx2wUaJ/w+XX1pU/OXR/VC61tU5vyNllAiyKJFeh2M2ajr19d2FP8+jQlHOTk51K9fn5o1a5KVlcWyEromtmnThrVr17J161acc8yYMePgY3379uWpp546eNtffVXaFPM9e/bklVdeASAzM7PYqe2//fZbEhISuPLKK7nzzjtZvnz5EfdbVF5e3sGFrl555ZWD09YXnpq/8Nr1pe27a9euvPbaawC89NJL9PT3vgkhSygRJC0NmjaFElYiLbOuXXWfYTbhtDEH9evXjz179tCmTRvGjBnDaaedVux2tWrVYtKkSfTp04fU1FTq1q1LnTp1AJ3m/rfffqN9+/a0bduWcePGAXDWWWeRmZlJx44dD/nRBhg2bBg7duygdevWPPDAA3Ts2PGw18zMzOTUU08lJSWFhx9+mHvuuQeAoUOH0qdPH/r06XPE91enTh0WL15M27Zt+eSTTxjj6yUzcuRInnzySTp16nSwzehIMU+ePJmpU6eSnJzMjBkzePzxx4/4+sFm09dHkJYttVRxhIXsAvbss3DDDbB+vQ6UNLErGqav3717NwkJCTjnuPHGG2nfvj233nqr12FFFJu+Pkbs3AkbNkBqQB9rYPz7svxtosGUKVNISUmhTZs27N27lxtuuMHrkGKO9fKKEL7q2aAmlLZtdS36tLTg9BwzxksjR44MaHVEU3mshBIh/KWIzp2Dt8+qVXW8mZVQDFRu7x8T/oLx+VtCiRBpadCihfbOCqbUVEhP1zVWTOyqUaMGO3bssKQSo5xz7Nixo9jpYsrCqrwiRFoadOkS/P2mpsLkybBuHZxySvD3byJDUlIS2dnZbN++3etQjEdq1KhBUnmnMPexhBIBfvoJtmyBm28O/r79VWhpaZZQYlnVqlVp3ry512GYCGdVXhHAN74pqA3yfq1bQ82a1o5ijKm4gBKKiJwrImtFZIOIjC7m8eoiMsP3+FIRaVbosWQR+UxEskRkpYhUrJIuBvkTSqdOwd93fDx07Pj7axhjTHkdMaGISBwwGTgPaANcLiJtimx2HbDTOXcS8DjwiO+58cBLwE3OubZALyA3aNHHiLQ0HdRYxrV4Apaaqt2S8/MrZ//GmNgQSAmlC7DBObfJOXcAmA70L7JNf+B5398zgT+IznJ2DrDCOZcJ4Jzb4Zyzn60ySkurnOouv9RUXcHxq68q7zWMMdEvkIRyPLC10O1s333FbuOcywNygAbAyYATkTkislxE7iruBURkqIikiUia9TI51A8/wNatlZ9QwNpRjDEVU9mN8vFAD2Cw7/piEflD0Y2cc1Odc6nOudSGDRtWckiRpTIb5P1OPhkSEiyhGGMqJpCE8i3QpNDtJN99xW7jazepA+xASzOLnHM/Oef2AO8BldC0HL3S0nTdkmImOw2auDht8LeEYoypiEASyjKgpYg0F5FqwEBgdpFtZgNDfH8PAOY7HXI7B2gvIrV8ieZMYHVwQo8NaWnQqhXUrl25r5OaqsuI5+VV7usYY6LXEROKr01kGJoc1gCvOeeyRGS8iFzo22wa0EBENgB3AKN9z90JTESTUgaw3Dn3bvDfRvTKyKic7sJFdewI+/bB2rWV/1rGmOgU0Eh559x7aHVV4fvGFvp7H3BpCc99Ce06bMro55+1Qb5Dh8p/Lf9rZGbqLMTGGFNWNlI+jK1YodehSCinnALVqmlCMcaY8rCEEsYyMvQ6JaXyX6tqVS2Z+F/TGGPKyhJKGMvMhEaN9BIKHTpYCcUYU36WUMJYZmZoqrv8OnTQgZTbtoXuNY0x0cMSSpjKzYWsrNBUd/n5X8tKKcaY8rCEEqa++goOHAh9CQUsoRhjyscSSpjy/6iHMqHUqwdNmlhCMcaUjyWUMJWRAdWr6yj5UEpJsZ5expjysYQSpjIzoV07XQArlDp00NHy+/aF9nWNMZHPEkoYci70Pbz8OnTQhbayskL/2saYyGYJJQxt2wbbt4e2h5ef9fQyxpSXJZQw5G/D8KKE0qKFro1i7SjGmLKyhBKG/KWD5OTQv3aVKtC+vZVQjDFlZwklDGVmQrNmULeuN6+fkqIxOOfN6xtjIpMllDCUkeFNdZdfhw6QkwNff+1dDMaYyGMJJczs3Qvr1nmfUMCqvYwxZWMJJcysWgUFBd708PJr317XsbeEYowpC0soYcbLHl5+Rx0FLVtaTy9jTNlYQgkzmZlQu7Y2ynvJ1kYxxpSVJZQwk5mp3YWrePzJdOgAmzbBrl3exmGMiRyWUMJIQYEmFC/bT/z8MfjXtTfGmCOxhBJGtmyBX3/1tv3Ez3p6GWPKyhJKGPFiDZSSHH881K9vCcUYEzhLKGEkM1PbTtq18zoS7TZsDfPGmLKwhBJGMjK0u26tWl5Hojp0gJUrdTp7Y4w5EksoYSRcGuT9UlJ05P769V5HYoyJBJZQwsQvv2ijfDi0n/hZw7wxpiwsoYQJf/fccEoorVvrEsQ2Yt4YE4iAEoqInCsia0Vkg4iMLubx6iIyw/f4UhFpVuTxpiKyW0RGBCfs6BNOPbz8qlfXpGIlFGNMII6YUEQkDpgMnAe0AS4XkTZFNrsO2OmcOwl4HHikyOMTgfcrHm70ysyExERo3NjrSA7lXxvFGGOOJD6AbboAG5xzmwBEZDrQH1hdaJv+wDjf3zOBSSIizjknIhcBm4HfghZ1FPKvgSLidSSH6tABXnxR17hv2NDraExA9u2DtWth61a95OTomUqTJnDCCdC8efh90UxUCCShHA9sLXQ7GzitpG2cc3kikgM0EJF9wCjgbKDE6i4RGQoMBWjatGnAwUeLvDydtv4vf/E6ksMVbpjv08fbWEwp9u6FDz6A11+Ht9+G3btL3rZFC/jzn/WSkmLJxQRNZTfKjwMed86V8u0G59xU51yqcy61YQyeBq9bB/v3h1f7iZ/19Apz+/fD449DUhJccgnMnQuDBsGMGfD555Cdrcll3Tr46COYMkUHOz36KHTqBF27wqJFXr8LEyUCKaF8CzQpdDvJd19x22SLSDxQB9iBlmQGiMg/gLpAgYjsc85NqnDkUeTLL/U6nMag+DVsqLUl/hhNmHAOpk+He+7R/ubnnAN33glnnaVd84pq2VIvZ50FN90EP/0Er70GDz8MZ54JF1wAjzyivTCMKadASijLgJYi0lxEqgEDgdlFtpkNDPH9PQCY79QZzrlmzrlmwBPAw5ZMDpeeDjVqQJuiXR3CROfOGqMJEz//DBddpCWROnVgzhy9nHNO8cmkOImJcMstWnL5+9/h44/1jObppzVZGVMOR0wozrk8YBgwB1gDvOacyxKR8SJyoW+zaWibyQbgDuCwrsWmZOnpWrUU6G9BqHXurG28v/7qdSSGzz6Djh3h/fdh4kRYvlwTSXnVqgWjR+t0CH36aEPepZfqSFtjyiignzDn3HvAe0XuG1vo733ApUfYx7hyxBf1Cgq0OunKK72OpGSdO+tJa2Ym9OjhdTQxbMoUuO027a21ZAmcemrw9n3MMdqYP3Ei3H23Jqp337UqMFMmNlLeYxs26Jl/p05eR1Iyf2xW7eUR52DcOK2iOu88PQMJZjLxq1IFRoyAxYu119gZZ8AXXwT/dUzUsoTiMf+PdOfO3sZRmsaN4dhjLaF4Ij8fhg2D+++Ha6+FN9/UdpPK1LWrloDq1NFG/A8/rNzXM1HDEorH0tN1ipO2bb2OpHTWMO+B/Hy46iptKL/rLnj22dA1tLVooUnlpJOgXz+YNSs0r2simiUUjy1fDsnJULWq15GUrnNn+Oor+M3mOwgN5+Dmm+GVV7Rr7yOPhH4A4rHHwsKF+uFfdhnMmxfa1zcRxxKKh5zThBLO1V1+nTtrBwIb4BgCzmmJ5N//hr/9TRvJvVK3Lrz3HrRqpV2VP/vMu1hM2LOE4qGNG3WapUhJKGDVXiHx97/DY49pF94HHvA6GqhXT0fgH3cc/PGPdlZhSmQJxUOR0CDv17gxNGpkCaXSvfCClkquuAL+7//CZ56tY4/VKq+EBE0q3xadLMMYSyieSk+HatXCv0Ee9HetUydLKJXqk0/g+uu1Z9V//qPdeMPJCSdo9deuXXDhhdagZg4TZt/Y2LJ8ObRvr0klEnTuDKtXw549XkcShTZtgosv1qnlZ84M314a7dvrHGIZGdoDraDA64hMGLGE4pFIapD38zfM+5crNkGSk6OTM+bnwzvvaJtFOOvXD/75Tx0TM2aM19GYMGIJxSObN8POnZGXUMCqvYKqoEDn3Vm3Dt54Q2cEjgTDh8PQodqB4PXXvY7GhAlLKB6JpAZ5v6Qknc7eEkoQTZjw+xxavXt7HU3gROCpp+D00+Gaa2DNGq8jMmHAEopH0tO1mrxdO68jCZyIjZgPqrlztcpo0CCdXiXSVKumpZOjjtL2n127vI7IeMwSikf8s5BXr+51JGVz2mm6XLFNZV9BW7bA5ZdrF7+pU8One3BZHX+8rg65YYOWVGwtlZhmCcUDubk6iWu3bl5HUnbdumm1/9KlXkcSwQ4c0PXc8/K0Yfuoo7yOqGJ69dKpYd58U5cjNjHLEooHMjJg3z7o3t3rSMqua1c9mf70U68jiWCjRsGyZfDcc5HTCH8kd9yh1V6jRtnZRgyzhOIB/49xJJZQjj5ahyJYQimnWbPgiSd0oaxLLvE6muARgWnTtOfGZZdpF0YTcyyheODTT3XQcePGXkdSPt26aRuQjWkroy1btJ2hc2f4xz+8jib46tXT9pTvvrP2lBhlCSXEnNNlJiKxdOLXrZt26MnK8jqSCJKbCwMHahZ+7bXI640RqC5dNFn+7386F5mJKZZQQmzrVp1XL9ITCli1V5mMGaNtC9Om6eJV0Wz4cJ3r6667dLliEzMsoYSY/0c4Ehvk/Vq00JmHLaEEaO5cPWu/8UYYMMDraCqfiE5uecwx2p5ifcxjhiWUEPv0U+0l2r6915GUn4iWUiyhBGDbNp1apV272OpS26ABvPyyLvoTiYM2TblYQgmxJUt0cGColgavLN266Vi2H37wOpIwVlCgM/L++qvO0FuzptcRhVbPnjB2rK7x8uKLXkdjQsASSgjt3q2L3UVy+4mf/z3YirCleOwx+PBD7SYcCYveVIYxY+DMM+GWW2D9eq+jMZXMEkoILVumM5RHQ0Lp1EmncrJqrxIsXaorL156Kdxwg9fReCcuDl56Sb8sAwfC/v1eR2QqkSWUEPL/+J5+urdxBEONGpCaagmlWL/8oj+exx8f2fN0BUtSks4KsHw53H2319GYSmQJJYQ+/VRrPurW9TqS4OjWDdLS7KTzEM5pb66tW+HVV6Pnw66oCy+EW2/Vjgnvvut1NKaSWEIJkdxcWLwYevTwOpLg6dFDk8nnn3sdSRiZNk0HLj74YHQURYPpH/+AlBQYMkQHY5moE1BCEZFzRWStiGwQkdHFPF5dRGb4Hl8qIs18958tIukistJ3fVZww48cn3+unX3OOcfrSIKnd2/trTZnjteRhImVK/UsvE8fHdRnDlWjhvZ227dP14DJy/M6IhNkR0woIhIHTAbOA9oAl4tImyKbXQfsdM6dBDwOPOK7/yfgAudce2AIELN9B+fM0fbJP/zB60iC5+ij9STcEgrahe/Pf9YqrpdegipW+C9Wq1bwzDOwaBHcf7/X0ZggC+Rb3wXY4Jzb5Jw7AEwH+hfZpj/wvO/vmcAfREScc186577z3Z8F1BSRKJ3EqHRz5+rU73XqeB1JcPXtq22t27d7HYnH/vIXWLtWB/M1auR1NOHtiivg2mvhoYdg3jyvozFBFEhCOR7YWuh2tu++YrdxzuUBOUCDItv8CVjunDusCVdEhopImoikbY/CX6afftLG62iq7vLzv6cPP/Q2Dk/99786eG/sWDgrZmt1y+app6BNGxg8GL7/3utoTJCEpFwuIm3RarAbi3vcOTfVOZfqnEtt2LBhKEIKqXnztPNP375eRxJ8nTrpLBsxW+21YoUO2uvVC+691+toIketWtp5Yfdu7WJt7SlRIZCE8i3QpNDtJN99xW4jIvFAHWCH73YS8BZwlXNuY0UDjkRz5+pSEampXkcSfHFx2gY9d24MLn+RkwN/+pO2m7z6qh4ME7g2bXSczqJFcM89XkdjgiCQhLIMaCkizUWkGjAQmF1km9nZ9NAgAAAQpklEQVRoozvAAGC+c86JSF3gXWC0c25JsIKOJM7p2XufPtH7e9O3r86BuHKl15GEkHNw9dWwebOeaR97rNcRRabBg7WE9+ijuia9iWhHTCi+NpFhwBxgDfCacy5LRMaLyIW+zaYBDURkA3AH4O9aPAw4CRgrIhm+yzFBfxdhLCtLF7CLxuouP387SkxVez32mC7n++ij0TW4yAsTJ+rCXFdfDevWeR2NqQBxYVZPkZqa6tLS0rwOI2j++U8YMQK++QaaNDny9pGqXTs9SY+JTjvz5sG558LFF2vpJNanVgmGb77RBrlGjXTQVu3aXkdkfEQk3TkXUIW9dZavZHPnQuvW0Z1MQEtgixfDnj1eR1LJNm7U8SannKKLSFkyCY6mTTU5r12r68cUFHgdkSkHSyiVaO9ebW+M5uouv7594cABWLjQ60gq0a+/Qv/+mkRmz7az6GA76yyd6+t//4P77vM6GlMOllAq0bvv6iwT/fp5HUnlO+MM/X194w2vI6kkBQV65vzVV3omHe3rwntl2DAd9Pjgg/D6615HY8rIEkolevllbVfo3dvrSCpfzZrapDBzpibRqHPPPXrmPHFidM2fE25E4OmndSrrIUPgiy+8jsiUgSWUSrJzJ7z3no7ZitbuwkUNHgy7dun7jirPPAOPPAI33aSTP5rKVb06vPWWno1dcIF2zTYRwRJKJXnjDW1TGDTI60hC56yz4JhjtGQWNd55R+fp6tdPpwuxRvjQOOYYeP99XffhvPPg55+9jsgEwBJKJXnlFWjZMjpHx5ckPl5LZO++q4sWRrz0dLjsMl3DY/p0fYMmdFq10mrGzZu1M0RU1qVGF0soleDbb7W306BBsXdCO2iQLroV8YOeV6/WsSYNG2opJSHB64hi0xlnwPPPwyefaHft3FyvIzKlsIRSCaZP15k5Yqm6y69LFzjxRC2hRaxNm+Dss7VE8uGHcNxxXkcU2wYOhMmT4e234aqrID/f64hMCSyhVIKXX9aqrpNP9jqS0BPRRDp/vk45E3Gys7UX1759mkxatvQ6IgM639cjj+jZ2o032sDHMGUJJcjWrIEvv9QeT7Fq8GAtoc2Y4XUkZeRPJjt26MRk7dp5HZEp7K67YMwYmDZNx6tYUgk7llCC7JlntKbkssu8jsQ7rVrBqafqsYiY2olNm7S+/vvvtXdRLPWmiCTjx2timTIFrrsugr5gscESShD9+CP8+986oDrWq91HjtSJY996y+tIAvDVV9Czpw6imT8funf3OiJTEhGYMAHGjdOVMgcPtob6MGIJJYiefFKr3keN8joS711yibYhPfxwmC+8lZYGZ56pP0oLF1rJJBKI6Fxfjz6q9aoXX6wrPxrPWUIJkpwcmDQJBgzQKp9YFxcHo0dre1LYrpPy1ltaMqlVS2fxbN/e64hMWYwYofWq77+vn+O3RReSNaFmCSVInn5aa0zuvtvrSMLH4MGQlKSllLDinC6Q9ac/QXKyrr9hZwGR6cYbdZzQ+vVw2mmQkeF1RDHNEkoQ7Nmjs26fey507Oh1NOGjWjVtS1m8WC9h4bffdGXAkSO1OLlggS7qZCLXeefpwEcRXT0zogdBRTZLKEHw7LOwfbtOSGsOdf31kJgIDz3kdSTo6PcuXeDFF7VRd/p0nSbZRL4OHXRm4o4dtWh84402VYsHLKFU0Lffavtgr17a69QcqlYtLQzMmePhWinOwXPPaV/mn37SZTTvuw+q2Nc/qhx3nJY4R42CqVOha1cdGGZCxv6jKsA5uOEGnbtq6lSvowlft9+uy4XffLOW5EJq61adKfjaazWhfPkl9OkT4iBMyMTHa7fid97RgaopKfD3v0NenteRxQRLKBXwn/9oB5MJE2yGjtJUrarz++XkaFIJSTfiggLN8m3bwscfa5/u+fOhceMQvLjxXL9+kJWl66ncc4+WVqzBvtJZQimnb77RM+9evXQWCFO6du3g/vu12qvSp2T5+GMdT3LjjXq9ciXcdptVccWaRo10CdHXX9d/2E6dtErhhx+8jixq2X9YORw4oB2FnNNSiv1OBWbECO3Z+Ze/wJYtlfACWVnaFbhXL20reeUV+OgjW/891g0YAGvXwvDhOrr+pJO0l8iuXV5HFnXsp7CMDhzQZRkWLNAF/Jo39zqiyBEfr1VfBQXQu3cQk0p6ug7Nb9dOG9wffFB/QC6/PPYWpDHFq1dP+/ZnZenSomPGwAknaOcMWw0yaCyhlIE/mfzvf5pMrr7a64giT6tWOiv8L79UMKkcOKB1Z717a7XWggUwdqzu8G9/s+7Apngnn6z/wMuW6Xdn/Hho2hRuukk7bJgKsYQSoD17Dk0m1m5SfqmpMG+eJpVevWDDhgCf6JzOvTVyJDRpogsvbdmi62R8/bU20jRoUImRm6iRmqrLiq5cqf/YL7ygbSynnabTXlg7S7mIC7OZ+1JTU11aWprXYRxi3jwYOlSXtp40SdsATMWlp+vCiPv3wwMPaLv5Ycu2HzgAn36q3elef10/hPh47cVz8826A2vEMhW1c6cOeJ06VavFqlTRSUMvvhj69tVunDFafSoi6c65gGZNtYRSim3bdG6u//5XS8r//rfOQWeCJztbF+N7+209aZzy+D5SJV2TyOLFWpW1e7cmkT/8Qc8mL7oI6tf3OnQTjZzThPL661qlunat3t+smZ68dOumlxhKMEFPKCJyLvAkEAc865ybUOTx6sALQGdgB3CZc26L77G7geuAfOA251ypc896nVDy87Vd99//1h8553Q9n7FjoUYNz8KKPvn52pVz/Xrcqiy2zF7BriUraJ23kmro+hYFLU6iSt+z4ZxztCH16KM9DtrEnI0b9Qdhzhxd3iAnR+9v0EAHTSYn6yzVrVtrkqlfP+oSTVATiojEAeuAs4FsYBlwuXNudaFtbgGSnXM3ichA4GLn3GUi0gZ4FegCNAbmASc750pcZi2UCaWgQBfo27BBJ5xdskRPjHfsgIYNYcgQreqyQYtlsG+fVh/88ot23f3xR718/70WR7Zu1USyefOhCyMdeyy5bZLJlI68sP50ZnzTlZzqjTj1VF3vqnt3/Z9t2lQnnTQm5AoKdCqXzz6DpUshMxNWrYK9e3/fpm5d7frZpIlekpJ0PMwxx+ilfn3dpm5dXeMhAgQ7oZwOjHPO9fXdvhvAOff3QtvM8W3zmYjEA9uAhsDowtsW3q6k16tIQtm+9mcyH36X/HwOXnJz4UAuHNgP+/bDb7t1wtldu/T3LrfQjAzHHavJI7kDdO5UTH1+ZSrtcyj82JH+Lnxd9FJQ8Pt14UvhA5afr9NU5OXpwfNf9u/Xy759etm7V3sq7NkDv/76+2X//uLfQ5UqOtdSUpL+o514oh7sE0+ENm30n63QW1m6VGsdliyB5ct/zz1VqugujjtO/zfr14c6dbRTl/9Stape4uP1fzYuTp8ncvjFr6S/jSmNFOST8MNGjt62jto/bODoH9aTsH0ztXZmU2vHVqrv+aXE5+bWSCC3Rm1ya9Qmr0YCedVqkV+tJvlVa5JftQb5VatTULUG+fHVcHFVKfBdXJU4CuLicVXicBKn11XicFIFqlTBSRWcCPivq1al69Tryv8ey5BQAvnJPB7YWuh2NnBaSds45/JEJAdo4Lv/8yLPPb6YgIcCQwGaNm0aSNzF+in9a/q8cFW5n8823yVcplr3ioj+GletqsWBqlWhevVDL7VqQe3amghq1/79Ureu9vmvV0+nGfafmSUmBpyhRXSmjK5d9fbevZpU1q/Xgs3mzdoJZ/t2reLOydFt9u4N89UhTRSKA072XQ5Xi99oyHaO4Uca8QP12HnwcvS+XdTe9ytHs4sEdlOTvdTkV2rxA9XZT3X2U5P9VOMAVck9eB1PiRU8xdpDTahAQimLUJ6Dl8g5NxWYClpCKe9+TrqwDT99voH4eA5eqlWLoE5ApZ0aB3I67f+78LX/UvgUvfApu/9v/6m8/3YYqVnz92qv0jinncJyc38vYOXnH1oYK1xgK/y84v42puKO8l2alfmZBcBe3+UQ/lqG/HykIP/368L383uthAicUNG3EaBAEsq3QJNCt5N89xW3TbavyqsO2jgfyHODpmpCdRJPO7Gydm/CnMjvBShjopegJaPwa4MJ5FR0GdBSRJqLSDVgIDC7yDazgSG+vwcA8502zswGBopIdRFpDrQEvghO6MYYY8LJEUsovjaRYcAcNCX+xzmXJSLjgTTn3GxgGvCiiGwAfkaTDr7tXgNWA3nAX0rr4WWMMSZy2cBGY4wxJSpLL6/wan01xhgTsSyhGGOMCYqwq/ISke3A1xXcTSLwUxDCiWR2DJQdBzsGfnYcyncMTnDONQxkw7BLKMEgImmB1vlFKzsGyo6DHQM/Ow6VfwysyssYY0xQWEIxxhgTFNGaUKZ6HUAYsGOg7DjYMfCz41DJxyAq21CMMcaEXrSWUIwxxoSYJRRjjDFBEVUJRUTOFZG1IrJBREZ7HU+oiEgTEVkgIqtFJEtEhvvury8iH4rIet91Pa9jrWwiEiciX4rIO77bzUVkqe87McM3wWlUE5G6IjJTRL4SkTUicnqsfRdE5Hbf/8IqEXlVRGrEwndBRP4jIj+KyKpC9xX72Yv6P9/xWCEinSr6+lGTUHxLFU8GzgPaAJf7liCOBXnAnc65NkBX4C++9z4a+Mg51xL4yHc72g0H1hS6/QjwuHPuJGAnEJqVhrz1JPCBc+4UoAN6PGLmuyAixwO3AanOuXbopLYDiY3vwn+Bc4vcV9Jnfx46A3xLdIHDKRV98ahJKOi69Rucc5uccweA6UB/j2MKCefc98655b6/f0V/QI5H3//zvs2eBy7yJsLQEJEkoB/wrO+2AGcBM32bxMIxqAP0RGcAxzl3wDn3CzH2XUBnUq/pW5+pFvA9MfBdcM4tQmd8L6ykz74/8IJTnwN1ReS4irx+NCWU4pYqPmy54WgnIs2AjsBSoJFz7nvfQ9uARh6FFSpPAHehi92BLkP9i3Muz3c7Fr4TzYHtwHO+qr9nReQoYui74Jz7FngM+AZNJDlAOrH3XfAr6bMP+m9mNCWUmCciCcAbwF+dc7sKP+Zb8Cxq+4iLyPnAj865dK9j8Vg80AmY4pzrCPxGkeqtGPgu1EPPvpsDjdE1eItWA8Wkyv7soymhhHS54XAjIlXRZPKyc+5N390/+IuwvusfvYovBLoDF4rIFrS68yy0LaGur9oDYuM7kQ1kO+eW+m7PRBNMLH0X+gCbnXPbnXO5wJvo9yPWvgt+JX32Qf/NjKaEEshSxVHJ11YwDVjjnJtY6KHCSzMPAf4X6thCxTl3t3MuyTnXDP3s5zvnBgML0GWpIcqPAYBzbhuwVURa+e76A7piasx8F9Cqrq4iUsv3v+E/BjH1XSikpM9+NnCVr7dXVyCnUNVYuUTVSHkR+SNaj+5fqvghj0MKCRHpASwGVvJ7+8E9aDvKa0BTdEmAPzvnijbYRR0R6QWMcM6dLyIt0BJLfeBL4Arn3H4v46tsIpKCdkyoBmwCrkFPHmPmuyAi9wOXoT0gvwSuR9sHovq7ICKvAr3Qaep/AO4DZlHMZ+9LtpPQ6sA9wDXOuQotlxtVCcUYY4x3oqnKyxhjjIcsoRhjjAkKSyjGGGOCwhKKMcaYoLCEYowxJigsoRhjjAkKSyjGGGOC4v8B1ZcTbJpyYBQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcHHWd//HXp3tyEBIIEAyBAANyLSSAIcrNAkFBwI0/UeRQoiL3fSyni6DLobIQlgU0giy3CAgIcqywIAgkmhCW+wwEEo4EDHckycz398enerpn0pPpmenqb1f3+/l49KNTXTVVHzrMp9+p/lZ9LYSAiIjUXi52ASIizUoNWEQkEjVgEZFI1IBFRCJRAxYRiUQNWEQkEjVgkSZhZtub2Qux65AiNWBpema2n5lNN7OPzewtM7vbzLbr5z5fM7NdqlVjBccLZrbesrYJITwcQtiwj/t/zcwWmdmILq/PTI7d2pf9Njs1YGlqZnY8MBk4BxgJrAVcCkyMWVe1mVlLFXbzKrBvyT7HAkOqsN+mpQYsTcvMVgR+AhwRQvh9COGTEMLiEMIdIYR/TbYZZGaTzezN5DHZzAYl60aY2Z1m9r6Z/d3MHjaznJldgzfyO5JUfVKZY+9oZnPM7CQzm5ck76+b2e5m9mKyv9NKtv+SmT2WHOstM/svMxuYrHso2ez/kuN9u2T/J5vZ28CVhdeSn/l8coxxyfLqZjbfzHZcxlt2DXBAyfIk4Oo+vfkCqAFLc9saGAzcuoxtTge2AjYHNgO+BPwoWXcCMAdYFU/PpwEhhPBd4HXgayGEoSGEn3ez79WS468BnAH8GvgOsAWwPfBvZrZOsm0bcBwwIql7AnA4fsAdkm02S453Y8n+VwbWBg4uPXAI4RXgZOBaMxsCXAlcFUJ4cBnvxVRgBTP7JzPLA/sA1y5je+mBGrA0s1WAd0MIS5axzf7AT0II80II84GzgO8m6xYDo4C1k+T8cOjdzVUWA2eHEBYDv8Wb60UhhI9CCM8Az+JNnxDCjBDC1BDCkhDCa8CvgH/uYf/twI9DCJ+FEBZ2XRlC+DXwMjAt+e84vYKaCyn4y8BzwNwKfka6oQYszew9YEQP50dXB2aXLM9OXgP4Bd7A/sfMZpnZKb09fgihLflzoUG+U7J+ITAUwMw2SE53vG1mH+LnrDt9IVbG/BDCP3rY5tfAGODiEMJnFdR8DbAf8D10+qHf1IClmT0GfAZ8fRnbvIn/E75greQ1kqR6QghhXeBfgOPNbEKyXbVvM3gZ8DywfghhBfx0h/XwM8uswcyG4l9AXgGcaWYr91RECGE2/mXc7sDvK6hblkENWJpWCOED/NzrJckXYEPMbICZfdXMCudtbwB+ZGarJkOwziA572lme5rZemZmwAf4edr25OfeAdatYrnDgA+Bj81sI+CwLuv7cryLgOkhhB8CfwR+WeHPHQjsHEL4pJfHky7UgKWphRD+Azge/2JtPvAGcCRwW7LJvwPTgSeBp4DHk9cA1gfuAz7G0/SlIYQHknXn4o37fTM7sQqlnoj/0/8j/LTBjV3WnwlclRxv7552ZmYTgd0oNvLjgXFmtn9PPxtCeCWEML0XtUs3TDdkFxGJQwlYRCQSNWARkUjUgEVEIlEDFhGJpBo36JAGMGLEiNDa2hq7DJFMmTFjxrshhFX7+vNqwAJAa2sr06drZJFIb5jZ7J636p5OQYiIRKIGLNJMPvgAHn0UZs8GXQMQnRqwSKMLAW66CcaMgeHDYdttobUVPvc5OOUU+Oij2BU2LTVgkUb29tswYQLsvTfk83D22XD77XDppbDTTvCzn8GGG8K998autCnpSziRRjVnjjffOXPgkkvgkEO8CRccdhhMmwYHHQRf+xrccAPstVe8epuQErBII5o7F7bf3hPw//wPHH545+ZbsOWW8PDD8MUvekq+6aba19rE1IBFGs3ixd5M330X7r/fz/kuy4or+imIrbeGSZPg6adrU6eoAYs0nJNO8pEOV1wB48dX9jNDh8LNN3sz3msv+PDDdGsUQA1YpLHceSdMngxHH+0puDdWWw1uvBFeeQWOOCKd+qQTNWCRRvHxx36ud8wY+MUv+raPHXaA006Da6+FP/2puvXJUtSARRrFmWfCG2/Ar34FAwf2fT+nnQbrr+/N/B89zekp/aEGLNIInnzSTz0cdBBss03/9jV4sI8TfvllOPfc6tQnZakBizSCk06CFVaA886rzv522QW+/W0/lfHmm9XZpyxFDVgk6x54wIeRnXYarNzjzPKVO+ccWLIEfvKT6u1TOlEDFsmyEPx+DqNHw5FHVnff667rV89dfjm8+GJ19y2AGrBItt16K/z1r3DWWX7uttp+9CPf77/9W/X3LWrAIpkVAvz7v/uIhQMOSOcYI0fCscf6JcrPPZfOMZqYGrBIVt19N8ycCaeeCi0p3lfr2GNhueWq9wWfdFADFsmiQvpday34znfSPdaIEXDwwXDddTBrVrrHajJqwCJZ9Oc/w2OP+fCzAQPSP96JJ/rd1H7+8/SP1UTUgEWy6Oc/9xktfvCD2hxvjTX8Tmn//d8wb15tjtkE1IBFsubZZ/3875FH+rnZWjn+ePjsM79KTqpCDVgkayZP9qFhhx5a2+NutBHssYc34IULa3vsBqUGLJIl8+bB1Vf7sLNVV6398U84AebP9y/kpN/UgEWy5Je/9NMAxx0X5/g77gibbw4XXKBp7atADVgkKxYtgssug69+1U8HxGDmzf+553y6I+kXNWCRrLj5Zp9k86ij4tbx7W/76Y+LL45bRwNQAxbJiosv9suOd901bh2DBvmFGXfcAa++GreWjFMDFsmC6dNh6lQfeparg1/bww7zOjQkrV/q4G9SRHp08cU+c/H3vhe7ErfGGj578uWXw6efxq4ms9SARerdu+/6bMUHHOCzXtSLI4+E99+HG26IXUlmqQGL1LsrrvChZ4cfHruSzrbbDsaOhUsu0ZC0PlIDFqlnbW0+9GzHHWGTTWJX05mZfyjMnOnnp6XX1IBF6tldd8Hs2XDEEbErKe873/HTIv/1X7ErySQ1YJF6dsklsPrqMHFi7ErKGzrU75J2003wzjuxq8kcNWCRevXSSz7b8SGH1Oaev311+OGweLGPiJBeUQMWqVeXXeZTDR10UOxKlm2jjWDCBPjVr3wae6mYGrBIPfr0U7jySh9rO2pU7Gp6dsQR8MYbcOedsSvJFDVgkXp0/fU+xrZev3zr6mtfgzXX9HPWUjE1YJF6E4I3srFjfaxtFrS0+A3i77sPnn8+djWZoQYsUm8eeQSeeMKvNDOLXU3lfvhDGDhQQ9J6QQ1YpN5cfDEMHw777x+7kt753Odgn33gqqvgww9jV5MJasAi9WTuXLjlFjjwQFh++djV9N5RR8HHH/vsydIjNWCRevLLX0J7e/3d96FS48fDllv6aYj29tjV1D01YJF68Y9/+FjaPfeEddeNXU3fHXWUX0Ryzz2xK6l7asAi9eK663zG4WOPjV1J/3zrWz52+cILY1dS99SARepBCN6wNt0UdtopdjX9M3Cgj+C47z546qnY1dQ1NWCRenDfffDMMz7jcJaGnnXnkENgueXgootiV1LX1IBF6sGFF8LIkbDvvrErqY5VVvEZPK69FubNi11N3VIDFontqafg7rv9suNBg2JXUz3HHQeLFmn6+mVQAxaJ7ec/9zG/WbnvQ6U23NDvY3zJJT42WJaiBiwS0+zZPqnlQQfByivHrqb6Tj4ZFiyAX/86diV1SQ1YJKYLLvAv3Y4/PnYl6dhqK/jnf/b/zkWLYldTd9SARWKZN8+T4f77+60cG9XJJ8OcOXDNNbErqTtqwCKx/OIXPt38qafGriRdu+0GW2wBZ5/tUxdJBzVgkRjmzYNLL4X99vMvqxqZGZx5Jrz6qlJwF2rAIjGcf77f++FHP4pdSW3ssYdScBlqwCK19vbbPjRr330bP/0WFFLwrFm6VWUJNWCRWjvrLB8RcOaZsSuprT328FERZ57pk46KGrBITb34oo98OOQQWG+92NXUlplfdPLmm7pHREINWKSWTjvNb1JzxhmxK4lj++19BuXzzoP33otdTXRqwCK18tBDPt3QiSf6/GnN6txz/dLkH/84diXRqQGL1MKSJX6P3LXXhn/919jVxLXJJj7l0mWX+ezPTUwNWKQWLrnE73p24YUwZEjsauL76U/9lpVHHNHUc8epAYuk7c03/ZzvV74CX/967Grqw/Dh8LOfwaOP+jT2TUoNWCRNIfiIh0WLfKbgRpjtolomTfIv5Y47DubOjV1NFGrAImm69lq480445xxYf/3Y1dSXXA5+8xv/cDr4YP+wajJqwCJpmTMHjj4att3Wn2Vp663noyLuusubcZNRAxZJw+LFsM8+Pvrhyishn49dUf066iifCfqoo3xi0iaiBiyShtNPh0ce8avedOph2XI5uO46WGEF+Na3mmr6IjVgkWq76Sa/1++hh3oKlp6NGgXXXw/PPw8/+EHTDE1TAxappkcfhe9+F7bZxsf8SuV23tnvFXHTTf4viCbQErsAkYbxwgs+C/Caa8Ltt8PgwbEryp4TToBXXvF7Ray1Fhx2WOyKUqUGLFINzz/vCc7Mv9EfMSJ2RdlkBhdf7CNIDj/cv7w8+ODYVaVGpyBE+uvpp/1b/PZ2ePBBfenWXy0tcPPNfv/gQw7xC1galBqwSH/cfbef7zWDBx6AjTeOXVFjGDTI7xw3caIPTzvuOGhri11V1akBi/RFW5tf3bbnnn4xwV//Cv/0T7GraiyFJnzssTB5Muy+u0/n1EDUgEV6a9YsP+Vw+uk+bvWhh2D06NhVNaZ83keTTJni7/PYsXDbbbGrqho1YJFKffKJ39Vs4439PrZXXw033ABDh8aurPEddBDMmOEfdP/v//n54RdfjF1Vv6kBi/Tkgw98WNQ66/h9bL/xDXj2WR/vq7ub1c7GG8O0aXD++fDww758wAH+d5FRasAi5SxZAv/7v/C97/lVWqeeClts4ZcXX3+9TjnEMnCgjxV+8UU45hg/R7zJJrDDDj7d/YIFsSvsFQtNeAs4Wdr48ePD9OnTY5cRT1ubX0jxyCM+muHee+Hvf/fTC/vt58Ohxo2LXaV0NX++30XtiivgpZf8nPEOO8CECf48bhwsv3xqhzezGSGE8X3+eTVggSZowIsWeTqaPx/eeccH+s+eDS+/7I336afh009929VWg1128XONu+6a6i+wVEkI8Le/wa23wh//6NM/gZ8i2mADH6Gy/vrQ2upXKo4a5ROjrryy//328VSSGrBUxfhVVw3TJ05M/0Dd/f9WeL10fQhLP9rb/bmtrfhYssQfixfDZ5/5Y+FCf3z8MXz0kf+5nNGjYcMNYcwYT0tbbum/sDq3m23vvef35Zg5078wfeEF/7BdtGjpbVtaYNgwfwwZAsst50PgBg3yUx4DBvg2+XzxsfrqcMEFasBSHeMHDgzTazVVenfNrfB66Xqzzo9czp9Lfxnyef8lGTCg+Iuz3HL+GDbMTyMMH+6PVVeFkSO98Y4e7dtKc2hv93/9vP66P8+b5/8qWrDAP6Q/+sj/FbRwYfGDfNEi/2BfsqT4gd/e7rNb33tvvxuw7gUhbtNNoZFPQYjkcn7qYdSo2JV00CgIEZFI1IBFRCLROWABwMw+Al6IXUcPRgDvxi6iB1moEbJRZxZq3DCEMKyvP6xzwFLwQn++TKgFM5uuGqsjC3Vmpcb+/LxOQYiIRKIGLCISiRqwFEyJXUAFVGP1ZKHOhq9RX8KJiESiBCwiEokasIhIJGrATc7MdjOzF8zsZTM7JXY9BWa2ppk9YGbPmtkzZnZM8vrKZvYnM3speV6pDmrNm9lMM7szWV7HzKYl7+mNZjYwcn3DzexmM3vezJ4zs63r7X00s+OSv+enzewGMxtcD++jmf3GzOaZ2dMlr5V978z9Z1Lvk2bW4/1L1YCbmJnlgUuArwIbA/uaWb1M67sEOCGEsDGwFXBEUtspwP0hhPWB+5Pl2I4BnitZ/hlwYQhhPWABcGCUqoouAu4JIWwEbIbXWjfvo5mtARwNjA8hjAHywD7Ux/v438BuXV7r7r37KrB+8jgYuKzHvYcQ9GjSB7A1cG/J8qnAqbHr6qbW24Ev41frjUpeG4VfQBKzrtHJL+HOwJ2A4VdvtZR7jyPUtyLwKskX7iWv1837CKwBvAGsjF8cdiewa728j0Ar8HRP7x3wK2Dfctt191ACbm6F//EL5iSv1RUzawW+AEwDRoYQ3kpWvQ2MjFRWwWTgJKA9WV4FeD+EsCRZjv2ergPMB65MTpNcbmbLU0fvYwhhLnA+8DrwFvABMIP6eh9Ldffe9fr3SQ1Y6pqZDQVuAY4NIXxYui54zIg2jtLM9gTmhRBmxKqhAi3AOOCyEMIXgE/ocrqhDt7HlYCJ+IfF6sDyLP3P/rrU3/dODbi5zQXWLFkenbxWF8xsAN58rwsh/D55+R0zG5WsHwXMi1UfsC3wL2b2GvBb/DTERcBwMyvcZyX2ezoHmBNCmJYs34w35Hp6H3cBXg0hzA8hLAZ+j7+39fQ+luruvev175MacHP7G7B+8m3zQPyLjz9Ergnwb5SBK4DnQggXlKz6AzAp+fMk/NxwFCGEU0MIo0MIrfh7978hhP2BB4BvJpvFrvFt4A0z2zB5aQLwLHX0PuKnHrYysyHJ33uhxrp5H7vo7r37A3BAMhpiK+CDklMV5cU68a5HfTyA3YEXgVeA02PXU1LXdvg/7Z4Enkgeu+PnWO8HXgLuA1aOXWtS747Ancmf1wX+CrwM3AQMilzb5sD05L28DVip3t5H4CzgeeBp4BpgUD28j8AN+Hnpxfi/Jg7s7r3Dv4C9JPldegof1bHM/ffrUmQz2w3/J1ceuDyEcF6fdyYi0mT63ICTMaQv4kOD5uD/nN03hPBs9coTEWlc/bkh+5eAl0MIswDM7Lf4N5ndNuARI0aE1tbWfhxS+uv9933y1zXX7Pz6jBkz3g0hrFpY/nLuW73/ZO4627Hluix2s77L61bYTy7Xeb/JcnF9YRblLvvJ5TuWO7bN5zvvq+P1ws/6c8h1OXa+cw2h4/XulpPn5OdC3sqvT57bW7r+XOGZzsvJYdq7rO+6XNiuuL7zftpbOq9f6rlwnK7btYRu9hs6r0+eSV6nJWDJn63FR+rl88lzsjxggI80G5BvA2Bgiz8Pyheeff1yLYsBGJw8L5/3KeaXyyfLLZ8BMCTnrw/L/wOAocnzCrmFyfrPkmV/fVjHs+9nmIVk2d+EobnBAORWe6mb6bz7rj8NuNyYty27bmRmB+NXhbDWWmsxXTPvRnXSSXDxxUtPgGxms+NUJNK8Up+SKIQwheSemePHj9e9LyNbvBgGDEhp54XTWYV0GZJrE5KEGtqTJJTrsr69c4ItnBaz9mR9IWUmy4XUaYVLH3Jd9kNb8pzvSHTWlrxWSMIFbe2dFi0ZGBTo/HohCRdqKlzDZHRdLugoLllPl/XJ2uQyg/alfhMLW3b+yVyy3N7NcleFd6Q92S6XbNdedusydXVTT3G/5Y8byv7Zf6qNrqrchvq7uyQJ0164BiRJ0P3cbdlD9eNn63oMqZS3aBEMjHprGBEp6M9nRccYUrzx7gPsV5WqJDWffgrLL5/yQeoqCeeTbZMSlISTZSXhHnVJwmkk4D6XGEJYYmZHAvfi/5f/JoTwTNUqk1R8+CEMHRq7ChGBfn5GhBDuAu6qUi1SA++9B6usUqOD1UUSLp4P9m2TEpSEk+X0k3DXL34ym4RToEuRm8zcubDaarGrEBGowSgIqR9tbfDaa/DNb/a4aXXFTMJlRkb4tkkJSsLJspJwDErATeTpp2HJEhgzJnYlIgJ1+Zkgafnzn/15hx0iFRAjCS9jjLBvm5SgJJwsKwnXkhJwE7n2Wth446UvQxaROOros0DSNHUq/O1vfhlydDVMwpVcLefbJiUoCSfL1UvClYwR7rzcPElYCbgJLFoEhx0GI0fCAQfErkZECurgM0DSFAKcfjo88QTcdhusUOnlPGbFpJqWGiTh3tw3ApSE00jCvblarvNy4ydhJeAGFoLf/ez88z0BT5wYuyIRKaUE3KA++ACOPhquvhqOOAL+8z/7sJOOZJrhJNyHO6j59kkJSsLJcn+ScO/vG9F5uXGTsBJwA7rtNh/tcO21cMYZ/sVbTn/TInVHCbiBPPYYnHsu3HEHbLqpN+IvfrGPO7NcSRLNcBLux72EffukBCXhZLkvSbjvd1DrvNx4SVi5KOPa2uDWW2HbbWGbbeAvf4FzzvEZL/rcfEWkJpSAM+q55+DGG+G66+Dll6G11c/zfv/7VbzdZGGutQwn4WrMquHbJyUoCSfLlSfhatxLuPNy4yRhNeAMefFFb7q/+53f18HMLys++2z4xjegRX+bIpmiX9k69vHH8PDDcN998Kc/wVNPedPdbjv/Ym2vvWDUqHSObTnrSJpZTsLVnF/Ot09KUBJOlntOwtWcVaPzcvaTsBpwHVm8GKZN84Z7//1++fCSJT6H27bbwuTJfivJNdaIXamIVIMacETz5nnDLTweeww++cQD3xZbwAknwC67ePNdbrna11dIlplOwinMtOzbJyUoCSfLTZCEU1D/FTaIzz7zy4GnTvVmO3UqvPqqr8vnYexYmDQJJkyAHXeElVeOWq6I1IAacAo+/hiefNIb7syZ/vzkk35THPBTCFtt5ZcHb7mlp93UZyrurZJxwJlOwqnMtAxKwqVHVxLuq/qtLCPeeadzo505E156qdgrVl4ZvvAFOOYYb7ZbbgmjR8etWUTqgxpwhRYuhGef9ZEIpY+33y5u09rqzXb//WHzzf3Po0cXA1um5KyY+rKchFOZaRmUhLvsv6MaJeHeqL+KImtrg1mzlm60L7/c8bvJ4MF+r4Vddy022s02g+HD49YuItnS1A143rylG+0zz8Cnn/p6M/j85/0Lsn328eexY2G99ZYOOA2pcC41w0k4lZmWS/ejJNx5/x3VFJNwf+4l3HmfjZeE66eSFH36qTfWrs123rziNquu6s31oIOKjXaTTerwyzERaRgN14D//nf/Iuzxx4vPL75YDEuDB/u07HvsUWy0Y8f6dD1SZFa8iizLSTiVmZZBSbgXSbgWMy2XVrz0cv0m4fgV9FEI8OabSzfb118vbrPmmjBuXOfTB5//fJOcPhCRupeZBtze7qcRHnrI74/w0EPw1lvF9RtsAFtv7bM/fOEL/hgxIl69mZfLFVNXlpNwCjMt+/rkmErCnZa7ypHOTMvLOmaWknDdNuDFi2HGjGKzfeQRWLDA162xhl8tttVWnnA32wyGDYtarohIr9VVAw7Bbyh+9dV+y8UPP/TXN9jAb7e4/fZ++8XW1oyOrc0Ss470l+kknMJMy6Ak3Jsk3Jcxwp1q6qaWRkjCPR7RzNYErgZG4v8NU0IIF5nZysCNQCvwGrB3CGFBX4qYNQuuucYb76xZPvJgr73ga1/zWy+utlpf9ioiUt8qaflLgBNCCI+b2TBghpn9CfgecH8I4TwzOwU4BTi5twX8x3/AiSd6WJkwAc4809Ouhn9FVjKjcKaTcBozLYOSsJJwVfR4pBDCW8BbyZ8/MrPngDWAicCOyWZXAQ/SywY8ZYo33732ggsv9FELIiLNolet3sxagS8A04CRSXMGeBs/RVGxV1+FQw+F8ePh+uv9puNSP8ysI91lOgmnMdMyKAkrCVdFrudNnJkNBW4Bjg0hfFi6Lvj/nWV/i8zsYDObbmbT58+f3/H66NGw004+fveuu/pWvIhIllXU4s1sAN58rwsh/D55+R0zGxVCeMvMRgHzyv1sCGEKMAVg/PjxHU16wAC47Tb48pf9FMSuu/oNySdO9KvVJLKcdaQ5JWGUhPuRhNOYabnzdtlNwj0mYDMz4ArguRDCBSWr/gBMSv48Cbi9twcfNgzuuQdOPtnvzbDPPj7i4eCDfdxve09/EyIiGVZJa98W+C7wlJk9kbx2GnAe8DszOxCYDezdlwKGD4dzzoGf/hQefBCuugquuw5+/WtYaSUfhrbDDj4GeNw4T85SA5brSG9KwigJ9yMJp3Ev4U41dVNL9ZNw9VUyCuIvLP33UTChWoXk8z4MbcIEuPRSuP12eOABvxLujjt8myFD/HLjwgUZX/qShquJSHbV1ZVwBUOH+qwS++/vy2+/7VfIFe4DcdZZxSGeG27o930YN654DwhNaFkFpTNiKAkrCRfW9iEJpzmrRqeauqmlnpNwXTbgrlZbDb75TX8AvP8+PPoo/O1vPoriL3+BG24obr/22sWGPG6cz1qx+uq6fFlE6ksmGnBXw4fD7rv7o+Ddd70ZFx6PP+6jLApBZ6WVirek3HRTfx4zRjfx6VYuT8dnv5KwknDnvfYqCddifrlONXVTS3+TcBoy2YDLGTHCh7R9+cvF1z76CP7v//zx1FM+NfzVV/vrBa2tnW/MPnas3/yn6b/syxmFZqBGrEbcv0bc+4s1ikeup0ZcfQ3TgMsZNsxHUWy3XfG1EGD27KWnJ7r7bliS/MUNHAgbbbR0Y87sDMciUpcaugGXY+apt7XV77ZW8Nln8MILnpILTfnPf/YhcQXDh/tpi66nMlZYodb/FenzS5ELS0rCSsL9ScJ9v2y5eOT4STgNTdeAuzNokDfUTTft/PqCBfD0053T8nXXFe9VDD5LcmF6+sLzaqspLYvIsqkB92CllXzc8fbbF18LAd54w9PyE0/44/HH4eabi9t87nPFhrz55rDFFt6oM9OU8/mOtKUkjJJwv5Jw/2/gUzxyYyVhNeA+MIO11vLHnnsWX//gA2/KM2d6U545Ey64wKdXAh+fvOWW/thqK7+QZKWV4vw3iEh8asBVtOKKS6flRYvg2Wdh+nSYNg2mTvX7XxQC1gYbeDPeckvYZhs/BZLLld9/TZl1pCslYZSEO36geZNwGtSAUzZwYPE0xA9/6K99+KE35KlTvSnfc48PjwMfTrfTTrDLLn5Z9rrrZui0hYj0ihpwBCusADvv7A8oDo176CG4/35/3HSTr2ttLd4jY7fdanjKorTrKwkrCffPc1UpAAAO+klEQVQjCac55b2vz24SVgOuA6VD4w44wH/XX3ih2IxvuQWuuMIvDvnKV2Dvvf2+ySuuGLtyEekPNeA6ZOYXgmy0ERxxBLS1+X0vbrkFfvc7+OMf/dTGbrt5M95rrxRuYp/PLZWelIRREu5DEk5zeqPikbOZhOvh6x7pQT7vX9T94hfw2mvw2GPemGfMgO98x28+9NOfwnvvxa5URHpDDThjzLwZX3ABvP463HefjzE+4wyfVfrII/18cr/lcp6G8jk/aOkjn/dxwmaYmae6nPkNfHL54rLl/JEsF7fP+aOwv2S5Y31HDV32U3gPclZMmP5Cp/Ud+01TCJ2Tdmgvpl08CXck9dL17cEfHbsJnobb2/1R2G+yXFyfPLrup70tefhyx/Ztbf4o7K/waGv3R7J/aw9Ye8nxC+uT7a293dNwW4C2csvJo609eQQsWddpfXsgt8QfxZ8pPEgeyXK7J/9cWyBXsr7rcmG74np/FPaTW+Ipt7j/Lo/Ccbput8T80WW/aVADzrBczr+cu+uu4pROU6bAxhvD5Mn++yci9UsNuEGMGQO/+Q289BLsuCMcd5yPK37mmb7tL+RKkmqWk3DalIR7TMKlKTjLSTgNasANZu214c474frrYdYsb8KPPBK7KhEpR6MgGpAZ7Luv34Zzl1186Nof/uCnKyqWy3V8Q25dP6ezNDqiFiMjSvev0RGJ4uiIvt1Bzfdauhx/dET1KQE3sDXX9Is71l3Xp3OaOzd2RSJSSgm4wY0cCbfe6veYOOggH0Nc0anRfPGzOdNJuJZjhEv3ryScaKdv940o3bJeknD1KQE3gfXWg3PO8Vk/HnggdjUiUqAG3CQOPdRvh3nppRX+gFlx9EMyOiHkLHujI2KMEQaNjigdAVHBGOEsjI5Igxpwkxg8GCZNgttvh08+iV2NiIAacFP5yld84tGpU3veNpQm0Awn4ZIFJeFISbg3V8vVcxJOgxpwE9l6a3/+61/j1iEiTqMgmsiKK/qoiFdeqWDjvBW/0S58E5/v/HmdhdERdXEHtdL9N+HoiHRmWl76J2s1OqKalICbTGur38RHROJTAm4yI0bAW2/1vF3I5ZYe25nFJFxP9xIu3X8TJeF05pcr3TK7SVgJuMmstBIsWBC7ChGBXiRgM8sD04G5IYQ9zWwd4LfAKsAM4LshhEXplCnVMmQILFxYwYal54CznITrcVaN0v03QRJOd6bl0i2zl4R7k4CPAZ4rWf4ZcGEIYT1gAXBgNQuTdAweXGEDFpHUVZSAzWw0sAdwNnC8+SDMnYH9kk2uAs4ELkuhRqmiAQNg8eKetws5K8kVGU7C9Ty/XOn+GzgJpzHTMtQ+Caeh0gQ8GTiJ4ju0CvB+CKFwgd4cYI1yP2hmB5vZdDObPn/+/H4VK/3X0uIXY4hIfD0mYDPbE5gXQphhZjv29gAhhCnAFIDx48enHCekJ7lcMTAuS8jnoCPJJq9lMAlnYqbl0v03YhJOYaZlqH0STkMlpyC2Bf7FzHYHBgMrABcBw82sJUnBowHdbTYDKm3AIpK+HhtwCOFU4FSAJAGfGELY38xuAr6Jj4SYBNyeYp1SJWaVhbmQN0ozAGQzCVdlVg1QElYSTkV/9n0y/oXcy/g54SuqU5KkqdIGLCLp69WVcCGEB4EHkz/PAr5U/ZIkTRXfACxvJWe+MpyEqzm/HCgJ9yEJV3N+OV9Pl/XJ2pSTcBp0JZyISCS6F0STqTQBdx4HXJDBJJzGTMugJNyLJJzGTMu+ni7rk7UZSsJKwCIikSgBS1mhZDaJLCfhVGZaLlmvJJyUoSTcJ0rAIiKRKAFLWe0tttRMsFlMwtWYVQOUhPuVhKswq0bn5YLaJuE0KAGLiESiBCxlhZx1JIZMJ+Eqzi8HSsLNnITToAQsIhKJErCU5feCcJlOwinMtAxKwr1KwinMtNx5uSDdJJwGJWARkUiUgKWskIeu2SGbSTiFmZZBSbgXSTiNmZZ9+9om4TQoAYuIRKIELGX5OeDyCSBbSTiFmZZL96MknKzvPgmnMdOyr691Eq4+JWARkUiUgKUsTy3LPheWhSScykzLoCTcqyRc/ZmWS2uqXRKuPiVgEZFIlIClrPa8lYx/zG4STmOmZVAS7l0STmF+OYiQhKtPCVhEJBIlYCkr5MvdDSqDSTiFmZZLa1ISriAJpznTMmQ6CSsBi4hEogQsZZWeA1YSVhLuVxJOYaZlqH0SToMSsIhIJErAUla5c8CZTMJpzLQMSsK9SMJpzC8HtU/CaVACFhGJRAlYygolH81KwigJ9yMJpznTMmQ7CSsBi4hEogQsZYX80q9lMQmnMdOyHzM5hpKwPy8rCacxvxzUPAmnQQlYRCQSJWApqz3f/adzlpJwKjMtg5Jwb5JwmjMtQ82ScBqUgEVEIqkoAZvZcOByYAweUH4AvADcCLQCrwF7hxAWpFKl1FzIG+1JFlUSBiXhvifhVGZahghJuPoqTcAXAfeEEDYCNgOeA04B7g8hrA/cnyyLiEiFekzAZrYisAPwPYAQwiJgkZlNBHZMNrsKeBA4OY0ipfbaWyCXZIBMJ+FUZloGJeHKk3AaMy1DjCRcfZUk4HWA+cCVZjbTzC43s+WBkSGEt5Jt3gZGlvthMzvYzKab2fT58+dXp2oRkQZQyTngFmAccFQIYZqZXUSX0w0hhGBmZT+KQwhTgCkA48ePT/njWqrF7wXhspyE05lpGZSEe5GEU5hp2bdPSqhREk5DJXueA8wJIUxLlm/GG/I7ZjYKIHmel06JIiKNqccEHEJ428zeMLMNQwgvABOAZ5PHJOC85Pn2VCuVmiq9Ei7LSTiNmZZBSbhXSTiVmZah1kk4DZVeiHEUcJ2ZDQRmAd/H/+//nZkdCMwG9k6nRBGRxlRRAw4hPAGML7NqQnXLkXpR/l4QLktJOI2ZlkFJuFdJOJWZlqHWSTgNuhJORCQS3QtCygrL+GjOUhJOZX45UBIuqCAJpzLTcul+apSE06AELCISiRKwlNXe0vNssFlIwlWdVQOUhLuzjCScykzLUPMknAYlYBGRSJSApaxOV8JlOgn34r4RoCTcX+WScAozLfv65Ji1SsIpUAIWEYlECVjKCi0BOhKty2YSrvy+EaAkXDWlSTiFmZahMZKwErCISCRKwFKWXwnXOXlmMQmnMdOyb68kXJEQenffCKjbJJwGJWARkUiUgKWszrMiZzcJV2VWDVAS7o80ZlqGmifhNCgBi4hEogQsZYV8KEmgHa8mz0rCdGyvJFwxJeGlKAGLiESiBCxl+Thgl+UknMpMy6Ak3B9ZTcIpUAIWEYlECVjKKk3ABVlMwmnMtAxKwlWhJKwELCISixKwlJcPdJd9lISVhKsqK0k4BUrAIiKRKAFLeSXngLOdhPtzL+FidUrCSsJpUAOWsqzMKYhsNuLqTW/Ueb0acWrqtBGnQacgREQiUQKWsqylncLnc7aTcN9vZVn6U0rCSsJpUAIWEYlECVjKyufbSz73s5uE05zyvvN6JeHU1E0Srj4lYBGRSJSApax8SzGJZTkJpzvlfbE6JeEmSMIpUAIWEYmkogRsZscBP8QDwFPA94FRwG+BVYAZwHdDCItSqlNqbMCAJXT93yOLSTjdKe9Lj64k7MsNnIRT0GMCNrM1gKOB8SGEMfjf9D7Az4ALQwjrAQuAA9MrU0Sk8VR6DrgFWM7MFgNDgLeAnYH9kvVXAWcCl1W7QIljQL507GN2k3CaU96X/pSScOMn4TT0uOcQwlzgfOB1vPF+gJ9yeD+EUPjfcg6wRrmfN7ODzWy6mU2fP39+daoWEWkAPSZgM1sJmAisA7wP3ATsVukBQghTgCkA48ePT/HjUKppYEu5q3+UhJWE+5CE00zBXmTxWJ2OXd0knIZKsvUuwKshhPkhhMXA74FtgeFmVviNHA3MTalGEZGGVMk54NeBrcxsCLAQmABMBx4AvomPhJgE3J5WkVJ7g/LLuv5dSVhJuBdJuBbng0v3n1YSTkEl54CnATcDj+ND0HL4KYWTgePN7GV8KNoVqVUpItKAKhoFEUL4MfDjLi/PAr5U9YqkLgzK9xA7gSwk4d7cN6J0WUm4ikm4liMjSvdf7SScAl0JJyISie4FIWUt17K4F1vXbxJOc6JPUBKuKAnHGCNcuv8qJeE0KAGLiESiBCxlDe5VAi6ovyRciynvQUl4WUk46tVypfvvZxJOgxKwiEgkSsBS1vL5/tzYrn6ScF/uoObrlYT9uMlx+pGE6+K+EaX772sSToESsIhIJErAUtZy+b6cA+5KSVhJuDgOOPNJOAVKwCIikSgBS1nLt3xWxb0pCTd1Eq7HewmX7r/SJJwCJWARkUiUgKWsIblFKfzfoSTclEm4nmfVKN1/D0k4DUrAIiKRKAFLWcPy/yguZDgJpzHTsq9XEvbjJsdZRhLOxPxypfvvJgmnQQlYRCQSJWApa2hpAi7IYBLuz72EO++zu2MqCftxk+OUScKZmmm5dP9dk3AKlIBFRCJRApayVsgt7H5lppJw/2fV6LzP7o6pJOzHTY5TmoTTmGnZd0SquibhFCgBi4hEogQsZQ3JVXAlXCaScPXmlyvuc1nHVBL24ybHyeXSmWkZap+EU6AELCISiRKwlLVCrswoiO7UcRLuz9VynbZTEvbt+pCEU5lpuWR9zZJwCpSARUQiUQKWsob1JgEX1GESTmOmZV9WEobKknAqMy37C53WZzEJKwGLiESiBCxlDcv1Y0YMJeEyx23iJJzCTMu+mP0krAQsIhKJErCUNcwC9CcFg5Jw2eM2YRJOYaZlaIwkrAQsIhKJErCUNSzXAu1J3MpwEk5zVo1O2ykJ+3Zlk3AKMy1DQyRhJWARkUiUgKWsobnBQDIWWElYSbhfSTiFmZZL95PhJKwE3GS22gqOOSZ2FSICYKGGnwZmNh+YXbMDSm+sHUJYNXYRIs2kpg1YRESKdApCRCQSNWARkUjUgEVEIlEDFhGJRA1YRCQSNWARkUjUgEVEIlEDFhGJRA1YRCQSNWARkUjUgEVEIlEDFhGJRA1YRCQSNWARkUjUgEVEIlEDFhGJRA1YRCQSNWARkUjUgEVEIlEDFhGJRA1YRCQSNWARkUj+P4VunBEI1yzqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#%% plot the distributions\n", + "\n", + "pl.figure(1, figsize=(6.4, 3))\n", + "pl.plot(x, a, 'b', label='Source distribution')\n", + "pl.plot(x, b, 'r', label='Target distribution')\n", + "pl.legend()\n", + "\n", + "#%% plot distributions and loss matrix\n", + "\n", + "pl.figure(2, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, M, 'Cost matrix M')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solve EMD\n", + "---------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4VdW5x/Hvm4RBJgFBQECj4nAVUDEtiENVrFqHi7dYxeoVby04D6h1bK1tr9apiperVipaB7SKVmmpw1XUakXQUBwYZBBEQTGACDIIJFn3j3eniRDIdJJ1ht/nefZzcvbZ55w3B/LLytprr2UhBEREpOnlxS5ARCRXKYBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsEiWMLNDzWxO7Dqk9hTAIgkzO8vMPjCzdWa21MzuNbP2yWO/N7M1ybbRzDZVuf98E9QWzKzXto4JIbwRQtirAe8x1MymmtlaMytJvj7fzCx53MzsFjNbkWy3VDwm9aMAFgHM7HLgFuBnwPbAAGAX4CUzax5CODeE0CaE0Aa4CXii4n4I4QfxKndmVtDA518O3AXcBnQFugDnAgcDzZPDRgAnAfsBfYETgXMa8r65TgEsOc/M2gG/Ai4KIbwQQtgUQvgYOAUoBM6ox2sebmaLzezKpDX5uZmdZGbHmdlcM/vSzK6tcvx3zewtM/sqOfZ/zax58tjryWHvJS3uU6u8/lVmthR4sGJf8pzdk/fol9zfycyWmdnh1dS6PfBr4PwQwlMhhK+Dmx5COD2EsCE5dBjwuxDC4hDCEuB3wFl1/WykkgJYBAYCLYE/V90ZQlgDPAd8v56v2zV53e7A9cAf8DA/EDgU+IWZ7ZocWwaMBDoBBwGDgPOTOg5LjtkvaXE/UeX1O+It9RGb1f4RcBXwqJm1Ah4EHgohvFZNnQcBLYAJNXw/+wLvVbn/XrJP6kkBLOKhtzyEUFrNY58nj9fHJuDGEMIm4E/J69yVtDBnArPwP+cJIUwLIUwJIZQmre/7gO/V8PrlwC9DCBtCCOs3fzCE8AdgPjAV6AZct5XX2eL7N7PJSWt8vZlV/AJoA6yq8rxVQBv1A9efAlgElgOdttKP2i15vD5WhBDKkq8rAvKLKo+vx0MNM9vTzCYmJ/9W4/3MNQX/shDCNzUc8wegNzC6SlfCFnWy2fcfQhgYQmifPFaRE2uAdlWe1w5YEzSjV70pgEXgLWAD8MOqO82sDfADYFIT1HAv8CGwRwihHXAtUFPLcpvBl9Q/ChgL3GBmHbdyaMX3P7iG95tJ0mJP7Jfsk3pSAEvOCyGswk/CjTazY82smZkVAk8Ci4FHmqCMtsBqYI2Z7Q2ct9njXwC71fE17wKKQwg/Bf4G/L66g0IIX+Hf/z1mdrKZtTWzPDPbH2hd5dCHgcvMrLuZ7QRcDvyxjjVJFQ0auiKSLUIIt5rZCuB2YHc8DJ8FTt/Gn+6pdAUwBrgSmA48ARxZ5fEbgIfMbDv8hFvJtl7MzAYDxwJ9kl2XAe+a2ekhhHGbH598/0uS938YWAsswE/kTU4Ouw//JfBBcv/+ZJ/Uk6n7RkQkDnVBiIhEogAWEYlEASwiEokCWEQkEo2CEAA6deoUCgsLY5chklGmTZu2PITQub7PVwALAIWFhRQXF8cuQySjmNmihjxfXRAiIpEogEVyyapVMHkyLFoEugYgOgWwSLYLAcaPh969oX17OPhgKCyEHXeEq6+Gr7+OXWHOUgCLZLOlS2HQIDjlFMjPhxtvhAkT4J574Igj4JZbYK+94MUXY1eak3QSTiRbLV7s4bt4Mdx9N5xzjodwhfPOg6lTYfhwOPFEePxxGDIkXr05SC1gkWy0ZAkceqi3gP/v/+D8878dvhX694c33oDvfMdbyePHN32tOUwBLJJtNm3yMF2+HCZN8j7fbdl+e++COOggGDYMZsxomjpFASySda680kc6jB0LRUW1e06bNvDUUx7GQ4bA6tWNW6MACmCR7DJxIowaBRdf7K3guujaFZ54Aj76CC64oHHqk29RAItkizVrvK+3d2+47bb6vcZhh8G118Kjj8JLL6W2PtmCAlgkW9xwA3z6Kdx3HzRvXv/XufZa2GMPD/NvalrzUxpCASySDd5/37sehg+HgQMb9lotW/o44fnz4be/TU19Ui0FsEg2uPJKaNcObr45Na931FFw6qnelfHZZ6l5TdmCAlgk0736qg8ju/Za6Li1lefr4aaboLQUfv3r1L2mfIsCWCSTheDzOfToARdemNrX3m03v3ru/vth7tzUvrYACmCRzPbMM/D22/CrX3nfbar9/Of+ur/4RepfWxTAIhkrBPjv//YRC2ee2Tjv0aULXHqpX6I8e3bjvEcOUwCLZKrnn4fp0+Gaa6CgEefVuvRS2G671J3gk39RAItkoorW7847wxlnNO57deoEI0bAuHGwYEHjvleOUQCLZKK//x3eesuHnzVr1vjvd8UVPpvarbc2/nvlEAWwSCa69VZf0eInP2ma9+ve3WdK++MfoaSkad4zByiARTLNrFne/3vhhd4321Quuww2bPCr5CQlFMAimWbUKB8adu65Tfu+e+8Nxx/vAbx+fdO+d5ZSAItkkpISePhhH3bWuXPTv//ll8OyZX5CThpMASySSX7/e+8GGDkyzvsffjjsvz/ccYeWtU8BBbBIpti4Ee69F37wA+8OiMHMw3/2bF/uSBpEASySKZ56yhfZvOiiuHWceqp3f4weHbeOLKAAFskUo0f7ZcfHHBO3jhYt/MKMv/4VFi6MW0uGUwCLZILiYpgyxYee5aXBj+1553kdGpLWIGnwLykiNRo92lcuPuus2JW47t199eT774d162JXk7EUwCLpbvlyX634zDN91Yt0ceGF8NVX8PjjsSvJWApgkXQ3dqwPPTv//NiVfNshh0CfPnD33RqSVk8KYJF0VlbmQ88OPxz23Td2Nd9m5r8Upk/3/mmpMwWwSDp77jlYtAguuCB2JdU74wzvFvnf/41dSUZSAIuks7vvhp12gsGDY1dSvTZtfJa08ePhiy9iV5NxFMAi6WrePF/t+JxzmmbO3/o6/3zYtMlHREidKIBF0tW99/pSQ8OHx65k2/beGwYNgvvu82XspdYUwCLpaN06ePBBH2vbrVvsamp2wQXw6acwcWLsSjKKAlgkHT32mI+xTdeTb5s78UTo2dP7rKXWFMAi6SYED7I+fXysbSYoKPAJ4l9+GT78MHY1GUMBLJJu3nwT3n3XrzQzi11N7f30p9C8uYak1YECWCTdjB4N7dvD6afHrqRudtwRhg6Fhx6C1atjV5MRFMAi6WTJEnj6aTj7bGjdOnY1dXfRRbBmja+eLDVSAIukk9//HsrL02/eh9oqKoL+/b0borw8djVpTwEski6++cbH0p5wAuy2W+xq6u+ii/wikhdeiF1J2lMAi6SLceN8xeFLL41dScP86Ec+dvnOO2NXkvYUwCLpIAQPrL594YgjYlfTMM2b+wiOl1+GDz6IXU1aUwCLpIOXX4aZM33F4UwaerY155wD220Hd90Vu5K0pgAWSQd33gldusBpp8WuJDV22MFX8Hj0USgpiV1N2lIAi8T2wQfw/PN+2XGLFrGrSZ2RI2HjRi1fvw0KYJHYbr3Vx/xmyrwPtbXXXj6P8d13+9hg2YICWCSmRYt8Ucvhw6Fjx9jVpN5VV8HKlfCHP8SuJC0pgEViuuMOP+l22WWxK2kcAwbA977n3+fGjbGrSTsKYJFYSkq8ZXj66T6VY7a66ipYvBgeeSR2JWlHASwSy223+XLz11wTu5LGdeyxcOCBcOONvnSR/IsCWCSGkhK45x748Y/9ZFU2M4MbboCFC9UK3owCWCSG22/3uR9+/vPYlTSN449XK7gaCmCRprZ0qQ/NOu207G/9VqhoBS9YoKkqq1AAizS1X/3KRwTccEPsSprW8cf7qIgbbvBFR0UBLNKk5s71kQ/nnAO9esWupmmZ+UUnn32mOSISCmCRpnTttT5JzfXXx64kjkMP9RWUb74ZVqyIXU10CmCRpvL6677c0BVX+Pppueq3v/VLk3/5y9iVRKcAFmkKpaU+R+4uu8DPfha7mrj23deXXLr3Xl/9OYcpgEWawt13+6xnd94JrVrFria+3/zGp6y84IKcXjtOASzS2D77zPt8jz4aTjopdjXpoX17uOUWmDzZl7HPUQpgkcYUgo942LjRVwrOhtUuUmXYMD8pN3IkLFkSu5ooFMAijenRR2HiRLjpJthjj9jVpJe8PHjgAf/lNGKE/7LKMQpgkcayeDFcfDEcfLDfypZ69fJREc8952GcYxTAIo1h0yYYOtRHPzz4IOTnx64ofV10ka8EfdFFvjBpDlEAizSG666DN9/0q97U9bBteXkwbhy0awc/+lFOLV+kABZJtfHjfa7fc8/1VrDUrFs3eOwx+PBD+MlPcmZomgJYJJUmT4b//E8YONDH/ErtHXmkzxUxfrz/BZEDCmIXIJI15szxVYB79oQJE6Bly9gVZZ7LL4ePPvK5InbeGc47L3ZFjUoBLJIKH37oLTgzP6PfqVPsijKTGYwe7SNIzj/fT16OGBG7qkajLgiRhpoxw8/il5fDa6/ppFtDFRTAU0/5/MHnnOMXsGQpBbBIQzz/vPf3msGrr8I++8SuKDu0aOEzxw0e7MPTRo6EsrLYVaWcAlikPsrK/Oq2E07wiwnefhv+7d9iV5VdKkL40kth1Cg47jhfzimLKIBF6mrBAu9yuO46H7f6+uvQo0fsqrJTfr6PJhkzxj/nPn3g2WdjV5UyCmCR2lq71mc122cfn8f24Yfh8cehTZvYlWW/4cNh2jT/Rfcf/+H9w3Pnxq6qwRTAIjVZtcqHRe26q89j+8MfwqxZPt5Xs5s1nX32galT4fbb4Y03/P6ZZ/q/RYZSAItUp7QUXnkFzjrLr9K65ho48EC/vPixx9TlEEvz5j5WeO5cuOQS7yPed1847DBf7n7lytgV1omFHJwCTrZUVFQUiouLY5cRT1mZX0jx5ps+muHFF+HLL7174cc/9uFQ/frFrlI2t2yZz6I2dizMm+d9xocdBoMG+W2/ftC6daO9vZlNCyEU1fv5CmCBHAjgjRu9dbRsGXzxhQ/0X7QI5s/34J0xA9at82O7doWjjvK+xmOOadQfYEmREOCdd+CZZ+Bvf/Pln8C7iPbc00eo7LEHFBb6lYrduvnCqB07+r9vPbuSFMCSEkWdO4fiwYMb/4229v+tYn/Vx0PYcisv99uyssqttNS3TZtgwwbf1q/3bc0a+Ppr/7o6PXrAXntB797eWurf339g1beb2Vas8Hk5pk/3E6Zz5vgv240btzy2oADatvWtVSvYbjsfAteihXd5NGvmx+TnV2477QR33KEAltQoat48FDfVUulbC7eK/VUfN/v2lpfnt1V/GPLz/YekWbPKH5zttvOtbVvvRmjf3rfOnaFLFw/eHj38WMkN5eX+188nn/htSYn/VbRypf+S/vpr/yto/frKX+QbN/ov9tLSyl/45eW+uvWLLzY4gDUXhLi+fSGbuyBE8vK866Fbt9iV/ItGQYiIRKIAFhGJRH3AAoCZfQ3MiV1HDToBy2MXUYNMqBEyo85MqHGvEELb+j5ZfcBSYU5DTiY0BTMrVo2pkQl1ZkqNDXm+uiBERCJRAIuIRKIAlgpjYhdQC6oxdTKhzqyvUSfhREQiUQtYRCQSBbCISCQK4BxnZsea2Rwzm29mV8eup4KZ9TSzV81slpnNNLNLkv0dzewlM5uX3HZIg1rzzWy6mU1M7u9qZlOTz/QJM2seub72ZvaUmX1oZrPN7KB0+xzNbGTy7zzDzB43s5bp8Dma2QNmVmJmM6rsq/azM/c/Sb3vm1mN85cqgHOYmeUDdwM/APYBTjOzdFnWtxS4PISwDzAAuCCp7WpgUghhD2BScj+2S4DZVe7fAtwZQugFrATOjlJVpbuAF0IIewP74bWmzedoZt2Bi4GiEEJvIB8YSnp8jn8Ejt1s39Y+ux8AeyTbCODeGl89hKAtRzfgIODFKvevAa6JXddWap0AfB+/Wq9bsq8bfgFJzLp6JD+ERwITAcOv3iqo7jOOUN/2wEKSE+5V9qfN5wh0Bz4FOuIXh00EjkmXzxEoBGbU9NkB9wGnVXfc1ja1gHNbxX/8CouTfWnFzAqBA4CpQJcQwufJQ0uBLpHKqjAKuBIoT+7vAHwVQihN7sf+THcFlgEPJt0k95tZa9LocwwhLAFuBz4BPgdWAdNIr8+xqq19dnX+eVIAS1ozszbA08ClIYTVVR8L3syINo7SzE4ASkII02LVUAsFQD/g3hDCAcBaNutuSIPPsQMwGP9lsRPQmi3/7E9LDf3sFMC5bQnQs8r9Hsm+tGBmzfDwHRdC+HOy+wsz65Y83g0oiVUfcDDw72b2MfAnvBviLqC9mVXMsxL7M10MLA4hTE3uP4UHcjp9jkcBC0MIy0IIm4A/459tOn2OVW3ts6vzz5MCOLe9A+yRnG1ujp/4+EvkmgA/owyMBWaHEO6o8tBfgGHJ18PwvuEoQgjXhBB6hBAK8c/ulRDC6cCrwMnJYbFrXAp8amZ7JbsGAbNIo88R73oYYGatkn/3ihrT5nPczNY+u78AZyajIQYAq6p0VVQvVse7tvTYgOOAucBHwHWx66lS1yH4n3bvA+8m23F4H+skYB7wMtAxdq1JvYcDE5OvdwPeBuYD44EWkWvbHyhOPstngQ7p9jkCvwI+BGYAjwAt0uFzBB7H+6U34X9NnL21zw4/AXt38rP0AT6qY5uv36BLkc3sWPxPrnzg/hDCzfV+MRGRHFPvAE7GkM7FhwYtxv+cPS2EMCt15YmIZK+GTMj+XWB+CGEBgJn9CT+TudUA7tSpUygsLGzAW0pDffWVL/7as+e390+bNm15CKFzxf3v5/1IszSJVPFS+fitLOddfw0J4OrGvPXf/CAzG4FfFcLOO+9MsVbejerKK2H06C0XQDazRXEqEsldjT4KIoQwJoRQFEIo6ty5c81PkEa1aRM0axa7ChGBhgVwWo8hlept3AjNo04NIyIVGhLAaTuGVLZu3Tpo3Tp2FSICDegDDiGUmtmFwIv4MLQHQggzU1aZNIrVq6FNm9hViAg0cFn6EMJzwHMpqkWawIoVsMMOsasQEdClyDlnyRLo2jV2FSICCuCcUlYGH38Mu+8eu5KIzHwTSQMK4BwyYwaUlkLv3rErERFoYB+wZJa//91vDzssbh1RVVx6X9EKtqQNEsq//bhIE1ALOIc8+ijss8+WlyGLSBxqAeeIKVPgnXf8MmShsqUbyvw2Lx8Aa+4/EmFTshJOeVlTVyY5RC3gHLBxI5x3HnTpAmeeGbsaEamgFnCWCwGuuw7efReefRbatYtdUZpKWrphg99agf9o2HZ+2WDYuMlvN22MUJxkK7WAs1gIPvvZ7bd7C3jw4NgViUhVagFnqVWr4OKL4eGH4YIL4H/+J3ZFmSWUln7rNq9lS7/d3i8jDOvWA1C+bl2E6iRbqAWchZ591kc7PPooXH+9n3jL07+0SNpRCziLvPUW/Pa38Ne/Qt++HsTf+U7sqrJD+Tff+BfJbX7SmV6wi4/pC6vXAFC2cmXTFycZS+2iDFdWBs88AwcfDAMHwj/+ATfd5CteKHxF0ptawBlq9mx44gkYNw7mz4fCQu/n/a//0nSTTaFs9Wr/IrnNT1Z7yeu7t98u+wqA0s+XNn1xkjEUwBlk7lwP3Sef9HkdzPyy4htvhB/+EAr0rymSUfQjm8bWrIE33oCXX4aXXoIPPvDQPeQQP7E2ZAh06xa7SgEoW7bMv0hu8wp39v1H9AOg+WJvEZfNW9D0xUnaUgCnkU2bYOpUD9xJk/zy4dJSX8Pt4INh1Cg4+WTo3j12pSKSCgrgiEpKPHArtrfegrVrvZV74IFw+eVw1FEevtttF7taqYvSjz8BID+5Zd+9APh66AAA2s37GoAwTat45TIFcBPZsMEvB54yxcN2yhRYuNAfy8+HPn1g2DAYNAgOPxw6doxarog0AQVwI1izBt5/3wN3+nS/ff99nxQHvAthwAC/PLh/f2/taqXi7FY2cw4AbZMGb/nA/QD4YuRAADq9twGAglemNX1xEo0CuIG++OLbQTt9OsybVznbYceOcMABcMklHrb9+0OPHnFrFpH0oACupfXrYdYsH4lQdVtaZZhnYaGH7emnw/77+9c9emgJMtmSTX4PgK6T/f6G4/yqmUW3HQRAt7d8hY5Wf57a9MVJk1EAb6asDBYs2DJo58+H8mTVmpYtfa6FY46pDNr99oP27ePWLiKZJacDuKRky6CdORMqJrgy8xWE+/SBoUP9tk8f6NXLT5yJpEqL594BYPfn/P7qH/toiYV/6gvA9v/nJwk6PvBW0xcnjSYnAnjdOg/WzcO2pKTymM6dPVyHD68M2n331ckxEWk8WRfAX37pJ8L++c/K27lzK0+KtWzpy7Iff3xl0Pbp48v1iKSLdo9NSW79fsn5Plqi9es+58RHz+wBQNc7Jzd9cZIyGRvAIcBnn20Ztp98UnlMz57Qr9+3uw92313dByKSHjImgMvLvRvh9dd9foTXX4fPP698fM894aCDfPWHAw7wrVOnePWKpNKO93hLd+09fr/sam8BnzDT5x++90/HA9DzN2oRZ5K0DeBNm2DatMqwffNNqJjrunt3v1pswABv4e63H7RtG7VcEZE6S6sADsEnFH/4YZ9ysWLK1T339OkWDz3Up18sLNTYWslt3W/2lu7EmzsAUPYbP8lxy0IfN3zKE5cCsOvVGjWRzmoMYDPrCTwMdAECMCaEcJeZdQSeAAqBj4FTQgj1Wo9lwQJ45BEP3gULfOTBkCFw4ok+9WLXrvV5VRGR9FabFnApcHkI4Z9m1haYZmYvAWcBk0IIN5vZ1cDVwFV1LeB3v4MrrvAW7aBBcMMN3trV8C+R2iv8hbd0r/pFfwDKb/P9Ty/20RT7Jy3i3S+f0vTFyVbVGMAhhM+Bz5Ovvzaz2UB3YDBweHLYQ8Br1DGAx4zx8B0yBO6800ctiIjkijr1AZtZIXAAMBXokoQzwFK8i6LWFi6Ec8+FoiJ47DGfdFxEUmP3n3mLeMjP/Iq6cKfvf/Gzd/3xP50LQK/L1CKOqdarIptZG+Bp4NIQwuqqj4UQAt4/XN3zRphZsZkVL6tYtgWfpOaII3z87nPP1a94EZFMVqsANrNmePiOCyH8Odn9hZl1Sx7vBpRU99wQwpgQQlEIoahzsnIsQLNm8Oyz3gIeMgSOO84XnPzmmwZ9PyJSjV4jp9Br5BSO2Wl/jtlpfyyABe8jfnrxFD667SA+SmZik6ZTYwCbmQFjgdkhhDuqPPQXYFjy9TBgQl3fvG1beOEFuOoqn5th6FAf8TBihI/7rZh9TEQkG1kI1fYcVB5gdgjwBvABUBGJ1+L9wE8COwOL8GFoX27rtYqKikJxcXG1j5WVwWuvwUMPwdNP+wQ6HTr4MLTDDvMxwP36ectZUs/MpoUQiirufz/vR9v+jyFZZeHN3vp98tRRAJz6qI+aqBhdIfBS+fiUX31Qm1EQ/wC29saDUlVIfr4PQxs0CO65ByZMgFdf9Svh/vpXP6ZVK7/cuOKCjO9+V8PVRCRz1dgCTqVttYC3ZelSv0KuYh6I997zq+bMYK+9fN6Hfv0q54DQgpZ1pxawVPXJ9T772vmn/g2A+x7xuSYqrsDLRVFawOmga1c4+WTfAL76CiZPhnfe8VEU//gHPP545fG77FIZyP36+aoVO+2ky5dFJL1kRABvrn17HzVx3HGV+5Yv9zCu2P75Tx9lUdHA79ChckrKvn39tndvTeIjUp2df53MNfFrn2sif6Tvr5iP+OPHewHQ+V71ETdERnRB1NfXX3t3xXvv+SiL99+HGTN8f4XCwm9PzN6nj0/+k2sn+9QFIXXx5U/8pN2qo9cCsMNfWgGVE8lno5ztgqivtm19FMUhh1TuCwEWLdpyeaLnn4fSUj+meXPYe+8tg1krHItIKmV1C7guNmyAOXO8lVw1mBcvrjymfXvvtti8K6Ndu3h1p4pawNIQa4f4JEBLB/ilBT1e9dZMxWKj2UAt4EbUooUHat++396/cqV3W1QN5XHjKucqBl8luWJ5+orbrl3VWhaRbVMLuB5CgE8/9dbyu+/6Nn26z2VcYccdKwN5//3hwAM9qNM1lNUCllQqPfJAAJbv14IuU72f2Ca/F7OkBlMLOE2Ywc47+3bCCZX7V63yUJ4+vTKU77jDl1cCH5/cv79vAwb4hSQdOsT5HkQkPgVwCm2/vV+ld+ihlfs2boRZs6C4GKZOhSlTfP6Lij889tzTw7h/fxg40LtA8mo9R51Ieip4ZRoAXV8BO3BfAFYP9akx23/gC+eUzZwTp7g0ogBuZM2bV3ZD/PSnvm/1ag/kKVM8lF94wZdjAl/J+Ygj4Kij/LLs3XZL324LEWkYBXAE7drBkUf6BpVD415/HSZN8m38eH+ssLByjoxjj1WXhWSeMG0mAG2nJTv22A2AsiP6AdBigc8TXrro0yavLTYFcBow86AtLIQzz/RAnjOnMoyffhrGjvWLQ44+Gk45BQYP9i4PEclcCuA0ZOYXguy9N1xwgU/V+c47HsRPPgl/+5t3bRx7rIfxkCHQsmXsqkVqp2yeDxfKn5fs6L4TAHl99wbAPl/hx1VZQSdb6XRPBsjP9xN1t90GH38Mb73lwTxtGpxxhk8+9JvfwIoVsSsVkbpQAGcYMw/jO+6ATz6Bl1/2McbXX++rSl94ofcni2SK0iWfUbrkM8rf/5Dy9z/0OQFKSynYpScFu/Qkr21b8rJ01iwFcAbLy/OTc889V7mk05gxsM8+MGqUd12ISPpSAGeJ3r3hgQdg3jw4/HAYOdLHFc+cGbsykbopW7mSspUrKV30qY+MKC+H8nLyO+1AfqcdyGvZkrwsOemhAM4yu+wCEyfCY4/5pdEDB/oCpyKSfhTAWcgMTjvNJ6Xv2tWHrk2aFLsqkfopX7uW8rVrKVu+grLlKwghEEIgr3Vr8lq3xgoKsILMHNClAM5iPXv6xR277ebLOS1ZErsiEalKAZz3yuHQAAAGyklEQVTlunSBZ57x+Y6HD6+cg0IkU4UNGwgbNvyrZVzBWrTAWrTwPwEz5Pp9BXAO6NULbrrJV/149dXY1YhIBQVwjjj3XJ8O8557YlciklqhtNS3pGX8L3n5vqUxBXCOaNkShg2DCROgyl9tIhKRAjiHHH20X2Q0JXsXrhXxEx0hQHmZbxV9wmnYN6wAziEH+UrivP123DpExGXm4Dmpl+2391ERH30UuxKRJpTGQ3/UAs4xhYU+iY+IxKcAzjGdOmnaSpF0oQDOMR06wMqVsasQEahDAJtZvplNN7OJyf1dzWyqmc03syfMrHnjlSmp0qoVrF8fuwoRgbq1gC8BZle5fwtwZwihF7ASODuVhUnjaNlSASySLmoVwGbWAzgeuD+5b8CRwFPJIQ8BJzVGgZJazZrBpk2xqxARqH0LeBRwJVCe3N8B+CqEUJrcXwx0r+6JZjbCzIrNrHhZDiyyl+4KCvxiDBGJr8YANrMTgJIQwrT6vEEIYUwIoSiEUNS5c+f6vISkUF6eLzAgIvHV5kKMg4F/N7PjgJZAO+AuoL2ZFSSt4B6AZpvNAApgkfRRYws4hHBNCKFHCKEQGAq8EkI4HXgVODk5bBgwodGqlJQxS+sLg0RySkPGAV8FXGZm8/E+4bGpKUkakwJYJH3UaS6IEMJrwGvJ1wuA76a+JGlMaTYZlEhO05VwIiKRKIBzjFrAIulDASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikdQqgM2svZk9ZWYfmtlsMzvIzDqa2UtmNi+57dDYxYqIZJPatoDvAl4IIewN7AfMBq4GJoUQ9gAmJfdFRKSWagxgM9seOAwYCxBC2BhC+AoYDDyUHPYQcFJjFSkiko1q0wLeFVgGPGhm083sfjNrDXQJIXyeHLMU6FLdk81shJkVm1nxsmXLUlO1iEgWqE0AFwD9gHtDCAcAa9msuyGEEIBQ3ZNDCGNCCEUhhKLOnTs3tF4RkaxRmwBeDCwOIUxN7j+FB/IXZtYNILktaZwSRUSyU40BHEJYCnxqZnsluwYBs4C/AMOSfcOACY1SoYhIliqo5XEXAePMrDmwAPgvPLyfNLOzgUXAKY1ToohIdqpVAIcQ3gWKqnloUGrLERHJHboSTkQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiERSqwA2s5FmNtPMZpjZ42bW0sx2NbOpZjbfzJ4ws+aNXayISDapMYDNrDtwMVAUQugN5ANDgVuAO0MIvYCVwNmNWaiISLapbRdEAbCdmRUArYDPgSOBp5LHHwJOSn15IiLZq8YADiEsAW4HPsGDdxUwDfgqhFCaHLYY6F7d881shJkVm1nxsmXLUlO1iEgWqE0XRAdgMLArsBPQGji2tm8QQhgTQigKIRR17ty53oWKiGSb2nRBHAUsDCEsCyFsAv4MHAy0T7okAHoASxqpRhGRrFSbAP4EGGBmrczMgEHALOBV4OTkmGHAhMYpUUQkO9WmD3gqfrLtn8AHyXPGAFcBl5nZfGAHYGwj1ikiknUKaj4EQgi/BH652e4FwHdTXpGISI7QlXAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwDlmwAC45JLYVYgIgIUQmu7NzJYBi5rsDaUudgkhdI5dhEguadIAFhGRSuqCEBGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKR/D+iA6AGU5wC6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#%% EMD\n", + "\n", + "G0 = ot.emd(a, b, M)\n", + "\n", + "pl.figure(3, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, G0, 'OT matrix G0')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solve Sinkhorn\n", + "--------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "It. |Err \n", + "-------------------\n", + " 0|7.958844e-02|\n", + " 10|5.921715e-03|\n", + " 20|1.238266e-04|\n", + " 30|2.469780e-06|\n", + " 40|4.919966e-08|\n", + " 50|9.800197e-10|\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcVNWZ//HP0900TbMjyK7t7ii4IAnuo+KuGTLRGI35iYlxj1tMNGom0cnERGNcxqiJ0RiN6KgYlxCXqNG4QgQxiiKIKLKDitAs0tv5/fHc29003XTT26nl+3696lVU1a1bDwX9radPnXuuhRAQEZHOVxC7ABGRfKUAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAikZnZAWY2qwP2e7KZ/a2F255qZi9v7mPSNgpgyXpJQLxtZmvNbImZ3WZmfZLHfmtmq5NLhZlV1rv9ZCfUFsxs+01tE0J4KYSwUyv3v7+ZvWpmK83sMzN7xcy+lOx3Qgjh8NbsVzqHAliympldDFwD/BDoDewNbA08Y2bFIYSzQgg9Qgg9gKuBB9LbIYSj4lXuzKyoDc/tBUwCbgb6AUOBq4D17VNd+2vL3zcXKYAlayUBdBVwXgjhqRBCZQjhI+AEoAz4Viv2eZCZLTCzS8xsmZktNrOvmtnRZjY76TIvr7f9l83sNTP7PNn2N2ZWnDz2YrLZv5KO+xv19n+pmS0B7krvS56zXfIao5LbQ8xsuZkd1Ei5OwKEEO4PIVSHENaFEP4WQngree4GQwdJN36Wmb2f1HuLmVkT78OvzOxlM+td777rzGyFmX1oZkfVu3+ImT2e1D3HzE6v99iVZjbRzO41s1XAqcl9D5rZPWZWbmbvmNnozfynygkKYMlm+wIlwJ/r3xlCWA08ARzWyv0OSvY7FPgJ8Hs8zPcCDgD+y8y2SbatBi4C+gP7AGOBc5I6Dky22T3puB+ot/9+eKd+RoPaPwAuBe41s1LgLuDuEMILjdQ5G6g2s7vN7Cgz69uCv9uxwJeA3fAPqiPqP2hmBWb2++Txw0MIK5OHxgCzkr/ntcCd9cL7/4AFwBDgeOBqMzuk3m7HAROBPsCE5L7/SJ7XB3gc+E0Las85CmDJZv2BT0IIVY08tjh5vDUqgZ+HECrxkOgP3BRCKA8hvAO8C+wOEEKYFkKYHEKoSrrv3wH/3sz+a4CfhhDWhxDWNXwwhPB7YA4wBRgMXNHYTkIIq4D9gYB/SCxPOtGBm3jtX4YQPg8hfAw8D+xR77EuwP34h8NXQghr6z02L4Tw+xBCNXB3UtdAMxsO7AdcGkL4IoTwJnAHcEq9574WQng0hFBT7+/7cgjhiWR/fyJ5P/ONAliy2SdA/ybGFQcnj7fGp0kwAKSBsbTe4+uAHgBmtqOZTUq+/FuFjzM3F/zLQwhfNLPN74ERwM0hhCbHdEMIM0MIp4YQhiXbDwFu3MR+l9T789r075HYHu9WrwohVDT1vHrB3CN5vc9CCOX1tp2H//aQmt+COkrycXxYASzZ7DX8C6ev1b/TzHoARwHPdUINtwHvATuEEHoBlwONjqvWs8klCJP6bwTuBK40s34tKSSE8B7wRzyIW2Mm8G3gSTNr6ayMRUA/M+tZ776tgIX1S2tlPTlPASxZKxmfvAq42cyONLMuZlYGPIiPSf6pE8roCawCVpvZzsDZDR5fCmy7mfu8CZgaQvgu8Ffgt41tZGY7m9nFZjYsuT0cOAmYvJmvVyuEcD/+IfKsmW3Xgu3nA68CvzCzEjPbDTgNuLe1NeQTBbBktRDCtXhgXIcH4RT8V96xm/rVvR39APgmUI4PGzzQ4PErgbuTWQcnNLczMxsHHEldkH8fGGVmJzeyeTn+5dgUM1uDB+8M4OJW/D1qhRDuBv4b+Hvygdack/BZJ4uAR/Dx7WfbUkO+MC3ILiIShzpgEZFIFMAiIpEogEVEIlEAi4hEkncTn6Vx/fv3D2VlZbHLEMkq06ZN+ySEMKC1z1cACwBlZWVMnTo1dhkiWcXM5rXl+RqCEBGJRAEskk9WroRXX4V580DHAESnABbJdSHAQw/BiBHQpw/stx+UlcGWW8KPfgTl5c3uQjqGAlgkly1ZAmPHwgknQGEh/Pzn8NhjcOutcPDBcM01sNNO8PTTsSvNS/oSTiRXLVjg4btgAdxyC5x5podw6uyzYcoUOP10+MpX4P774bjj4tWbh9QBi+SihQvhgAO8A/7b3+CcczYM39SYMfDSS/ClL3mX/NBDnV9rHlMAi+SaykoP008+geee8zHfTend24cg9tkHxo+HGTM6p05RAIvknEsu8ZkOd94Jo1t4rssePWDiRA/j446DVas6tkYBFMAiuWXSJLjxRjj/fO+CN8egQfDAA/DBB3DuuR1Tn2xAASySK1av9rHeESPgV79q3T4OPBAuvxzuvReeeaZ965ONKIBFcsWVV8L8+fC730Fxcev3c/nlsMMOHuZfNHfuUGkLBbBILnjrLR96OP102Hfftu2rpMTnCc+ZA7/4RfvUJ41SAIvkgksugV694Je/bJ/9HXoofOMbPpSxaFH77FM2ogAWyXbPP+/TyC6/HPq16Az2LXP11VBVBf/93+23T9mAAlgkm4Xg6zkMGwbf+1777nvbbf3ouTvugNmz23ffAiiARbLbI4/AP/8JV13lY7ft7cc/9v3+13+1/75FASyStUKA//kfn7Fwyikd8xoDB8KFF/ohyjNndsxr5DEFsEi2evJJmD4dLrsMijpwXa0LL4Ru3drvCz6ppQAWyUZp97vVVvCtb3Xsa/XvD2ecARMmwNy5HftaeUYBLJKN/vEPeO01n37WpUvHv94PfuCrqV17bce/Vh5RAItko2uv9TNafOc7nfN6Q4f6Sml//CMsW9Y5r5kHFMAi2ebdd33893vf87HZzvL978P69X6UnLQLBbBItrnxRp8adtZZnfu6O+8MxxzjAbxuXee+do5SAItkk2XL4J57fNrZgAGd//oXXwzLl/sXctJmCmCRbPLb3/owwEUXxXn9gw6CPfaA66/Xae3bgQJYJFtUVMBtt8FRR/lwQAxmHv4zZ/rpjqRNFMAi2WLiRD/J5nnnxa3jG9/w4Y+bb45bRw5QAItki5tv9sOOjzgibh1du/qBGX/5C3z4YdxaspwCWCQbTJ0Kkyf71LOCDPixPftsr0NT0tokA/4lRaRZN9/sZy4+9dTYlbihQ/3syXfcAWvXxq4maymARTLdJ5/42YpPOcXPepEpvvc9+PxzuP/+2JVkLQWwSKa7806fenbOObEr2dD++8PIkXDLLZqS1koKYJFMVl3tU88OOgh23TV2NRsy8w+F6dN9fFo2mwJYJJM98QTMmwfnnhu7ksZ961s+LPKb38SuJCspgEUy2S23wJAhMG5c7Eoa16OHr5L20EOwdGnsarKOAlgkU73/vp/t+MwzO2fN39Y65xyorPQZEbJZFMAimeq22/xUQ6efHruSTdt5Zxg7Fn73Oz+NvbSYAlgkE61dC3fd5XNtBw+OXU3zzj0X5s+HSZNiV5JVFMAimei++3yObaZ++dbQV74Cw4f7mLW0mAJYJNOE4EE2cqTPtc0GRUW+QPyzz8J778WuJmsogEUyzSuvwJtv+pFmZrGrabnvfheKizUlbTMogEUyzc03Q58+cPLJsSvZPFtuCSeeCHffDatWxa4mKyiARTLJwoXw8MNw2mnQvXvsajbfeefB6tV+9mRplgJYJJP89rdQU5N56z601OjRMGaMD0PU1MSuJuMpgEUyxRdf+FzaY4+FbbeNXU3rnXeeH0Ty1FOxK8l4CmCRTDFhgp9x+MILY1fSNl//us9dvuGG2JVkPAWwSCYIwQNrt93g4INjV9M2xcU+g+PZZ+Htt2NXk9EUwCKZ4Nln4Z13/IzD2TT1rClnngndusFNN8WuJKMpgEUywQ03wMCBcNJJsStpH1ts4WfwuPdeWLYsdjUZSwEsEtvbb8OTT/phx127xq6m/Vx0EVRU6PT1m6AAFont2mt9zm+2rPvQUjvt5OsY33KLzw2WjSiARWKaN89Pann66dCvX+xq2t+ll8KKFfD738euJCMpgEViuv56/9Lt+9+PXUnH2Htv+Pd/979nRUXsajKOAlgklmXLvDM8+WRfyjFXXXopLFgAf/pT7EoyjgJYJJZf/cpPN3/ZZbEr6VhHHgl77QU//7mfukhqKYBFYli2DG69Fb75Tf+yKpeZwZVXwocfqgtuQAEsEsN11/naDz/+cexKOscxx6gLboQCWKSzLVniU7NOOin3u99U2gXPnaulKutRAIt0tquu8hkBV14Zu5LOdcwxPiviyiv9pKOiABbpVLNn+8yHM8+E7bePXU3nMvODThYt0hoRCQWwSGe6/HJfpOYnP4ldSRwHHOBnUP7lL+HTT2NXE50CWKSzvPiin27oBz/w86flq1/8wg9N/ulPY1cSnQJYpDNUVfkauVtvDT/8Yexq4tp1Vz/l0m23+dmf85gCWKQz3HKLr3p2ww1QWhq7mvh+9jNfsvLcc/P63HEKYJGOtmiRj/kefjh89auxq8kMffrANdfAq6/6aezzlAJYpCOF4DMeKir8TMG5cLaL9jJ+vH8pd9FFsHBh7GqiUACLdKR774VJk+Dqq2GHHWJXk1kKCuAPf/APpzPO8A+rPKMAFukoCxbA+efDfvv5tWxs++19VsQTT3gY5xkFsEhHqKyEE0/02Q933QWFhbErylznnedngj7vPD8xaR5RAIt0hCuugFde8aPeNPSwaQUFMGEC9OoFX/96Xp2+SAEs0t4eesjX+j3rLO+CpXmDB8N998F778F3vpM3U9MUwCLt6dVX4f/9P9h3X5/zKy13yCG+VsRDD/lvEHmgKHYBIjlj1iw/C/Dw4fDYY1BSErui7HPxxfDBB75WxFZbwdlnx66oQymARdrDe+95B2fm3+j37x+7ouxkBjff7DNIzjnHv7w844zYVXUYDUGItNWMGf4tfk0NvPCCvnRrq6IimDjR1w8+80w/gCVHKYBF2uLJJ3281wyefx522SV2Rbmha1dfOW7cOJ+edtFFUF0du6p2pwAWaY3qaj+67dhj/WCCf/4T/u3fYleVW9IQvvBCuPFGOPpoP51TDlEAi2yuuXN9yOGKK3ze6osvwrBhsavKTYWFPpvk9tv9fR45Eh59NHZV7UYBLNJSa9b4qma77OLr2N5zD9x/P/ToEbuy3Hf66TBtmn/Q/ed/+vjw7Nmxq2ozBbBIc1au9GlR22zj69h+7Wvw7rs+31erm3WeXXaBKVPguuvgpZf89imn+L9FllIAizSmqgr+/nc49VQ/Suuyy2Cvvfzw4vvu05BDLMXFPld49my44AIfI951VzjwQD/d/YoVsSvcLBbycAk42djo0aPD1KlTY5cRT3W1H0jxyis+m+Hpp+Gzz3x44Zvf9OlQo0bFrlIaWr7cV1G78054/30fMz7wQBg71q9HjYLu3Tvs5c1sWghhdKufrwAWyIMArqjw7mj5cli61Cf6z5sHc+Z48M6YAWvX+raDBsGhh/pY4xFHdOgPsLSTEOD11+GRR+Cvf/XTP4EPEe24o89Q2WEHKCvzIxUHD/YTo/br5/++rRxKUgBLuxg9YECYOm5cx79QU//f0vvrPx7CxpeaGr+urq67VFX5pbIS1q/3y7p1flm9GsrL/c+NGTYMdtoJRozwbmnMGP+B1dhudvv0U1+XY/p0/8J01iz/sK2o2HjboiLo2dMvpaXQrZtPgeva1Yc8unTxbQoL6y5DhsD11yuApX2MLi4OUzvrVOlNhVt6f/3HzTa8FBT4df0fhsJC/yHp0qXuB6dbN7/07OnDCH36+GXAABg40IN32DDfVvJDTY3/9vPxx369bJn/VrRihX9Il5f7b0Hr1tV9kFdU+Ad7VVXdB35NjZ/d+umn2xzAWgtC3G67QS4PQYgUFPjQw+DBsSuppVkQIiKRKIBFRCLRGLAAYGblwKzYdTSjP/BJ7CKakQ01QnbUmQ017hRC6NnaJ2sMWFKz2vJlQmcws6mqsX1kQ53ZUmNbnq8hCBGRSBTAIiKRKIAldXvsAlpANbafbKgz52vUl3AiIpGoAxYRiUQBLCISiQI4z5nZkWY2y8zmmNmPYteTMrPhZva8mb1rZu+Y2QXJ/f3M7Bkzez+57psBtRaa2XQzm5Tc3sbMpiTv6QNmVhy5vj5mNtHM3jOzmWa2T6a9j2Z2UfLvPMPM7jezkkx4H83sD2a2zMxm1Luv0ffO3P8m9b5lZs2uX6oAzmNmVgjcAhwF7AKcZGaZclrfKuDiEMIuwN7AuUltPwKeCyHsADyX3I7tAmBmvdvXADeEELYHVgCnRamqzk3AUyGEnYHd8Voz5n00s6HA+cDoEMIIoBA4kcx4H/8IHNngvqbeu6OAHZLLGcBtze49hKBLnl6AfYCn692+DLgsdl1N1PoYcBh+tN7g5L7B+AEkMesalvwQHgJMAgw/equosfc4Qn29gQ9JvnCvd3/GvI/AUGA+0A8/OGwScESmvI9AGTCjufcO+B1wUmPbNXVRB5zf0v/4qQXJfRnFzMqAPYEpwMAQwuLkoSXAwEhlpW4ELgFqkttbAJ+HEKqS27Hf022A5cBdyTDJHWbWnQx6H0MIC4HrgI+BxcBKYBqZ9T7W19R7t9k/TwpgyWhm1gN4GLgwhLCq/mPB24xo8yjN7FhgWQhhWqwaWqAIGAXcFkLYE1hDg+GGDHgf+wLj8A+LIUB3Nv61PyO19b1TAOe3hcDwereHJfdlBDPrgofvhBDCn5O7l5rZ4OTxwcCyWPUB+wH/YWYfAf+HD0PcBPQxs3Sdldjv6QJgQQhhSnJ7Ih7ImfQ+Hgp8GEJYHkKoBP6Mv7eZ9D7W19R7t9k/Twrg/PY6sEPybXMx/sXH45FrAvwbZeBOYGYI4fp6Dz0OjE/+PB4fG44ihHBZCGFYCKEMf+/+HkI4GXgeOD7ZLHaNS4D5ZrZTctdY4F0y6H3Ehx72NrPS5N89rTFj3scGmnrvHgdOSWZD7A2srDdU0bhYA++6ZMYFOBqYDXwAXBG7nnp17Y//avcW8GZyORofY30OeB94FugXu9ak3oOAScmftwX+CcwBHgK6Rq5tD2Bq8l4+CvTNtPcRuAp4D5gB/AnomgnvI3A/Pi5dif82cVpT7x3+Bewtyc/S2/isjk3uv02HIpvZkfivXIXAHSGEX7Z6ZyIieabVAZzMIZ2NTw1agP86e1II4d32K09EJHe1ZUH2LwNzQghzAczs//BvMpsM4P79+4eysrI2vKS01eef+8lfhw/f8P5p06Z9EkIYkN4+rODrWqVJpJ5nah5q4nTerdeWAG5sztuYhhuZ2Rn4USFstdVWTNWZd6O65BK4+eaNT4BsZvPiVCSSvzp8FkQI4fYQwugQwugBAwY0/wTpUJWV0KVL7CpEBNoWwBk9h1QaV1EBxVGXhhGRVFsCOGPnkErT1q6F7t1jVyEi0IYx4BBClZl9D3gan4b2hxDCO+1WmXSIVaugR4/YVYgItPG09CGEJ4An2qkW6QSffgpbbBG7ChEBHYqcdxYuhEGDYlchIqAAzivV1fDRR7DddrEricisdReRDqAAziMzZkBVFYwYEbsSEYE2jgFLdvnHP/z6wAPj1hFFU12stbAHafj0UNPgtg4clM2nDjiP3Hsv7LLLxochi0gc6oDzxOTJ8PrrfhiysFHnawXW6P0UNGh9a9JOt9Cvkk441DTogNUhSwuoA84DFRVw9tkwcCCcckrsakQkpQ44x4UAV1wBb74Jjz4KvXrFriiStANNx4LTDrWJjtfS7QoKNnxeEyzdf03SEVfXbPA6tR2yOmOpRx1wDgvBVz+77jrvgMeNi12RiNSnDjhHrVwJ558P99wD554L//u/sSvKEA074YbSTrXQNtjOCpMx3/S6YMPHG+7fqqv9ZtIJ1932a9LbDTtjdcR5RR1wDnr0UZ/tcO+98JOf+BdvBfqXFsk46oBzyGuvwS9+AX/5C+y2mwfxl74Uu6oMVdtppmO0/gllBcntkHS+6fZpx1uYbFeU/Oik14WNf8JZOhZcVeX7Ta5rb1c2uF+dcV5RX5TlqqvhkUdgv/1g333h5Zfh6qv9jBcKX5HMpg44S82cCQ88ABMmwJw5UFbm47zf/raWm9wsTXXCJGO1yRhvSMZwrLBBJ5p0vqE4Oc1Il6INtq9tcdJJF+kYcNL5Fqyv9O0rKvz+9ev9dlOdcfr8jeqXbKQAziKzZ3voPvigr+tg5ocV//zn8LWv1f02LCLZQT+yGWz1anjpJXj2WXjmGXj7bQ/d/ff3L9aOOw4GD45dZY5oohNOx2rTseDafjOdHdHgUy8U+fNqSrwjrin2WROhS4Mj75IxXqvw1yv4IumI165PbiedcHJd2xlXJB1z2iGnHbHGirOSAjiDVFbClCkeuM8954cPV1X5Odz22w9uvBGOPx6GDo1dqYi0BwVwRMuWeeCml9degzVrvLnaay+4+GI49FAP327dYlebJ9IOMiRjrqHxeb4N1R45V+Qdr3X1DjjtfKtK/f6qkqRDLtpwvwVVvt+iL0r9eq2/ftFq73gLVn+RXK/z/a5Lrtf72HHtGHLDsWJ1xBlNAdxJ1q/3w4EnT/awnTwZPvzQHysshJEjYfx4GDsWDjoI+vWLWq6IdAIFcAdYvRreessDd/p0v37rLV8UB3wIYe+9/fDgMWO829WZijNU0kHWdpTp/NyaDdd+qD0CLnlaQdIRFyRjwpR4B5x2vhU9/Lq6myX3p6/n2xVW+B1Fa7sC0LXcO+Piz33st8vKpCNe5Z1wweq1/vS0M07HkNP5xppXnJEUwG20dOmGQTt9Orz/ft3/7379YM894YILPGzHjIFhw+LWLCKZQQHcQuvWwbvv+kyE+pclS+q2KSvzsD35ZNhjD//zsGE6pVhOaDg2nN6/vkFHmc5uSDrjooadZkExANVd/UevMpmzXdnTr6u6+/Y1yZITljTeRV/4HV3K/brrCt9Pt8/8V6eun/pYcZfPvBMuWLXGy1qbdsbeMWv2RGZRADdQXQ1z524ctHPm1P22WVLiay0ccURd0O6+O/TpE7d2EckueR3Ay5ZtHLTvvANJ04CZn0F45Eg48US/HjkStt++blEsyVM1G86SSMdc0yPdLJ0/nFwXpUe+VSUtb02JP8/8R7Cm2PdTmXwXUN3Lty/s4dfVhb7fiir/j1e+2mdZdFnht0uW+35Kl/mYcbfl3lJ3/cTHhAs/W+2vl44Vp51xOq9YHXEUeRHAa9d6sDYM22XL6rYZMMDD9fTT64J211315ZiIdJycC+DPPvMvwt54o+569uy6D/SSEj8t+zHH1AXtyJF+uh6RzdZwbDg5so0G6/5a0mkWJms/dFvfI7ntn/CFld7RWnIE3tpkPnHo7h1wv17esW7Z3TvZomRweGWFTxBfuso73qXLfH8li32MuHSx77fH4uT+5T4WXPip78dWJZ3x2mT2RDJVJx0rVkfcsbI2gEOARYs2DtuPP67bZvhwGDVqw+GD7bbT8IGIZIasCeCaGh9GePFFXx/hxRdh8eK6x3fcEfbZx8/+sOeefunfP169kqcazBuuHRuu3HBM2JJOs+s6vy5a6x1xl7U+Nly4zn8011T67eVJA9q92Lcf2XcRAFv1+wCAgsHeqS4s6wvA258PAeCDJQMAWDXfO+XuC/x1eizy26WLvXMu+sQ74YKkI65Zk44RqyPuSBkbwJWVMG1aXdi+8gqsWOGPDR3qR4vtvbd3uLvvDj17Ri1XRGSzZVQAh+ALit9zjy+5uGqV37/jjr7c4gEH+PKLZWWaWysZbqM1JZLOcV1yXeljwZascla0zq97lCed8Cq/7rrKx3DLV3nHOnfNIADWbp3Mghjo+9+v5/sAHFA6G4Dj+vg42+wh/uXGS9vtBMCUxVsBsPij3v5683xsuMcC77S7L2rQEa8sB9QRd5RmA9jMhgP3AAPx+ee3hxBuMrN+wANAGfARcEIIYUVripg7F/70Jw/euXN95sFxx8FXvuJLLw4a1Jq9iohktpZ0wFXAxSGEN8ysJzDNzJ4BTgWeCyH80sx+BPwIuHRzC/j1r+EHP/COduxYuPJK73Y1/UtySjo2XLXhkWh1Y8JJR5ys5VCyxq+7rPSOtOQzXwui/FP/kf3s0y0BeHQbf3z+1j72e/QWbwGwX7ePABjRYwEAR3afB8CbW/jRQk8PHwnA89vuAMDiD/35PT/y1+k53+cTly7yH8S0I7akI66dNZGuOaF5xK3SbACHEBYDi5M/l5vZTGAoMA44KNnsbuAFNjOAb7/dw/e44+CGG3zWgohIvtisMWAzKwP2BKYAA5NwBliCD1G02IcfwllnwejRcN99vui4SN5obrZEcrsg6YRLVyZjwp95x1u63MeEy5d6xzp18Y4AvLud/xhOHTYHgGP7vAnAl7quBODw0srk9ssAHNH7bQAmDdkDgBe23h6AJR8kY8QfeQfcMxkjLk3mExd+4p2wrUznEW/iyDp1w01q8VmRzawH8DBwYQhhVf3HQgiBeuuTNHjeGWY21cymLl++vPb+YcPg4IN9/u4TT7SueBGRbGahBZ9OZtYFmAQ8HUK4PrlvFnBQCGGxmQ0GXggh7LSp/YwePTpMnTq19nZ5ORx2GLz+ui9sM348jBvnR6tJ5zKzaSGE0entwwq+rrYlhnR6j6VnYU7OsFHiY7JWmpwapbd3wlUD/HrNEH+8fLhvv3prH4vts41/L37wUJ8lkXa8e3T9HIBS8+2XVnvn/cq6MgCe+HQ3AKbN81kTBR/66/bwoWR6LvDtS5Z651v4aTI2XJ50xOnqaxUVOXN2jmdqHmr3uVfNdsDm51q5E5iZhm/icWB88ufxwGOb++I9e8JTT8Gll/raDCee6DMezjjD5/2mq4+JiOSiZjtgM9sfeAl4m/SUsXA5Pg78ILAVMA+fhvbZpvbVsAOur7oaXngB7r4bHn7YF9Dp29enoR14oM8BHjUKunTZnL+etJQ64AzVsCPu4l/bWPKlSUF3HwMOSUdcOcDHitcO3rAjXrOV/+h2L/Ox4DGD/Zj9A3rPAmDH4qUAdEnWmJiHDyNoAAAN7UlEQVRf5efEeqXcZ0m8vHRbAJbM2wKA0nleR8/5yX4X+dhv16XJbInPk454zZqNz86RpR1xR3TALZkF8TJ1Z1ppaGx7FVJY6NPQxo6FW2+Fxx6D55/3I+H+8hffprTUDzdOD8j48pc1XU1EsleLxoDby6Y64E1ZssSPkEvXgfjXv/zD0wx22snXfRg1qm4NCJ3QcvOpA84SLe2Ie3knnI4Rrx3kHfHqoUlHPDT55x3usyy2G+RfkI/s42tMDO3qY8c1wV/n4/X+Q/X2Cl9j4qPF3gkXpkfQzfe6ei7yLrfbknqrrjVccS1L5w5H6YAzwaBBcPzxfgH4/HN49VX/8m76dA/n+++v237rresCedQoP2vFkCE6fFlEMktWBHBDffrA0Uf7JfXJJx7G6eWNN+DRR+s+VPv2rVuScrfd/HrECC3iI1mmifWHa8/1lqzVYMnaDUXJkWu9lnlH3H2hX38xwDvX1YN9dsO8wVsDMGvwUN9uSz+n3MBe/vzexd69divysd4BW/j9y5OmpryLd9jV3ZJz3ZV6J15a2oXiT5LufEV6Vo7kfHXJOhi160tk6dhwW2RlADemf3+f0nbYYXX3lZf7cMW//uWzLN56y9ebKC+v26asbMOF2UeO9MV/9GWfZIVmAjk9oMOS0CtMvhzrkRzA0W2RB/L6/h7E6wZ4JKzd0g/EmD+gFwBz+/r+C3okC8sXJYdSJwFc3dNvr6tKTtFU4EMX1V2KKe3qfy7p6j9UBSuSxefLvSaSoQnycKGfnAngxvTs6bMo9t+/7r4QYN68jU9P9OSTkHxJS3Ex7LzzxsGsMxyLSHvK6QBujJl3vWVlvtpaav16mDXLu+Q0lP/xD5gwoW6bPn182KLhUEavXp39txBpQhPLYIYGp0aytenp670jLl2WdMS9kkOP+/nt9Vt4t7qun395t75vMsSQDN2FEn+99CwzaX9SnRxMtb6PYSGJmQK/s7jIO+Ki5EkFRf54WJMMTVhuTFtribwL4KZ07eqButtuG96/YgXMmLFhtzxhQt1axeBnSU5PT59eDxqkbllENk0B3Iy+fX3e8QEH1N0XAsyf793ym2/65Y03YOLEum223LIukPfYA/bay4NaoSydqrmOOPkiLP3SzpIvSIo/8zHhLkuSL9N6+e3K3t7FVvTx6Fjf07vZKt+M6uJ0mpxfFVRDdfJ9SkWP5LDq6g1X3ioqTKbUJePGte10Mn5NYwv81P+7ZTEFcCuYwVZb+eXYY+vuX7nSQ3n6dA/l6dPh+utrT35Av34wZoxf9t7bDyTp2zfO30FE4lMAt6PevTfulisq4N13YepUmDIFJk/29S/SD+8dd/QwHjMG9t3Xh0AKWrxGnchmatgRp81kgwXiSRbTSWdPFKzwrrWkm3fCXXskJ/ns4R1xVQ9vc6tKvXutKvH/xDVFdb/yFVQlS3AmDW5Nif+hpsqnsBUktdU+I/11Mf2BSGZJkC7hmQNjwwrgDlZcXDcM8d3v+n2rVnkgT57sofzUUz49Dnw63cEHw6GH+mHZ226rYQuRXKUAjqBXLzjkEL9A3dS4F1+E557zy0MP+WNlZXVrZBx5pIYspIM0OGVSbZfZcD5xMmfXypM5vV29e+2aLJdZXOodcU1JcXJdRCj2DjYUbNhJWGUyHp3cHbokrXHyXGuqs03H9NLSa9KuPvvGhhXAGaD+1LhTTvH/P7Nm1YXxww/DnXf6wSGHHw4nnODrJvfuHbtyEWkLBXAGMvMDQXbeGc4915uR11/3IH7wQfjrX31o48gjPYyPO06L2Es7a2r2RFUyjzgdj03HiosaLApU7B1yYXExITkCjmThoJDOcki/60gaV2u4AHg6OyLZd22Xnjxc20+n84VrGuwwCzphfd2TBQoL/Yu6X/0KPvoIXnvNg3naNPjWt3zxoZ/9DD79NHalIrI5smI5SmlcTY2vmfzrX/uh1N26wXe+Az/8oYfy5tBylNIqDZfHTMd501MpFRXVLplJ2iUXbXg77XQ3Up10smmHm45Pp7crG9yfjlt30JhwlFMSSeYqKPAv5554ou6UTrffDrvsAjfeWPv/UUQylAI4R4wYAX/4A7z/Phx0EFx0kc8rfued2JVJTgvBLzXVUFNNqKryS0UFoaKCmnVfULN6jV/KV/tlVblfVq6iZuUqQnpZvcYva9b65Ysv/FJZSais9I64ugZqgl8SZoaZeRduBViBeSee3MYsY+dyKoBzzNZbw6RJcN99MHeuh/Arr8SuSkQao1kQOcgMTjrJl+E89FCfuvb44z5cIdIp6s2iCOlE33SMtsF4ce3tdCw4PfKtua614dhuOv7c1NBbur8Mmh2hDjiHDR/uB3dsu62fzmnhwtgViUh9CuAcN3AgPPKIr3d8+ukZ9eEv+SIdJ244XlydXKoqCVWV1FQkly/WU/PFesL65FJRueElHWdOn19dQ2hkbLhWOhacgTKzKmlX228PV1/tU9Wefz52NSKSUgDnibPO8uUwb701diUiiSY646Y65NrblVUbXqqrN7zUhLq5wODzgUO9o+wyaFaEAjhPlJTA+PHw2GOQnPlFRCJTAOeRww/3g4gmT45diUgLNNMh13a2zV2a2m8GUADnkX328et//jNuHSLiNA84j/Tu7bMiPvggdiUi7SBDuti2UAecZ8rK4OOPY1chIqAAzjv9+2vZSpFMoQDOM337wooVsasQEdiMADazQjObbmaTktvbmNkUM5tjZg+YWXHHlSntpbQU1q2LXYWIwOZ1wBcAM+vdvga4IYSwPbACOK09C5OOUVKiABbJFC0KYDMbBhwD3JHcNuAQYGKyyd3AVzuiQGlfXbpsdFJZEYmkpR3wjcAl1J7tji2Az0MIyblAWAAMbeyJZnaGmU01s6nLly9vU7HSdkVFtWd0EZHImg1gMzsWWBZCmNaaFwgh3B5CGB1CGD1gwIDW7ELaUUGBn0tOROJryYEY+wH/YWZHAyVAL+AmoI+ZFSVd8DBAq81mAQWwSOZotgMOIVwWQhgWQigDTgT+HkI4GXgeOD7ZbDzwWIdVKe3GLCcOIBLJCW2ZB3wp8H0zm4OPCd/ZPiVJR1IAi2SOzVoLIoTwAvBC8ue5wJfbvyTpSBmyDKqIoCPhRESiUQDnGXXAIplDASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikbQogM2sj5lNNLP3zGymme1jZv3M7Bkzez+57tvRxYqI5JKWdsA3AU+FEHYGdgdmAj8Cngsh7AA8l9wWEZEWajaAzaw3cCBwJ0AIoSKE8DkwDrg72exu4KsdVaSISC5qSQe8DbAcuMvMppvZHWbWHRgYQlicbLMEGNjYk83sDDObamZTly9f3j5Vi4jkgJYEcBEwCrgthLAnsIYGww0hhACExp4cQrg9hDA6hDB6wIABba1XRCRntCSAFwALQghTktsT8UBeamaDAZLrZR1ToohIbmo2gEMIS4D5ZrZTctdY4F3gcWB8ct944LEOqVBEJEcVtXC784AJZlYMzAW+jYf3g2Z2GjAPOKFjShQRyU0tCuAQwpvA6EYeGtu+5YiI5A8dCSciEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiaVEAm9lFZvaOmc0ws/vNrMTMtjGzKWY2x8weMLPiji5WRCSXNBvAZjYUOB8YHUIYARQCJwLXADeEELYHVgCndWShIiK5pqVDEEVANzMrAkqBxcAhwMTk8buBr7Z/eSIiuavZAA4hLASuAz7Gg3clMA34PIRQlWy2ABja2PPN7Awzm2pmU5cvX94+VYuI5ICWDEH0BcYB2wBDgO7AkS19gRDC7SGE0SGE0QMGDGh1oSIiuaYlQxCHAh+GEJaHECqBPwP7AX2SIQmAYcDCDqpRRCQntSSAPwb2NrNSMzNgLPAu8DxwfLLNeOCxjilRRCQ3tWQMeAr+ZdsbwNvJc24HLgW+b2ZzgC2AOzuwThGRnFPU/CYQQvgp8NMGd88FvtzuFYmI5AkdCSciEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBnGf23hsuuCB2FSICYCGEznsxs+XAvE57QdkcW4cQBsQuQiSfdGoAi4hIHQ1BiIhEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFI/j/fTeIW/P11/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#%% Sinkhorn\n", + "\n", + "lambd = 2e-3\n", + "Gs = ot.sinkhorn(a, b, M, lambd, verbose=True)\n", + "\n", + "pl.figure(4, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, Gs, 'OT matrix Sinkhorn')\n", + "\n", + "pl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solve Smooth OT\n", + "--------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYXFW19/Hv6jnzQEISMtAgk0BQQjBhFAgCAt74igOIEq7KPIuCoFfhekFRZLgIKIoIMlwkCGhkEBAEgUQSghCmEAKZSEgCmRPS037/WLu6O51u0vOu4fd5nvNUzqlTp1ZVp1at2mefvS2EgIiIdL+i1AGIiBQqJWARkUSUgEVEElECFhFJRAlYRCQRJWARkUSUgEUiMzvAzN5IHUdnMrMTzeyfqeOQ5ikBS6eJH/aXzWy9mS0xsxvNrH+871dmtjYuVWZW3Wj9oW6ILZjZDh+1Twjh6RDCzu08/v5m9qyZrTKzD8zsGTPbu33Rto+ZVcbXWdLB43Ta39HMDjKzhY3Wy8zsT/H96Wtml5jZ7R2JN5cpAUunMLPzgSuA7wL9gPHAtsCjZlYWQjg1hNA7hNAbuBy4O7MeQvhsushdR5KWmfUFpgDXAQOB4cClwMbOia77dOXf0czKgT8B/YHDQgirOxBnh75ksoUSsHRYTECXAmeFEB4OIVSHEN4BvgxUAl9rxzEPMrOFZnaBmS01s8Vm9nkzO9LMZscq8+JG+3/KzJ4zs5Vx31+aWVm876m4279jpfaVRse/0MyWALc0rtbM7GPxOcbE9W3MbJmZHdRMuDsBhBDuCiHUhhA2hBD+FkJ4KT72xFjxXR3jm2tm+8btC+Lrm9TotfQzs9vi880zsx+YWVG8ryiuz4uPu83M+sWHZl7nyvg692l0zCvNbIWZvW1mzSbKrvg7Njp2T+AvQAlwVAhhXTuOEczsDDN7E3gzbtvFzB6Nf6s3zOzLjfbfysz+Ymarzex5M/sfy7LmGCVg6Qz7AhV4dVMvhLAWeBD4TDuPOzQedzjwQ+A3eBLYCzgA+C8z2y7uWwucBwwC9gEmAKfHOA6M+3wiVmp3Nzr+QLzCO7lJ7G8BFwK3x+RxC3BrCOHJZuKcDdSa2a1m9lkzG9DMPuOAl4CtgDuB/wP2BnaIr+mXZtY77nsdXn1uD3waOAH4z3jfiXE5ON7fG/hlvC/zOvvH1/lco+d+I743PwNuNjNrJsau+juWAw8BHwITQwgb2nkcgM/jr2dXM+sFPIq/n1sDxwI3mNmucd/rgXX433lSXLKKErB0hkHA8hBCTTP3LY73t0c1cFkIoRpPWIOAa0MIa0IIrwCvAp8ACCHMCCFMDSHUxKrt13jy+ih1wI9CCBubSwohhN8Ac4BpwDDg+80dJP6U3h8I+JfEMjP7s5kNabTb2yGEW0IItcDdwEjgv+Nz/w2oAnYws2I8kVwUX+c7wC+Ar8fjHA9cFUKYGxPjRcCxW/hJPi+E8Jv43LfG1zKkmf266u/YB/9SvDWE0NFmmZ+EED6If6+jgXfi+1oTQpgJ3At8Kb6Px+B/3/UhhFfx155VlIClMywHBrWQBIbF+9vj/Zg0ADIJ8r1G92/AK0DMbCczmxJPGq3G2ye3lDCWhRA+3MI+vwF2B677qOQRQngthHBiCGFE3H8b4JpGuzSNmxBCc69lEFAKzGt03zz8VwDxuE3vK6H5hJqxpFGc6+M/ezezX1f9HZfjXyq3mtnh7TxGxoJG/94WGBebdVaa2Ur8C2ooMBh/Xxa08NisoAQsneE5/ITTFxpvjD+pPws83g0x3Ai8DuwYQugLXAw09zO7sY8cCjDGfw1wM3CJmQ1sTSAhhNeB3+OJuK2W45X/to22jQIWxX+/28x9NXiC7+jQhl32dwwh/Ak4CZhsZgd3IMbGr3EB8I8QQv9GS+8QwmnAMvx9GdFo/5EdeN4uoQQsHRZCWIWfvLnOzI4ws1IzqwT+CCwE/tANYfQBVgNrzWwX4LQm97+Ht5m2xbXA9BDCt4C/Ar9qbqd4Iuh8MxsR10cCxwFT2/h8xIr/j8BlZtbHzLYFvg1kumrdBZxnZtvFxJjpiVCDJ5062v46M8/dpX/HEMJdwJnAA2a2X6O7isysotFS3spDTgF2MrOvx1hLzWxvM/t4fB//hH9x9oz/J07oSPxdQQlYOkUI4Wd41Xklngin4RXKhE5o92uN7wBfBdbgzQZ3N7n/Evwn8MrGZ8pbYmYTgSNoSOTfBsaY2fHN7L4GPzE0zczW4Yl3FnB+O14HwFn4yaO5wD/xk0y/i/f9Dk+ETwFv4ye2zoL65oXLgGfi6xzf1ifu6r9jCOFW/H35q5l9Km4+Dm+CySxvtfJYa4DD8OaNd/Gmlivwk37gyb5f3P4H/Mur/jWY2Sst/D27jWlAdhEpBGZ2BTA0hJA1vSFUAYtIXopNQ3uY+xTwTeC+1HE1lhdXk4iINKMP3uywDX4O4BfAA0kjakJNECIiiagJQkQkETVBCACDBg0KlZWVqcMQySkzZsxYHkIY3N7HKwELAJWVlUyfPj11GCI5xczmbXmvlqkJQkQkESVgkUKyahU8+yzMmwc6AZ+cErBIvgsB7rkHdt8d+veH/faDykrYemv43vdgzZrUERYsJWCRfLZkCUyYAF/+MhQXw2WXwQMPwA03wMEHwxVXwM47wyOPpI60IOkknEi+WrjQk+/ChXD99XDKKZ6EM047DaZNg5NOgs99Du66C445Jl28BUgVsEg+WrQIDjjAK+C//Q1OP33T5Jsxbhw8/TTsvbdXyffc0/2xFjAlYJF8U13tyXT5cnj8cW/z/Sj9+nkTxD77wKRJMGtW98QpSsAieeeCC7ynw803w9ixrXtM794webIn42OOgdXtnrBY2kAJWCSfTJkC11wDZ5/tVXBbDB0Kd98Nb70FZ5zRNfHJJpSARfLF2rXe1rv77vDzn7fvGAceCBdfDLffDo8+2rnxyWaUgEXyxSWXwIIF8OtfQ1lZ+49z8cWw446ezD/c0pyl0hFKwCL54KWXvOnhpJNg3307dqyKCu8nPGcO/OQnnROfNEsJWCQfXHAB9O0LP/1p5xzv0EPhK1/xpox33+2cY8pmlIBFct0TT3g3sosvhoEDO++4l18ONTXw3//deceUTSgBi+SyEHw8hxEj4MwzO/fY22/vV8/99rcwe3bnHlsAJWCR3HbfffCvf8Gll3rbbWf7wQ/8uP/1X51/bFECFslZIcD//I/3WDjhhK55jiFD4Nxz/RLl117rmucoYErAIrnqoYdg5ky46CIo6cJxtc49F3r06LwTfFJPCVgkF2Wq31Gj4Gtf69rnGjQITj4Z7rgD5s7t2ucqMErAIrnoH/+A557z7melpV3/fN/5jo+m9rOfdf1zFRAlYJFc9LOf+YwW3/hG9zzf8OE+Utrvfw9Ll3bPcxYAJWCRXPPqq97+e+aZ3jbbXb79bdi40a+Sk06hBCySa665xruGnXpq9z7vLrvAUUd5At6woXufO08pAYvkkqVL4bbbvNvZ4MHd//znnw/LlvkJOekwJWCRXPKrX3kzwHnnpXn+gw6CT34SrrpK09p3AiVgkVxRVQU33gif/aw3B6Rg5sn/tdd8uiPpECVgkVwxebJPsnnWWWnj+MpXvPnjuuvSxpEHlIBFcsV11/llx4cfnjaO8nK/MOMvf4G3304bS45TAhbJBdOnw9Sp3vWsKAs+tqed5nGoS1qHZMFfUkS26LrrfObiE09MHYkbPtxnT/7tb2H9+tTR5CwlYJFst3y5z1Z8wgk+60W2OPNMWLkS7rordSQ5SwlYJNvdfLN3PTv99NSRbGr//WH0aLj+enVJayclYJFsVlvrXc8OOgh22y11NJsy8y+FmTO9fVraTAlYJJs9+CDMmwdnnJE6kuZ97WveLPLLX6aOJCcpAYtks+uvh222gYkTU0fSvN69fZS0e+6B995LHU3OUQIWyVZvvumzHZ9ySveM+dtep58O1dXeI0LaRAlYJFvdeKNPNXTSSakj+Wi77AITJsCvf+3T2EurKQGLZKP16+GWW7yv7bBhqaPZsjPOgAULYMqU1JHkFCVgkWx0553exzZbT7419bnPwciR3mYtraYELJJtQvBENnq097XNBSUlPkD8Y4/B66+njiZnKAGLZJtnnoEXX/QrzcxSR9N63/oWlJWpS1obKAGLZJvrroP+/eH441NH0jZbbw3HHgu33gqrV6eOJicoAYtkk0WL4N574ZvfhF69UkfTdmedBWvX+uzJskVKwCLZ5Fe/grq67Bv3obXGjoVx47wZoq4udTRZTwlYJFt8+KH3pT36aNh++9TRtN9ZZ/lFJA8/nDqSrKcELJIt7rjDZxw+99zUkXTMl77kfZevvjp1JFlPCVgkG4TgCWuPPeDgg1NH0zFlZd6D47HH4OWXU0eT1ZSARbLBY4/BK6/4jMO51PWsJaecAj16wLXXpo4kqykBi2SDq6+GIUPguONSR9I5ttrKZ/C4/XZYujR1NFlLCVgktZdfhoce8suOy8tTR9N5zjsPqqo0ff1HUAIWSe1nP/M+v7ky7kNr7byzj2N8/fXeN1g2owQsktK8eT6p5UknwcCBqaPpfBdeCCtWwG9+kzqSrKQELJLSVVf5Sbdvfzt1JF1j/Hj49Kf9dVZVpY4m6ygBi6SydKlXhscf70M55qsLL4SFC+EPf0gdSdZRAhZJ5ec/9+nmL7oodSRd64gjYK+94LLLfOoiqacELJLC0qVwww3w1a/6yap8ZgaXXAJvv60quAklYJEUrrzSx374wQ9SR9I9jjpKVXAzlIBFutuSJd4167jj8r/6zchUwXPnaqjKRpSARbrbpZd6j4BLLkkdSfc66ijvFXHJJT7pqCgBi3Sr2bO958Mpp8AOO6SOpnuZ+UUn776rMSIiJWCR7nTxxT5IzQ9/mDqSNA44wGdQ/ulP4f33U0eTnBKwSHd56imfbug73/H50wrVT37ilyb/6EepI0lOCVikO9TU+Bi5224L3/1u6mjS2m03n3Lpxht99ucCpgQs0h2uv95HPbv6aujZM3U06f34xz5k5RlnFPTccUrAIl3t3Xe9zfeww+Dzn08dTXbo3x+uuAKefdansS9QSsAiXSkE7/FQVeUzBefDbBedZdIkPyl33nmwaFHqaJJQAhbpSrffDlOmwOWXw447po4muxQVwe9+519OJ5/sX1YFRglYpKssXAhnnw377ee3srkddvBeEQ8+6Mm4wCgBi3SF6mo49ljv/XDLLVBcnDqi7HXWWT4T9Fln+cSkBUQJWKQrfP/78MwzftWbmh4+WlER3HEH9O0LX/pSQU1fpAQs0tnuucfH+j31VK+CZcuGDYM774TXX4dvfKNguqYpAYt0pmefha9/Hfbd1/v8SusdcoiPFXHPPf4LogCUpA5AJG+88YbPAjxyJDzwAFRUpI4o95x/Prz1lo8VMWoUnHZa6oi6lBKwSGd4/XWv4Mz8jP6gQakjyk1mcN113oPk9NP95OXJJ6eOqsuoCUKko2bN8rP4dXXw5JM66dZRJSUwebKPH3zKKX4BS55SAhbpiIce8vZeM3jiCdh119QR5Yfych85buJE75523nlQW5s6qk6nBCzSHrW1fnXb0Uf7xQT/+hd8/OOpo8ovmSR87rlwzTVw5JE+nVMeUQIWaau5c73J4fvf936rTz0FI0akjio/FRd7b5KbbvL3efRouP/+1FF1GiVgkdZat85HNdt1Vx/H9rbb4K67oHfv1JHlv5NOghkz/Ivu//0/bx+ePTt1VB2mBCyyJatWebeo7bbzcWy/8AV49VXv76vRzbrPrrvCtGlw5ZXw9NO+fsIJ/rfIUUrAIs2pqYG//x1OPNGv0rroIthrL7+8+M471eSQSlmZ9xWePRvOOcfbiHfbDQ480Ke7X7EidYRtYqEAh4CTzY0dOzZMnz49dRjp1Nb6hRTPPOO9GR55BD74wJsXvvpV7w41ZkzqKKWpZct8FLWbb4Y33/Q24wMPhAkT/HbMGOjVq8ue3sxmhBDGtvvxSsACBZCAq6q8Olq2DN57zzv6z5sHc+Z44p01C9av932HDoVDD/W2xsMP79IPsHSSEOD55+G+++Cvf/Xpn8CbiHbayXuo7LgjVFb6lYrDhvnEqAMH+t+3nU1JSsDSKcYOHhymT5zY9U/U0v+3zPbG94ew+VJX57e1tQ1LTY0v1dWwcaMvGzb4snYtrFnj/27OiBGw886w++5eLY0b5x9Yte3mtvff93E5Zs70E6ZvvOFftlVVm+9bUgJ9+vjSsyf06OFd4MrLvcmjtNT3KS5uWLbZBq66SglYOsfYsrIwvbumSm8puWW2N77fbNOlqMhvG38Yiov9Q1Ja2vDB6dHDlz59vBmhf39fBg+GIUM88Y4Y4ftKYair818/8+f77dKl/qtoxQr/kl6zxn8FbdjQ8EVeVeVf7DU1DV/4dXU+u/Ujj3Q4AWssCHF77AH53AQhUlTkTQ/DhqWOpJ56QYiIJKIELCKSiNqABQAzWwO8kTqOLRgELE8dxBbkQoyQG3HmQow7hxD6tPfBagOWjDc6cjKhO5jZdMXYOXIhzlyJsSOPVxOEiEgiSsAiIokoAUvGTakDaAXF2HlyIc68j1En4UREElEFLCKSiBKwiEgiSsAFzsyOMLM3zGyOmX0vdTwZZjbSzJ4ws1fN7BUzOyduH2hmj5rZm/F2QBbEWmxmM81sSlzfzsymxff0bjMrSxxffzObbGavm9lrZrZPtr2PZnZe/DvPMrO7zKwiG95HM/udmS01s1mNtjX73pn73xjvS2a2xfFLlYALmJkVA9cDnwV2BY4zs2yZ1rcGOD+EsCswHjgjxvY94PEQwo7A43E9tXOA1xqtXwFcHULYAVgBfDNJVA2uBR4OIewCfAKPNWveRzMbDpwNjA0h7A4UA8eSHe/j74Ejmmxr6b37LLBjXE4Gbtzi0UMIWgp0AfYBHmm0fhFwUeq4Woj1AeAz+NV6w+K2YfgFJCnjGhE/hIcAUwDDr94qae49ThBfP+Bt4gn3Rtuz5n0EhgMLgIH4xWFTgMOz5X0EKoFZW3rvgF8DxzW3X0uLKuDClvmPn7EwbssqZlYJ7AlMA4aEEBbHu5YAQxKFlXENcAFQF9e3AlaGEGrieur3dDtgGXBLbCb5rZn1IovexxDCIuBKYD6wGFgFzCC73sfGWnrv2vx5UgKWrGZmvYF7gXNDCKsb3xe8zEjWj9LMjgaWhhBmpIqhFUqAMcCNIYQ9gXU0aW7IgvdxADAR/7LYBujF5j/7s1JH3zsl4MK2CBjZaH1E3JYVzKwUT753hBD+FDe/Z2bD4v3DgKWp4gP2A/7DzN4B/g9vhrgW6G9mmXFWUr+nC4GFIYRpcX0ynpCz6X08FHg7hLAshFAN/Al/b7PpfWyspfeuzZ8nJeDC9jywYzzbXIaf+Phz4pgAP6MM3Ay8FkK4qtFdfwYmxX9PwtuGkwghXBRCGBFCqMTfu7+HEI4HngC+GHdLHeMSYIGZ7Rw3TQBeJYveR7zpYbyZ9Yx/90yMWfM+NtHSe/dn4ITYG2I8sKpRU0XzUjW8a8mOBTgSmA28BXw/dTyN4tof/2n3EvBiXI7E21gfB94EHgMGpo41xnsQMCX+e3vgX8Ac4B6gPHFsnwSmx/fyfmBAtr2PwKXA68As4A9AeTa8j8BdeLt0Nf5r4pstvXf4Cdjr42fpZbxXx0cev0OXIpvZEfhPrmLgtyGEn7b7YCIiBabdCTj2IZ2Ndw1aiP+cPS6E8GrnhScikr86MiD7p4A5IYS5AGb2f/iZzBYT8KBBg0JlZWUHnlI6auVKn/x15MhNt8+YMWN5CGFwZv0zRV/SKE0ijTxad08L03m3X0cScHN93sY13cnMTsavCmHUqFFM18y7SV1wAVx33eYTIJvZvDQRiRSuLu8FEUK4KYQwNoQwdvDgwVt+gHSp6mooLU0dhYhAxxJwVvchleZVVUFZ0qFhRCSjIwk4a/uQSsvWr4devVJHISLQgTbgEEKNmZ0JPIJ3Q/tdCOGVTotMusTq1dC7d+ooRAQ6OC19COFB4MFOikW6wfvvw1ZbpY4ii1g8sd2B/vAi7aVLkQvMokUwdGjqKEQElIALSm0tvPMOfOxjqSNJyKzJUhSXptubLCJdQAm4gMyaBTU1sPvuqSMREehgG7Dkln/8w28PPDBtHNnEiry6DbWb3eG3IY6z3lIVrLZj6QBVwAXk9tth1103vwxZRNJQBVwgpk6F55/3y5ALmm1ac1hJCx+B4mK/rYsVbqyU69czlTGZ1ea3q0KWj6IKuABUVcFpp8GQIXDCCamjEZEMVcB5LgT4/vfhxRfh/vuhb9/UEWWXzYZjjRWyZSrg4sz2Jm3ATR5ndXWbHq9JRbxZhazKWFAFnNdC8NHPrrzSK+CJE1NHJCKNqQLOU6tWwdlnw223wRlnwP/+b+qIskTTNtq6FirRJhWvlcaPSpM25Pq24cx+tbWbHDfE9cz2UJupgFUZiyrgvHT//d7b4fbb4Yc/9BNvRfpLi2QdVcB55Lnn4Cc/gb/8BfbYwxPx3nunjirLZCpMy/T/3bQDsBXVNbtffeVbnLn1xmHLDK7cdEyJuG41Nb45thHXr1dV+3p9ZRzjyKyrMi4IqotyXG0t3Hcf7Lcf7Lsv/POfcPnlPuOFkq9IdlMFnKNeew3uvhvuuAPmzIHKSm/n/c//1HCTrVJfUTbtzxtrkkzbbX1lm9mvaNPtJV4Jh7JNK+FQXrLJ4TO9JKjx4xbFCjizHjZW+frGjb6eqZSr422mQlZFnFeUgHPI7NmedP/4Rx/XwcwvK77sMvjCF6ClawpEJDvpI5vF1q6Fp5+Gxx6DRx+Fl1/2pLv//n5i7ZhjYNiw1FHmuM0qydg7IVae9VfEZdpsM70b4t4W4vxOTSrf2l7lvl7iFXMojm3C8fmsum6T4xVtiMffUBXXYyX8od/WV8ZVfn+mN4Uq49ymBJxFqqth2jRPuI8/7pcP19T4HG777QfXXANf/CIMH546UhHpDErACS1d6gk3szz3HKxb58XUXnvB+efDoYd68u3RI3W0BaJJ23CoadpvuEmlmekNkWkTbtIvuK7MK+CaHr5fbXmT+0t9vXijH6/4Qz9+6XqvwIvXxop4zYd+u95vw4YNfvth823GqohzgxJwN9m40S8HnjrVk+3UqfD2235fcTGMHg2TJsGECXDQQTBwYNJwRaQbKAF3gbVr4aWXPOHOnOm3L73kg+KANyGMH++XB48b59WuZirOMk0qx1ATey2E4mbvz1z5ZrFttrg07hcr4tpyr4TrSmNFXOHbq/rGtuNMd+M6f1xxlX80S9ZXAFC+xv+DlK30CrdklVe+RWvW++1avw3rY2WcaSuuadqLQhVxNlEC7qD33ts00c6cCW++2fD/fOBA2HNPOOccT7bjxsGIEWljFpHsoATcShs2wKuvek+ExsuSJQ37VFZ6sj3+ePjkJ/3fI0ZoSrG8EDYd26F+DInMbWZ7rDgzVzhZfRtyT398rIjrSjIVsa9Xx19AtT3i88QC2uLDizf4R7Vstd+Wr/BeFhUr/IEVy73iLVkRK+LV6/w4mbbiDbHtWP2Ks4oScBO1tTB37uaJds6chvMvFRU+1sLhhzck2k98Avr3Txu7iOSWgk7AS5dunmhfeQXWexGBmc8gPHo0HHus344eDTvs0NA9VApMplKMk8iF0GR0s1hZFmWupKv2tuOSWHlaLHWLarxttyb2isj0E66JlXBN/9gLolfs1RDHqFhb45Xz6rV+5V3ZB/4fsWKZV9g9l/pxeyzt4/e/75Vv8cq1/jxr4m2mIo79m1URp1EQCXj9ek+sTZPt0qUN+wwe7Mn1pJMaEu1uu+nkmIh0nbxLwB984CfCXnih4Xb27IYv9IoKn5b9qKMaEu3o0T5dj0ibtdA2XJfpFVGTqXxjJRwrzqIP/Zvd6nzgjvUb40cxeIW7IY4xQayAt+rvlevgnt62W2L+fKuqvIP4klVe8S5ZGtuEF3sbca/FZfE2bl/qU6IUf+DHszWxrbhp7wn1J+4WOZuAQ4B339082c6f37DPyJEwZsymzQcf+5iaD0QkO+RMAq6r82aEp57y8RGeegoWL264f6edYJ99fPaHPff0ZdCgdPFKgWmhbbjpjBiWGVMiXsFWsTH2613rFWpp7PdbssGrhLXVvr4sPk3fMn/czgPeA2BU+Qd+RxwTZP52fgXPyyu3AWDOksEArJrvlXLvhV4p937X24x7LPG24JLlXhEXrfbbunWxX7Eq4i6VtQm4uhpmzGhIts88AytW+H3Dh/vVYuPHe4X7iU9Anz5JwxURabOsSsAh+IDit93mQy6uXu3bd9rJh1s84AAffrGyUn1rJcs1rYirYuWYaSuObcKZirh0nbfBFq+OvRdWxSvfVnsb7trVXsHOXuel7rpRvr10iB9vfO85ABzQczYAH/b3j/br2/j+T2+/EwDT3t0WgHffiZXwfH+ePgu90u652LeXLFsDqCLualtMwGY2ErgNGIKPwndTCOFaMxsI3A1UAu8AXw4hrGhPEHPnwh/+4Il37lzveXDMMfC5z/nQi0OHtueoIiLZrTUVcA1wfgjhBTPrA8wws0eBE4HHQwg/NbPvAd8DLmxrAL/4BXznO17RTpgAl1zi1a66f0leyfSWaDI2Q2bsCIvj/Vq8cq1inVeipbF3Q8UH3ma75gP/yC5937vtTN7Oe1HMH+Vtv0dv9W8AxlUsAGCP3gsBOLznXAD+PWgrAB7edjQA/1i4AwCL3/ariHq/48/TZ4H3oui52I+fqYgtVsT1vSYyo7GpH3G7bDEBhxAWA4vjv9eY2WvAcGAicFDc7VbgSdqYgG+6yZPvMcfA1Vd7rwURkULRpjZgM6sE9gSmAUNicgZYgjdRtNrbb8Opp8LYsXDnnT7ouEjBqK+IN70SzTJXzMXKMjPKWa+VXomWv+/9eHvFK95WL/Htzy3eBYBXtvf2ukNGeFvw5/q/CMCe5X78I3r6cceVPwXAtH4vAzBlm08C8OQor4iXzPXKu887mTZir4h7vOvrJcu9Ig71/YgzbcTNXFmnarhFrZ4V2cx6A/dlzgyZAAAPx0lEQVQC54YQVje+L4QQaJilpenjTjaz6WY2fdmyZfXbR4yAgw/2/rsPPti+4EVEcpmFVnw7mVkpMAV4JIRwVdz2BnBQCGGxmQ0Dngwh7PxRxxk7dmyYPn16/fqaNfCZz8Dzz/vANpMmwcSJfrWadC8zmxFCGJtZ/0zRl1S2pJDp3mNx9uVS/5Fq8Sei9YxTo/TzCrVmsN+uH+YV6pqRsf/wtt4W27tyFQCfHuG9JA7t9woAu5X5dfg949O9W+vHf3b9jgA8uvzjAMya5/2Jy97x4/ee5/v3WeSVesUSr4CLVsSKeG1mFLbMWBNVeTMW8aN193R636stVsDmc63cDLyWSb7Rn4FJ8d+TgAfa+uR9+sDDD8OFF/rYDMce6z0eTj7Z+/3W1W35GCIiuWqLFbCZ7Q88DbxMZqIsuBhvB/4jMAqYh3dD++CjjtW0Am6sthaefBJuvRXuvdcH0BkwwLuhHXig9wEeMwZKS9vy8qS1VAFnqRYq4qJyr0gzFXGIFXH14Di2xDb+M3LNCH/culH+0e0VK+K9h3oviX37eWW8Y7kPbF0cP+ILqr23xLNrvE34uSXbAbB8vveW6DXf4+gzPx53sfcPLlvqFbCtjBXxunWbz1uXoxVxV1TArekF8U+gpSee0FmBFBd7N7QJE+CGG+CBB+CJJ/xKuL/8xffp2dMvN85ckPGpT6m7mojkrqy6Ei6jd2+fVeL44319yRK/Qi4zDsSll/qXpxnsvLOP+zBmTMMYEJrQUvJGC1fU1WZ6S8T+w0WxX27ZKq88S5d5RdxrUayI53vFvHbuAACeGtE/3nqF+7GhfoJ8t37esWl4+UoARlb4j9q6IV5JzyrzSnd+L/+QVffx427sF9uI+3pK6RFHYSv+oLx+xDVijKjvcL2sTMBNDR0KX/yiLwArV8Kzz/rJu5kzPTnfdVfD/ttu25CQx4zxWSu22UaXL4tIdsmJBNxU//5w5JG+ZCxf7sk4s7zwAtx/f8OX6oABDUNS7rGH3+6+uwbxkRzTyorY4tgNJSu9x2jfpV4J91rotxvmeRvxuiHehjxvmI8R8caw4QD0HOxV69Z9/cq3fmXeq6FnqVfAW23l29+PRc2aUq+Aa3qUxFtvG+zZq5TS9/2+ohXxKrq1Teary/G24Y7IyQTcnEGDvEvbZz7TsG3NGvj3v315+WWfGv6223x7RmXlpgOzjx7tg//oZJ/khBYScmawHIuD51j8+V8cT471iQO391zotxsHeSLeMNhTwvqt+wGwaJBf+PHOwDjVUi+/0KK4JF5CXeTPX9PX7/+wLjObqDdZ1JaV06NHnDapLHMC0T9ctiqmnw89uVOAA/3kTQJuTp8+3oti//0btoUA8+ZtPj3RQw/VT2hLWRnsssvmiVkzHItIZ8rrBNwcM696Kyt9tLWMjRvhjTe8Ss4k5X/8A+64o2Gf/v292aJpU0bfvt39KkRasKWKOJ4As3jpcNEqb6LoudQH4ano500UfQZ4RbxxK69WNwz0KnbjAE8Z1bHpLlTEqZcys8zEp49zjrKxvxEsk2b8mGWlvnNJnJqmKE4wGtbFpglr0m0tTu9EXW1r34WcUXAJuCXl5Z5Q99hj0+0rVsCsWZtWy3fc0TBWMfgsyZnp6TO3Q4eqWhaRj6YEvAUDBni/4wMOaNgWAixY4NXyiy/68sILMHlywz5bb92QkD/5SdhrL0/USsrSrbY0VVKTk3YWT5CUve/VaumSON19X1+v7uelbVUc8H1jH2/rrfHdqC3b9D+41UJdHGiruncsk0O8rDrGVlzkj7GieGFubD8mxkas3utbgvOobVgJuB3MYNQoX44+umH7qlWelGfO9KQ8cyZcdVX95AcMHAjjxvkyfrxfSDJgQJrXICLpKQF3on79Nq+Wq6rg1Vdh+nSYNg2mTvXxLzJf3jvt5Ml43DjYd19vAilq9Rh1Im3UtCLOFJOZijhzJjoOpmNrM4PteNVa0cMr4fLefturt1fENb29Hbemp1e5NRX+n7iuxAiZwrY2DsFZ7BVvbUUcaKgmdlOLIVpmEJjiTCXsvSMyvSQy0zrlQ7c1JeAuVlbW0AzxrW/5ttWrPSFPnepJ+eGHvXsceHe6gw+GQw/1y7K3317NFiL5Sgk4gb594ZBDfIGGrnFPPQWPP+7LPff4fZWVDWNkHHGEmiykizSZMqm+ytys94T3J7Y1XvFmBgUqr/DbsngbenjFXNujlLryTBeJTRVVx0o3Vhgh9o6wsthPuOkD6jbdvz70HK6ElYCzQOOucSec4P+P3nijIRnfey/cfLNfHHLYYfDlL/u4yf36pY5cRDpCCTgLmfmFILvsAmec4cXI8897Iv7jH+Gvf/WmjSOO8GR8zDEaxF46WUu9J+IUSpkr7OrbikuaDBwfq9jSsjJCRewGUeIVboj9f+sbfTOFbdMKN+5vdfGy1DiBaX11HmPM1MP1lXDT15DFdLonBxQX+4m6n/8c3nkHnnvOE/OMGfC1r/ngQz/+Mbz/fupIRaQtWjUlUWf5qAHZpe3q6nzM5F/8wi+l7tEDvvEN+O53PSm3hQZkl3ZpOmB87NNLrHKtpKR+EHkyVXLJpuv1x8g8trZJP99YGYdM1R2vjAsbNx3Wsn4MiYxO7i+cZEoiyV5FRX5y7sEHG6Z0uukm2HVXuOaa+l9qIpKllIDzxO67w+9+B2++CQcdBOed5/2KX3kldWSS10Lwpa4W6moJtXGpqiJUVVG34UPq1m3wZc1aX1av8WXVaupWrSasWePL2nW+bNjgy8aNvlRXE6qrvaKorY1T3TdMGGlmvhRtujTaIWv7cioB55ltt4UpU+DOO2HuXE/CzzyTOioRaY56QeQhMzjuOB+G89BDvevan//szRUiXappe2uore9BUb+pSXtx/Xpxk3qwfmwI2/TYmfVM23BLbbzW5Hgh+9rkVAHnsZEj/eKO7bf36ZwWLUodkYg0pgSc54YMgfvu84GlTjopJ7pGSr7JtBO31F5cU02oqaauatMl044cqqp9qa7xng6xLTjU1hFq67xXRF1u/sdWAi4AO+wAl1/uXdWeeCJ1NCKSoQRcIE491YfDvOGG1JGIRC1Uxi1VyE0r5fr7M0td2GRp2lsiGykBF4iKCpg0CR54AOLMLyKSmBJwATnsMJ94dOrU1JGItEKmMm6j+n7AVgRWtHm/4CyiBFxA9tnHb//1r7RxiIhTP+AC0q+f94p4663UkYi0QTN9iz9y97qPXs8mqoALTGUlzJ+fOgoRASXggjNokIatFMkWSsAFZsAAWLEidRQiAm1IwGZWbGYzzWxKXN/OzKaZ2Rwzu9vMyrouTOksPXvChg2poxARaFsFfA7wWqP1K4CrQwg7ACuAb3ZmYNI1KiqUgEWyRasSsJmNAI4CfhvXDTgEmBx3uRX4fFcEKJ2rtBSqq1NHISLQ+gr4GuAC6qfPYytgZQghMwfIQmB4cw80s5PNbLqZTV+2bFmHgpWOKynxizFEJL0tJmAzOxpYGkKY0Z4nCCHcFEIYG0IYO3jw4PYcQjpRUVH9MKoiklhrLsTYD/gPMzsSqAD6AtcC/c2sJFbBIwCNNpsDlIBFsscWK+AQwkUhhBEhhErgWODvIYTjgSeAL8bdJgEPdFmU0mnMNCawSLboSD/gC4Fvm9kcvE345s4JSbqSErBI9mjTWBAhhCeBJ+O/5wKf6vyQpCtl6eSwIgVJV8KJiCSiBFxgVAGLZA8lYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRFqVgM2sv5lNNrPXzew1M9vHzAaa2aNm9ma8HdDVwYqI5JPWVsDXAg+HEHYBPgG8BnwPeDyEsCPweFwXEZFW2mICNrN+wIHAzQAhhKoQwkpgInBr3O1W4PNdFaSISD5qTQW8HbAMuMXMZprZb82sFzAkhLA47rMEGNLcg83sZDObbmbTly1b1jlRi4jkgdYk4BJgDHBjCGFPYB1NmhtCCAEIzT04hHBTCGFsCGHs4MGDOxqviEjeaE0CXggsDCFMi+uT8YT8npkNA4i3S7smRBGR/LTFBBxCWAIsMLOd46YJwKvAn4FJcdsk4IEuiVBEJE+VtHK/s4A7zKwMmAv8J568/2hm3wTmAV/umhBFRPJTqxJwCOFFYGwzd03o3HBERAqHroQTEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJJFWJWAzO8/MXjGzWWZ2l5lVmNl2ZjbNzOaY2d1mVtbVwYqI5JMtJmAzGw6cDYwNIewOFAPHAlcAV4cQdgBWAN/sykBFRPJNa5sgSoAeZlYC9AQWA4cAk+P9twKf7/zwRETy1xYTcAhhEXAlMB9PvKuAGcDKEEJN3G0hMLy5x5vZyWY23cymL1u2rHOiFhHJA61pghgATAS2A7YBegFHtPYJQgg3hRDGhhDGDh48uN2Biojkm9Y0QRwKvB1CWBZCqAb+BOwH9I9NEgAjgEVdFKOISF5qTQKeD4w3s55mZsAE4FXgCeCLcZ9JwANdE6KISH5qTRvwNPxk2wvAy/ExNwEXAt82sznAVsDNXRiniEjeKdnyLhBC+BHwoyab5wKf6vSIREQKhK6EExFJRAlYRCQRJWARkUSUgEVEElECFhFJRAlYRCQRJWARkUSUgEVEElECFhFJRAlYRCQRJWARkUSUgEVEElECFhFJRAlYRCQRJWARkUSUgEWkMJj5kkWUgEVEEmnVjBgiIjkvhNQRbEYVsIhIIkrAIiKJKAGLiCSiBCwikogSsIhIIkrAIiKJKAGLiCSiBCwikogSsIhIIkrAIlIYiop9ySJKwCIiiWgsCBEpDHW1qSPYjCpgEZFElIBFRBJRAi4w48fDOeekjkJEACx04xiZZrYMmNdtTyhtsW0IYXDqIEQKSbcmYBERaaAmCBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQSUQIWEUlECVhEJBElYBGRRJSARUQS+f/Js7GEh8ojHQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8lNXZ//HPRcIqyCIIyBYpgkVwQSrg9mixSl0e/NVqtVqxteK+t1q1T6tPH61a61LqUitarUpVrEupS9XiUhUUxIVFEEEEZAn7qiHJ+f1x3TEBAmSZyZnl+3695jWZmTsz19xJvjlz7nOfYyEERESk4TWKXYCISL5SAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgkSrM7BAzmxm7jlQyszPM7D8RX/8wM1sQ6/UzmQJYUir5Y//IzDaY2WIzu9vM2iSP3WNm65JLiZltqnL7+QaoLZhZr+1tE0J4I4TQp47Pf7CZvWVmq81shZm9aWbfqlu1dWNmRcn7LKzn86Tl52hmTc1stJnNM7O1Zva+mX23PrVmMwWwpIyZXQ7cBPwcaA0MBnoAL5lZkxDCOSGEliGElsANwGMVt0MI0f8I6xNaZrYzMA4YBbQDugDXAV+lprqGk+afYyEwH/iv5Ll/CTxuZkU1rK1e/1gyjQJYUiIJoOuAC0MIL4QQNoUQPgNOAoqA0+rwnIeZ2QIzu8LMlprZIjM73syONrNZSSvz6irbH2Bmb5vZqmTbP5pZk+Sx15PNPkhaaj+o8vxXmtli4IGqH5fN7BvJawxIbu9mZsVmdlg15fYGCCGMCSGUhRA2hhD+FUL4MPneM5IW8W1JfXPM7MDk/vnJ+xtR5b20NrOHktebZ2a/NLNGyWONktvzku97yMxaJ99a8T5XJe9zSJXnvMXMVprZ3G21OtPxc6wqhLA+hHBtCOGzEEJ5CGEcMBfYfxv1VN1vy4Frk/t/YmYzkvfzopn1qPI9R5rZzOSTyF1m9pqZ/bQ+daeLAlhS5UCgGfD3qneGENYBzwHfqePzdkqetwvwK+DPeAjsDxwC/I+Z7Z5sWwZcCrQHhgBDgfOSOg5Nttknaak9VuX52+EtvJFb1P4pcCXwsJm1AB4AHgwhvFpNnbOAMjN70My+a2Ztq9lmEPAhsAvwKPA34FtAr+Q9/dHMWibbjsJbiD3x1uLpwI+Tx85ILocnj7cE/pg8VvE+2yTv8+0qrz0z2Tc3A6PNzKqpMV0/x2qZWUf8n9e07Ww2CJgDdASuN7PhwNXA94AOwBvAmOT52gNjgavw/TwTf08ZSQEsqdIeWBZCKK3msUXJ43WxCbg+hLAJD6z2wB0hhLUhhGnAdGAfgBDC5BDChBBCadJq+xMeXttTDvw6hPBVCGHjlg+GEP4MzAYmAp2Ba6p7khDCGuBgIOD/JIrN7NkkYCrMDSE8EEIoAx4DugH/m7z2v4ASoJeZFQAnA1cl7/Mz4PfAj5LnORW4NYQwJwnGq4CTd/DxfF4I4c/Jaz+YvJeO1WyXrp/jVsysMfAI/k/t4+1s+kUIYVTyc90InAP8NoQwI6nzBmDfpBV8NDAthPD35LE/AItTVXOqKYAlVZYB7bcRAp2Tx+tieRIaABUBuaTK4xvxFiBm1tvMxiUHjdbgf5g7CoziEMKXO9jmz0A/YFQIYZt9ukkgnBFC6Jpsvxtwe5VNtqybEEJ176U90BiYV+WxefinAJLn3fKxQqoP1Apfh1AIYUPyZctqtkvXz3EzSXfKX/F/OhfsYPP5W9zuAdyRdOWsAlYAhu+f3apuH3y2sYwdgaEAllR5Gz/g9L2qdyYfqb8LvNIANdwNfAzsEULYGf+YWt3H7Kq2Ox1gUv/twGjgWjNrV5NCkhbdX/Agrq1leMu/R5X7ugMLk6+/qOaxUjzg6zu9Ydp/jknXx2j8H8YJyaeb7dnyPc0Hzg4htKlyaR5CeAtvpXfd4rW6kqEUwJISIYTV+MGbUWY2zMwaJ0e2H8dbIH9tgDJaAWuAdWa2J3DuFo8vwftMa+MOYFII4afAP4F7qtvIzPY0s8vNrGtyuxtwCjChlq9H0uJ/HO/vbJV8tL4MeDjZZAxwqZntngRjxUiEUqAY71ap7fuseO2G+DneDXwTOK66bp8auAe4ysz2gq8PWJ6YPPZPoH9ysLYQOB/v589ICmBJmRDCzXir8xY8CCfirZWh2/vonkI/A34IrMW7DR7b4vFrgQeTj64n7ejJkoM9w6gM8suAAWZ2ajWbr8UPFk00s/V48E4FLq/D+wC4EFiPH3z6D37Q7v7ksfvxIHwdH0HwZbJ9RffC9cCbyfscXNsXTufPMflncjawL7DYKscPV7dPt1XfU/gwub8lXU1T8dY5IYRlwIn4gcblQF9gEslwQPMTbdbV5z2kkmlCdhHJVUlf8wLg1BDC+Nj1bEktYBHJKWZ2lJm1MbOmVB4HqHVXUENQAItIrhkCfIofzDwOOL6Ofc1ppy4IEZFI1AIWEYkkpya2kLpr3759KCoqil2GSFaZPHnyshBCh7p+vwJYACgqKmLSpEmxyxDJKmY2b8dbbZu6IEREIlEAi+ST1avhrbdg3jzQAfjoFMAiuS4EeOIJ6NcP2rSBgw6CoiLYdVf4xS9g7drYFeYtBbBILlu8GIYOhZNOgoICuP56eOYZuOsuOPxwuOkm6NMHXnwxdqV5SQfhRHLVggUevgsWwJ13wtlnewhXOPdcmDgRzjoLjjsOxoyBE06IV28eUgtYJBctXAiHHOIt4H/9C847b/PwrTBoELzxBnzrW95KfuKJhq81jymARXLNpk0epsuWwSuveJ/v9rRu7V0QQ4bAiBEwdWrD1CkKYJGcc8UVPtJh9GgYOLBm39OyJYwd62F8wgmwZk16axRAASySW8aNg9tvh4su8lZwbXTqBI89Bp9+Cuefn576ZDMKYJFcsW6d9/X26we/+13dnuPQQ+Hqq+Hhh+Gll1Jbn2xFASySK669FubPhz/9CZo0qfvzXH017LGHh/mXO1qvVOpDASySCz780LsezjoLDjywfs/VrJmPE549G37729TUJ9VSAIvkgiuugJ13hhtvTM3zHXEE/OAH3pXxxRepeU7ZigJYJNuNH+/DyK6+Gtq1S93z3nADlJbC//5v6p5TNqMAFslmIfh8Dl27wgUXpPa5e/b0s+fuuw9mzUrtcwugABbJbk89Be+8A9dd5323qfbLX/rz/s//pP65RQEskrVCgP/7Px+xcPrp6XmNjh3hkkv8FOUZM9LzGnlMASySrZ5/HqZMgauugsI0zqt1ySXQvHnqDvDJ1xTAItmoovXbvTucdlp6X6t9exg5Eh55BObMSe9r5RkFsEg2eu01ePttH37WuHH6X+9nP/PZ1G6+Of2vlUcUwCLZ6OabfUWLn/ykYV6vSxefKe0vf4GlSxvmNfOAAlgk20yf7v2/F1zgfbMN5bLL4Kuv/Cw5SQkFsEi2uf12Hxp2zjkN+7p77gnHHOMBvHFjw752jlIAi2STpUvhoYd82FmHDg3/+pdfDsXFfkBO6k0BLJJN7rnHuwEuvTTO6x92GOy7L9x6q5a1TwEFsEi2KCmBu++G737XuwNiMPPwnzHDlzuSelEAi2SLsWN9kc0LL4xbxw9+4N0fo0bFrSMHKIBFssWoUX7a8VFHxa2jaVM/MeMf/4C5c+PWkuUUwCLZYNIkmDDBh541yoA/23PP9To0JK1eMuAnKSI7NGqUr1x8xhmxK3FduvjqyffdBxs2xK4maymARTLdsmW+WvHpp/uqF5niggtg1SoYMyZ2JVlLASyS6UaP9qFn550Xu5LNHXww9O8Pd96pIWl1pAAWyWRlZT707LDDYK+9YlezOTP/pzBlivdPS60pgEUy2XPPwbx5cP75sSup3mmnebfIH/8Yu5KspAAWyWR33gm77QbDh8eupHotW/osaU88AUuWxK4m6yiARTLVJ5/4asdnn90wc/7W1XnnwaZNPiJCakUBLJKp7r7blxo666zYlWzfnnvC0KHwpz/5MvZSYwpgkUy0YQM88ICPte3cOXY1O3b++TB/PowbF7uSrKIAFslEjz7qY2wz9eDblo47Drp18z5rqTEFsEimCcGDrH9/H2ubDQoLfYL4l1+Gjz+OXU3WUACLZJo334T33/czzcxiV1NzP/0pNGmiIWm1oAAWyTSjRkGbNnDqqbErqZ1dd4WTT4YHH4Q1a2JXkxUUwCKZZOFCePJJOPNM2Gmn2NXU3oUXwrp1vnqy7JACWCST3HMPlJdn3rwPNTVwIAwa5N0Q5eWxq8l4CmCRTPHllz6W9thjoWfP2NXU3YUX+kkkL7wQu5KMpwAWyRSPPOIrDl9ySexK6ufEE33s8m23xa4k4ymARTJBCB5Ye+8Nhx8eu5r6adLER3C8/DJ89FHsajKaAlgkE7z8Mkyb5isOZ9PQs205+2xo3hzuuCN2JRlNASySCW67DTp2hFNOiV1Jauyyi6/g8fDDsHRp7GoylgJYJLaPPoLnn/fTjps2jV1N6lx6KZSUaPn67VAAi8R2880+5jdb5n2oqT59fB7jO+/0scGyFQWwSEzz5vmilmedBe3axa4m9a68ElauhD//OXYlGUkBLBLTrbf6QbfLLotdSXoMHgz/9V/+PktKYleTcRTAIrEsXeotw1NP9akcc9WVV8KCBfDXv8auJOMogEVi+d3vfLn5q66KXUl6DRsG++8P11/vSxfJ1xTAIjEsXQp33QU//KEfrMplZnDttTB3rlrBW1AAi8Rwyy0+98Mvfxm7koZxzDFqBVdDASzS0BYv9qFZp5yS+63fChWt4DlzNFVlFQpgkYZ23XU+IuDaa2NX0rCOOcZHRVx7rS86KgpgkQY1a5aPfDj7bOjVK3Y1DcvMTzr54gvNEZFQAIs0pKuv9klqfvWr2JXEccghvoLyjTfC8uWxq4lOASzSUF5/3Zcb+tnPfP20fPXb3/qpyb/+dexKolMAizSE0lKfI7dHD/j5z2NXE9dee/mSS3ff7as/5zEFsEhDuPNOn/XsttugRYvY1cT3m9/4lJXnn5/Xa8cpgEXS7YsvvM/3yCPh+ONjV5MZ2rSBm26Ct97yZezzlAJYJJ1C8BEPJSW+UnAurHaRKiNG+EG5Sy+FhQtjVxOFAlgknR5+GMaNgxtugD32iF1NZmnUCO6/3/85jRzp/6zyjAJYJF0WLICLLoKDDvJr2VqvXj4q4rnnPIzzjAJYJB02bYKTT/bRDw88AAUFsSvKXBde6CtBX3ihL0yaRxTAIulwzTXw5pt+1pu6HravUSN45BHYeWc48cS8Wr5IASySak884XP9nnOOt4Jlxzp3hkcfhY8/hp/8JG+GpimARVLprbfgRz+CAw/0Mb9Sc9/+ts8V8cQT/gkiDxTGLkAkZ8yc6asAd+sGzzwDzZrFrij7XH45fPqpzxXRvTuce27sitJKASySCh9/7C04Mz+i37597IqykxmMGuUjSM47zw9ejhwZu6q0UReESH1NnepH8cvL4dVXddCtvgoLYexYnz/47LP9BJYcpQAWqY/nn/f+XjMYPx769o1dUW5o2tRnjhs+3IenXXoplJXFrirlFMAidVFW5me3HXusn0zwzjvwzW/Griq3VITwJZfA7bfD0Uf7ck45RAEsUltz5niXwzXX+LjV11+Hrl1jV5WbCgp8NMm99/p+7t8fnn46dlUpowAWqan1631Ws759fR7bhx6CMWOgZcvYleW+s86CyZP9H93/+3/ePzxrVuyq6k0BLLIjq1f7sKjdd/d5bL/3PZg+3cf7anazhtO3L0ycCLfcAm+84bdPP91/FllKASxSndJS+Pe/4Ywz/Cytq66C/ff304sffVRdDrE0aeJjhWfNgosv9j7ivfaCQw/15e5XroxdYa1YyMMp4GRrAwcODJMmTYpdRjxlZX4ixZtv+miGF1+EFSu8e+GHP/ThUAMGxK5StlRc7LOojR4Nn3zifcaHHgpDh/r1gAGw005pe3kzmxxCGFjn71cAC+RBAJeUeOuouBiWLPGB/vPmwezZHrxTp8KGDb5tp05wxBHe13jUUWn9A5YUCQHefReeegr++U9f/gm8i6h3bx+hssceUFTkZyp27uwLo7Zr5z/fOnYlKYAlJQZ26BAmDR+e/hfa1u9bxf1VHw9h60t5uV+XlVVeSkv9smkTfPWVXzZu9Mu6dbB2rX9dna5doU8f6NfPW0uDBvkfrPp2s9vy5T4vx5QpfsB05kz/Z1tSsvW2hYXQqpVfWrSA5s19CFzTpt7l0bixb1NQUHnZbTe49VYFsKTGwCZNwqSGWip9W+FWcX/Vx802vzRq5NdV/xgKCvyPpHHjyj+c5s390qqVdyO0aeOXDh2gY0cP3q5dfVvJD+Xl/unn88/9eulS/1S0cqX/k1671j8FbdxY+Y+8pMT/sZeWVv7DLy/31a1ffLHeAay5IMTtvTfkcheESKNG3vXQuXPsSr6mURAiIpEogEVEIlEfsABgZmuBmbHr2IH2wLLYRexANtQI2VFnNtTYJ4TQqq7frD5gqTCzPgcTGoKZTVKNqZENdWZLjfX5fnVBiIhEogAWEYlEASwV7o1dQA2oxtTJhjpzvkYdhBMRiUQtYBGRSBTAIiKRKIDznJkNM7OZZjbbzH4Ru54KZtbNzMab2XQzm2ZmFyf3tzOzl8zsk+S6bQbUWmBmU8xsXHJ7dzObmOzTx8ysSeT62pjZWDP72MxmmNmQTNuPZnZp8nOeamZjzKxZJuxHM7vfzJaa2dQq91W778z9Ian3QzPb4fylCuA8ZmYFwJ3Ad4G+wClmlinL+pYCl4cQ+gKDgfOT2n4BvBJC2AN4Jbkd28XAjCq3bwJuCyH0AlYCZ0apqtIdwAshhD2BffBaM2Y/mlkX4CJgYAihH1AAnExm7Me/AMO2uG9b++67wB7JZSRw9w6fPYSgS55egCHAi1VuXwVcFbuubdT6DPAd/Gy9zsl9nfETSGLW1TX5I/w2MA4w/Oytwur2cYT6WgNzSQ64V7k/Y/Yj0AWYD7TDTw4bBxyVKfsRKAKm7mjfAX8CTqluu21d1ALObxW/+BUWJPdlFDMrAvYDJgIdQwiLkocWAx0jlVXhduAKoDy5vQuwKoRQmtyOvU93B4qBB5JukvvMbCcyaD+GEBYCtwCfA4uA1cBkMms/VrWtfVfrvycFsGQ0M2sJPAlcEkJYU/Wx4M2MaOMozexYYGkIYXKsGmqgEBgA3B1C2A9YzxbdDRmwH9sCw/F/FrsBO7H1x/6MVN99pwDObwuBblVud03uywhm1hgP30dCCH9P7l5iZp2TxzsDS2PVBxwE/LeZfQb8De+GuANoY2YV86zE3qcLgAUhhInJ7bF4IGfSfjwCmBtCKA4hbAL+ju/bTNqPVW1r39X670kBnN/eBfZIjjY3wQ98PBu5JsCPKAOjgRkhhFurPPQsMCL5egTeNxxFCOGqEELXEEIRvu/+HUI4FRgPfD/ZLHaNi4H5ZtYnuWsoMJ0M2o9418NgM2uR/NwrasyY/biFbe27Z4HTk9EQg4HVVboqqher412XzLgARwOzgE+Ba2LXU6Wug/GPdh8C7yeXo/E+1leAT4CXgXaxa03qPQwYl3zdE3gHmA08ATSNXNu+wKRkXz4NtM20/QhcB3wMTAX+CjTNhP0IjMH7pTfhnybO3Na+ww/A3pn8LX2Ej+rY7vPX61RkMxuGf+QqAO4LIdxY5ycTEckzdQ7gZAzpLHxo0AL84+wpIYTpqStPRCR31WdC9gOA2SGEOQBm9jf8SOY2A7h9+/ahqKioHi8p9bVqlS/+2q3b5vdPnjx5WQihQ8Xt7zQ6UbM0iVTxUvkT21jOu+7qE8DVjXkbtOVGZjYSPyuE7t27M0kr70Z1xRUwatTWCyCb2bw4FYnkr7SPgggh3BtCGBhCGNihQ4cdf4Ok1aZN0Lhx7CpEBOoXwBk9hlSqV1ICTaJODSMiFeoTwBk7hlS2bcMG2Gmn2FWICNSjDziEUGpmFwAv4sPQ7g8hTEtZZZIWa9ZAy5axqxARqOey9CGE54DnUlSLNIDly2GXXWJXISKgU5HzzsKF0KlT7CpEBBTAeaWsDD77DL7xjdiVpFZBr90p6LV77DJEak0BnEemToXSUujXL3YlIgL17AOW7PLaa3596KFx60i1stlzY5cgUidqAeeRhx+Gvn23Pg1ZROJQAOeJCRPg3Xfh3HNjVxJHQZvWFLRpHbsMkc0ogPNASYkHb8eOcPrpsasRkQrqA85xIcA118D778PTT8POO8euKA5r1iz5avX2t2va1L8o98ngwqaSNFYl+U4t4BwWgs9+dsst3gIePjx2RSJSlVrAOWr1arjoInjoITj/fPjDH2JXFFfp4iU12i589RUAhbv3AKCsvX9ksGmf+nUrP4+7bEnMNSwlV6gFnIOeftpHOzz8MPzqVz7/byP9pEUyjlrAOeTtt+G3v4V//AP23tuD+Fvfil1Vdiqdm8xPXzHEOOkb/nI/bxm3mJpMqlxW5tsvWtyQ5UmOULsoy5WVwVNPwUEHwYEHwn/+Azfc4CteKHxFMptawFlqxgx47DF45BGYPRuKiryf98c/1nST6VDRN9z8Xe8LpnlzANYN7A5AeWNvGTdZXQpA089XAlD2yZyGLFOyjAI4i8ya5aH7+OM+r4OZn1Z8/fXwve9BoX6aIllFf7IZbN06eOMNePlleOkl+OgjD92DD/YDayecAJ07x64yv5QtX7HZ7WYLfBWuwh5+fveXvXYFYNX+fv3VtzsC0KK4HICd3/fRGKVzPkt7rZL5FMAZZNMmmDjRA/eVV/z04dJSX8PtoIPg9tvh+9+HLl1iVyoiqaAAjmjpUg/cisvbb8P69d7K3X9/uPxyOOIID9+ky1EyVOm8+QAUJtdtkxbx0qFdAVjZuwCAFXvuBkDjtX6983zvM97pJV/Nq3z9+gaqWDKBAriBfPWVnw48YYKH7YQJMDcZ4lRQAP37w4gRMHQoHHYYtGsXtVwRaQAK4DRYtw4+/NADd8oUv/7wQ58UB7wLYfBgPz140CBv7Wql4txS0SJud79fh4P2BaB4vxYArO/qc02s/qZvX3DQ3gC0nG8AdJyw1h9456MGqVfiUADX05IlmwftlCnwySc+DwN4S3a//eDiiz1sBw2Crl3j1iwimUEBXEMbN8L06T4SoeplcZUToIqKPGxPPRX23de/7trV+3Qlv9mb7wOw65t+u2SYnyXzxUH+J7ipm3882tTzSwBmH9AEgEZfDAGgw2T/j77zk5MACKWlDVC1pJsCeAtlZTBnztZBO3s2lPtIIpo187kWjjqqMmj32QfatIlbu4hkl7wO4KVLtw7aadNgwwZ/3MxXEO7fH04+2a/794devfzAmUhdNXnhXQCK/uW/SKtOOwCA4gP8T7JtDz+Trku3Rf74Pj4M5pPj+gPQ8l2/3fXvnwNQOn9BQ5QtKZYXAbxhgwfrlmG7tMqMgh06eLiedVZl0O61lw6OiUj65FwAr1jhB8Lee6/yetasyoNizZr5suzHHFMZtP37+3I9Ig2u3GdTa/PQ2wC0f83HD39+ol9/MshnYRvc7TMAju/ygT/+TR+n+NaRuwOwcpr3Ffccu86fV6MnskLWBnAI8MUXW4ft559XbtOtGwwYsHn3wTe+oe4DEckMWRPA5eXejfD66z4/wuuvw6JFlY/37g1DhvjqD/vt55f27ePVK1IXFeOHd7slGT88ZB8A/jO8HwDLh3if2FEd/My5YX28pftlb5+f+OEhgwGYPM37lIue8iPHTV6clPbapfYyNoA3bYLJkyvD9s03YaUfl6BLFz9bbPBgb+Husw+0ahW1XBGRWsuoAA7BJxR/6CGfcnHNGr+/d2+fbvGQQ3z6xaIija2V/GBve59vT+8iZsUJgwC45SjvIz5mvw8BGNnhNQB+1/1pADZ08362Pw08FIBxpw4AoMtT3lJu8dTEdJcuNbDDADazbsBDQEcgAPeGEO4ws3bAY0AR8BlwUghhZV2KmDMH/vpXD945c3zkwQknwHHH+dSLnTrV5VlFRDKbhYrhAdvawKwz0DmE8J6ZtQImA8cDZwArQgg3mtkvgLYhhCu391wDBw4MkyZt3hf1+9/Dz37mLdqhQ+H00721q+FfDcvMJocQBlbc/k6jE7f/iyEZYdXpPvph/fH+cfFHe7wDwMg23nJu0chbvCvKfEWPe1Z6C3rMdP9Rd3yimW/3d7WId+Sl8idS/rl7hy3gEMIiYFHy9VozmwF0AYYDhyWbPQi8Cmw3gLd0770eviecALfd5qMWRETyxQ5bwJttbFYEvA70Az4PIbRJ7jdgZcXtbanaAp4714eE7b+/H2Br0qRub0BSQy3g3FB8jreIC49bBsBPe/rkEz/e2UdVNDbvG15Z5qd73rjsQACenL4fAF3+5i3mZv94p4Eqzh7paAHXeFVkM2sJPAlcEkJYU/Wx4Cle7R+smY00s0lmNqm4uPjr+7t2hcMP9/G7zz1Xt+JFRLJZjVrAZtYYGAe8GEK4NblvJnBYCGFR0k/8agihz/aeZ8s+4LVr4TvfgXff9YltRoyA4cP9bDVpWGoB55hkmNCSC7xFvNMxPm3fWUX/AeBHrfz2V8FnVVtW7rOx3bjkCACef8/nnOj5mI8jLvz35IaoOqNFaQEn3QujgRkV4Zt4FhiRfD0CeKa2L96qFbzwAlx5pc/NcPLJPuJh5EjvlqiYfUxEJBfVZBTEwcAbwEdARSReDUwEHge6A/PwYWgrqn2SRHWjICqUlcGrr8KDD8KTT/oEOm3b+jC0Qw/1McADBkDjxrV5e1JTagHnuEbe97v0PB8F0fRon4nqpO7vAXBa6+SMuiQPPtnUGoBRC7xFPG1CTwB6jVkNQPn70xui6owSaxTEf4BtvfDQVBVSUODD0IYOhbvugmeegfHj/Uy4f/zDt2nRwk83rjgh44ADNFxNRLJXrUZB1Nf2WsDbs3ixnyFXMQ/EBx/4WXNm0KePz/swYEDlHBBa0LL21ALOT8vP9D7ijUf7cfVhRTMAOK6Nr+BRErzlPGVjEQCPf+ajJUpe84lWuj8yB4DSRVWWhslRUVrAmaBTJ/j+9/3qpOywAAALFklEQVQCsGoVvPWWH7ybMsXDecyYyu179KgM5AEDfNWK3XbT6csiklmyogVcE8uWeRhXXN57b/PFMdu2rZyScu+9/bpfP03iU0EtYAFYd6L3EX9xpB/u2WsPX2ljcLu5ADRKRptOWOnzEE+d2wWATi/4wZlWf5vQcMU2sHS0gHMmgKuzdq13V3zwgY+y+PBDmDrV769QVLT5xOz9+/vkP/l2sE8BLNUp/fb+AMz/jp8p1eybqwDo3savWxT68LUPFnoQh0/9oEzROD/Rw976oOGKTbO87YKoq1atfBTFwQdX3hcCzJu39fJEzz8PFQvNNmkCe+65dTBrhWMRSaWcbgHXxldfwcyZ3kquGswLqqx12KaNd1ts2ZWx887x6k4VtYClJhrtvScAXwz1I91r+nsLuGlLn+yncWNfYmn9fO/bazutEZ2eSQ7ULV7SoLWmmlrAadS0qQfq3ntvfv/Kld5tUTWUH3mkcq5i8FWSK5anr7ju1EmtZRHZPgXwDrRt6+OODzmk8r4QYP58by2//75f3nsPxo6t3GbXXSsDed99fdKhXr0UypLdyj/8GIBOPg88XTv5arYrDveDcsv2SX7BW/lBvJX9yvlyl28A0PGdrgA0flmnNVdQANeBGXTv7pdjj628f/VqD+UpUzyUp0yBW2/15ZXAxycPGuSXwYP9RJK2beO8BxGJT33AaVZSAtOnw6RJMHEiTJjgi4tW7PbevT2MBw2CAw/0LpBGNZ6jLnXUByypVDLsWwAs79uYr9r6r1LhBm8dN1vutzu+6TMXlE2bGaHC2lMfcBZq0qSyG+KnP/X71qzxQJ4wwUP5hRd8OSbwlZwPPxyOOMJPy+7ZU90WIrlKLeAMUDE07vXX4ZVX/LJwoT9WVFQ5R8awYenrslALWNKloG9vANb28V/e9Z38I16hDxWm1XwfSVH4qp/+THlZwxZYQ2oB5ygzD9qiIl8TLwQfElcRxk8+CaNH+8khRx4JJ53k8ya3bh27chGpD7WAs0BZmc978eST8Pjj8Pnn3rUxbJiH8Qkn1H8Se7WApaEU9vDFHzd805c7/7KtT/hTUOK/cq2n+Hjh0jmfNXxx2xF1SSKJp6DAD9T97nfw2Wfw9ttw/vkweTKcdppPPvSb38Dy5bErFZHaUAs4i5WX+5zJv/+9n0rdvDn85Cfw8597KNeGWsASS8EuflZdyd5FAJQXJKMl5vvk72UzZ0epa0tqActmGjXyg3PPPVe5pNO990LfvnD77d51ISKZSwGcI/r1g/vv9yk4DzsMLr3UxxVPmxa7MpHtK1u+grLlKygY/x4F49+j6cRZNJ046+vHC/r2pqBvbxq1akWjHJs/VgGcY3r0gHHj4NFHYc4cD+E334xdlYhUR8PQcpAZnHKKT8N5xBE+dO3ZZ727QiTTlVdM2D1z7Wb3V4yesI6+HFLZ7LkNWlc6qAWcw7p185M7evb05ZwqTu4QkcygAM5xHTvCU0/5fMdnnVU5B4VItimdN5/SefOxL0uwL0so6NCBgg4dYpdVLwrgPNCrF9xwgw9VGz8+djUiUkEBnCfOOcenw7zrrtiViNRP6YKFlC5YSFlxMWXFxbHLqRcFcJ5o1gxGjIBnnoH162NXIyKgAM4rRx7pC49OyN2Vw0WyigI4jwwZ4tfvvBO3DhFxCuA80rq1j4r49NPYlYikTzadMacAzjNFRT6dpYjEpzPh8kz79rBoUewqRNLn6zPpsoBawHmmbVtYuTJ2FSICtQhgMyswsylmNi65vbuZTTSz2Wb2mJk1SV+ZkiotWsDGjbGrEBGoXQv4YmBGlds3AbeFEHoBK4EzU1mYpEezZgpgkUxRowA2s67AMcB9yW0Dvg2MTTZ5EDg+HQVKajVuDJs2xa5CRKDmLeDbgSuA8uT2LsCqEEJpcnsB0KW6bzSzkWY2ycwmFWf5aYO5oLDQT8YQkfh2GMBmdiywNIQwuS4vEEK4N4QwMIQwsEOWz1yUCxo18rXkRCS+mgxDOwj4bzM7GmgG7AzcAbQxs8KkFdwV0GyzWUABLJI5dtgCDiFcFULoGkIoAk4G/h1COBUYD3w/2WwE8EzaqpSUMdOcwCKZoj7jgK8ELjOz2Xif8OjUlCTppAAWyRy1OhMuhPAq8Gry9RzggNSXJOlkFrsCEamgM+FERCJRAOcZtYBFMocCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiqVEAm1kbMxtrZh+b2QwzG2Jm7czsJTP7JLlum+5iRURySU1bwHcAL4QQ9gT2AWYAvwBeCSHsAbyS3BYRkRraYQCbWWvgUGA0QAihJISwChgOPJhs9iBwfLqKFBHJRTVpAe8OFAMPmNkUM7vPzHYCOoYQFiXbLAY6VvfNZjbSzCaZ2aTi4uLUVC0ikgNqEsCFwADg7hDCfsB6tuhuCCEEIFT3zSGEe0MIA0MIAzt06FDfekVEckZNAngBsCCEMDG5PRYP5CVm1hkguV6anhJFRHLTDgM4hLAYmG9mfZK7hgLTgWeBEcl9I4Bn0lKhiEiOKqzhdhcCj5hZE2AO8GM8vB83szOBecBJ6SlRRCQ31SiAQwjvAwOreWhoassREckfOhNORCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRFKjADazS81smplNNbMxZtbMzHY3s4lmNtvMHjOzJukuVkQkl+wwgM2sC3ARMDCE0A8oAE4GbgJuCyH0AlYCZ6azUBGRXFPTLohCoLmZFQItgEXAt4GxyeMPAsenvjwRkdy1wwAOISwEbgE+x4N3NTAZWBVCKE02WwB0qe77zWykmU0ys0nFxcWpqVpEJAfUpAuiLTAc2B3YDdgJGFbTFwgh3BtCGBhCGNihQ4c6Fyoikmtq0gVxBDA3hFAcQtgE/B04CGiTdEkAdAUWpqlGEZGcVJMA/hwYbGYtzMyAocB0YDzw/WSbEcAz6SlRRCQ31aQPeCJ+sO094KPke+4FrgQuM7PZwC7A6DTWKSKScwp3vAmEEH4N/HqLu+cAB6S8IhGRPKEz4UREIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiARUQiUQCLiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUgUwCIikSiA88zgwXDxxbGrEBEACyE03IuZFQPzGuwFpTZ6hBA6xC5CJJ80aACLiEgldUGIiESiABYRiUQBLCISiQJYRCQSBbCISCQKYBGRSBTAIiKRKIBFRCJRAIuIRKIAFhGJRAEsIhKJAlhEJBIFsIhIJApgEZFIFMAiIpEogEVEIlEAi4hEogAWEYlEASwiEokCWEQkEgWwiEgkCmARkUj+P3OwqFnETUiQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#%% Smooth OT with KL regularization\n", + "\n", + "lambd = 2e-3\n", + "Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='kl')\n", + "\n", + "pl.figure(5, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT KL reg.')\n", + "\n", + "pl.show()\n", + "\n", + "\n", + "#%% Smooth OT with KL regularization\n", + "\n", + "lambd = 1e-1\n", + "Gsm = ot.smooth.smooth_ot_dual(a, b, M, lambd, reg_type='l2')\n", + "\n", + "pl.figure(6, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, Gsm, 'OT matrix Smooth OT l2 reg.')\n", + "\n", + "pl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/plot_free_support_barycenter.ipynb b/notebooks/plot_free_support_barycenter.ipynb new file mode 100644 index 000000000..b8df5898f --- /dev/null +++ b/notebooks/plot_free_support_barycenter.ipynb @@ -0,0 +1,169 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# 2D free support Wasserstein barycenters of distributions\n", + "\n", + "\n", + "Illustration of 2D Wasserstein barycenters if discributions that are weighted\n", + "sum of diracs.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Vivien Seguy \n", + "#\n", + "# License: MIT License\n", + "\n", + "import numpy as np\n", + "import matplotlib.pylab as pl\n", + "import ot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate data\n", + " -------------\n", + "%% parameters and data generation\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "N = 3\n", + "d = 2\n", + "measures_locations = []\n", + "measures_weights = []\n", + "\n", + "for i in range(N):\n", + "\n", + " n_i = np.random.randint(low=1, high=20) # nb samples\n", + "\n", + " mu_i = np.random.normal(0., 4., (d,)) # Gaussian mean\n", + "\n", + " A_i = np.random.rand(d, d)\n", + " cov_i = np.dot(A_i, A_i.transpose()) # Gaussian covariance matrix\n", + "\n", + " x_i = ot.datasets.make_2D_samples_gauss(n_i, mu_i, cov_i) # Dirac locations\n", + " b_i = np.random.uniform(0., 1., (n_i,))\n", + " b_i = b_i / np.sum(b_i) # Dirac weights\n", + "\n", + " measures_locations.append(x_i)\n", + " measures_weights.append(b_i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute free support barycenter\n", + "-------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "k = 10 # number of Diracs of the barycenter\n", + "X_init = np.random.normal(0., 1., (k, d)) # initial Dirac locations\n", + "b = np.ones((k,)) / k # weights of the barycenter (it will not be optimized, only the locations are optimized)\n", + "\n", + "X = ot.lp.free_support_barycenter(measures_locations, measures_weights, X_init, b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot data\n", + "---------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEICAYAAABLdt/UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XeYU2X2wPHvSTKNAQap0hEUBIYmMAooRVRcRMG2/hSkWJC1N1RUXF1Xd91VsS82FGzAioiriIgFEVAERKoC4lBGytCZnvL+/kgyTkmbSTKTDOfzPPNMkvvm3pObzJk3733vuWKMQSmlVM1hqe4AlFJKRZYmdqWUqmE0sSulVA2jiV0ppWoYTexKKVXDaGJXSqkaRhO7UiEQkbEi8m202pd57kgRWViB9m1ExIiIrTLbUzWPJvYoEpFMEckXkWMiclhElonIBBEJab/rH2x8iPT7ZIx5xxhzXiTWFS/C+UeoytPEHn0XGmPqAK2BfwL3Aq9Xb0ixS/+JBRbt/ROv+z9e444WTexVxBhzxBjzEXAFMEZE0gFE5AIR+VFEjorIThF5uMTTvvH8PiwiOSLSR0TaiciXInJARPaLyDsiUs/fdj09yRtFZIvnm8OjnnUs82xztogklmg/TETWlPiG0bXEsvtE5FfPejaKyMUllp0sIotF5Ignrlmex8v1ZkXkaxG5znN7rIgsFZEpInIAeNjz+DUisklEDonIZyLS2vO4eNru88S/zrsvfbz2cZ51HBORbSJyQ4llA0Vkl4jc5VnXbhEZV2J5AxH5yLONFUA7f/vY1/tUYj1Pel7DbyLypxKPp4nI657tZonI30XEWmKffFuirRGRm0RkC7AlQBzXiMjvnnXeXeL5GSKy3POe7haRF8q856XWLyIvishTZfblRyJyh+d2SxH5QESyPZ/DF0q08/m+ldjOBM9n8bBnOyIiHYGpQB/P/jvsaZ/k2X87RGSviEwVkZQy79+9IrIHeCPAfjn+GGP0J0o/QCZwjo/HdwB/8dweCHTB/U+2K7AXGOFZ1gYwgK3Ec08GzgWSgEa4k8ozAWIwwDygLtAZKAS+ANoCacBGYIynbQ9gH3A6YAXGeF5Dkmf55UAzT6xXALlAU8+y94AHPMuSgTMDvIavges8t8cCDuAWwAakAMOBrUBHz2MPAss87YcAq4B6gHjaNPXz2i/AnZAFGADkAaeV2O8O4G9AAjDUs/wEz/KZwGwgFUgHsoBv/WzH12scC9iB6z378i/A74B4ls8FXvasvzGwArihxHO/LfMefg7UB1ICbP89z/q6ANl4PntAT+AMz75sA2wCbve3fiDDE6vFs7yhZ9808byWn4Apnm2VfK/9vm8ltvOx571r5YnxfF+v2fPYFOAjT1x1gP8B/yjz/j2B+2+h3H45nn+qPYCa/IP/xP4d8ICf5zwDTPHcLpcwfLQfAfwYYLkB+pW4vwq4t8T9p/D8YwD+Azxa5vm/AAP8rHsNMNxzewbwCtCiTJtyr4HyiX1Hmed8Clxb4r7Fk1haA2cDmz2JylLB9+ND4DbP7YFAfpm49nnWa8WdlE8tsezxsoknyGscC2wtcb+Wp82JuBNkYclkBFwJfFXiuWUT+9kBXpd3+yXj/Rfwup/2twNzA60fd/I/13P7ZmC+53Yf3Am53Gcy0PtWYjtnllg+G7jPz2sW3B2HdiUe6wP8VuL9KwKSK/p3eTz86FBM9WgOHAQQkdNF5CvP19ojwATcPSSfRKSJiMz0fH0/CrwdqL3H3hK3833cr+253Rq4y/M1+bDnK3FL3L10RGS0/DFMcxh3T9a77Xtw/zGuEJENInJN0L3wh51l7rcGni2xnYOedTc3xnwJvAC8COwTkVdEpK6vlYrIn0TkOxE56FnPUErvqwPGGEeJ+3mefdEId4+zZFzbK/B6vPZ4bxhj8jw3a3teXwKwu8RrfBl3z92fsvsoWJvt/PG+tReRj0Vkj+cz8zjlPzNl1z8dGOW5PQp4y3O7JbC9zH7z8vu+lWizp8Rt7/72pRHuf4arSqxvgedxr2xjTIGf5x/XNLFXMRHpjfuD7h1DfRf3182Wxpg03GON4lnmq/Tm457Huxhj6uL+oxMf7SpjJ/CYMaZeiZ9axpj3PGOlr+LuvTUwxtQD1nu3bYzZY4y53hjTDLgBeElETsbd6wL3H6nXiWW2W/Z17sQ9LFEyjhRjzDLPtp4zxvQEOgHtgYllX4iIJAFzgCeBJp545xPavsrG/TW/ZYnHWgVoX9ESqTtx99gblnh9dY0xncPcRtl4f/fc/g/wM3CK5zNzP+X3Q9n1vw0MF5FuuIdWPiwReyvxfbAy4PsWRNnt78fd6ehcYl1pxpjaAZ6jPDSxVxERqSsiw3CP3b5tjFnnWVQHOGiMKRCRDOCqEk/LBly4x8Mp0T4HOCIizfGR1MLwKjDB8y1CRCRV3Ad36+AeTzWemPAcaCw+aCkil4tIC8/dQ562LmNMNu7x6VEiYvX05AMdiAT3P7dJItLZs+40Ebncc7u3J74E3P80CnDvo7IScY+9ZgMOz4HLkKYQGmOcwAfAwyJSS0Q64T7e4I+v9ynQ+ncDC4GnPJ8Li7gPaA8I5fkBTPbE2xkYB8zyPF4HOArkiMipuMf7g8W4C/gBd099jjEm37NoBbAb+Kfn85EsIv08y/y+byHYC7TwHtQ1xrhwfx6niEhjz/qai8iQENd3XNPEHn3/E5FjuHszDwBP4/6j87oR+JunzUO4xx2B4q/vjwFLPV9HzwAeAU4DjgCf4E5AEWGMWYn7YN8LuJPzVtxjnxhjNuIej1+O+4+wC7C0xNN7A9+LSA7ubyC3GWO2eZZdj/sf0AHcB3AD9uCMMXNxHxSb6Rk6WA94Z5TUxf0Hfwj3cMMB4N8+1nEMuBX3/jyE+x/mRyHtCLebcQ8T7AHeJMCsCz/vUzCjcf/z2eiJ732gaQXi82Ux7vfsC+BJY4z3JKe7cb/+Y7j33SzfTy9nOu732TsM4/2ndyHug/g7gF24D6QHe9+C+RLYAOwRkf2ex+71vJ7vPOtbBHQIcX3HNe8ReqWUKkVE+uMekmltNFHEFe2xK6XK8Qx13Qa8pkk9/mhiV0qV4jlh6DDuoaFnqjkcVQk6FKOUUjVMRHrsInK+iPwiIltF5L5IrFMppVTlhN1jF3d9i824T3P3TpG60jOLwqeGDRuaNm3ahLVdpZQ63qxatWq/MaZRsHaRqIiWgfvU6W0AIjITd80Iv4m9TZs2rFy5MgKbVkqp44eIhHQGdCSGYppT+nTkXZQ+hdgb0HgRWSkiK7OzsyOwWaWUUr5U2awYY8wrxphexphejRoF/SahlFKqkiKR2LMoXaOihecxpZRS1SASif0H4BQROclT5+H/qNip20oppSIo7IOnxhiHiNwMfIa7jvU0Y8yGsCNTSql4ZwxkLoFfvwJHITTuCOmXQGJqVDcbqYvvzsddElUppRTA7p9g5kjIPwhFnurVCanw6UQY9CD0uQkkUhW3S9MLwCqlVKTt2wRv/OmPhO5l99z/6jFwFsJZd0Vl81orRimlIu2Tu8on9ZLsefD1E5B7ICqb18SulFKRdHgHZK0K3k4EVk+PSgia2JVSKpL2bgBrYvB2jgLYuSIqIWhiV0qpSBILIV+OVaKTgjWxK6VUJDXrAY6i4O0SakG7QVEJQRO7UkpFUu3G0O5sEGvgdsZAt/+LSgia2JVSKtIueBKS0/wnd1sKXPgMJNWJyuY1sSulVKSltYAbFkPLDLAlu4ddbMmQWBtqN4FLXo5abx30BCWllIqOeq3gmgVw4Ff47Rtw2qFRe2jTHyzR7VNrYldKqWhq0M79U4V0KEYppWoY7bErpVSkZa2GZc/B5s/cNWFSG0PGeOg5FmrVj/rmtceulFKRtPQ5eHMobJznrgnjcsKx3bD4X/BCL9i/JeohaGJXSqlI2fwZfP042PPBuEovc+RD3kF48wJ3bfYo0sSulFKR8uVj7qTul3FXfdwY3YvMaWJXSqlIOPo77P85eLuiHFj5elRD0cSulFKRkLs/tKqOALnZUQ0lrMQuIpeLyAYRcYlIr0gFpZRScadWffdJSCG1bRjVUMLtsa8HLgG+iUAsSikVv9JaQIOTg7dLrA29xkU1lLASuzFmkzHml0gFo5RScW3Q/ZCQEqCBQEIydBoR1TCqbIxdRMaLyEoRWZmdHd3xJaWUqhanXuC+QHVCLUBKL7MmQUo9GPOxO7lHUdDELiKLRGS9j5/hFdmQMeYVY0wvY0yvRo0aVT5ipZSKZf0nwtVzof35YE1wP1arAZx5O9z0AzTuGPUQgpYUMMacE/UolFKqJml1Blw1033b5Yp6NceydLqjUkpFUxUndQh/uuPFIrIL6AN8IiKfRSYspZRSlRVWdUdjzFxgboRiUUopFQE6FHOcMsZUdwhKqSjReuzHke+3HWDq4l/5dut+7E5Dw9qJjOnbhlGnt+aE1BBPhVZKxTxN7MeJpxb+wmtLfqPA7sTbV9+fU8QLX27ljaWZvD+hD20b1a7WGJWKO3vWw/IXYMvn4LJDvdbQ9xboMBQw7rNMRYKuJtKkOr6S9+rVy6xcubLKt1udnC7DN5uz+SHzIC5jSG+exnmdTiTRFv3RsI/X/s7E/64l3+70uVwEGtdJ4tt7zybBqqNzSoVkydOw+Al3fRhT4m9LLO5a7GIDWxKcdjX0vRXSmoe9SRFZZYwJWpdLe+xVYNmv+7n1vR/JL3KSW+T+AKQmWZn0wToev7gLF3ZrFtXtP71ws9+kDmAM5BQ6WLhhLxd0bRrVWJSqEdZ/AN/8CxwF5Zd5L7BhHGB3wA+vw5p3Yewn0LRrlYSn3bMo+37bAa598wf25xQVJ3WA3EInxwocTHz/J/73U1bUtp+5P5ffjwQq/P9HPO+t2BG1OJSqMYyBLx4JckGNElx2KDwKM4aH/pwwaWKPImMM98xZS77d5bdNgd3FpA/WU+Tw3yYcB/OKQh5e2Z8T3ct1KVUj7N0AOfsq/jxnIWyomtnhmtij6Medh8k+FjxZGgyfbdgTlRgapCZid4b2T6NRnaSoxKBUjZKzByyVGMUuyoXV0yMfjw+a2KNoQ9YRXK7gB6dzC538tOtwVGJo3SCVFifUCtouNcnKyNNbRSUGpWqU5HrlL1QdqvxDkY3FD03sUSQi5Sp3+mOJ4pSou89rT0qCNcC2oW5yAud0bBK1GJSqMZr1AFsly+7WqZrJCZrYo+i0VieElNdTk6z0blM/anGcn96UGwe2IyXBWm5KbbLNQv3URGaOPwObTnVUKjiL1V2CNyH4N+FSEmtD7+ujE1MZ+pccRZ2a1aV1g9Sg7RKtVs4+tXFUY7ll8Cm8c/3pDOnUhOQEC1YRTqybzB3ntueLuwaGFKdSyuOMm6DDnyqQ3MVdk739+VENq3hreoJSdG38/SiXTV1GXpHveeTJCRZeHd2Ls04pffGRAruTvCIndZJtetKQUrHIGPjpXfjwJiBYHhW4+QdoeEpYm9QTlGJEp2Z1eX9CX26f9SM7D+ZjjMEAVotQPzWRf13Wlb7t/rhi+bdb9vPCV1v4IfMQVs8Y/QVdmnLToHac3LhO9b0QpVRpIoC4h2ZcjsBtE1Jgz9qwE3uoNLFXgU7N6rLwjgGszzrC6h2HcLkMnZun0av1Ce4DrB7Pf7GFl77+tfgsUW9Vl4/W/M6C9Xt4dXQvzjyloc9tKKWq0L5NsHY2bJwXPKmD+8SkQ9ujH5eHJvYqlN48jfTmaT6XfbM5u1RSL8lpDPl2J+PfWsniiYN0vrlS1SXvIMwaBVmrwVlUukZMQAbE/8y0SNPB2xjx3BdbAtZzAXchMT3tX6lqYs+HaefDrh/AkV+BpO7R+NToxOWDJvYYkFPoYM3O4CcoFTpcvL9qVxVEpJQqZ827cGSHu6deYQL1qu4EwHCvefpvEflZRNaKyFwRqRepwI4nOQUObNbQTlDKLQxhPE8pFXnLnqt8ES+LDeq3i2w8gTYX5vM/B9KNMV2BzcCk8EM6/tSrlYAzhNIDAA1q65WOlKpyxsDhMA5+tu4Ltqr72w0rsRtjFhpjvF3I74AW4Yd0/ElOsDL41MZBL7RSK9HKmL5tqiQmpVRZlS37IfCnJyIaSTCRHGO/BvjU30IRGS8iK0VkZXZ2dgQ3WzPcMvgUkgJcTUmAlEQrI7qHfxUWpVQFiUDT7pV5IpzUHxp3jHhIgQRN7CKySETW+/gZXqLNA4ADeMffeowxrxhjehljejVq1Mhfs+NW52ZpPH/laaQkWEkoM96ekmClfmois2/oQ2qSzlBVqlqceTskVKD0hjUJ6reFy9+MWkj+BM0SxphzAi0XkbHAMGCwqY76BDXIuZ2a8MVdA5ixfDsfrskir9BBw9pJjOnbhktOa06d5ITqDlGp49epF0LbWfDrF74viedlTYLEVDj9BuhzEyRV/RnjYdWKEZHzgaeBAcaYkMdXjqdaMUqpGuTAVnipj/8pj9Yk6DQcLp7qLjUQYaHWigl3jP0FoA7wuYisEZGpYa5PKaVi15ePBS4h4CyETR/BgV+rLiYfwhqwNcacHKlAlFIqpuUfgl/mB796kssB3/0HLpxSNXH5oGeeKqVUKA5sA2sIc9FdDvh9dfTjCUATu1JKBeNyuWvE2HNDa5+bDYXHohtTAJrYlVIqkJxsmNoXvvwbuEIs/HVsL0w9C3L3Rzc2PzSxK6WUP047vDkU9m+FohB76wDGAUd2wXv/F73YAtDErpRS/vwyH45mgcte8ee67LB3PexZF/m4gtDErpRS/ix/qWI99bIcRbDu/cjFEyJN7Eop5c/hMC9sY5yQsy8ysVSAJnallPInITm851sSIK3qC/fFTUWpAruTRZv2svNgPikJFgad2pjWDSpQkEcppSqq8yWw7Hn3GaWVYbFCtysjG1MIYj6xG2N4dck2nl20BcSd4G0WC//49Gd6tKrHc1f2oHGdMP+rKqWUL72vheUvVu651iRocxY0qLorJ3nF/FDMUws3M+XzLeQWOcktdOJ0ua/9WehwsTLzEBc+/y0HcytzDUKllAqibjMY8R8qnCoTUqFJZ7j8jaiEFUxMJ/btB3J5dck28u2+TwpwuAwHc4p4+vNfqjgypdRxI/1iaNIp9PYntIOLnoNrF1ZLyV6I8cT+5rJMXEHKCttdhjmrssgvCvGMMKVUUNOnT2fWrFnVHUbsaDcotDox1iS4dgF0uQys1Xf9hJhO7N9tO4DdGbxevNUC2/bnVEFEStV8OTk53HLLLUyYMIGCggAXlDie9L4OJFi6FGg7EGo3roKAAovpxB76NUAqe5FZpVRZzz//PE6nE7vdzssvv1zd4cSGE9pAz3GQUMt/m8RUGPJYlYUUSEwn9t5t6mOzBE/aDpeLkxrq1EelwpWTk8M//vEP8vLyyM3N5eGHH9Zeu9eQxyFjvHu4xZbyx+OJtaFucxj3KTQ8pfriKyGmE/u4fm2wBknsNoswontzaiXG/MxNpWKSw/HHFYG8vXUv7bWXYLHAuY/AXT/D4IfgtNFw+l/girfhjg3QtGt1R1gsrGueVlZFrnn66Mcbeff7HT5nxlgtwgm1Eph/21k6l12pSnj66ad5//33Wbp0Kbm5uTRr1oxjx0rXEa9Xrx67d+8mOVn/xqpblVzzVEQeFZG1nuudLhSRZuGsz5cHL+jIhAFtSUmwUivRfXFYm0VITrCQ3qwu/7vlTE3qSlVCbm4ujzzyCKtXr+brr78u11v30l57/Amrxy4idY0xRz23bwU6GWMmBHteRXrsXrmFDuav283Og3mkJNoY3LEx7ZtUzxxRpWqCJ554gr/97W/k5eXRrVs3tm3bVq637qW99tgQao893ItZHy1xNxWI2rhOapKNy3u1jNbqlTqu5Obm8vjjj5OXlwfAxo0bsVj8f4H39tpvu+22qgpRhSHsg6ci8piI7ARGAg+FH5JSKtpeeOGFUgdN7XY7hYX+C13pDJn4EnQoRkQWASf6WPSAMWZeiXaTgGRjzF/9rGc8MB6gVatWPbdv317poJVSlec9SHr06NFyy1JTU7HZfH+RP3bsGG+++SZXX311tENUfkRsKMYYc06I23wHmA/4TOzGmFeAV8A9xh7iOpVSEVa2t15S8+bNee211xDxPc24e/fu0QxNRUhYY+wicooxZovn7nDg5/BDUkpF0v79+3niiSf417/+RV5eXqmx9bKysrJwOBwMGjSoiqNUkRTuWT3/FJEOgAvYDgSdEaOUqlqPP/44U6ZMYcCAAWzYsMFvbx3cwzR33303K1eu9NtrP+447bDpI1j6HBzYAmKF1n2h763u3zG4n2L+BCWlVOVlZ2fTunVr8vPzOeWUU9izZ4/fKY1eycnJzJ8/X3vtAIXHYPqFkL0Z7CUvai2QkAJd/wzDnqmy5F4l0x2VUrHtH//4B97O265du7BYLNSuXTvo85YsWaKJHWD2WNi70cel8QzY82DtbDjhJDjz9uqIzi9N7ErVUNnZ2UydOrV4imJ+fj4dOnRg06ZNOswSiv1bYPu3ga93as+Db5+GPjdVa/31smK6CJhSqvJK9ta9srKy+OSTT6opojiz5l1w+T8eUczlgm2Lox9PBWhiV6oG+OWXX1i2bFnx/bK9da+cnBzuvvvucglf+XBkV2iJ3bggd1/046kATexK1QCjRo1ixIgRFBW5L+zuq7fupb32ENVuREgp0mKB5HpRD6ciNLErFee+/vprNm3aRF5eHm+++abf3rqX9tpD1OXPkJAUvJ3L6b4kXgzRxK5UnJs4cSK5ubnk5uby4IMP8ve//z1o0tZeewiadYdGp4IlwBwTWwr0vhYSA1wyrxroPHal4tj//vc/rrjiCvLz8wF3rZeCggKSk5P91nwBKCgooFu3bnz//fdVFWp8OrYXXj8HcvaBo8w3oIRa7hOUrpxZZTNidB67UseBsWPHFid1cJ85mpaWxvTp00lICJxsmjWL+HVxap46TWDCUvjhdfjuJcg7ABho2ME9d73L5WCxVneU5WhiVypOzZw5k4MHD5Z73OFwsHfvXsaPH18NUdVAyXXhrDvcP/Z8d0kBW2J1RxWQDsUoFacaNGjgM7EDNGrUiF27dpGYGNsJSFVMlVzzVClVPfz11r28M2TU8alG9tgdThdZh/NxugzN6qWQnBB7Y2BKhSNQb91Le+01z3F58DSvyMHUxb8yY9l2ipwuBHAZuOS05tw2+BQa19UL8ar4N2fOnIBJ3Xvt0oMHD/L2229zzTXXVFVoKkbUmMSeU+jg0peWkXkgl0KHq9SyWT/s5NP1e5h3Uz9a1o+t+aZKeb399tts27aNhx4KfOngd999F4vFgsvlKrcsJSWF++67r3iqY48ePaISq4ptNSax3//BOn7bn0ORs/zQksNlOJxXxLg3f+DzO/prZTsVcwoKCrj11lvJy8tj/PjxnHiir8sMw/bt2/n00099JnVw99YbNGjATTfdFM1wVYyrEQdPD+UWsWDDHp9J3ctlIOtQPj/uPFyFkSkVmldeeYWioiKMMTz66KN+202ePBm73e53eW5uLg899BCFhQFKzaoar0Yk9m+2ZJNgCd4LL7A7+XTd7iqISKnQFRQU8PDDD5Obm0tRURHTpk1jz5495dpt376dd955J+Cl7QCOHj3Ka6+9Fq1wVRyoEUMx+UVOXCFM7jHAsYIQynAqVYW8vXUvl8vFo48+yosvvliqnTGGq666CqfTGXSdelbp8S0i0x1F5C7gSaCRMWZ/sPaRnu74zeZs/vLOKnILA3/gk2wWbj+nPX8Z2C5i21YqHAUFBTRr1oxDhw6Vejw5OZnffvvN71i7Oj5V2QlKItISOA/YEe66KqtvuwYkWIO/FANcelrz6AekjhvGGD799NNKl8At21v38vbalaqMSIyxTwHuwZ03q4XNamHieR1ICXAiUnKChYt7NNe57CqiPvvsM4YOHcrChQsr/NySY+tlBRprV1XIGHAUun/HkbASu4gMB7KMMT+F0Ha8iKwUkZXZ2dnhbNankWe0ZsKAtiTZLNhKHEi1CKQkWBl0amP+PiI94ttVxy9jDHfddRdApS5c4a+37qW99mq0axXMvAoebQiPnQiPN4OP74SDv1V3ZCEJOsYuIosAXwN9DwD3A+cZY46ISCbQqzrG2Ev6bX8ubyz9jW+37MdpDOnN07j+rLZ0a5Gm89dVRC1YsIDLLruM3NxcUlNTmTNnDkOGDAnpuf7G1svSsfZqsOJV+Hwy2AsoNRBhSQBrIoz8L7TpVy2hhTrGXumDpyLSBfgCyPM81AL4HcgwxgT8/qjVHVW8M8aQnp7Oxo0bix9LT09n7dq1IXUg5syZw+WXX05qamrAdvn5+Tz++OPcc889YcesQrB9Obx9sbs8rz+JteHWNZ5rolatqNeKMcasAxqX2GAmIfbYlYp3n332Gdu3by/12G+//cbChQtD6rWPGDGCzZs3h7Stli1bVipGVQmLnwic1AFcDlg9HfrfXTUxVULEqjvGylCMUtHmq7fuVZFeu4ox9nz4Rwt34g6mXmu4fW30YyqjyuuxG2PaaG9dHQ989da9vL12FYcKjwW+cHVJBUeiG0uYakRJAaWqincmjK8piuCu1VKZGTIqBiTVBRP8rF4AajWIbixh0sSuVAUE6q17aa89TiUkwynnAUGG0RJqQe9rqySkytLErlQF3H333X576165ublMnDixiiJSEdV/ojvBB2JNhO4jqyaeSqoRRcCUqipXXHEFu3e7K4QeOnSI//73v6WKclmtVoYPH64XuIhXzXrA8JfgwxvdB1FdJUok25LBlgRjPoKUetUXYwg0sStVAZMnTy6+ffHFF5db7nK5yM7O5sEHH6zKsFQkpV8CTbvB8hdhwwdgz4OU+tDrWug1DlIbVneEQdXIi1krFW0///wzPXr0oKCgoNyyWrVq8eWXX3L66adXQ2SqJqvy6Y5KHU8mTZrk90pG+fn5OsauqpUmdqUq6Oeff2bBggV+L3hhjGHVqlV8//33VRyZUm6a2JWqoEmTJgWsygiQl5envXZVbfTgqVIVJCJ07NgxaLukpKQqiEap8jSxK1VBH3zwQXWHoFRAOhSjlFIHf7g5AAAeoElEQVQ1jCZ2pcLgcrmqOwSlytHErlQluVwuevbsyezZs6s7FKVK0cSuVCXNmzePDRs2cOedd/qd+qhUddDErlQluFwuJk6ciN1u58iRI8ycObO6Q1KqmCZ2pSph3rx57N27F4CcnBzuvfde7bWrmKGJXakK8vbWc3Jyih/TXruKJWEldhF5WESyRGSN52dopAJTKlaV7K17aa9dxZJI9NinGGO6e37mR2B9SsUsX711L+21q1ihQzFK+fHuu++W65n76q17aa9dxYpIJPabRWStiEwTkRP8NRKR8SKyUkRWZmdnR2CzSkXPtm3buPrqq5k0aVLxY4F6617aa1exIGhiF5FFIrLex89w4D9AO6A7sBt4yt96jDGvGGN6GWN6NWrUKGIvQKlomDx5MhaLhffee4+dO3cC7t6697J4/mivXcWCoEXAjDHnhLIiEXkV+DjsiJSqZtu2beODDz7A4XAgIvz1r39l2rRpLFy4EKfTGbRq4+HDh/n1119p3759FUWsVGlhXRpPRJoaY3Z7bt8BnG6M+b9gz9NL46lYNnLkSGbPno3D4QAgOTmZzZs307Jly2qOTB3vqurSeP8SkXUishYYBNwR5vqUqlYle+teTqeTv/71r9UYlVIVE1ZiN8ZcbYzpYozpaoy5yNt7VypeTZ48uVRSB7Db7aXG2pWKdTrdUSkPX711L+21q3iiiV0pD1+9dS/ttat4ooldKQL31r20167ihSZ2pYDHHnsMh8NBUlKS3x8RYcaMGX7PPFUqVujFrJUCxowZQ48ePYK2s9ls1KlTpwoiUqryNLErBfTv35/+/ftXdxhKRUTMJHa73c6uXbsoKCio7lCUIjk5mRYtWpCQkFDdoShVYTGT2Hft2kWdOnVo06YNIlLd4ajjmDGGAwcOsGvXLk466aTqDkepCouZg6cFBQU0aNBAk7qqdiJCgwYN9Nujilsxk9gBTeoqZuhnUcWzmBmKqYjtB3J5dck2Pvzxd3ILHaQm2RjRoxnXn9WW1g1Sqzs8pZSqVjHVYw/FV7/s4/xnljBzxU5yCh0YIKfQwcwVOzn/mSV89cu+Sq+7b9++kQvUIzMzk3fffTfi61VKKX/iKrFvP5DLjW+vJt/uxOEqXW7Y4TLk253c+PZqth/IrdT6ly1bFokwS4m3xB7ozEulVHyIq8T+6pJt2J2ugG3sThevLfmtUuuvXbs2AF9//TUDBw7ksssu49RTT2XkyJF469a3adOGe+65hy5dupCRkcHWrVsBGDt2LO+//365dd13330sWbKE7t27M2XKlFLb+/rrrxkwYADDhw+nbdu23HfffbzzzjtkZGTQpUsXfv31VwCys7O59NJL6d27N71792bp0qUArFixgj59+tCjRw/69u3LL7/8AsCGDRvIyMige/fudO3alS1btpCZmUl6enrxtp988kkefvhhAAYOHMjtt99Or169ePbZZ/1uTykVH+JqjP3DH38v11Mvy+EyzP0xi0dHpAdsF8yPP/7Ihg0baNasGf369WPp0qWceeaZAKSlpbFu3TpmzJjB7bffzscf+79w1D//+U+efPJJv21++uknNm3aRP369Wnbti3XXXcdK1as4Nlnn+X555/nmWee4bbbbuOOO+7gzDPPZMeOHQwZMoRNmzZx6qmnsmTJEmw2G4sWLeL+++9nzpw5TJ06ldtuu42RI0dSVFSE0+kMehp8UVER3oufXHXVVT63p5SKD3GV2HMLQxsmyC0KfzghIyODFi1aANC9e3cyMzOLE/uVV15Z/PuOO8K7tkjv3r1p2rQpAO3ateO8884DoEuXLnz11VcALFq0iI0bNxY/5+jRo+Tk5HDkyBHGjBnDli1bEBHsdjsAffr04bHHHmPXrl1ccsklnHLKKUHjuOKKK4pv+9ue91uIUiq2xVViT02ykRNCck9NDP9llbyupdVqLTX2XHIqnPe2zWbD5XIPE7lcLoqKiiq8HYvFUnzfYrEUb9PlcvHdd9+RnJxc6rk333wzgwYNYu7cuWRmZjJw4EDA3eM+/fTT+eSTTxg6dCgvv/wy7du3L44PKDdHOzX1j9lE/ranlIoPcTXGPqJHM2yWwPOLbRbh4h7NoxrHrFmzin/36dMHcI+9r1q1CoCPPvqouPdcp04djh07Ftb2zjvvPJ5//vni+2vWrAHgyJEjNG/ufq1vvvlm8fJt27bRtm1bbr31VoYPH87atWtp0qQJ+/bt48CBAxQWFgYcPvK3PaVUfAg7sYvILSLys4hsEJF/RSIof64/qy0J1sAhJ1gtXHdWdE8DP3ToEF27duXZZ58tPiB6/fXXs3jxYrp168by5cuLe8Bdu3bFarXSrVu3cgdPQ/Xcc8+xcuVKunbtSqdOnZg6dSoA99xzD5MmTaJHjx6lvlHMnj2b9PR0unfvzvr16xk9ejQJCQk89NBDZGRkcO6553LqqadWeHtKqfgg3tkelXqyyCDgAeACY0yhiDQ2xgSdSN6rVy/jPVDntWnTJjp27Bh0m1/9so8b316N3ekqdSDVZhESrBZeGnUagzo0rvBrCVWbNm1YuXIlDRs2jNo2VGwI9TOpVFURkVXGmF7B2oXbY/8L8E9jTCFAKEk9XIM6NGbB7WdxZUYraifZEIHaSTauzGjFgtvPimpSV0qpeBDuUcb2wFki8hhQANxtjPnBV0MRGQ+MB2jVqlVYG23dIJVHR6SHPaWxMjIzM6t8m0opVRFBE7uILAJO9LHoAc/z6wNnAL2B2SLS1vgY3zHGvAK8Au6hmHCCVkop5V/QxG6MOcffMhH5C/CBJ5GvEBEX0BDIjlyISimlKiLcMfYPgUEAItIeSAT2hxuUUkqpygt3jH0aME1E1gNFwBhfwzARd3AbLHsB1s6GohxIrA1d/wx9b4b6baO+eaWUimVh9diNMUXGmFHGmHRjzGnGmC8jFZhfWz6H//SD1TOg6Bhg3L9Xz3A/vuXzSq9ay/YqpWqCuDrzlIPbYPZosOeBy156mcvufnz2aHe7StCyvVq2V6maIL4S+7IXwGkP3MZph+UvVmr1WrZXy/YqVRPEVREw1s4u31Mvy2WHtbPggqfC2pSW7dWyvUrFq/hK7EU5kW0XgJbt1bK9SsWr+ErsibU9B0xDaBcmLdurZXuVilfxNcbe9c9gSQjcxpIAXa8I3CZMWrZXKRXL4iux970ZrEESuzUB+twU1TC0bK9SKpaFVba3ssIp28uWz91TGp320gdSLQnupP7nGXDKuRGO+A9atvf4oWV7a5bfjvzGB1s+YOexnaQlpTH0pKFknJhRamg11oVatje+xtjBnbT/stQ9pXHtrBJnnl7h7qnrmadKqRLyHflMXDyR73Z/h9PlxGHc324X/LaABikNmHrOVFrVDa/ibKyJv8QO7uR9wVNhT2msDC3bq1T8cBkX4xaM4+eDP+M0zlLL8hx5FBwrYNT8UXww/AMaptScb+HxNcaulFIh2p2zm+EfDmfDgQ3lkrqXCxfH7Md4bd1rVRxddGliV0rVOPvy9nHFx1eQeTQzaFuHy8HcLXOxBzurPY7E51CMUiouGWNYvW810zdMZ93+dQB0a9SNsZ3H0q1Rt4gdyHx65dMcLToacnuXcXGg4AAnpvq6plD8icvEvvPoTqZvnM7H2z4mz55HrYRaDGs7jDGdxtCybsvqDk8p5YPD5WDSkkks3rWYAkcBBveMvC93fMmy35dxTqtz+PuZf8ciFnYe3ck7P7/Dkl1LcBon7U9oz+hOo+nZpGfQ5H+s6BiLdizyO/zii8u4sFniMh36FHevZMmuJdy5+E4cTkfx0e1cey5zNs9h3q/zeHrA05zV4qxKrbtv374Rr/CYmZnJsmXLuOqqqyK6XqVinTGGn7J/4q2Nb7H50GYOFR4ipzAHJ6UTrsGQ78jn8+2f06hWI9IS03jpp5dKzWD5Ped3vtv9HT0b9+SZs58hyZrka5MAbD28lQRLAoXOwpBjrZ9SnwbJDSr3QmNQXI2x7zy6kzsX30mBo6D4DfdyGAcFjgLuXHwnO4/urNT6tWyvlu1VkVHkLOLmL29m/Ofj+Xz752QezeRI4ZFySb2kAmcBMzbM4D8//YdCZ2Gpv3Fv8v9h7w/cv+T+iMaabE1mXOdxcTWfPZi4SuzTN07H4QyceBxOBzM2zqjU+rVsr5btVZVT5Czik22fMG7BOEZ8OIJz/nsOy39fTr4jv3jIJRQO46DAWeB3eaGzkK93fc3OY/47b+3qtcMerAqshxUr6Q3TubzD5SHHGA/iaijm420fl+upl+UwDj7e9jEPnPFAWNvSsr1atleF5tfDv3LtZ9eS78gnz5EX9e25jIu5W+Zy62m3+lxeN7Eug1sN5rPMz4KOsw8/eTgPnvEgCcFqUMWZsBK7iMwCOnju1gMOG2O6hx2VH3n20D40ufbcsLelZXu1bK8K7kD+AcZ8OoajRUcr1DMPh8PlYMexHQHb3NnzTpb/vpwjRUdwGVe55YmWRMZ0HuP3n0O8CyuxG2OKs4GIPAUcCTuiAGol1AopaacmpAZtE4yW7dWyvSq4d39+t8LDLZFQJ7FOwOVNUpvw3rD3uOvru9h6eCtO48TpcpJiSwHgxu43MrrT6KoItVpEZIxd3Nntz8B7kVifP8PaDsMmgf8X2cTGsLbDohmGlu1VymPWL7MocoXWiQnGJjYsEjwl1bLV4vw25wdt17x2c2YOm8l7F7zHrT1u5cbuN/JQn4dYfMVixnQeU6MOlpYVqYOnZwF7jTFb/DUQkfEislJEVmZnZ1dqI2M6jcFmDZLYrbao/yfWsr0qHhhjcLpCn8tdUQ6Xg6OFoZ8EFEiSNYlWdVtxUbuLAk5lFIQTkk8g48SMkNd9ygmnMC59HBO6TeCCtheQbKv530SDlu0VkUWAr9OxHjDGzPO0+Q+w1RgTUlWucMr2+prHDu7/9jarLax57KHQsr3Hj3gs21voKOTVda8yf9t8duXswmBoXKsxV3e8mss7XB6RYUovYww93upRoROByrKIhXpJ9RjVcRQjO47EIhbGLRjHlsNbys1Dt4qV1IRU3hn6Dm3S2oQZfXyKWNleY8w5QTZkAy4BeoYeXuWd1eIsPrjwA2ZsnMHH2z4m155LakIqw9oOY3Sn0XrmqTouOVwOXlzzIm+sf6Ncot2Xt4/nf3yemb/M5O2hb0esiqGIcHrT01n2e+XO/7CJjbeGvkWnBp1KDcFM/9N03tr4FjM2ziDPnodFLLiMi2Fth3FDtxtqzGn/0RT2hTZE5HxgkjFmQKjPCetCG0pVkXj5TDpdTm796laWZS0LOB3YJjban9CeWRfOiti2f9jzAzcuujHg3HNfEiwJ9GvWj+cHP++3jcu42J27G6fLSeNajY+LIZRgqvJCG/9HlA+aKnU8ybPn8eHWD5mxcQZ7cvdgtVjp3aQ316RfQ0bT8mPL83+bzw97fgjpHI/fjv7G+v3rSW+YHrBtqHqf2JurO13NWxvfCjm5p9hSaFevHU/0fyJgO4tYaF67eSTCPO6EndiNMWMjEIdSCsjOy+bqT6/mQP6B4kTpdDpZ+vtSVu9bzSUnX8K9GfeWmtHx+rrXyXfkh7T+Qmch87bOi1hiB7j1tFvpUL8DL615iaycLBIsCdhddtrUbcOAlgNYsXsFGw9sxGA4Ke0kxqWPY0ibITXupKBYEldnnipVkxljGP/5ePbm7vXZ+8535DNn6xza1mvLnzv8ufixUGqOe7mMi/35+yMVcrEhbYYwpM0Qdh3bxZHCI9RPrk/T2u4T7+gR8c2pIOI6se/evZszzzyTpUuXcuKJekBFVa1fDv7CjI0zWLXXff5Ct0bdGN15NJ0bdC5us/nQZnbn7CbFlkK3xt0CTuVbuXclWTlZAYdUChwFTP1pKpe1vwyLWHC4HO7ee4iHyixYaJLaJLTGldCiTgta1GkRtfWr0MRVEbCyHn30UTIzM3n00UfDXtfOnTsZNGgQnTp1onPnzjz77LM+291xxx0888wzxfeHDBnCddddV3z/rrvu4umnnw47nnAdPnyYl156KaS2ffv2rdC6Bw4cSNmD37FkzZo1zJ8/P2rrN8bw+PePM2r+KD7Z9glZOVlk5WSxIHMBYz8dy4PfPsjXO7/mwrkXMmr+KO5bch+3fXUb/Wf256mVT1Hk9H1Cz9wtcylwBB+nzrXnsmH/BgBqJ9Smlq1WyLEnWhMZcfKIkNur+BS3iX337t288cYbuFwu3njjDfbs2RPW+mw2G0899RQbN27ku+++48UXXyxVL8WrX79+xeV9XS4X+/fvZ8OGDcXLly1bVuFEGQ5/ZXYrktijUa7Yn6ooC1yZxF6RuF5e+7I7CTsLSk0tdBkXBc4CPtn2Cbd/dTuZRzPJd+STY88hx55DniOP935+j2s/u9bnZdj25e0L6dR8i1g4VHgIcE85vPLUK0m0JAZ9nlWsdGzQkVPr+z85TdUMcZvYH3300eLaJ06nM+xee9OmTTnttNMAdxmAjh07kpWVVa5d3759Wb58OeAuj5uenk6dOnU4dOgQhYWFbNq0idNOO42cnBwGDx7MaaedRpcuXZg3bx4Aubm5XHDBBXTr1o309PTi8gT33XcfnTp1omvXrtx9992A/3K9Dz/8MFdffTX9+vXj6quv9lmm97777uPXX3+le/fuTJw4EYB///vf9O7dm65du/LXv/61+DWFUq64rLfeeovu3buTnp7OihUrAP9lhN98800uuugizj77bAYPHszo0aP58MMPi9c1cuRI5s2bh9Pp5O677yY9PZ2uXbsWlzVYtWoVAwYMoGfPngwZMoTdu3cD7m8O9957LxkZGbRv354lS5ZQVFTEQw89xKxZs+jevTuzZs0iNzeXa665hoyMDHr06FH8XpSNKxT5jnymrZ8WcAaIwzj8nrRT6Cxk08FNvLnxzXLLQp1f7jIu6iXVK74/quMo6ibVDXg6viC0rtOa58/2P71Q1RxxOcbu7a17C20VFRXxxhtvMHny5IiMtWdmZvLjjz9y+umnl1vWrFkzbDYbO3bsYNmyZfTp04esrCyWL19OWloaXbp0ITExEYvFwty5c6lbty779+/njDPO4KKLLmLBggU0a9aMTz75BHDXezlw4ABz587l559/RkQ4fPgwgN9yvQAbN27k22+/JSUlhVtuuaVcmd5//vOfrF+/vrjOy8KFC9myZQsrVqzAGMNFF13EN998Q//+/Uu9vkDlikvKy8tjzZo1fPPNN1xzzTWsX7/ebxlhgNWrV7N27Vrq16/P4sWLmTJlCiNGjODIkSMsW7aM6dOn88orr5CZmcmaNWuw2WwcPHgQu93OLbfcwrx582jUqBGzZs3igQceYNq0aYC7p71ixQrmz5/PI488wqJFi/jb3/7GypUreeGFFwC4//77Ofvss5k2bRqHDx8mIyODc845p1xcofhqx1cI4dUYKXQW8vbGt7mm8zVYLdbixy8+5WK+2vlV0NK3KbaUUrNa6iXX492h73LDohvYk7un3AyZZGsyd/a8k0vaXxJwjF/VHHGZ2Ev21r28vfYXX3wxrHXn5ORw6aWX8swzz1C3bl2fbbyX0Fu2bBl33nknWVlZLFu2jLS0NPr16we4x2Hvv/9+vvnmGywWC1lZWezdu5cuXbpw1113ce+99zJs2DDOOussHA4HycnJXHvttQwbNoxhw9xFzPyVzwW46KKLSElxV6oLpUzvwoULWbhwIT169Ch+nVu2bCmX2AOVKy7JW7q4f//+HD16lMOHD3Ps2DGfZYQBzj333OLkOWDAAG688Uays7OZM2cOl156afE/gwkTJmCzuT+W9evXZ/369axfv55zzz0XcL/P3jLHAJdccgkAPXv2JDMz0+f7tXDhQj766COefPJJwF3ZcseOHeXiCsWevD1+x8grIt+Rz66cXbSu27r4sYwTM2hSqwk7ju3w2+NPtiYzvuv4cr3zprWbMm/4PFbvW83/fv0fBwsO0qx2My455RLan9A+7HhVfIm7xF62t+4ViV673W7n0ksvZeTIkcUJY+fOnVx44YUATJgwgQkTJhSPs69bt4709HRatmzJU089Rd26dRk3bhwA77zzDtnZ2axatYqEhATatGlDQUEB7du3Z/Xq1cyfP58HH3yQwYMH89BDD7FixQq++OIL3n//fV544QW+/PLLgOVzS5bZ9VWmt23btqXaG2OYNGkSN9xwQ8B9EKhccUllK+OJCJMnT/ZZRrhsvACjR4/m7bffZubMmbzxxht+4zHG0Llz5+LhL3/xBorVGMOcOXPo0KFDqce///77cnEFk2pLxWqxBr2SVzAWLOXG2UWEV857hVHzR3Gk8Ei54Z4UWwrD2g7jylOv9LlOEaFnk570bFIl1T1UDIu7MXZfvXWvcMbajTFce+21dOzYkTvvvLP48ZYtW7JmzRrWrFnDhAkTAHeP/eOPP6Z+/fpYrVbq16/P4cOHWb58efGB0yNHjtC4cWMSEhL46quv2L59OwC///47tWrVYtSoUUycOJHVq1cXXzRj6NChTJkyhZ9++gkIvXyurzK9ZcsFDxkyhGnTphX3+LOysti3b1+l9hX8Ubr422+/JS0tjbS0NL9lhH0ZO3Zs8eyiTp06Ae7e88svv1ycoA8ePEiHDh3Izs4uTux2u73UwWpffL32559/vvh4wY8//ljBV/uH/i36+z3uUBF2Y/dZ8+TE1BOZO3wuN3W/iSa1miAIVrHS+8TeTBk4hclnTK7R5WZVZMRVYvfXW/fy9torM0Nm6dKlvPXWW3z55Zd0796d7t27+51Z0aVLl+Jx85KPpaWlFVd9HDlyJCtXrqRLly7MmDGjuEzuunXrig90PvLIIzz44IMcO3aMYcOG0bVrV84888zi6ZKhls/1Vaa3QYMG9OvXj/T0dCZOnMh5553HVVddRZ8+fejSpQuXXXZZWHXik5OT6dGjBxMmTOD1118H/JcR9qVJkyZ07Nix+BsOwHXXXUerVq3o2rUr3bp149133yUxMZH333+fe++9l27dutG9e/egs3gGDRrExo0biw+eTp48GbvdTteuXencuTOTJ0+u9OtuWrspGU0zwjpr0iIWBrcaTO1E31ekqpNYh7HpY1l0+SJ+Gv0Ta0avYdqQafRr3k+TugpJ2EXAKqOyRcBuvPFGXn/99YBXJ0pMTOS6664Le6xdRVdeXh5dunRh9erVpKWlVXc4Pvn7TB4pPMKVn1zJ3ty95S4yUfJiEf4uQJFqS2X2hbNpVbdV5INWNVqoRcDiqsf+0UcfBb3kXFFRUfF0NhWbFi1aRMeOHbnllltiNqkHkpaUxuxhsxnTeQx1EuuQYkshxZZCakIqozqNYv4l8+nTrA9J1iSs8sesl1q2WtRPrs+086dpUldRFVc9dqWqUiifSYfLwZ5c99Bfk1pNSLD+MUSz9dBWZm+eTeaRTGon1mboSUMZ2HIgNkvczVlQMaIqy/ZGjDFGxxBVTAi1w2Oz2PzWRjn5hJO5//T7IxmWUiGJmaGY5ORkDhw4EJEZB0qFwxjDgQMHfE4zVSoexEyPvUWLFuzatYvKXuhaqUhKTk4uPlFLqXgTM4k9ISGBk046qbrDUEqpuBczQzFKKaUiQxO7UkrVMJrYlVKqhqmWeewikg1sr/INR1ZDIPIXj6xZdB+FRvdTcLqP3FobYxoFa1Qtib0mEJGVoZwocDzTfRQa3U/B6T6qGB2KUUqpGkYTu1JK1TCa2CvvleoOIA7oPgqN7qfgdB9VgI6xK6VUDaM9dqWUqmE0sSulVA2jiT1MInKXiBgRaVjdscQiEfm3iPwsImtFZK6I1KvumGKFiJwvIr+IyFYRua+644lFItJSRL4SkY0iskFEbqvumOKBJvYwiEhL4DxgR3XHEsM+B9KNMV2BzcCkao4nJoiIFXgR+BPQCbhSRDpVb1QxyQHcZYzpBJwB3KT7KThN7OGZAtwD6BFoP4wxC40x3itbfwdoLVy3DGCrMWabMaYImAkMr+aYYo4xZrcxZrXn9jFgE9C8eqOKfZrYK0lEhgNZxpifqjuWOHIN8Gl1BxEjmgM7S9zfhSasgESkDdAD+L56I4l9MVOPPRaJyCLgRB+LHgDuxz0Mc9wLtJ+MMfM8bR7A/bX6naqMTdUMIlIbmAPcbow5Wt3xxDpN7AEYY87x9biIdAFOAn7yXKO1BbBaRDKMMXuqMMSY4G8/eYnIWGAYMNjoiRNeWUDLEvdbeB5TZYhIAu6k/o4x5oPqjice6AlKESAimUAvY4xWnytDRM4HngYGGGP0uoceImLDfTB5MO6E/gNwlTFmQ7UGFmPE3XOaDhw0xtxe3fHECx1jV9H2AlAH+FxE1ojI1OoOKBZ4DijfDHyG+4DgbE3qPvUDrgbO9nx+1ojI0OoOKtZpj10ppWoY7bErpVQNo4ldKaVqGE3sSilVw2hiV0qpGkYTu1JK1TCa2JVSqobRxK6UUjXM/wOLEmgPgpS5HgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.figure(1)\n", + "for (x_i, b_i) in zip(measures_locations, measures_weights):\n", + " color = np.random.randint(low=1, high=10 * N)\n", + " pl.scatter(x_i[:, 0], x_i[:, 1], s=b * 1000, label='input measure')\n", + "pl.scatter(X[:, 0], X[:, 1], s=b * 1000, c='black', marker='^', label='2-Wasserstein barycenter')\n", + "pl.title('Data measures and their barycenter')\n", + "pl.legend(loc=0)\n", + "pl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/plot_stochastic.ipynb b/notebooks/plot_stochastic.ipynb new file mode 100644 index 000000000..e784e1169 --- /dev/null +++ b/notebooks/plot_stochastic.ipynb @@ -0,0 +1,610 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Stochastic examples\n", + "\n", + "\n", + "This example is designed to show how to use the stochatic optimization\n", + "algorithms for descrete and semicontinous measures from the POT library.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Kilian Fatras \n", + "#\n", + "# License: MIT License\n", + "\n", + "import matplotlib.pylab as pl\n", + "import numpy as np\n", + "import ot\n", + "import ot.plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "COMPUTE TRANSPORTATION MATRIX FOR SEMI-DUAL PROBLEM\n", + "############################################################################\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------------SEMI-DUAL PROBLEM------------\n" + ] + } + ], + "source": [ + "print(\"------------SEMI-DUAL PROBLEM------------\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "DISCRETE CASE\n", + "Sample two discrete measures for the discrete case\n", + "---------------------------------------------\n", + "\n", + "Define 2 discrete measures a and b, the points where are defined the source\n", + "and the target measures and finally the cost matrix c.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "n_source = 7\n", + "n_target = 4\n", + "reg = 1\n", + "numItermax = 1000\n", + "\n", + "a = ot.utils.unif(n_source)\n", + "b = ot.utils.unif(n_target)\n", + "\n", + "rng = np.random.RandomState(0)\n", + "X_source = rng.randn(n_source, 2)\n", + "Y_target = rng.randn(n_target, 2)\n", + "M = ot.dist(X_source, Y_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call the \"SAG\" method to find the transportation matrix in the discrete case\n", + "---------------------------------------------\n", + "\n", + "Define the method \"SAG\", call ot.solve_semi_dual_entropic and plot the\n", + "results.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[2.55553509e-02 9.96395660e-02 1.76579142e-02 4.31178196e-06]\n", + " [1.21640234e-01 1.25357448e-02 1.30225078e-03 7.37891338e-03]\n", + " [3.56123975e-03 7.61451746e-02 6.31505947e-02 1.33831456e-07]\n", + " [2.61515202e-02 3.34246014e-02 8.28734709e-02 4.07550428e-04]\n", + " [9.85500870e-03 7.52288517e-04 1.08262628e-02 1.21423583e-01]\n", + " [2.16904253e-02 9.03825797e-04 1.87178503e-03 1.18391107e-01]\n", + " [4.15462212e-02 2.65987989e-02 7.23177216e-02 2.39440107e-03]]\n" + ] + } + ], + "source": [ + "method = \"SAG\"\n", + "sag_pi = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,\n", + " numItermax)\n", + "print(sag_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "SEMICONTINOUS CASE\n", + "Sample one general measure a, one discrete measures b for the semicontinous\n", + "case\n", + "---------------------------------------------\n", + "\n", + "Define one general measure a, one discrete measures b, the points where\n", + "are defined the source and the target measures and finally the cost matrix c.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "n_source = 7\n", + "n_target = 4\n", + "reg = 1\n", + "numItermax = 1000\n", + "log = True\n", + "\n", + "a = ot.utils.unif(n_source)\n", + "b = ot.utils.unif(n_target)\n", + "\n", + "rng = np.random.RandomState(0)\n", + "X_source = rng.randn(n_source, 2)\n", + "Y_target = rng.randn(n_target, 2)\n", + "M = ot.dist(X_source, Y_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call the \"ASGD\" method to find the transportation matrix in the semicontinous\n", + "case\n", + "---------------------------------------------\n", + "\n", + "Define the method \"ASGD\", call ot.solve_semi_dual_entropic and plot the\n", + "results.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[3.75309361 7.63288278 3.76418767 2.53747778 1.70389504 3.53981297\n", + " 2.67663944] [-2.49164966 -2.25281897 -0.77666675 5.52113539]\n", + "[[2.19699465e-02 1.03185982e-01 1.76983379e-02 2.87611188e-06]\n", + " [1.20688044e-01 1.49823131e-02 1.50635578e-03 5.68043045e-03]\n", + " [3.01194583e-03 7.75764779e-02 6.22686313e-02 8.78225379e-08]\n", + " [2.28707628e-02 3.52120795e-02 8.44977549e-02 2.76545693e-04]\n", + " [1.19721129e-02 1.10087991e-03 1.53333937e-02 1.14450756e-01]\n", + " [2.65247890e-02 1.33140544e-03 2.66861405e-03 1.12332334e-01]\n", + " [3.71512413e-02 2.86513804e-02 7.53932500e-02 1.66127118e-03]]\n" + ] + } + ], + "source": [ + "method = \"ASGD\"\n", + "asgd_pi, log_asgd = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,\n", + " numItermax, log=log)\n", + "print(log_asgd['alpha'], log_asgd['beta'])\n", + "print(asgd_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare the results with the Sinkhorn algorithm\n", + "---------------------------------------------\n", + "\n", + "Call the Sinkhorn algorithm from POT\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[2.55535622e-02 9.96413843e-02 1.76578860e-02 4.31043335e-06]\n", + " [1.21640742e-01 1.25369034e-02 1.30234529e-03 7.37715259e-03]\n", + " [3.56096458e-03 7.61460101e-02 6.31500344e-02 1.33788624e-07]\n", + " [2.61499607e-02 3.34255577e-02 8.28741973e-02 4.07427179e-04]\n", + " [9.85698720e-03 7.52505948e-04 1.08291770e-02 1.21418473e-01]\n", + " [2.16947591e-02 9.04086158e-04 1.87228707e-03 1.18386011e-01]\n", + " [4.15442692e-02 2.65998963e-02 7.23192701e-02 2.39370724e-03]]\n" + ] + } + ], + "source": [ + "sinkhorn_pi = ot.sinkhorn(a, b, M, reg)\n", + "print(sinkhorn_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PLOT TRANSPORTATION MATRIX\n", + "#############################################################################\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot SAG results\n", + "----------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAExZJREFUeJzt3X+wpQV93/H3hwUVAhHj3ihhxbVqd4pawdxgGqwa/IXE/JqYalJ/RdutrVhpTa0mmY7WaZImUyWd2qRbNcaIEo06k+aHhQYYytQfvasbhh8ygw66rCAXCAoUsCzf/vGcbe/c7u49u3vO+e6e837NnNl773nOeb7nwH3f5zznOeekqpAkzd5x3QNI0qIywJLUxABLUhMDLElNDLAkNTHAktTEAGvuJPn7SS47hOXfkOSaCa37liQvnsR1HYuSnJHkviSbumc5FhhgzZ2quqSqXto9x+FI8ookX0pyf5K7klySZMvovF8Zxe2+JA8m2bvm++tnMNuGf1yq6ptVdXJV7T2M639GksuS3J3kniQ7k1ywbpmnJHkkye/u5/JJcmGSa5P8ryS3J7kqyasPdZZZMcDSUSLJK4GPAxcDm4FnAA8B1yR5XFX9+ihuJwNvBj6/7/uqekbf5IMkxx/hVfwX4HLgicAPAv8U+O66ZV4H/DXwqiSPXnfevwcuAt4OPB44Hfg14PwjnGt6qsqTp5mdgH8J7AHuBW4CXjT6+XHAO4GvAXcBnwR+YHTeVqCAXwJ2M/wCvhn4EeBa4B7gP6xZxxuAaw4yw+OBP2H45f4S8N59y69Z1/Frlr8K+Aejr58KXDGa8U7gEuDUNcveArz4MO6XAN8A3rHu58cB1wH/et3PD3obD/N+O+BtA/4QeAR4ALgPeMea638T8E3g6rX3H/ADwK3AT46u42TgZuB1+5l18+hyp25wH30N+MfAt4FXrjnvbwJ7geXu/8cP5eQWsGYmyTbgQuBHquoU4GUMwQJ4K/AzwAuAH2KIxQfWXcVzgacDr2LYSvxV4MUMW4p/L8kLxhzlA8CDwGnAG0ensW8G8BujGf8W8CTg3WNdMPnFJNce4OxtwBnAp9b+sKoeAT4NvOQQZlxv3PvtgLetql7LENmfrGGL+7fWXP8LRsu/bN3sdzPct/85yQ8C7wd2VdVH9zPjXQxx/liSn0nyhP0s8zxgC3Apwx/o16857zxgd1WtbHhvHEUMsGZpL/Bo4MwkJ1TVLVX1tdF5bwZ+tapuraqHGH7xX7nuYe17q+rBqroMuB/4RFXdUVV7gP8OnL3RAKMnh34O+FdVdX9VXQf8wbg3oKpurqrLq+qhqloF3scQoHEu+/Gq+tsHOHvz6N/b9nPebWvOPxxj3W9HcNvePbovH1h/xmidnwL+ErgA+Ef7u4IaNmN/nOEP8r8DbktydZKnr1ns9cBfVNVfM+yqOX8Udhjun9vXXmeSW0f7kh9M8uQxbsfMGWDNTFXdzLCP7t3AHUkuTfJDo7OfDHx29AtzD3AjQ7DXbgl9e83XD+zn+5PXr3PdE1e/BywxPDzevWaxb4x7G5I8YTT3niTfBT7GkcVxnztH/562n/NOW3P+4RjrfjuC27Z7g/N3AM8EPlJVdx1oodEf3wur6qkM/z/cD3x0NNuJwM8z7Bahqj7PsEX+i6OL38W6+66qtozmfzTD1v1RxwBrpkZbgc9j+AUr4N+OztoNvLyqTl1zesxoK+1I1vd/n7iqqjcDq8DDDA+v9zljzdf3j/49ac3Pnrjm618fzf2sqvp+4DVM5pf7Job9pT+/9odJjmPYYv/LCaxjIxvdtgO9deIB31Jx9IhjB0NI/0mSp40zSFXtZthV9MzRj34W+H7gP46Obrid4Um2fbshrgC2JFke5/qPFgZYM5NkW5LzRs9eP8iw9fXI6OzfA/7NvoeKSZaS/PSkZ6jh8KjPAO9OclKSM1mzL3H00HsP8Jokm5K8keHJqX1OYXgS6jtJTgf+xYTmKuCXgV8b7St+TJInAh9kCM/7J7GeDWx0274N/I1DvM5fYQj0G4HfBj66v2OEkzwuyXuSPC3JcUk2jy7zhdEirwc+DDwLOGt0Ohd4dpJnVdVNwH8CLk3ykiQnjtbzY4c470wZYM3So4HfZHg4fTvDoUbvGp33OwxHJlyW5F6GX7znTmmOCxkedt8OfAT4/XXn/0OG+NzF8ETV/1hz3nuA5wDfAf6MIeZjGb1A5IDH61bVHwGvBf7ZaN03ACcC5x7sofsEbXTbfoPhD8Q9SX55oytL8sPAP2c46mEvw6OdYjjaZb3vMRxB8d8Yjk65juEQvDeM/hi8CLi4qm5fc9oJfI7/9wf0LQyHor0PuJvhEcV7GZ58/OZY98CMZXQIhyRpxtwClqQmBliSmhhgSWpigCWpyZG+eYaOcZs3b66tW7d2jyHNlZ07d95ZVUsbLWeAF9zWrVtZWTmmXj4vHfWSjPXqSndBSFITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNju8eQM1uugle+MLuKbTIzjoLLr64e4oWbgFLUhO3gBfdtm1w1VXdU0gLyS1gSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJqmq7hnUKMm9wE3dc0zYZuDO7iGmwNt17NhWVadstNDxs5hER7Wbqmq5e4hJSrIyb7cJvF3HkiQr4yznLghJamKAJamJAdaO7gGmYB5vE3i7jiVj3SafhJOkJm4BS1ITAyxJTQzwgkpyfpKbktyc5J3d80xCkg8nuSPJdd2zTEqSJyW5MskNSa5P8rbumSYhyWOSfCnJX41u13u6Z5qUJJuSfCXJn260rAFeQEk2AR8AXg6cCfxCkjN7p5qIjwDndw8xYQ8Db6+qM4EfBd4yJ/+tHgLOq6pnA2cB5yf50eaZJuVtwI3jLGiAF9M5wM1V9fWq+h5wKfDTzTMdsaq6Gri7e45JqqrbqurLo6/vZfjFPr13qiNXg/tG354wOh3zRwQk2QL8BPDBcZY3wIvpdGD3mu9vZQ5+qeddkq3A2cAXeyeZjNFD9V3AHcDlVTUPt+ti4B3AI+MsbIClY0CSk4FPAxdV1Xe755mEqtpbVWcBW4Bzkjyze6YjkeQVwB1VtXPcyxjgxbQHeNKa77eMfqajUJITGOJ7SVV9pnueSauqe4ArOfb3358L/FSSWxh2652X5GMHu4ABXkz/E3h6kqckeRTwauBPmmfSfiQJ8CHgxqp6X/c8k5JkKcmpo69PBF4CfLV3qiNTVe+qqi1VtZXhd+qKqnrNwS5jgBdQVT0MXAj8V4YndT5ZVdf3TnXkknwC+DywLcmtSd7UPdMEnAu8lmFratfodEH3UBNwGnBlkmsZNggur6oND9uaN74UWZKauAUsSU2m8obsmzdvrq1bt07jqjVhO3fuvLOqlrrnOFIvfOlvHtZDuZe9/+pJj3JQV77unJmuD6C+Mtu9S5c/8qnMdIXHsKkEeOvWraysjPWG8GqW5BvdM0iLyl0QktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUZKwAz+MHOEpStw0DPMcf4ChJrcbZAp7LD3A8FBddNJwkaZLGeTOe/X2A43PXL5RkO7Ad4IwzzpjIcEeLXbu6J5A0jyb2JFxV7aiq5apaXlo65t/dUJKmbpwA+wGOkjQF4wTYD3CUpCnYcB9wVT2cZN8HOG4CPjwPH+AoSd3G+kSMqvpz4M+nPIskLRRfCSdJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSk7FeiCEd7a746IcO63IXPP9nJzzJwdXXvzrT9QFs8s2xjlpuAUtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNNgxwkg8nuSPJdbMYSJIWxThbwB8Bzp/yHJK0cDYMcFVdDdw9g1kkaaG4D1iSmkwswEm2J1lJsrK6ujqpq5WkuTWxAFfVjqparqrlJd9/VJI25C4ISWoyzmFonwA+D2xLcmuSN01/LEmafxt+JFFV/cIsBpGkReMuCElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJarLhK+GkY8HLn/Zjh3W5b/7hSROe5OAe+NbyTNcH8PS3fnHm69R43AKWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmozzqchPSnJlkhuSXJ/kbbMYTJLm3TjvBfEw8Paq+nKSU4CdSS6vqhumPJskzbUNt4Cr6raq+vLo63uBG4HTpz2YJM27Q9oHnGQrcDbw/729UpLtSVaSrKyurk5mOkmaY2MHOMnJwKeBi6rqu+vPr6odVbVcVctLS0uTnFGS5tJYAU5yAkN8L6mqz0x3JElaDOMcBRHgQ8CNVfW+6Y8kSYthnC3gc4HXAucl2TU6XTDluSRp7m14GFpVXQNkBrNI0kLxlXCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNRnn/YClo96Df/fMw7rcYz8521+Bx7/x2zNdn45ubgFLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTcb5VOTHJPlSkr9Kcn2S98xiMEmad+O8EP4h4Lyqui/JCcA1Sf6iqr4w5dkkaa6N86nIBdw3+vaE0ammOZQkLYKx9gEn2ZRkF3AHcHlVfXE/y2xPspJkZXV1ddJzStLcGSvAVbW3qs4CtgDnJHnmfpbZUVXLVbW8tLQ06Tklae4c0lEQVXUPcCVw/nTGkaTFMc5REEtJTh19fSLwEuCr0x5MkubdOEdBnAb8QZJNDMH+ZFX96XTHkqT5N85RENcCZ89gFklaKL4STpKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQm47wSTjrqnXT9bYd1uUft+daEJzm447+wZabrA/izb+2a+To1HreAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCZjBzjJpiRfSeIHckrSBBzKFvDbgBunNYgkLZqxApxkC/ATwAenO44kLY5xt4AvBt4BPHKgBZJsT7KSZGV1dXUiw0nSPNswwEleAdxRVTsPtlxV7aiq5apaXlpamtiAkjSvxtkCPhf4qSS3AJcC5yX52FSnkqQFsGGAq+pdVbWlqrYCrwauqKrXTH0ySZpzHgcsSU0O6SOJquoq4KqpTCJJC8YtYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaHNILMaSj1f9+8uG9AVT2fGvCkxzc3j23zXR9AN955IGZru9xM13bsc0tYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJanJWC9FHn0k/b3AXuDhqlqe5lCStAgO5b0gfryq7pzaJJK0YNwFIUlNxg1wAZcl2Zlk+/4WSLI9yUqSldXV1clNKElzatwAP6+qngO8HHhLkuevX6CqdlTVclUtLy0d3lsDStIiGSvAVbVn9O8dwGeBc6Y5lCQtgg0DnOT7kpyy72vgpcB10x5MkubdOEdBPAH4bJJ9y3+8qj431akkaQFsGOCq+jrw7BnMIkkLxcPQJKmJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpyaG8Ibt01LrzWSce1uUee/IPT3iSg9v9+odnuj6AVz1100zXd9kDM13dMc0tYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJajJWgJOcmuSPk3w1yY1J/s60B5OkeTfuS5F/B/hcVb0yyaOAk6Y4kyQthA0DnOSxwPOBNwBU1feA7013LEmaf+PsgngKsAr8fpKvJPlgku+b8lySNPfGCfDxwHOA362qs4H7gXeuXyjJ9iQrSVZWV1cnPGavs84aTpI0SePsA74VuLWqvjj6/o/ZT4CragewA2B5ebkmNuFR4OKLuyeQNI823AKuqtuB3Um2jX70IuCGqU4lSQtg3KMg3gpcMjoC4uvAL01vJElaDGMFuKp2ActTnkWSFoqvhJOkJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCapmvz75iRZBb4x8SvWNDy5qpa6h5AW0VQCLEnamLsgJKmJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCb/B6HXs8MRx/3SAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.figure(4, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, sag_pi, 'semi-dual : OT matrix SAG')\n", + "pl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot ASGD results\n", + "-----------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAE3lJREFUeJzt3X+wpQdd3/H3h81PSCTgXiFmExYKbom0JuQSsLGggWgSIjojVVCI/Gi3TAmTtFga1HagjtofMzR2ZNRtxEgJpInA6Fhqk5FkMFOE3oU1zQ/WiUzCbiTkBoz5BWGy+faP56xzve7uPbt7zv3unvN+zZzZe+/znPN8z9nsO899znPOSVUhSVp/T+seQJLmlQGWpCYGWJKaGGBJamKAJamJAZakJgZYR7UkP5PkxoNY/y1Jbp3Qtu9J8ppJ3NbRKMkZSR5NsqF7lqOVAdZRraquraof7p7jUCS5JMnnkzyW5OtJrk2yabTs50dxezTJt5LsWfH9Hesw25r/c6mqr1TVSVW15zC2c02SJ5OcuurnpyT5UJL7kzyS5M+TXLlieZJcluS2JI+P1rslyRtWrHPL6LF7JMnDSbYnuTLJ8Yc676QZYKlBktcDHwWuAjYC3ws8Adya5FlV9SujuJ0EvAP47N7vq+p7+yYfJDlmArfxDOAngL8G3rRq8X8BTgJeDDwTeB1w94rl/xW4Ang38J3AacAvAheuup3Lqupk4NTRum8APpUkhzv/RFSVFy9TuQD/BrgPeATYCbx69POnAVcCfwF8HbgeePZo2WaggLcCu4C/YgjQy4DbgIeAX1+xjbcAtx5ghu8E/gB4GPg88Et711+xrWNWrH8L8E9HX/894NOjGR8ErgVOWbHuPcBrDuFxCXAv8J5VP38acDvw71f9/ID38RAft/3eN+C/A08B3wQeBd6z4vbfDnwF+MzKxw94NrAb+NHRbZzEEMxLDzDzpaNZLwduX7XsduDH93O97wH2AItrPCZ/83e54mdnAI8Dl3T/+6gq94A1HUm2AJcBL6thD+RHGIIF8C7gx4FXAd/NEIsPrrqJlwMvAn6KYS/xF4DXMOwp/mSSV405ygeBbzHsAb1tdBn7bgC/OprxxcDpwPvGumLy00lu28/iLQwhuGHlD6vqKeDjwAUHMeNq4z5u+71vVfVmhsj+aA173P9pxe2/arT+j6ya/RsMj+1/S/JdDHuwO6rqwweY9WeBjwHXAX8/yTkrlv0p8MtJ3prkRauudz6wq6qW1ngs/o6q+gqwBPzjg73uNBhgTcse4HjgzCTHVtU9VfUXo2XvAH6hqnZX1RMM//Bfv+rX2l+qqm9V1Y3AY8DHquqBqroP+BPg7LUGGD059BPAv6uqx6rqduB3x70DVXV3Vd1UVU9U1TLwAYYAjXPdj1bVP9zP4o2jP7+6j2VfXbH8UIz1uB3GfXvf6LH85uoFo23eAPwxcDHwz/d3I0nOAH4I+GhVfW10nUtXrPIuhr3yy4A7k9yd5KLRso3A/atub3eSh0bHfJ+3xn34S4Y99nYGWFNRVXczHKN7H/BAkuuSfPdo8fOAT47+wTwE3MUQ7OesuImvrfj6m/v4/qTV21z1xNVvAgsMvx7vWrHavePehyTPGc19X5KHgY9weHHc68HRn6fuY9mpK5YfirEet8O4b7vWWL4NeAlwTVV9/QDrvRm4q6p2jL6/FvjpJMcCVNU3azgOfg7DYaTrgRuSPJvhsMnfeuyqatNo/uMZ9u4P5DTgG2ussy4MsKZmtBf4AwzBLeA/jhbtAi6qqlNWXE4Y7aUdzvb+5omrqnoHsAw8yfDr9V5nrPj6sdGfT1/xs+eu+PpXRnP/g6r6DoYniibx5M1OhuOl/2TlD5M8jWGP/Y8nsI21rHXf9vc2ift9+8TRbxzbgA8D/yLJCw+w/UuBF4zOXrifYQ98I8Oe89/eYNXDo3mfATyf4dj1piSLB7j9/c14OnAOw28D7QywpiLJliTnj075+RbD3tdTo8W/yXB873mjdReS/NikZ6jh9KhPAO9L8vQkZzIcd9y7fJnhScI3JdmQ5G0MT07tdTLDk1B/neQ04F9PaK4Cfg74xdGx4hOSPBe4GvgOhuOn07bWffsa8IKDvM2fZwj024D/DHx4X+cIJ/l+hsf5XOCs0eUlDGeFXDpa598meVmS45KcwPBE3UPAzqraCfwWcF2SC5KcONrOP9rfYKO//1cBv8/wZOynDvK+TYUB1rQcD/wHhl+n7we+C3jvaNmvMZyZcGOSRxiecHn5lOa4jOHX7vuBa4DfWbX8nzHE5+sMT1T9nxXL3g+8lOE0qf/JEPOxZHiByH7P162q/8Hwa/i/HG37TuBE4Lw1fnWflLXu268y/A/ioSQ/t9aNjZ5A+1cMZz3sYfhtpxjOdlntZ4Hfr6r/V1X3770w/HdxyegwQzH8XT3IcMz2AuC1VfXo6DbeyXAq2gcYDifsZjjD5acYnkDc69dH/419jeFJyY8DF46e8GyX0akZkqR15h6wJDUxwJLUxABLUhMDLElNDvsNNXR027hxY23evLl7DGmmbN++/cGqWlhrPQM85zZv3szS0kG/pF7SASQZ6xWXHoKQpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoc0z2Amu3cCT/4g91TaJ6ddRZcdVX3FC3cA5akJu4Bz7stW+CWW7qnkOaSe8CS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNUlXdM6hRkkeAnd1zTNhG4MHuIabA+3X02FJVJ6+10jHrMYmOaDurarF7iElKsjRr9wm8X0eTJEvjrOchCElqYoAlqYkB1rbuAaZgFu8TeL+OJmPdJ5+Ek6Qm7gFLUhMDLElNDPCcSnJhkp1J7k5yZfc8k5DkQ0keSHJ79yyTkuT0JDcnuTPJHUku755pEpKckOTzSf5sdL/e3z3TpCTZkOSLSf5wrXUN8BxKsgH4IHARcCbwxiRn9k41EdcAF3YPMWFPAu+uqjOBVwDvnJG/qyeA86vq+4CzgAuTvKJ5pkm5HLhrnBUN8Hw6F7i7qr5cVd8GrgN+rHmmw1ZVnwG+0T3HJFXVV6vqC6OvH2H4h31a71SHrwaPjr49dnQ56s8ISLIJeC1w9TjrG+D5dBqwa8X3u5mBf9SzLslm4Gzgc72TTMboV/UdwAPATVU1C/frKuA9wFPjrGyApaNAkpOAjwNXVNXD3fNMQlXtqaqzgE3AuUle0j3T4UhyCfBAVW0f9zoGeD7dB5y+4vtNo5/pCJTkWIb4XltVn+ieZ9Kq6iHgZo7+4/fnAa9Lcg/DYb3zk3zkQFcwwPPp/wIvSvL8JMcBbwD+oHkm7UOSAL8N3FVVH+ieZ1KSLCQ5ZfT1icAFwJd6pzo8VfXeqtpUVZsZ/k19uqredKDrGOA5VFVPApcB/5vhSZ3rq+qO3qkOX5KPAZ8FtiTZneTt3TNNwHnAmxn2pnaMLhd3DzUBpwI3J7mNYYfgpqpa87StWeNLkSWpiXvAktRkKm/IvnHjxtq8efM0bloTtn379geraqF7jsP16lf+8iH9KvczV39q0qMc0HVvvGBdtwdQX1zfo0s3PXVD1nWDR7GpBHjz5s0sLY31hvBqluTe7hmkeeUhCElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJajJWgGfxAxwlqduaAZ7hD3CUpFbj7AHP5Ac4HowrrhgukjRJ47wZz74+wPHlq1dKshXYCnDGGWdMZLgjxY4d3RNImkUTexKuqrZV1WJVLS4sHPXvbihJUzdOgP0AR0magnEC7Ac4StIUrHkMuKqeTLL3Axw3AB+ahQ9wlKRuY30iRlV9Cljfz26RpBnnK+EkqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJajLWCzGkI91N119zSNe7+DU/OdlB1vLnO9d3e8CGZz1r3bep8bgHLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDVZM8BJPpTkgSS3r8dAkjQvxtkDvga4cMpzSNLcWTPAVfUZ4BvrMIskzRWPAUtSk4kFOMnWJEtJlpaXlyd1s5I0syYW4KraVlWLVbW4sLAwqZuVpJnlIQhJajLOaWgfAz4LbEmyO8nbpz+WJM2+NT+SqKreuB6DSNK88RCEJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1WfOVcNLR4KIXvOKQrveX122Y8CQH9siuc9Z1ewAvetfn1n2bGo97wJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1KTcT4V+fQkNye5M8kdSS5fj8EkadaN814QTwLvrqovJDkZ2J7kpqq6c8qzSdJMW3MPuKq+WlVfGH39CHAXcNq0B5OkWXdQx4CTbAbOBv7O2ysl2ZpkKcnS8vLyZKaTpBk2doCTnAR8HLiiqh5evbyqtlXVYlUtLiwsTHJGSZpJYwU4ybEM8b22qj4x3ZEkaT6McxZEgN8G7qqqD0x/JEmaD+PsAZ8HvBk4P8mO0eXiKc8lSTNvzdPQqupWIOswiyTNFV8JJ0lNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1KTcd4PWDriPfnyFx/S9U684fgJT3Jgz33b7nXdno5s7gFLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTcb5VOQTknw+yZ8luSPJ+9djMEmadeO8F8QTwPlV9WiSY4Fbk/yvqvrTKc8mSTNtnE9FLuDR0bfHji41zaEkaR6MdQw4yYYkO4AHgJuq6nP7WGdrkqUkS8vLy5OeU5JmzlgBrqo9VXUWsAk4N8lL9rHOtqparKrFhYWFSc8pSTPnoM6CqKqHgJuBC6czjiTNj3HOglhIcsro6xOBC4AvTXswSZp145wFcSrwu0k2MAT7+qr6w+mOJUmzb5yzIG4Dzl6HWSRprvhKOElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKajPNKOOmId9yuvzqk6z3zT3ZNeJID27Djheu6PYAP3nvrum9T43EPWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmBliSmhhgSWoydoCTbEjyxSR+IKckTcDB7AFfDtw1rUEkad6MFeAkm4DXAldPdxxJmh/j7gFfBbwHeGp/KyTZmmQpydLy8vJEhpOkWbZmgJNcAjxQVdsPtF5VbauqxapaXFhYmNiAkjSrxtkDPg94XZJ7gOuA85N8ZKpTSdIcWDPAVfXeqtpUVZuBNwCfrqo3TX0ySZpxngcsSU0O6iOJquoW4JapTCJJc8Y9YElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaHNQLMaQj1ePfc2hvAHXcPbsmPMmBPXX3Peu6PYDHa8O6b1PjcQ9YkpoYYElqYoAlqYkBlqQmBliSmhhgSWpigCWpiQGWpCYGWJKaGGBJajLWS5FHH0n/CLAHeLKqFqc5lCTNg4N5L4gfqqoHpzaJJM0ZD0FIUpNxA1zAjUm2J9m6rxWSbE2ylGRpeXl5chNK0owaN8A/UFUvBS4C3pnklatXqKptVbVYVYsLC4f21oCSNE/GCnBV3Tf68wHgk8C50xxKkubBmgFO8owkJ+/9Gvhh4PZpDyZJs26csyCeA3wyyd71P1pVfzTVqSRpDqwZ4Kr6MvB96zCLJM0VT0OTpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqYkBlqQmB/OG7NIR67HnHNp/yk9dfM6EJzmw5bc8vq7bA3j3C/es6/Zu/Pa6bu6o5h6wJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1GSvASU5J8ntJvpTkriTfP+3BJGnWjfv6zV8D/qiqXp/kOODpU5xJkubCmgFO8kzglcBbAKrq24Cv9pakwzTOIYjnA8vA7yT5YpKrkzxjynNJ0swbJ8DHAC8FfqOqzgYeA65cvVKSrUmWkiwtLy9PeMxeZ501XCRpksY5Brwb2F1Vnxt9/3vsI8BVtQ3YBrC4uFgTm/AIcNVV3RNImkVr7gFX1f3AriRbRj96NXDnVKeSpDkw7lkQ7wKuHZ0B8WXgrdMbSZLmw1gBrqodwOKUZ5GkueIr4SSpiQGWpCYGWJKaGGBJamKAJamJAZakJgZYkpoYYElqYoAlqUmqJv++OUmWgXsnfsOahudV1UL3ENI8mkqAJUlr8xCEJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1MQAS1ITAyxJTQywJDUxwJLUxABLUhMDLElNDLAkNTHAktTEAEtSEwMsSU0MsCQ1McCS1OT/A4Bsx8/mq+t1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.figure(4, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, asgd_pi, 'semi-dual : OT matrix ASGD')\n", + "pl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Sinkhorn results\n", + "---------------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEc5JREFUeJzt3X2QXQV9xvHnMYRBDII0OxYIuBY1DmMl4IovKKUwYoIW246jUl+Ktc3YWgdaWt86baUztdY6No462AAqAkUpQsdBtGAJQ6kQu5FoCSGWUpHwYjalSFAEEp7+cU/sNi57Tzb33l/23u9nZofde84953fD7HfPnj33XicRAGDwnlI9AACMKgIMAEUIMAAUIcAAUIQAA0ARAgwARQgwsBew/Urbm/qw3TfbvqblumfYvnF3l2HuCDCGQhOIf7f9Y9v32z7X9kHNsk/bfrj5eMz249O+/uoAZovt58y2TpJ/SbJ0jtt/he1v2P6h7Qds/6vtFzfbvSTJKXPZLvqPAGPes322pL+W9MeSDpT0UknPknSt7X2TvDPJoiSLJH1I0hd3fp1kRd3kHbb32YP7Pl3SVZI+IelgSYdJOkfSo72Zrvf25PEOGwKMea0J0DmS3p3ka0keT/I9SW+QNC7pLXPY5om2N9t+j+0ttu+z/au2T7X93eYo8wPT1j/O9k22H2zW/aTtfZtlNzSrfbs54n7jtO2/1/b9kj6787bmPkc2+zi2+fpQ21O2T5xh3OdJUpJLk+xI8kiSa5J8p7nv/zt10ByNv9P2fzTzfsq2n+Tf4W9s32j7wGm3fdT2/9j+L9srpt1+qO0vN3PfYft3pi37oO3LbV9s+yFJZzS3XWb787a32d5ge2I3/1fNewQY893LJe0n6YrpNyZ5WNLVkl41x+3+fLPdwyT9maTz1In5iyS9UtKf2n52s+4OSX8gabGkl0k6WdLvNXOc0KxzdHPE/cVp2z9YnSP1lbvM/p+S3ivpYtv7S/qspAuTXD/DnN+VtMP2hbZX2H5Gi8f2WkkvlvRCdX5QvXr6QttPsX1es/yUJD9sFr1E0qbmcX5E0gXT4v0FSZslHSrp9ZI+ZPukaZt9naTLJR0k6ZLmttOa+x0k6cuSPtli9qFCgDHfLZa0Ncn2GZbd1yyfi8cl/WWSx9WJxGJJH0+yLckGSbdJOlqSkqxLcnOS7c3R999J+qUu239C0p8neTTJI7suTHKepDskrZV0iKQ/mWkjSR6S9ApJUeeHxFRzJPrMWfb94SQPJvm+pDWSlk1btlDSper8cPiVJD+etuyuJOcl2SHpwmauZ9o+XNLxkt6b5CdJ1ks6X9Lbpt33piT/mOSJaY/3xiRXN9u7SM2/5yghwJjvtkpa/CTnFQ9pls/FfzdhkKSdwfjBtOWPSFokSbafZ/uq5o9/D6lznrlb+KeS/KTLOudJeoGkTyR50nO6STYmOSPJkmb9QyWtmmW790/7/Mc7H0fjOeocrZ6T5LEnu9+0MC9q9vdAkm3T1r1Lnd8edrq7xRz7jdr5YQKM+e4mdf7g9OvTb7S9SNIKSf88gBnOlXS7pOcmebqkD0ia8bzqNLO+DGEz/ypJF0j6oO2D2wyS5HZJn1MnxHOxUdLbJX3VdturMu6VdLDtA6bddoSke6aPNsd5hhoBxrzWnJ88R9InbC+3vdD2uKTL1DknedEAxjhA0kOSHrb9fEm/u8vyH0j6hd3c5sclTSb5bUlfkfTpmVay/XzbZ9te0nx9uKTTJd28m/v7qSSXqvND5Ou2j2yx/t2SviHpr2zvZ/uFkt4h6eK5zjAqCDDmvSQfUScYH1UnhGvV+ZX35Nl+de+hP5L0G5K2qXPa4Iu7LP+gpAubqw7e0G1jtl8nabn+L+R/KOlY22+eYfVt6vxxbK3tH6kT3lslnT2Hx/FTSS6U9BeSrmt+oHVzujpXndwr6Up1zm9/fU9mGAXmBdkBoAZHwABQhAADQBECDABFCDAAFBmpi57xsxYvXpzx8fHqMYChsm7duq1JxrqtR4BH3Pj4uCYnJ6vHAIaK7bvarMcpCAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgyD7VA6DYpk3SiSdWT4FRtmyZtGpV9RQlOAIGgCIcAY+6pUul66+vngIYSRwBA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFHGS6hlQyPY2SZuq5+ixxZK2Vg/RBzyu+WNpkgO6rbTPICbBXm1TkonqIXrJ9uSwPSaJxzWf2J5ssx6nIACgCAEGgCIEGKurB+iDYXxMEo9rPmn1mPgjHAAU4QgYAIoQYAAoQoBHlO3ltjfZvsP2+6rn6QXbn7G9xfat1bP0iu3Dba+xfZvtDbbPrJ6pF2zvZ/ubtr/dPK5zqmfqFdsLbN9i+6pu6xLgEWR7gaRPSVoh6ShJp9s+qnaqnvicpOXVQ/TYdklnJzlK0kslvWtI/l89KumkJEdLWiZpue2XFs/UK2dK2thmRQI8mo6TdEeSO5M8JukLkl5XPNMeS3KDpAeq5+ilJPcl+Vbz+TZ1vrEPq51qz6Xj4ebLhc3HvL8iwPYSSa+RdH6b9QnwaDpM0t3Tvt6sIfimHna2xyUdI2lt7SS90fyqvl7SFknXJhmGx7VK0nskPdFmZQIMzAO2F0n6kqSzkjxUPU8vJNmRZJmkJZKOs/2C6pn2hO3XStqSZF3b+xDg0XSPpMOnfb2kuQ17IdsL1YnvJUmuqJ6n15I8KGmN5v/5++MlnWb7e+qc1jvJ9sWz3YEAj6Z/k/Rc28+2va+kN0n6cvFMmIFtS7pA0sYkH6uep1dsj9k+qPn8qZJeJen22qn2TJL3J1mSZFyd76nrkrxltvsQ4BGUZLuk35f0T+r8UeeyJBtqp9pzti+VdJOkpbY3235H9Uw9cLykt6pzNLW++Ti1eqgeOETSGtvfUeeA4NokXS/bGjY8FRkAinAEDABF+vKC7IsXL874+Hg/No0eW7du3dYkY9Vz7KkTT/nwnH6Ve/Xf3tDrUWa15m3HDXR/kpRbBnt26don/sED3eE81pcAj4+Pa3Ky1QvCo5jtu6pnAEYVpyAAoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaBIqwAP4xs4AkC1rgEe4jdwBIBSbY6Ah/INHHfHWWd1PgCgl9q8GM9Mb+D4kl1Xsr1S0kpJOuKII3oy3N5i/frqCQAMo579ES7J6iQTSSbGxub9qxsCQN+1CTBv4AgAfdAmwLyBIwD0QddzwEm22975Bo4LJH1mGN7AEQCqtXpHjCRXS7q6z7MAwEjhmXAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFGn1RAxgb3fd5y+Y0/1OPeHXejzJ7HLn7QPdnyQt4MWx9locAQNAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFugbY9mdsb7F96yAGAoBR0eYI+HOSlvd5DgAYOV0DnOQGSQ8MYBYAGCmcAwaAIj0LsO2VtidtT05NTfVqswAwtHoW4CSrk0wkmRjj9UcBoCtOQQBAkTaXoV0q6SZJS21vtv2O/o8FAMOv61sSJTl9EIMAwKjhFAQAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABTp+kw4YD5Y8ZyXz+l+379o/x5PMrtH7p0Y6P4k6bnvXjvwfaIdjoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIm3eFflw22ts32Z7g+0zBzEYAAy7Nq8FsV3S2Um+ZfsASetsX5vktj7PBgBDresRcJL7knyr+XybpI2SDuv3YAAw7HbrHLDtcUnHSPqZl1eyvdL2pO3Jqamp3kwHAEOsdYBtL5L0JUlnJXlo1+VJVieZSDIxNjbWyxkBYCi1CrDtherE95IkV/R3JAAYDW2ugrCkCyRtTPKx/o8EAKOhzRHw8ZLeKukk2+ubj1P7PBcADL2ul6EluVGSBzALAIwUngkHAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQJE2rwcM7PV+8sqj5nS/Ay8b7LfAz/3WDwa6P+zdOAIGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAirR5V+T9bH/T9rdtb7B9ziAGA4Bh1+aJ8I9KOinJw7YXSrrR9leT3Nzn2QBgqLV5V+RIerj5cmHzkX4OBQCjoNU5YNsLbK+XtEXStUnWzrDOStuTtienpqZ6PScADJ1WAU6yI8kySUskHWf7BTOsszrJRJKJsbGxXs8JAENnt66CSPKgpDWSlvdnHAAYHW2ughizfVDz+VMlvUrS7f0eDACGXZurIA6RdKHtBeoE+7IkV/V3LAAYfm2ugviOpGMGMAsAjBSeCQcARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAkTbPhAP2evtvuG9O99v3nnt7PMns9rl5yUD3J0lfuXf9wPeJdjgCBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIq0DrDtBbZvsc0bcgJAD+zOEfCZkjb2axAAGDWtAmx7iaTXSDq/v+MAwOhoewS8StJ7JD3xZCvYXml70vbk1NRUT4YDgGHWNcC2XytpS5J1s62XZHWSiSQTY2NjPRsQAIZVmyPg4yWdZvt7kr4g6STbF/d1KgAYAV0DnOT9SZYkGZf0JknXJXlL3ycDgCHHdcAAUGS33pIoyfWSru/LJAAwYjgCBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaDIbj0RA9hbPf6sub0AlO+5t8eTzG7HPfcNdH+S9MMnHhno/p4x0L3NbxwBA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEVaPRW5eUv6bZJ2SNqeZKKfQwHAKNid14L45SRb+zYJAIwYTkEAQJG2AY6ka2yvs71yphVsr7Q9aXtyamqqdxMCwJBqG+BXJDlW0gpJ77J9wq4rJFmdZCLJxNjY3F4aEABGSasAJ7mn+e8WSVdKOq6fQwHAKOgaYNtPs33Azs8lnSLp1n4PBgDDrs1VEM+UdKXtnev/fZKv9XUqABgBXQOc5E5JRw9gFgAYKVyGBgBFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARXbnBdmBvdbWX3zqnO534KIX9XiS2d39m9sHuj9JeuORCwa6v2seGeju5jWOgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoEirANs+yPbltm+3vdH2y/o9GAAMu7ZPRf64pK8leb3tfSXt38eZAGAkdA2w7QMlnSDpDElK8pikx/o7FgAMvzanIJ4taUrSZ23fYvt820/r81wAMPTaBHgfScdKOjfJMZJ+JOl9u65ke6XtSduTU1NTPR6z1rJlnQ8A6KU254A3S9qcZG3z9eWaIcBJVktaLUkTExPp2YR7gVWrqicAMIy6HgEnuV/S3baXNjedLOm2vk4FACOg7VUQ75Z0SXMFxJ2S3t6/kQBgNLQKcJL1kib6PAsAjBSeCQcARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEWc9P51c2xPSbqr5xtGPzwryVj1EMAo6kuAAQDdcQoCAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKPK/bk07WnJikdoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.figure(4, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')\n", + "pl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "COMPUTE TRANSPORTATION MATRIX FOR DUAL PROBLEM\n", + "############################################################################\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------------DUAL PROBLEM------------\n" + ] + } + ], + "source": [ + "print(\"------------DUAL PROBLEM------------\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "SEMICONTINOUS CASE\n", + "Sample one general measure a, one discrete measures b for the semicontinous\n", + "case\n", + "---------------------------------------------\n", + "\n", + "Define one general measure a, one discrete measures b, the points where\n", + "are defined the source and the target measures and finally the cost matrix c.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "n_source = 7\n", + "n_target = 4\n", + "reg = 1\n", + "numItermax = 100000\n", + "lr = 0.1\n", + "batch_size = 3\n", + "log = True\n", + "\n", + "a = ot.utils.unif(n_source)\n", + "b = ot.utils.unif(n_target)\n", + "\n", + "rng = np.random.RandomState(0)\n", + "X_source = rng.randn(n_source, 2)\n", + "Y_target = rng.randn(n_target, 2)\n", + "M = ot.dist(X_source, Y_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call the \"SGD\" dual method to find the transportation matrix in the\n", + "semicontinous case\n", + "---------------------------------------------\n", + "\n", + "Call ot.solve_dual_entropic and plot the results.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1.67648902 5.3770004 1.70385554 0.4276547 -0.77206786 1.0474898\n", + " 0.54202203] [-0.23723788 -0.20259434 1.30855788 8.06179985]\n", + "[[2.62451875e-02 1.00499531e-01 1.78515577e-02 4.57450829e-06]\n", + " [1.20510690e-01 1.21972758e-02 1.27002374e-03 7.55197481e-03]\n", + " [3.65708350e-03 7.67963231e-02 6.38381061e-02 1.41974930e-07]\n", + " [2.64286344e-02 3.31748063e-02 8.24445965e-02 4.25479786e-04]\n", + " [9.59295422e-03 7.19190875e-04 1.03739180e-02 1.22100712e-01]\n", + " [2.09087627e-02 8.55676046e-04 1.77617241e-03 1.17896019e-01]\n", + " [4.18792948e-02 2.63326297e-02 7.17598381e-02 2.49335733e-03]]\n" + ] + } + ], + "source": [ + "sgd_dual_pi, log_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg,\n", + " batch_size, numItermax,\n", + " lr, log=log)\n", + "print(log_sgd['alpha'], log_sgd['beta'])\n", + "print(sgd_dual_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare the results with the Sinkhorn algorithm\n", + "---------------------------------------------\n", + "\n", + "Call the Sinkhorn algorithm from POT\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[2.55535622e-02 9.96413843e-02 1.76578860e-02 4.31043335e-06]\n", + " [1.21640742e-01 1.25369034e-02 1.30234529e-03 7.37715259e-03]\n", + " [3.56096458e-03 7.61460101e-02 6.31500344e-02 1.33788624e-07]\n", + " [2.61499607e-02 3.34255577e-02 8.28741973e-02 4.07427179e-04]\n", + " [9.85698720e-03 7.52505948e-04 1.08291770e-02 1.21418473e-01]\n", + " [2.16947591e-02 9.04086158e-04 1.87228707e-03 1.18386011e-01]\n", + " [4.15442692e-02 2.65998963e-02 7.23192701e-02 2.39370724e-03]]\n" + ] + } + ], + "source": [ + "sinkhorn_pi = ot.sinkhorn(a, b, M, reg)\n", + "print(sinkhorn_pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot SGD results\n", + "-----------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEgBJREFUeJzt3X2QXQV9xvHnaQhFAWHarBaT0KUjg0U6BLtiLKII1QFx1No3rdBibTMWqTB16mg7Ktp2OjojpvW1KSK2oIiiHccqBSGMhSK4gYDyphZfEhKbjZSaIAoJT/+4J51tTHZPNufe3+6938/MTvbec+49v7OZfPfk3DcnEQBg8H6megAAGFUEGACKEGAAKEKAAaAIAQaAIgQYAIoQYCxoti+1/dcd3M+47dg+oIu5FiLbr7Z9TfUco4QAAx1wz5/b/qbtR2x/z/bf2v7ZZvkXbW9vvh6z/ei0yx/u82ytfrkkuTzJi+a4jZfZXm/7h7a32r7e9lHTlh9t+wrbU80637T9PtvLmuWn2H582s9ko+0rbT9rLvMsFAQY6MbfS1ol6fclHSrpDEmnSbpSkpKckeSQJIdIulzSu3ddTvK6qqF32Z8jf9tPk/RPkt4o6TBJR0n6gKSd05bfImmTpBOSPEnSSZL+U9Jzp93Vpubnc6iklZLulfTvtk+b62zzHQHGgmL7BNu32d5m+5OSDpq27BzbN+62fpoAyPaZtm9vjsA22L6wo5mOlnSupFcnuTnJjiR3SfpNSafbPnUO93mO7Ztsv9f2Q7bvt/1rzfUbbG+x/QfT1p9p377c/PlQc3T5nN3u/weSLpz+82u2tdX28uby8bb/2/bT9zDuCknfTnJderYluSrJ95rlF0q6KcmfJdkoSUm2JFmd5Ird76y5j41J3ibpYknv2tef30JBgLFg2D5Q0r9I+mdJPyfpU+pFrq2H1TtCPVzSmZL+xPbLW277g7Y/uJfFp0namOTW6Vcm2SDpK5JeuA8zTvdsSXdK+nlJH5d0haRnSXqapLMkvd/2Ic26M+3b85o/D2+OuG+edv/3S3qKpL/Zbfb/kPQPkj5m+wmSLpP01iT37mHO2yQ9vYn5C6bNtMuvS7pqn/e+5zOSnmn74Dnefl4jwFhIVkpaLGl1kseSfFrSV9veOMkNSb6W5PEkd0r6hKTnt7ztuUnO3cviJZI272XZ5mb5XHw7yUeT7JT0SUnLJb0zyU+SXCPpUfViPNd925Tkfc0R+yN7WH6heqcUbpX0gHqnFX5KkvslnSJpqXqnXLY2D47uCvESSd/ftb7t85qj+u22/3G2GSVZvV8sQ4cAYyF5qqQH8v/fQeq7bW9s+9m21zYPBP2PpNdp7nGcbqukI/ay7Ihm+Vz817TvH5GkJLtfd4g0533bMNPCJI9JulTScZLes9vPffd1v5Lkd5KMSTpZvaPuv2wW/0DTfj5J3p/kcEmr1fuFOpOlkiLpoVnWW5AIMBaSzZKW2va0646c9v3Dkp6464LtX9jt9h+X9DlJy5McJunD6h1d7a/rJS23feL0K5vzpyslXdfBNmYz077tLZwzvhWi7aWS3i7po5Les+sZHbNJ8lX1Th0c11x1naRXtLntHvyGpNuSPDzH289rBBgLyc2Sdkh6g+3Ftl8haXr07pD0DNsrbB+k3n+hpztU0oNJftzE8ve6GCrJN9QL3uW2V9peZPsZ6p33/FKSL3WxnVnMtG9Tkh6X9Ett76z5JXeppI9Ieq16v/z+ai/rPtf2H9t+cnP56ZJeqt75b6n393Cy7YuaqMv2Ekm/vLdt215q++2S/kjSX7Sde6EhwFgwkjyq3pHUOZIelPS76h1p7Vr+DUnvlPQlSd+UdONud3GupHfa3ibpbWqeItaG7Q975ufrnqfeI/aXSdou6WpJN2jfHiTcH3vdtyQ/Uu9Btpuac68rW9zfGyQ9Wb0H3iLpNZJeY/vkPaz7kHrB/ZrtXfv+WUnvbrb/DfUe8Fsm6Y5mxpvUO7/71mn389Tm9tvVO7f/K5JOac53DyXzhuwAUIMjYAAoQoABoAgBBoAiBBgAiozsW++hZ8mSJRkfH68eAxgq69at29q8KGVGBHjEjY+Pa3JysnoMYKjYbvUKTU5BAEARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFDqgeAMXuu0865ZTqKTDKVqyQVq+unqIER8AAUIQj4FF3zDHSDTdUTwGMJI6AAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAijhJ9QwoZHubpPuq5+jYEklbq4foA/Zr4TgmyaGzrXTAICbBvHZfkonqIbpke3LY9klivxYS25Nt1uMUBAAUIcAAUIQAY031AH0wjPsksV8LSat94kE4ACjCETAAFCHAAFCEAI8o26fbvs/2t2y/uXqeLti+xPYW21+vnqUrtpfbXmv7btt32T6/eqYu2D7I9q2272j26x3VM3XF9iLbt9v+/GzrEuARZHuRpA9IOkPSsZJeZfvY2qk6camk06uH6NgOSW9McqyklZJePyR/Vz+RdGqS4yWtkHS67ZXFM3XlfEn3tFmRAI+mEyV9K8n9SR6VdIWklxXPtN+SfFnSg9VzdCnJ5iS3Nd9vU+8f9tLaqfZferY3Fxc3Xwv+GQG2l0k6U9LFbdYnwKNpqaQN0y5v1BD8ox52tsclnSDpltpJutH8V329pC2Srk0yDPu1WtKbJD3eZmUCDCwAtg+RdJWkC5L8sHqeLiTZmWSFpGWSTrR9XPVM+8P2SyRtSbKu7W0I8Gh6QNLyaZeXNddhHrK9WL34Xp7kM9XzdC3JQ5LWauGfvz9J0kttf0e903qn2r5sphsQ4NH0VUlH2z7K9oGSXinpc8UzYQ9sW9JHJN2T5KLqebpie8z24c33T5D0Qkn31k61f5K8JcmyJOPq/Zu6PslZM92GAI+gJDsknSfp39R7UOfKJHfVTrX/bH9C0s2SjrG90fZrq2fqwEmSzlbvaGp98/Xi6qE6cISktbbvVO+A4Noksz5ta9jwUmQAKMIRMAAU6csbsi9ZsiTj4+P9uGt0bN26dVuTjFXPsb+ef8a75vRfuRe/Z23Xo8zourMH/1qD3D7Ys0vXPv4pD3SDC1hfAjw+Pq7JyVZvCI9itr9bPQMwqjgFAQBFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARVoFeBg/wBEAqs0a4CH+AEcAKNXmCHgoP8BxX1xwQe8LALrU5s149vQBjs/efSXbqyStkqQjjzyyk+Hmi/XrqycAMIw6exAuyZokE0kmxsYW/LsbAkDftQkwH+AIAH3QJsB8gCMA9MGs54CT7LC96wMcF0m6ZBg+wBEAqrX6RIwkX5D0hT7PAgAjhVfCAUARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCk1QsxgPnu6ks+NKfbveLk3+54kpnlO/cOdHuStIg3x5q3OAIGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAiswaYNuX2N5i++uDGAgARkWbI+BLJZ3e5zkAYOTMGuAkX5b04ABmAYCRwjlgACjSWYBtr7I9aXtyamqqq7sFgKHVWYCTrEkykWRijPcfBYBZcQoCAIq0eRraJyTdLOkY2xttv7b/YwHA8Jv1I4mSvGoQgwDAqOEUBAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFJn1lXDAQvDyo58/p9ttuOzgjieZ2Y82TQx0e5J09Hm3DHybaIcjYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaBIm09FXm57re27bd9l+/xBDAYAw67Ne0HskPTGJLfZPlTSOtvXJrm7z7MBwFCb9Qg4yeYktzXfb5N0j6Sl/R4MAIbdPp0Dtj0u6QRJP/X2SrZX2Z60PTk1NdXNdAAwxFoH2PYhkq6SdEGSH+6+PMmaJBNJJsbGxrqcEQCGUqsA216sXnwvT/KZ/o4EAKOhzbMgLOkjku5JclH/RwKA0dDmCPgkSWdLOtX2+ubrxX2eCwCG3qxPQ0tyoyQPYBYAGCm8Eg4AihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIm3eDxiY93588rFzut1hVwz2n8Bhf7hloNvD/MYRMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCkzaciH2T7Vtt32L7L9jsGMRgADLs2L4T/iaRTk2y3vVjSjba/mOQrfZ4NAIZam09FjqTtzcXFzVf6ORQAjIJW54BtL7K9XtIWSdcmuWUP66yyPWl7cmpqqus5AWDotApwkp1JVkhaJulE28ftYZ01SSaSTIyNjXU9JwAMnX16FkSShyStlXR6f8YBgNHR5lkQY7YPb75/gqQXSrq334MBwLBr8yyIIyR9zPYi9YJ9ZZLP93csABh+bZ4FcaekEwYwCwCMFF4JBwBFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0CRNq+EA+a9J961eU63O/CBTR1PMrMDbl460O1J0r9uWj/wbaIdjoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIq0DbHuR7dtt84GcANCBfTkCPl/SPf0aBABGTasA214m6UxJF/d3HAAYHW2PgFdLepOkx/e2gu1VtidtT05NTXUyHAAMs1kDbPslkrYkWTfTeknWJJlIMjE2NtbZgAAwrNocAZ8k6aW2vyPpCkmn2r6sr1MBwAiYNcBJ3pJkWZJxSa+UdH2Ss/o+GQAMOZ4HDABF9ukjiZLcIOmGvkwCACOGI2AAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAiuzTCzGA+eqx5UvmdDs/sKnjSWa2c/P3B7o9Sdq68+GBbu/JA93awsYRMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCk1UuRm4+k3yZpp6QdSSb6ORQAjIJ9eS+IFyTZ2rdJAGDEcAoCAIq0DXAkXWN7ne1Ve1rB9irbk7Ynp6amupsQAIZU2wA/N8kzJZ0h6fW2n7f7CknWJJlIMjE2NtbpkAAwjFoFOMkDzZ9bJH1W0on9HAoARsGsAbZ9sO1Dd30v6UWSvt7vwQBg2LV5FsRTJH3W9q71P57k6r5OBQAjYNYAJ7lf0vEDmAUARgpPQwOAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCL78obswLy19fgnzul2hz3pVzueZGbfO3vnQLcnSWc9bdFAt3fNIwPd3ILGETAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABRpFWDbh9v+tO17bd9j+zn9HgwAhl3blyL/naSrk/yW7QMlze11nwCA/zNrgG0fJul5ks6RpCSPSnq0v2MBwPBrcwriKElTkj5q+3bbF9s+uM9zAcDQaxPgAyQ9U9KHkpwg6WFJb959JdurbE/anpyamup4zForVvS+AKBLbc4Bb5S0McktzeVPaw8BTrJG0hpJmpiYSGcTzgOrV1dPAGAYzXoEnOT7kjbYPqa56jRJd/d1KgAYAW2fBfGnki5vngFxv6TX9G8kABgNrQKcZL2kiT7PAgAjhVfCAUARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAESfdv2+O7SlJ3+38jtEPv5hkrHoIYBT1JcAAgNlxCgIAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAo8r9wCGj9yW4UbQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.figure(4, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, sgd_dual_pi, 'dual : OT matrix SGD')\n", + "pl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Sinkhorn results\n", + "---------------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEc5JREFUeJzt3X2QXQV9xvHnMYRBDII0OxYIuBY1DmMl4IovKKUwYoIW246jUl+Ktc3YWgdaWt86baUztdY6No462AAqAkUpQsdBtGAJQ6kQu5FoCSGWUpHwYjalSFAEEp7+cU/sNi57Tzb33l/23u9nZofde84953fD7HfPnj33XicRAGDwnlI9AACMKgIMAEUIMAAUIcAAUIQAA0ARAgwARQgwsBew/Urbm/qw3TfbvqblumfYvnF3l2HuCDCGQhOIf7f9Y9v32z7X9kHNsk/bfrj5eMz249O+/uoAZovt58y2TpJ/SbJ0jtt/he1v2P6h7Qds/6vtFzfbvSTJKXPZLvqPAGPes322pL+W9MeSDpT0UknPknSt7X2TvDPJoiSLJH1I0hd3fp1kRd3kHbb32YP7Pl3SVZI+IelgSYdJOkfSo72Zrvf25PEOGwKMea0J0DmS3p3ka0keT/I9SW+QNC7pLXPY5om2N9t+j+0ttu+z/au2T7X93eYo8wPT1j/O9k22H2zW/aTtfZtlNzSrfbs54n7jtO2/1/b9kj6787bmPkc2+zi2+fpQ21O2T5xh3OdJUpJLk+xI8kiSa5J8p7nv/zt10ByNv9P2fzTzfsq2n+Tf4W9s32j7wGm3fdT2/9j+L9srpt1+qO0vN3PfYft3pi37oO3LbV9s+yFJZzS3XWb787a32d5ge2I3/1fNewQY893LJe0n6YrpNyZ5WNLVkl41x+3+fLPdwyT9maTz1In5iyS9UtKf2n52s+4OSX8gabGkl0k6WdLvNXOc0KxzdHPE/cVp2z9YnSP1lbvM/p+S3ivpYtv7S/qspAuTXD/DnN+VtMP2hbZX2H5Gi8f2WkkvlvRCdX5QvXr6QttPsX1es/yUJD9sFr1E0qbmcX5E0gXT4v0FSZslHSrp9ZI+ZPukaZt9naTLJR0k6ZLmttOa+x0k6cuSPtli9qFCgDHfLZa0Ncn2GZbd1yyfi8cl/WWSx9WJxGJJH0+yLckGSbdJOlqSkqxLcnOS7c3R999J+qUu239C0p8neTTJI7suTHKepDskrZV0iKQ/mWkjSR6S9ApJUeeHxFRzJPrMWfb94SQPJvm+pDWSlk1btlDSper8cPiVJD+etuyuJOcl2SHpwmauZ9o+XNLxkt6b5CdJ1ks6X9Lbpt33piT/mOSJaY/3xiRXN9u7SM2/5yghwJjvtkpa/CTnFQ9pls/FfzdhkKSdwfjBtOWPSFokSbafZ/uq5o9/D6lznrlb+KeS/KTLOudJeoGkTyR50nO6STYmOSPJkmb9QyWtmmW790/7/Mc7H0fjOeocrZ6T5LEnu9+0MC9q9vdAkm3T1r1Lnd8edrq7xRz7jdr5YQKM+e4mdf7g9OvTb7S9SNIKSf88gBnOlXS7pOcmebqkD0ia8bzqNLO+DGEz/ypJF0j6oO2D2wyS5HZJn1MnxHOxUdLbJX3VdturMu6VdLDtA6bddoSke6aPNsd5hhoBxrzWnJ88R9InbC+3vdD2uKTL1DknedEAxjhA0kOSHrb9fEm/u8vyH0j6hd3c5sclTSb5bUlfkfTpmVay/XzbZ9te0nx9uKTTJd28m/v7qSSXqvND5Ou2j2yx/t2SviHpr2zvZ/uFkt4h6eK5zjAqCDDmvSQfUScYH1UnhGvV+ZX35Nl+de+hP5L0G5K2qXPa4Iu7LP+gpAubqw7e0G1jtl8nabn+L+R/KOlY22+eYfVt6vxxbK3tH6kT3lslnT2Hx/FTSS6U9BeSrmt+oHVzujpXndwr6Up1zm9/fU9mGAXmBdkBoAZHwABQhAADQBECDABFCDAAFBmpi57xsxYvXpzx8fHqMYChsm7duq1JxrqtR4BH3Pj4uCYnJ6vHAIaK7bvarMcpCAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgyD7VA6DYpk3SiSdWT4FRtmyZtGpV9RQlOAIGgCIcAY+6pUul66+vngIYSRwBA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFHGS6hlQyPY2SZuq5+ixxZK2Vg/RBzyu+WNpkgO6rbTPICbBXm1TkonqIXrJ9uSwPSaJxzWf2J5ssx6nIACgCAEGgCIEGKurB+iDYXxMEo9rPmn1mPgjHAAU4QgYAIoQYAAoQoBHlO3ltjfZvsP2+6rn6QXbn7G9xfat1bP0iu3Dba+xfZvtDbbPrJ6pF2zvZ/ubtr/dPK5zqmfqFdsLbN9i+6pu6xLgEWR7gaRPSVoh6ShJp9s+qnaqnvicpOXVQ/TYdklnJzlK0kslvWtI/l89KumkJEdLWiZpue2XFs/UK2dK2thmRQI8mo6TdEeSO5M8JukLkl5XPNMeS3KDpAeq5+ilJPcl+Vbz+TZ1vrEPq51qz6Xj4ebLhc3HvL8iwPYSSa+RdH6b9QnwaDpM0t3Tvt6sIfimHna2xyUdI2lt7SS90fyqvl7SFknXJhmGx7VK0nskPdFmZQIMzAO2F0n6kqSzkjxUPU8vJNmRZJmkJZKOs/2C6pn2hO3XStqSZF3b+xDg0XSPpMOnfb2kuQ17IdsL1YnvJUmuqJ6n15I8KGmN5v/5++MlnWb7e+qc1jvJ9sWz3YEAj6Z/k/Rc28+2va+kN0n6cvFMmIFtS7pA0sYkH6uep1dsj9k+qPn8qZJeJen22qn2TJL3J1mSZFyd76nrkrxltvsQ4BGUZLuk35f0T+r8UeeyJBtqp9pzti+VdJOkpbY3235H9Uw9cLykt6pzNLW++Ti1eqgeOETSGtvfUeeA4NokXS/bGjY8FRkAinAEDABF+vKC7IsXL874+Hg/No0eW7du3dYkY9Vz7KkTT/nwnH6Ve/Xf3tDrUWa15m3HDXR/kpRbBnt26don/sED3eE81pcAj4+Pa3Ky1QvCo5jtu6pnAEYVpyAAoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaBIqwAP4xs4AkC1rgEe4jdwBIBSbY6Ah/INHHfHWWd1PgCgl9q8GM9Mb+D4kl1Xsr1S0kpJOuKII3oy3N5i/frqCQAMo579ES7J6iQTSSbGxub9qxsCQN+1CTBv4AgAfdAmwLyBIwD0QddzwEm22975Bo4LJH1mGN7AEQCqtXpHjCRXS7q6z7MAwEjhmXAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFGn1RAxgb3fd5y+Y0/1OPeHXejzJ7HLn7QPdnyQt4MWx9locAQNAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQBECDABFugbY9mdsb7F96yAGAoBR0eYI+HOSlvd5DgAYOV0DnOQGSQ8MYBYAGCmcAwaAIj0LsO2VtidtT05NTfVqswAwtHoW4CSrk0wkmRjj9UcBoCtOQQBAkTaXoV0q6SZJS21vtv2O/o8FAMOv61sSJTl9EIMAwKjhFAQAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARQgwABTp+kw4YD5Y8ZyXz+l+379o/x5PMrtH7p0Y6P4k6bnvXjvwfaIdjoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIm3eFflw22ts32Z7g+0zBzEYAAy7Nq8FsV3S2Um+ZfsASetsX5vktj7PBgBDresRcJL7knyr+XybpI2SDuv3YAAw7HbrHLDtcUnHSPqZl1eyvdL2pO3Jqamp3kwHAEOsdYBtL5L0JUlnJXlo1+VJVieZSDIxNjbWyxkBYCi1CrDtherE95IkV/R3JAAYDW2ugrCkCyRtTPKx/o8EAKOhzRHw8ZLeKukk2+ubj1P7PBcADL2ul6EluVGSBzALAIwUngkHAEUIMAAUIcAAUIQAA0ARAgwARQgwABQhwABQhAADQJE2rwcM7PV+8sqj5nS/Ay8b7LfAz/3WDwa6P+zdOAIGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAirR5V+T9bH/T9rdtb7B9ziAGA4Bh1+aJ8I9KOinJw7YXSrrR9leT3Nzn2QBgqLV5V+RIerj5cmHzkX4OBQCjoNU5YNsLbK+XtEXStUnWzrDOStuTtienpqZ6PScADJ1WAU6yI8kySUskHWf7BTOsszrJRJKJsbGxXs8JAENnt66CSPKgpDWSlvdnHAAYHW2ughizfVDz+VMlvUrS7f0eDACGXZurIA6RdKHtBeoE+7IkV/V3LAAYfm2ugviOpGMGMAsAjBSeCQcARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAkTbPhAP2evtvuG9O99v3nnt7PMns9rl5yUD3J0lfuXf9wPeJdjgCBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIq0DrDtBbZvsc0bcgJAD+zOEfCZkjb2axAAGDWtAmx7iaTXSDq/v+MAwOhoewS8StJ7JD3xZCvYXml70vbk1NRUT4YDgGHWNcC2XytpS5J1s62XZHWSiSQTY2NjPRsQAIZVmyPg4yWdZvt7kr4g6STbF/d1KgAYAV0DnOT9SZYkGZf0JknXJXlL3ycDgCHHdcAAUGS33pIoyfWSru/LJAAwYjgCBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaDIbj0RA9hbPf6sub0AlO+5t8eTzG7HPfcNdH+S9MMnHhno/p4x0L3NbxwBA0ARAgwARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEVaPRW5eUv6bZJ2SNqeZKKfQwHAKNid14L45SRb+zYJAIwYTkEAQJG2AY6ka2yvs71yphVsr7Q9aXtyamqqdxMCwJBqG+BXJDlW0gpJ77J9wq4rJFmdZCLJxNjY3F4aEABGSasAJ7mn+e8WSVdKOq6fQwHAKOgaYNtPs33Azs8lnSLp1n4PBgDDrs1VEM+UdKXtnev/fZKv9XUqABgBXQOc5E5JRw9gFgAYKVyGBgBFCDAAFCHAAFCEAANAEQIMAEUIMAAUIcAAUIQAA0ARAgwARXbnBdmBvdbWX3zqnO534KIX9XiS2d39m9sHuj9JeuORCwa6v2seGeju5jWOgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoEirANs+yPbltm+3vdH2y/o9GAAMu7ZPRf64pK8leb3tfSXt38eZAGAkdA2w7QMlnSDpDElK8pikx/o7FgAMvzanIJ4taUrSZ23fYvt820/r81wAMPTaBHgfScdKOjfJMZJ+JOl9u65ke6XtSduTU1NTPR6z1rJlnQ8A6KU254A3S9qcZG3z9eWaIcBJVktaLUkTExPp2YR7gVWrqicAMIy6HgEnuV/S3baXNjedLOm2vk4FACOg7VUQ75Z0SXMFxJ2S3t6/kQBgNLQKcJL1kib6PAsAjBSeCQcARQgwABQhwABQhAADQBECDABFCDAAFCHAAFCEAANAEQIMAEWc9P51c2xPSbqr5xtGPzwryVj1EMAo6kuAAQDdcQoCAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKEKAAaAIAQaAIgQYAIoQYAAoQoABoAgBBoAiBBgAihBgAChCgAGgCAEGgCIEGACKEGAAKPK/bk07WnJikdoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.figure(4, figsize=(5, 5))\n", + "ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')\n", + "pl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From 1d68c0127cbb6597d685eddfe07aad2a99fc443c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 14:16:35 +0200 Subject: [PATCH 07/26] remove double smooth in doc --- docs/source/all.rst | 5 ----- 1 file changed, 5 deletions(-) diff --git a/docs/source/all.rst b/docs/source/all.rst index 945902324..94da2ed21 100644 --- a/docs/source/all.rst +++ b/docs/source/all.rst @@ -19,11 +19,6 @@ ot.bregman .. automodule:: ot.bregman :members: - -ot.smooth ------ -.. automodule:: ot.smooth - :members: ot.smooth ----- From f51c6ab8c25ee371be23ca1a09cb18aed7732132 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 29 Aug 2018 14:17:19 +0200 Subject: [PATCH 08/26] update exmaple bary 1D for better notebook --- docs/cache_nbrun | 2 +- .../auto_examples/auto_examples_jupyter.zip | Bin 118510 -> 119618 bytes .../auto_examples/auto_examples_python.zip | Bin 79057 -> 79365 bytes .../sphx_glr_plot_barycenter_1D_003.png | Bin 108756 -> 41624 bytes .../sphx_glr_plot_barycenter_1D_005.png | Bin 108687 -> 108756 bytes .../sphx_glr_plot_barycenter_1D_006.png | Bin 105696 -> 105765 bytes docs/source/auto_examples/index.rst | 16 +- .../auto_examples/plot_barycenter_1D.ipynb | 74 ++++++- .../auto_examples/plot_barycenter_1D.py | 8 +- .../auto_examples/plot_barycenter_1D.rst | 116 +++++++---- examples/plot_barycenter_1D.py | 8 +- notebooks/plot_barycenter_1D.ipynb | 190 ++++++++++++------ 12 files changed, 290 insertions(+), 124 deletions(-) diff --git a/docs/cache_nbrun b/docs/cache_nbrun index 2781d81cc..0745a21e4 100644 --- a/docs/cache_nbrun +++ b/docs/cache_nbrun @@ -1 +1 @@ -{"plot_otda_mapping_colors_images.ipynb": "4f0587a00a3c082799a75a0ed36e9ce1", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_barycenter_1D.ipynb": "6063193f9ac87517acced2625edb9a54", "plot_stochastic.ipynb": "e2c520150378ae4635f74509f687fa01", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_1D_smooth.ipynb": "3a059103652225a0c78ea53895cf79e5", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_otda_color_images.ipynb": "d047d635f4987c81072383241590e21f", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_free_support_barycenter.ipynb": "246dd2feff4b233a4f1a553c5a202fdc", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"} \ No newline at end of file +{"plot_otda_mapping_colors_images.ipynb": "4f0587a00a3c082799a75a0ed36e9ce1", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_otda_color_images.ipynb": "d047d635f4987c81072383241590e21f", "plot_stochastic.ipynb": "e2c520150378ae4635f74509f687fa01", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_1D_smooth.ipynb": "3a059103652225a0c78ea53895cf79e5", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_barycenter_1D.ipynb": "5f6fb8aebd8e2e91ebc77c923cb112b3", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_free_support_barycenter.ipynb": "246dd2feff4b233a4f1a553c5a202fdc", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"} \ No newline at end of file diff --git a/docs/source/auto_examples/auto_examples_jupyter.zip b/docs/source/auto_examples/auto_examples_jupyter.zip index 2325d595fe85b87793691ae591df961ae475e27a..c6a7e903ddf52d6421f7b95394a593ad7bb987d2 100644 GIT binary patch delta 218 zcmaDim;KN(_6>_p@m(vF^=*)9sF^Ryz%XBQ^M+IHER&fMw5K=tGTLrdm=VOd`ObNH z#_i8nFeWlipAg1aGg&XTFTQ;*?VqyXd@L!RhE-uC>Ir+n{gPVP?XnsdC zczVle#xSPb2h;DIW^`sc|6{u186drmbGqR9+CF{PIYvFU?2@ delta 313 zcmX@KjQ!nQ_6>_p@#!X<_K~PG_~b3fz~C*odBdr87VVh4m^@`5QgBbrOD#$)NmWQm zEJ*|j=pqA8O!8!tR@=GvPPhTIxxQ-QMfYbEEP)2bkWrfL&GE$rE zud*>sPl#q@VFhcRyym(zNXn5#ad2Y8|N9rm?ZB^H@Lv) z%vAkl^6MXx)B7$kYB5EzPTzHbF_1}AZaVKpMn5KVo$0X`8J(CM+@~+R$QZzEoys_U zO(vt{blyuq)iX<{TV7)HV!q$SI6a`BQDXW$peQrnBF5?U%NWI{KRe4PF#XddMk%I! So2K(!X4GQ~KFP?yzyJX8CTDK| diff --git a/docs/source/auto_examples/auto_examples_python.zip b/docs/source/auto_examples/auto_examples_python.zip index 694d7040c326ef77868899cb54e56502c71f1db6..28ff08e9aaf050976937f732068f9cf9f82a5b33 100644 GIT binary patch delta 757 zcmccklBM+x3r~PIGm8iV2wW-L$Ro?mbfs{!Hn%Yk)3w6Q3F4PzKztLEwcH^7V|#N^ z5G@lLEd&y;Oh3)WbhU7^TV93)-_=4{-%mAl^J4fI7-IM~?`gZoG+8Axe{ut__~g}@ z(VOcZNH9*e|5iBJCfjIo!|SxkuLT1cohI8o65A}>!_74LjbOlL?Y?`gAPcys$O(cS zvXqw-#J5`4D*)o3+-J%GQeMVOh-^PH^9>lLTV6+C&y9^jTK;kTh zjFvzHrrR4b+M#)Idbc5?slqj&w>KCT+Q+yzjRxAF{E)2>5TzD8syrgK>I4JEJIyBrsMS sO&DdE&PYs;Hvu{tl<;QWD)Hw9COi<9L@_-{Y5D>aMs2ob28=*)0P-W?y#N3J delta 661 zcmZpD!*cN@3r~PIGm8iV2xJv(oQ)atMh<Rfwk^55Ia(`SNoW&z!|-;482C?^902#dn?F#z2s^=bN16Gml_ z4_|?FF8V#4!<11IY~R_nH=DljGcbTKs;`RJrw5ucDuK5@+APU-IM?(UlVyzlp~nOSSr znt#^d5|ne!^W3rTy|2CZbv@r@q(snB2v8sp2)gK(&vFn5tQQ0Vvy6lQe#1O6zYc!D z+X{%vBY`hBB)uT;e`KpK-)tceOl|02m|Wf*WAICMJ0WGeua*XOj@mZ*5OZxiD>F+w zGh?0C4*E8>#+DYZ8R@{E53h~v?5sHG>Hp^&=qzmv=>t;7Q6Z4m5Yf;4@=i(n3(jit z7q=}ZL-E=%3j8cW3?1s}YF6T^42%PX5~r~VQ@d40@#>a416c=#im_R-N|vt9Ohvi< zU;bA9#gQCPw}pe@|E8bJ-pq>;no+}OW$OVVcCnn;3M+`|3-X^oc7PJd?Vpyz|ASlo` zv*C+E{Go3q3Vr7VeFY0c`2Y1X`)w7*V=~xTQit|^wAEJNuX0L>Mk9fcta6#2X!871 zqzDNa7gvMS;d?(T3FwXOPIhuqGbn>MtZZ%HzI*34J*~Xx`Q(0jc4q1pQBmyQ16jhR5utu%B@#Tw2VI8E29s66+_f}P>Ss4X?tYunR*-f}wZmsYs$WW`ZZ zQ`cpi=454^oc7Uc+D28n-Ppv^YkEi?)hfn?n78^o+n=j0Q9Ppevoe!%L3|BVM)TZ{Sw7INv7{*g?P8*pdu-7N??Ir(V4qotd>`^owFZ~MJTiG)wc z!x6l#yQ-V@(Q60ONzrR1%)BTxWK)~wmuGrpWk@MX_ zwX8y=7^jddK9d33$;pY`_Arc+lG1ForL=&6K#ar9%}ppFYxwc8m72ObG7?gnX0yld z-@nzc>#;H(BT2wYOA_$7u|<fD@ea9vL8;x#^QrFt@2E%R~M@BXDJY49m1ph3hW zS-)EHL`*ZEt7+=}RYy%LCwhSp#v zQPTX#5u9<{hD!e zf4f&A@r%KGd|ZCf{c3^w!1L~awdwAVGsR_>s-dC5>FMFB_UZAC-C-Z!!@~o@b@KP+ zhi_$mA9Xv2i`6;H%FAyKs+XqA4KZ04?8X#4=>?EDvw-&;6+J>cduBTibZ#TM>tDml4tXHvz02Mpx|+{5l6kHtD|EylHtGMoFkQde0jNf zywVFMcqdy`?tW7!I#SpHZSiBO-EXt(+o*~Zq^c&1FhvZTJg zzTDwJMX^x16%2Lek1nFMwe|Vl6lQdfox)X3th1}qo?J(M2@AO?13}nCiqa79yLQ_$ z7^FP?`!nUp$jB>2)r%SKcb9k<n!(y6=1*8Vd6eo$P0*rvz$5iBhA){^^`I<`=r%~OFkV|@3(K#>jI>(^dC zeqi-^a*}<1AlKLO!>YU8h|`>|cckCg*wE9{E4A4Wd-3umGAimCIL&{-XJ)S&!SOCs zuaAX+L%_nt6*e#+Cv`i9kxXRCay(k}iVeNFy=Amqu@K%%BnVHg2( z26#g#0dsI@D4M}Qf>2*9ZNbkx=kpPfZ)JMOj*HF|f`J$t!|8%$x9GBc# zs~25po*u87*=^R5A|oR|Xf`F0dR%*3uXU>19nka)4dnn6L3_pM*WLYvi<|q~ADw53 ztd<6w{qa*5OTtLnhIShMAN;IjV)V7BG4b&5m?dt|WM^ePCm_go#Qz5xDB9m&TPLuXt7Mvv z&%qD(^`QOJ_Bk=}00{JSa~>zF9RNWfu(GmpIP7G$O~XvoO4{Q9VCG+RLhR=C1+ zD%|;O^BavCbkazH`Z4fUBN;-Wq`WD>J4Z!D3Fzs)`}60Io`HeloX5lM1sWksC~`Lf(c->f&3!VQgrAVwUoMewS;)%*9-Ss(yRp1&Cx z8L>N!-rxlQ z0?drZYHbZ~ua1UHOBx+Iex0749-o|$v9c-!ctMet_Elm0+;|OQX+_1)BGqbe)NBtk z5a2$3{P>Q7Lg_ALeSMw!07gewx1i!^rksNJ@%n9EUS4i~FNlZJ&7QoD^VTAgg1FEP zu`*)TfRBoa@$b=l!@yA5d(+awcX_y=df+-bHdbJsnv!DS%;S1#M&fx7-L~N9=$8n- z-p^2RhjXM;O-jDW$q9&xe&2A`&{(|i5YI?qOHl7V*LP))w2j@mtK6JqfpH0Z2Nrx9 zK2iM{7q}3M*>p<;@8cI`Wqi}A;tc@e$ltwN&sY@n0#54;AfG*~yi#VNEOH)Y_a9G% z>=JoBXf3(YtS`q{yr|&j#`;UV2cJW6=WV_}MUH@S0KHa|F2A}{~_{_+*CN5h7*ei6|Mo4mq%Z6%J9 zhlarMq&Ek~w7z#@^muy4lUYMxS(85(^r$3knLdHdDtR zZMincnIhbqVknx$$e442$eRxPU2B+9pBf3H5v$&6tC6}?pXXG}_uq*k200s|i1oxSd4;WuntTt<^|N{DbMK0g3mzj)j^AVWNNA3%)K z2QCc_pTP@&rUVdA89X1|_-GdAt1UIjC4PC;*K=xXYXb-sFvR z{UaqsN?slt#K>5GlCE&#g3-jOazklcI<;hjB%T`MOSyjvP-XI&~}1FAa947xB@R4o6(~ zrW*Uz?SqDe58v@j;jtRVV}gvPt!hS|n2+rI+)#z?Y0eJK%h<8HK7So^IZsvP#ri?# z$(WGa`J86us|@JDvjs55L0myWi@cvX2- zZK#E^h`iv_u8uuq>&bqbV{OaAuv1($b^pj8NoI#^`b9SWJF7=tlTj_Wt}Ll2Eam>_ z%&5(yA%|-LtOSAOjm4v9C#jveCqIa%j^}6gQ3d9Ep!G&KfnyaQXju${+^d8 z;FIQHzW8%{5r*J@XJG=Hv}X*>T6f<9thS)6_L0@nC{Ct;_OWIdPQ4Iitb zYuCET-A3vyJh~YhScRBmerROn1(QouGGIJY4~~T>7LON6I@+UjF3fbV6be+4aDUyq zdI=pRyBS8S_3w3fF#nUzUei1lzc~-xQp|uufitcRYvv3IT)$*=CUNo6VMZnlxJa zW|)+m_hrq0wH^xdOeWtlGfrO8gsuQBbb>LqRX+zrDimrSW)UWD9ujYu)9lmm$jf_o z-E(&DAHfVin}aICbm7FEls02Q1;%+sye6EwPLOd<5r@=#bb8+dbX2p@QGJUMRnmWv z9r!CarHlDa3fST#Ee1GBZ3)n+<^7)jn-Hu$<#FI+7xK0&k3OtXjf#@WuzkgBVHLV_ zg`&XRqghCJB>6?z!HYZNe?_X<&=CB8RjFXEqx?HDY3Rh{^viI@SRlUqBh0bA+RHfg zOnR1D;6@id(9Hm$GI${dS!u~DWZ_OXVOP_&QM;HrnKvHdx?k4e7?^74GGEixu% z*T6v7_O=m=`K;Z{We6TUfFmpbnT-6=6#)s8gKQ$V>m@Y#c5`zBz%~uUJR(kqeibrQ z!V5zc664wqaP6ImQOzSOD_a&DTR&WpRf~Vdsr^(K1))=^2s&BoVzS?rmy?qV3Jrb7 z!V=rx-)}NkqS>4Ru;xdXbE7KrxlRC2UU4}w)H@uMRj}J_V>P;7K}S-k(U?HY>A>K8 zsy9DBU--PNR6C}L5iQ6%MQgZUmY6yKXO?E>A z7nmx@6FTPR?&^xk&OcgRayVpdo^1Y*LMv*2@T8{z23lNF!lyvyylM`ASF=YP1@;b6 zcVIrdliMpRE6Z%5F6P&-U$%J6_#m+-V`s0Oy@CQ8V@xbULQ`W)mc$#7ei~2Y;{dz{ z4-bz;Oe_iRDcO$0a;RtVyk7212D_#x%;VyTZvAMdS8{*=wp2&@f_o0^oL^(EHSDkd z;GNQ4y$67Iph(AE+QsEof6marKn}o0Ld%BMWXHvx(~Z8`t3}t^qozCMas$cAsSi|C zWc2hUy=42+`Zo4o%LBl<-zAb%*eZdZ8M6I&$zoWR#7bhkLy#7vxE``+WMnv%4yV_!#DsjftsL{bIP#~~7328{%(ixL1dI}Es-zP+t+|<3 zI5RRdG{5o9t5>h!pD8r^3jTv`?(Xi^*4ICS-OjHto~t@|uLL6v!sz_GTA%g(^~v5t zte@0rNZ%KppU1f~zDb1~oJ`77(>H6>|O% ziWkkQZAPReaNQ;z6vEzUQ0Ldfhax3n+pt* z=Y541n9k4bz^;7x@}=~{IU6YVAhg#Gc7kG4nbnGbhRe=-a>)cxe}MnD>eV{B2@*d2 z#Rg}IRGwtR6z71+BGofc3W8SVO#MEXh0YX~U3#$;x)h)n0cWvQ8sJn9&~H^JuhhD- zA_6KHz~x_Rdx&}DI7|h7y`1eUwmViXwNSG}8$>!OmRcTUubigY-m>JK(2(z1Y7#X6 zc$k&fX89OtSd*pMI-|lltsMVSwYo`RhLxzzltl#Y5|d z-T~?r4|Jrn^2Ss8iM;(hwQ|iWe-N6qJ%QJ)D^Pnd#ccG9q1IKe=M8bG3kSgBGdGBl z!!h~!u^rekAvF8^AkJ9XGyX_X>i6!4{ntqre+Q)(C6Tfrn|r(GgTnqKwD;#2Tlux@ zggYL-xJL=@Wdu+gaR;$sJKyHQGOkqEsYWG>&N=xH8XPGI=Ku9#uiRr+ceecM*P`X{m3#%7}vZUf)Ntji+!D9YxJREFtYOGK~$@t|$Z zp~4S!5ux-eg#~znj`1{jCNU)?WrWHI+2N$`Aq*TlBsYZwPPtGaR*#w>hRiN z`W89qUQqnDHzeQE(9SzxfUJ~z{u7Z!4bFbWl?IXs1z2;Tjig#BNjIbQl?>ZY%wrT8 z9|1Dd9(a@hH+rC?_g^?EwI=y(QFNQ2;}@Vkocjzvx$^gMzor(of1&&A$(G~t5<$ij zOeCgHh`ZSurQa}!hIW50`Ea!~=bF{UQWeAE<7-kc5X-5U;;mVF$5pi3#Zbwd>C7JK zvGt6$Lg|K2V2n7C?%%dl$H!hL51IMQul;bxx}*<0&@}$OJhVo(qhDjqHh<6c$w>Zc zDH>}v0btwRq@KdlMB>9IS1Mu}mygnTv1JF!7z+t~^nBWxQfB@~q*GCBkfGPxx0H4s z@LVOwmLpnz0V}g3j0hHYtY(@>gio0l8016V$>LhaY6tcJ1xFX7$Zk1gZ`y2{z0$Cd zn#bQQaAadPV4ys=pxV&#LuZO<-(_9S^iVn7!hyYd!0SBlYkFCnbg$4gfLOm0Zd_X!|JAk^(%c{v$4XXJ}yIq!=+Dem$CA{s;F}I(M zxV<>P+On%F=Y!KJKYejf`?-Gt@$d#(ySimt`;xa(>Ezh;lE;sG?~9}N zez_k-AwtQ$wA8wDCqykxdr#_=EpuU2t&6$Th0z*(+Ndl~c(I`YW#z*Sm|T@492j{I zcU29oZsPE^8IzmRC}!-0o$jILd^>=l9QT@C>A;$<=*Dc z6-30ANshrH2kE4zGoy{a7d2!}R4?O|AJntb0qB(1<{W7Jec zQimGZXY2UyVV?SM7q*X@Sys&mek?XQ{lCjrtg04Qf^IFgUMN3W9#}UkrH#qBuhkN; zp8LCQ8Aq@V`d*Y@goz*_>Q};B9nRPK1qQBdZVKDkeM)38uQR*r2*Df6mLvpl58BrP z)zW&sIf@h~SRvV8%%-uGZ8-L3W12ZsbWAVT4}?LQ)YzWK418g=4Zd=3YtXEn6S~`z z-zD2E^7c(=(}`M0xZrYla7^#_XzeZ?_qFG3FyG$8s8tv}U+ao6+#SyYT_3DhuSCtv zKE%hzPgH?E5O;e3x-KY#n9Ws%wfZ75IUQ>`9L(Cw&K)&BrJxhCV7+*u6DH#?HF)s2 z5|MG0|5rtk{V(kuY=}y96Dlq@+9sosV?@>J)Z(N11wPzD>L^JUFLI#L9zi%(cqcXT zGN`M!>qc;Qf@X!$R59_{=0GOswz=J(bWK!wf{sbe*&t^;gElPaDQ!$BX>MdETIdWW zu`A4GWoI)w>?=3j?$Q9fTJ$`BSk%4v$uS)SCM!ltq8^^UKW0>pWQB#Vzp4tUMj;Nk zv^Ac!Y6XVmV?R4|QlIcsyq?BV()IA)dHk!q+nu7C>q=;Vt-SS*+0dSBE^+)UFz(7M1$lUQ_(%{2+6D6LsgaTVGBPriN608B zz=T1oGcrD2wA^683fesF`3~Ud>HXQzOA-=|17=V*|6*ZLyus#i?;*w_EF2YAvevN(8=)B<*Bv%B82M9Za(&k792oFocBqhJdLj?SC z^}#Tp_;$V)TEL67H7Jk&{rjB@Xf++ULceEm^XcehWIg<+O*B_+SxrPnMh0ypYI;6Y z&YITM)vX>JsBd81inBWe%x5sV%_o01+s$-jv+vYmQ^GK~Xxde3N3~W6w$U09lyShd zsCj0QSm^kB9}@dN=8*z&LIJ8cYPJMn6McRHs7vFD?M?@r+?Aw3D3T zb}9;L#;=%7upw`SL$y}_eviF`miR!atv`u98YFy-=Chxw%x2m^(HnAnc9seHA_^Fw z%?!$-MhkV7%mTRfdL1N1IaiaDVb+YZ>!H3XwyJZG<#|syvf}ue!iif>cYHU2mB)zI z?ca{_l_IiQEfPrKe&sXA16DIk%0VhRF-zT`*4OZGIR{13xw({8mP=9s0zUfbU4L}D z*ql#)XSsu___rD>va_ur3P#4L_u{cwq@>b;7{rCo!%N9%u8bNrt1HnP1p01sqzgLP zUSVS-Q?GwfOkZ3>}kyX4(v*Z$(hL~=$gfo*x$FQzjbbRsWqV$p$x;l#hHID~Z-j!1_<;^c2L36&w_K}HNZ7nLqx5dlj9?C5I zu5NS9m9tLagC)<3G8R$u)fB{!B3-Ty6`YAPJ zQ%ahE_n8$go&$FRC0pm=-41px%WCc|mZZLIX5h|khXCXi4(cg>Q~!fl{1)>`ahGTk zi`3E3W-vC=M#ACQ^SDwS0=<17gh#6-H-_$rE$Z85WRK@RQW1E$-`+h#l@&aFDXhG3 zxn{_wt{hyQ_%gYj$mvn;8AYbIs)}j7Pd7tp?qut`>Fe}Mr{ln7g$I@djDd--iI_%K z0gd8h8@A9v6hjALAtV%KE4~LwA~w5<5RbHBSdBs{Cwmk^RSNu*cf`aRv+#Pfl;ca=g(Rh@FQGT2XJak zaK4$F(*5AKR5%cGe<{l#>inLpI1rSK^21Yk`W{1JLlOK{RYYNxdvd&))Y~gpj(eXm z3j8>&Wl1u&3b=bJF!v>=8`AP}-SSSv{GHX3@XAHxou4{@R>}(cN1Ab^0oR|b`WJZV z-h*fmbf!-{9`KQ$a1!nCw+5hL3xMj4iPF*<7hxf@8hl%WMOLJZ)!<7@`d`aJ!`Mj;TTbfv#x!}@3&Oi?N z%9JmpGsPuPH=5d2*z5xmyQ>)W_z*aMfew_ zdSK+G30a(@keUMB(!t2-;zyh(bH)9^wA}IEwx2QvakknVBTU<4!Kk$*WSIssRyI9N zBI0-uYbpNOEa>Nh8&(+=74{#k9rc0+N2ZGj1>KE7f(y!=3U_)RgWA8bz}Q3>x5qv# zjdLd4W*#-CiQ>_=K0YEd^pPqFsDaG1jrzq?e_F-7L?1+Y7T$S>ID9}3yCdrL)452( z;7AZhr7iNl@^5sd#cDpnChSRVyUD5{+e@#vds+|w82l!5^)qa)9kp__u!Tn03FcTz zqgl`zY%Iy2z2D#vdAs|0&{~;8!*$-!hsBJlu&?CVc}XsE%_;MjxniiZVFLg(ESc&< zWuXc2v}k~5$#3@{R@Q4*8957s4ht$2^`m&n*-|~xVit)R5ygVZ1VYk)Do5X1iMjW` z6zdq41kr;!(sp?U{c8VJ+gyT>F6+6d$|%(D$-RkSYS$(qRON_G7Vk&wsM%2 zL}VDG1CKJU4I8@CioHR#X{Nc@T2n)Z)&v^MfWMxg9t=4K! zL|gWXW+lQDZ2QcPqT#bw2Pc@);>P%7`A`oR2};qrie%K|al^vs0KXS2E5aT9&|Y>C zQK(F?GYt2VW-3}P{}7(9S}hsygD{;9vB_ORtR2Z32D)V3$43_h`yU@3v~a&Ydk+@6 z(Bw|wKW-6e-u)uH`-H8w<$)C78X{Fp)1^_)H)LkP@4Qy)vNo~*Y;3>6eumI}NILbQ zf5^8xo9CCpwf>eUs8~!!*+XI#_9d+M-XR@iTXKc>0|)7*K%`y*-7zdtNQeDh ztl-@ysGoIl)cCf(70VZ>Yc?RZ`*ZaoM z^(F_Hzj$txSY`B0d-IefUkAhSW@ZlP7D0`^^F@xpt(4I+;?*Fcuk29}e2cmze50uD*t9Y!+SOJrY;to9XyN;uWq2{ZDK&oFkLRhW8qws!`f zzV+pWw~WWtW>RacsQratI9-p;;+6|w*Y@ClvuthPTvS*Xil^b^9Zt--y0XImSCA-Ep_bjy}X784Ug0o;tgot;tf@!!nvF7~FF%%&NH zBS;27O&cH7vwaaU4W^3KAxVHc_wy$<=#5K&&j3maF{nrC4yW-?A}Ni_#P{?+u@J*) zec8$e1A00<#P$KnA@A7fv;&vOk=5TyYFa}A0x_;kD_`O9 z!amD62X1MBG9RaoC?hj-2NXMPH~V2)%vfF$5cE#}(RBs|TzV5yJUkI?Z8Gt=l!D>K zMps8rL;MBhZ(U6{I5UAZ>>6nNelnfh5B>;9Fe__of)*BZfV(htll*=6!<=(ePLo*c z(pby|{bE2!bpN~DyshRNU(2sjR!d=$P84)vV4M?j3g)Rx#G1Y$5UxKM4SHgJk~CCa z&#L(+dCb!XkDcNRsP+SxZ4(KeHtGIvsfTzKA}GQO$zr>?XQjk0@<{W*wv<|=N8Nwx z2_n(M|VJ+VA0Ec_rr z{u1OE3WJCU2vI2-54cJ@J3CY3O*J*Ypf&>95bBI;wEvZ96dv&j^AKXBcBX+FDjj~u zQKDcRkCT#gr(}-5F$ghJ)yI?jx*UgB(N!(&eY|+v`LPEii)5{E-0%IgUQ=)-dhCt0c&e(y6ggif_n^NT_+s@nUHf+ye~l|^@Ahh^zHSg zjb54-Y{5MrLio*8v{^ooAZN=NaYJ0V3miYMs@M}{3?Rc_Ka&1%{{n?Oy8ovXFR-XHEB2NT34f@8%pNvKb*SiySFW37n( zJE@0G%wx9pSFU!m@btK_giGe$%*BW z>7bjr*PEiKtt*e?;UP7rIypfY;7)sYKg&dc7j*ZcLEyD1FUUE5^C5+&2>7QT;VVWs-^hN|;6JV|X|07J67$)3ngrf^*AI9N zz>Hb+xHHd|h!+6-0+5MOkdd{P4X=UonZ)I65$F4#3jXF$sx)Boh{t{)`z-qQvZ*!{llE>MPgkh?3H^t*8$u2ujG*EH)S0gmI% z<@=V?xQebnPl(SS0Q69nwt6>zM|yD5>0G*@3(PbFLpcj0jW&wIYm(VO8%5kPNl&?2 zCVOd0^vG(r@;CRZ&_^@WCiJ8kh7*VRq%7h1Lq>;ok%zPj2nR1LoMBHx^R3arTKA*+)6d3;sLNv|oQs>&wM1?v(=HKc;=h>4infxm& z!BGsU6r?c^-WT#osG5t879B^!L#^AOCYDh}iGr4ZE?LKCjp1fZzn;BI9D`K}2n5#O zY7P6Yx2xMBq1&&DEg3NMK<|7$34LE;K)-{83OO^R?2YpE>)%K45uL}!)x&9#i?ZKm zH}|uP4lhlSYr87ml`^Ov<@%L!fB>rRUbBhi+_6!Ce5%9OrPbJOjUUFPcI{fS32C_4 z)1X3ApOVl&9_Y5+&>(rlxL4UGj>)A-3Dds5T3+}($8=plCKFWx3V6yfAf!i)+J@Y$ zUo}I1Va*X_@^5laWO<&Odq>nW-7%qDdnBR>PP{6AwVLV!*X$EbcyIn3zORiUaBWUP z9Cm?_Uj@bOft8X5TFxs3jCE_#qxZyVfIBdC956pg&Ua)*6b`N=y^wLi(U@418f6nb z_?#W0;O~d0y~R2!Hk_U+s4NX?K`zGgDulO=Cw|S7ZPl4sG8MV30Gds3xaE6URvFFh zG+G%FQr#CuM{>7ANeh7PL(lp}y+tJ}ALK-4`MHR!*Mdek1*Tux5I)r+lc*sHsd%s498NRt7zCer9{@3YMz>TUX~^&0a@VW3$A(K^icUB`>tA(G|RXKAN@@>w!8 z9=dCOmK?B47+p#X3Wj8u|o z!qHkP06eV#+veHc<0xm+ZI_u3X;(}3jTbE3qW5+ea23-DRd8g7s6`Z3L(;QJEu-b& za)0eXXGLv&z|S2rPdMSn!Y_9vZ7C(}`~LaUQC)jdZ(Isu0TunkroH)-*xb_9qVuqQ z#iA^->V$z;6=gR#;A$|M+^-9K{TD#~BY!gI{Q>l*{L5umYCVe1F+}76$O!^rgH6>$ z=a70PxrMqncqMV=c1bc#_KAzIa2D)q-$ZC=g77S+o*DD>zWAZm7pHF zwkCldQ_O%2szLaYNx8=7cC3OTKUZ%iv` zmkj2YkUgc9lHb0Va9(?q0uAL-`nRd99y6ewacOuJaXdmii>n!?(vm5PwFo^%jVNY_ z5k)>f64SQP+<5R=XorCT7XyUrv+whw)AI}wg6U}4NqpdI7yd;}OqX71k>CY#OU_hyO!<+Xp$^L{E{#{XNfBJ24nAeHXGGqC>($f;OW_Y!CY-eHLl9~N_ z=Y=7qpzv6!hnRCJ9)xtfzT{Xr#`(_rS#=e%mVAj7g#5!Izd@6kwEZ_jY18jZyH8^& zj-DtaDj5SyFWLx_7FL>Wu+A9MT4EzAJIL69B}oK{N5K!by8l_B6m?~?wq`tjEG4vd z{J2XTRf9r5KNA2l2|c{n(|cA=EtUe8K)pnaLN81gBThC@kRK+hvE{%|J`a}|XAOpJ z>@wEZQERAR&nCU}-!sUIF zrQA_vat(uN=C0kTl2`xJYin zRvID8#)V1^8^Utc3G8{(eVKCk-TVsKFnpId87m6Hkx=OK;t|xtfc35bK17>HX4ZNL z@mFmBZ`Q1Ual&gTF3EM;V*t8Cqnw3x3K}STTP=62t&`F)3aXJe>qo<@ijA2s!|B$A zix4?(Ma}D57fu**XbRoX#Zb<}rPvsR6!y0E$Nv}Rhw5e(jNT^RnT*hordJ#dD(RjS zNV6N;Unt6`8LX0On&}Tbey!nnb$!%LH%~O8d{k-@m*3{SalH4gs0;ITZuI0D-sIP% zX}?^lTe>e!&%+DHQe2-2_J2CS#PvPz3Zf}DumB1r-|lW2gJ~ahA|8b=KdK3zTpKtC z9=Ojj#Fb@5Yrj)8OK9tN-CZ;QS>H^ob5>Izdh(M_yL=0e_stJ7(j2TYw#|m-_y%2#CD* z?`{er#Cjz|ztx2OU3gW4kKW*6i5OsKp~AcA6dTtPE_8h7y5(}8G@m}FJF7;++V$v2 zw=ePSquDjYBlTHF?JRo<);2qW1p#s~Bgb31fA50@jH~~f{SQn<;@|UyqkpH8OGuBT zj4}~i0?AEejcel#n-@Fj>qlW~D(!Uv(D?qElr{Nny;KfnJE^8%@751bInJ$3xP?cU zktYbIr~BH=4D#T!irRu6+e&}HZEdnzYsb1^MKUWfb!w~n0_%iB#0@j={3Z@r{87u& zg$MG$34hYdO>DIP9+iiPzqY5}$KLbAV$}msM;hjnesQG{W7_?RUTleSyJjM(q8~@u zRXjxrAkj@b`(kx5O3y=9Sk&$ASN6n@J>vSy-1F(;N&*V!0oZ%QszcSEcnna}jbhb7EJp_?v;?0ANJ1Sb% zOiC-&J&5onT8^W*CmKSs3w&Sj%DMwv1q#N!iv_>P`(`BCojq(s9?A3XvPj%G2B5T6 zsdv17nP0+efm(Dp{K#f9Dzu5lfs`l#0sNXiRm(;p7Z(nY>-MK`Ct57jsh2&hc7()p zIWvlc6Op}n8H+rll3Fe?U+3#2=9u?d^^#&bk&rj7-Em{m#I@&7u zH^_fkKpa7qdk8s%m7GVAWx2GHpK;eHv^z+fQMI83(x_a`SYEzK#-;} z0hJe&@f-Sz>5HgnI_N_{`hR`&g%Z3$A~Dk7YztMo4JLEWG`g}{SSY3RYmmO=Q&5;m zm2EjfEC+0kkg!1MXw8v1rI~`WFZ4x9U38ny$m;S_s%D=k?M!wBOK>00&2~fp+opy? zU4$Ly>#Ow?FD8-Yah~pZ^qfn9O%ij>aa89|0S4R^+C@Pg%Q*7omQqL}R+pcMRPrR_ z*y>15rPSs-YhgZFz`>YTW?HKn;bZVfw$4c5`617VLo)vxg#fzBq`k#PPM|L9Ph`bZ zP=E@905NSV_354h0un}e1cXz-Z$Dl3#nkvn?kWXQP}s23rV1=aVgLC}>*luWyIL8F zSboKY`Evh{#016$kzYR@o=^P-teqn{sbis2SqweJg~*nP9zM{xqlM!Fo%`t6uq2}$ z{WslNNV?kO*eO0fXq4T4_jcXf#paeVsR;SCw}b>q6`BI+3)C*ub;iv<)+2DpOvqVr zq|EZS)tBIRI9udhb}m!+hZ!UiMYeI^Nnn;=A*H~~t}KG;nLerzq29oJXI^&e&)C>9 z`#nW+sU#zILx%s2iO1w|e@(pw^abA|A`q7WvHT4;ck-`a_QANgL1LjZ(03j+5LLig=$&-zvTecICuWDtSGx-p9Em_P=5Fr z`BlDmr_ENxL7Pe_E8FB~>&R?5+W>vXL-1`z;@t>&H)f8wlt)94R6eIaZ|nUVH7 zwQzrIeRI>QiUH5?>+_U6q3ho`tAb?cKl44E)WUm~#Ue$JIu>auO{RlKh0Q6iOnviY zQIpivK2o9x`})W#Fsx&1f1;$M#K-1?@y$r{%ED81mFQSAiR##u5|yGN`fduTz|SRy zY}%k1KDJqz&<7N9-PYf;6;MXg#bWA!V{YD$`*=1^W%#t<(7OjD7a z6d%7ERI>izKDtyMjE#-amMEpv%O|47{QM~+XLA@Quc5)*E?JpoB}LjcZc?{o+6GZ8 z4& zKXiwx`q4x)Y!D}~uXany0w-{e*avPV5j@Vpw)@|QdojbyEFF}gHEScaQbS&b0!pO6zYJpCb<*kyYEhi zfA}LwahYY;;D?u%NHa&i08LlS*}rU1-gHh%%I&fPnq~t%JuD(3wJb?c8kvY^v(|~x z-T-h6RLV*o2A`CJuzt=q)IKWbQTo%(1aaT4Zyf|YbjHdI^H4kr?gqf_6WEFuJi zfQ-`8A3*vH!=UpQDdCfG8;CeCPM0%=J9E|aOooGcEnYBCQHj}1ng7k%7Thf66Hxq} z%$k;f5UNcD2ZU)lqKr^g0omV+KVq=>cz9hP-2P(JM*$^Gz-W&A@k8s|U+ewpk7!#s zzk%A50u_&LJu6N_XY{uypoM~7wq+g+(s7CBLr7bj08|zQjnfPDtiby#DZu@sq!Um} zFndM;m6>TH0;N_r&qr`SAdAml{OMgQqu*tqJ^=?+BlzV?#;}JmBUtX4!~RN5#gw7Q z0%A(=!mgNy2XLi4%yr(hTPFX-1rTmbhBIPG6crb5@9XQ6lgnU{pCklJRMXE~!GC%) z&2r;rmgvS)CCNiNr%0F@@n2FrIeqJci`;5%FQD84rMtq%IsjFBJc;ABNtX z)|2PL;du~r3VyjMXfROr>;L8X09xn+$((UONDc@~LE+&BfV<=pxNem#ohk(i|0k!X zZ-Ckq7+E=>&rq8OhlDr-7Rt%lS^L;n^xaW&Dv*68zi}|LY&byx3I>aLwm$Y7xAPcK z^J~ZC4NXlY1=>Hm{pm;`eNu*kE1*#VMKo`77Ah|P+xD~LF-M^EQ;y$6^nk)xxd zN`+BtK}nN}KE3jd+wS0OrD^TmVLjMhep&3*wY7o<59ZVk;E9~K(*uFrxpQhN4zQ-b z0{%+e62fa_t*{UOXVShzqo6G%P%WH${SL=$wDf|%TYQ#~I=b#&f<2OQ`h%vN$eUa#3-&?aRD z15%JG>jjug6&Gu~gvpmLK^*S4cEp)401s^UsoZhPT6W@&v`e$S$v5}|bdjrd~b=74o z{QT2TZzi@SrRepkRwp(r|u1RfVVNCJQz_B7@S#qXM3?`Qb8g=gcQ51azpV zy~<3d=)NXanod!3BulXah24q261I>FgcS5JaDfDzoQrF|VxY4#0N6P&A!Z5k(a})| zrE1j&2=rA>PR^;?eD!)3&}6YG4jutrj~!6gEItP4gdUiHrYVYQJOd2dOrdJXv zs@xCT$fzivhzRN8se}D}uux`yQt7E6{tB-+>?nb}+7L`lMdZ0Br|abhXk(ItgMfm9 zqG&DX4j&BxtX98asyhN7IAk+G?#g7)pXT}WNRacg`Ti6Y!1WKxrCu%W}2+sZgw1ulo9MM)DAYM@ka8yv&{d+G7?;MjDtNw~kie|&KfbCyZw>FK#US(Iq1 zn#^I(2F|Y64pH|Jhj}OocLJbIL8SzMqqPk}7|^G(yd;-^tluj~`6Qw8@-}n56tcCk zsd2e5`DX=4qkVnh00j+j4u4g>LPG%Cjf9Rq!SHP-lM)5YcMUvvKo|H>`63nOsXg$< z>AATr4y8a$QXm6m0>;HZS7km^ZAl84irFF{N<(dWr#6Z7pu%j1ai~lbewZ^~bN~rlujSTK^ej2v9bIV>5WTP%mi?WKe#sT4}(4 zbr9Al=Oih|gKjTXczAd(P)o%?&kD#E>Q*;4vH)+?h`2}|h?YuMcXsmrc63nT(QAC- zW@KcPFkf^#lYGy>ATv{893A!JM;drE2{m}I13@<3!eR2WLg*2!u-%gC7#x&>noSH; zt^)QIM2C>mF=^iTSvT;2ir~1oxH9nc7Jcv>1u=jieggF~b+zTvB!lzLaI>dpmQF`7 zR1y6XJPd&vxHko``7wazI5aLiD1B0Ey%rGl^XG4%iJ|gh1XAMnR8*qu?za^gl+QTv z4(6(rfV<7zpZ+5Vo+%L`mnn??o{_O^x*3-Wg1R$j*{lEy2Zw`*h?oT)Gtdik|CQnL zyO0|munW2-ws)82`rSXs#NrwCfoI0s@W<1Tq0?x{Ro|97e1w%5jHps9R?8bN(bTlI zvy(TODlP&PKc=ZY1YiCekWFHP!`Cq~A`7HHMK;&R+F_%ybO65ef(Li}1bU{9o*vOW z#iE2$&!;QTUVzgi%-8R+Q^A3Eds;j{TGEvL>608nqf|@@3KGGIiHV@YpAH^cBLn6v z{Ku1)L#Wn}-5MIYk+d(?3Hbg8b8i`z)fc@DK7fRDcL)Y3-5r96A|WB&ARsB-p@1kU zqM#rlNJt~yrG%1_g0ysZ!>r@)|IW;H&Aiuq9X}!ZJm;K!_Fns5_qx};k)K|w-^Km^ z^AGd$-AUmpSwHuX7zz4Ou$s_X@%+9FeQ~~E6#?DJiYsigIP8{LZYbtpp5vZ?b2+eF zQ6mq5H_z*_Zh$mv!JyxVM)A@pZ4N?4iS~wzGe^BL8~Jy)9+gI24K7kw2j3x%yAT?! z|5O$)?SSfddS&Hja|j-uA&M3s>+9FApjW+R*Gakrdt+sFwGD$Djw!PRjt-7#F&JAs zb$4&=USGd>geX|UDLL7+3+TbZAvid=$fDzo#Kz!~D`GkTs>DP7Dlg>^hi1c2wk;2aQCyVLP*}5e+K<0aRa^L}C3_gT2e7%I5RK>)5eY7??g2|= zr$5{6hi8~sUsr)$P!uSg0&@at9u!zCfRRu)pp{SnQP7ixHU-KD@LVB~mX`kb@ng2; z7g7+T-r(fSzmjza$MpI?eo=lM43NA7Lb1rK;(5>UXUYK57%q0_8!%~iaDnEI8dEG=DhYHp}RUVd=WmT{S&#jGm3{kLZ^ac_rzj|)XNEpWwr@6*3 zn=l7|e=lTD3qBaY3GF~!?yGjQHS*hg1V%G9HnXd%cHaJLqk=FqJOR_+S5oRMX#kM+ z-%i<;APA_22BLbVy>_7yf;}PE!%kAcZiFo)tfE5Lv2IT*`HXgq!>E>8RaG_FZ(o&IuM_>b;-feqD{N4b=+^bXrLl%ZQ8%$$Z1bcJ}sg zCEa9mG<-%0k>Q0_#(Egt*qE5D=r(d$9c~(QN?DxDs8K}=L;XJa>3z@?)~iU=RSvmbO0d|m}qzP-gL5yAh_yHUs z#MX|%M9)HKi(NSWGc+VL=^mCwzNnLGguS@15Wlc@g7-*4LBY;$n{XS+!V%kvxu5YR zU@-K8h^agHG8uSq_#{79!!fPpPglJpPKn{={Y~Wr2qS*QMfI9|)Dfr%G z8`X(HN4DQ*b2mtJ0lpP`ZkdU>F1}t6s|PO|q)q#7B<*(y3P|=`<+efziID{$5ZGEm zV98B*&Jutdh>Wu{AFQ($m=}PkU@e;=avLzHVY;aeE>z{^<-Q<=LuTvZ;ysAVFds~z z8Dtm62EM)zVC;{0?j8^c>C|}(Lc-lyp;I>u3x^t(i=_8%D%dxHH4WlGf{fu%{@B$y za@n^}^;G33WnZ4gJp(F5{drK(JJ<>m;|$fv<&UOAncmV0+OPqFRD?T2%yigb@o2AK zxM8tDUBPeBDHNY34fW$WCf>H6m=GNts2OfZIg|*vZ+pyoT!7hyK zQ11W^u)~P^E*{*+G4*o|QxD9I4k2#Ft%F92)6Etl0K;GlnC3>$9Ly%Prun0@ z^DjiMG??}3r;zuw;Ar3n%69NCf$fK*;N%GJXId%*DxI8C)a z`S%65NZt?_h|-AEpw`ky(T4g-N=W?AMF)A>GVJ*--+}8Br@f6q|3{kr-+m|_wMB)n zb?jnE^0J!u((RV!{KB>JvC6-CnK|sGQ6a0ixc&-tGdiR;=C-!_9Bpsl8}Qy_^sv}C zk{jEdJ#Wz_#F#SMko`tR;`(JUBuY?xW^E?lNs&2Nlr2ma1f&rAhsDB*u7EifBzY7^ zw5?h`+*2T2gO>~RTC8qk#v?si-*eHAVwg<6D7O`xq{U|rkH=?DzHNM(`8wEWS@ua7fpFl#JgmI$pF9<66AuI%)lf{*QnP zcd#eDcin{MDa;X-6_I9H5%Jvk6PP=|0cd<~X@arWiBA$|79htW)C_M(5d37W(BARv z;#~X8ci*n;UMcEJh5Ax$Hh;W>VVd3to72Mn3lZL#OB>~$R746yu3`+#6tagND*>^m zmV7nFlgjYacG49|T;bKPKg537i@y@=iQj5_ZeU;_pu)ltxn-4>U5NJ%{h4H)7}seo(+UL{zch z*=}vMJ>6o_EG(e(y!d<@gIYqz58y2M&ar-9Te_Fe*%-=qZ&karaN@jpzrWa0!QXqD z)phZGu@6>BtYsoUIQvLw-o1+jvRGg6k^=(stLu_F*di(cuqcbVf!oM|IRzK*gw{-I zX@3d$e*)IMfiGX;sB38K*f)Tc8q3wIGy>Mdz+55TXa$BfUjr`u{{f<%0S#5P8h3l} zhD4kM5qCfp6{316#kaDdL@j?imUlX0oBE1PHcom1QVm2!o}%hc3KqA=7e)rncMX1# z1(})1Y@#L{&fP!l59j)GOA%er2ObF5sp?rKh??Otf0N$c-Mt3M00>3ZbG0}VgdMxV z5duok6|O^XQI@*cML=5!Joy#;CBQi7F%LEP{Z4_;qZvRAuhE0$!Egx0#gLZtmji$% zqo?nL@-_-#{`dFyJ5!`DiupRk0y6^BWI_px{OiQ}50X=|&_9ThO?b)~QqH%NY;N65 z_;|2bno5=%U2vmRovrxH+^Lk^r0JOW_p#mcOl+saAEpxoe({B)eve;#mVKG_7TisN z=KG>omNQ!XiS2dFCuJyDcm}`1&etmgA?y2&)(hWBb6{~0cRPR^KPM;J-Y!_pGS27O zi>R^v9 zhU!UkE5(q-cigf=m#39uc!z9Q1kYa+yEQF3&32}2NF}N|TJH4?!UWzjA7<)OKSdiE z8|A-gMvBsKSDIdYmu~sHkT{L{u|;++mGu^n#x!uk9YDE)fz8{Q!b@zfXr4#gk9WN# z!6me+{N(uf&352pAxM`PN2LS>-+>Y1HWbqP0W2bRad_Odjo_Qtj`R<2NNxP7lJoZV zE(k3$t8i=?3m{5?dEk9Enf|q`PTa+F-_FhQDGB8DymW1-O`8_&FKPuZbPp~JA{USl z{riR8M5O<4-U%R%fHz<+3p61A&7W09tmw zzYUNe`2gws47fO%{GOm;Z9Q{G#EbOSqvrsXPtOD#3C~V)`9nhqg4V_cX__s|PdA-s zdcMz^Z8V3PG9~z3pki5Wkod7AKv*I6lSr^i@hrawv;rGC7uVCBO!qdfOXgc1$GcB} zL%UWNaQ)7wi(g=j2s_-*>$98{=kCA)oSvR;`$eauOv;Vau%& zHAiEIH47zoB54Np3%Yu5$e~eJ`Ck)#@sUL|iZ~5t(RF!)kCQP($8$vIltI$_Z6uxW z5BoL6*RoWBgoK2UY7vu>nU7ljrwMx8K&>eo0dhc_bo}Zph8DFTUsD4mCJR7%~NcKAQI#T^18gK3z z-e);^QP&z8nf1{{l$pn{VtA`l;lKbby@EjQ%%n$4 zv4GeenD!5&2t^AOg%1!KkfI?{ zH}0#v_$!FOkT6ka_YT#h*!)RkdVIT>A0HpPNoA(P)P}`*H;q1~-4r0w8PcGndo~{(`}%AlD`72Epc*+z-Hi(*b)2*Ovc;CKjSDwRQ2={(Al7@6n!Rm z8L!kdC@nC})9a?<-4|X5<0VTIt(q$&dRvRXP^a$L`^OA253a4C^uDy;(ONN<>p&{8T$wni`iF1e6rMlA;V)o8oj=)C>T3e^h3tO(c zfB$5=REkzoj1`9vU#yzi*1h_b|1A%L?M`u(H--O+vfud+_W8+xv2tQ!)NsKwnxT)U zHY?f&KWp#SZSO6fSQztP;;3A(kx+>IDtNCZw)M~7s_))*fHdP&ab?t;ISg<-*0T?` z?MHe~Pb$hnz;|__1kb~GJYp3;lQrAc)bG!+xt+Zo9?g2+$f6x}pWUTYE<*c<_}{&K zkuOn3zJxmbtF{sE@eHFBk;*N= zuV?(uE>CC6?iQl)c%7L4xupttc@VJfTm06E1}?+YY${qoBV!ROLTX08MS*hziH@5c z0Ft&8TUaW!wn*@8#qjBp2mnHlcsxnT)CE|sLkKmLxu2cEDgNpyM6{Z_Z9v;eNKOyj zd>QHYw?cJHkRY)AIOeTOpZlZJA4cz%w6f@~)FGzs>u_D2dJ6V|4^{7OfuVRGQ_pW* zLkBEIFTVDS#CRQF6W-MQdfn$ST?**L0BQ#GztCoZRhsE#c;dJoonQj$)b0UJ!dBBM zF#U)JOrypP()wAIZiYy*%gn)U zkOWd(Rfrl8yZa14A&0)^Td}JZkJvqDUd@OXsCZOR6$O?&i)Yg7KB8N=xuKrC?p8x( zTB$Hx=iqUxQv1rBC2j-#q5O)7>`PJ`5I0oT)WpWdnvc5g%qy?1t%3j8qk?kihF^3Q zL!8w+Z{lq@;ZW3WGtA$iJU}8l^5mn#9LbL4<;l;{u-k$L=whAtRP!KtJ6? zK(JQ69?JJ%+yg#`0hu@W;V(_p)qFVvJkb62rUtxucm@6E`x}#p%>bMS&;lj-dcPBA zz!?3->l>nZKz^tA?bASBjtg=C5I^xj1za{6a|fATT;_d)c^~v5o_u;hwKuyxM`XW0 zUa)~$)T?1fOGcAVS}s1UJl+KSfI8$o+M=wYlqDyC06ZbkuGrAa zI12!$v8#(9kVxt<5QwI)U{HR3x}yqIaujf#sNcVT174e2U+)I+`McVU-NC^D97UwG zRgJ-R1j>6i0NDZ;3Hp^rpn;E|zR?0zS6$fFdL(x6Q5u;_%mM;$hmCw9fz@^1nvq9G zN3VqZ6oef}O&M5>B8PD?c+YnL5iuQ~9fQgElRuTbfYcF}Y*1jh9Bxi494Av@isxhC zY{|5y{nQCY#_X`+BIrGJr4z>X(r8b6_f%HhvRFu~sn!F*)FzY`y;0L?-Of?zTGq(# z_Cgdh$L+iBSPo==1Vs0{oP?d+o^n1tfl1Hr{P!LRX)66rgy4$cF$c!~T@f_PcPbAL zJwcCPeham+L2>doR@D=X-jCMB_oREkp8OMF@=KVQXfR&|HBNxw=`AvqgZi(XcS9fS z_7P1cQy>yiI5^;xUFiG}1QQJwEP!P~6d2ec=D_sy^r$^ON%$LxD}te*0U2}V^yI<& zgWcV4O-*P}odeLN)RrLTb_={~{+9Ge@!Nx^qYxSz8oj7L;Q1FY08&3q`<+VU2sS*N&ylP~Lr@vB6fI-w+!T0fjP~ zK^%PiOD0GHU_TZYM!}9$Ye0}&eTLJWw2oze~^RX}oh$rXr|n1r0OguLy^0Midch1%f-%Y&a( z7}lH@U2V|Bp1c{o`de~ib>hfp0i*Yzqkd$OLCbU9EnZ?kfWKS`3jEwfCTa`I7y=*Ok4q-5Lo_@(9t~rY7!*^)Gbo* z0=$R#*1YA^he0SuoH&s(os-ivSOZ;$k`1^BBK$P4pN+%D0bPhv8-fTz+CwhQ42ue| z7-IepI@oq7S%D0Q`PQvls@=eWCnnca&#zAd^~K7|8v_lBNU{>j1wC$J3@_R$yRxfv_l?=rygBtV{a1gtsg6#pJ{%a&u~Exk1&1A|d}C~x@AUO8xmJo*+HChq zwr-5TDk6hP0h~+0oN=<(Jk3yn;ZH!7$}J5bGHEs8*@WW*`aygR^Qa@lS4#^?a3M5V zfR8j%@A)Sy(Sr#F&{7%>79oSWxRCN^>w#<%5b=G7+z=q;f;X@VQoFWAB_&rSBtAmL z;SCfGoRizX+0h#M3}+1fQky0J?MSfez@)@O zbPJ3!fk0Y=x&H+SF&^JS-AyQKl_sBnSsPpaz2!`GAOkd8)p! z(U(Fbefkx1>DNwQh-HDs$v z?n<0Kc4ISUl$9$}!Ekr){Ste8TK~JTb$ZgD;F!WAr!BL8NvST-C3e9kK^{kquMFxp z(CeyE=j{gDp7K~rb2G5AFP>CU2VxP>@*oc9aG1^VaG@%sKOh`wFO#k_>Vd5VM2&f=JX!80U=zvI0PKNS<MzyV z`1xaDo~i>lf!Z^a={ef}OGVz+zImi0EMFWkXS{x}S~B(bQkF{7WJ!NST|m#UZ~YyL z093t0y~psSKUZzhahdNtxr&)u#Nl($ywpFnnn!6E*F3oAkUaOZgZD3SnQD^T&_Tx= z-lJK60I(3T(uLpFu4n_ImXHEO{g`+ET=ImYQeyPiCHeK_n&;m>zGMdYIQQ}AyO9h{ zv7yC#K#&?#Iz5YI6|zBq?HyhOPg6diKNnmcxNrF825*el)-rxMfNzlzvC|eh&e-&% ztK5SDmjfXT+R%a9<(*>WBT@WTS9sMpzebceaK0+!4u0X>g61#&iAzJ{jpfCBn+X2t zSV}{TKda#w51{t2NLY5xc{-o`?fTGteM`HxuNYQu+8S0W3zgN`_E*Z9=aW$=UcI>i48&G@quEwdug>{`?L(s@bRF7LV0p8z~jmslS(yq`}`gigo>`NrR zi3Vt!<>vGl*Hfn2Q}ZtwHV8AFos;yjrd54(qH&~hgm7=V2jw9|`3Y3{Ln;BTrHfDG zAs}yp9Sxzd=jKB4^X+38A)Pa&nVGr5Plk@38a2nIc>431G0O8;;8N!53&uj5kJ+0x zUc+ghjOE^_ztM4idf8FPUjynPZ*h?Well4e;ym0?H#_~!rU<%@pG6Ky$Hjg=Zlo_m z_y}X~u48Z&YETuFPt{^l=t{r&{Pr5;P040h8&qkx({HOw_mg zoJSyu&h!L&uPj52cZ4C8yJ>Do#uzVMr9Uo^&<&1^MsN0VCc_Ve>f7e~6Gh|wqZAq6 zl}25=^Tia37Av|yHUy=1;Rml!{o5WCRpX-)@ee8A7gDTA*qD*;hH4xd_To#PC zi~sqt%mZ@rex3@*C|9myruI%8?=81cayCNAfP<)bF;MJutj5T3ar0nYI`1>;l2XYt zs&(URC&Ua_9`e^ub)-C}HPUX`J?d`vZVBU+qZ)2%yv8!yvddbRjIwvo0VY7Ma^*z* z;9s72hlF>`_zx(p)G`z)AP!iAazNZ;-Pam%L(~9L8GeU@i)#inCz0I=#PYQMrS}qE zU#n(tAE==hT<{m19r)%iIJrEnIguSJH?hS7%DE$!HiMs=o0U5`7kbg~4mvD|!6;VC z@+Kqdh?*%Foa6Y)ToydYmKpmc$sr<=66xO25>2J^O%#`orO-Y1;Vt?&TLWa?#j90u2 z)(l16&d9~PH+sdQK>EecSk^W_r zR*Jqg+IwI!HaPK z2~WZQ_y_radNKB1ALJAasKYOj5EDQAc2oY->YvNQg>oPGdOyD!da}KD@@4XV-8)5y z-@)2=JqT!k*<5^~#)on3Rg3V>X_QLghiwJ)0-=6D#shtH>u7Wr6$JNf_SWuz#ftV6e zD1+=2>1eEQ7&n`0e1?J(wW1*<;WKT%^zU2}!08CX3R+SNICuvVP9D&#qkv6Ss5-F> z866v&U06_n1iF(%*Ltb2;R^F@KL>iLG9EfryT8k8xrf!qq*|h@(~)&`gQlxV;sDyI zc~W)wD9bi&rr)}8Jy_1y^q1bNSrT%Bprt5PVt_G{tIdtzcEIHKfLet|&(p8y7U-J= zDXc-QXWu|Qs8bO!Fh~}DrQXIss_LLQ$u@4N7oEX*K*c~1mZp-rc`z)dTp!VrEV;bj zIFyN!8_@F9Cic;!Tgj zqU#-<9p4t%nIPpe`Ps->if?z+;}{mLO%=kWfu*j|)XkB!k`OLRB6sLp#>z97^fuHO z?kGF$FM%g%lmWv9O$CPX zbVbx5k1n^g4Tk1c6n@?Mb~k?(W<3wtO_cnWqKcMJ`=9Y?wAkQMOZxRy-9lEOYV>om z;*ub%lt(H0eRd||bmHCvYiMA#2Tb9=5Ajhd*pGoCqg;2}iG78VJv#3aF3-tBVPW+!UrA8*RE}}2tCgm!#=U9o=R8qX zOx!chFN;PoyW&fE(s37jO314M$*la={RcHZH3E2s=ify-f7cjopihRhewM}b+`jMj zqGU_RL#y$wm0XXvB-+2j5p0<;Q`w~Ggr6G`mD#pntS_czly(XX(Hmk&v~Cv0yd%OW z6sdgB+g!_}Gk|v?vdT-^sMNTANe2Cs#dFZln9L)<5=gEiXY}0wcDp~0sl4aVi)8`@o z$WApKbyV1l)8>_r;@B!Go1Of6Ssk;AtrTgh*~4ozq2f&8K|x|IGSM4UzpyXNq6x%BzN6nzsk&l_v_4Jqdg3}PD3G}s1nZg(ZTj>Sk6qVNx(y!O@q8pfHxj3Gi6v(^78gaysvL&?PWBOElOSunJZmeaJ#jk-g2U zoB+hH+BR^mVH0&N4bkE?*GZza}Ey zvoY{*Rw*FY6w@wjj^kW*!Q(&$jGmC8kkHcC-FJ$et&aKpxlCbbnQd1?06~>l<*zb# zZ5iYQn6zuibWAF<9h}MX_siCMv?5StF>mn|A~LG>)Pe-UwcC20e`&L+$!x-_a6%52 zw%6$Z%Y%udW#QesM#x7O<9xjWvzz5iMGTD*O@iW3vyY*DWT(nKznU_Q!mE6=1coQp zoBf?KYrbuhEubBD*Ejeg6r}nC0F(@ znLx$v-zwN*gDEL*zGHb$6`P64dQ=l`)S%AqouI-ns(0Z&KiBz3COW#@WP(4^mC~q& z^CR{rABNl}&EayE$mL8q+{N6~!>{0dJ!~}lO7L4?(_Y3e z#Ue3$3CA7@D82nRq^ihg-X-9URpjp!hg@&(9CwwLS6`W!`0ae}jW%zK6jYo&z-#8a1^9u{d4L z43Wu4V)KxeMp#?BK3|zoC9xKK(8#AF1{mIpCY%m0@yus?^nRM^9gO#u`IO?b2No?@ z?VSTRszb`QuW~% zQVWa58!I(#diEQmK>NrSE`Dh6s7H7nS&3j6P+uVj&G5u9ib1nB*+l~H{vwNF)$_`D zq-L{OFIaA+lJ>5<9F)V8rEU01w2!sT=PV>QAm2P-BS|OHQr7Grc zocTlEDGa>28AMC)ON0P&2}z%v9xAQ@p$8 z&(*7CUCu-xfYF-akeTgZIuOS-6*%Cf4743;+*=v7youhu z-;F5fP?M{NcmIWe^(>9fA{}jz2w4C6d>Obr%tjL)kU2I26Z{=Cw>za9V8Vf5+Cj+{ zV_<+;L3aZh;=eu-z;yMMKG6UauWVv6C2gsws@eu!sc`tTgoFg+4m;Teo8Y6mo_r%B zg=pEmWj$8(D@$gik(NTuT2?4!dwk;4yYS$lOp03ETYRY8XW?p^D@p?UPbPt7FMk%kng zipp77{Ka6OxJ-6qYH8_-_oYiZQ%rugt{a<$A(c;O(Zlz1qltq*op0zWjfqA=^;i{CNa4oP*xJs&eCM*UQl0<~s>#hj!|I>&ymR78(_#U2DhwS5Bn% z&HqUL>~Ob#`7D4_1`1dF?zzJ;Q8rSFvjUhVtDGxk#*#&h5{nk;)LOfKw$M|iPLu5OUtW8WyOOcYG|5y+54&Jr>7<5x?wMYuyhQrMQi-a5G#n} zhv=P}sC|&lf$!or2vSJt>6JiV4m3W$@-ET@iM0EbIrgQ&VWJ!+&=-eD1;H)82>KA0 zFX~=y0&{_!$_vuMt0E%Q&_da74ibLkrfer9_RKv+Jbi2v=NxUL3+CG2UG)_6=Hscn z#F=Zhdi!ik!Oe@Beb;hU*r~|PWbC*7x8#UHB+|e22Ay9oDG2rC7rPm7@HMRpxQy(0 zB?Ijj${zQ3DA&>*a~YSND6WWLdaTiE=6s%@65%3jZZ1{Py!N7i@rTFd$t~BZ{!^(b z4_C@k>q_{>OO$1Vsca!}9BSbWVH8jg&F@DM2M8rAvkC(PIG1nf_=I7h@9j+t?uI<6 z6d~m?4teW8{j*Qu#&$k**@;!%M_4ws9FUYUCKccF+EFg57#6}yWy9TY^kxb~Yr??U zJzWt0uJiGe++g&B_~xS>2xMrOOgsNe3&8SD;?|b;)xG_vv$L({89_wwbu6$kF?Oww z6EhW3`WMz^y3wM{R9cBWZV_VZV@u(mJX{fpUg%&Q?6~4B35OBuW!>bPO=b*D&%dhQ zBs zpB9=VkZ>Sd(pu-Dete^C0v={M4{< znTm!*tCS!mt2ir&;p*BnL77Ly7mczm_2AR-GcW$X$}-+);O@W`~Y|0yLxO z<}exp(<{E$=(X`i4;yP!4NsI4ym?cK+=PT6mX)}b`^U+qYV(zUAtNIS(jJqcyk{C& zsdl>Im3#VeQsG-pvuM=)&iF~KaJ*s;bsYrT-|l*Y3C>%r7)x{=4x*#UAZQSMPnJ}PxXPNM}+AXOU>iGh_u2+tIH zvME=FeM^FVw0uw?4BqMByTUZ>UDw?H$bzyOn}n=;Rh8M3K7j!jbPf{(LaHRVg_J5A z$924HSXhOO5fiDyVsKiZj^s_$_n_;nxnv|LkTs5RGzyE?Gf&H+1NiVAo7T^tC9fMc z3W5#|su$-Q0Wirv-zZBAt_c!{H0 z8#)y#hHnpJRRto!huyKjI~Ev-=3Ak>*?m`(cgS-YB?o3s=9Rm8QDJHyQNQ zcKh^g{3EgR5>$$RQRsjT&lU)kIXMZSVJLt0Ek_u-av~hDAx5{SZy&0kzJGUX+mUClCfuZBMPhQ8MRXFBGN8s-rJPQx6KF`{ko<^g%1&P6Ox-90?(qET#Wp#*MhJ@gq z)lzc5NS18sB8Xzrwo148>)iTySt++=F5;)}=)A^6z_DM~SL<6WvWDSX8S(2z@lP`T zCsa{^DQMik-CIYS3I#mgv9!_(mx_kn-DJG<)5`nc7V#Dt?-H;Ju=?2Q}#+JW27InmSJk zcG(YnHbj$klK!v&7;l>wn&^#=C%5b@Om`s5BpGj3SIW}eozIaki@RPJ)a|DgoIDXn$fcb45H3_MDi8h22F z4?PJR*vf6Y{DDSxG)dsDAk+6@5@TD24rjyK?0v#QW1`~X*KgibM5Y+88&!GlrP@5& zoAfdb=aqlPu06H;q->%OwD#<;!ok&ST0%U`kLF$-r$Xu!Q3Lhlktgm(32T` z^BK(hLiwCQOeRstne!7d(f^Ff%Uy4`wA%*Y9cvEk6AdZBHAAJexz)Ho-Bn%hI!}yz83;5b>r+v2+xR`xuO)*iV~f^hZO&stdmhm-HR2Kn^sZ|;l)=f# zqmLJ?>%D!n_-8(ywD5~?Xn|`mD$~--`7nq2x{+l{D@dNE#NjF@~9HuHttp^Z1dKYWU{}jMM=!i#dNWW zQHbem;uXKmW7dx|Ff?pt&@N)DvCtH?g_sJdso8ZDL;1NsCM{KuwB zo`50&WgI{NtvDYgeis>YEp&bB&qPaC7;|(HX3h`%H!Rj@t$|-OyzJ#F9BP+_u`bx_ zZbvWaXI`Ck#rnp=`}M|SQ@eJZ+=cWmuQkCd*F&N=CH((n?g;9&94s`njqDa@^ADKH z_FTRft>Rd7JN3%u{KPh z=^vP-x@fE85i3ew_-R?kFOaZ#KyXj2%cn;07pH1vO- zyyny~+2i=rH{Mja>(pNN9*^n^9t_6x(bPhIa=fUb6w z!yjuAN@A4KhvuNB^Rt_&Hwc6No2_*2t0-_laTQ~{WcgTE(z4sGub;0XwwV6oZ)VC-=+3+UCR%1__)$PVU&PRuQ2_z2+91_w1+}(4-2a%Dc6K z@Tfc=zKLl{T!=I<2;?>QG=a0kPDP(o9eYb9hzPz5NO@95(DppYYi;>&hcBs}>?qHF zgW?BgX*J;Nc{5(h%+U3tjgfU@&h+Ca_%0j{8(U-&uQ*AcXmgI&QxRi7%+8M;CvnOt z-H8VbwRfNRbhs;Zetan=$AB)05wj(WmArTwyvDb?(<5;>Qu`s=Qt*wU*99nR4hg9I zn92$gXr=DE>(Ms+24RE9P%hPmJ`F>cw%n(L+rL^LqO8$yQHe1zO$x`f__bbta|`oE zpXiyOYn_&&Z>;-MdEbtXT4yL;`EIzFyJ}k|AyV2pC+@{pNaMPxvK6u{i`>ahMYr6o zI5XV=zH1UOs2D-6)rhV0cwJoy!Ga~S@FU;ISk|2{`eLruXQ!_-OZB80OzvVC3(9BN zicr#bIzCTNf42D)7wdka3|cBC8>+VL1wo_nd9&?H%g!mmJESYhMFx6mVKn+yCL0-b zsK71e*<#C1+QaIyzRPxNk7j8noMsPAFtCmFa=#XkatEC7@rCoDq0E_>!ns@h`@~%C zExY>eI=Bm|E_4gh$KLZau3xlHruWr!PfYLIeBxez^y1)IL9VUHP!)fQy5+7lV`cvU z-!~Pte?znJ%jQ|dB$ihGOpmcY&EYD4?j8x*`@n(NFP`QLbTEB-RfY(eq7SJ{nk{v+ z;#z6eMw&2QSBuq`?^L__e&NAxrEXbn$>lvbsp_S1eOQ&ddEUQat~HVuM?_rZ9@*1h zVUA5ie~XL$7G^O?(Jo|95JOSW_{Ow;aKl-$FuF5K1C+gG0MS{s#*SO4Zp3I6ln zT*mS5^PYS6;tMG$*|WKy`J|`3tws43baAVO&&eM979ZbE!ZMvbjO?yS&J{e{2=Gm9 z>PoDwo%9Ybyt+CiNT*Q1)b!RdbLupI2Ng&>NqkM=x_Kv4tB!w*n(pPlb6XdtDp5zZ zE~vuabb?{nI046G#tm_$hGk`q$&v(R)!GH`nTT*_=IANDW60rdzal_}D~k{%NDHbz zuP&lS*0{4%m-+%rcJqko8kb4at%>g<$3N9jGCp2D9MoS?JE5J9;x6T)&*_8%4?QPn z7^nP_r7k{lpDZ*kFR#3I7Qtj%JwY`LZC;KG#UhmdwRsJnkou1RF$ed;j>-At#n$|I zx`LOq;?J&~!)Vxi8p`x|tu*3Htfb^f<_!k+A&xoxYxFfnvA5i9!mezNQa8RS zvY|=?HLwC{2{yk|HA-J}P(7l06(~G`isPE&pRY(u92Ac65+hr|9iHBFlS2QRl*cf0 zb!KaRN_fpSjL@pYPkeJZ_f!&XQ|+~r)9K7yW7j4{8O6PGUYZN3L&t%kotV^5^>w_t za^yxF8qEibG*eTzrBo;Dsy!UD_dqt;7&_6QveeD6Gdcx*=*j&Vc*Havj`+$I^49|q4p{${-F)Q1OwW3zsTR^Q)OyB6D@zw%Sh?XnGzW|+lTp(T5Dc;Ki* zO-%d47XM^-nv+-4MMHx!rZSX$nom5{ zh2tN1XJZZya`Fr1o668vYify33RYX9wf*nBtN-CDp+xcGeJ{1rhA@Nwn)Rj6hPOB_ zfrFh%f98us%vtZ89*Gu(Vl2$E$b{Rip7{qyI}%Ca!$q98_?Yt0rpobNQ{v{)v3)0L z00ZADov5Z~LA(;yA}_EB+8R|b)_fk5m`RuFU6E#DW1Di3W|aC^gVXepNqE#LZZRmjQ%%>+1O=-_(>yS6*w-0NqJb=sH&*k1v^W`ZU$71rXXB^Lk_Qng@sL-HLV^IQlN$gHpBI9 zqY)juZ_In7-6g%u6e42Pef7zZdBkl$g-Cwkp43B2-Y`e<^rAfC&;o|%-KqTI!tLxh zyq|dAQ;HEtGOhehn|zQ5uxLl7z=+_ZsJVZhi+OO}`F1T9S7>^&% z-_OTVd~k$WUivnxHC=e)`n&A}YI6c5Yc^w{o=K**pDHGhBDIUfhUC7}?(*+6T#o`U ziL-|%pKZ)`e7JWzo9}HkFY(W}@jEh`-!9i{&VJE2ePNhYbJ0^-jsEPJ?`84Xp-HBP zUk=6kS~>ISXLnb*P!Z4<+V~7(3!MJYQI~GZ$jG1&y9f@0%A$@VkY3(>^oRmHEtF4^ zJ!dY14+0aI!YJUSYuylB@i%$5E zO2JFCVZ^YueV72wcrxBx=LA{mgeC>W_ry&xx8pA3t2}7$+}=SLe_AsyBv3|cZ6nB5 zc&p8A%`JI-bM5;Wm71D%-|9;CpGTfKKQ*XnMabnaLemPraw{+VisNlfEb%`?8>yiZ zaedjt?8#mH-uQjB``p=dZ7uDaELLOXySL_queRo2*&P10;-vr`gp-|`kG5PF2q(3) z&?_7hvs!b7CGNFF&6nM5YHFN~-q{U&9?;z>I6(U^GZyup&WnSY!GX zst4t|zZijvMu9>@W~m@JIyYK(ThlWwsg_}oTEBLJVIsnFM+4c3vdmg1+hQ>T6AP& z$ldfN(55GxDw&vEAtfV2oJ&V5EILT-#;YmXqM6#j(V-WJU3zhMe2}0CCm}~`A@7F? zJWFGT^Kx_L4AWmpva_>;@~L+j&E(gN)kC94-Q1tiG2Wwiux{X-qFeKzo}=;Lm|$U~ z4hIeHgtPRoG`&Y*1-|NC)gs>dM(#{qD{1=hxGB{ae{aHw=Oy)Wi1#9+vaM3m6z6rySAAVIbl%7NcV0T;cuNn_1z}*NhpH0c9@6W&2{IkMk8jg1 zKRmLkFR)jR+}oL%X||P&xSugo7TZeuCJ=T0r)w?dOfkqrrZ1A^BZu@WjkzqPu?Gnc z8cxdol8XMZaIj{z#TNcRN3M#z*V`z&!XEN^5uNE5G<+#!B-=U^N? z5XYn9K*F)Mu(-AD6#>oiQP*p&pBfpImFaap>6%^Av4f8SZ+mXqo-vw{T!}#^4E5-KpX;2wY0k@N@JFc(4s#PZ|T@)IZ;U2 z5R$)Rbl^BivNQ3!FQ;Kv4J(kdUcL?*0zfSORx#tZe}?)i{sSS-@eHlpL`h@63f=z7 zvwW9z@LvvwuHuVN=P%+8m%CL(W{>C|okT|vHWDPSJ21Y;9iTAcGRpkBG9Rw8Cf?Lg z*KiZl6Dt)4v+~}Ts-~sNs;#Bxw5l}Us2%;!j;tnDbNV)2PlP75G&gCZd}8l3{~xWL zc|6qX9>;&ykcg17jAd?VP*eytF)2%tGGytTWHL%~N|q!XlVwUFjx(~QL?lL8nid^K zb&|1FB+9v>CN0{ON?Pvc=ib-7_s{#s_43!eX6Cm&zu)sb^L*a#Z$bL$jg9=)eV!w) z|L$oz^tyB8&ijwn>*@5kCjM?~YLFs>U##HG%YW5W(vWob@W$VLa)v`C-rbMU`R=KF znzP`W|NF{{g5-DXbzYS*)k4D=5M zOgGR&;5W)&{=a&7tPGn;4*)?JSTaZyaK;){*`O1hNMz@YL3Yn3mmA!9aVbv z5A5b!KVBH^+|{z5e*T0hOW7_-#rq45`TXp3R1{yq0>ZWzggA|77GIvrFZwME3?fvm$gXCh(6Qnk{kZY$&VS>w=?JBwB@_Uj8*NvTljyJ*0cX| zajA^YyMszOX#bP_IFTE*UO5 zft$KTeWt9<0Wn?So_IyU@RuyhvKWo1XcZkI^nyQeUd*(ZdcF75z0jfO&ygAk>zfzo zI5Q0DSh6s;_oix#P8(l;e>eAzy@$jtjTvkx~L)z#BytB|1 z%6pn=m4FTLnT&^)>w{E1i%I{O{+~~MJkwTw+A3j$TsygY|%XHHduKvTlWUOZQe|<~rLdros*{K6%0C;iW3pTA1V zVCpJn7ZX!kxY6oK^f4ePVL+NZG(4OL=Z3Cb(T5jRfyf8{wXfg%&vN%i2^Sa?84N5vC~#1IEDO;z8?!$So^3DN?`^!Co{%(IVP z2wXJ-tJHYY5I~$<$Pi{kyed>uQX-3L7vr+CCoAGOBVaX2cyHU{IY>dIo;qbzjOO=tAfl^SDD36gMyp`pOp31P-#&Q3;%RJaI|r_?>j<>E zk9bb_u1C|wRu5tfZWW88Jd~Q+3_La~I~(FM4tXZvX%P0FxXsNvXbmh)YxeAr{ktr* zb8&Lky1CVEt#*ltv6T^xjg4uu(snGJJ1@HxBloiBg~P)^@?5=TVIrUYNIQQ)4)iv4 z5UGJav(TbYy0p=hE?`mhJnopW#uhopKpOwB`Ig3k`t>DuEK(TF2&h(NtuD6??J=?5 z*=tr84{#_DHtaM@8YMtlgc9OG`**qeX=rL%5>+QpiXuBfk>$BigV46>ettTK#gzG+ ziGV?du5BV@mEH6jUs75LnYM^$YpkiMNe~nYg%D*KJD zIFB#mAYtt!c`Z0eEcXmM0TwhgGgC%l-b$}&-#eq8&=xTwoD-HprER1b9|PjrX2R?>({u-r}w{?mF+TyUrsTp znK-?1hj2>;a~RoQYq6%9tP~nJdD$T_lOZre%50MW*jsGBse;K6_&hW!@PNTe59Hfw z2;{PHhYO>IuE~*eBG6>}Mvg~A_|0wlK7I}#Jd~bp#dnMtjAGISyN9l&oT;jELdjIB zx*|Gy*bWb)I0kWYtj0L!_Y{8t@5G4{{d+2yN;pfE$7aiMZxlm+I|La`UsFPpppNmH zW^TS34_yGU(1HcM9L-}lcgD;YFC{*4wbQbl`GEZw*OLwWwu88FSMA?LsN;r+Uh z^_wq;%Mt5>9R{O>q-+k8gPDL59Jg;bApvGQ84%-9B=|>H)RdYrY2MifPK}R`{W`QdMAhj zUn&|1jbeJHx|-+9`L!a)g*sDK>R&quM-gVgVNY(Ub=!iRxlCFxrsTm0Jg`8p27&PAV6a~nLI3)8 z)l-S&PmK0&dK4~ezL}xdhEw6|?w&p);OkOR5BZ0n?nxxEw16ZKyKSwktVY3?hTyr` z-qDesPFY#>ZLDpPu&qA3!G+f-wUE!}o1uQE98i5wib%8Ae1x>J_R1BzZd)e37mv;&_Bk71)@hb);$e`x z!H8}JgI{jHem$w9&^CL=1^>z)=0-Q?y3h9@hYJi{{c$N|bC7;p{O`_KiI^Iy6e`Pc n|A!9Nh5Vl3Z6?J3_iKKrPF5cBpsx+6A@JwA+QX@u5t#T7!DuZv literal 108756 zcmdqJc{r8t_XfJnv&{3jlPPnO5ZY}+k&uMUbCRLVWXd*2k|{DK6*49BJQgyPDP&3r zA@h9J+xPqXo$EU1I@dXWpFVYc3VZMOeV%8nb+7xr*Bha&rA9^0Mvg+EsIIDGbx|n% zKokmZij)|>a=w53C;X4_A?B(cDg5#ywGM}WlewrHK188TSs;J#-YDhWg)d%oQ!#M6 z>1^xfY4N}Yb>G6x#nIW#@vbG0hs}eBcb%Phq{QGq5gvOtHy1f^@&EG&#GD`4iHBx< zqd=i}P*<^+^}N!SUwV7#ZPlGjmfd)E71MbwoR3$eR6Y2zM5irxox#-Iw~6`2?<$Rx zjDBOHl*$LMEs5raGaJ8G&xpJ=eXXS8LqgQ;S7O@z`ZPK`=SHv4@qe;TJ(JSy;UCbq zy58NL@@aW#eoMidN5Iau{@lfj^N$p}4o*+Y#t>YlA%x#?GU~H+s9+va_>KPf6vc=9 zC0PBOI*JbY_T^Wsd?>Pi-yWc(3;g#bn!Chg%KyF;F8!F0=imEaUtGq2`ky!H;lWe? z&s*F6|N8C1lQ(|n7h%wGndRl@e`rLI(M1s6xU{8*&3HIkYGd%x(GZ()?!~zO!OELA zZ%Dn&o~Y9Qy?18J?h4I%AR$kjhr~MXp|G%UbNR4oR7=>Y4qtD{`SGfUUccYwJyVT7 zGv?F6n=rYwwkDD8^IOPot%*b@ppb%D%zWclPqI>g;@`i2wY9YaZMqVt>vn!b?cbxv zW@GT5s^9TH-pH8U8aC^=S5z0O#^p^|S663HVoCG^uEa}R^mUrNCw1xt=a{#hm0Lr1 zB&DQ+;jJ>c*<-ibDFRlvCOjwGYF6vn4^(iS&i)(h_T@&$2h-CQjz4NI^5d`F2-v6p z=rj>2bo2GpVqQi&{S5`Y_)j5AMGaiO+shIAOY~SYI(7%26m9CakviF0>%FnNx>~&? z#=y)x+i-HwP~tH7t~g_I?m?4n+2un0up{G7;cb?e_4N}Mdab2ct)&d3Z~x>DSh|jV ze$A#fiH3n3hjuD@v{F8tU026RL_~D>@!(I*sq^R0d;R?+;M&3I*?RvzA+5L|zB9_PiiU zxQ2t(&&kflpFG~KsN1eED(vj(X@fOg`nd8oFTMH0-LIMY`H~jRgyUYbPwX8WW_Dbw zj7LhWNRXG88$Fqsu^jhZtz%(faq&Hlj3h5GDktxV>P_d|f zUwEj%kYH*+lU&a`R}XAPj)+$4&VE_xX?(YQ1)Kh;b`bFmrxc?Kr1P6b9AhaHJlu+=Dd0p za$;&gF!KF-WOFkH)%dF?b#LdFp}^?qXvARt?JGI`nZ?C4O2_N5({6G{?{%UL%WSJ6 zlu+7l^^o%@Cnskvl@jc)6|C+7+2(FnUmp!6F@cY-uj}@*q2I~DWZ0-<`%eANrHUhu zKjRTq59ep*l};}D?{%4B#FCI(k#$>mI{ff>t03j8)7wk#M)d2iNcaK6~uC^TStM z=KlAPd+)1=;f-23J;#IUe0MDO{>~MTtvD6+kBo$``tQ_K9`7%eJUa0BIX5@GJ?1=5 z)c@>^##$r6DHMt;;Lx=ezU_6iH7se>PKj!S(1=MmdmEF}Z@x5C=rt1|;PPkuqKMIl z&a zaM@hY5xMh`vZbX3ukQAZV3XeZM+e3C$7GPB>$Sg_*ALss?p)iy#6l$q%R6bya`vysr^+ zT}h|mob)PeP$r6*M8Yat?fjWg9A*~rspCpXN$KqFjvjePhaG67#l9%9>*b;j98S8H zJ7fB2>sHZGSXkIZeZ{EbI2`mUXTMo?r!hPi-M7!>eYXq7JPP%@@TN?C7SB|yOzsa= zR6@9YnS0>M(cxND`s+#Cn$Pfo1j zOvTpbri*Yw)aEJYZ)6YZ^!)8WC z#`O*_Gc#_1IQ7bx@}7SW3e6hQ&x(uBH>|F#Z0#F|9NYu@4I+@o_#Jc(y0Rs|_dhW3#qj z(iWL;LLwrqn~Puj$Hx_Z%|HCvNlQshZMpKj+^OhH{HJ2`Cj6pde6if4W?r44vq@bO zx*OMW>5w?~@$qqiJc(*NIbJ=rDH1# zOG_=!g>Fi~x$mD9rh(w-xiA@BTdQ#FyImE#Whic1%Q7)B;diB@#Hyp%`V*Z9d;tQ1 zz(q*7(>1M^)I4+CbMldC5oc$K1QUdqL76R;l$6w3zS)uR^8D#=>yQ`9;U8>{5BHp| z^T36)L7^|PXd#AD5h-38aIjLbzWMdWEZipxC+FObUACsWjZN;ty$O%8`y<5`1mC}Z z*EThcAt0e{bgGzz-J09E3nc=6zRrOLCoL^)Zf{Qt$1huHb#c-4z<=P?Rnr5=PTqqQ z`#z$m-S!Lhy!#tzX&e=+a}O?l{`|S!&oqGVvyX;`MjadG_4QQZDcz&*gSX9|eEcY* z`BIKi_wB(WX^sAm<>hm-*Tq)R zit*rw^IwoOEhs8VwFKwSkQcDy3062^=KH;(wl6Q`;eZB0*_eiMyE{}-k2|B0IMr~x z)F1)nSdf7nasC-R12-2N~ZV4wO?UE*1-*J9(xE7|=ntsW5t?$aIEV%Zn zsw&8Um2-)Ac6Vs+V~z@7*>nsIBVrZzNg?*8WU1ZV-38&CK0c)w4hzU3??DMjjdE$@ ziGI>90IDYylm6^*Ra@R=$~228K+iN&F0v?;Z5eB0?uP=S!uAsgugkf*>jy+joHG80 zUIoTgbjWQ~yDzO(G#pXE^16)Wy?aNV;lD4m>``;0EBf6#;aWK8mA_ux^NZ{;r;V~M z9mWsL&PE%1PPo&07pl`lZF#u6dyh6RxXD41Htg!^a{blKT4^kHA?v1@S?|d>vvb`R z(@>FFEad2ou>$?G#3UpW+Z$V^ZKQUWno7OaE&Vq8)c|8)uV1GsEh|H?1(cfFjW6;L z^b9i2KbChc275clS$=(eeWc9p6y&|>L}7t&w-5&u*-XaBibpMgHErPpzwes-@t4tY zm4-I}bj(aOJ-)1TQdsdL5)Oa`y!h!SYh-=L{r$gQztChZF@<9`UGou%`h2+5aC|mR zOTd3U%FJtJ)<@T&6J!2g_xE1FVKlO1_L~$Bb%^e7w(&oN|TZ-B~X{ z=vIGU5XN^!Lm0Xo&M#yz*xhJZY~j7Llt#$5=GS0<0CE?v6h zwcf@oY4e#O?cziJH^XTtp2W08F}GNj zOaVk~Iog?wbq+WfGpKeG`ct=K>Nr|Tly@Vez2UH{K{-o1Gb;-ZQfwnc()z@z|Aja1 zP^Xmn<1GM*u&}WOU(0R2P`^%v;E&uS(`IBt&KA|uRg6ENfMx6d@gwF+81?jvd+%u( z^ZWUkmPAEG+lC77AXwq<*Vh&&$49b{_N6^mfApx?tyax*Aq!u5v^|C(R6RYtDR{$~ zoEiXxiWvce?`|QWC@wWMD&?Hr3{*a^)w-Rh85!JbzFT~0TZ9z!o<@aC$bRmvXe5d> zO}B)3n_UjDwzf9^)txfZ06_M7YUuiGht>A-X!0drkJh12yR+OU;YgEnGf%56n)TdT zJG*n`(c%75k(#TkYpYoj58aF1^E~ueKbo>2o%}&#ILJE#8sh7TXQL6kKmP6Q&5H@w z+D!cS=Efo9D>IIk?b7BmPNDvgDD4JK4%eR?A6!I@16aZaC@Ls)AN>?inif8L_970` zl<@qy3j(#PUccrCj0&qTI5hMCP`NR{dCxY++b*#Re@TZ22isO}nwowoG_D$0I^QZH zhdI9%YiDr`+(>-vMPWig{GtY|j zYhzF()-3z!(b9t|^KzrTj1qV47BaZZpGbAR8(v&?TXR=38MVB;jJ1T?Xw-z3kc0jCo}yoaL0vhngC`jH95%(~39 zl10bFV1yGaKR*}h?CN^lWBYj2@mItC!NK%{s!ZLt$U8n!ZHc;4Zp106)2?-^;B?BP z8&m?Y{7qM2%?413mgQqBrp;HQ0Z&4m0&tfNYzdrelvqzIwN%lctY>gp zZI(fL!gFmr^r41^hJLTabys^f&Kk050cSNslp9Ef#;tGuB{-x|DjSUs4J8Id2}uZc zomX7^6toZlwE`lK(vp(G0NMH1bj<~~SxysWnHE8x8QL;Eb+fbCK1=s4<>DpXf6KK7 zn-R_s62aa3#ncSH!=XI8q=eSQ#3WhP6%DW(AA03pr4xl$V&+r2o1*ga?2zZ24xYrs zG&{<)SW7k8OK0cjQ=C418tR`@uy#&A&$)Bw_;ghN-TpDM7eb-p8qAW*9`Y|zQ;}o~ zZM5;jp7THm%mn-yoj%JSiob$yd+=`1;mx1}0|Ud_7$~mnUPTXnu(aErpwP06aQVk5OTWJX+xS%xj4tHwJy3L>`6~gPv@5}?LbUG7G5gP z&=Yp2_iWz3tSW)u$NZp*0}4z_rR(hYk6wU$X1DDnSo*$yCr|AO1@@rGKI>X;r2U6J z%aY8hDpmlS($gV4;m;8Uknf_UssFK@ue`iGw8*45Owh%LzcMp38;e|6HO5smHq~== zt!-?oRQT}Lgsis*CnlZ%qtrR~ph)azceiFn|BV1rr3Sqe7Yq#{ZwT^+LP0)zC6Az} zXMJ6qa+8yUoR!A9lj!pA-@&krU2_jMM674D zv$R7tzX!>rk?t^)V;p38Nzpn8EqOImdslLL?uNF61~Z%ygv2WC5~Gk6X8J8yX>dCJ z)6@9)#{iT4**jcWSXrk};~;0+J3DtQEZAc&Q4rjfrDe0BP~kJQ0!u=NMLKf2h}L;RnrX$ir1Up|X@i$v=fA0^K!Ga~ z4?&_VoB?@Z5RFkaU=`xMy*)t)tj>Yl>S{Ll2W{O5$qRfg4ZhcOK|V|$KYV~*Wg{Ke zY;W=E62)l4H{@TxfHTL2xkoKrBX77mn0PwC~=r+Mp4R+ zGVNXGOez8DFaqf4pk0RxKvN-6?~6U3&wkbbtn^Yg!V6>Mu?e2b+KC$@A3>szdO}8awI3?JNQUlvWMj z=;zmEWX6*y25j7!GiRWmidm0r z;MaClqir1F{bktc$}#Ce_r@+u0-r??2}@lPVY!cInZhM~7Ck zI6HC!5wu{!wX3Lh)(9+qxe*oQ=VCivl$*Od(6TB$Wi**&0)%mIkli9Zt+`eD#WbM# zhW(<{qkXsfvtPm z*~r!iai?pdSEpB(O~+}ngf1DXL)xX~L_+o{;n~Cg=G>v7(CqB&Kv5IAGx!S+s`?-Y zx3{al(G!LyiSpE`D*zaB`jydfjkaY?jxu2hY{(BmJC`)gJN^M2M-?-_!oMq4avr|0Nbd^PY)fv#JwSr z`jo&3W&N|ZKB_jA02dJa7&%m zQl?WSQFFjP0Po+d78Ej(yKLDjwrR!6K;JJgfUiv%kd9lHm1KK@EaadAPWP=_6oXW6 zv-Z&9(&}@##~C_E0nMku9FrAKojNd!N5>+iV~O?!KLWh8Z< zJ*xwlx5THyU>7C#QtLx`c@`8oZ*T86`S}kuhE=*q`i9$nWXy%zeR%qtyhWfNN4_Dl z>G*;!rp~Gym!6I*Fy>|9T_C$I%d5*O_n3~bUh4?fJWVNp3sT7{7lW0xHQ|#dPw?(Q z29Unl$kCAn*noN)#*&t(N zd^a428@b?)v$X&g+IP&(XDz#Tr(lm5(-FM4C;j@ zKS)LhjsvzLp8q=A*Qo1)s20YEIP6@%e_ZK)}`cEf~;Wt{!H5{Q|Wa;+`+? zpBP^cMZ~dan?*F>{Tg@M#eu#)RKhjJ(p(Ke>@@>2fv3hEqc+Ls?6ex0MAGlA4crITKUz@dKo`vinhgR6)4_LhlF2PeE9M709V!;!Fbe1 z96%CCxo)1GSMt6F&B_`>1889gn^Q@v3>f$Z5AcqZLMEJDY>oDfXgOeSC)-^)fFcnm zzw|YD8DBj9(=NpWVN>gyTaP41dQ37~zn0OE)=gv4anN^r4KmTS8bJ2c<+6BpfkuNl ze~|ofQy?@cut_19H~4*X4?vot05u5%hxL8+Z{dnJ1`>QVD26Kl8BU)jfG*P19oPJ2 zAS;U(4iblw|9IC6{xph5XbF8ICC0Tm0v5`WzapDE`++B+@$>>(=KGtAhm*39C4&$d z&=6DN*1zZm%;saDm*AsjU(iwN8vs+TCVGaB%(gfENpo{^vDSW&4=sN@Y7>cc4GL;1 zs%gO6u)5T6pW>V8?zpU>$hH@5w1HV3`!OnlNIB zD}smZFMi;8-Ko}0m7xOF(Y1(#f*)T{Iy+s;h8)O2G+jC62Vx0E!b}#>N+C5mQ7IL? zf2tAyG)dpLZ>__T-bP=s8X?$Vz53m-*%M}Rq#naXd!`w?yGN5R+-6t-h;V(EGbnuRG0&&w6i_6ceq^I|JD}rjH8DdO){v5Si{r;)R z0tpF;E2NMMHMCh03|a-@B#Sh7n$Oufloco*rKHEs8Fo5(JR*|;h;@h@bDv;F|MWz$ z+h&i>uW}N%+7TDAEWZ--;4K?N`;%gOXjG6emz0N8i&7ZfCDc0*PSN&7hxxQLGbM2E%~WH1Ygaf1a>5ZMvu*#&)9@ko#3GDA`wo zl5?Y!raMGTptD4n*T~4oz|_-pDyY&AQ=?^e1Y8qLcSC5Er+3m1o}!`^FsI}!-Ud%N zc`gaBtgHY4kpQN}-Xv>;NQM&~_$d*enketI8&>2)S%qP;lub>!Ksw*O4`LQxDJ=<7W~&de2>ZkkB*rJIkM}m_H)tEY z)P@C#(rQVU$fKg7@cbUdU0|W?TXb`Bw-iqJd=|%X&BP-6shH4|dYxJXcIIo@)7+;m z>mrnHRP}6H)ipI1GO38LS#i{xp%e>>ggFrKSA7fG0r6rnjmMpjOWYQLS+KG?ttWg7 zTVsjaKHDE%4{=#D6M42)wW3X)lT(vWLMPgjY_d4&5c;i@gj@U&~riAv!5_3N@en}RQWF%U(xp2lL# zAn*cX6yO^19Jy@_id?PYIw%>C8W|q-(p@z#^UA^Hq1>vBO_}xS0zZY#uU->N@`WYN zr!Be5Xz7nz=X$w7Hi%M<)dqAIn`C~80_nC}C=P}J`n}w`dYf)ZJW>5@h^arbm~mi_ zZA*b+85(JuFnBC?gE=So6Rypso7$j1)YPzVZEY2gI{Hb6PfQS46UA#1qK8rj!~5*V z&;7OfpRW4XkU}FDb8j`~9bWV$Xd*@>bB32-btj*q5S_?# zQK&qvml!Rrm@%?TgQq1vX$sDC-u|h!aNAxc)pdPFB|18~a<8`};GC3{rT(4N-yLQj zy7bUNYpRw25m4iHcBwtK7h*Nc(sA{z?>|{*lbVM^ZLdiPcrTaq7UdWr}z$ zR{L{kSxcRw#jb!a=Qu||JoS9;L*An8%w%xWP%1LVTs@T3Tw+(wHZ&}3eJ;ri!yliO zmq%jew@x(l-Xv;ZKo^*H-m_;Z!l*ehz(ilu&>&F!2;Ww59Q#NG>NxOTUdMa$d+a8X z)Eu&b0_k4(u$akm?!t)Y1{?uvN*7Xlyg-z3U7NbRxwVy5T1t0HVGZ>MEIWNl&jq3M zhqE;qRKsokAQ68Cttws2niRyhL%EAAhefPYlnvq2Sy?wXw@e_jfS0J{?CH-@Blv^Q zDO;Z#c-3FE zNz=0XtoF^Y)j&8QyP$v)H~?r(+kxFjl-Jt*-}w?Ol)LM(0hERMQNY{hynaoL*g;%d zs4ndK{Wv<!_vr2HN;lZZher@V(b7%kvRo#sW_JGcX)%kK?ag5|}a+<|d>Wh@Ll zC9^=+1M@F~GDozKC9{)AMB{_p>9sTA=?WTt&W8^Sh%q30n-zD>f%_uXm~^PCckY3O zxjE{}l`Ae)#-5(3?Ut2J``Ft6Uz0Xnk5`0BQUCJ^&26lO+j2WOsV$ z5u_PIiq$LD%bK@8mqm0Hh+x>=J)=y$^;``;y0=zi!#%-0wh!gSLSDC~U!VZUwCv13 zcsfuk@7x?^?W1WIS+A0_3D>y+wKziRigfvwdXc0uD2SY&P>cde-nKT7& zy4XwGEDhH|QB+|(%x!Dz_IuE!`@4RXU{%177No8ZbPheB8H`WZ?@XVVM`2vfE?oB;rJyQ+BabH z_va^I(!z|zI{Nywjeo7~H%}^dgAdE!558yGCup0g|)9WS_RQ1=#- zwHApMxN`S$^{c?qa$a59#^7Ll$Z627)!bkG^GEgS)rbWvVD}FHD1m_yk_AV=;VgH_ zgSl&{M&Kr0_BZb;Y;>Ok*!8mm*g_VJM$)rqbQyPbZ3*H9nfY%_x2aZ?JTEWmzaPg> z*X#gBH>lVM% z$e_A7-XYsKIT^(OpuLTO&TNSk2OK&`CY#&az+vGhBqUhuy;HHw@ZybA2Ol6<59`nv zO$KrS1Ay9~9{_;_Kl=BhbcBneYB2WLL?zg~z44Q^RE9eaeypeGQb$tT*AA(d=s?SP zG0>>;2ibJVy&%yVH27Zv%Ul@1M=Nl>6dQ>6-Cnz2F%b%}izH}NAPKi04QT0YkfxD6 zsNMUOy1QJ~TkN~zgi_YhqDFjR*HdM9p|J&eXm_pU)H(>-)1!77RI?Lmr|1Gh%%ETW zFKqng;NJLF)q_ssmHhW8W^qjZAo2NX(SZ;;!!n3xCnr@P+4(h-X|}(|BaBGB+;ynb zU>mfMO6eOPr;KW&dwQf^`c&|OQ9pWI(xrI-KXHa$HLl0@9M~JYxiu25o%wCWy3#9a z;($7GM-h;I65sxn>a6PQES~Q7_v*ry&$n;ire1pfm@XrR_Q9#658CGvkns;U^OXJ> zOWxkhLo5unBs?hOR=t)>I*Oep6WkYd_E$35xFD8!BjeasHm4qS@7}WT2+g4;anhktsJvxrmxT zqaLg%Bv27$Bx*K_P5evCldu&}elGe(t-io2DE)r{XcMK%i(4zYHMzXlr8Stcep-U3Qx=2GRStG@9(^La6 zYt1+KSW%I5A*UY913J38!GO3z1jjk^<-c1?W!2YnspilEo=uj%tE-3RUSxojVX+z8 z9*)u%F0_F9uu+1$Ky7s%U1j|KL$W93 zZY+xYA|0)J)tvSXdBbV`J+Z z9K>CX=g$I(-{I|sa+^stnX)8wTTs`YCM2{uTa`H(MrzA0>5phP)?4b}$Ni>l#A-g- zmy-cqblZFw(~)O>-|Zi4(?M+g;BGetw5j^sVTa6VYy_%l-c1!p(Y zVnqusGR9ywIXsi7cOy}umUvhEsK^?nfltRTadVaBu)lYYVr1ZqUN)yYy+;QVGxGuC zjsEl|cEJLIBp|+Oy=diL#_SZ+4RNT@(*^b;Hl(fBl)a(&wt5A6!gbgz2{s0ix5qV+ zp5(H|4CF*`B%dZFbvRoA(iy4rT1TU%pfZ`x5rHTxWaGls$zhK6(w!&eZO7XGWAA`& zWIbn#9Y?N#5pR=Yf=S)e5uF=YsDD;*?Oqw3r?xixdRE~y4(`X)QgD#Sy!2IIOOQJ%>Uy08@q9sT=6_^e(>UuVs__h_i41tr zAjse3067ZOlqzHDu$Jj^r82h?qrx{pf_{SgMhjIpb51bzG89iZsolIu|9xx>F~Wcl z4a91jjVMY5MNj)y@Ash1=hwH3DH=?R)Sy>_Fmt}pjI}7uQ|~|zPI6EAl81wvKvW#C z{2|q2;E92|1|`_pN7PY%{{2FXD@SOWnodav9TFJWUB~L z^H_?F{WSrY3Sq-E-QGRqF>`SznCyI$w&v*SJ zh^Jk!JwW0&zpeRS){KN-D=i$nd?AAuSvBwghCuq(F*7>_E!=;UV-ygC{P9A6-YzJ2 zzX|&0ETXOoL6?CR5f;XGS=@mHO_|M-H}%5Vk77)W7@rCKwBKN`QsYMh9ZWJ&`f7>%EwO|g1pNaL9;_0@fB^cBZ;wn@FM{9cKo16=I>O87f^%$qrJZCXCHyqG zxSg#`Wlt=*;yI^5XI9aq2#u;g;la85}{|2+=$foDNA zhUw>;UlB)#4!Nu*oK@C(g#Gnt6EP8C(!lJFld+y%5r)K4SXI$nj@9+@Ru!4=NuBr5 z*;2{e^6bwpDmn$!0<1VN6+~b_9{;Toq+!wpIQ=3BQW6RZ%eJOz@$s_>a(pv4WMw2Q zA39wU2VZO8tZaRXvb_fV{pn}a=l?Oek;SZc5n804E37m7)6vlpLgeMkGyYHjMfG^s zdYCX0rOHJYcojdDnAdi3CaS((5nvinp5kX2AUPy;C1?v=Gdmv`6b;mF977<8ve5K` zvGB5*$SB`agL9yPgGd8-8SwwlU%#>|E0ejE#f=*bBl$FOA9jYT@G2mzPU%pcwZDeTm3iB4-SJosSS{2*Kh2niT(y z^k_)`nKwpCwD9CPsHM-J&w?QnkaG=6t;xW}(&3k8N0nLhjaRO?lf7x}mU62-QN;{kNXuL^W_F1ycckmb?yN zI^+ppPuz!gd&o>dwB$;S6}c2vUS2Gq$N9Z-{E~K2ajAGDqGi#IU$c<%UM-LWu%(ct zZ#L$PWtS&vi#-R%78bP9Wf~tzT;RV9OWTjW^^izIXURe^sOXn5r2_FRb?m`XW$d9b_z#f-gww_T2!PN#mclVim8e0Q1vMUKl>VIGzL7uJJndo*_D0wQAW%&^W`RwT z07LZigalk2mqmOKh!8cDHej4&3AdeJgoQ#zcM#Wu z@~hEWYJIV(1l4e58klxIc; zoDj3LAFy$V#WgfER6;^xYNr+@uwjoz^r(Ha^0NrV5od?fdrrwkmFeW;kPHyIXL91->((Kl)gkFa7V(R|k5|&Ty zlIL< zOcdZ}Eb-ZLKnB|mJ>oz8+!^^e>L}~|mygSLS<*ihcnkMolQ5vr!xevlVRxj`HD~N2 z7_Voc`^i4=^z@wV%et})&f@uTnnomTw zbv2=%5Zd92q)5;GYo{~R;b4#}+La%}IItO)_ z{kt)H>AzgBFzw{QUm@Op2GikKfon-(!om?5OiNzLRDHDcdumZs&!V^Ko` zFpqh8r4}8Slam94^aJ(@uxRv;jj<4PZ^jD}G7vuD$ zfm6jB)+ZMJV`*|7Ez^FjJEqlI3NO(9l?10)rX^oKD7?$EyFcS^XzS|}R~d`_RuNF3 zmS(%It2&^YMaD@v9Q)|x9FRZKM9l+&OjM4L- z=^0o}U$W>wXJPk%XDe~KfPnNQxaaqwqs*PY3)DfRjo1{znXVXX$aShY{ara)BD%?9 z*%GwkX>ojDO9S_j8uWiCPjR{UPlW%=&p==56VZ&l8?&KOt%kaCK1fVZFi?~Kil=AA z*!G`4PR9o8uU@_4n>vc+lqUve7g7&N-A4mRuI-3`DNpNbR1LmM?DBi@M4>5V)e6a` z1i^l?X;~PI>g(?hf&&gI(*lNJBo{TAUT0sqI0|SSWcaL#3T9xfs26vy^5Y4HV$m=a z%7pl;uvsofh<0EsmNXU;jNSMg%@FbT0+VQ~qj_uXf^5vgR9AU$y}`^yB`brk2af>x zA{U;u(3H83aKf9y!Zrvx8?i3_CNK>H+ z9;a-m8b`{*)4hiFz%niS(+yh+%4|rsHVZEu8}lhjN@RQoj2l05BDe>>K3)j5d*not&<#6+LurloW{eqmWHi<)OsTW zz%Xlp2UH)py$Mh*WA`g8W?CagN^K}mQ^-u?K&}Qdp@__pIM?s-D;_MLTmDfuw&D%I z0g)D9;v?+Cdt}o-yKsc{_v_Th3mIr6L1|MHZDUzsYcyA@IP(HU7`QRt3&RF$CZ#1Y zgk(1xgBo2qpd@F0T?B24miAPeGPFmtca0Swq!HI4L__VFC-c%#)`e#@_)ECRr}sI) zoC8?lg3ic4hGIH-j9zj;h)87U6;sSV{siJGN+83J4!A>PtatvU=dNn(_O?ewuLqbU zMk<`S{rA6S%&d2CcL4v7(8E6no~{FB6Fe(hU{WLV%Ds(^E>H(EGU^MwA86m^K&a{< z+NynSATDR@b5|EA#EF8xz9G@<=-3LaJvg#pDulh_TdzTnAcmNj*yZ@pd&Kc$rrMV$ z<)L~}DB{SX4_OAHDJ|1$@6L2VVo}#grlxIFZ%~4ub+8s&R(5iB4r{ZdUBSk>ebqrv z2&%=a52K`j;+r}*cL00fb^i{Gfk7>s-MNSiM<9eSZ;=pksPMZ*l3s>DFa1x(6VgR` zvqc89;h!h};{_;oal0efuVMCtxuhA)y8yDFV_;G8SAckc%)vBV&CMjbE$|*3@|lAU zE$=qi?@>jJ5OIk6MKr^1nv#0O$Xd}~581-4^MM{Ml5K_Qy*7Q%*CV^^_37R>u5WS) z3*sa=2{RkS%zx2e3n3dr8QceCAFu;!V(tql| zzh3+reCHXMY;8da&p*a6R6Glnfvi7axr?H2+9fkLmk1;)aL!Zbf9d63-47Z{0STOH7QE2CM7JLmGPDMKRPP-XU`y23+&|uV8Z)*I_Bt4cCi7 zk@sxU6ZP)vHU@kf*)Zs{mv%}a^@!2jA>{$%Cl4MA0g!W0U{Z6tetwF76!RmJaT+_O zfV+A3?p>@_WeJ@L#+SjiXx2N4^@$Ki77v5@1CAAd7Lo)PCAgV+e>4A8PR}4T zpW6K`XM<_{M-|cQ=MQ#8@DOSAA@>67ueUK`VNqK*N#fBbW&M<(RreWED6Nk(+vto~7Bz${Vb8UO` zO_5d8*F<6zOwTlUtB_mu2XSZ!;*N2$_+TkFRU>MCQdTOdr6@)L>3RQF6Cj%Y{d zlP8}a1HUE@*yI6dZ6yoDVrc>k;t!ESR=BZ2az3b)1bPJlQ%p8Pj@;_Ws9aA?U_@gBKQl=Zg)NmFhKEv7UdESj042kJd=#{vZq@fhj~htM zd7#m_%y$n3ME38cB@1abWF8CwOqXA-&DdOR`F#kS05Zn^>z6H*=XO6%co;{-6Js&Y zC~CZ!*KGhf$#M9==+wqqfVwVDeiLW!h2m$c7cqaOD&4^y=BXO!p~l-R=|&F^C{J5?qnDZ!_~>f5A{pTRviB$%^;Es1Q6N z3n0C~YvAbcCUwCS7~5@E6?}=kH5;RD>@;9;Wat*$Rfw}6idTE8O0Ztq#PU^%o63Gq zE-}1F*#X5G5(EJAp2ScUs#%-vUi8cKj%*n0=$b?0vGD&p*n!u-W&PE3EOFB=hIOfW ztxfYfpMspc*uFoz7;RS)`Ol&G;RBLtU{4G_*vH+eQm(y6d+EM?Yqd!HEs!^{aQo5@H`Up0@7i^?@1|D#RT3U{(z$@dt!m@3BU09 zsq|vncj?KR{HRR+rxE}L2@H;cTc*{+|CkZqNrER;Jbd`D57{mVDFg95-M13XKNKq5 z4BmjDaAak>IHQ9ZL*Njwq!qHj#(sZfU?3Rw3>Kt9OV8uPS*Ea;oSz&7DIs?$& zQ8LU>ulQaGYKAcs7kwFVfkD%3CYAJw1)n<85AAw6{aA$u-RMB%f?yD?)!o`&SQ%e} zxHy6*f*)nbHxF~J)OX$PNR!I^9-5qtg&a8ICG!{^(k8m`=mE2SjlbJjX)Y z$msXOiS-y%snrfpwvg;WuP5$styMR_P6E8Q-IuiKw#(If31{e!TdVbi89AN#hm3jR z)N9c=z_qT7<`Ic^BZ!-T4sE+V8@I*}mR~QGn9&}LY{%mwQqa_~9v&W_DUOg%`UwL*-=VjbipX$(H=gayQNWKWf(ILoJhlX=P?)?jmtZ+m)LO;BX>Z6Nsvf2p41!%7`y-xR1MO}=!0uLVndJs|#3~D|O z4h~LEn`&V+1;YjOSsmd2PhE)FlEb$F69$aiJ#LwHIoBTW$x*{e*eRt$8kj(V2OG3C+vq(tz++fT>y;=qpTWJS;$bM4oDsC~ig#kJ%WTCf(be zjV{W$8>SlT0OQc9t@e1ek!3Mp>4#E@n9a=X%VwsW0x&~ z7(1WgQ!~fRB2Uc$rwyu+*~~8p$XA8EpYe!U7aWQH@Kl)`kQ5OdP~^XLb{yyp#f(+Z zq1%u#{eQhw@x5U&4mmecr2po6w5d~cU? zhytcN8V+;iOLhey>;6A7Jt#4$%HsF8x8S2;e^{qEz8A&T)>ZKRCPV36;)0I_ zK->YI^=nmU5z@5NNe-uNRHoHnCRgD-%e)KZ+b(HI-ffH0sAhYX%L3^7YVd5H0|vW0 zAOqqczo`EE>OG~7>BO6K|D);QO6*DFKtSQf z_dF0Hz-a>dT_vd9adB}$KzOMBAAJ3HIMr|b2aca}jE;k>V@I}QkBrC`*?X_Z$R35z zvMbqpBwIF-jO;|VvO`uIac*kY|87)plb8crfah2<(TA|4KmJ+dFdUoVElEnzIrSU=cO+gF|ug{X;<`oDOHH zsuOn>Q9gr;A!s@A|36?_gVM-F{cxV5F~8g94WNyxQ#{{wIg?;`bO>*G-vRXn0Rj@H zwxOYRgdNOekf|{iiF`<+1P};7r*I;uIeqla-$XZtJ^W8*2)-b8Uf%1&*#=^n z2KI%@I$yZ!Gq-8QsHf9On9pXiX-qPHOyWqoe;wKFm*^{$*!nBcx7}Bh_ceF!mJ0!= znH1Z1+4D?HyVOww_G+o1N`8I^5mAtzkAR;Jku2WxK!_cwbLs!51-fcrfM~Ia2P~#_ z>jG$$!8IWVf-3^*P%#c_K6~Jyp%#PlNX^qf2gFuy-)dNlvG);q(JKTWV^7;(uk;oy z{#?0w{x2Okjqp$v-0>jV>h-c=(AMNtiB!QMq5^J$f6d%3xWqa_rD~dr3=E?9%?l7V z-ctceoJ0lV0>rN-eU8g;rJ8$XO}Vd6^uu=n!GjmR1RH{7@SV6=Jnf_H-?Vg3STM); zRloiDbB^<72SvsU%neQQCq_#taVG(}4Y=pydGC#}JUv0GF^KH&1Ek6S56?RKBL_?V z|A}V(lc@z?2}t9b`oH?icKC58K{d%dzCH~iu5 zkcc1Pz430>fIy>}@VmZ}Jc&wVj(mTB;j(!(lTcj4llu9|8?^~p#02V|mYCrenSsyH zS)K%`7O)Ku3_NPV>1?3c`u*6Sh5o-nTs^mlmLLZQZ@Y#V8WaMbv;ndjBhRG{76J2` zUclTRjVT> zAejBxws-clY4PL79|yl%A%x`nd=rJ@->>>Ra5+1|(ReXvo9!nOjaWJwy@kKJ@Rv1S z5sdE^6;DDN1l`*^3v&sMQ2Lx-z9)N51F<$!?vf$afBsIJ zkZ^|X^sL{&^Ljv#AwofS)Z4fmB#30Fs@BHUj@k9o19bCd+xgmXUoK;udJ|*w(|3i# z!^6!nwN7-QH~PcGde0-`BWzs4d;T$fk2ywYej;rC&o1$FektSiO6Y(S-m3k7Ek1a= z4mL*pY^*LL=Jwy4liQbB){!$y9qJs#sBHmy79r^|eRy{i&R!Z2&R*Bpe8dY~;=^r< zT#~NmMj}s(=6iIP;?&^7ME_8*as3fKA_bMC&Zp1+?jL-V*NA`BLI3xc(fNbh|BNv7t+?APp??`ExM?taBw+DkjluYVEQ|Mwe?wjPRAZ zd#vvw>|b0}c06CPdGEQPhc>2K%Ylm;vLt{&3oaht+)oeq9+%U-X^S*5ooZvXVArH} zviyj(?XqSOLd~+(36iQjEb{kZS#*)OGT9JmzgTOPBxGtTCMg-Ec(TiZ!$5tC^xCt# zUNb5~t(5<7E;0~UbifEScvA3@ERcHQr7-io#_1AKUA9HW4MTSt4bnN$hjsw2LOqUf z>d-bT@pW)O%8f-7mdTZjZ|qI2-&{<_us!N7X|q|aC+xfAIMpzod5oxNb!oZLT`vgm zGN`Vc6-wQ#==h#wWx3eh&kP2q@6iTruMa6<)uO!U{U0x$Uqo};^Pc7nt-FUfe-2T4jF_gHrV-Sg$aiC^sOVYS z$vpC;p`qChX_x%%l@{Z!-Sy5D3yVJ$i&1~~6iqbBH7=k9;&}w(1Ih`_!e{uAGjzo78mNOKuz-C4 zuo2vwk8ON=)>;=?{L5|p&v8ku(p%zFg070rus%7o!BOW=mk0+2ynCRih~QP=7AjHZ zz^r8a;z8f<-isg0O)9?LdmqwMP9>V91C{&VR^F~S_)JoifFYm?AKpu znsUtJA6Q(wc-GO;@nQcOVEk97vB~QLzTE+|mTy#i8Ksv3Q?~Z>iXT&k?{zZ1mZx9^ z7aB(-8}%c5fB(r}N3_}JEr-NB(^O1Nq3whYxPZOG;8Lo}wiRJrpf5)hu^4Pn7m{~u zQD!A|lza>Bgo&o7=9WXutX<^A-4(T}0rF-Oe=F!+v!yf(kd<0(FVo$^W$yoLbGuN- z9~Gu#KXh(h1y_uie)Y|-C|?c1jLt6I`FH$NHMuwjetjn5Bwx(JaMV;~GiY4#ZG~)}ZOVU*Rv3@sPT< zG(lD+g4hG*vhU};v}o(F7Cz{cdx{{K(tC2z;g4n<59h1Vy%DA>CS-auT&l=6Rt@il zcO0Pskvl}RYE<3!l*wEL@c2N4YN)!f$+ z`X4=xpRgdw?6Uf6Pxo06UA3oM;s=Wzr1O8YFCd5NV;?;t5fl_mT@-yshH^FKV~p+w ztKH|%pR?8fh2A+|xVR@I!8%P{i1cVs7SHOPoJ^eybC<|KWG$%)UDNzVtkP9+YWU9` zk@)+mljsLE*Y5<4vkj#^u3RtnQa%Jc-IL3sx9OlQox?H_%(x@U$>Gt)8(@iG%Y6Rw z5*Qiqzj!h2o^e9QPgy)6<%|vS^d$3cdi4eUqJ(4pDgkM?^V?*yCTT@w#TkOk*k{{= zil?l^KMiQfPY*KYI*p!)NBS9*Hu@0O(d%DQrK4#+FW{pwr6n|&X7=VvTgM*7dDozh%(j)5TpZ! z1;?e?0}BXYr;OOo36SGRFLTWlznJw*v+a@+4ezF>H=GE;Q8{J?w2 zmIa|h6jz8lCl^EsmRs&Eb73Ym1g%;(po;J$d?8NFIc?f4+gr9p9R0LFuhfXoKQJ(x zK9&x-uuzxW<2C=1ohfb=I1EdzmBGQ7EtAJCv9bgR^<(FCfq6;(ByIyIWaJ00hMsBV z7USe6;{0lc5}NRx7&u}I+_E*#Ioc-uQv*?bd_j@%x$WuTym2t$ctt*NlN3&ji$-NlraQh zN>7a}e2m}~sAgK^2yIlwA6V-2+b$7QL`67EX=$nGrAv>)!op%)26)W1c|#}6_a3w` zA3Ji}k{TZn`Z|l96;4vQ{Y-IeBV+!F5#Kk>j@6xu09_^OJsUyijxangtl&2>eFOHT z=WtfsJjevogr`HbwsP#m5G7iUegNj<5OX_n8Q;7-H`zoQE&aOe369RN~htJ;3j)zSuafA zS`%@VM$1k?j^_CY!HW>Y8xtl0ZNGjmosQ1PAGX3eIyw*m+3;EU!#-PRG8a1o8OOP^ zj*vYG50*&($%qkx{PdaRh9Bg;j!Tf&3tlfr10-r;XV*tSAs1@G?;KddRM6LA$PIvd z&MV}Kta?k5eqgbIVX9z>ubUf5GFMjdcm+0H7xM_Meyke2=~Vr*3W4Hq{mbwF*>`>3 zM|@BSX->dvlnHC=*!l8h^xT}~+j`IB9?*tNT(xlD$I(a0g{srvA)P9~AKK~8Nm?b@ z?aVx6iu7Z9iCiRj?-dl-0v$Ng9qbG7hcTsJ9}d@E>o>SMy+-yrQ|s%h$)w+1OT9Jo z(@ouly=}@L;C_j@doRjBd)K+QRYy;+u&Jr(lSPILF7#Z#12AggY|C9?1euwcxaQiv zTYc^-(#xq=`|CaF*gex{zN@RY5RT&+B!Cm3loC6CK?9!eWq8D^s~lXK;bR*^#u(Bh zl=>x#{9WdC6^y;hv5$`%s%$gFm{}4R6F##U1=~P&!%EXZkZy=GYFe=bf0nR~?N#$6 zGQo%3B-?y5Up`mJSm&~O^!MI^|Ag*m7P}JMvl9=$z{`mJ7mb1UnOfdHzxzW!QY>p7VlT$??Xg9;4f4EtuoRTrXvf1itheCh~iOC4R^ zGzrpK@AJ94o3S+}9t7e2YXclnje-I%6P4S&dA@5DyhC5ly$e+K%HC1EiAoBV(#Z6P zzPE*R7Ezr*z(r*6Z}94~N3O*vi?ed96mqQkW_2BD*uFKt;jyute#H#z=YON5>xh?H zU5(24moFy_p_Lqozg&cbvKoA9ZC{zuB&P@#A$ygAc$Su~?;}R7Pwq!Lz28fEUs|_c`;aq^XG)yrm%rFP)afIZ=f(xsQ$LUg!C{@?vEB zqu~ygb%NI2_iFB+Vrrg6OfNkcT`)d4o+BF%xI1*`bW6kGhi+H_)>^&@rgDGQt!H?(h6c z=*zeLrd9t>3!oXvR;;6#yia&Bz^mL7g&X3h%UEULueU2{2nF?cZ*Qbmm39j*!zS%9 z^bim)tDMZ$?}CjftXFt&&9RR^EO$mQLvVOxL^<8LK>$jkk(i3v3fI!#@8hvdT1i)q z>EFhnOtB-(tTVEVf>BterH*Sq(vJIsxH295n9;&&p!N+a94u7sLaqdq?t`LqJ1orj!uj~ZDHS(^CRM6m6SxPVe)dSg; zERCle4rSg2N0P;aRB~ekk@-dKEZzysEzf=rBso91^Q$KLs&TsMNdoHgO< z?)yBop3x`_%ZNcQ`oghc7aDd<|;Q zmvyCMDo3Pa68Z@etRr~a3E7N4P6RA|S87UDNq6X~7qplrN_XzE&}8RRLlU~)#j=Sj zdC7B_j%g`1Bzl}@i(H=R{3nU`t@_Kxfj0_oc6!s(gM!O(JK^*&0S_8MNN6nQmH5np znW$|DvSh#~cjDc%Cx?Fc+-`ivYF}TU=a&9|5*~2QuHjR{A1IzU;3JxYP9P}p>wE4C zBuE5n@FyyKY^}s;yJh&K_J6NYoEc(fdK#z^jAc6HYT*<1=4lj%>NTECn0B(7hoLf8 zxw*`P{k@miG}UR|`q#abaGFzuytovrM zL3$FkDW$FSlyV>2NhFp%3DbV6@LRFa@=$6e`1q;Fu#cNXUN_T0mEkaO46&h6k&)p~ zpL(h32Sy?;6tUk~-X2lAx*4|=?+_AF^u6r`wqIn-?ltGLA1`b>Qh5?#``C*p?> zeBb82H@}LBk0%|f>`Nv3kz#nUZa5-;pYO#4*`Ha3Ah(ZSRCK9EOHb_2J0H%)e(dF%|u{*>ND~e3qA+&oHSj~2n;><`d zV%JOGd8oE02AvY9>Q*3S>g6VW+5~Lt(U9*zu;KIT>sfC@3hcX?nFpYrI2p)0A^8UZ z-5tx#lOvIINKdxd-E8Aq#*K;2j43H8nR$8r`0QGU)=%ZSGE+e~T%C3mMJ(>TeD}eF zy1Kg1ogKf!I~~KhimG9y+K)%F&RGgSLc}L*jPWb{p62p?<;8pOef0Dl9Y1ojH6CgO zC}1)>292)S@+&tkzO5JJgeVQDJD_}VPMI9hL2TKx+;>iW;4eRM*(nIK@%eMto}5Mc zNDQBtIHuOzlNj}uFM~4OE?SQZfryd_#a?7tc4lq&6bYH5zLu+F^d)S5Ev(e-VgEHy zN_@mY8omYz3e64yo(>|a&rWZR4^Q(GTutC!wqfAE{$oV3-}y4J2aN{gImVw?wDY|U z-FAg=$SGG66{tUUjJy6_t{3;Py(LepA?+0w2 zkY6m6c449&lzK<%X(}@TaM(NCxIqnNmh+7%C=sQ#BjFzk;2Rc#H*$Sn zErNaPn&s1;ukY3ihql`y*A03OT0CabJxTJ7X+UV(4LOjm*?o}2yLqqQ+>MTnoe)q0 zhV$oP+=RZ_p1!=@{RT>(fqJ{8&&i}8$Xr=hGW6Yw<@_7}5lsif}<`I_Ov(9B5e9r2b%X+{!9 zXHeerH9I~>)T{}N{fXg+z#%=b#Z z_HH4n?ffUJ@T-7A(r-))s`+WgmJ#yCZ_PyFyt`>>w17c`m41zRo#-J}l$k){9Hm5{ z{xmN%=@#LWlU}ifJ9{GlzQ~QK>Ip1UUmKX$sv?1e^*hMx>n?*1#pe*QM5-6}w^?2? z2AZL8XgonnmC)}Y?$K;wQi$lgCT8<0kUYC|1q9NjM9$2Xk$SV9fF0R0^qKr6E33df z-FRMKkAga#jCkbT^%lk`Ywq~hF)sX}e3B1c&mIj${$AHVwlqp#F0?_9NBu3Av97=G zgH^gfCP&s#@Pm5!hcG?I2`g91fZWeAQ`&>$zd6zVco69sKV!ci*cL>NEdUo^d=liW zcJW-`ub*49&x@+ok@i17w&P0<9v&XpC{cGNE2y|2H^bi_8_s6G)Nz+~eTcD4jpU-G z`ccLg*+>&iA+Bd*zen}xxrcp5%PHCGQ2pZP_hdzaUk&Yf%-*iNDLw0iL^Z$UVPjf< zH=k4egsE5C)D)`YYk`4u01WjEr0_CVplLbn&59@7V9D8`Pk`S6HgCnBRnr*M?DwoU zji{meFW^;XH^1OOaeDCB&MG;li)TB?Q zwK0wZZW6sHx9pD27rP>b#jHU4-v{h(g&DhhfmS*e)&8-X4~=4oR@T2IowC{j-g zgwj^{u%ac+YhDcv8FLH>z`i!_;sWm%2{nBlcGhYV7#?GJq=DZ5$(TEH7yB8xO zU*%0qYj|!=Zb|#-A3AL!wI0MHqzMnx&^H#zR8|2#$XvIuvJ!81onBs556D_Vb1y@K zaplStwY(iLdF|kD%`fkYE<$$y)7w8}(BbxhME7@7^6(>Nwqbk@0-B=3HYga)uX^z|K~_=O9L_IAsYgK~GGIt{{Dj-lmX*2qM1#kBP+=bk=tqEXTlK31X4 zzIyYHw=*|Md|9AVRZ9N-8!#%Iy&F6!+4eioLNfQb}m8M+Fcm)4dSKWKPY%aU=QR5Pa` zSpAGf{dTL>IeDFgyVre%(R>e1kq8DaLZ;ibYk)zHyW$47#K%lA9=aGGC!%p2(mWim zR|Y`i>fdkXRG28=FXQa^ypz&Dm!zdL)T*FPw!@cbhr1b_u_AZBYU81DyWn-&3j~P{ z3^pw{h(y}9Q2-O*2ixFB7F<33Gt;C)V+kcN!#cGRr^W1-_;$#n9-lHT6>CM40k}>Y zL4%x>AV-bmOfWy$JyDrp{&r4xf-;zhZGCHK_s;N6%OlN=-P*9ID25=r@F6v5&aVXr zGs5Hm1bgw<i0-2wCg z${EC`H}Bwbjizi+r%^K9c+P+NZ0ja=1&QrA;$lNrI(+xr;%i-sXYE4e?;E=M@`MKd z2m4!_Wwc0!xc&$E=e$z|`1QSG^`MjM4atj z8vR+}pL<8!kFTB-uHKy^bEWE%Ey||ehJp@`*n$dv@Am!aRz8D1it6l3LkrZRmWqs} zm#OR$cvCj|FXp|d;#`4d`7Iw??|O3^%QdRAMq1G`c|S)4%>EIH)Avc=I~HCLK0E)? z>%Yi+sHqwyuRDuXmo@u(vHt!jX)*KIy#|_YSx8F6?_!|I@CIW$9}Gv@nRhi_Bz(MC4@gI(V1tZU@KhkL)r=VWBdq2}pq$U61&7&EN-A4DO+=na<`qLY7 zp_}>pY)U5iCV2%Dfzz*yt63_hzZ5Ju=2l|URWNZkyY_1kvXZR~+{<+C0HAq_YO#mP zjX46E`P_mGpT!RjedC$)ZO^ydTZbZhL+q}`kJY}aB(18vm_$0J-jGU?WZqpU2M||5 zlqA{N>$lv#%62cDxOeY=+Na)66A)MUyQJWhZa}N%C)nN>OeJ!1f=cJmd|MH%s8C<~ z{jU(M8OrtYIB*rvj5r;={}z>wvbbb1#Yq5g&_?jYb*T#%U|d`m9@F^#5HAgw0St}kuCH2i72EWj&hc&?81Ai}5+{OAvzxmfdYI^5NFn2~jwt{|Jx!r6>030;D*J%ES9ln^oB z)Nc2yzb#Ao?Jdc^JbZfVtS0*fm7nxJaRr^vSenT9H-xN7flnLlwXwE-{qOHFGo7+y z+dU{1C?s@q2z~If9;uET^`Zg5IYAc*kcHj3xXQ>JL4r7r&`8S5?`uB={AJ2VKOiF! zB&SYFwm8&B0hAU2F)YAR69z^a+j5~XOBh$=QbbmDMJe>K=iI+hyNwDp~s zUO&vWm_yuQ23=1*V9ppj+F`;^R6F+Ai)DUVvo8MYSKQgE6b)Wf&^@PauKQVANX0*6 zx3+)L{Du$xk{72t0e~bFl`&AL;qhK_X~w2(B_@h!2WaWDB=?m}O;fnQ3sO?Tt&vQa zHnzo-_hDJ~-Ot z@*d5%!f=6UawYjH)W~IaB41zMx}8h@xrG46AvWJk$ll7J4EMbl3r$&_;A3Dwvsj|y z)VU2s)ulcT50haH`M&K5L~nn`c)z;E@Z7cUVjKp&ylbO?jQvE}u2)&+;~rSkT+?@rpc&~#L@3^eWV zuVJyh6nKW}H8E>D7Xcz4E)@{qBO^rFGn6`D>~$2Zmo3THQ}2`e%AU!3>uY>AEe1oY z6eEbZjKGvVj*GU{2nMho59Z!IKByXy6wVOP=3Dr-Mn)QdYyt!e4<9qAlU!s?aD?ir z5O)oRWI)7~x$)2C!AId@vMCYWY^X5A*~MV#kC-;|eTB>P;-7?A*O4(OKS5R*N1^1) zRz}M^-l@HX?}lv~#8$c=uKUU=3k!SeaEt1xOcQ5~^FMH1xTn5zY|JkAZ<)oulC4MS zpf?G!KO$eRv`PhI;aBjsYhLsQ#g~x4pZ1`voxHPM@Y@ zFFUwkh79G<%nx6ZMk?#X6)ZXXG?on$WLl<7^X6YTBVf_w#}?TIS*0+SLHvA!6%nMj zaZ!u)Gg_IdsPZjfT!RtJ|D9O=wpResgn$?^FeDTd6zGcSRZLQEgF+mCdgI`6Zb?Br z3Mbv*`85-g!pB(*85XIP*A9g0>KR`Du>LdLuTlX1um~>A?c=|YJuIm4G9&%kcmOK9 zbog;m8p1Bu|LLVC$ygoX%YMtB75beq%1}_~>H?a^$mK11#W zdiir$|C+LoPp!7=j%2tnGwD=C=1H>$ zd27-_5XjK!erb8+3vGAbdW?m9)Qa!yuY}L)?>+k%XQHr5o5!97vJ!d03y6FiCZ^Ed z-5oPAF#%iW$8(nTLJN|MXs9=1^ zh9z&SONxN1WXzjuK|mU^qgCv_RM%|ka+eETj3~q%-cf)rczdDvnfK|G7ibz~a(Tjh zC1pO&3LV2rRBOXu7l~oJ&!JI1p3h#uJ3it+FJizRT(WQf=6Dj9DofPMaNTtzR`R5% zFVDuv)fAJXi^;u#u-0X3RD*quASJ~oEvT_kcKsLs^XQST+CRhwb)9Jv69YpXcTG9S zICUqIEHv3Vc=A<9*$`|J=T#+`-as2^REX*9JfZopYD9MTE;Hu?vTHPUYjs9WKX#5M z*vme!*lWj5t^~8fxCGD_zzD6EfuYw@l)jPM&QQgvKW}b+h#$lU0^+a!A50h^#009q zkGFry@_Mn^Q5I|@mCO?~IRt&f|?j-=e{{PRrJTB&YHqmA^tCmcqVui7f0|J#iwA2kh z+y=0VGfy`vpT4rD_{0yl0ie|I%zHNW*7=OgijxoSHEU7Y+7Qs|n^pz6Wk(CpUs+ko z!i#6w1nk;^Yff%V^r(>CI^W8OP2(eA{?wfL=M2KgO3hc;N`ku2wJ<9;_YF*A^n;SJ zKgF{FtE7Vdys-g*D@8(o1k8##&zf+iUhwtL-`C^%Ltt{4n5ZZs+M%B8n|ITt$COfk zuDw^0!bpZ$aB2nq7>;#$5m@wr#auws-iAMUaGvODXZCI_Qkg!Vl1P|;{3Z**6ZvR zv|Sd0E`d+e#lwotFl>o#gjC7bJ_~n{^`txspi0zww0+ceai{w>mFwQxf^`b*R{!d1 zpM^}cgU}H}x;>&%nHpT%c+TC_6wZzu z=gZIjLTe6?0{p#8YSfCF_}d7{m%Un;`41mzj=vJ;5UoGG{k_%jW`YL}8;*#i%^`@|pf zFsg=<&9mRf5+I5PpaY;v@dKN>x)3J1{rVzyuZ^C(K0R7~*A@`kN38@vu7W~5+|c;Z zd#4G%uO~DSwh>&YLS%E8mirTbN858ZgjVP8?+nLn@U+S_6=u8XPIUn}(CG+rY7H(? zK>OkH{kQCV?;eicv^fhu4dsiM*=tyr@ zVo&51Q(E716t**z=oj6a`(4fTRf2E)CO+C-<|v_hY4b%^8JF7iba7s1xAEM1{$@#e za($tLr&RbQ?}5}Sz-0IK62c4Mw>Kia_BM&r-jYuHIhWnx-%Duj3!lD4Ep$s;GWoHfQtmwkW!^y?)thE z=L`FU5YzJ}A;hTyBzZ$V3Z@nbqU|YNvFJLgQZv0<`cx4)KpZ+_I7!n!6AL&4xeO2L~|=cU&6=M z@Y9f0`{~<-ZXf(2?S&F`c>Dk?)<};0U$8hhuY5mfmg=FFW<{fFV{Pr&9idmj#9MULTBMJ7}j}V7xbEhl}6wwMSFBiaCLiGZ{g)lPOVZqOulIr z3`6Ms*nZnfza#E!xDJ`%1h+ z_RK>cme?2;JF!ZJ5)24?dnv+At_yxwW&&J4M1RnEw^=;CO>HHWJ5KY3lUZ6Ii#72Z znhl&f3)WLo--w=lemFvgr;YkkB-aPg{L&gLF!59-VR3B-FbW8WS33mw5)z=SX+xQ= zdE8BTiTnN;Dg77`Q}_^&et;+^mfnbx!5t^?lt^&0j?}_b@@+Wbhkh5^GAB#B-}zJ^ zz@js~TR22=6QxmNVKYc*!%XPQZe;blP|qLT7OEi;ekI{tzxEXlrt*d?NmOntwAHU!YCc;aiD7r zs8G0PtSTe7@;i!Hs)?e`lC{g~wQ$*j0Y5(j03PeEk7CUEr#1MPVojO4>drQ%a?y)yn*cK#7K znNa*o)A4u9XYFR*v5n>Nlqa0kG~;A=T~pS^%+gZc#-2a`^+Oi-uSgSGmU_1C4Ik+> zM9|X*g>TV^1X<_rk?^_*vvZuQ5ccMvqhUk4fqKExkkU%16hZy4kWhK~Lh08Z-pwCg z&Lu0VO>I9YSL+vQZ(<-88F1ZmdFU-f0(5+H;1(01GOm1xdA6-+8ETIU&#e3N)i|hb zl395-`w8*bd77H+b#Uu;F+a~^D`27}Kt*}_k34RT7c=a!Q>lC1W+>2boH2Ovz(w#_ zQ@m*Ttt{W9KTBj8xEEoDP&o1F-J z!O2yK!$-&_={*Bf`oD>4TTM%Slap9Tck%@(^eUX7_)JRHpk?HpWrFj*3kNVQ*zt+N zT_&*RbVEq*4%pOJfU99(X1*ZAYxZB1BTR#izy36s7%Wf^cJQV-ycNGhJHr=}YMq2Y z>G}@~lO)p_vtCT$;Xb7cv`VU9Nr)r1gXEe4#HyG5O@_@OTqQI$WH&W*8HsvX0|S!g z3*4Bdr>6mXdNN(m*+@XG^IjCeYK98RWnn zsouP^uZO8LM9|vy{amfJczZsdiZ$|6-lfuF35FPz+9A`F?TuLOL{yq8#J4)mZ zyU)?jI~$jR@C*--k*tVq$Sh*1Z9iao3OTY*WcHLPO#V*`aI??G8@Ro^qv7j#tPBMv z9E&)`s6LP==7g$Kbp^@ALoS0xvXgrJ#oWVOo-l00Tg|B-E_5bp5y_vFZz@o#3|nMq z)k)<2tQDXKC!>GBdy5;H{|Yvlf|NxsEuM6En!35n-8+v-yHDOG-xzv^f-Ku%GL1iU zTI{Am-qW`r zjnAx4-fz}=ay?A{AvHrxPhjhx?d#SCp(vsk50o!$U6EsbFt$OUJF&Ug&kuEz?pUgx zv-L--T ztUVBh&H30JcZo-S-i4fP@p#RbUJ_~@35EmzomsithdX3ye2?5lM@<3qokP( zL=4s02mjl)7Ha92a4%>7ImHt3DHBq;{rYpDl-wILa6WMdSyp2i6Ov(`ik5=}p%S9fhJb+dG60&QWv;2Kb-Gp4QqC4}2XyMjGm7ntd3D}F4n z=p%GuI9gBm>H@H4DIwJD{vvh%KH3PIn+>PeY>u1I4u%99V%5I1o}K23VoXc4U+#2Lf!@a#C2h<-C% zqhdbLGfLGwjZm~Lxi|L~A!WSRAs|`AO{`kkkJ$a522_^GrgM;dpL;ImUXIE)V+W=C7qWzT3;)6*qWmr2#sFcBUr|!2TM$_85@FhZjtNoCZyZvi{s- zGazQAr|)2ONAag$8ka%Ui%LqO3vMC@!5+67GD-E;#)l4M1CbLFRzs z5kvKqZ$3!sQL0d4qCh)D4BZ#lZCpkI1&M$TqkM0H0=GFD1<83JSf`@6e#g(9-kWA80dnYSZDSp#p~%1^+V-FI_fKYri8j{lN_tI9tElVI!{z8A^jCJR#NNNjehvp zyqjpwl-t~X0&p{eh{$2;v7N3uuW{bs1C7hL%Y2oj7cUi2A_gpEQ}^FLPYgO!)GbM= zG7el4AJaqcNb0(ZitV6Xp9-1y3qt2guE7w8|HOa?=rP}m-HB-qK|fkHL@!)0o>q{e!OQP0MDiO=5b(6{!#ZO)ARJvlc*l}AHI=5y znh$C6DK>^!Rc$YbO`BP{KPHoSR!7N`yX9;}sj6-zNY-OVTpMqQHVvz$zF!VPvNkc# zhlD6il=$2XaU-W#XrDRx?Zk-5FD}cB?;AG^4K2YEDKfT4FO7|G4EP=D8ytS$p|}?0 zTjoMvZi8~Yf^KR>SzxLbW2VQyf!Z)xh4aM+S=Cz?qRcWt#jxEORknWHK7d1o_l;Z^ zp;Difc-GnFL=j}GUK?LI_XS;!w0j$Tp)L$T48+i6zh>zg4?8pLIOJzzMqub|9?V%f zxqzoyt5m^pEGK6({SuU7_~;;T!{V>RGl}f)@O&b$8(yzQAspEkfcq+qjQ?d85r{jh zGXjL)w;BIKi0e9- z#f01cQM>tU@>5{i47GF&%A$;<*alx#=*#b8<5}fnppIK<*?1bkhUT$6hU@YXSdLdf z&V)qVIcUgxgCCs@8R`FJDQ~~m7J=X&(!+nhJ1G#sDSDy9Ri9u(;&qnJKd)ZEV=*e# zSU{R!A4Zgy^Fgk4`ud*0%lm1UyERlE*>*)LQ5sRc8CI)%cAeRk=UC6ow4NmY)oat| z4tFCE{M%+qh&a+_!J%>6d(HAsW8R)e6mtXt&t;ESmSGCo+BXWuMX>qwVM z#W(Br;#bSEkeyLG%-k9&y|c)lIe%LdC1v{MD_dF(S#n)ybQ;T=lNX!#?vjM=&^P|P z?Cfwhw59EO->HCUSe(-L&0GYX5ki1H6rb?Ik%aE}GgZq0r7>i#1;N~a5%mO^p;War z4}+i|gV&kr>c8ELof46|B*(vh_QM?Kkck?-n z{d0!QfHCaYUjEnEfu{kk>IPHfQQDfCzD3om2Ic{_x~azN*RdcMH?IEr^=mhi2tt19 zuZc_g%ruGp(b~ahGa3z#kaQGIlNu1-orZFfIy;IFcRS=1SEJUsPv*9(zZ^_|CWd>q zQng^*{Xb#y$hiCKn=U8iB^y5$!ZxrB zi9$U}u3#ZdCbG&4Ro~bM`rKpnLps00Jsoon69vaio1G6UpP(9%)ab~}ZIW3{Byiod zR7!}TKVP4*Xm@}FB;=zbJ`(b2(CVY)rp~lG_s#H4fr0QlEiP&XmXXxMik%}`RiGX? ze%heSXo*1bF(E;S^4boOC)#YuHbr9Jqw{x@3mXY-_+$NUV$}*78YWC8s7Xk|gzu{z zJJ<_jUq7EeuopM#Kxrt6zDkd*xvsGc&^2f*#-}GD5|>CjUtcNyO4yl|+r4(?iSe#B zV5rlOa#JZ2{~Bh2Jl&}JF#gR5ov$a+Cerrx@J`G6RRKDu^M5Q_4oCzDDfyn4z7u+( zfUNG3gEqOLbucWpq?bw3$u#Wd75dM~Y-_~Z>Lv&h_T`H;Jmg+No_LoE;U-DbBy}B^ zCTMi}fyRZzbC5qIwf>3X=hM}`(~;L78<50xcvk_=jP%r=S}VEG)*4k~iA2n^GjQ}^ ziF_Rwp46{szfek-Jp44+_leOWmW#dES@6x{xRi!|Cy995>}W74(nM08gUHCvN09~9 zSi7HbM=~d0g^pLscWI%VJvrJ+pTrGetqvOFV=Ke2}jK~v?u))$Y* z?ueWvG~ggBtYB^rFhFu!ReaS&tGVZ#fk-1yQ~L<)XLWK*Q9QS9huIajufp=TC{V zCY?6)>`~#ViFiCPNDd~pTYnrdoe206sgzWa^P1UeU6hr-^Muq1-E}FY;R~}XJ`fpJ zO&QS^e5CR&KuxVXhjj07t-Bz`ZeB?n>B*`^QY|(3SRqfOwk`9v7<7p4m)}UP2=#B6 zCSTrp?tO%Rh**)AGs;AhIC8h*l`CGO8F~s`Rsi95t?l5aB_ZmIqG1r^|9B`yZr&7S zkVx=hqin807Z|R)@`c9X<(tU9j7!ot-Z0EbLhS)oUpzIt$T!VQD;c)Uh{|Nye1G;9 z(W1{Z4`mlyXc{F3rS|*}39Ts09DVnTwjbKXUt&exg_V`g{MOVppJ}Y#B>br(l-B+f z7eg6@ta=<(MpSppheyxlju&mXO?JXB^M;9_?a#{NrZzaOmbdVxtR*sAkvk1OCT5R) zb1gF`=YpwMr532tyVqp0T2Y2Kf0&4HACHxT$h@Rs*`JOj;4Kl>pY>j8p!9IbAA|?d zv$6sWu5jo@KpZxD>r5j3l?KZ_UhOdD8#jHdfK!#w^`PovD*A8FQY1St7+}-X5Gey( zc;kdt3BJjPu_l!(imNx;A4O7blOS!98{z`^=(E#{5Tyc~q1hGJtDij-Z`-6%u3G;H z4w0b8y~S^}KBG!XD+Q1QUA;yxK53|`8Ft;=oKTm&1WjdnRNRf@v^3wa#s(_g5>e{7 z<%5rdBG+2Dmw`uhkrx?>0f3Gb%Ifa%Z$MFk{@gX&<&W)6%?LdSLSuTCs}YG3zo>bB zeF{ANz+N2mO$8y7dqu?k%523BavC$e69~udnM9e6Xh}#7#!K6eQd)}Zj5=M5RxTrC zgdJsE(?UHS!_PqBV#NOje)VU<`wy+G+#inBQVtp-Bz0eZX%wqcH)nCQ9SqmoMd$OI zsUv75bE*cyJ)`&GC~nX(8zeC_lR#i6`L(+c-K$#ExqqY5NM8R;OMkz8bl2tgvzo6K zRw7L_D%;){O?)r4G@m<5%MBcb&Ynl+XUCwr`yv*Pf5^!8c87t0H%Vb&vxj2XI}rGxWVp50bu zpOPT&1Qq)@5XGgd%wqJQ%G?QBXhT@OGHtq{`7MM%%@BA9NFU(glZdy3>99XbW|ESL zZmtpz)mz?|FuHe;M}x*y;aI=l$jIcjqQ+5DZp$VJmsTFGmUuo#Ds&kc3}Pug{uNJ& zSm9C^D(K8Eh_uo94kF+V0|}o`?iF{iXL*W}p`gt*GdE}cu_q9D?I`kp{3dc^YfuN} zPYB-o*=mzAV>WeXwS0j8mw1j*)jUU}Q*=A8q$kBMTA|+`l+7k}rqU5HWj!=y-)k&Q zOp3XurbBBh_2-* zU+Qi?;w>?!8{cZTXU;dDN76Qj?DM19oA*X9L2x4}ti`4*cy7J3XCSnWJ%$7SXLTFj zb4_kn3Kz@X{yoc79QONiS1-DCynSchkQPLcn#uW`M146ZHRJs9;kS}8^_*NK83C#> zXD-Gn!`Ttn1O#UoI0zmXr5Ctk#01OG>(u%35eRA#!FT{C$Zj3#J@BHpPNvZ2iQ zSBeb~Rj5O{_vF9~<=wKLuB-Ylboh}9cJHrzy`bZ@Ybc;D@wotghuaRIJos99Q}XuK z!dd&hMq}}lu-%s>xGaYs*)?GWjG|cEcUTIPlGIx+grx~TPpF$37&t$@z$8fD%+U2m zv2!b7)ei68J0uu&=o(4y=v&#e-SQT5OtbTq#+fNiv4K0z3E%QTo=w z|EScarX5|y=M&%TmNr?i*GQ)nzac}Wa*?1!LLC@?`Tw5no1Ar!z;;Vqy_YG0Xk$LR zHWuwO65`3#5x(@`dOa&A!byfael5wK;l$_6DZ}kox9soT>-ggFDVg+DlB+s{H%wE7 zPxJkIRo3n4xjDBGjEBtM!YJ}tsv^^162lgQjMlR(Pf7>}GUquipJBK7DV&bfI)iqu z2>Bez^gxx-Oumsll&;Kxoto-ih15$XE1wREx>RakNsvAV-}J85z1))GUR5kgiJo*? z`X)wHOmrQ;O86A1Gps>ff~sa0D4Ol+LjE&Sh>N3iC-5L@_C0oiUZV{}2I3M?B8u&C z302qdEVp;N&T9BjTD!bj>JU$;`kC!MDSkz}_kUh;DM#y-6qIMBl=WMGP++A0ev4j} zjrQr8jNr2Z;h`M?)U{MBB6^)Ejj^Shuv01u+3G%W|9$*L!h3TR7eX9d$LUhi*YzoS zg<6G8GdZ|Gj6)a~Gbq5)q_fJRvg{fpgu2fek7B?Q@XtGu=>Wi2mi;8 z4ex-3y6O{gO(tqq#S7nYMNUP$WF%o5st0L45T7uQpT%zn&W z*IvycVLLaq>&_KRK_qS&{_{CLf6v;w*Lu?Ad7Jr z;D7;(JU9OI(%)+!!3bx|>&Fhhaw=Yjdm4R}SElFKi7-q=mucz$*lG=wIPzMUZ%Bfo-zR|i1xP^( z-i>gE?wcXB!xnv}G%Q3lRv;+ok)~^B}<<8zCH4_ z!=BzID6G_Sc#2_R0@r`VYA-Z zD=}QSf}v@%O83|*y=oD+IW1EGhX2Rd>56j!?ctQ+S^f+g8}}1TWx|S?2s;1eXntif zqoraIj3e-}J7i=c#7L~3BlGHV`(+)CHk!N7%dE>BiEx;U@G>9LqNJiN~Aj!5Tpg^y8Ha! z`+mK549^&TaHu?IKYOpe)||fy+C*Zyc-X*Id!)ChF**GgidO8>F4`MR_O<7hSIwQ z1yn}V&8U~ALZ%EDZBv$?6EAjop#=pBEAP}jx_uE5Ls|2a%P0Ot#k^2MDEpnjZUmIP zR~;9~&b!}Z>??q+xZ=dST{$&j*LQ`FD{iZykV~OrqI}h)on{x@L|apAD&e^@{~CGWZ|lZ)OOarc=ZPR zKas_4hpX?q{5QmTTKbyIRKb5Pz27e>zNXl*nVE756mID*c-l%KB`8A~?Tu&~Z}$HRn7oESv=rIA(Z*Kyon=wix{{8MtqZ zC(#XDR+anF?B?Cl?ie)KZ4 zvf}n9R2TQxxycN-`y8f*OA{&7s{xy8cKX0?%`zBanXeWLI0tGh39W(Ec;XdbcDHJXMPl=dSBSDWi zE5OM0>9rhX?OzJVS6ik-U=yPZp0I_K^SWz2fbfQw;G755-!OP$-$91&OJg5+P~y6D z{6z+;Z_wQ(gQe4fh*Bm2p`XK|j~rm05(}VlFaa8@`3sc&jNtaL#KY4C3aab>*KiOH zgg;0A1=)fy?+2zd*8lRyKta~mfwjhzFX!N6({CES3lZZZ83L}RTFtDc&aK4ah{>y$2H2RJ4p*j|Vvq3w7DIJ0Vg|$k#%#ec zR6GqNAnBytUXYWEx%*Nl^)Tc8M@~0;5#QO@+8X5%@n*B-++5;JRxW^%C7ZSO|weIBnt90 z;uRzW7CNyRF4&XqetNV%ah}U~sdKvVG6)4iTIt}hx3>pZz%7+3F~t_FLWB7^zrT2M z9&R@w^mB-WZ?avE>sQg|LGYjL&_ca9%R=@Jw!J$E- zU_^`aKW=>n^E(EQb6Wu`|Mj?yNElndPc+{#QNU6J&Mr}43mG340rSgWpc%>M@jK?o zfhJiVTpND@))pIjsG=wp3Wgigckj(WMnjUpJBNcluA@>0PFj6naZy*ko^|Mjs@7c6y?PT9{BDHUK^C&s4A1z6 z{U1xlZnyq3L&A0brGk{Iase)Bge`NyL;IWmQPN@v5_8@CnW8 zJo#MqS(hcPq_#4tAymu&PNepQ0F+MzL)?4{k3sm&*XNbiit&WKv!rGGNZpakcIb;~``#0nP=0ATX1<%%i=g zM0_F(#L3A5tmz*Ve*zM{zI3;vCB4Y43Wduijn~vZm&KCOdV7P&?qD)suYyX*{=<;S zZ~3b@FbmpSDn(e9ATk7+?OE?!V76@!V89*qJG2qKBNVx;kEcvkfJF#{ znS7S->(*4Da!{7&M9Bv;QUIL-@(SSBRE+j2U|?cKZ`-`o!mum%+fcPOAhZhIyKRe% z54O@%%g?Vs-R3L_;qyfaIctF1A)&JCBrAGjSC#?+8`BF!aHr)lXLYCGC$Z4e7^4bi zTw1(RntiXi`GuYW^9@zFCLM1rI7yHjKK`#3V3_8iBPl`!>ZAS&D83zYHjnm5$cXvi za`&!pMpx7@K5x2C<;cDIW#o(L{?5QY}T32&&X5 zCe~sbEhkzoaVkqkOS>V-t0Rg9!$HjnP3OPl9Y3;NNwV1-d;tz?0?e#oGB;OP#E-|V zr|3h+$$3Ybl^Yo6Y}Zpju~S`reSsw6J4LZ0Gif|gXgiiqmru@{rejVQNu6mS94B_t zckhOvDhu>2P7SjfsAQA;6f#CDvyDxcob2Uf3AVXjxCIRvhpA5 zs(3VP1yxp*zZAzip~45WXNyIMvmu?@kHO!!2VI?ojSj*`2@YK6!hivCNb zYa^n_n?fAw)Q~%hxUkG-L1;MUB37?r8aFZ?R-c%H&?K7t2dk|XN=DpEX4`|^niis~ z84buWH;QF7qAOrTEjCXSD;|BBVKZu*owFdYnEWIx`AU?7qc@g!{Tu89rcYzayla4u z{FA&nHGAVZcz`;XxwNKG+7q`6+|)5E;0%;$HT(@DCjm2rgEnP^7Txgl(@WZKwKWkc z12G3B-!*zNIhG!x={1a@bv9jY}kJuGr<$9X@myH7y;N%i!DlRJcN%WCM4@n z(*nJVZA7}pnp9cJ&gT^tKdFunLQ2@F$2mlrg8LZrL>hvn(WBM3fByls&hnQ z+3N$x)iR&-7KX90{iMECJv(4RxLPcZuJOd_X)Hwx*=pmfQ8Z*jVaCB?M2A>DAhMC& zpmDb5>Tm_$>$AZRhsx2z{}XyKdA_XB(@zm+>w7jr?+au;Nee#UcR<4E)68Cr6xWBPzlUpdYk<47A!%Q}MXNr!KhQh@;v0}B1boB}?ZEd3}^jtha#2^So!9=|MN?zIz3cFvvrXtjHNw*JV>J ztTH`Mtqnj5wr?8ke)#&7miKg%X9H?g;1)RplhhBOHag!cjF0O$$$tL|(jt#3QPuw9 z2SGnLk$r%BG4s=>-$0=5^3jVBsoCj8lX4-Em?v)fuR9SO^{3Uo_r1x;_Z7SeaF@(a zL(u(RF-TdXxLtCFItw#b;lR$k3cV|vkHQ5_Q3!p1M+2qx?Y#bIceO+1oKTM>)5z@h zY!9{tqwUjpg#%4+XhOVVp^x_;s<(%G-j`WjxmFS6)m=lf-fM#Y9E_P=bJ)AxK?^;~ z`MG{c2I%L(BGrRur~m59g>y!C8~U(bxM)0+W2TTiAs+Z~KlMbn8=7vVqy5uSEqkkF ztS1EJG)7jXN;v2X8pQq5&im+AZ2EkT{{^pi;!3k{nl>DcvTSP_o){kClYqQ)tKpCv z$=OX4Jxai#1-XTpS;)q9>;~xFeFDrNprZ+(S3dw7#mc4M)kcsg%p`lWx+^kV`>)~ooIvqdg(Dr*XvsO`9%P-c!9`W%M+W76$TT{4;J`m zT1;I zzE}qMyHB#k8sboJf#z9N68!TgeJ#Dp0!sZ&4b_yKzK$b8p}5b!HNtAi>BK=d&RI`Y z@;O~Ff`~ya2Mv78NNJS+6C@luVpqU!I8s+Y(`COwCaQL=k?0m78raBz8^$hT(Mq|r zVa@qx4Ix8_eByPb?9J)-_N3t$j+`r%Gy5Hv@^b7^2D)5A=S&~blW%M8$~e8+=&uL2 z0f^t{)9}E6)Jn%z%hUJ*d{Fzn{r+u#Yj+sbpzWs6LOIxMJ=@Zyc^s4KGK-^)xaDdn z#VeCEhPk3JhJBagSKB8=-LyH6e|pQBS=thdgs*UMdK`@4l~%el;GE6w|K~J%xol7?!%a1Cm+o+?%F0G~^$H6_;H9H8&%i$QvoMlbDk;G23FKfOQmdXX zn{(Lq;4djH#d@b=*bgSuA(rIDpDjrCQ7Jd`Fr z1a96cSc9mThN8|if5W)|VV-m$$bDwRo0a^nhnRbDT8xZj!Z{^=$W} zY}qq14TW&p&#o3PhuzAu9zBAdWs3f?($DRF*(vXBRpG#ifbo$w^Jfncbd!Pr9nZ*Y z$T&N@@g>UxQFM3r@kNnxv0W^F8z7;Whx55_%YDXHQC3bI+o>Tm|K~jd*O68y4abWW zrqGkB00VAoFr~r6?HWiCJVZZsD&6OoSr9>#-q2*ud z!7a_X#I9{N8EO2R$I++Ff>zlPz5dvj+Ur}bvzEWkc3_4f5KNp_Vya6AkiTtCcHMFh?ETAc< zq~j1)+)BPcT1I{%9PHcgXBI1ugnU~5VKJ{3dA7Myk_>-m&bgfTE(N(yFpzCY>CO8T zT>G85Q1*C{t}+O|89^o_T$hq7?sIHsuw9FmVKw*tXQO_!ZxVyHPUGSHu3xj~!9gAV z8J3t7jZ-F2jb7XMQjU;qFDxP6}2c)L~BWo<}yj8VsCCY#;X`BDSMZsuiE1~epsL3iD0kz!L<5lkX7-(_k*{kLmU~#2Y=MQYGNkww#z1*Q6R|0d{1;Wrq)z* z8n$-!jvJiY;rX>RvL&Qitb%AKT`YUUD^pFG$@EVLBjD9vrQk%moah7;RnkwG<4U_~ z3P0~C#SH-qaW^E zVYe!=vXK@=+@cyPJynF6OZiYfySfW~MwIM_>nFSKA%A4Ftjo&K-+Vt!_Kq0TN7qXp=QLWrGvAId~h~1C!-*cnM{ljYfX#t7EnY3)X|z?zsV? zE6z{8=NEpu0(JmieAK)G%+w1d45X5(5XObSR9oRrE8`R2n`1SJ@caKg4KCycs%)}L zi#$NApf-U+)VU4b%{KTt6mytHj#CX6aP5&;MN?m5R^xnV3=c13vb#N6NxC$gdMExY zn7;l2)i_pvj8(t5#pw}KU`=DQVCS1E>+*SB#4#IdDv&5^?I}W>To+8KAKY%99gdKgPcQNK{LI7Fw9KU*#1VcnezQY%6GO$a zw!*V~ZCcerK*H*jwMEct`eA)zPH}x80st1gPn#$#Fz%{J0$8*>-}hzcqp-X~k3p=j zPoFk>4QI6AG?pFiJo6(JT1|%3iQA)5-Uyx%6!wg;(hWe5d!n-J5$>R%qDf*BO_t4t(S4SdIxBAu>{e@~z%AbYZH zp-nZb230;W{y~HGztO4uFJSzk~J|d|snCwLK`9C{eX^N|` zZ@hT)>YL%l4MSJ#XLwsZY;-m837+-F_tJ`aq%+@kK7QdnZKheR;6TnCrF36}9cBic zPE2X-vUV+1bu4Z0Rt|)dp%FyI&=<_*Qf`ACig-SLT@`+nGsF=cR(8ucRDI-#2oRYh zeY;w}l$}cP3VDd2|2^7EzQB7v@W)r*?F!#BmgNK{b5RIi+0%=@BPX9| ziSOdlFGG8-GNTlxc8Nbuyjnnh)i)_7m8Z=8V^)Z~+j!6`w@h`a@q+obO~okH04lyG z<^;EW?&#qdGxfn??h3)aiD)PTpL6e5Tfx#ceJZ)T(WOklyXXi3Wy$XMv(k?0J@`1d zIoX+>>yZ{l?Nb~djZ;O19uNW>b){rwZN4`z3jS=MJ~2fR*ZNu+v_@i=v6pV9Dcl<> zI@0Ax+kq1G_+mx{QI_((^bRIL2s1btU&!dCW_tWaX5&L-dB9#zqzk>qDw~1N zO{?)VBIwU!4ni@nyJ)f z5y&ggOMWeLigXjg;=oJv*Cd_@;MnXrq*-!Awk66%N4DUSCQSUM{fE8Jip_Mi9<#5{ z>vfBBgzKTr9>a5aGqFPTQjJ9Dn5m7u(4VJ`4r+4jf$#3F(vRUtpG>FUu?aRjVJIk-V(Pg$XD^~2tBKF>W&Sdd1|0jSkvJ|T6egZIAc1a>0^^Nz^^$;g(U5yaTO zUB-kazZW*K*`4MW@|X9hf)yAQcIK=4EcioZ|bRmlh^6mwidejuPjvg#~Zh!2=fUvlNTCU&{i5G z6ilg#wU`k@8_@5N-hqt18$*)eA#D80UQX1xFCYFU(etOgt>3zmqIn7<%~a`Ir;yA~ z|2u2dm}Zy~G1AaGMYK}CqS?1trt#dkgeks3_%5h!;vFVO2_t6qd$bGeAfGc|e2^iR zzbx~pk7e6mzeD7Klur6SUpdGA(LN&Mp5y)sUgGt)=8Q60;qX`8UlaPI7>9zfj*7P~ zF|6dcprhmHKinSFQisb?*_vzcF*FLidiI0h zixy;E4BR)FV}LGP%IqWQ*DyLmL;1z#*!e6NMiV4~oQAvz2>$TlL$ei8D&_G&dyrn}-fp)EW<@}G)P3zUJ!hG=6(X8fAJ1v~W!nIo@MJ&`mFQ!rW6F%e4hz9JVe$W{2pi_LN6SGpWyr`25S4mAdfM!(tAB%)1qy18T}In*yw9w5Ke++m`sn zG~$?Ql?#1UVhd^>+L&ojo7-m6-2x(9+kX4}%(1B75z+=&Y}Mskf6#2VD5X5;>_@zO zY9SL}!bH~EL4SPv)$rojO(pi_#=QVDRSpvR(b)jut1}>OVrzsRCg=>FJ>H{v8 zK>lC@)XgDN&;_I-8J0(<)ag(6_wq`Gg^t0&CZu47L7$pYq5@Bdg<#b4s`bMUPsm-D zYO$dVxa&7NX*vvYmzRrow*M=>l^XfiR)^>%UlRs5gqrW{Mlrmz&Q%l}UWv4Z*tF3^ z`wFwoAmw-a-zO`UpooHDh*l9NGa+t-i$uv9B2PH3KLbFGr!a;?-f%HVO zXPczh$ZCcXUbjrAZulHm(B1i3?`xUVG6UpGFxOa7tLjV0NS9K?2c#Q-@S-|?87K%SKmfUvnUix!sQ(VMN$i{S4Q#y<+`os_A$H6m zv~c+Nlc+CX>Z54gzdxS4_bcAK6M+#W0pD~R3_DZCtbn)Ozar_~E?h0r5V~+Db%aj! z8z#JD*O>s;7ZO#z!gi>plaJjZat8>G*TCnS*Z3^e`5yOdo)G>uG*<@Ggt;T-I-Pw_ z-@I|iJEs|iB2}iR$^wg-QCiP|$#q%kA(hfh>7dr|FVNea^5H}FQ>M~}nzKp?3%xR4 z*(mWPhMo#?u+csvm7Jg0<_IEPMd2(^U53d5BGldM?zO+#gB%(#6De(DR+(KRtmx8{G+)#isV z#foQFya$NUU+Pz<{2F{|Vrgz33i_uWKrR3i6%fS^$swL9n%rVP9dA4c0;EIhR-EAV zi>IHWu9L!7{|p}wOr8X~9}l{}gJ}@V5_o;I@#qwIX%ob=G(Y+7*dqXhv;PLxWY`W< z@Zw$6#%=Y6g52>6R`!PG=^OO1hB}tY-P}nTNrwrL2{m%n{q!ziV;6z^8V+P`;G|hy zXw49%{zbQ4SVliocQ}IAR8ZGrgb!_PJ=#8hFGWdWU1Z1{>KFV+?d~=;NN~(%#6v$S zy;rSVyNrhjN|EdqxxbRA&Sr*Q?8W5!(S#PGi*02+tnsXNI;-b}7CCRS9d!_L8J(pz zMeOGiiE~*@evc!D&&BDj*2O!WP){*_tM9dSEG#R}$G&8u6D|zaJH=p*F9<~sYNe&& z>sEJ&4+bF=6LTs0=Za1pD9AHXHOWMlB)bksJDRe8=%vYHW9QzgyK1&+J^w`PGc33s zVx^ZO8uSTBVbWmxZpXiAMG(yxZC=l(`C>=rGp^75;|H6v@)CWWByP+2a&pY1?nb4K zkHst(6!+uY53}7DRyT90lG3r6RZ!hI!l;}Fv+tJ3V{w=Cs7fzF;Rxk4xoYb2SjyBi zy}TT=Z7b9Lnr*9I>NueI2uDd)z91DC01zPL9uS;3fx){f)}+4!gDaEYEe^8}odWW5 zipg!U$uHH%ZBFYobB-WkZPI?wLD$%gR}SKWq5h3-%L4Z8yPy>4Lk@__p- z@?Bsk=aP*hfdvl2KJrRg;5q^vPKhwV&@Nb7+r%5!$iwmEK-%`WJA7ASX!hTM)acvO zA7f0+3oMH;ACNCVhQQXC&&J)lY=IhqefE$Qgs}N(k^p)SSIs5SJG*U3T(AEzxy7q^ z+JSyO44uNR^pX#i4jQ1Hmd?1a-%>-YEKO*vcdDNU`Fi>Pa|??OUu`{B`F6JItF@rOe$%adfA8n zu+t2BrQG9syMUu=%^{*PmwXdu~vVg{35ssz+1n7 zO72$}`8`GC3vz2PkpsO2n1&ZDZ6F@Ng4x7DsA{1m6Gq2%4B8OE(dFy zSluPR4-4w)zE6Kj0_@)RLFX=y7(fPgcMWnjp*=wE1rve!9@Y>0EVQo=!iJ47$h5J~ zPo(dkgay}mw@}S15j#c*y#Fn?fRIesRHoJQ4>rtD&+oaXmaf2UOC)?xY7@ ze1CiD5A!3&zO(xjP8d%$Z=+nn)KUi=7uNL4C zZ0aKe;cn@1d2OE27RBC!pDXqeg`s5O!pUv%p)VPF&4q_Qjp&b>$R6A&_BWVps&z#P z4;_jGOJ|zN<|TT#1yKaY=B}dK7EYD4dv;XlEYW)ZT>P#pQR#F6aYq>KAiIyncCsHcF(Q8{9fX7v}gLxbQq5s()mCW3Bo zAkl3{!QO@KDvG4WjF*M``SH_yyGi%*9z}2=V_D!tDf@yaUo9;JIV&@;p(bNRIMQh; zMd4vC)A&?>v=lVFpO`gQpXp)*Sl&OvtH>@jpC_$WAhW(?zAlM&Lw7DIH_wXV$7qvb zohMfMxC5`q{dIug17(jC?S!=GSeN0|U)pf#N;q@d3V(g(MotowS7)rly%Q}hal{e9 zXo8j{RDLQS`w0+2^mZICt`_qiUbb9%4ofo}zBq{KwDscq#P1Pd-xLkT_TjD|annfo z&P7Y-CT}<1yUU2>h1%0LX2Eyn3zFA*@f|CE9ksP5wK${Dw0oiU20JMa&nmf>Ry`{G zmsx>rVlt|&f2h-xMOjxrY=F_nWce_T8wlD-aE zD1>V^XNQkDANx#@VoUr*g>{6C#2eX_{=NWe`t-}N5Gz0Sx4SR*sFWkGuct`&h1~2= zeo>L;o0cz-(ydw3&&&2CC##0ZsXrtT3@a8gVjc*DFMB9BWXuwbioel{CM&=RQewWE zc|&EjNU$Fln-DEi7^3YaVw!=mC*aKWFo>$vSJ#Vchu^yQM1N`dNZ9;M((^EK10IK| zZ0e37-ytSVBig-Hsa_YnJb;zXFEr`!I-`n~g!f1Ell#83rtF!ImcLKiRXvB?gF{*m z(s`=k|>{jB7nW)&o91ehXl=@cW!@s?jI*(r&sj2EVGsYL(a$T)VdXVK)nRDrgP4Vq3eE zalnls+mwr&6jd0ly4i*sg*?2dpCF7&oKIWjb~}egnf&&3^^A?3zv$8J-hb zws7#FQuNU+_lMp3h@jKOA!wZD$spAkvexn=`u(R^S<|BH0%rh7D3E^#P6_`AeG$4K zScV3`7X+O*Yd^uRQvy7paQ4;w9>39H%2&{P`3*SNH0i`5_ufBvK=7r^z$?}(eF>UO zPZX)E^0gBUI9ZzDCOUW$DXOiZAScfS9^}LjNqgx!8D4jE3-plEvWxa8dVA$7kA5*X zb`>&80c-xZHB=G~_@;(*HC&LA(uhja!CY+!v3zix`%*<b%4iKo3Bu@q6_$u8Dq z0kQPSG4<2xaRnMoZbXs85%74KmPv-MHp&w#m_X;6*OJUn5!)uxx9vO?Re4BQN$ zwq!b{De-g_KySJFM+IcmSKP5)S-$rXMf;ayHVzU82^kXYBZV4Q6boJNt9RCY z1U^{l@sV2n5*tqBf$$2h;%OD4#4LC}RNwL}2d8@OtU#xJiQ&8Px1{1WJ4Z^(3yilE zt`W?oSaT#Cj{g&>Nm9nbcOFuviv)9K(5dcA6&0^N-kjjwC^BT-YIDZ6B(C&|+oBnD zRf0Cn6IA_{BDDJ4;D$j-aj#(CGvsv+ayK}5d7t%MvE|b7eUTD@%1d`niD}bJPp2H} zn@8>68#@%Kyt!l`^UhQ^C96>llMi~c#TSN4TJDhGs_;O{{c#t?`Y z>i$dI-3!G1;J)x%aN|bB{2$nz9arvx0LAAVaN;}Z4+l#m z0@taa=RF|rW5xIYyoSGQ0)N}gcf{%-z?1>~ZaGCM?5HUkfa{S37Vej~C&pwTR=Ht` z`x~!tb9p*Mm$_Q<;WhH)c~Waa%@)=AH7n?sWX z&Yn#AwK-INQ?q%YOBc$5sgj%!rAs?YfQuIBZ3%%Epth`e`9)~c-{sTnxFc0_!`MPo zxgBnCoOf}0>$ySb)!aMonR9b<1KU%!Tp2kzj@0k#N2s+?n&y=U)dc@$<98uQn0=rP z|DoHb_Iy9!ppSVmEjIVd2zFp(Y{>Zq5)0$!voA7K*_LY1qCJl-GkuST>E&mLicKh& zO0i#+R-%z$1w+PfWaId642hba?-~7_c7{|2inj>gzF%?49nwANy?Pkn?y9RxkU|+8 zo}8W4%pP6+pljEahGHs;S`9qrH#+k2t%fp;gTPO*f{tdH&1rI90~>ScW6H8MuCto(N-d_^P>g8Heu(XY{3Syf@o2YZ|h+ zhzffc!mN0k$mZzL*q0vDoL)e%V!!QoR*#mk?$qL?b|Kc`tTCC%nSqW?CoPcYqD(Nl-%tNSk66Qhe#sn z)z%=`h#9nGrwbo~7C9R)J|5ot+J{JOMiwdChEH9~sPSU3tT>lkW?RR6;A)_~*7FRo z?r-(iA@==^%FSuP<1nCmd2TU@I15d)j4*PFzPa5WueA4CL#)GVz7?6iEw$v#>{6Ei zm^yr5eHe7h;YoG%^CMdDO3wc4(2BUK3NPfk*+b_zrTPrE)bqa}c4$L%tF`$7EN{>} z5%iNX!N%!a#dG7v6fEOV(L{9NmkUN@;DXxM(5Lyxy{hgtT|=>tK+^QYrl*RFG;No2HO>$%ttq{QpXNpZMCv2??b0=M8(G&g;~SpVzDbUnNS#W z^72%_XX4iBSUR@_~Le-HYLo&1Xl&jq`PQc#}$(+@l|zGSt-k!PI*(0_0XKr`c4re$^Fp*C=+}&yiYY3~n1T{ny*U;lJb2dT_1{3oBPcFqIHil4 z(oZK@N%|YAX^NJmIBQF3@fhJ>O5U3dRD6=jq-bT_Tm9J7bs)_)87JY@?+5?#zHbp_ zGuj;`rU%dZNH7NyR!|o0_;zULSaWgTMg9BabHnN8qwS0+@J|6n4nPgU1%l2Qb@Ab7 zI>{wpR~E-HS02mF~kg>?_|a4Uy9lq;zNnLUhi}?CbvIlc!AS zcD?_0!Q(5o{Q+x)4t{g^+%8spo?E52&uxunPe)cqE@W{-xKsn5MWV@Vu{C_b>BN zWD&|0Q4WKOflRd7{Za%-H?zvgM!}$Lr*A)hHXNdn&_BbY=a6G%-TQgGZh>^tR>5=} z5tHObGUee)yy{_fvyFA-s|$Vh1gEIzB&-zy&Rks<4c2s!5G@4yj;hWg$UBP06MG8? zEr|((1#y*+ z-*H5dLJD8j(rpnR<6ff@G@&9UM6xq)I3 z(Bo47h<53`Ur^F1?Po}&$TxNg-!UVO*2XjYFmOt#&&g5zTz~v;_4@jE>kmJR>*r)X z9ld9YE7m)?D!@V3{dayi8Jlj(iuelA6+PRK*Ndo4{5z2dZ<8pK?yYp=!(-wCCOsCE z^4sqD_W2D>zOKWXw!ratdQ4Ew<+K|(1vPQL;UinX`a-g|de;Cvr^acWpZO#5RQJ~!OemSTZ`#!_yCMeV*Hqgz_{t-hv)Q_*7Zwq4P ztH(IedJ8FIrxB*v!$N69gyIm1w(WOS$88Ywzl@AU@qmBZv;!F$tIacdb&GR2rahE} zqC3y}soAxk;H=(MtGZ!WA&-CqmE>mOdftdaMu_)cCIp)}UVp4eV>BGIrl!UnL|%nb zn3|iL7fprhK%s zPMxzI+p9CBEcSWbiv_#WkMC)Is9AEFF;$8%7gN-U3nH$T&WD7C#rQ1OpoZgGCc+~C z$>}_xU!$V;nzavOe$Le7uaot8VS6Ehh3+YhzkB~{bqfi}h+SV?RGjT|{)ipRG>Vq`&zVt9we$%!pqz zWlVFQWMj%r&w9~ijN3((4Oc7C=zGoYj!iF#3?!C^`)^E}`mf0k zlnK(~w$A?gQ4h#ScdNS^2nQ3xHsg_~7k-SipmYFCz*ulSYTtNp29UrnjBjlv8H3eD z-&AW;XHPV|yEB}0cOjZ5S(|d=^}PZB=1d^)A)wj?w#fU>wSBb3u3Q(|PrR zZrLou0;Iw?Sj-gVTMJK@!JzKM9htc2j4fKDI_2Mw#2R=1?lEc~xYK84>XsSmI@J!& zV*(w3Gxp;n;+yaG8&>ntW8!I@+Fp*R`BECww9QLfALbyg+a|vZ-g=LnNt$-P5evsG zuesohraP9c)?@-@UbACgd3m{)DhDC5UE!uV5qAQqalGa#x>@ zQdakx+h>+Xo#WPImI59x)8uqCVmR(EmfqY?C8ncjIEO}ik*g{?%Bp2>TIy>TQti4l z(*4rSFeVMM%lpPo-mlQvW7swIne};eI-xPG;n_LKcx}yr&z@BOVoFngBX?I~)|h)H zp@X#}?`9v1MWv1U_XmeS=WguNG62;X8IcE*^`)lfYfP>swyD^Gr*nK8(d9a^DhOF?WBs?=m~&jxmo>smjUl1 zOfuZ6O#O*sp#-j^J3^(%0czC5IraaahC3n%^aN0CLAf7WqY{QYY2u;H5 zbwx|zGV%>}V>8pG@{oATMMo8W#8kjzM(E?Wr?%&rQ~OL9YWmvwo7Wo892>^u%crc? zapRJlripL(eN;9l)HWv;#6P7CGX*ew)7k_`)8cmse;+)tp~Z^YOn2roUY)49I;)%^ zyma7xTydy9OSe%iN)ko57NGG_KpkZcT@5c_w-Y0PkfsOD_&t0+Qqr^O4k{%r*Dy%w zV0q17YgOLJ{S~|aXR{PhZ$r9;e>2%D+98eBP8JU(n;{$a@@xUGH>DJ)76zr&kEm7~ zoz}9asYD37d_XVr#p!&@;D4M1fJ#DOv8*r*F2=&88R%gx%d?DrDPv}=J0Kv*4Q71| z2W6{6Z70}jK?}sWyD{p0Q_s$zoMTDTDXWc*YC zP4fktfU-x_Y@57@peY9@_>UW(_j`m<$d!zNP?>4Od)pm@`%Y5wVWN6Q(TG=P zN-ZbmeeYgkk_CkrLnmm@&_Bky{5*J4SPy(Q))aOxT6=3)<1i}j=lEf^K~cV12Pwqm z+xJ=V@EQ9E=~|V}Kqj+}LwDgx&w15Mmg%-_eK|9arT3P~=<@}z+a7@2>w{&Kk5nhZ-xonR>ZPv^r!c$CRA zXh|@DSeLw=HfDwTzOO{Pzvll?b(T?8e$mzkq&ua%Q%br)8i6AvlG4%$(p`dpbf<)L zNp~Y4p)`j^TDtr0^S|%?@Q#7Q526D5dG=m=t>2u}&941NMgUj_zHzbMi&^7wFkSEZ zF)ji9vF*TztAGvoeVwwl%LQAwMdv%pd+w{@mRZL-quKjq66qy+GtAFSO0}HigKj%& z+6#I4JA@nTeNqUhHpGn{lv37+&LXd8;_g7jH630YwcD~YxR*t%g%Pckv$DSr|M0b= zdpHDpB@BC_NWDr=2DMi~wQh+G*EB*9bx3Kk7I!SKeur_jt~A7L#o~MGvyg#VET1JB zZYsZWYb^L@nU08UAL%ei$gsYCc=_*bdWPYQWG z(CbdDT@4Hh^t4tkw>7xP#T)hP?%IIO>rI3miLHg( z12{>5@XBpkD5>fdtV)6nqG6DQ>>!722C_?`2~+?~8q7cgm)x-}E*J#|Vnk*6>Byw` zC7D#ua;xilAsN*I+KZyfj9uZwa$-QgJ3)Wn+{aM0<@&-`5Wjz!RAEGS1SK$9=|6f z5Vjd+Zq?1`s2lp2CHodZg$mRO)pFcVE40@FWRM;Lowsu#qsyP{U5OPk}zMlN`t>9JkKpjChKg8qh z)?5aqG3lI%UcAb`Pwrpsvv60DpMtv{`tzVx0&n0ckZsnx;`}phi+;)l@!N4aQ-D>Q_ZsB~G%ejT)Z! zhcMynVe#_ihi48TW8c%FHtlTX88Yfg@`lu@y@ze0x<_*_%62y^J*l!;?Bd#RMk zi*6ilJ|P$_kTj7JKbxY{>_;d%5W=t4u)mh(&`t=Dz7uR@xSycU z8mmiad|4cV@yLJYf=)}Ai)$_AmK6AE>M2fDG)CYXAMzlsCBjVIt8TItp;n9fU!Sb* z^t7c^I)@r+IRB3Y2rD#x1#QHszn?CE!~UYmH2D(gyHOQ$!7;Fx2l$#DlqqLC9~92c zHTIE8s&I{jUD3VM-tU~T^3MV~^a;B_o@%z=tqp9qcWI`WHTL%<*QE5qK8E{QKTzn} zW~|S8Pt!#bT==Wyb&SZN@0mP%xBKN0sd0WH11bW?$e#40>iNRx>|mdRVKlCZttiKr z&l-k5LPMo;qrT-Kh%w4ez8d_>YigW35c1o}Y=;B2?VO;R#uXLX5WO$dM4A${-*6Fo z8>qgDVo*87s{3JRdj_MSdI*YCv?Tn={IW*S`?Ik3i%DQ_r!7qd`(U`eTbxi2r5*bQnH?Rz0<{`)R#}0BwN zfL_2L@;~7i=p(}T7$Dwu`gWQn<{1wtm?uH%haH6*g{K|r6Jq}p;-*TK_Kt@Av6PN; zMxfzLj8gNxoVU8;dIHH1S?<7{@~?}qL+8UMSm;UP!vhS5g3(j+U??bq3W8M%>ksa= zqZ+R?F9Zhkx8WTb04+4FYrF{@xXpm0i`a43GxHzwl^uP~cwL&?aO7sFLAizIG~ACn z!!~+jQ8Sdq9eoUPSDV`Pmrta@CyesD0(4Wh;=GWPD70spJaWVWc=Fw@5-K5xN~8pM zy~lJER4U?J4`#T@53~vu=sg3;I>MkSs&g3muK4i+vABGX;g(Csy76 zc5=~Wgp)$_Q&ftvUm7@14%^ONKi)__ZQq|zKk;mj=NvVUNj^+UZUV3PZJ3q5=Se^D ze}LNcT6i;sBBvCV;{=K=oh+GH+pD7a@Ay{sCUcDsQ#Ams6Yz6wr&xA%fCABZoaqLv5vUAm3I@CU! zx&C;G>AigL&ocanS+TegM#0%v%`ucat}~D`!YwE``-!U~*$E&fKw;zw7&hqTwd2E# zqx0>#jl|Q<_!)2*IsW%!{1o>4{J3B8AeA?Vo8giF(;aMra{~k3LN?DpD%O90>i<0*@E%6!f;R#d54foqPi&owv9=^dIZ4%h{-JB!0m$>X)&{iTC41kh;Eg%^;8 zk213culyy{Q5}EXtU&D`qC1ZeQKWktl zoq3(jWjnknwFxmi2$7dkPQ>26(&s$$%piZJ*rTl1);_R`MdQE5-tYSs0S}de-Sw1B zb!B4957p=A7RrlR9CoaTDYDsy>H`kvg?gSaDP?oqdnr zheF-!X7MZdybmJ#hwo>W`lA=&1HSKb+z{)bbA|OybbjW4*qp$Ke&aLvWOkT&<4y6i z)3(6(ersqJ`qNnZrsVGnt_Oi9dwu2a54dsOoX2c$PoX|7nT?~C;ses?x_iQwA0I}U z+vD(0@GpwVo}FQZi>K)qn7>m>YwYaqL*P&y*;KKihVr7CrsAOgb8G*Mt8dC5rFK@t zLKh4Xw5lF7*U+PzHmPMuNv*f4nI)y1LQ{AoU1)(fyI^vkl|gHw{!h<04Ij?=kKpe#A##hPZ%eh`0$zNdJ%F~nG z_5c$VqtSgh3};t?3#M5GD$q<(cdm#$rMuJlhNXJ7`qL!(fB}-kL?9vKWT$=06Td88 z$fHav|1)w=zzK7X3*I?tf@JcaY@G;~j?!1N#y#Q;S%ivK?N01eDdvzVI5(p52Nx<5 z4l~ntuX`BXMMaF3e>T#Pnwg4fML81S z)&9EK09#vTu-}a`8_Q^;VMx|MvRUw=zE&sOx7oe+#nsqO{mWO)Q}XC4wXKaKlWu-Z zr)rlo{ypAIM^;=vtacu}H%}QK_s&bU9ubIb3#Tleankd?HZLVPC#^fLdxa8xZdYKn zX8taRJR#*ZL`Z}dGf}O7oI6R4n)>?b$JJJMT-LVd(UGW1)m#cZH@T${-(RODYt_iV zv4kbo5u4hY&)>eL_? zZBHHNDOlfVs4ZKmHDfd$#VPqt_CdfR#uYjSv|mV{4P{4=LW2mAC>Mc_ zB#q_VL{!9U(VIO9bIPMrhcW7BUijd*#-GLWw6>5 z*u-fFf~7>QSeX~h)Qj`-_J9OkatTWZhsw2w?X4|+zhyz*PiU*0aFhIwLV#CyezI^m{w@pCNz8KW2nUI3gplp!Bt*Fdyfl zQ_7YnjLgXe^*D0d^wdAYu6ZN7Y&T?KtZQ%cj`bD5ir&99=j#qhyO69Z3(4NzXyI~D zME5`1l-y#DqBgB|q>0HxrD}C%4xQNH3*Y4n7lst#R|Q90nN~>o|t!E-p zp<36wl#q|#So@nW046BcM^!VH=9NO5VVhpYN(P(S7q|9E+HRbhcMIk9i1X66UwouA zue$52@GEs7lnep;)xKFlj(=>CkKXisOhg}Ufp1P=5#y(W6!j}-9gR3G<{Q0)m*?4M z@w#xJiNeD}4~(W^2q{IFbAFK*Lsb@nJ0QwRq(zg6g8KX(>CfxPs5GnvLJ7}u9IJ5y@v7F>apYI$C=F$3@`p!H3@Ku=mWlM@5cv7%4U*MM)bzczah$5xz&JKEI+2}(p&?%Lb0&w)kxD;XQ7|gVn#dS zzdJvn{_oE<(VDbDBr33i1S-pyjpO6vd?E{a&6Jds_WO^H0{`&4GD7wUW}+c*;^P~q znP*W@uj%s&$HCa64+sw-l6@E=t9HJqMuFK9k z&>~8JY#gmU+m}o>q;_`qZMkc;mED(G4JUJux2;%fxQy2Wwel^tyCok@U02?Vpjo2+ zfq)puTf+S$T-r>LqzUvXSv;1Q28V>7OiBsZSp!@R_HWpbj#T83>EF*`J5T<#O+DQ1 zjorDxSm+!_HxZSdh>!~c5ym-yKZ^l$i?7u2viQ~FM={_kiA8;O+>3JtY@AMjc7(s< zAYDwHU$<{epXOWGT1@>MABxzxI+XMVD%0=E zzTxk0X|Q3UenMpUr1Jq1v(TW)6a>eiQsbXXj%umn{pUL!CC5q;9i`n$VUo+b%ut?j zvJ!L9+Sx7kma+=N_%FXN{%*(2KX+I`RvL)#{_^DTRtJk#4Af^~rc<~*+1c4e#PVpI z{nn?r`9rc&$4hM2>>Q#$ID}_!4%gZ5{fWQ4d?RK@olGvb?NQ3O*Gi;Gl^qSc7)TJ3=uqIf4ky#^az}0~`mvxXIDy0%#xtEzsxno9 zf8^1(3L6k-ELKeKNNu{P%w4P%1ft>)E!t3Oqcr07KfzXn9Z#c4sxI(NG&Ee)eD#fjnPhEOIQp{V zNLb2V=>=@OT3z;DMvQ`KjOmBwJ&SPnV8o36eJn_rIwh@PHWS z3MTF#ar|gu5ehJrO5;xKE}$+CkP`RFXAf;fJbo@E*YK%D@!840Ww5&fCtp%>a_Ee} z{>Y!0O_O(`I7weHX-*0-3-#L|m5}>Aud9M3KS#(9KatIA)HjYz{%pVYo`o`Jyx3G$ zE;z{lPJo)XmXC|h4?o5$heSlRs;#xil76}a zy#{*$WbRKiTAucIe72y3_V~#7P3`~IWj2mV*cDVA(WrNWvDu-27h zF}{4C6JJvGAW6X>iMjvj>&Ji7ofZt5U2y_2wbi~~kOseHquwdk4AByNbDOTB>L^>A z7qQ$M7$r&)&&n7iPi)ThW5x*6+mL&tanOtq z3kkFLL!A|*S4!jY+g~$Iy=>pwc>Wb>#6S&(}yGNg|Ooie=j(fR*ypMqjz2d5Q{9>RykknX#+Rs@u39f z#`X&9oKm8$^$%9ck}(@=-bN;26a44TFL~NcRXjb^QU^W zSlcer*UEh??H(Tqb*>aMFRyeE_|{N>|5&9$tjCgsYt2y4uk?p7>!mAVdV|rWTVZ&o zMT?3@I3@S{R_pf+57?yvRx?~Vk{vNnT zT&Gzl3U4`dC7k+tG6@|u6T-`}Bp)Z6WCHb)`uR(v0s~bk;ZF^(o^w^~#3QZE!{Be% z&;c=#gdGFf1YNujv^($AQd80Ra=)?_v&h9M=oAKRBNfbW&uGi^a^o)WqHX^Wx|NhK z5p+jun*0%v<8wMx#JJ+uw=t_nwZ%7iHn6NUw)z=G`_hEh-7i=SAAplH@6AUFFP~Bei=z zK<2LXGJm|mWS$wBgMWJ_`z&_o(=v65$-*b0cj6{FBm@{bk!riw?ph zN1;sh5R;TY(O3WPLH&}PS~jlhO}2KttLfnqI^XHCdB1^$`hpiLSavO~`T z^qZ!3Pn`A_+51@!K~QAH@p6%}YX3+?q1=<9F`(X5k(*oDQi))#xgLK|v)S=~By4M;g{I(V|OJoLG^>6+E#zXCM_7^kzKH0NHOg9f@x-6iZh`7X^+HksG zl|!>5%oeENce#fVwmOH#d(v>{wZE2#^{cLNql7cVwAt>@WbGf4k`V24wVzFP6mhZv zkySsoNYB%axF47qWEQZEf3@v%Cvy++YyFlZV#RPoS2K3d>!{}--@V%jGkPQP{1%=4 zkuR!90&z-ykOk7T$HJu$Z1r1eR_C{N0sd>cDSlMaGXLKeNtlzkV&lEe6v!>i#T@r! zlbeHa1N7(Th>@-rnU{jRWUK+n7HchsT<~q(U|kwf7ia?@${+@=$z>DW%*;&ea?Wgj z^e3fEJA$6xQW(4(>+mKoSTl3pq19Em&BgW0Pm1Ljj2Db1*5hdZW~Vmjw3#q7+$@MR zOZ~IEoOecOcv9cpN|%oKaWF_lPZYs2&l;Kj6lh>&VLC{OCeBlnm zo*GS|k2j;qtTPMYvp;iCXm}dx>&t_vz_R{ZnF$uz3Qiydb2OW-YMCn2;>Kfm>no%0 z?;x0o5=Ce5Z~u9*wKOrp8ygccy*0T6z3H-HQ)uZaGh%8bO&U+nELGFzhtidbZ$Eqk z$kB2k8YNoqdsd*61XjWVy-(Tgefi$lraC2JXrq5MEE8qZemk{B5;b;##c_qbJP}CV zNuv}f2}#0_(7&@c;k}NVoZ<>1MNyr#+~X^ws`PryXbsO|UMR8<=z0m6{``R;SAZKn z_)6}OpH|@CBytk>t)n&eha}t$@tVBm__#H*Gkt9TvXeh}) zWg2ZHB_!jdxY9q>M-7_~ZsIdyU$gBI2V{4))ESf*-lyTNoCRyRTvd76i%6fK$bzjl z9dpxQPOh3Txd~PnLMn+66z0wZNSbwG>{z`WyV*RK9O$dbJd5wLBDw8ZzLWENMIinxn*{d%a z$}j)1J5GZ$!=nRpH?vUFvg>%J~D`x{i4+D0_w+d@zG>`PzJf)??pF-sV z^{Jzg$b}0__f{t5V#kTKe{VFUrs4{WrzIo@VH;@Z+TjddC~5U?dKhVJr6~UaD@pKJ zQN5*qKYEXNL?*g$E+K=8OdyWQ%sY|$q5HG8 z+Do#pI31xU=QHp-8F{O7KAXRA_OpAPzD44pl`-h_sMvOXFFBC>V_U%tfIwQ89F4X zcjchHLkYU&V0bj)`6E3saOPvW_u;MJT)zZ}UhJW7gHTM7MR1TUVaYb8%?i@bjewf_qA_yVQ+AEK?TEm%w*QPGk9 zFT}t3IsG0#lYDB?uOpDNHEKs_YG{ymcfaCPGg`s?Z+}e3lVW8|NJs#(|1^*gNag*n zCah#POa44GN=C5}Gf)S8q?YBmN@|hxQ&(5mi;K(Y&Yx(DV#=}$hsoj&5aq=Q&8D;r zjd?29Dq~M&#@^<>fC+srWhLl$$WvToOQ>N4narFbqj|!kIBgfM{`IRF&8dK%TJp3TReB`q0`hl5oCmj#Vi} z0}SPXJV?{dU-*74i)_iv$CZC-SSK?b8;jXX>dKCecv{LQ3RdG9t_XkD?&2d4TrAv3 zM=msEkON&UuVod_i?ttu!X$}SmK7Q8LrP^O69ZJ+T zqoyaa9y($1l$cMKc!Q;8J|Txpf_c^bWoWfUdF~$J65Yw>WP6KaX0?D$m zsfT}L2_-Y%HJo>tdVo-5VmzcoP9n$3-aa}sG<4OQtTZuBd2V{zZPEpq{+Z%~uvshi zs$pF?C>rVRad;+X&EO$9b< zp+>gcTbf_FIn|ms)gM0Y$dqrd?FNQ3Kv2|l2L%OUx^0Qsk-|IbqmQf-a$S!x3gP&#N8f+DO zQbj~=*^wrWE3b$huA~pGFFn>CDO%xHT!ib{VETnTM%!pcTGq>P!{xuD+Ql?&b$V^sP4=toBPZf`a z>32hDSP@c)fCe&|EI}?B7C|&unt6F+M&yy^CB<;I%Dnq=L#iDF3n`H^yqPgPaM^Co zYHCJhF#y9Bqph01pT2iP6skc4@d|?0dN*^n5~F^ej!&=}&|lZL2%Nl8@%eb-ZEby? z{`U44S4%Wzk!36{6M87SxDJ~|wy=2rUQqNqY@&wIpe(~cC#fXFZwhpOMprUFqat^f zq8gxR$*lawbBNcXiWZ(Lfk)KwBE*k$?>HsaspCzTh)Yd921{e}6@TLa> z-T^j?`tE{ho^J=a32&r6{g!~OUI;Fo&U;X}yBPv@31)jCD=Q1DHU%rt1R{%0WRc1f ztF+-Lp+y=jAf@ry!^2Co>ro9!{_uSF|_(7NFBRhZe%*h)SR7_ky@bkS)EnnC6QXcI@U zS$^&?kuHT)XLQ9$SgaJT3nz*Zk2tm!tFWH>l zcSs^E!M8?P53t^)UTEXQRck*lYKvYluG|EU>}4{1Scm$QDlGnuh(&M_(L?vrj#g~i z^+OhgepA+SGBhZ>+$t)WSsOK98YWw{_XkbB~=_nD#j)ZXYjZ9-y7Qe zdDF~+fw`-jTTN}P3~)C78AlJ84A7nh-Qz^%LM-G2&=2FpWV#D{K(urX%nhM6dgdCE zjHrq$>s;ziPLMzh{n%*J!`NEnZc);`;G+01CG=W*2 zm!IGDhdb*hgcO%eAwl&pW|Tqa-MwLC#QOe(fXT2ojZ|?0wXE=U`H$tL9dwhQRm>pv zkJmqmFcIE-ux`OKGE`x!Y@`*_*XFz&Z6HGwKB5>lVy;AxA&7kKdKmTk9)fI1R3av4 zt@FFDMVY0rr&jFGu6}~N%%qaFh_7Y!sxl$bc;Ua+MDg(W?Ntx1KgPywDmu1l0Tn%` zh7$fKN7tQ4KIArLcW>+#r1jNZ_*=i`&-+SE95w&_n^wu;QZF>F`?U2^XM1+#uFG!H z-0b&>rsF|_+=TE%)p}a}feABP-Zr{{LY$(*Vv&?A0htNzb;5!!nlGbXJ!TkhhVdd& zsc|f&wLr#=VYnxBQ);1nA8C;lQHDWSH+@SXJe#J_Dt36_v`X`&5~v$Xu60k$O%=w! z#r{fqLP-|v&pyACkyZKlYi!H~4Bsygmqvi5@I9o?-(RC6TDkGYr^7y2>E1D^TT|Mf zj<*!EJY*X=VHKS*qLO+2;8nG~s16!1C;$KkZ&%nK=hlbaR`k`;esG%`0>NY;HwnnO zK}EUtTYJ938hdAbs}&v5IkiQjSM6P7!x&8geWeGQ}Sa`7w6 z2}!69(Tm9Wcf+S}&7%?D(g)_J5dtt(t zwY&><{`N{@=UxH9H)z3`9rB4zg?7BLm+6*C3dH6E&r6NP37rc6IjO5}6RkxWulFzJ zoLqNFz9LZK9nj>J&qZf1Jf7MUp*;sHGFklm&c7_~V~5&&>(Aw11O-vS!UF}iyl~w9>iAp&3L7Ty(_C9y^LR>x zfEO$^(Wu#l(TKcMWe_BrW>^w96u}+hcaeVuWe5R}xcDfTlqe6wi$NcqAr2Px?5TuNY>R~Gkd(*3@6r~ENeIb1OG4T4~=C3sQLC`M$}LrSZQ zAz}4fm6!TSu~=-TQmBlTgnv1MA6=KMj0ukZ4D1ZDafnh0&*nR3Am@*ATdBKLUehtR z*pAeJ@gGk>8cA;W9bD{i|D{#&wQfzD65AtUrGfpfCq?s5^OL7S$s3{I5^7oE?kkp* zk(0f$s`%I6JpqLTg^Y*bI`1}61}hmG8ymC$Q(Y8ff@iF~!IL;K@M=F~Wk@LR0&N@1 z%Dz-qa$O!`dD)4Nf6?wS;2H#KN9_C|7Ro7}-E<%kf4lFVo<2%+UFCm4ImW@Uu0-0mc+F+x+opKDhFogvaWBUS zpCK=xo6tq>Q=wadFOn>+u7h(4L1q|Bz$YRrD1{<62x{EKrn*G4V z)({*K-#fJYdh=>}eY&TSRP~<)L$hX9Ss0V*p8?uG19?r3GYPh|w3x#K$&#U3(NF`z zc%r*^<-#jwEEjLe4X7>GhZz9#W9sA6MqgDy6g&hjUGN`nQ5$(vuX)8ZdNHikimwrV zc&X-?l7JGu&xS}7^R*nhm8E49sPoc``p3yhU+;lxT?j~?V^$Ij?P6eW6-ZjFNoP2J z7YfH#2u!XSbH)>f%!TTXaQWs7DeWg~+%Fdp?P%WfGC93(A0Ky_cr%2hQccaZHDPd3 z7FO%)!&(CnQo)54Hks5o&Y*DrY<+yZX8d(7HpL4GpYS(v1OV1)^Ou&<(7+py^N3&#Tdyq_QFD)NYTH0TjS!b z+P2{GvB_GAv(U_oAn%AMcLsaPchEup77e4IV^-?W;QC{ z%()0~kg7vYn4HWHc2ow(Kbjt5TpJ~e9^ElVUAQ^;dDF`wCji@gxGD2zI^?Q^dN1uZIjb+4Q90FaomlPvHX-~mAwYIqpiK^G8l?D?z6>r-=}^rckfQ(N=oUyHD&g#aY9=t#blm<6qEBK%E03HP=Cq%eLCmcOXRo zgu_Nc&+#$0Rfluhr2oxcOhd*yj%uNlmCFs^@%;BljOB_K1X!qo5dbzKy2Gx(pPI})-R53I1ZHnoZDw>X!*xjbq zIh;=39sT_+9*!`5f^5QN{P*K{`%imR?M@5#Yuz#`~dP_?!YM!aJ_&Fn0-is5|uumVA zvq9;%GkDgfSNO&6n_br}8q@Ei4{~n{1C>eYaqaH^jb#cGv}S(^{|ns#0aLv&8_dIwI|n$4v$XN!U3LF-$?IUrRR9c%J)BS8ABRi+1^0Q! zNFF!XM*S@v?)jHj+5V57e&-7Q=SBa%9Nif-yM#tWpn9O z=cY`YSiwurw0)sEt8h(o&yScLL|Q?;Ku!P?!#s^H{!uI*e$AVPxbA{<{m*PNdTQwY z$HCOxLP8|1S+pLV%O^4J$3N-6(iHxMnOi358kvI22MBq~E8)F{8S!*I!#Qpq_vKpt z4x>ZYaQst^@9K@APER;KtIraZ8G*;m=ttP4J9WY^tHZzqp@1ME~Y$R>^}~&p?W_VhensW znkV}g_p?GvXn_VBQD3*~XSm9Wc~`gA{jtOBN6r=cK-7_LrjTr0@UMucY!hz_r;Wei zcn(68oP|rOsvIYs-#iTQKMeUU3X;gxH2txvts9mz1!BT4*`pWA+2h7OfqCZ1jR(Sg z56|x0GfA6tYOdA&PsCD^Q<{^<2Wg=^rP`h3$L(6S==3FKVdCF-8G<_EPdY^-lr>{j z9V-!LWTi6mBaFV|D@Rn#bY{Fk3hyqE=QaJdFF(2cJ2a-!N^uu{9)d2m*%vYqH-nsX z+_K3V&%etf`Y#tP&OPONq_FDbvfF=#hp}3N<+zvn5x19H$Zd~s*VUlF@>q0NR#P?#!ItbdoPw_B*oM99WNx)b8xZa&Yn+!*&#TszQH&RD6URI+ z+Kv%mi0}so?{V+tULX_0=<4f3gdGfbOGhzJ%TVZuERJ{|_-t_PbpI`!n)h+~tZmj_ zuknBFV*!5%gansZ_^qZST5Qj4zle_XAvl#ESilWC#VeS@%}3o!n=EViai5N!0R^|* z2u60*j5ku~kA%5&k-7L!R+ct0xoBC%=oN_wtUJn9#U4}^<4X-Sz<=iSlq@|N)iN#} zD!Juqs4(ls)g&N!wkms`j&^z@)@%?1{%@H5eL*4*X_Q}vrCCz%lxxf<9OpW3mgQN- zR>D-3NOl9(^5f3Rtj&2_D-t!gk5)%i*p_$m8M~GY)9p4sQIJTavOZPe@xpujr?Z=n z<BtcUGG%LVb#@+BZoP(XP}6xlTjl*taQmBSD zA8X8=jUAa{%=h?b+K3)qZoXclJUjY6vID(^SIbRY2Mia?Z9_I3+xhxzyWX-kcq|kMx_`EoJBt!!~c{|E?AU{Y^vcKq3|belq# zTs1j4890D;hZH#te8O#eq4(}xSw!HF<&R8}X)!Ht8yhsR7a8@U($mueH{gynGXO}D zE&Dq-a6NjvzWZ_4_WQqammJFDzBF7CMD_J+7hrk~Vwqu{s$|LkTn(-4ZR~@+8w?eV z8~6kB9hgtrOk@J{_JthG7w6VZ1Ku^zkjkZlldbg~PPuO0o-V=K`ZeVjr|x7?mt&b? z5)~5eHw-P9i3lTCEUgar8#7lG)6(57vTr7p3R~Re9!uA5<5&DQQGCt=!v)NflayiA z2Uz@@8_(fQ7YcQ}xE{*{q!3)p?=2*+-A-0DRx!&x9CGoW>!z_(9=of&(efe2+amsy zq4dX#yGNa-+V^Xa)f=aSfWIpJzib&JkpyY{r?Jn-%WtP;Z&o)M1_Bz^E-(-p>$&QF zE`ry*VGB|vU&x?XNCdV2o@m;JforLRd`D3dG6Hcb?!-_-@@>rChOo^$|I?5|R-2rY zVVpupiq%iT4Qu91ct6xUmfl#~PF#bgyi7LE>6;XO=btVkNMj*Bh(4bE< zIHf_jK_MgzaU=!dcY!QnTVxIHl+lFgiY6a|1uGnJX_A!VlnVt&RKYh7rX}F%U_E54 z(nYH>Y9GGXpKS(Sd8A}yrL2@Wz*`Hv7pFG|S5ZgbUc%7D&wB~J{9Xt0qJd{OVpe0B z-Dho_%rPWk-3t)s!SVS+MBLpwk2Qv`A*KVKw(n?p!>=1;=`!Tu8{QE~(tkLlNN6v@ zD6R_1VOkqGkb3Jk==H$0ocY#6_+??V{bI^#Zr>a%=cTd-r;N;`>TS zF;9vCE0>^8IV7^Vgtz}?O5_`rMx$j@)hm9zwbFK*iuDo_ZSAXuzazSd_QFL^}q%smnp z`tyE1&7wccg7yADv9)4$8a286xFX5QL*)vLW!gI}rtQIqP}kTu>G9DIq$W>mZ8{K3 zV~*OtZ1m*)dN58qfhVJ2^4?m|(I>sg#?{?@Hqj>E`4hN~R3gh+tbn7^4!Sj*#7-ej z7UJX&5}E(PYU*vj!)*^Jbb03VBhLRvn-0<+?(v9-wCq0QuYf+fGppF`6JV$8JXahn zzzV)Y6^w^#sT?U(Nl68Xks#u51C(DGOm(saaEER8&<{_>{GG&wfaKFLzAt4-mP(t~ zL$8bp`7K6mNRS&;_D6`MQAzL261O3oS41i{Q_2mW(upT|#?A|cT(C4FUEYyb$+38c zt&pXatE>TwNmDC5sIdS z@1aXehO+4N%!h(DhB(#MMbi5wTXLR`U=t1Ye(CAg z7Fv3B+*0fpy}HS$58=@j3q+jqE=)nY3@ zcu(+4^QO_HsrEt7eX9bMi%m%^Rnf7`@|CYUEjveFP~F<_dPV*(mE3F3hQ5rha_E+v z^)`9w?aX4KJ<(_qq^<38mP2H6aplh8kC*P`oiZz|We4ycn2Y$orPiykln+=H#KCSz z8mu_#&vC73>S!1PNoPA2KtlT4p#g98iO|B(u;aCziI2RAq(B#r>V>&6@3`L*N2L4@60Tx!$;V(aIm#u92qgPQR^{KrJG3I}Oy7s_ys&=XYqy%Uem{)wIM1hC^a@E1 z6>m^FDk_RwLShVrn<*AT<{Bu+sk5@Pfq>NP?Q`7B>kQv8v?UYu(l4T3;leL{V%@(| z_P*0LNY$e?c6Rb5HO7@IT^Ze}Dh+dy9{Fb{iIC%st6`5y`GzDlJ&=pPj=M~wbakXI zVoh|8Iw+JMVqdD#@vi%Xs5fmZrxQ2ugLyjgkU8&I6kk+sd$%(MTM{}5*&B2Q6NSQ{ z!6pxmIpM=SiMqV__$j{g4Eld6lxx$HuItmW0{R0Nmt2+ z^foG5+yfY90r$c;C0a0}8xjhNHrBy7T(WeV3`C&ls(aKHMij97j2mM;~6Z*2;P91_C zTM}@4XP?~i^AAx>#h%j+{4;P_Ih5FmWKr1x~rJjDSlsTXe8cC5r zgu+VH(CR6<7`98fcBWkxlJzp^I(E4^Sd*27*skR+L)0V*0<^guN*4vq)Mn^fUdQmB(PSm@7zi2SN7^9^O zHHMHFW-;PMYspZMOc8jbhi{4kK=%=0ty64VRw>kBXaDu;^BOJZp|?!FB{M0cY6SIb zf7x74Tl19l0Jv9QkDx!aJvjKY_C052>{nR{hQ;-2C847XSk~y)K5a-sWrauHwG4MCk>75 z(T?CRJ4Rwk&5gphm1rpUA2J8Pav9gwOtGmJeK>yW#6ny)hlwf;ntOn;E9mmfHF#<2 z=<43Q=)8Z$acAh!61sh-$SO#RUlkjVwPz|dHWj9rYQ3wYoJUP2iynPJ zKp}O!bX_ItBk>=+Stl$BfHTNXQyD;3Sko)k5(CEW;3I3y|ax%_Vx9(Pun%v ztzI8PDwxQ!m{03Z9%ZNYCTKJr!+u}I0-W|M)x1j_-KO3IypHPz-eWD4_9pl1I{4D853noRgz5NJN!f0QbS;cDAn3~f{w-l`a zfAq<+#DMpm$Dl{`lJ*EXn&~m$8)Wal-{L-1l{{)efrjEb@g+oc(L=oA=UZnj{)vM7nP=Z|)xO5bBbwI6 zqE0GOb$(+P;l6Maumon z4_j#J(oDDBOWqmw%>5BmCmQh2Tq>h4FZjM)K&`NKR}pJm$ARBjBU4|edHx#BRJmV@ z=Vg$3SXa5X;DM+hPuL#gs%-~#Y8#vAVETdigkeB-{|`9BOeX)#UXMxrM(;0S`~eF> zc2kKaGct*m!Ko=ee0hP)7H9t^Q|-Bc2-R7^9p&3He2!4 zTDs|0*X;m~jsxHrK01$8(8hwpt2*+;#n5XjLTXzkRcn5{ZMD)k zpO9v1GfJ;(>UHeyaNM4ErduVE7j?i&T5FW-ew*Tc?!iW25sc#+8;0l@{cUNF;+bcLkH;#5(Csf_ zT3C%gNd754=CGB6EGU_GD6?P?MdwXI^A9^o`uy71(_)01WSbth6;0hYZ6N3Q?}jaF zp`~bzr^e`Vm?uPh9lW2ZmJ59oN4I%`x+N3`Q7-oO2~3de@JJ$`H0o>WqZ|yabv4XS zkyDP)s#nm(A2t&{YMR*n{aKj}jY%Oic#j$jJ?@NR?<-d7mdcpvo8oR=X#(?nqVK|P z;2@o~cJm6x@pMOU&5uI@j@Dgl9QxK6JjEHpT8*mB6^!4!dDDk83*xnbgdZe9Aad%# zGs0XxJ2f8>-eVp28^dM2aODli2`DRK`YiOUM*nfNa;M+r;SRty@t${1Nj`|1UXSW| zgErwhQdeb71;PEMoI^WqTrdH#FRn)&mrZAjjg10en;f#~(DfxBJNX3QSpDAJPWpmc8dL67Q(*)Ixnb;IT8c%+R% zBGK<5o%-zdo_Q{3q713S=|q{|ppSl`%CY%A^B}Sbtv>v@Q{{E+{^@Y1D(b@1Y&U;> zQDxgrW&4E>SM#WqL?Str@7IzMR7<~BXR8#(JJd(}goYgHB2Oj9nm^U>wY}K>-bj-g z6P9w&>KUI;pW{lMCAIDQQKM02F-^I&lrenyfa%*Tiu?Lt8Iz{q#{!%Lx;@sUMG^Ky z9mL1_S}@Jyow8et(8&EEwb=YP6yw4Bx8ur8qbJ?D4Trg>ln;0M7T9Tn*41U`(Hn>I zmp-G`bD6J}IwoVp5)&q+EaEywmWQc?cs^e%^j-#Vo3sxDE(XF}o(A{P#@YTXqAiO{ zOgv4k@h@i4b|x1hZ+i;PTqZgLsp&iFo)0a;Lk=u?Xhc1t8J{JrK-r(tB?P}$o;jQ^ z=3ytpNx`;0vtdb$T%g5XOTP+)PA|v&`lL~irR`aCP~=ZnmwUZqPmkHvbTt}HFcga@B-Np`RY@xT)a;HC`%3-8?qr>L{YdUB zIxp7bm9|&mewS!ZrSejY49A8Blhb#1ud>UOzPwjTI45vvsYyJ^len;Y;*mMAWlS&3 zqF06e{#sn`RD`>l)7_CP!{Coka#RDla9s_Sdj|j*(M;(?mjJ%zK?j?k^;eYqVskjtR+UK?Br(1$C5F z@Ynvhx!9(}aMbQ?FO4X+*&L?~JpmKd8@$z_vU}oeTGb^T{#V`JMn9(u9 zx+ykwX>J|udxBymNt(4LXBt$w4=%{()8Aa--O|46XFi`!J3efG0k7ows`_Ti3pR^o z!8t7+k){Mq^oy_5@(!CpRPkFu)$-6Cvqx?r3;lE$lA zS+DMV+P>4IS^uc>{x7J!vX>rCMKD~|Ef-VCsGEO2RkSY7v5i_sa)%>@IgCyy=P!{o!Cyvs zWqN+9UR;Sjv)qN(x-w-N99MaOxA1cItDPA);oim>zQ?;dWj3Ms{I{ruVkGlby*Q9! z5(QnJLz&6Kn#a9^k_xi z5Nh<~n0oO03Jp@nK_@3BT!E74;?MFz?e@*~d-cCylFF_Lx;toNUNa;?=>I~^DFmt) z?7_e>nJe}Tyv?AD)I9%sd%JBBFVjluKUJi`28zwor>pwR1ahqxYMv~K>rMG_(0(^G zAIr2q19$G_zE0GdCTsIIMGmYkC~r`jFf-Ah9D$-}4+g9?TI?T>ic*@@a4oc2s)=6A zbAGLRto06#n;a<}#M0t>@$uttwD%m!39&n0_(am`y=J(pmag*TghW3<172BVVdDSU z*;B;Kv_^%%C{$j7FK-uT4XI`9cJ#vDD4b9ot|g{_-ZS}3=a zok8j!@t1TIdEP&q9r{$1p=!V9V7sCJYT&S3&;W6ppQ#eTP^}kmZcMt2ml(9Q&o3VO&l+qK(Aj7t{4@HZ2o`c)9TY`@ zc|oR5KTdYMsQv`7QMhq2h#Re^V@!K5xI#;v@Qf*%D`kLDCONl}Szurun0x(XM=lWq zEh3<7YikQc1Nb&?`{7tNV;-~gowjG3$rExT!k=#6urm`A69X)fc~aY+bACSA zc|48>i&mQ4R+`Mwmat#GAquEWs_ zB=gK(lyo7suMQbQq5h2E&AiWIy3$F~8%Y(@PmnV~SgJ*nesnxDajP!bSR*+p_P{Uu zkk%y&sV|;S_qINh@b88+-)ZM4LOx5NCOH(4N^8zNqo6_6Fc$n_#Ox3r48{1!+c?xc z(@d^X4dI^tn6ejHXIFY!kmU45D06)V>vsIALtMgbx#Y6!O7O}5Dgi2Ynk;SU>6e`8 z#7D~R#TG~xF=`#NLBp!Sk&5WGUM5Wc73VpG#RdAW)lgajP0Dhb^m7h6_10)Jujekf z1#2Fpz^U#8*v|lZClFFkMJ6Amcimbe=Evj5U4I`VAYQ~^si~xhmH`?HQpRHM@9!5JyJA|2y6$Q^yMK*hgXjRc_e4<#!T^y9hZHi#4KJ0E zyifn>>d;&^(szlHS|b7ZUiWl`tHfI>1*ZiI2FHs#nKTN()*cdG$%?5ZY_zsyC+*m> zOWv2`J^BXkyDo2xtv~W3iIM-vv;XUm!JK9D&r+WHfGfKQw?xcF-_u8?G#BUR$J=eR z4AwthvYrSmCy@5y#Nzm0er0+rf@w@p|2ySzQpNqx7}MM)pnuRhx1%%N<#eHrG z5BKa=TUb)9W=5W98(4jRY4xRkIHqm>?-nL;2jZHe{t^x}Lc&1Cjf#p&BN^y#*mF&o zg`NT=zaL4QN{9qy;GIq#vIgzdma8BXROHQ}QC}G=;AVj4uKWXU z;WTP|ma3)zZsK6$jxOp|u!-GjXRL8#k& z?VS5{O+42~a$Qn9T+`e_Juh$4xb@fNo#v{*YSy=>v&8)uPhTY@i0V9iY5VeP-u=U_ z3BzOha*P;*yI0SwNaZx8t4by9I~^Pf9BW@ryd$MFVldyPZ{Wn4w+byRhkDb#$i~A@ z+^V{maDssN;Qe)23wy0-J_K^t0ozOn*FKE7Cn<+ z`GqZ9jm|JN3zsxsYK4b0!NkWxvUTg742Q{Hs-QCyO-pF2VLkeHnKvJmQBGv<+a@*2 z&62%Aq@)GK$3DLP?UFGbEMN04CJRL^2~UfyTvU@@vFQcVC0CYteYwc<`p7b9BFBe- zYs?xb8rs9nSHr87ivtb&2{pG8cB&mRo>49nBlOkBsoL^!Cr=_h#JR_1Sa2>ir<4iB zpZp_g618{fa2DdI9GHgV0awZX#l^*#O@8uT8H}BnLJH!c9y4fISeQa8ud%2}x$>|^ z=BL-IQ95HZ`m*=&x!TD`XJ>H0VgA{w3jDu<5G)G~Lqo%N{x!TL9KqDMy1MZrrqa-3 zz|-rs;xA}vp>T9`6e$+jCjRtre(8NOvH-=3GFQWBL{-H1iH;uHGMnHuQrk5;=T<$8 z8)xBtlDX9P{+FfUDC8y7s#H0ULkKOnxQV9LAo=Ob=eTiJ$R)k#-*f4dzWuDrZ}+Jl zQe&hdF^FVSg37Pnyi+UD&Cn;Sd>iprfQy5=Sukbu(6C1EzNVDpwucP^6^4t^OMx8@ zCD)s`>S`#Vp?lgwoTkdK+rQ;l!kZtpi!PO`88i;;Kn zt4?p!$RBWWC-r0@4XOTg0cV=G=cW&y(tkU8HRyw><4BO>1}uR1NkNzftlcroD^9lt znzU~JVRrSnzEH)@p!TvcFyU|HVA_@f^ z4#(6yC;LakX)6j{R%Xk#)wu6p3gx+yz4L@r68_+eAz>G0l|z38B{$ug#b;XAHjd^J z3bl~2HHe2{js>kd|E^=XUQ(@YDiqP9mm-I`7*2(fZW-p@{BoQVKAjO1^?T3$i)|iuLovAOR_{gg*Xj9i*g%NbpS1;yrPttGlxt4_o#w6U6$HU?z$!!1&V<%z1WtRJ!&OcCuI zJo-=nwpP97K>ws+eY)N=-{(^I`ZWpH82^_qZM;Oe;S~jFnlJiGdBbXH!XgAMqbdj= z9kS>cJ{QcHhRSrG`bTPdiql3dIphhs=BU%@>*~%dEJS5yQhsi3o_g;O*hH})L9Gx7 z;-|z<<6!ROE;|KMNJ11~L%sLskG!9sm=QO*iO&uxz|qKQrv_UGE6O9C1Gj^ubp_-Y z2^EuZBMWx%eD)s3yL#gyL{zTAA{)ncWNFi7C8w42OVR`6^T%0)o91oqyk&UFw@O&l zTkI~gsbZuvPu*)h(-zIn>!98+${y=6H-6#97kKsHvral3gDbD;GM48Cf015TS_+Yu zmv?DfHTXb7qS|N68v_g<#3>*!mgrMjy)Dlz)HcI~6&8%?%XlGCzvEu9rx`EU7XSF> zWH3}@{GC$jy!Hj*U?ki^M#zW>Q;me&Dlc>yOm=Ya-H0Ga%v@%fO7FJZ?aHr$^`SXWz62moONWWfY zkKCra0;Nf~eCAi>8i^Gzx~}dMt1TDd98G4G55guRSz9NccbY5XuM6z_aNoXyOnIf}+AgX5u`P zFoc~bM6`rjH}&Qam*)^qm#@uCi|EiGkxO%0QQ*lguU zV??2tt0-(L6jy#f80;ybGSW3g_oF3Z`U)Gyo;*uje`xn4d(S7~b5anb;BVCX%@*$5 zQ5ef8583^=6#;COv2c9jx7Ul!nzJ=^cjUyAf;p9HS#BDv47w<$KLr}pR*vj3PDGFl zXJM%S1ug+WQE@T4fPlbQAU=mC zA9Ez{=oCHYkhwJ{n}FZ6ZB2OUlK8!U8Hc$jOr?gXM4g7`4NO=*%heffPeftKvhVA7w07Nhf`2NH$kGbG#Fg%U%x&9;2I^OZT`o3 zg)J4*>CDSLMKK|W?^GoPk-p3{K?{@4P+?j8<5gO2qjE)5^f&!lJVvHIoiD*VWsLW+ z$#w+&NV(Hx{a`wMIepKzKFqENDY76g>{FjZOKegHJv4LNJ>v3@S>KfKKp}M82SZN9yfZNI<+&k&Tj| z)mD!bD9SdKf1;9>oVs z>FRXwbB;mL2+K=)`!jGyG6d?LC!?gz#;D7BQ=wHi2we_3mmfLKfw-V3j8QOadBLOH1ad%k8B*We^*=GS(TOf zJG7^A#i9^**q1L7L?&~j34yjME&yOxB{vXg{71w3+d{pyQn(@YT{R~o{_;Q(X(@S8%VSD zFb&Jpjvr3q;3i$Py;VcuXV`^Dl&2?CGwsyIOm@r5*7Ve-d28?F6P~=jJ zJ5rYU{Hh@`*Gx~b7MNK~gMuh?b+-U0RqGRqv4wS1$|B?vK+E`Bi z!iBDsM{Ra|-JU^%)d#2@pSQPb$}hh#;N6n|U#1&#?y!%$VhpwdDSD z%u?=tUa!f#jZRt5aKPt;i<(uC^!E=@A%l(q`uhPaaYGgKE${t_SnstS$J0YVaVRb> zR_gV2&&>Pg}n(d0FGnHTJ^?Mj_FBV~wP>K$%JUf$1FJyf4f@T{7FpQh8!g91d8$g<2yaQ`A=67qHMH2UdN62olV$%T16xifYN#5R1J>rH z0I=<9^(Zh3;XUgOm@sX2|L7YA0O002t14u@;sxHNEkK9)kx%L}IF*!oL1=S$q} zBJ5xUGY&YPb6KRhnu{REi%&OKp%160z@1dhspq5^M3Y{J#W4K#3J8`4{vPdU8YH%n zC==6)6LGdLM+4=<%72wn9H6HXOF>4Kk>dzX-O*f-r*YAvCUB$Xa5YH?V=L%uLj*Hn zirC<)EuT=@e+wmelXt3T>gR{#xg)>$L%(x-%Qj1psQ{R>wGR&t;8Vvu68!BrUCdyT z%qLDQcngVo#R#3fa8;dy#(v`exN0`Ly`>*LG%n|Fe3_mqlO&*$Ag8gakCr`wVOq|r zKFbd&$RB=Oo>YwcjYr7yr!ZDhbZ}we%6A$z4Kr2I5!t_G zIYfD8dc9R-3Z0x(TXYbl5%=b09ZT`=p0uJR*C~|wYPI@V!p=xN?1u(_aXE*tpC2Iv zt=8|-DJ3N(7>Xhd<>luO1&jbJL|E(k<&EacmobPvIf5Jl9L2){8s*#9Zs(3ji5wk! zk{GnJvlFdQwC-~s<3soQEei4qn&P<-^1(ACYlA^Rf&e6-gpv{#xS${)DI58|f|eJS zR7Hg>9H7IPL|i!l@bt7Zq0mh21x!a*-i4)U?_dUwo@HaEe4#}s2;Mi?ZHF;8w zp_&UF74G9*o}QK>psTK&WKGHaNxLS$IN=)Y9Vw|%y=W=({Lh>FPkNIZAp~@h zQ|~*9HGCWC=MEUh>S2#m)zmg`uTS&sM2lqhPQ1xd7aeTKs#1$>tG-nvl$V$@(DZey zKwe=+&OGJEh_u=8YJ2h>+lF;BIwC?h5c>c}NrP8_N?ty9$eV{#wa>Dy`+a30kxVzc zG6uVm{bmNVL+e>SfhXton9!5=!K;(pcFjle$dFv|l%BR>MWW2|U zUpnpdbz}~{45Xy2!-M_*aREw7rk9s-KFz)bn_ubxx^U>(het1`zcbG@vp`Vb@!k7w zAq95BBgC@8B=W+;`(K}Z72=)4Y=NHr;dA#hv;WQ?PxA9Uv^?jXBnrh`F~2=5%&3s{ z3lkAm#)J(CIr&r&4SFpnD#2Ly);EG~I=_cNCK7a6Vi>M^IIk#i$d}O(TWOu+*tPbs zuG{XwMZJ?B25It2N^fUqI#V2Semrlh%?%QJ&7vl}7 zJ|#BTk#<&a;lt`FL-Qxa(eq@F2@SK}P(0ly))k0{Dns7~#+8>#>yqAWj(qk`p@yLm z6Z3tWC)=58$t+~cFmQi~FOXk~ea}eLALS?rR%PJh3p$W6Ty9+$22#{W+#`9?MNOT8 zu4jejIk6V>wEa>l>G5GiLPtJ)^8KfMuTGZB0#~%=Vk-P~&Df|y>GRv#sKuwYKzsQ^ z1E*?7N|S`b%7m>ru8SwgNJ1LYb9E&QSlx+VzKDXSZH^=us4XuR{DsjCw( zBq=H!?il?Ijtpt&8{C?$GWN~`>hW5APB!ifDolcgC0rQ@kvTfp-zdPL@lwnjNQFZN z#pr813J__{5xZrPFgw-fj1gH)93Q0OiGwXJM}^*Xa_NRq5Sw+3<11)4jwNf=vl{PC zCTw0Tdlghkr*m4#4_v8`gb_=}sYLRLQ=+hL2b%MWQ1__^o?}RO4M~uQoVrgNstM9k zP)Lc>nraAQoc+8#-JL3`ti%PDtb_Scxz>D#1hV*wi&~rLtn9u##Y|!8R*XWI%2LAJ zA&tB)ehoL{T)3z>ecjoW!^7njRd zt&xzmt%tbpbqg<0ZoDZ{i>((MUoVtUY7L{Ozwh{VB5X|ga?f>%VUActOf1&8&1<58 z0<<+W36I1gM@L7QKl!uAjNZ^syxg2FkiEJLdbo^RMrbquCTtt_;`6me2Fee#cOY%N zo{EyP2M|kvFg?5Z&+Dv6z|jIM8!S>%(#0mnY}nE}D;4kwHA)$JBYFQm4mFT{Ygd^gF;`|!h25Yumplf$XtPO1t3GY%kEs|B1BI{d4ctg^)Zt}po>r2<8 zKQ|gL+MBlNBRrObQ?1^WB--BK!CMvy_}?o24v|Px}>0+ zV&k6AZl0|O%qj^fu{+D_j5ZCtMBloXV?Z{6nl&%Qp+%1MxDyRx*wkyke(zI>!Orxu z{viTGUOWH&gAI;MG>p9B*WZBf3oe0tu4_I{!A#ZCB|T@IJ9uHwj)yfa?{-XpAGON? zmsmrfe;hHNcmZ*5(g<|Wrto>PMQmoz1ZLBQl;3LBZd-|LI;-b%{I*s6in$m?CKQ7- z7}1k23d9*P(UioWmZVuE>CS~0RgB(EToM$hC2l=}+C#)RWO%9RHA%wA%&i){qO7XyB(=+eW(E%6FPW(IDb^5KgIkNH>z_@D$9aj}J8e-6%d+W$VE>waZ$18JMUmVpco4!UggqJLXh zC<4~6TR=!MaGW{ik5SY97aP!I_a9q~UV@;Kfq0=G!bcYXU!+E;9ueAc#GVuU$%Oah zE6E#!v$M1Ok`fFAF$P;<+79uIkmNPb3b6NPTo4QRB*teiIwpX5L+{Zg;wKgDGUi?( zyW4!@xxIVty}QF*gwn%{o1?Z{s234a*}Eo*DsNz3^CAYyvS1nh+2l2IV$ZgDw2eax--rP0_4*`|Uh>P6w||{}Ow-gzG3v ze2gk54sjp-GQkT*DsO`tC{_IlO9pMzqDra#8Mo3GQUhst$*xnI@!>~Z4X0@c@`pOWvf&%qsBZ)%qfBit(7XNhzCr8P;;E`HhEi+TOdV7>P8^4i>+DJre3><1dt zu&k^syq9*!)bamyg{;8<&B)EoZMpwZ`NLV$k8Ty#zIcI#pY(h<{w{^(jCE~SBI@c4~x}9h9YL-JY8_%%4K2_!=Zx5`2BlJ zdr3}iZiUycAKOOuTyIe3{Gu7`)_3`_b?#vKbU}DW^_ix-s|~wWMt})_NPZ~>vHuRlDQ!CMr`3+p=!p2+L^dG^#ZwWX|xGAs#-(F?;3@5@kQ`rC9j z*252%_|nmLj5UtFAMkPCX5d8yDPm(OnhQZgSr^6!l`S&4Zbk4DT8Ah_D*7Vj6Mr)5 zEMw-e?;}QKib|c}+yCcqC4k#CQ1NyKBedC9-xoTY%9z(s=4sJER`WYGq@o$NAHD}% z2>ITmj~Hkzz+R$20}vM-Wj#I5+hGK`x6C*DBzU;b`>ZUEe?ES7ydo5c4(fc=Y^zxe zTE5<0Z-Z+%%95W?6~^^%Myo2DZ;xzIc@)=uD8+eXQ{1R4!A79G#IG*1itO8A&D3L` zmyV<^BH>%&3M}t+d*9Nt*jTzOaoIYu^<50Q!F7Di4VVj3nXmw>1A-A|`@NpD-9}+* zokaA8wP%-ixNs+^=l?jQruS`OvWS6}u5N!J z9~AoZz#C6(@Mvu{hT4!i{$YrTFl>VtqYri#B}*(d}CZ1TqdsO|#LkbFcBOqK;45_Pf9Jfy3dP z?AH?DVn?ie9+q|FaP(;qXPaMMzHv9?N&^`5N!scdFf<^ULl`2Aj*ZQH|NdqD9VV}& zpD^#E-laF9uD>2`p7!?f@qWf)Nt?$aQ{A8AmXBa4Q|w1`d5f0-+@|QvXOp~Yn_4R@ zbm!8l}z1O6#4y! zH555kIR>5(b;WfNEELu%pQiotcb0VK0~fyDGUTSq9-X zLSx4JAvLY=Bjnw)$^%pyQF7I%`h<@cypN-+N}ijNx;*sS+gl-C}T2P_X~ifq-|_ z=MeDn1I80(_C!zR|d=&UGa!H;a|j{dS#L6s9B8dWSJ{ zHkzMyoBr{f@Joe%>5mx*M=WtNr&9EQ<+Khq+%l4>Y~2UTjS6O_kI{H@`a#spMz!UE zc%koLLSn#@3v9^Q2B~KU``*J;CTvC@l9?FD68o(9LC+F8**Bs^M&d$7AfO;0Wwt{PUz#%riry7n?_&dR0J zOsK*8cokD~V`LRWQG*0m{wGIx*hVd%YYrYqj+(!%A@%p?XNGf^NaWQAlJGDS`2c8 z-lF{|;OMbpC;GT7fFek>~feRdTdoHa;NbfY!4NHHq zj`0KLXf#N@MNIJ3)%ZxqVd{6z{Wc8;`;6gIWTeMAXcDl{T_(0{@j6&X;yWA46pwGe zmP$rw`H9DDa;zXT&_q`Hw}le8?wPOK3rk06Ww6@m``U_en>g`;+@&2=`3^zgoiUeT zJu>SsMJBen89Z3>48L2FG;;1R*fUjEQeFp2@K-V1d${-4<_QHc$d-6iO(e!f+!*Yj zLOs`GWNnF(%oLV9^SqRM?%A`m0vMN)oLyGrs-1#-$17v?QQB4-hWqnO64HCR3V<;r(N<`-Tb-n_R zV}Hp8JQu-V`5Hp_z^QO69hVsOq&&Q$=PZFaO^&Yz9E_CJ zs4>B4D-$~9v>0ZKW+W%Y`7Rjx{%@yR3`!2O7m035cWoJVD~5sQPet=QD@zGgL9+L2 zk}%)7M6h3=&>lqdOPazkEq*+8>~?K&A|8e z5#``*Rtdu9We}kgLu?ZM>m#_iFwl)!|LcWiAWU|L+iz~KPJHhC1H0$|VNXg)3G4g! z?{Q(;|K1Jl%yS3RKFou22cUdf8kvrc4#nlEE3%}|HhaJ9bz`IkDV{j1%=(#$Oj5dF zs&q|F9SZY=yX&)X=x}|wTxeJp%~^i1$jCc^9xID<@%*6M=gozc%8~`_F)?pPAh-AQ z;GD1Sq+M=DM<#UJ4qR^>#e~qYbV$&_Z_*8RjxS%nj8i)GfC7306R$X7uZ!EJFm!Td zNXI~)vl~XHD3!X9L~u` z4dOW0xlPuLzWVE;q=#0PQM{GI!^yhWfVi@s3Qhk$-~9L8w}qHSAu_7YdW;N=wpBNQ zY7pchSIT-nt!?=@eVke2>0~TL zCT>xKGtH|Xw1bN-F0vQM4e|0y0fggY{S9_m_KJh`46>T_>G7nx(wtPN@~})NbAGF> zGme5nyL`6%!b#M&*8zpgS}qwAS67~T1qJ>p7_@4?)>G_I=XT0KCG0-Uip&+8TYN zIXDN9ZnBZmiMyMB_~L+5f}$Y<-^$XOnrH6r4SYR~IgQWZRPx|;1e;_-!{yMDvfZ^` zLy~uE4_^k49L%9I^w@4%g7Z<&=lyCwp16pqydd7J6Sk69$~H2l$SP;4kj1t#2rb_; z31&%)$h0=EdwJZw76?5o{Jr_fg0F`@ypORVBP%A9Q=7G_ihU6Cs2%$UrzxYUA|6eA zVxr~2e3in1bQ68}`qyH+_LHAT7#Oe4mf@?Rk;K-=q4!6=gfcNG;-uW(9QEo^`f7rL z%u&z1rIFIt%^Fy@h{;ovu$XiOwl}j%Ec(CQK3{(xVogCK){Y}qKDKb~iM+~mn_JDz z#?7jeh{?#;@lt=oWwSg+`8Rt_@Klpe;R*z%(CHdO@>iSy^k6XR-Q};WL~rvO8r-Ev z(xIWB@_eyB+^p;#gB;w=1Jegz&>PURB5u`?jGrCngVfISNs1JAyoXk^9=>x^ymD${ zi>2lES2hB0cs^J%_h5Z_d(SR@`KAknd}nvHnUFqQDov+D6mU@LKR1Oj%i|UE`Z)4t zbGeAp7^tFu>Qk&zJYaNaEk}v^v5Z}_@cJXU)niJm!nnFRsDgqAh;Ac$S(`X*A-EAB z^u}yqaz$}bnGkdztE+gi1ECie0M}jmkb*8fxYQ8X?r8&Q=&_EBi>9?6dYdc_*%ALV z4#?7DabGcNW~ei8$dcm)R8i5p9h$l=_;#77+a8h8v^nzhCPx=!@&cw=92(=h1>w&?_G(`65$%J#DyV6iB$~-=pHk9a< zlKHmzL`1MYOhtA0UE1Kfaq6CDXJ$&9n$lIicnmILvRwMZrvb=a_dP)}NkW(Tkqi}} z0|@x4KMs?&V28?hJjPEa#k*PNuP)VVGbVn%5q5d>EHoBIgC7R9$iZzlaaLnR)t%!N zp#&T^;*}M78H2Yt3nt5&lG>6oenVyU7j^;x)WIqk;aO9Nh9JWUc; zFgpSZQ48?;;|T7cN_mUM2tC|6wqN&(Q6J;$5$Mi&fVmb*#DEsK(VtM zNMLVK6Ym3$D|15s4_z32HwT{D9K1@ zjk961RiAY0W-V)kD}1)X3BgUD#cB|FFK074D9Vn8G!GZD8_!b7FKy*;)qRUY_t1^J z$a#u|4?}CfqLmGSV%W$4t|lMlTb^ancU=DXViLYCtXayZ%j6j*6ZW>YQXs8D?Id9T zoi6FUK1obTNU>dpEyfN$=J?~%`YHhrZ68=)sVHq?pM&5l-1HVB?yb{kIR;^{6$hQu z_vPhXrA~FpJ2)_O=R-scUoCgtE#sy76VM0;2i#n2L`mMlkaCe0=I1wiFzNcqyRHU& z5`#dZEn+zaLUWf|{s5EJfuq1nG2mn6wmNUzO#?s=;$UbfqErAD2ixPveLz_Vs8Zmk zkw5wy9Ysv>i>^1~M{I4@@6zhZ(3-E9u@ktF)>3f1f-*?2HX(p2A?ZIT`%9<>jG5zl zh}1x_8}J?0(v^gwueT4~K=1#L@q``5ANjX%BI6rEwVPEHB|cbg(Z^_6DcOwsrEc1G>+4x5k8 zN>IeEyw@mI!$6*=tnC}JbG%r^l&Nx7cmoS@4mY_i2enMm4f1Hc!x>Szl5_W&-PRxn z9Y9YyEBP~hlm@3AD8ilqZmkSOo^h^&N=UEg@-NrrNwQiWdfjBE0>DoL>=#g8Pb;fl z#OkLE_-sC~BO?y&6$a9;-z8XTV~ACNSCQl=h&jTkgRJX0dTC|A6e9TD&6JtE)q zX}YNt5#o+}_X~y+4E_}Gq&z%4D4MwUB`@R{LV)7|Bs6$_{zXb!8Ux|R`VsYz;t`vI z?+~wu@ZB@{t29&?T5@Ty`uNfmTMUZsTz)wRMb`Yz!sn?OgH7r4!=LRn#U*8E&*%cD z>M?B%(w;!fnTYss?X^Ghrc1~uY4M7Z@t21if#!TyO6e^QGqaj^2fp{p3t^fxpVzT+ z41mdt(Z_4+>@4&W0)Z(q$)VX0L(nWT@)CL_sd~>mNWQa(d$7f%DL|N`MY2+sjmT02 zeRk#Vi>0LAMGwKE8FKJhE9d7jO-&^nD><-jvlLV_sp)*)V2&yWi2Ol~DKQr(=`)k6 zf#PGxL?6pc9&osRciq)>w5`eF*|ClVgUsQflXr*7=f=h=!$xJDlVf2i>237y{hb$hEt}H#ibU2)7W#yS7z$dw+8@1PapD`AaY4^a8*&#IiCF^u4vQ zv5BJ@_uyZ5Yej4c3JPG~zJ0S&!7#;7O6T=5N9lW7bbJ|a{=1jyo48Gulh<&4oC_Pa zl8#g#nv%v(N*!&Ih?3WDx<6wCs5h@P68I%JOzey7V>Fg^ok;+OHFrR`_N?aBGY=Wz z%@6Y8u+RcKVHz_1Do#!^;>{Db!X!vcY%IXv3)raSl#qv%6q)*qwYddF;Hi7_kCn8B zW5##{{-! z60&4}?We)&64y+K6YcDj&>)Ebj{5k(OSNaCFUl2Y*uc-gGrUxWtRuv_Ko*0ub~Pvj zTvCw{fZd1d@mI&`LD%UB{eOMl7!N&yCc(6xtf~C+`$*cBaJUQ%e1W%NxE?pFL=z0Z zfB(9Xkdj&l=vED5v;6zS_q9k5a<@AKtLn}1ZUBx^XhR{pK8ub`xP}@V+uXGL}!0iCT|mmOR+YG;+mv%$MTbS-ovK*zp^cFhAj>Lq79_MOxQAigQjh3 z_W!s5i{{NswOQq++@)NX>+03c5&f)j0cHgb%SPgq=mvu>^r0bA5Lu-qeIthDbd-n= zJY8>Rztegw25<#|^%hcaLPA32zh^=ynM<9b^Y5WR&j~(jp!wihbRq;(6mT|N2M#%S zh(e9nlOX5{W!j%yfWsx&Jcjpe~b@IW!nkt9n(?Y(VBhNaAWIfjoEawy}ghG?}0 z?kq210^s9uQ%AL4gC(QpqPE^!>L!8w65)n_a{tR4$jYK}SgPNN5iO|EOQFuMAO@RP zAoIYvkiR%PTL(zZ@wLAVpel#T z(gSh%fU3}HI3oOQ&=KKm1PXvezeSxuSt)rf98q!sg8>m4i=gU*biR{+2Q`ee|1%oN z-h-%nZLlx4qDhg{gtMq-QDHeicF?FAO&>`bHovQJnEA)w2& z(|4OU@4^+4k%I0A2+R(Cuo&|{!ZY_U!ze<1a%`HVz|bkW9G_J}advLIK@MB#N9HRMsB~AJ|vYhC+Fiw#(M3}W(_fL3pZ?>$U z%l(GeOP47}y`rzXd2dYZYv}{%TG~D7$(JaQdTE?hs0h$xC|U(&n{NP`CEXF_03v<5Q5?ZY$^%?2n1|m7CZce5ag}b z)vXv&_>W{iEhtpf^65&t_UwVXd-tdH(l6SC34dUf0I`aDe!S1CEJ;@MNL z$CnkuKUeXth9Ay*e42@6pg9TqR<%J?_xF_HD6Q&kO&&U1lZnQtv)H&%?h)nXfb=*h zFI}FFMcU#5V?;?0Mgw44s_Ks#}722#`8kwi3h; z)pj>Pv_1GYVjqEv@L52-2L9WObUn?T=Ujls1hkPoJ<{zL-(L&6ZlbB>iN8gRRKTf8 z*kccxKqC?g#Q)>3o78IldjbrE8YI@x-fw0~OTadk$ToPtOQHrn;NGG>$)LsI64OCK(mj{(KmPH0 zo!w+Duk@S73^2S0C<;Yn2)-`B_U%C2G@7QSUDA)a*1M#iH?-uwCSzRz>c-uvux z4hDe`n_G#(?(GmN8`6*B?LL^Ho2(Zy?tq+U)p?6or?f#hUCQaW?l1ezPV3 ziL}*-#KmOA1Rh|%{+ueeFZK5DwTOVZXNDam-76O;#qB&L;I$Qxa>i1uqBYzfX+1T&_NHxhYQfYL)r8R$}o5GxMeN-S#Uy56R<+Sf5vi6R{BJ8Y( zOkPD+?lFi7@arE>_z)0Q-6JN}eue8k-85&*bD4H$VUIg!KE5}ORjV%FWb~nHmzVzY z_GuI6%}0_Byvhdnek7HhoxKUFG>P>q)s6}gAw3EIx4ot&;qA%7G8V>awyJE*(S&oa z>eGU#=m;?vj5vWx6`xNw2?#JyEhUo3tmIZZ(403gwV}f_SXBT6Y~oe<1?|Zn~TPS50>8VwZ?eY9@ESh)WEwy*P$MMn%4$QUtUttbR z>h=vwM=KqG?B5Y+7`^`diL1ca*(4{`cD*TBj_9)|SCA{^6fK zmeWkLlx}=G55xM9N*5&_&UJ^*&T$u`P~s*X(&(d;OSy}~SBfh{3x~~TER*)|{y3m^ zbT4ysE7l`x9Xdn}`S(`cA9haa9go=z4o%41<+3yo>t8z{@u+k`$zN1(ecS^?{6`kY zmMc{JXxOWR8;6*=SIPweQEd+tF99JsA(Y*{>%P$>2&g4&5jPrrp)^9({Rnq6$wc%c zCK=b|Wt#a(9HKFocQc@C{&~15DNZ-2gOx?p{AUOV;QwmoVw{nMBTso3YZu$=ypHuL zP>BiGINmE_Zx=qm71dtS`r_@y`9bPqTIR9mFJ9?aa4z9AHSA+lYv~V3S~yb8E?qM{ zo$^|1YMGYp%9-#h=d#jcF5Hi99qTPNdvt*I_U-C#uWOl`=3gfC!0^c(Ct66h!<}U9 z>T~h&(dF|}eM{+ae_iUBmUI5P;MTr}A&DIkv9S!mq4)MM(g~%+v^5`*vy6(ml4Iid zw8ifEQT}CTja}>H31u)Y4v`Vcy}NOm8tEZIr^>tdjJMHa{tG2mw1!K>zJ2PQ{#vWb zd!*sQn-SCN?K?G7x*zzu?vm4`yQsr-FduB#cFKV6OO zvWG*P-Jt2R8_$O0&EBsv4wGSGo}WyZbZ?REg|HO`1P6B%N%4Zv_d=_4L4Fb(4BVz} zK@XL0FN(2`#m$VysKrcATMo;ec^p=dN0VulPn*@@)M|6NL4cD}QvNej$A$m72U~gr zS+_hcFIqjaE&PL9Gi}M4)Bfs?qOc-Q&CQYDdFq@wvs*bq-qFFZ@2es2q_9If6A>9^m&JX}EO%^IDJmt5HHpSYIAVY+S2tBx-w}62ybr z2~F9>C0B#)D1td4BL?zwakhY6W#;9%zB}S@%Spb-t)&t?`_?}{Ego^Yg%DvoK!(YTLp`yNSm9)06?qupJqQLL0OiXl^E zqN0BCsh7>Uqq{X&<$g!tt@_#}c?bx-(&yr1;(p-cd4SQ0Gqv(+_|!p9fa$$=4V8AC zdS-FP+3-(qnuXnm%7MFAt|o_H%lCPdC_}#XT;{>{?70&&dOovb<~O#LHq;B+w0pX{ zYeGJ6UrsIdyw@FitEeD}gYngH$N+~JgtR`JlRFsU2Oj*(AwYDusM}L3tmL?vD zG6Pi^iBvN;G&16SxE<3<+eSwP5et|!12O0D#_ija3U1bBW>il86u; zA)Klxli<&2GXx)0a(t1m+S1e`<-AFQti{%=koJ)!)_6`bs=F&MjNm7}2Bp z&y}vOtmZS1;XrhT+3|sSo9||BS?Xgs0Z+$zn?H)3yB$&BmU1uN$$(dPOZRfWDMy+2 z#ob;XKg0=7cJ1oQl0Z%5q6zo8{KL1AQD~%l=Ueso5Gtyi;u@n5 zp3u8e9x@k{lyf{1RU|>edE-5BN?cE}J}>WgX4YVIERS?B=lu)UD{hxMh_ObGq(4dL zrWd{!@heth>fnQX_p>$i`VD0c7Zn$(E^X`iT2XB)L>An>O-6yg-)Z7GYfi+sLrxA+ znLd6VOkPz5?+&v)r@;m~0D!1hlUnFSH==oS+aWV}cA%?W?`+Gx@P+5MR|9q=B?rTh z(>pj=`QY;!;FQZx>uttOI@#)^&7J58r;2E1oK3~(HC}*VZgLr9*V!XPsY#G-YI-^> zOX4lYie{~QAgj5%(hypNxOn`EqKuf=Ta&Aa!7Ez&$;t89OBp!vnLCcTCscG#kC6x~ zy_k9*$96BtdtSVAMw>mEHy8QK_iWu-luF^Tclr@eu{f_QPgsGwu@h% zz6bfqywg=yf@jK5;Alo&PrTZ{zDr9%Lmi9Pwm8NaOrQPMt4#-2 zU+3+2tgjU!6TUKRAAT2F^ZglZg4ywBP%LH9K2ce@*UbFuNQvvtcgkrTUz5K+zAx)F zUAhkq&p?@k11BfP+2r~1q}soI3qYub$19{VNN610Y$;^wwu#7e#JF@|26pd;6)_kQ z?GB#9U7f=us^R0lH7qs~9F!f?H@AbYz-bQr+Uj26T%XWn*;{s>dzw$nbMNw#gvheR zTc4^{hW{E-m(t|d4Pb6t28`Leckga@;bjty%S?W~!QEp(wm4v1cB)rlKrjN0=_VY# zjGHhi$#g-Zqd{y=^<(&>g1MXr)Eax`;&uOOFftnnal~?kTxrJz0e)Q<7jZ~z=)0fuU#ls; zu-nl=P`+jNuYbYn$s*_d{lh0$(B4Ui{Y*?u7cP9FWav~v=nAb9bQ<^$1#B4j>C&nK z9y8`#GHD{+sb=r|i`i&e78cw57l-2u3U*Csm%TqS(P<#HlRMGA%7wA{N^k7QP;q*o zQc2LOmz-*9r%{6h2L$7B_3+SgbDK_1oZQFeuqjMr=e_ne9~tkPbrqCCJdRdj!re9J zr6e;X7;gHVnmf=>E@bxBDt}cg#RfAl+{WP}YO%uJoFZ2gqx6+S{4SBJZAXS_>Lzpi z%Vt?As?g7z67K^fjN=mKLkVhxqcS&aO23&33KJWA5UaP4@1k|jt#eRD`@|wK9|ITaUFQ3lm^G!eUbsvqJPzG&^+htes$ahcU zq^HP82meLJf4{x|nI{EruCfP%qb}lAFqF?q#96Yk;s&&ZOk~$K#JBG(6$qb)iks9~ zVI64$uH*d*jGq4={cif!8gyS`e5NNl;ExmE`=9e=c?&R179bo+T zFxAohxx)DCzssgyc@a7W%=*tr>KGPozHvnHY&@Ey`ulI#StY;NV7*Gelqj}EUne{z zCGPX5#H36&>vN8hCH2m;Inz6tXd%lbp*!TohBX%#tP#B3er*fFMM><9(jmR`^ih`{>6praBv9D2ucbmTN}Y{ zIbuf)G3Dn!f{Q&NfB(&Yx?p+TWl(L&n|reihsAh4+I2UkvA{d6-0%HsZjTBT z>f*jbR|ijY6cqmo%DsB1*4V;5SH9A_FvDnI(5vsg$>8`Yf2teD&4uiktnN=P)4u2< zhdvUccsW_~*CAQlNBny7^|gEF1Ry&BD4d&^H8nLgHZ~?5J$kg5&A+6idMtBZUdi~^`6DC$eiUMzY z`l+@Y+UisJc<+0g;^8;#GtQ4U5-QA&Zg)rb?X^HUE2YpR9Ffg!mNMD4V=o`SaU+LbrZ|Rhjl-fEv9A0M~3bIy|6=5J< zIaMZgRcR!63uZ~TVNc7&`kaP_Q?ouZyh>h8@7|?;;JbJ5;@-OY`ih2k%N2c9ujJ#8 zGtP9)RJ>`Qf6Z%!$aAx6>nkO-TCuRge1B)>6^cZsP4V-VYfLgC1sepB;C|2uX4R-899|!vwu=6 zHC{fwzps^v<>hi%T&YG==$%`nYpWo0EvN*1cBRaP5D(YWoW3g$O3q+-2u zx23&ck@mps2iv}OsqXQ?;*%1)cSk;bs$^|#{iMXh+q(mfyd~K6xes+I?c7O^yLkBU zVRdb7s_}^l-|wG~aBSWBJ7r%|_m`O1*zo%LgP2cDv2EKn+`Q)Yb{Y*04VpljHdYCe zh|X0fE2Kujg9rKG>(@SUf@hCS4H+-SgYV!LF0Q;EFY0oQ9Db20{nX#48%?y&nz!ous(9+V<*PKZKT^v=%-uEgF{V_jS z;H9Mg?$r@atw<-XCr>KXGmZWE7VVvBe)#63tglVerA@vtG=6>0qi7@dopHv-P{Am;Yxd3n=K4mI@iC)$Hb^xT5=IWR>tfl zHK#5P&$ne1uz>efs|pEGKrK9^p+OO!&D)A6v?EHTtQNappX#SvyGFsE7#$Ns=XF~~ zM1%^fKn}iC7~Jlu)@$TIa`pOygSEum6Y1>Z^Ekp~$}A;*_HwV-?QRoG%b41L#g-2r zcp>HMtZNkHm=+ixdq?g{F5zj3J^5?Om3L#$NlfjAQ!M4q9s9bQoPnSGe`s%!l37e_ zPT?OPbO?G}U!S&iHbXVq$VNABUqeypiIe+HOx_Jxnwp1fQ&cpSx%Bt3iiTqtE&q~E zXk&L-KP?6Za&U0KmO>E{60$tcFCY`UDqY;_r6SY(DpU4fY7b56 zNo8eaO}IL;b}dw1?G?^l%h+|+yzr?ueq8^K^`7X+NNS?4BdUMP=V?b<8+x!u(fOm2 zX!XRE4I#$P&Mpj^fc={XM=Xiek|8T!>;!fkiKC?sb<{qFfomb_Dgi$YaKKKSJjuqx z6WiH&7_*#d+1S`rY+9FR6wGPK>(dHe-V5r6ZhQtW4D7@dB5%fvN*!8O(=Tpl;JHJI04rv)sKFgO2AAMIh#u)l;yLrWaF6y$$pbPS zTS7v#wqcO1siTXFmIO!3$jIr%#od1Mjzit;5ux7JJ3cCuOI=M)X2*r{b=qc{&q2$) zy(ykoiFNyS%wcDCbao!UepI!2{Mps`uhr}Xh?!-rusSk&3}Sbi#if%8wF}P8sx3Nsa=f_y7Ttw9i@k+ z`9HqcmidwW{9b(gChznm-u29E^~4FsGhtS2_C0j|5!EYAI%RkgZ{C=Gtnu5-&(H63 zuJ04QB2|=KbD31X{uu9bgVU)7QTOg`@BDI>ii*nhVK63I`l2*-4?e%A-Xl8t`kT>& zu>90<;bZl(=ab&(Fsjf~r%ok3cdWX!w)g1-EGUb1i^KJKB_)F&-e0jZA?3NO&-V*Q zWUDsnKklo-U>j9c)e~v$pRU$joK@I*McbN)R1Uu`J4Ii3O8iEH}@M7)Do@U3T05>!QYw z?q=IrI?-hRlBlw*EVf@v@A-x%dJNcDWw5}pROPlO zp9~0C96sdlzjtnKZggTI`gs)H zo5&ne3{XnqSi*U+b9avwxcv88?feJt#%EcFuJ*or=f;tLM((c!sXu$e-~C!4rzP>HYznL2o3TN&N6}*zC ziH{^O!#f+Z8~xdJ515ZX52Pb3PbR6=rUPB3uxadI6^^}L$Vv~%h1LY(hJ(B;br%Rde3OG!z|Tv|PkQdFAX`Ncd%MP4g`Q7w&!_Qn#yV*ke(qvz>-shFgHO=?=@zoFrrfFzs8v=erh-!AKftVJK17=88*p{9Tz$x3jkow|eaCt4PKO%>JDPx4XZb(0!E`K~hamM9jjMhU z^ZWQsVma-fj_>2ZCiU;%ze9nbQBzYhNRgp1{I&bzYk5vlKi7iAf8~<(zG=>hD_0}N z#=Vpr)wcX8PB1HQ zU0ecQrFQIo<8SuKU45lAUexcnVT5YNdr2QTeoGG0#oP1|YZ~>vMLUnvM$R1JoLP=I zEHd*W)zjvMk!V%$J^{)txAh*({a;=HNoD1?4lPuYfkuy`<6kt*i0EcDy!`3JMI$OI z3d?h7Vj|1Ew6ux^Z$LaEO<=@QFbW%%j~t)p{d;tXjyg0*lVWr#(=vEb$aPAWdy)X4V`a$gz6b&sSLLc`06*KE?nC0au$eQw1${(6M8E>(> z)|~EoievLtgP|MQTFN zaW3<;*!D!dDZ04$OU&P78RJWaD@egxQ3Kww>x+J;EfS9|k$86KLQ4T_Bt|<-EMES% zA5c8%=g;#Z;^I4Y?`A^qg#!V|)y(XM(Lr19wDyUP#34Q2WkvKITeeL24d`*}tLK^K z8=IPjW8hC

}ui&(B+Loy9zyUjZV-46Romnpw8q;m`&4_(wNyU3S` zre};weDo+hJKLc#Ag-3@evR`9Y%N<_IY1ZboGmB#;D)r&vMxmi|EJPpSL3YHLsoYZ z1#Jv=YU$|EomIW%1oOrNzn?w05VjEN{kCReDP&?=`yGm=dX@M!O(6@-ALm}Snf;q? z1{nSP`EzK;gpi;h32X9#*4L3ytIL_bG%hfk-{{ZG%vrgg=zF%}(4Sy|KU7CwUu6A+ zhN!tYPjJX`%c23_11Tz+q@?E@wp_P1(^2nu5~qG0anRg+EA}oCad7x_WMpK_l`G8% ztVu|aaINsTJ|uH(#WD9UHQFtAR+e#7l-=t2-*kOT=O$`;+FD^`_VxQ{{ zWo1io(Sc*Rbg}|E%Y=Q{%gZZ8#joJCLiv-YUB(v* zDGW(MQ#OlcG`lJ?bJ~$!ckRTquC=h02pAvS`r*S#@h=xqCHk+PHj|%=tfiEt zE6py4P{D3bg~?sM#MYQTW$-PANJ@ZaoD@(IvSy}vXpY&gikWtr{e6}X&D{9Po3}9< z=KAXDMh}u1czN$?{OcJLSu`6pLgK!4{$YHf-sSxnJW~t_IV;tIft9p5t13(@B^jET z>LDSjDAJBjPSWnLZQwhWZKa#1n%Il4C@DDi>H?Xu_3R=oe_{u9WP6ky7i7%rM~~Ps z<;~~p**7(fsJnvF6N85^+3W8n?7K~m`+k8n>nQO9kn!RkJ$h6XDx;{#iKO}r2)>%9 z1yDXlJ4^MI0>5!?c`QZu-$5MoW$8nC!_Rg}Ns%KWHr3VD>3k$JWX$^I6?=}Gwi8F( zW1gy4(WXthhi_xdUb)JE>%6VdwZlniX-xY1`hQkdnA~scJx(xQPkc4W@@KvGLr0`g zL_PtoU0jy$e6PRoLo6#hd*>JZ!%FySa+G-i%E{NSSGOkvjQ&|$J4b;V$T2rRA6?Ox z;$)R~V^{IW>kkXJt@r5S`CyU?E`P$2>taj`hh&6tuFFdz^|>v8i1ITzx9}B>Z5yW< zN%cyZ>Rsk;m`T5|_WR7ohD*GCIffC1g|kVt=AT~exN%qnlcYZ$*80`B(a$ym6G8ys zcIWfwVG$8pi91KGiyyT|REWOi87v5WB0Ltl$}TUrS5;TLU6Szl zFTOYX^T_X-mtUq5qeP3Yppw!y;cIl*!zHk#!{f=}57jq(4;|sNteg#XE6sSm{E6Ev z7l?cxlCbTWPmQC#8By5@#sXYX8YU)e1qB5QcfYSsWhX8{D^E3TAfMNw5S)G*%^yT3 zX#$3pB^Sb2Fj15_a0ZYm8qZ*N6N%ZCjO zzxdOY+SJluA2Tihnp%O|Ri+y*`td9)k&N@rI$ueuhI?O z=qxLnnn^ys^Z1FOZ`6Nft9da+-{jbE%$-=VCF%nyDGa@to|?6F++gE6wfl$b6L5Ik z@vSF$W_S1$7Zz$^spxh-zA-r89J-bxx1DOjl5w2x&PzBoG{u;#0gRy>=A_((?=% z#t5~IZ;45VMR0nkNkos6$6%2L^44Gl5ORvzW!3TVamI49H}P2I3;O*;h4{hP*x6ei z#<{$>6A2w_`K_DOwZpI~kx&69m6ex=rKNoeRnb?RrMnP(|Mfi<<$heQ3m5jGbSku! z_@jEr{F1s~t^q~Zk)dzE8Z-taaxWk+nfmXs68$Nl8n0K)Z~+3Om3kKx_DnF!z%6ciwV_$A1GW$9aoKr7B9YER_s>>anoq$DLLRN@r_ z=r8Wyc(@j$;+I?APQ7DBW_%bGAYsG`NV0VF^so1AzSc3Jq3~L7wld+j5yD3EI9|Ba_;0Q8@R1{94aQ93Agsx_{Nj0as%PTh@g$fsem~!>pkq@ea0gGT*KmD&P<;s30z zwt#aHj!UI#t$M9LggXkj6S@Qv)*)COh|v#$7cZVu1QhhLcF7M?l8}}@n%noby*+2> z<>-Cqt%Wys`N+>%4!Sz?EZ?k=3<9N0QS>lR@5|QQJRho)X`J;~iBA$RvZ6n(xEw=y0f!$>X+~3e`_N|)B;!&78P}RJG6r4 zofgnQi_%kH9w|hH%*WUf83kn$Lck=9zsMPaTd!6uu+Y{e)`15$H#Qb=^Ku%Eix6@Q&@B~Eg?j~>~~K0mG+@Sgn9t*hXDAw zfy*_A?&{U6XnUtYiZ0G}Sr~9D+QM3JtX;~Ze?R$7$IU-~{xm&*?q)1diALj4ow-gK zMh*tiz^OZL?21YwVF)QM-VL#kVrr1>7AhNlWPG%%rzcrm5aP8qa^}>OE66;tHv?(z zj?n$&1hn4gne9rm9cXT*K-4&>DhBKUZA8}VW0maOZ0*J6Jw%ZPu>$`kbZ`Hgd=(Y3>5JY4%9Utgel9*F|_UeC9o zcuF%Q{!HY!`xm})-@~9rbh8WH4;-goXeA*2^XJbG>*=)s_uHO1^Mdan==63V4hV&s z5*%kIEBubKef|9Tr$>(OvS73wm#euvAbP~2I~o>*_V4FCz|TU6o*g$CBTM?reh1t7 z`4sJ|e9>EaC;%=s$kmWJqY4WpEp#o-&7)9W#Q+r0)=>n~X0#{>C@U-5Zv0*8?CNR( zMs0v;`MK+aU*h|&|(v5`0~F?xKmO#HD+W&YHo$W7jT;<)F*`4CB3`L!;+u@epj1f|baHL+ zLwTz15AyTr0~S7_^blsA`)%EsC*a@c8%A=?!q92;&PP(f9K=mANR^|;Z4Fwp{qil4 zmF`KpIC9zWtcxc_X3aj3T^fWrA0MC51`&*7m_Qdn3s^FO6dON3GdMH!?xvBEkmLDr1QO7q#@!+NLn^z?{QtFFMM8@2H(esft@uFzX}$(j)(2C}k*apqcvhxu_Q zl|wdGTrdriHJU}>>u@#)T>@V}wE-RXUcmLC5*sZ&JqA?cl5X9KLM4+N87U+u$A0c> z&zOHlO=8(GrJH#k^tAE>;*^Q|s?k=XF=2dgq^|A&T#+~;4&!ZCv^MtB=-VuLcd~ii zfgk7^QV5C)p`oO-8{TN3v$wa0zcU=kEDNnF7*Pk=m^S?tQSd1{H)*t~_|!=VAT6z} z<#0liY!)3XEG*jE+h-KQAaMiCdwlwhF?m@?+ycQ%6u{k47#IN`h!1q8d;0?tE}kwq zRnL=t={GkqO^pg^_)FJKt>0@g-?B+btXWEot%8V%9^|yuI)z`%W03gmJUj~JTZ|62 z5^3?WN_;JELTDM@CUO%&MbpzqVz@86bgGx(^+0U(@%N9)&CNAZfq7sA~z+ z1zTd?Wsz@oHf$n}TmEOw!mx;_sF0W#4RN>d`j3r{+MeIv<`{^ONGHp6 z%gGm@9Xt`olJIH_4OtW>Kt{C^7wn%?7`*3JWTpEyUC?0QQjV{{-JMt}S$y)TvAH>o zw6wIr{R0=wf#pzr^r?%%b3W9eGykO1gTEhv=1-(soa8`)9kR2BBk8|%HJ#SJ zjEhL-LNLa}SEUkLQhQb zf~9e(c4VDd-NM!=Z1k-Lg`m*#62xf-$ZW(SPF4W{mJG?>!0Cs#@hN!&qxMCQt###Y zIaTkJCxW29ek(py#&=vBxqx^)s#Oa6<3-u&VL!En*22j;T-aBYTj9D%!H*Iiq#p`mwOntPN5h57imFtu!+onuX zQqn2whG1^umg4hdFK-0zAz455!uGFKkL?G8IDlo#%gd3N@y+B36z?~qBrktmpV!6N zxdnI#;C|en4lCaCuWt;@DJ;08x4Mf;__0dxs%{LW~%}}^Q zC-JFc4IiF*6Jo56bytAMn~&4kHjU+1Db+QDdf&f~#Zx3`8WHx0^3R_?flw3;?kLbh z!)|p*JV-+#DwU>1~0mQDCemtnJP0#)QHRvYAex)kg zr6z#j7XN4Y>D8;Fk`Ieka?R?sbTkYsx|AULQ-+Zc3-R=b+kpV`;DLzV$_yLdid-df z-eDFZj(B*$DRfx?*=>Td30e?6i|QXiNCQvWKUP;)+kwmyJ=siE?v&@}UBP2q{dklV z6l~k$xUJRUyQ2rKf_RA9J04F-Uln}j(D#>?mO^3uOAp`gpmy22>bQl)4wQX?$=aW| z_2Kmah3I&CN}=tpaWpMpc-kUfOvuq^O3+oa=7@no8`7=M%6F%WKcIc|clwzX+*hhe4r)^6U4 zQfi_0SiD08$myd5+k#@MUdxtEg^u#vT=4@350?ASpYSq`RuTMI8z607dMX~!)}8O* z#KJ-Xw*0aqL9`>Vjv|#lG<`nL%Y$sG`9}B6`e|ae|R(9z|N8TI-_nl1jQ#J(a&lN+wnKp&WP=Gj2Bz_rL zSq*jd(3d6mRlaOKAFr1URkS?}?|LEoA}LRmZWZ6~1g!=L98cgw$Fg0Lk|x&HaTk7k z{q#fSre5Ufkd?^79R~XPTEOy}nwnKP$*7w&V~E+&w07V#5b5<)H&569!5NLxog>8i zBtT}@P04SlSDJL)X5FEQXi8>eZqC<_&f=G`Ahe0UWG3gmqs;+RVhH~D0dSZwh<(U zCn~U8h)s3<=P|@85(#f+Y4D`?ub_iM+0^*`<781C|8FP3{L>L4KHx~THg5cq26LvI zVleWbe;)~COoz@4O#f95{v+e(&AbDisO!&trr(G@$jK1~xx}y0Z-LMyCKK+{GciS0 zS6@H@aVAaE7H92F|IX9!?E=X`fkf5j$dMx;xMBb@I7;;N^f54&1P31=I+;*=g(5s_ z-RM5BYvC84lGk=f6+Wv!-9CT)3JUj(^eU8fJp(CCmO#cR;51?8cDdIl72<|s@F5Xq z!No{|&<0WUYX^v;#OA=X{Q<(@5Rd_Hyy@EksysVXdTu`%mlNP$!_`#+&zp^nLQ+yP ztvwk%;=n&){ydMRuA+7dKS0^gjYZI1xEKEqyM0<2-3F$)Djh#e6vGU9Z z|B(*h3ZmWzUxWJj^FMv0Z?i@a30T$;9$MPWo#ZpLuB30H~McMIc+AX@4DFn zmWE~S&tf?xe^y&(VaP2o`6zr4*6P@r6G;?xqQJx6r6~K_6J-b8SAeaSR#v_gcFX_O zti!`8Kh|H|200D6?ewKz$Ai%h1#?pqJ~1w<+hWh{)|M8c1EVEbRKMzj0~&U&9VR|; zZ6gj93p{f|Y$2SRQRk}3TpYx~5P}Zc(Gt1Y#LDUlF|!m58jr1`@2DD6hGg30*jO0; z5w(Priyu*YXG0Q4qHHqO7ykrT8RTThmEfF!fn?O@l*&b*T_WEtSmc%)OK3YeiK0J{ z5K@WilBHjl#Y0meR4*aut_HtfK0o=Aud1qwFj!r?cJ1RlA+8h3O={|ek@WJA^`PK? z>&uW)6l3`eHKV#amCxK@l@meTI}-IJ2c&K|=V|wxZioXTAfyIVee?43DM(;}t_NQ> zH;2_GazV|fEw^MWx9s7oH9dLqDiANKQ4>vJn+V-y3^8KB?ZBD$3URzj%tl5=5c(;X zPUiZePYATDYQ)6Mj0~wr5I(e5}_Ib7>~ zcFXqGjTnt%E}Z(e{WsACYem@$pm2I;$;^2 z=6X_OH$mP*VUJ)uppIfj_hL|8CC(gv$rb-<^Id1;-jdYLF%&xP_sb86C@X8XJpZ9Xj?tm&8FLfTffZQqU{6mR6AO#W zWf1m-1}q?cguC(apZ~dY4ir;=KU8?!-q>ao!*8-pM#!ND|GMnbnm?umXh>}(u9fvR znWYaJy%eO%pwYi2r2&ACat0AlaOEek zNr!gzqBw~}d-I64hMD}&H*`YeI1>V{(Gu;kA%DN=5-Km^`)%pdgQ;ce`1ezrABNJu zj)25NtM`zd=p#bzHEJG_IhJqs7R!6u>}3&t4jeeJ1hG@=$J(CmM}e4iKMFk-#U%jB zjJ&+g&_XdX>pJ2$>p_6(W?U+?aAFt`Q~f;?X(Si|%7VfYxw)!JnHcB|=j~((N>eQ8 zl#C{msX$y?-n?Na6lDW3`Oz+VA#F84*-n}3-Cu|!(;b8c923jW?$=ZNnX>K`<&CSIT+cPjbiGqaCfM`ba*;|&|M`qqKq7w?z`0qJd zoVq{_a~=9CJt2gODxh-^88R4U-)G+9i2Ly z^+ZcWN(vXsCzK>e+hd!*$%moG>s*Rt^p_ly30# zl8#v{+54}0H2=PWFqz(xvI@uT6%-fOeI+UG=$Xl7vvY_ z=ZB%IXmB0tv%viLl51-JKjpEe&C+$DNC@Mf0!E%;wj3=;(Kx6Zrk!+V3~AC$^AT)D zGpYwH295ZMn47{xFcD_vc5v(t>W3(Noj7;L<<7^+b7id83OK_Uzre6{6L_;Q%13v=9F$U}Ac{ zC`SItL|pYw30z7*fV|_!hCY6b>*+Bl$=L(Z8P|*`1C^{`PAQ@}jFdkcoHb+YdjI!| zi;IgT_U!q(fxP*YaJiw>*fKD{i7?c{>s?2IS{*{h+{fxIV0^Hb(US +

.. only:: html - .. figure:: /auto_examples/images/thumb/sphx_glr_plot_otda_mapping_colors_images_thumb.png + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_barycenter_1D_thumb.png - :ref:`sphx_glr_auto_examples_plot_otda_mapping_colors_images.py` + :ref:`sphx_glr_auto_examples_plot_barycenter_1D.py` .. raw:: html @@ -245,17 +245,17 @@ This is a gallery of all the POT example files. .. toctree:: :hidden: - /auto_examples/plot_otda_mapping_colors_images + /auto_examples/plot_barycenter_1D .. raw:: html -
+
.. only:: html - .. figure:: /auto_examples/images/thumb/sphx_glr_plot_barycenter_1D_thumb.png + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_otda_mapping_colors_images_thumb.png - :ref:`sphx_glr_auto_examples_plot_barycenter_1D.py` + :ref:`sphx_glr_auto_examples_plot_otda_mapping_colors_images.py` .. raw:: html @@ -265,7 +265,7 @@ This is a gallery of all the POT example files. .. toctree:: :hidden: - /auto_examples/plot_barycenter_1D + /auto_examples/plot_otda_mapping_colors_images .. raw:: html diff --git a/docs/source/auto_examples/plot_barycenter_1D.ipynb b/docs/source/auto_examples/plot_barycenter_1D.ipynb index 5866088a6..fc60e1f42 100644 --- a/docs/source/auto_examples/plot_barycenter_1D.ipynb +++ b/docs/source/auto_examples/plot_barycenter_1D.ipynb @@ -26,7 +26,79 @@ }, "outputs": [], "source": [ - "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\n# necessary for 3d plot even if not used\nfrom mpl_toolkits.mplot3d import Axes3D # noqa\nfrom matplotlib.collections import PolyCollection\n\n#\n# Generate data\n# -------------\n\n#%% parameters\n\nn = 100 # nb bins\n\n# bin positions\nx = np.arange(n, dtype=np.float64)\n\n# Gaussian distributions\na1 = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std\na2 = ot.datasets.make_1D_gauss(n, m=60, s=8)\n\n# creating matrix A containing all distributions\nA = np.vstack((a1, a2)).T\nn_distributions = A.shape[1]\n\n# loss matrix + normalization\nM = ot.utils.dist0(n)\nM /= M.max()\n\n#\n# Plot data\n# ---------\n\n#%% plot the distributions\n\npl.figure(1, figsize=(6.4, 3))\nfor i in range(n_distributions):\n pl.plot(x, A[:, i])\npl.title('Distributions')\npl.tight_layout()\n\n#\n# Barycenter computation\n# ----------------------\n\n#%% barycenter computation\n\nalpha = 0.2 # 0<=alpha<=1\nweights = np.array([1 - alpha, alpha])\n\n# l2bary\nbary_l2 = A.dot(weights)\n\n# wasserstein\nreg = 1e-3\nbary_wass = ot.bregman.barycenter(A, M, reg, weights)\n\npl.figure(2)\npl.clf()\npl.subplot(2, 1, 1)\nfor i in range(n_distributions):\n pl.plot(x, A[:, i])\npl.title('Distributions')\n\npl.subplot(2, 1, 2)\npl.plot(x, bary_l2, 'r', label='l2')\npl.plot(x, bary_wass, 'g', label='Wasserstein')\npl.legend()\npl.title('Barycenters')\npl.tight_layout()\n\n#\n# Barycentric interpolation\n# -------------------------\n\n#%% barycenter interpolation\n\nn_alpha = 11\nalpha_list = np.linspace(0, 1, n_alpha)\n\n\nB_l2 = np.zeros((n, n_alpha))\n\nB_wass = np.copy(B_l2)\n\nfor i in range(0, n_alpha):\n alpha = alpha_list[i]\n weights = np.array([1 - alpha, alpha])\n B_l2[:, i] = A.dot(weights)\n B_wass[:, i] = ot.bregman.barycenter(A, M, reg, weights)\n\n#%% plot interpolation\n\npl.figure(3)\n\ncmap = pl.cm.get_cmap('viridis')\nverts = []\nzs = alpha_list\nfor i, z in enumerate(zs):\n ys = B_l2[:, i]\n verts.append(list(zip(x, ys)))\n\nax = pl.gcf().gca(projection='3d')\n\npoly = PolyCollection(verts, facecolors=[cmap(a) for a in alpha_list])\npoly.set_alpha(0.7)\nax.add_collection3d(poly, zs=zs, zdir='y')\nax.set_xlabel('x')\nax.set_xlim3d(0, n)\nax.set_ylabel('$\\\\alpha$')\nax.set_ylim3d(0, 1)\nax.set_zlabel('')\nax.set_zlim3d(0, B_l2.max() * 1.01)\npl.title('Barycenter interpolation with l2')\npl.tight_layout()\n\npl.figure(4)\ncmap = pl.cm.get_cmap('viridis')\nverts = []\nzs = alpha_list\nfor i, z in enumerate(zs):\n ys = B_wass[:, i]\n verts.append(list(zip(x, ys)))\n\nax = pl.gcf().gca(projection='3d')\n\npoly = PolyCollection(verts, facecolors=[cmap(a) for a in alpha_list])\npoly.set_alpha(0.7)\nax.add_collection3d(poly, zs=zs, zdir='y')\nax.set_xlabel('x')\nax.set_xlim3d(0, n)\nax.set_ylabel('$\\\\alpha$')\nax.set_ylim3d(0, 1)\nax.set_zlabel('')\nax.set_zlim3d(0, B_l2.max() * 1.01)\npl.title('Barycenter interpolation with Wasserstein')\npl.tight_layout()\n\npl.show()" + "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\n# necessary for 3d plot even if not used\nfrom mpl_toolkits.mplot3d import Axes3D # noqa\nfrom matplotlib.collections import PolyCollection" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate data\n-------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% parameters\n\nn = 100 # nb bins\n\n# bin positions\nx = np.arange(n, dtype=np.float64)\n\n# Gaussian distributions\na1 = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std\na2 = ot.datasets.make_1D_gauss(n, m=60, s=8)\n\n# creating matrix A containing all distributions\nA = np.vstack((a1, a2)).T\nn_distributions = A.shape[1]\n\n# loss matrix + normalization\nM = ot.utils.dist0(n)\nM /= M.max()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot data\n---------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% plot the distributions\n\npl.figure(1, figsize=(6.4, 3))\nfor i in range(n_distributions):\n pl.plot(x, A[:, i])\npl.title('Distributions')\npl.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Barycenter computation\n----------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% barycenter computation\n\nalpha = 0.2 # 0<=alpha<=1\nweights = np.array([1 - alpha, alpha])\n\n# l2bary\nbary_l2 = A.dot(weights)\n\n# wasserstein\nreg = 1e-3\nbary_wass = ot.bregman.barycenter(A, M, reg, weights)\n\npl.figure(2)\npl.clf()\npl.subplot(2, 1, 1)\nfor i in range(n_distributions):\n pl.plot(x, A[:, i])\npl.title('Distributions')\n\npl.subplot(2, 1, 2)\npl.plot(x, bary_l2, 'r', label='l2')\npl.plot(x, bary_wass, 'g', label='Wasserstein')\npl.legend()\npl.title('Barycenters')\npl.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Barycentric interpolation\n-------------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "#%% barycenter interpolation\n\nn_alpha = 11\nalpha_list = np.linspace(0, 1, n_alpha)\n\n\nB_l2 = np.zeros((n, n_alpha))\n\nB_wass = np.copy(B_l2)\n\nfor i in range(0, n_alpha):\n alpha = alpha_list[i]\n weights = np.array([1 - alpha, alpha])\n B_l2[:, i] = A.dot(weights)\n B_wass[:, i] = ot.bregman.barycenter(A, M, reg, weights)\n\n#%% plot interpolation\n\npl.figure(3)\n\ncmap = pl.cm.get_cmap('viridis')\nverts = []\nzs = alpha_list\nfor i, z in enumerate(zs):\n ys = B_l2[:, i]\n verts.append(list(zip(x, ys)))\n\nax = pl.gcf().gca(projection='3d')\n\npoly = PolyCollection(verts, facecolors=[cmap(a) for a in alpha_list])\npoly.set_alpha(0.7)\nax.add_collection3d(poly, zs=zs, zdir='y')\nax.set_xlabel('x')\nax.set_xlim3d(0, n)\nax.set_ylabel('$\\\\alpha$')\nax.set_ylim3d(0, 1)\nax.set_zlabel('')\nax.set_zlim3d(0, B_l2.max() * 1.01)\npl.title('Barycenter interpolation with l2')\npl.tight_layout()\n\npl.figure(4)\ncmap = pl.cm.get_cmap('viridis')\nverts = []\nzs = alpha_list\nfor i, z in enumerate(zs):\n ys = B_wass[:, i]\n verts.append(list(zip(x, ys)))\n\nax = pl.gcf().gca(projection='3d')\n\npoly = PolyCollection(verts, facecolors=[cmap(a) for a in alpha_list])\npoly.set_alpha(0.7)\nax.add_collection3d(poly, zs=zs, zdir='y')\nax.set_xlabel('x')\nax.set_xlim3d(0, n)\nax.set_ylabel('$\\\\alpha$')\nax.set_ylim3d(0, 1)\nax.set_zlabel('')\nax.set_zlim3d(0, B_l2.max() * 1.01)\npl.title('Barycenter interpolation with Wasserstein')\npl.tight_layout()\n\npl.show()" ] } ], diff --git a/docs/source/auto_examples/plot_barycenter_1D.py b/docs/source/auto_examples/plot_barycenter_1D.py index 5ed9f3fe2..686430123 100644 --- a/docs/source/auto_examples/plot_barycenter_1D.py +++ b/docs/source/auto_examples/plot_barycenter_1D.py @@ -25,7 +25,7 @@ from mpl_toolkits.mplot3d import Axes3D # noqa from matplotlib.collections import PolyCollection -# +############################################################################## # Generate data # ------------- @@ -48,7 +48,7 @@ M = ot.utils.dist0(n) M /= M.max() -# +############################################################################## # Plot data # --------- @@ -60,7 +60,7 @@ pl.title('Distributions') pl.tight_layout() -# +############################################################################## # Barycenter computation # ---------------------- @@ -90,7 +90,7 @@ pl.title('Barycenters') pl.tight_layout() -# +############################################################################## # Barycentric interpolation # ------------------------- diff --git a/docs/source/auto_examples/plot_barycenter_1D.rst b/docs/source/auto_examples/plot_barycenter_1D.rst index b314dc1cb..66ac0423f 100644 --- a/docs/source/auto_examples/plot_barycenter_1D.rst +++ b/docs/source/auto_examples/plot_barycenter_1D.rst @@ -18,52 +18,34 @@ SIAM Journal on Scientific Computing, 37(2), A1111-A1138. +.. code-block:: python -.. rst-class:: sphx-glr-horizontal - - - * - .. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_001.png - :scale: 47 + # Author: Remi Flamary + # + # License: MIT License - * + import numpy as np + import matplotlib.pylab as pl + import ot + # necessary for 3d plot even if not used + from mpl_toolkits.mplot3d import Axes3D # noqa + from matplotlib.collections import PolyCollection - .. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_002.png - :scale: 47 - * - .. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_003.png - :scale: 47 - * - .. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_004.png - :scale: 47 +Generate data +------------- .. code-block:: python - # Author: Remi Flamary - # - # License: MIT License - - import numpy as np - import matplotlib.pylab as pl - import ot - # necessary for 3d plot even if not used - from mpl_toolkits.mplot3d import Axes3D # noqa - from matplotlib.collections import PolyCollection - - # - # Generate data - # ------------- - #%% parameters n = 100 # nb bins @@ -83,9 +65,19 @@ SIAM Journal on Scientific Computing, 37(2), A1111-A1138. M = ot.utils.dist0(n) M /= M.max() - # - # Plot data - # --------- + + + + + + +Plot data +--------- + + + +.. code-block:: python + #%% plot the distributions @@ -95,9 +87,22 @@ SIAM Journal on Scientific Computing, 37(2), A1111-A1138. pl.title('Distributions') pl.tight_layout() - # - # Barycenter computation - # ---------------------- + + + +.. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_001.png + :align: center + + + + +Barycenter computation +---------------------- + + + +.. code-block:: python + #%% barycenter computation @@ -125,9 +130,22 @@ SIAM Journal on Scientific Computing, 37(2), A1111-A1138. pl.title('Barycenters') pl.tight_layout() - # - # Barycentric interpolation - # ------------------------- + + + +.. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_003.png + :align: center + + + + +Barycentric interpolation +------------------------- + + + +.. code-block:: python + #%% barycenter interpolation @@ -194,7 +212,25 @@ SIAM Journal on Scientific Computing, 37(2), A1111-A1138. pl.show() -**Total running time of the script:** ( 0 minutes 0.363 seconds) + + +.. rst-class:: sphx-glr-horizontal + + + * + + .. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_005.png + :scale: 47 + + * + + .. image:: /auto_examples/images/sphx_glr_plot_barycenter_1D_006.png + :scale: 47 + + + + +**Total running time of the script:** ( 0 minutes 0.413 seconds) diff --git a/examples/plot_barycenter_1D.py b/examples/plot_barycenter_1D.py index 5ed9f3fe2..686430123 100644 --- a/examples/plot_barycenter_1D.py +++ b/examples/plot_barycenter_1D.py @@ -25,7 +25,7 @@ from mpl_toolkits.mplot3d import Axes3D # noqa from matplotlib.collections import PolyCollection -# +############################################################################## # Generate data # ------------- @@ -48,7 +48,7 @@ M = ot.utils.dist0(n) M /= M.max() -# +############################################################################## # Plot data # --------- @@ -60,7 +60,7 @@ pl.title('Distributions') pl.tight_layout() -# +############################################################################## # Barycenter computation # ---------------------- @@ -90,7 +90,7 @@ pl.title('Barycenters') pl.tight_layout() -# +############################################################################## # Barycentric interpolation # ------------------------- diff --git a/notebooks/plot_barycenter_1D.ipynb b/notebooks/plot_barycenter_1D.ipynb index 4a0956b34..bd73a99fe 100644 --- a/notebooks/plot_barycenter_1D.ipynb +++ b/notebooks/plot_barycenter_1D.ipynb @@ -36,48 +36,7 @@ "metadata": { "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAADQCAYAAAB2rXoYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8VfX9+PHX+96bQfZkZwBho6yAKG4caKs4q1atWqy21tbW+rVaZ+1Qa6tf+6sdfl046ijaiorigqpggbBBVlhJmAlkk3VzP78/zomNMSE35Cbnjvfz8cgj955z7jnvXA73fT9bjDEopZRSClxOB6CUUkoFC02KSimllE2TolJKKWXTpKiUUkrZNCkqpZRSNk2KSimllE2TolIBICJ/FZF7AnSubBGpERG3/XyRiFwfiHPb53tXRK4J1PmUCicepwNQKhSIyE6gH+AFmoEvgOeBJ40xPmPM97twnuuNMR92dIwxpghI6G7M9vXuB/KMMVe1Ov85gTi3UuFIS4pK+e88Y0wikAM8BPwceDqQFxAR/aKqlIM0KSrVRcaYSmPMPOAy4BoRGSciz4nIrwFEJENE3haRChE5JCKfiohLRF4AsoG37OrR20UkV0SMiMwWkSLg41bbWifIYSKyTESqRORNEUmzr3WqiJS0jk9EdorIGSIyE/gFcJl9vTX2/i+rY+247haRXSJyQESeF5Fke19LHNeISJGIlInIXa2uM1VECuyY9ovIoz31nivVWzQpKnWUjDHLgBLgpDa7fmZvz8Sqcv2Fdbi5GijCKnEmGGN+1+o1pwCjgbM7uNx3gO8CA7CqcP/oR3zvAb8FXrWvN76dw661f04DhmJV2/6pzTEnAiOBGcC9IjLa3v448LgxJgkYBrzWWUxKBTtNikp1zx4grc22JqzklWOMaTLGfGo6n2T4fmNMrTGmroP9Lxhj1htjaoF7gG+1dMTppiuBR40x240xNcCdwOVtSqm/NMbUGWPWAGuAluTaBOSJSIYxpsYY858AxKOUozQpKtU9g4BDbbY9AhQC74vIdhG5w4/zFHdh/y4gCsjwO8qODbTP1/rcHqwSbot9rR4f5r+dgGYDI4BNIrJcRL4ZgHiUcpQmRaWOkohMwUqKn7XeboypNsb8zBgzFDgfuFVEZrTs7uB0nZUks1o9zsYqpZUBtUBcq5jcWNW2/p53D1bHodbn9gL7O3kdxpitxpgrgL7Aw8BcEYnv7HVKBTNNikp1kYgk2aWiV4AXjTHr2uz/pojkiYgAlVhDOHz27v1YbXdddZWIjBGROOABYK4xphnYAsSKyDdEJAq4G4hp9br9QK6IdPR//WXgpyIyREQS+G8bpLezgETkKhHJNMb4gAp7s+9Ir1Eq2GlSVMp/b4lINVZV5l3Ao8B17Rw3HPgQqAE+B/5sjFlo73sQuNvumXpbF679AvAcVlVmLPBjsHrCAjcBTwG7sUqOrXuj/sP+fVBEVrZz3mfsc38C7ADqgR/5GdNMYIOI1GB1urn8CG2iSoUE0UWGlVJKKYuWFJVSSimbJkWllFLKpklRKaWUsmlSVEoppWxBN/lwRkaGyc3NdToMpZRSYWTFihVlxpjMzo4LuqSYm5tLQUGB02EopZQKIyKyq/OjtPpUKaWU+pImRaWUUsrmV1IUkZkisllECtub3FhEYkTkVXv/UhHJtbdHicgcEVknIhtF5M7Ahq+UUkoFTqdJ0Z5g+AngHGAMcIWIjGlz2Gyg3BiTBzyGNTkwwKVAjDHmGGAycGNLwlRKKaWCjT8lxalAob3eWiPWJMiz2hwzC5hjP54LzLAnQzZAvL02Wx+gEagKSOQqYHSqP6WUsviTFAfx1bXcSuxt7R5jz65fCaRjJchaYC/WiuO/N8a0XXsOEblBRApEpKC0tLTLf4Q6OsYY/vbvbUz81QfMWbJTk6NSKuL1dEebqVjL5gwEhgA/E5GvLZtjjHnSGJNvjMnPzOx0GIkKgOr6Jn7w4koefHcT8dEe7pu3gZ++uprDjZ2uGKSUUmHLn6S4m68ucDrY3tbuMXZVaTJwEPg28J4xpskYcwBYDOR3N2jVPVv2VzPrT4v5YON+7v7GaD65/TR+duYI3lyzh4v+vIQdZbVOh6iUUo7wJykuB4bbi5BGA5cD89ocMw+4xn58CfCxseriioDTAewVuacBmwIRuDo6lYebuOQvS6hu8PL364/j+pOG4nYJP5oxnDnXTWV/VT2X/nWJlhiVUhGp06RotxHeDCwANgKvGWM2iMgDInK+fdjTQLqIFAK3Ai3DNp4AEkRkA1ZyfdYYszbQf4Ty39+XFVFV7+XZa6dw3ND0r+w7eUQmf7s6n7KaRl5f2bYyQCmlwp9f07wZY+YD89tsu7fV43qs4RdtX1fT3nbljEavj+eW7GB6XjrjBiW3e8yU3FTGZ6XwzGc7uHJqNi6X9HKUSinlHJ3RJoLMX7eX/VUNXH/i1/o6fUlEuP7EIewoq+WjTQd6MTqllHKeJsUIYYzhqc+2MywznlNGHLmH7znj+jMopQ9Pfbq9l6JTSqngoEkxQizdcYj1u6uYfeLQTqtEPW4X156Qy9Idh1hXUtlLESqllPM0KUaIpz7dQVp8NBdNajvvQvsum5pFfLSbpz/T0qJSKnJoUowA20tr+GjTfq6alkNslNuv1yTFRnHZlGzeXruXvZV1PRyhUkoFB02KEeC5JTuJcrm4elpOl1533fRcfMYwZ4lfa3MqpVTI06QY5nw+w/x1ezlrbD8yE2O69NqstDhOHpHJ/HV7dV5UpVRE0KQY5tbvqaSsppEZo/se1etnjOpL0aHDbNep35RSEUCTYphbuKkUETh5+NFNtH7qyL72eXTMolIq/GlSDHMfbz7A+MEppCd0req0RVZaHHl9E1i0WZf0UkqFP02KYayspoG1JRWcPuroqk5bnD6qL0t3HKS2QScJV0qFN02KYeyTLaUYA6eN7F5SPHVkJk3NhsWFZQGKTCmlgpMmxTC2cHMpGQkxjB2Y1K3z5OekkRDjYeFmbVdUSoU3TYphytvs45MtpZw6MrPbK11Ee1ycmJfBwk2lOjRDKRXWNCmGqVXFFVTWNXW76rTFaaMy2VdVz6Z91QE5n1JKBSNNimFq4aYDuF3CSSMyAnK+L4dmaBWqUiqMaVIMUws3l5Kfk0pSbFRAztcvKZaxA5NYtEmHZiilwpcmxTC0r7KejXurOK2bQzHaOm1kX1YUlVN5uCmg51VKqWChSTEMLbKrOAPVntjitFGZNPsMnxZqaVEpFZ40KYahpTsOkZEQw4h+CQE97/jBKcRHu1m6/VBAz6uUUsFCk2IYWr7zEFNyUxHp3lCMtjxuF5NyUlm+U5OiUio8aVIMM/sq6ykpryM/N61Hzp+fk8bm/dVU1mm7olIq/GhSDDMFu6xSXH5Oao+cPz83FWNgVVF5j5xfKaWcpEkxzBTsLKdPlJsx3ZzarSMTslJwu4SCnZoUlVLhR5NimFm+8xATs1OIcvfMP218jIexA5O0XVEpFZY0KYaRmgYvG/dW9VjVaYvJOamsKamg0evr0esopVRv06QYRlYVleMz9FgnmxZTctOob/KxYU9lj15HKaV6mybFMLJ8ZzkugYnZKT16nZaSqLYrKqXCjV9JUURmishmESkUkTva2R8jIq/a+5eKSG6rfceKyOciskFE1olIbODCV62t2HWI0QOSSAzQfKcd6ZsUS0563Jc9XZVSKlx0mhRFxA08AZwDjAGuEJExbQ6bDZQbY/KAx4CH7dd6gBeB7xtjxgKnAjrArQc0NftYVVTR4+2JLSbnpFKws1zXV1RKhRV/SopTgUJjzHZjTCPwCjCrzTGzgDn247nADLGmUzkLWGuMWQNgjDlojGkOTOiqtY17qzjc2Nzj7YktpuSmcbC2kR1ltb1yPaWU6g3+JMVBQHGr5yX2tnaPMcZ4gUogHRgBGBFZICIrReT29i4gIjeISIGIFJSW6mTTR6OlfS8/t3dKilPs6xTs0nZFpVT46OmONh7gROBK+/eFIjKj7UHGmCeNMfnGmPzMzMweDik8Few6xKCUPgxI7tMr1xuakUBKXBQFOl5RKRVG/EmKu4GsVs8H29vaPcZuR0wGDmKVKj8xxpQZYw4D84FJ3Q1afZUxhuU7y78svfUGl0vIt9sVlVIqXPiTFJcDw0VkiIhEA5cD89ocMw+4xn58CfCxsXpgLACOEZE4O1meAnwRmNBVi6JDhymtbui19sQW+blpbC+rpaymoVevq5RSPaXTpGi3Ed6MleA2Aq8ZYzaIyAMicr592NNAuogUArcCd9ivLQcexUqsq4GVxph3Av9nRLbVxRVAz49PbGtStlUyXWNfXymlQp3Hn4OMMfOxqj5bb7u31eN64NIOXvsi1rAM1UNWFVXQJ8rNyH6JvXrdcYOScLuE1cUVzBjdr1evrZRSPUFntAkDa0oqOGZQMp4emgS8I3HRHkb0S/yypKqUUqFOk2KIa/T62LCnivFZyY5cf0JWCmuKK/D5dBC/Uir0aVIMcZv2VdHo9TEhq/d6nrY2ISuZqnovOw/qIH6lVOjTpBjiWqounSsppn4lDqWUCmWaFEPc6uIKMhJiGJTSO4P228rrm0BctFt7oCqlwoImxRC3priCCVnJWFPN9j63SzhmUDKrS3RtRaVU6NOkGMIq65rYVlrLhKzeHZ/Y1oTsFDbuqaLBq3O9K6VCmybFELbOLp2NdzopDk6hsdnHxr3VjsahlFLdpUkxhK0utuYdPXaw8yVFgNVFOg+qUiq0aVIMYauLKxmaGU9ynyhH4+ifFEvfxBjWaLuiUirEaVIMUcYYVhdXMMHhUiKAiDAhK0WHZSilQp4mxRC1p7KespqGL6sunTY+K4UdZbVUHG50OhSllDpqfk0IroLP6iJ70H4QlBQBJtqdfdaUVHLKCF0oOuJU74NtH8PetbBvLexbD7HJMOBY6H8sDJwAw04Ht7NV/Up1RpNiiFpTUkG028XoAUlOhwLAMYOTEbHGTWpSjCCNtbD4j7D4cfDWQVQc9BsHx1wMdRVWgtz0DmAgYySc9WsYfiY4NK5Wqc5oUgxRq4srGDMwiWhPcNSAJ8ZGkZeZoDPbRAqfD9a+Ah89ANV7YeyFcNJt0Hc0uNxfPbahBrZ9BB/eD3+/1CoxnvUb6DfGkdCVOpLg+ERVXeJt9rGupNLxQfttjbc72xijK2aENW8DvD4b/vUDSBwA310Alz4H/cd9PSECxCTAmFlw01I4+0HYvQKePAU2/LPXQ1eqM5oUQ9DWAzXUNTUHXVKckJXCwdpGSsrrnA5F9ZSGavj7t2DDGzDjPrj+I8ie5t9rPdFw/E3wo1UwcBL84zpY/lTPxqtUF2lSDEH/XRkj+JIi6IoZYau2DOacBzs+hVl/hpNuBddRfITEp8PV/4QRZ8M7P4OFD4LWLqggoUkxBK0priC5TxS56XFOh/IVI/snEuNxabtiOKophWfOhgMb4fKXYOKV3TtfdBxc9hJMuBL+/RAsuCswcSrVTdrRJgStLq5gfFaKYytjdCTK7WLcoGQtKYYbbyO89h2oLLFKeDknBOa8bg/MegJiEuE/T0D6MJgyOzDnVuooaUkxxNQ2eNmyv5oJg51ZVLgz4wensH5PJU3NPqdDUYFgDMy/DYqWWAksUAmxhQic/VsYfha8e7tVNauUgzQphpj1uyvxGYJmJpu2JmSnUN/kY8t+XTEjLCz7P1g5B076GRxzSc9cw+WGi5+CtKFWibR8Z89cRyk/aFIMMWtKgmsmm7Za5mLVKtQwsH0RvHcHjDwXTru7Z68VmwxXvALGBy9fYfVyVcoBmhRDzOriCrLS+pCeEON0KO3KSutDWny0drYJdTUHYO53IWMEXPTk0fUy7ar0YdZ4x9LN8M5tPX89pdqhSTHErCmuDNpSIlgrZowfrJ1tQpox8NZPrJloLn3O6gjTW4adBiffZs2Ws/Ht3ruuUjZNiiHkQHU9uyvqgm7Qflvjs1LYeqCGmgav06Goo7H2Vdj8Dsy4B/qO6v3rn3SbNYn42z+xxkYq1Ys0KYaQNcXWIr7BnhQnZKVgDKzTRYdDT+VumH87ZB8P025yJgZPNFz4V6ivhLd/qgP7Va/SpBhC1hRX4HYJYwcG53CMFuO1s01oMgbm3Qy+Jrjgz+3PY9pb+o2FU++EjfNg/evOxaEijl9JUURmishmESkUkTva2R8jIq/a+5eKSG6b/dkiUiMi2nreDWtKKhjZL5E+0Q5+WPkhNT6anPQ47WwTalY8Z62JeNavrOERTjvhxzB4ijUVXPV+p6NREaLTpCgibuAJ4BxgDHCFiLRd82U2UG6MyQMeAx5us/9R4N3uhxu5fD7D6uKKoB2f2NYEe8UMFSJqy+DD+yD3JMgPklll3B644C/QdBg+uMfpaFSE8KekOBUoNMZsN8Y0Aq8As9ocMwuYYz+eC8wQew4yEbkA2AFsCEzIkWnHwVqq671fjgMMduMHp7Cvqp59lfVOh6L88eF91oLB3/hDcC0AnDEcpt9idf7ZudjpaFQE8CcpDgKKWz0vsbe1e4wxxgtUAukikgD8HPjlkS4gIjeISIGIFJSWlvobe0RZXRScK2N0pCXOlskGVBArXgarXoTjfwiZI52O5utOvBWSs63p5pqbnI5Ghbme7mhzP/CYMabmSAcZY540xuQbY/IzMzN7OKTQtKakgvhoN3l9E5wOxS9jBybhcYlWoQY7X7PVZpc4EE6+3elo2hcdB+c8BAe+gGVPOh2NCnP+rJKxG8hq9Xywva29Y0pExAMkAweB44BLROR3QArgE5F6Y8yfuh15hFlZVM6xg1Nwu4KoausIYqPcjBmYxMpd5U6Hoo6k4BnYt9YepB/EX7hGnmtNGr7wQRh3MST2dzoiFab8KSkuB4aLyBARiQYuB+a1OWYecI39+BLgY2M5yRiTa4zJBf4X+K0mxK6rbfCycW81+bmpTofSJZNzUllTUqErZgSrmlL4+Fcw9FQYc4HT0RyZCMx8CJob4P0enodVRbROk6LdRngzsADYCLxmjNkgIg+IyPn2YU9jtSEWArcCXxu2oY7emuIKmn2GSTmhlxTrm3x8safK6VBUexb91upcc84jwdW5piPpw6xON+v+AcXLnY5GhSm/Fhk2xswH5rfZdm+rx/XApZ2c4/6jiE8BK+wqyEnZoZcUwYo/VDoIRYwDm6xxiVO+B5kjnI7Gf9N/AiufhwW/gNnvh0YyVyFFZ7QJAQW7yhnRL4HkPlFOh9IlA5L7MCilz5dJXQWRD+6B6EQ45edOR9I1MQlw+t1Qsgy++JfT0agwpEkxyPl8hpVF5UzOSXM6lKMyKSeVgl2HMDp/ZfDYthC2vm+tRhGf7nQ0XTfhSug3Dj64D7wNTkejwowmxSC39UAN1fXeL6siQ01+Tir7qxrYXVHndCgKrCEY798NKTlw3I1OR3N0XG5rKrqKXTpEQwWcJsUg11L1mB+iSbF1u6IKAqtfgv3r4Yz7wROcC1X7ZdjpkHcm/PsRqD3odDQqjGhSDHIrdpWTbk+wHYpG9U8kLtqt4xWDQWMtfPwbGDwVxl7odDTdd9avoLEaPvmd05GoMKJJMcit2HWIyTmpSIj2svO4XUzISqFAk6LzPv8z1OyDs34dHr02+46GiVfD8qfh0A6no1FhQpNiECuraWDnwcMh257YIj8nlY17q6ht8DodSuSqLYPFj8Oob0L2cU5HEzin3gkuD3z8a6cjUWFCk2IQ+7I9McRmsmlrUk4qPqOLDjvqk99DUy3MuM/pSAIraQAcfxOsnwt7VjsdjQoDmhSD2Mpd5US7XYwdmOx0KN0yMTsVEe1s45jynbD8KauqMZQG6vtr+i3QJw0+vN/pSFQY0KQYxAp2lXPM4GRio9xOh9ItyX2iGNE3UdsVnfLxr60qxlPvdDqSnhGbDCf/D2xfCNs+djoaFeI0KQapBm8z60oqQ749scWknFRW7SrH59NB/L1q7xprrtDjb7KqGsPVlNmQkm2VFn06Ab06epoUg9T63ZU0NvtCbr7TjuTnpFLd4GXLgWqnQ4ksH94PfVKtKsZw5omB0++xvgRseMPpaFQI06QYpJbtsKoaw6Wk2NJZaPmOQw5HEkG22dWJJ91mVTGGu3GXQL9jrOWwvI1OR6NClCbFILVkWxkj+iWQmRjCs460kp0Wx8DkWBYX6uwjvcLns0qJydkw9XtOR9M7XC44836rY9GKZ52ORoUoTYpBqMHbzPKdhzhhWIbToQSMiHBCXgafbz9Is7Yr9rwNb8De1XD6XaE9nVtXDZsBQ06Gfz8M9bqOp+o6TYpBaOWuCuqbfEzPC5+kCDA9L53KuiZddLineRutKsR+4+CYIy5zGn5ErHldDx+Ez//kdDQqBGlSDEJLtpXhEjhuaGguF9WRlpLvkm1lDkcS5lY8Z1UhnnG/taJEpBk02ZrbdcmfoHq/09GoEKNJMQgtLizj2MEpJMWG1qLCnemXFEte3wQWb9N2xR7TUG1VHeaeBHlnOB2Nc06/B5obrPdCqS7QpBhkquubWFNSyfS8EFz81Q/Th6WzfMchGr06lqxHLPl/cLgMzvxleEz6fbTSh8Hk66xSc9lWp6NRIUSTYpBZtuMQzT7D9DDqZNPaCXkZ1DU1s6pIZ7cJuKo9sPiPVtXhoMlOR+O8U26HqD46/ZvqEk2KQWZx4UFiPC4mhcn4xLamDU3HJWgVak9Y+BswzVZbooKEvnDiT2DT27BzsdPRqBChSTHILNlWRn5uasjPd9qR5D5RHDMomSWF2tkmoPatg1UvwdQbIDXX6WiCx7QfQtIgeP8unf5N+UWTYhApq2lg077qsBqf2J4T8jJYXVyh6ysGijHw/t3QJwVOvs3paIJLdJzV6WbPKlj/utPRqBCgSTGILLGrFMNtfGJb04dl4PUZlumUb4FR+BFsXwSn/Nya51R91bGXQf9j4KNfQlO909GoIKdJMYgsKSwjMdbDMYPCe57K/NxUoj0uFmsVavc1e61SYuoQyJ/tdDTByeWCs34DlcWw9K9OR6OCnCbFILJ4WxnThqbjdoV3V/rYKDeTs1O1s00grJwDpRutIRieaKejCV5DT4HhZ8Mnv9cB/eqINCkGiV0Hayk+VMf0YeE5PrGt6XnpbNxbRWl1g9OhhK7Dh6zp3HJPgtHnOx1N8Dv7N+Cth48ecDoSFcT8SooiMlNENotIoYjc0c7+GBF51d6/VERy7e1nisgKEVln/z49sOGHjw++sL69zhjdz+FIesfpo6y/86ON+q39qC38jTXp9TkPR/ZAfX9lDIdpP4DVL0JJgdPRqCDVaVIUETfwBHAOMAa4QkTGtDlsNlBujMkDHgNa5lYqA84zxhwDXAO8EKjAw8176/cxekASWWlxTofSK0YPSCQrrQ/vbdjndCihad86KHgGplwP/cY6HU3oOOV2SOgH8/9Hh2iodvlTUpwKFBpjthtjGoFXgFltjpkFzLEfzwVmiIgYY1YZY/bY2zcAfUQkgtax8U9pdQMrisqZOba/06H0GhFh5tj+LCk8SHV9k9PhhBZjYP7tEJsCp93pdDShJSYRznwA9qyE1S85HY0KQv4kxUFAcavnJfa2do8xxniBSqBt49jFwEpjjDYitfHBF/sxBs4eFxlVpy3OHtufxmYfCzeXOh1KaFn/OhQtgRn36hCMo3HsZTB4qjX9W12F09GoINMrHW1EZCxWleqNHey/QUQKRKSgtDTyPiAXbNhHTnocI/slOh1Kr5qUnUpGQgwLtArVfw3V8P49MGA8TPqO09GEJhE49xFrzcVFDzodjQoy/iTF3UBWq+eD7W3tHiMiHiAZOGg/Hwz8E/iOMWZbexcwxjxpjMk3xuRnZmZ27S8IcVX1TSzZVsbZY/sjEdZZwuUSzhzTj0WbDlDf1Ox0OKHhowegei+c+4fIXCsxUAZOgCmzYenfoGSF09GoIOJPUlwODBeRISISDVwOzGtzzDysjjQAlwAfG2OMiKQA7wB3GGN0Rt52LNx0gKZmw9kR1J7Y2sxx/altbNaB/P4oXgbL/g+mfg+ypjgdTeibcS8k9od5P4JmbddWlk6Tot1GeDOwANgIvGaM2SAiD4hIy+Cop4F0ESkEbgVahm3cDOQB94rIavunb8D/ihC2YMM++ibGMDErxelQHHH80HQSYz1ahdoZbyPM+zEkDbQ+zFX3xSbDub+HAxtgyR+djkYFCY8/Bxlj5gPz22y7t9XjeuDSdl73a+DX3YwxbNU3NbNwUykXTRqEK8xnselItMfF6aP68sEX+/E2+/C4dT6Jdi1+3Jq55opXrR6UKjBGf9Oa+GDRwzDmAmtxYhXR9BPIQZ9uLaOuqZmZ4yKz6rTFzLH9KT/cxPKduvBwu8q2wie/sxYPHjnT6WjCz7mPgCcW3rrFGu6iIpomRQct2LCPpFgP04ZGxtRuHTllZCYxHpdWobbH1wxv3mytID/z4c6PV12X2N+aO3bnp7DiWaejUQ7TpOiQusZm3t+wjzNG9yMqwqsM46I9nDwik3fW7aWpWWcZ+YrPHoXi/8A5j0BiZI1j7VWTroGhp8GCu6Cs0OlolIMi+9PYQW+v3UNVvZdvTcnq/OAIcFl+FqXVDToXamu7V8Cih2DcxXDst5yOJry5XHDBX8ATA29cr71RI5gmRYe8tLSIvL4JHDckzelQgsJpo/oyMDmWl5YWOR1KcGiogde/Bwn94RuP6oTfvSFpAJz3R9izSgf1RzBNig5Yv7uS1cUVXHlcdsQN2O+I2yVcMTWbT7eWsbOs1ulwnLfgF3BoO1z0N+gTmcN1HDHmfJh4FXz6KOxa4nQ0ygGaFB3w92VFxEa5uGjiYKdDCSqXTcnC7RJeXhbhpcUv5lmLB0+/BXJPdDqayDPzYUjNhTdutNasVBFFk2Ivq2nw8uaq3Zx37ECS46KcDieo9E2K5awx/XitoJgGb4RO+3ZgE/zrBzBwEpx2l9PRRKaYBLj4aWs6vddnWz2AVcTQpNjL/rlqN7WNzVw5LcfpUILSlcflUH64iXfXReDwjLoKeOXb1vCLy14ET7TTEUWuwZPhG3+AbR/DR790OhrVizQp9iJjDC/9ZxfnNdk3AAAPLUlEQVRjByYxfnCy0+EEpROGpZObHsdLS3c5HUrv8vngjRugYhd863lIbrs6m+p1k6+B/O9aswmtf93paFQv0aTYi1YWVbBpXzVXHpejHWw64HIJ3z4um+U7y9m8r9rpcHrPot/C1gUw8yHIOcHpaFSLmQ9D1jRrAoV965yORvUCTYq96JnPdhAf7eb8CQOdDiWoXTI5i2iPi6c/2+50KL1j9cvwySMw8WqYcr3T0ajWPNFWyT02GV6+AipLnI5I9TBNir1kVVE576zby+yThpIQ49c87BErLT6aq47LYe6KErbsD/PS4qb58OYPYcgpVhuW1iAEn8R+8O1XrTbfFy6E2oNOR6R6kCbFXmCM4cH5m8hIiOaGk4c6HU5I+NHpecTHeHjo3U1Oh9JzdnwK/7jWWvD28pes2VRUcBowHr79ClQUwUsXQ0OYf1mLYJoUe8GHGw+wbOchbjljhJYS/ZQaH80PT8vj400HWLItDBcg3r3Sqo5LGwJXztXloEJB7olw6RzYu9b6t2uqdzoi1QM0KfYwb7OPh97dyNDMeC7XeU675NoTchmYHMtD727C5wujJX1KCuDFiyAuFa7+J8TpVH8hY+RMuPCv1ooar1xhTcenwoomxR72akEx20pr+fnMURG/GkZXxUa5ue3skawtqeSttXucDicwtn4Ac86D2BT4zjxI0k5XIefYb8GsJ2D7Inj+fG1jDDP6Kd2Dahu8PPbBVvJzUjlrjC77czQumDCI0QOSeGTB5tCf5Wbta/Dy5ZCeB7Pft6pOVWiaeBVc9hLs3wDPnA0VxU5HpAJEk2IPeuCtLyiraeDOc0fruMSj5HIJd507mpLyOh5+d7PT4RwdY+Czx+CN70H28XDtO5DQ1+moVHeNOteq/q45AE+fZa2uoUKeJsUe8uryIl4tKObm0/KYnJPqdDgh7cThGVx7Qi7PLN7B26FWjXr4kNUp48P7YeyFVqea2CSno1KBknMCXDcfxGUlxmX/Z30JUiFLk2IPWFdSyT1vbuCk4Rn89MwRTocTFn5x7mgmZadw+9y1FB4Ike7wJSvgb6dA4YfWzCiXPAtRsU5HpQKt/zi48RNrrOn822Dud6G+yumo1FHSpBhgFYcb+cFLK8iIj+bxyyfidmm1aSBEe1z8+crJ9Ilyc+MLK6hp8DodUse8DbDoYautCeC7C2Da93VgfjiLT4dvvwYz7oMv3oS/nWx1xFEhR5NiADU1+/jJq6vZX1XPE1dOIi1eVzkIpP7Jsfy/Kyayo6yW2+euoTkYh2lsXwR/OcGay3T0eXDjv60VF1T4c7ngpFvh2ret58/Pgtevh+r9zsalukSTYoBU1Tdx3bPLWbS5lPvPH8vEbG1H7Akn5GVwxzmjmL9uHze+UMDhxiApMR7cBnNnWx+Evma46g249FkdgxiJck6Am/4Dp9xhlRr/NAU+fwKa6pyOTPlBTJA1Cufn55uCggKnw+iS3RV1XPfsMraX1vLQxcdyyeTBTocU9l74fCf3zdvA2IHJPH1tPn0THWqrK9sKn/we1r0G7miYfguceKu2HSpLWSG8+z/WuozxfWH6j63lqKLjnY4s4ojICmNMfqfHaVLsnnUllcyes5y6pmb+etVkpudlOB1SxPho435u/vsq0uKjefrafEb176Venb5m2L4QVsyBjW9ZiwJPmQ3H/8iaPFqptnYuhk9+Z1Wvx6XD5GutsY5pOhdyb9Gk2MNKqxv43w+38MryYvonxfLsdVMY0U/nr+xt60oq+e6c5ZTXNnL18TncMmM4KXE90JZrDJRtgXVzYfXfoaoE+qRZC9EefzPE65ch5YfiZfDpH2Dr+2B8kHMiTLwSRp4DfbTJpSdpUuwhtQ1enluyk78s2kZ9UzNXTbM+iFO1U41jSqsbePSDLby6vIiEGA8/njGcq6blEBvl7t6JG2qgeKn1AbblPSjfCQjkzbC+5Y88V1e2UEenao/15WrVi1C+A8QN2dNgxNmQdwZkjrY67qiACWhSFJGZwOOAG3jKGPNQm/0xwPPAZOAgcJkxZqe9705gNtAM/NgYs+BI1wrGpFjf1My/t5Ty1po9fLTxAHVNzZw5ph93njOKoZkJToenbJv3VfPb+Rv595ZS4qPdnDmmH+eNH8hJwzOJ9nTyAdN42CoJHtgIuwusb/T7N4BpBk8sDD0Vhp9lfaPX+UpVoBhjTRC/5T3YsgD2r7O2xyRbvZYHT7WWFsscBSk5mii7IWBJUUTcwBbgTKAEWA5cYYz5otUxNwHHGmO+LyKXAxcaYy4TkTHAy8BUYCDwITDCGNPhJJZOJ8X6pmZ2V9SxcW8V63ZXsq6kkrUlldQ0eEmLj+bcY/pz0aTBTNLepUFr6faD/Gv1buav20dlXRNJsS6mD/QwOdPLMckNDImtIbVpP1HVJdb6eAcLoXwXYP9fiE6AQZMhaypkTbN6E0bHOfo3qQhRWQI7PrG+lJUshwNfWNWsAJ4+kDkCUnMhOQtSsiF5MCT0s6rv4zO1A88RBDIpHg/cb4w5235+J4Ax5sFWxyywj/lcRDzAPiATuKP1sa2P6+h6gUqKyz/8B95mLz4fNBtDs8/gbfbR1Gxo9PpobPZR1+jlcKOPw41eKuuaOHS4kZr6/3bxd7uErLQ4hmTEMSk7jTEDEnFHwje1LlWptzn2K681bbaZdh4b6z99y2Ofz37us0ppvmbwea3nzU3ga7J+NzdBcwN4G63fTfXQVGuV+JoOQ0MVpq4S7+EK3I1VuPB9LfIKEilz9+VgzGAO9hlKRcJQDqcMpy5xCNFRUcR4XER73HjcgscluO0flwguARGhZTh+y+OW8flf/uYIA/Z1LL/qhLupmvjKQuIrtxJfWUhcZSF9akuIObwHd3PD145vdsfgjUrCG52INyqJZk+c/dMHnycOnysan9v+cUVjXFEY8eBzeTAuD0bcIG6MuOzHgsEF4sKIAGJv++/jlhvZIK3u6bY391efmy5MZDFs8pkkJHW/EOJvUvRnxdtBQOsp4EuA4zo6xhjjFZFKIN3e/p82rx3UTrA3ADcAZGdn+xFS50Z/+iMS5CjGBbVtGqyyf7YHICgVWK4oq03PHW31AI2Ks0p0UfGQOADJGElUbDLEJkN8Jo2xaRQ3xLP1cDw7mlIpqhH2VNRTfriRqromqiq8VBc20dS8zem/TKk2htg/Z9rPDRlUMUAOki6VZEgV6VSR5q0iseEwSVJHErXESylxNNCHBuKkgWiaiKGJaJpwS3D1J+nIzv4fkZDUaS4LmKBYBt4Y8yTwJFglxUCcs/zSuVQY35ff7t0iRLldRHsEj9uFJxJKfN3ShWLM1w5tteHLb4Sti1CtHouLr3zjdLmtbSJW5wOXx97mBrfHSoTuKOt3F/8No4Fh9s+ReJutmoSGJh8NXh9en8+qafBZNQ7GgM+ufWhhDBi7ZNxSGD7SjRxsHdxU+Kq3f8rb7vB5EZ8X8TVZv41VI2M9tmprxPgAH+LzYd3Rxt5u/vucll+taoFaka/d612797OzR3bp+O7yJynuBlovGT/Y3tbeMSV29WkyVocbf17bI7LGndgbl1FhyON24XG76ImRHUqp4ObPV+3lwHARGSIi0cDlwLw2x8wDrrEfXwJ8bKyvwvOAy0UkRkSGAMOBZYEJXSmllAqsTkuKdhvhzcACrCEZzxhjNojIA0CBMWYe8DTwgogUAoewEif2ca8BXwBe4IdH6nmqlFJKOUkH7yullAp7/vY+1d4mSimllE2TolJKKWULuupTESkFdgXodBlAWYDOFc70ffKfvlf+0/fKP/o++a8771WOMSazs4OCLikGkogU+FOHHOn0ffKfvlf+0/fKP/o++a833iutPlVKKaVsmhSVUkopW7gnxSedDiBE6PvkP32v/KfvlX/0ffJfj79XYd2mqJRSSnVFuJcUlVJKKb9pUlRKKaVsYZkURWSmiGwWkUIRucPpeIKJiGSJyEIR+UJENojILfb2NBH5QES22r+7v6pnGBARt4isEpG37edDRGSpfW+9ak+SH/FEJEVE5orIJhHZKCLH6z3VPhH5qf1/b72IvCwisXpfWUTkGRE5ICLrW21r9z4Syx/t92ytiEwKRAxhlxRFxA08AZwDjAGuEJExzkYVVLzAz4wxY4BpwA/t9+cO4CNjzHDgI/u5gluAja2ePww8ZozJw1qibrYjUQWfx4H3jDGjgPFY75neU22IyCDgx0C+MWYc1iILl6P3VYvngJlttnV0H52DtfLScKxF6v8SiADCLikCU4FCY8x2Y0wj8Aowy+GYgoYxZq8xZqX9uBrrw2sQ1ns0xz5sDnCBMxEGDxEZDHwDeMp+LsDpwFz7EH2fABFJBk7GWi0HY0yjMaYCvac64gH62GvPxgF70fsKAGPMJ1grLbXW0X00C3jeWP4DpIjIgO7GEI5JcRBQ3Op5ib1NtSEiucBEYCnQzxiz1961D+jnUFjB5H+B2wGf/TwdqDDGeO3nem9ZhgClwLN2VfNTIhKP3lNfY4zZDfweKMJKhpXACvS+OpKO7qMe+awPx6So/CAiCcDrwE+MMVWt99kLREf0WB0R+SZwwBizwulYQoAHmAT8xRgzEailTVWp3lMWuz1sFtYXiYFAPF+vLlQd6I37KByT4m4gq9XzwfY2ZRORKKyE+JIx5g178/6Wqgf79wGn4gsS04HzRWQnVhX86VjtZil2tRfovdWiBCgxxiy1n8/FSpJ6T33dGcAOY0ypMaYJeAPrXtP7qmMd3Uc98lkfjklxOTDc7s0VjdWIPc/hmIKG3S72NLDRGPNoq13zgGvsx9cAb/Z2bMHEGHOnMWawMSYX6x762BhzJbAQuMQ+LOLfJwBjzD6gWERG2ptmAF+g91R7ioBpIhJn/19sea/0vupYR/fRPOA7di/UaUBlq2rWoxaWM9qIyLlY7UFu4BljzG8cDiloiMiJwKfAOv7bVvYLrHbF14BsrKW7vmWMadvgHZFE5FTgNmPMN0VkKFbJMQ1YBVxljGlwMr5gICITsDokRQPbgeuwvnTrPdWGiPwSuAyrJ/gq4HqstrCIv69E5GXgVKwlovYD9wH/op37yP5S8Ses6ufDwHXGmIJuxxCOSVEppZQ6GuFYfaqUUkodFU2KSimllE2TolJKKWXTpKiUUkrZNCkqpZRSNk2KSimllE2TolJKKWX7/0J1xNhklKqsAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8VFX6+PHPk04NvYQAoSpIIEBAaTZQikosqCBNZVVU7PrVRddVd9ffqrvqqlhwbYgoZUFREFAQCz30qoQeOgFCTX9+f9wbDDEhIclkZpLn/XrNKzP3nnvOk2GYJ/fcc88RVcUYY4zxNQHeDsAYY4zJiyUoY4wxPskSlDHGGJ9kCcoYY4xPsgRljDHGJ1mCMsYY45MsQRmTDxF5V0T+UkJ1NRKREyIS6L6eLyJ/Kom63fq+FZHhJVWfMb4gyNsBGOMtIrIdqAtkAJnABmAcMFZVs1R15HnU8ydV/T6/Mqq6E6hc3Jjd9p4DmqvqkBz19y2Juo3xJXYGZcq761S1CtAY+CfwJPBBSTYgIvaHoDFFYAnKGEBVk1V1OnArMFxE2ojIxyLydwARqSUi34jIURE5LCI/i0iAiHwKNAK+drvw/k9EokRERWSEiOwE5uXYljNZNRORpSJyTES+EpEabluXi0hizvhEZLuI9BKRPsBo4Fa3vdXu/jNdhm5cz4jIDhE5ICLjRCTc3Zcdx3AR2Skih0Tk6RztdBaReDem/SLyqqfec2MKYgnKmBxUdSmQCPTItesxd3ttnG7B0U5xHQrsxDkTq6yqL+c45jKgFdA7n+aGAXcC9XG6Gd8oRHyzgBeBiW577fIodrv7uAJoitO1+FauMt2BC4CewLMi0srd/h/gP6paFWgGTCooJmM8xRKUMX+0B6iRa1s6TiJprKrpqvqzFjyR5XOqelJVT+ez/1NVXaeqJ4G/ALdkD6IopsHAq6q6VVVPAH8GBuY6e3teVU+r6mpgNZCd6NKB5iJSS1VPqOriEojHmCKxBGXMHzUADufa9gqQAMwRka0i8lQh6tl1Hvt3AMFArUJHmb8It76cdQfhnPll25fj+Sl+H8AxAmgJbBKRZSJybQnEY0yRWIIyJgcR6YSToH7JuV1Vj6vqY6raFOgPPCoiPbN351NdQWdYDXM8b4Rz9nIIOAlUzBFTIE7XYmHr3YMz6CNn3RnA/gKOQ1U3q+ogoA7wEjBFRCoVdJwxnmAJyhhARKq6ZwtfAONVdW2u/deKSHMRESAZZ1h6lrt7P861nvM1RERai0hF4AVgiqpmAr8BYSJyjYgEA88AoTmO2w9EiUh+/38/Bx4RkSYiUpnfr1llFBSQiAwRkdqqmgUcdTdnnesYYzzFEpQp774WkeM43W1PA68Cd+RRrgXwPXACWAS8rao/uPv+H/CMO8Lv8fNo+1PgY5zutjDgQXBGFAL3Af8FduOcUeUc1TfZ/ZkkIivyqPdDt+6fgG1ACvBAIWPqA6wXkRM4AyYGnuMamjEeJbZgoTHGGF9kZ1DGGGN8kiUoY4wxPskSlDHGGJ9kCcoYY4xP8qtJLGvVqqVRUVHeDsMYY0wxLF++/JCq1i6onF8lqKioKOLj470dhjHGmGIQkR0Fl7IuPmOMMT7KEpQxxhif5FddfKZkHE9J5+MF2/lk0XYa16zEQz1b0KNFLZxZfIwxxjdYgipHUjMyGfvjVv77yzaST6dzWcvaJBw4wbAPl9KhUTWe6H0hXZrV9HaYxhgDWIIqV57/egMTluykV6u6PNSzBdGR4aRlZDF5+S7GzEtg6AdL+PL+brRpEO7tUI0xpnDXoESkj4j8KiIJea2DIyKhIjLR3b9ERKLc7YNFZFWOR5aIxLj75rt1Zu+rU5K/mDnbD5sOMGHJTu65tCn/HR5LdKSThEKCAhh8cWNmPtSDmpVDeGTiKlLSM70crTHGFCJBuWvRjAH6Aq2BQSLSOlexEcARVW0OvIazjgyq+pmqxqhqDDAU2Kaqq3IcNzh7v6oeKIHfx+Th8Mk0npiyhgvrVeHRq1vmWaZaxRBeGdCOzQdO8PKsX0s5QmOM+aPCnEF1BhLc5aPTcNbLictVJg74xH0+Begpf7ziPsg91pQiVWX01LUcO53Oa7fGEBqU/4ril7aszfAujflwwTYWJBwqxSiNMeaPCpOgGnD20tSJ7rY8y7iLoiUDua+234qzkFpOH7nde3/JI6EBICJ3i0i8iMQfPHiwEOGanKau2M2s9ft49OqWtKpftcDyT/VtRdPalXh88mqST6eXQoTGGJO3UrkPSkQuBk6p6rocmwerajTQw30MzetYVR2rqrGqGlu7doEzY5gcUjMy+X/fbqJj4+rc1aNwC75WCAnktVti2Hcshf/+vNXDERpjTP4Kk6B2Aw1zvI50t+VZRkSCgHAgKcf+geQ6e1LV3e7P48AEnK5EU4K+WrmHQydSeaRXSwIDCn+PU7uG1ejVqi7jF+/gdJoNmDDGeEdhEtQyoIWINBGREJxkMz1XmenAcPf5AGCeukv1ikgAcAs5rj+JSJCI1HKfBwPXAuswJUZV+e8vW7mwXhW6NT//e5vu6tGUI6fSmbIiseDCxhjjAQUmKPea0ihgNrARmKSq60XkBRHp7xb7AKgpIgnAo0DOoeiXArtUNWd/USgwW0TWAKtwzsDeL/ZvY8748beD/Lb/BHf1aFqkGSI6RVWnXWQ4H/6yjcws9UCExhhzboW6UVdVZwIzc217NsfzFODmfI6dD1ySa9tJoON5xmrOw/s/b6Vu1VCuaxdRpONFhLsubcqoCSv5fuN+el9Ur4QjNMaYc7PJYsug9XuSWZCQxO1dmxASVPR/4j4X1aNBtQo2WMIY4xWWoMqgD37eRqWQQG67uFGx6gkKDGBE9yYs236EVbuOllB0xhhTOJagypj9x1KYvnoPt3RqSHiF4GLXd0unhlQJC7KzKGNMqbMEVcZ8uXI3GVnKsC5RJVJf5dAgBnSMZM76/SSfsht3jTGlxxJUGTNt5W7aN6pGk1qVSqzOG9tHkpaZxYy1e0usTmOMKYglqDJkw55jbNp3nBvb556JqnjaNKhK8zqVmbbS7okyxpQeS1BlyLSViQQFCNe0LdrQ8vyICDe0b8Cy7UfYdfhUidZtjDH5sQRVRmRmKV+t2sPlF9ShRqWQEq8/LsZJel+uzD3LlTHGeIYlqDJi4ZZDHDieyo0dSrZ7L1tk9Ypc3KQG01buxp3FyhhjPMoSVBkxbcVuqoQFceWFnluY+MYODdh66CSrE5M91oYxxmSzBFUGnErLYNb6fVwTXZ+w4PwXJCyuvtH1CQkKYJpNIGuMKQWWoMqA2ev3cSotkxtKePReblXDgrmqVV2+XrOX9Mwsj7ZljDGWoMqA6av20KBaBTpF1fB4W9e3b8Dhk2n8YkvCG2M8zBKUn0s+nc4vCYfoF12PgPNYlLCoLm1ZiyqhQcxcYzftGmM8yxKUn/t+w37SM5V+0fVLpb3QoEB6ta7LnA37rZvPGONRlqD83My1e4kIDyOmYbVSa7NfdH2ST6ezcEtSqbVpjCl/LEH5sWMp6fy8+RB9o+sXadXcourRohaVrZvPGONhlqD82NyN+0nLzCq17r1sYcGB9GxVh9kb9lk3nzHGYwqVoESkj4j8KiIJIvJUHvtDRWSiu3+JiES526NE5LSIrHIf7+Y4pqOIrHWPeUNK8xSgjJixZh/1w8NoX4rde9n6Rdfn6Kl0Fm+1bj5jjGcUmKBEJBAYA/QFWgODRKR1rmIjgCOq2hx4DXgpx74tqhrjPkbm2P4OcBfQwn30KfqvUf4cT0nnp80H6dumfqmM3svtspa1qRQSyExbgsMY4yFBhSjTGUhQ1a0AIvIFEAdsyFEmDnjOfT4FeOtcZ0QiUh+oqqqL3dfjgOuBb8/3Fyiv5m06QFpGFv2i63ml/bDgQK5sVZfZ6/fzt7gsggKtt9jvZWVB4jI4sAGSd8HRXZB2EsIjoVpDqNYYmvSACtW9HakpJwqToBoAu3K8TgQuzq+MqmaISDJQ093XRERWAseAZ1T1Z7d8zvlyEt1tfyAidwN3AzRq1KgQ4ZYPM9bspV7VMDo08t6XxTXR9fh69R6WbDtMt+a1vBaHKaaDv8GaL2DNZEje6WyTQAhvAMGVYPvPkHrM2R4YAi37QLuB0PwqCCr5mfONyVaYBFUce4FGqpokIh2BL0XkovOpQFXHAmMBYmNjbRpt4ERqBj/+dpBBnRt5pXsv2+UX1KFiSCAz1u61BOWPju6EOX+BDV+CBECzK6Hns9DoEqhSHwJzfD2cPgoHf4X102DdFNg4HcIbQe+/Q6v+YJeQjQcUJkHtBhrmeB3pbsurTKKIBAHhQJI66zKkAqjqchHZArR0y0cWUKfJx7xNB0jNyOKatqU7ei+3sOBArrywDrPX7eNvcW0I9GKyNOch/TQseAN+ec15fdlTEHsHVDlHd3GFatDoYudx9d8g4XuY+zeYNAyaXAZ9X4I6rUonflNuFObCwTKghYg0EZEQYCAwPVeZ6cBw9/kAYJ6qqojUdgdZICJNcQZDbFXVvcAxEbnEvVY1DPiqBH6fcmHmmr3UqRJKRy9272XrF12fpJNpLNlmo/n8woFN8G4PmP8iXNAHRi2DK/587uSUW2AwXNAX7vkJ+v0L9q6Gd7vDojFga4WZElRgglLVDGAUMBvYCExS1fUi8oKI9HeLfQDUFJEE4FEgeyj6pcAaEVmFM3hipKoedvfdB/wXSAC2YAMkCuVkagY//HqAvm1KZ+69glxxQR0qBNtoPr+wfhq8fyWkHIWh0+Dmj53BD0UVGASd74IHVjjXpWaPhil3QuqJEgvZlG+FugalqjOBmbm2PZvjeQpwcx7H/Q/4Xz51xgNtzidYAz/86nTv9S3lm3PzUyEkkCsurM2sdft5vr918/mkrEz47llY9BZEdoZbPoGqESVXf6WacOt4WPA6zH0BDmyEgZ9BzWYl14Ypl2xssJ+ZuXYvtSqHlsrSGoXVL7o+h06ksmz74YILm9KVkQb/G+Ekp053we0zSjY5ZROB7o/AkKlwYj98cDXsW1vy7ZhyxRKUHzmVlsEPmw7Sp01dnzpTueKCOoQGBfCtdfP5lvTTMHGI07V31d/gmn95flh4sytgxHcQFAYfXwO7lnm2PVOmWYLyI/N/Pcjp9MxSn3uvIJVCg7jigjp8u24fWVl2kdwnpB6Hz26GzXPg2teg24Ol13at5nDnt1ChBoyLg60/ll7bpkyxBOVHZqzdS81KIXT2oe69bH2j63HgeCrxO454OxSTdgo+uwV2LIQbx0LsnaUfQ7VGcOcsqN4YJtwC238p/RiM37ME5SdOp2Xyw6YD9G5TzyenFerZqi4hQQE2ms/bMtKce5N2LoKb3oe2t3gvlir1YPg3UD0KJgyE3Su8F4vxS773TWfy9ONvBziVlkm/Nr7VvZetcmgQl7Wszbfr9lo3n7dkZcK0eyDhO7judWhzk7cjckb4DZ0GFavD+Juc+7CMKSRLUH7iq1V7qFU5hEua+l73XrZr29Zn/7FUlmyz0XylThVmPAbrp8JVL0DH270d0e+qRsDQL50bfD+9Ho7s8HZExk9YgvIDx1LSmbvpANe2jfDJ7r1sV7WuS8WQQL5aZbNWlbqf/wXLP3KGend7yNvR/FHNZs6ZVPopZ/DGabtWaQrmu9925oxZ6/aRlpFFXIwH7l8pQRVDguh9UT1mrt1Lakamt8MpP9ZMgnl/h7YDoedfvR1N/upeBLd+Boe3wsShzvUyY87BEpQf+GrVbhrXrEiMF1bOPV9xMREcS3Hu1zKlYPsv8NX9ENUD+r/p+7OKN+kBcWOcJTymP2Bz95lzsgTl4/YfS2HhliTiYhpwjjUgfUb35rWoVTnEuvlKw8Hf4IvbnFFyt37qP2sztbsVrnjGWYNq/v/zdjTGh1mC8nFfr96DKlzv49172YICA7i2bQRzNx3gWEq6t8Mpu04ddu4vCgyBwZP9b5XbSx+HmCHw40vOQonG5MESlI/7ctVu2kaG07R2ZW+HUmhxMRGkZWQxa90+b4dSNmWkOVMYHdsDAyc4Z1D+RsSZ4aJxN6eLctdSb0dkfJAlKB+WcOAE63YfIy6mgbdDOS8xDavRuGZF6+bzBFWY8QjsWABxb0HDzt6OqOiCQuCWT6Fqfaer8uhOb0dkfIwlKB82fdVuAgSua+ebN+fmR0SIi2nAwi1J7D+W4u1wypaFb8LK8XDpE96dJaKkVKoJt01yzgonDHTmEDTGZQnKR2VlKVNX7qZb81rUqRLm7XDO2/UxEajCtJV2FlViNs101nVqHQeXj/Z2NCWn9gVw80dwcBP870/OjBjGYAnKZ/20+SCJR05za6dirHjqRU1rV6ZzVA0+X7rTpj4qCfvWOV/eETFw/bsQUMb+6zbvCX1fgt9mOUnYGCxB+azPluykVuUQrm5dz9uhFNngSxqxI+kUC7Yc8nYo/u3EAfh8IISFw8DPIaSityPyjM53OYsqLnoLVozzdjTGBxQqQYlIHxH5VUQSROSpPPaHishEd/8SEYlyt18lIstFZK3788ocx8x361zlPuqU1C/l7/Ymn2buxv3cEtuQkCD//RuiT5t61KgUwmeL7eJ3kaWnOAMITiXBoM+dAQVlWZ9/QrMr4ZtHYNvP3o7GeFmB334iEgiMAfoCrYFBItI6V7ERwBFVbQ68Brzkbj8EXKeq0cBw4NNcxw1W1Rj3caAYv0eZ8sXSXSgwqHMjb4dSLKFBgdzcMZLvNu63wRJFkZUFX46ExGVww3tO915ZFxgEAz6CGs2cofSHNns7IuNFhfnzvDOQoKpbVTUN+AKIy1UmDvjEfT4F6CkioqorVXWPu309UEFEQksi8LIqPTOLL5bt5LKWtWlYw/+7cgZ1bkRmljJx2S5vh+J/5j7/+3Ltrft7O5rSU6EaDJ7kzH7+2QA4aV3E5VVhElQDIOe3S6K7Lc8yqpoBJAM1c5W5CVihqqk5tn3kdu/9RfKZx0dE7haReBGJP3iw7M/vNnfjAfYfS2XwxY29HUqJiKpViR4tavH50p1kZGZ5Oxz/sfxjWPC6sxpu1we8HU3pqx4Fg76A4/uc62/pp70dkfGCUrnAISIX4XT73ZNj82C366+H+xia17GqOlZVY1U1tnbt2p4P1ss+W7KDiPAwrryw7FySG3xxY/YmpzD/17L/B0aJSPgevnkUml8FfV/x/QlgPSUyFm58HxLjnYUYs+wPnPKmMAlqN5BzrHOkuy3PMiISBIQDSe7rSGAaMExVt2QfoKq73Z/HgQk4XYnl2vZDJ/l58yEGdm5EYEDZ+VLq2aoOdauG8uliW6iuQInLYeIwqNPauTcoMMjbEXlX6/5w9d9hw1cw60mb/bycKUyCWga0EJEmIhICDASm5yozHWcQBMAAYJ6qqohUA2YAT6nqguzCIhIkIrXc58HAtcC64v0q/u/t+QmEBgUwsLN/3vuUn+DAAIZe0pgffzvIut3J3g7Hdx38zbnmUqkWDJkCoVW8HZFv6DrK6eZcOhZ+esXb0ZhSVGCCcq8pjQJmAxuBSaq6XkReEJHsK7cfADVFJAF4FMgeij4KaA48m2s4eSgwW0TWAKtwzsDeL8lfzN/sOnyKqSt2M6hzI7+cOaIgw7pGUTUsiDfm2qisPCXvhvE3QkCgs/JsFf+9/80jer0A7W6DH/4Byz7wdjSmlBSq/0BVZwIzc217NsfzFODmPI77O/D3fKrtWPgwy7635ycQIMLIy5p5OxSPqBoWzJ3dm/D695vZsOcYrSOqejsk33HykJOcTh+FO2Y4y6ObswUEQP834PRhmPGYc9Ny9ABvR2U8zH/vAi1DEo+cYsryRAZ2bki98LJ39pTtjm5NqBIaxJvz7CzqjJNJ8El/OLLduRG3fjtvR+S7AoOde6Qad4WpdztD8E2ZZgnKB7wz3xk7UlbPnrKFVwjmjm5RfLtuH5v2HfN2ON536jCM6w+HtzhDqpv08HZEvi+kojP7ecPOMGWEM3jClFmWoLxsz9HTTIrfxc2xDYmoVsHb4Xjcnd2bUDk0iDfnJXg7FO/KTk6HNjtnTs2u8HZE/iO0srOKcGQsTLkTNuQes2XKCktQXvbmvARU4b7Ly/bZU7ZqFUMY3rUxM9fuZf2ecjqiL3k3fNTXGbU3aIIz95w5P6FVYPAUiOgAk2+HlZ95OyLjAZagvGj5jiN8sWwnQ7s0JrK6/09rVFh39WhKjYohjJ62jszythTHwV/hg6udJDVkCjTv5e2I/FdYVRg61eka/eo++OV1u0+qjLEE5SVpGVmMnrqW+lXDeOzqC7wdTqmqVjGEZ69rzepdRxlfnm7eTYyHD3tDZpozWq/Jpd6OyP+FVoHbJsNFN8L3f4U5z9iME2WIJSgvef/nrfy6/zgvxLWhcmj5my2gf7sILm1Zm5dnbWLP0XIwz9qaSfDxNRBWDUbMttF6JSkoBG76ADrf46wlNWkopNggnLLAEpQXbDt0kv/M3cw10fXp1bqut8PxChHhH9e3IVOVZ79aj5bVrpnMDJg1GqbeBQ1iYcR3UKOpt6MqewICnBV5+/wTfv0W/tsTDpXzgThlgCWoUpaVpYyeupbQoAD+el3uZbXKl4Y1KvLoVS35fuN+vl23z9vhlLwTB2D8DbB4DFw8EoZ9CZXL/oTHXiMCl9zrvM+nkuD9K2DTDG9HZYrBElQpe2n2JhZtTeLpfq2oU7Xs3pRbWHd2a0J0g3D+b8oaft133NvhlJyNX8Pbl8DOJXD9O85f94HB3o6qfGhyKdw9H2o0cVYjnv4gpJ7wdlSmCCxBlaIvlu7kvR+3MuSSRtzaqWxNCFtUQYEBvDe0IxVDArnz42UcOO7nK++mHIMv73NWgw2PhHt+gpjbvB1V+VOtkdOd2u1hWDEO3u0GOxd7OypznixBlZIFCYd45st19GhRi+euu4h81mcslyKqVeCD4Z04fDKNu8YtJyU909shnT9VZyDEmM6w+nO49AkY8T3UudDbkZVfQaFw1fNwx0zQLPiwj3M2ZSv0+g1LUKVg075jjBy/nKa1KzFmcAeCAu1tzy06MpzXB8awJvEoj0xcRbo/rb67Z5UzfHzqXc4s5CO+hyufcUaXGe9r3BXuXQhd7odVn8EbHWDxu5CZ7u3ITAHsm9LD5m3az4B3FlEhOJAPhneiaphdh8hP74vq8XS/Vny7bh/DPljKkZNp3g7p3PashC8Gw9jL4PBWiBsDf5oHkTZRv88JrQK9/+EkqsiOzuKHb3aE5R9DRqq3ozP5EH8a3hsbG6vx8fHeDqNQVJX//ryNF7/dSOv6VXl/WGy5mGuvJExdkchT/1tL/WphfDA8luZ1fGjhvqws2PYjLH4bNs9xln24eKTz13lYuLejM4Wh6vzbzf8n7FkBVRtAl1EQMwgqVPd2dOWCiCxX1dgCy1mCKnkHjqfwjxkb+WrVHvpF1+NfN7ejYkj5uxm3OJbvOMI9ny4nNT2Tv/a/iBvbNyAgwIvX7Y7vc7qHVoxzlsaoUMNJSp3vssTkr1Rh6w/w4yuwcyEEhUHrOOgwHBp1ce6tMh5hCcoLTqdl8v7PW3n3xy2kZ2bxwJUtGHVFc+9+sfqxPUdPc/+EFazceZQ2DarydL/WdGlWs/QCOLwVNn4Dm76BXUsBhcbdoePt0Oo6CLbbBMqMvWtgxSfOQJfUY1ClPlx4DVx4LUR1t1sESpglqFK07dBJvly5m4nLdrHvWAp929TjyT4XElWrkrdD83tZWcrXa/bw8qxf2X30ND1a1GJAx0iubl2PCiGBJdmQk5B2LYEdC2D7L3DUnSewXjRceB20uQlqNS+5No3vSTvl/EGycTokzIX0UxBcCRpdDI27OY960c6SH6bISjRBiUgf4D9AIPBfVf1nrv2hwDicZdyTgFtVdbu778/ACCATeFBVZxemzrz4SoI6lZbB6l3JrNh5hDkb9rN611FEoGuzmjzcqyWdomp4O8QyJyU9k48WbOfTRdvZk5xCxZBAel9Ujy7NatKhUXWa1qpUuDPVjFRIToSkLU5CStoM+9bB/nWQ5t7MWaEGRHWDqB7Qsg9Ub+zR3834qPTTsGUebJ0P2xfAgfXuDoGazZ1EVftCqNnMmb6qepRzDctuISlQiSUoEQkEfgOuAhKBZcAgVd2Qo8x9QFtVHSkiA4EbVPVWEWkNfA50BiKA74GW7mHnrDMvnkxQWVlKakYWp9MzOZ2eybHT6Rw5lcbRU+kcPJ7KrsOn2HXkFDuSTrH5wIkzy0S0ql+VG9pH0L9dgzK9XLtXqTr3sWSmk5WRyopt+5mzZicLNu0hPfUUFUilVmgWLatDZIUM6ldIo3ZQClX1OJUzkwnLOErIqQMEntxHwKlc98CEVIG6F0H9tlCvLTTo6Hzp2PUHk9vJJOcMe99a2LfG6RZM3nl2maAKUDXCeVSqBRVrOn/wVKjujCQMqwohlSGkEgRXgOCKzv1agaHObQmBoU53YkBQmU50hU1Qhbly3xlIUNWtbsVfAHFAzmQSBzznPp8CvCXOnahxwBeqmgpsE5EEtz4KUWeJ2rl5DfLZzWdeK06Cyc7PufN0BfcR4b4WgaAAISgwgNCqAYQEBRAaFEAgAitxHuVGjjfrD3/gaB5Pc77JuZ5r1u8JKOcjKxM00/mZ9fv9KgFArPsAIDRH00fch+ukhnKEKuzRyhzQ6uzTduzT6uyjJrskgt0B9TmWVo2gPQHIXiEwAAJkL8LeMzdSZ39HiIBw9hdGGf7+MPmqgPMV5nyNhVRMpYHuo0HWXiJ0P7WykqiVfJjaRw8RrlsJ12NU5QQBnP+llAwCyCSQLALOeihCFoKKU2tWjruF1P2M/v4TyPW51RyvNZ/t55IpwTR+dt15/z5FUZgE1QDYleN1InBxfmVUNUNEkoGa7vbFuY5t4D4vqE4ARORu4G6ARo0aFSLcvIVVqExieLT7pSIEiPPPJiIEBDivA0UIDHAewYFOEgoJDCA0OIDQoMBC/vOVE2d9O0vB+85sk9+LS4D7WkACndfZj4DA338GuH9RBgY5z4PCfv9rM/uv0OAKznWB0KqkBlZkX2oIR9IC3bPgNE6lZXI6LZPQ9EzqpmdRIyttLOCIAAAgAElEQVSLizKV9MwsslTJzHLOorPU+dNF9fc/YlD+8PXiT9dujafV5STt2AxszmOvaCZhWacIyzpJWKbzM0RTCMlyHkGaRpCmn3kEaAaBmkkAmQSc+emkJ1QRlAAyne8vzULOpKHsz6T7Oo/PqORKSXlvPzcNCKa0Or19fuyzqo4FxoLTxVfUeupENqXOI1NKLC7ju0KBxu7DGOO/CtPRvhvIObNppLstzzIiEgSE4wyWyO/YwtRpjDGmHCtMgloGtBCRJiISAgwEpucqMx0Y7j4fAMxTpw9kOjBQREJFpAnQAlhayDqNMcaUYwV28bnXlEYBs3GGhH+oqutF5AUgXlWnAx8An7qDIA7jJBzccpNwBj9kAPeraiZAXnUWFMvy5csPiciOovyiOdQCbDrj39n7cTZ7P85m78fZ7P34o6K8J4XqgferG3VLgojEF2Z4Y3lh78fZ7P04m70fZ7P34488+Z7YzR7GGGN8kiUoY4wxPqk8Jqix3g7Ax9j7cTZ7P85m78fZ7P34I4+9J+XuGpQxxhj/UB7PoIwxxvgBS1DGGGN8UrlJUCLSR0R+FZEEEXnK2/GUNhFpKCI/iMgGEVkvIg+522uIyHcistn9Wa7WvBaRQBFZKSLfuK+biMgS93My0b2RvNwQkWoiMkVENonIRhHpUp4/IyLyiPv/ZZ2IfC4iYeXpMyIiH4rIARFZl2Nbnp8Hcbzhvi9rRKRDcdsvFwnKXTJkDNAXaA0McpcCKU8ygMdUtTVwCXC/+x48BcxV1RbAXPd1efIQsDHH65eA11S1Oc7c6CO8EpX3/AeYpaoXAu1w3pty+RkRkQbAg0CsqrbBmVRgIOXrM/Ix0CfXtvw+D31xZgtqgTPB9zvFbbxcJChyLBmiqmlA9vIe5Yaq7lXVFe7z4zhfPA1w3odP3GKfANd7J8LSJyKRwDXAf93XAlyJs2QMlL/3Ixy4FGdmGFQ1TVWPUo4/Iziz7VRw5xitCOylHH1GVPUnnNmBcsrv8xAHjFPHYqCaiNQvTvvlJUHltWRIg3zKlnkiEgW0B5YAdVV1r7trH1DXS2F5w+vA/wFZ7uuawFFVzXBfl7fPSRPgIPCR2+35XxGpRDn9jKjqbuBfwE6cxJQMLKd8f0Yg/89DiX/PlpcEZVwiUhn4H/Cwqh7Luc+d4Ldc3HcgItcCB1R1ubdj8SFBQAfgHVVtD5wkV3deOfuMVMc5K2iCs3ZpJf7Y3VWuefrzUF4SlC3vAYhIME5y+kxVp7qb92efhrs/D3grvlLWDegvIttxunyvxLn+Us3tzoHy9zlJBBJVdYn7egpOwiqvn5FewDZVPaiq6cBUnM9Nef6MQP6fhxL/ni0vCarcL+/hXl/5ANioqq/m2JVzqZThwFelHZs3qOqfVTVSVaNwPg/zVHUw8APOkjFQjt4PAFXdB+wSkQvcTT1xViIol58RnK69S0Skovv/J/v9KLefEVd+n4fpwDB3NN8lQHKOrsAiKTczSYhIP5xrDtnLe/zDyyGVKhHpDvwMrOX3ay6jca5DTQIaATuAW1Q190XRMk1ELgceV9VrRaQpzhlVDWAlMERVU70ZX2kSkRicQSMhwFbgDpw/ZMvlZ0REngduxRkFuxL4E851lXLxGRGRz4HLcZbU2A/8FfiSPD4PbhJ/C6cb9BRwh6rGF6v98pKgjDHG+Jfy0sVnjDHGz1iCMsYY45MsQRljjPFJlqCMMcb4JEtQxhhjfJIlKGOMMT7JEpQxxhifZAnKGGOMT7IEZYwxxidZgjLGGOOTLEEZY4zxSZagjDHG+CRLUMYYY3ySJShT7onIdhE5LSInROSIiMwQkYYFH+kbROQ5ERnv7TiMKWmWoIxxXKeqlYH6OOvevHm+FeRYZdWv+GvcpuyzBGVMDqqagrPUeWsAEblGRFaKyDER2SUiz2WXFZEoEVERGSEiO4F57tnXAznrFJE1InKD+/wiEflORA6LyH4RGe1uDxCRp0Rki4gkicgkEamRq53hIrJTRA6JyNPuvj44C0/e6p4Brna3h4vIByKyV0R2i8jfRSTQ3Xe7iCwQkddEJAl4TkSai8iPIpLs1j/Ro2+0MYVgCcqYHESkIs4KqovdTSeBYUA14BrgXhG5PtdhlwGtgN7AJ8CQHPW1w1mBdYaIVAG+B2YBEUBzYK5b9AHgereuCOAIMCZXO92BC3CWHn9WRFqp6izgRWCiqlZW1XZu2Y9xVoFtDrQHrsZZDTbbxTgr5tYF/gH8DZgDVAciKcIZpDElzRKUMY4vReQokAxcBbwCoKrzVXWtqmap6hrgc5wkktNzqnpSVU8D04GWItLC3TcUJ3mkAdcC+1T136qaoqrHVXWJW24k8LSqJrrLhz8HDMjV/fa8qp5W1dXAaqAdeRCRukA/4GE3rgPAa8DAHMX2qOqbqprhxp0ONAYi3Nh+Ob+3z5iSZwnKGMf1qloNCANGAT+KSD0RuVhEfhCRgyKSjJNIauU6dlf2E7eLcCIwREQCgEHAp+7uhsCWfNpvDEwTkaNuotwIZOKc4WTbl+P5KaDyOeoKBvbmqO89oE5eMbv+DxBgqYisF5E786nbmFJjCcqYHFQ1U1Wn4iSH7sAEnLOihqoaDryL80V+1mG5Xn8CDMbpijulqovc7buApvk0vQvoq6rVcjzCVHV3YcLOo65UoFaOuqqq6kX5HaOq+1T1LlWNAO4B3haR5oVo2xiPsQRlTA7iiMO5FrMRqAIcVtUUEekM3FZQHW5CygL+ze9nTwDfAPVF5GERCRWRKiJysbvvXeAfItLYjaO2G0dh7Aei3DM2VHUvzvWkf4tIVXcARjMRyd01mfP3vllEIt2XR3ASWFYh2zfGIyxBGeP4WkROAMdwBg0MV9X1wH3ACyJyHHgWmFTI+sYB0cCZ+5NU9TjO9a3rcLrrNgNXuLv/g3OmNsdtazHOQIbCmOz+TBKRFe7zYUAIsAEn4UzBGUKfn07AEvc9mA48pKpbC9m+MR4hqrl7B4wxxSUiw4C7VbW7t2Mxxl/ZGZQxJcwdqn4fMNbbsRjjzyxBGVOCRKQ3cBDnutAEL4djjF+zLj5jjDE+yc6gjDHG+CS/miSyVq1aGhUV5e0wjDHGFMPy5csPqWrtgsr5VYKKiooiPj7e22EYY4wpBhHZUZhy1sVnjDHGJ1mCMqVux9EdfLjyQ5btXkZmVqa3wzHG+Ci/6uIzJejYMfjiC2jWDK68EiT39HIlKyMrg29++4axy8cyK2EW6k4FFx4azuVRl/NA5wfo2bSnR2MwxvgXS1DlTXIyvPkmvPoqHDnibOvaFZ59Fq6+2iOJ6kTaCfp+1pdfdv5CRJUInrn0GW5qdRMbD21k3rZ5fJvwLb3H92bsdWO5s71Nom1KTnp6OomJiaSkpHg7lHIpLCyMyMhIgoODi3S8Jajy5KefIC4Ojh6F666Dp56CNWvgxRehTx/o1QtmzICQkBJr8mTaSa6ZcA2Ldi3ig/4fMKzdMIICnI9du3rtGNhmIMdTjzNg8gBGTB/BnuN7eLrH04iHz+hM+ZCYmEiVKlWIioqyz1QpU1WSkpJITEykSZMmRaqjWNegRKSPiPwqIgki8lQe+0NFZKK7f4mIROXY11ZEFrlrz6wVkbDixGIKcOQI3HYb1K4Ny5fD9OnOmdPIkZCQ4JxRff+9cyZVQk6nnybuizh+2fkL428cz53t7zyTnHKqElqFrwd9zdC2Q/nLD3/h/pn3YzeQm5KQkpJCzZo1LTl5gYhQs2bNYp29FvkMSkQCcZakvgpIBJaJyHRV3ZCj2AjgiKo2F5GBwEvAre4qoeOBoaq6WkRq4qzoaTzlvvtg/35YtAg6dDh7X0gIPPIIbNwIL78M/frBpZcWq7mMrAxunHQj87bN45PrP2Fgm4HnLB8SGMIn139CnUp1+Peif9Ohfgf+1OFP5zzGmMKw5OQ9xX3vi3MG1RlIUNWt7nLWXwC516+Jw1m8DZzp/nuKE/HVwBp36WpUNUlVbTiXp0yY4AyIeO45iI3Nv9yrrzqDJoYNc65VFcMbS95gVsIs3rnmHYa2G1qoY0SEl696mSuiruCR2Y+w7ci2YsVgjPFvxUlQDTh72ehEd1ueZVQ1A0gGagItARWR2SKyQkT+L79GRORuEYkXkfiDBw8WI9xyaudO5+ypa1d48slzl61cGT79FBIT4YEHitzktiPb+MsPf+G6ltdxd8e7z+vYAAngo7iPEIQ7vrqDLLU184x/q1y5MgCrVq2iS5cuXHTRRbRt25aJEyd6OTLf5637oIJwltMe7P68QUTyHGOsqmNVNVZVY2vXLnBmDJPbyJGQmekknqBC9Ohecgk8/bRTfubM825OVbl3xr0ESABj+o0p0il+42qNeb3P6/y440feWPLGeR9vjC+qWLEi48aNY/369cyaNYuHH36Yo0ePejssn1acBLUbaJjjdaS7Lc8y7nWncCAJ52zrJ1U9pKqngJlArgsjpthWrYJvv4XRo6Fp08If98wz0LixM7rvPE1YO4HZW2bz4pUv0jC8YcEH5OOOmDu4tuW1/Hnun9l0aFOR6zHGV7Rs2ZIWLVoAEBERQZ06dbBeoXMrzjDzZUALEWmCk4gGArflKjMdGA4sAgYA81RVRWQ28H/uwm5pwGXAa8WIxeTlX/9yuu3uvff8jgsOdgZNPPywM6iiS5dCHZZ0KomHZz/MxQ0u5r5O9xUh4N+JCO9f9z6txrTiie+e4OtBXxerPmN4+GHnj7aSFBMDr79+3octXbqUtLQ0mjVrVrLxlDFFPoNyrymNAmYDG4FJqrpeRF4Qkf5usQ+AmiKSADwKPOUeewR4FSfJrQJWqOqMov8a5g927XIGRtx1F1Srdv7HjxgB1as7Sa6Q/jr/rxxNOcr7171PYEDg+beZS73K9Xii6xN889s3LE5cXOz6jPEFe/fuZejQoXz00UcEBNhsc+ekqn7z6Nixo5pCevRR1cBA1R07il7H6NGqIqqbNxdYdFfyLg35W4jeNf2uoreXh+Opx7XOK3X0yk+uLNF6TfmwYcMGb4eglSpVOvM8OTlZ27dvr5MnT/ZiRKUrr38DIF4L8Z1v6bssOnoUxo6FW2+FRo2KXs+oUU5336uvFlj0pV9eIkuzGN1jdNHby0PlkMqM7j6aedvmMW/bvBKt25jSlJaWxg033MCwYcMYMGCAt8PxC5agyqKxY+HECXjiieLVU78+DB0KH30E57iYu/vYbsauGMvt7W4nqlpU8drMwz2x9xBZNZKn5z1tM0wYvzVp0iR++uknPv74Y2JiYoiJiWFVSV8TK2MsQZU1aWnwn/848+rFxBS/vsceg5QUGDMm3yIvLfDM2VO2sKAwnr30WRYnLuab377xSBvGeMqJEycAGDJkCOnp6axaterMI6Yk/o+WYZagypqvv4Y9e+DRR0umvlatnKmPxo517qfKZc/xPYxd7pw9NaletAkhC+P2mNtpVr0Zz85/1s6ijCknLEGVNePGQUSEs3RGSbnzTti7F+bO/cOul355iUzN9NjZU7bgwGBG9xjNqn2r+GH7Dx5tyxjjGyxBlSUHDzqzPwweDIHFH+Z9xrXXOkPVx407a3PSqSTGrhjL0LZDPXr2lO226NuoU6kOry4qeNCGMcb/WYIqS774AjIynMleS1JoqDMicNo0OH78zOaxy8eSkpHCY10eK9n28hEWFMb9ne5nxuYZNruEMeWAJaiyZNw4aN8e2rQp+bqHDYNTp2DqVADSM9MZs2wMvZr24qI6F5V8e/kYGTuS0MBQXl98/nfvG2P8iyWosmLjRoiPL/mzp2xdujhLcbjdfFM3TmX38d08dPFDnmkvH3Uq1WFo26GMWz2OQ6cOlWrbxpjSZQmqrPj0U+e606BBnqlfxEl+P/wAO3fy+pLXaV6jOf1a9PNMe+fw8CUPczrjNO/Fv1fqbRtzPh555BFezzFXX+/evfnTn35fiPOxxx7j1ULcCO9JR48e5e233y5U2a5du3o4mrNZgioLsrKcBNWnD9St67l2hgwBVZZ++k8WJy7mwc4PEiCl/xG6qM5F9G7Wm7eWvUVqRmqpt29MYXXr1o2FCxcCkJWVxaFDh1i/fv2Z/QsXLiy1L/2MjIw8t59Pgsr+XUqLJaiyYP58Z5FBT3XvZWvaFHr04D9bPqNqaFVuj7nds+2dw6NdHmXfiX1M3jDZazEYU5CuXbuyaNEiANavX0+bNm2oUqUKR44cITU1lY0bN9K6dWt69uxJhw4diI6O5quvvgLg5MmTXHPNNbRr1442bdqcWeDwqaeeonXr1rRt25bHH38cgIMHD3LTTTfRqVMnOnXqxIIFCwB47rnnGDp0KN26dWPo0KGsX7+ezp07ExMTQ9u2bdm8eTNPPfUUW7ZsISYmhifc2WdeeeUVOnXqRNu2bfnrX/965vfJXnxx/vz5XH755QwYMIALL7yQwYMHe+T+xOIst2F8xfjxULUqXHedx5vac9t1TNrzM6MiBlEltIrH28tPr6a9aFGjBe/Ev8OQtkO8FofxHw/PephV+0p2aqGYejG83if/ATsREREEBQWxc+dOFi5cSJcuXdi9ezeLFi0iPDyc6OhoKlasyLRp06hatSqHDh3ikksuoX///syaNYuIiAhmzHAWekhOTiYpKYlp06axadMmROTMgocPPfQQjzzyCN27d2fnzp307t2bjRs3ArBhwwZ++eUXKlSowAMPPMBDDz3E4MGDSUtLIzMzk3/+85+sW7fuzLRLc+bMYfPmzSxduhRVpX///vz0009ceumlZ/1uK1euZP369URERNCtWzcWLFhA9+7dS/T9tTMof5eW5gz/vv56qFDB482NbXyIzAAYtdF7yQmcpeHvjb2XhbsWsnrfaq/GYsy5dO3alYULF55JUF26dDnzulu3bqgqo0ePpm3btvTq1Yvdu3ezf/9+oqOj+e6773jyySf5+eefCQ8PJzw8nLCwMEaMGMHUqVOpWLEiAN9//z2jRo0iJiaG/v37c+zYsTNTLPXv358K7ndDly5dePHFF3nppZfYsWPHme05zZkzhzlz5tC+fXs6dOjApk2b2Lx58x/Kde7cmcjISAICAoiJiWH79u0l/t7ZGZS/+/57Z/byW27xeFMZWRm8v3E8vZNr0eyr7+BFdQZPeMnwmOGMnjead+Lf4d1r3/VaHMY/nOtMx5Oyr0OtXbuWNm3a0LBhQ/79739TtWpV7rjjDj777DMOHjzI8uXLCQ4OJioqipSUFFq2bMmKFSuYOXMmzzzzDD179uTZZ59l6dKlzJ07lylTpvDWW28xb948srKyWLx4MWFhYX9ov1KlSmee33bbbVx88cXMmDGDfv368d5779E012rbqsqf//xn7rnnnnP+XqGhoWeeBwYG5nuNqzjsDMrfTZoE4eFw1VUeb+qb375hz/E9jGw+CLZtg+XLPd7mudSoUIOBbQYyfs14jqUe82osxuSna9eufPPNN9SoUYPAwEBq1KjB0aNHWbRoEV27diU5OZk6deoQHBzMDz/8wI4dOwDYs2cPFStWZMiQITzxxBOsWLGCEydOkJycTL9+/XjttddYvdrpPbj66qt58803z7SZ3yzpW7dupWnTpjz44IPExcWxZs0aqlSpwvEcN+D37t2bDz/88MwZ2O7duzlw4ICn3p5zsgTlz9LS4Msvne69kBCPN/dO/DtEVo3kmlufgaAgmOz9AQr3xd7HyfSTfLr6U2+HYkyeoqOjz1xbyrktPDycWrVqMXjwYOLj44mOjmbcuHFceOGFAKxdu/bMgIbnn3+eZ555huPHj3PttdfStm1bunfvfmaI+htvvEF8fDxt27aldevWvPtu3j0KkyZNok2bNsTExLBu3TqGDRtGzZo16datG23atOGJJ57g6quv5rbbbqNLly5ER0czYMCAsxJYaRJ/mhk6NjZW4+PjvR2G75gxw5knb8YMZ8ZxD9pyeAvN32zO85c/z7OXPeu0t3EjbN3q1W4+gNixsaRkpLD23rWIl2MxvmXjxo20atXK22GUa3n9G4jIclWNLejYYp1BiUgfEflVRBJE5Kk89oeKyER3/xIRicq1v5GInBCRx4sTR7k1ebIziWuvXh5v6r3l7xEogYxoP8LZcPPNsH2717v5AO6NvZf1B9fz886fvR2KMaYEFTlBiUggMAboC7QGBolI61zFRgBHVLU58BrwUq79rwLfFjWGci01tdS691IzUvlw5YfEXRhHg6oNnI3XX+8sBz9pkkfbLoxB0YMIDw3nnfh3vB2KMaYEFecMqjOQoKpbVTUN+AKIy1UmDvjEfT4F6CluH4yIXA9sA9Zjzt9330FysnMm42FTNkwh6XQSIzuO/H1j9erOwIxJk8DL3cQVgysyvN1w/rfhfxw46Z2LucZ3+dNljLKmuO99cRJUA2BXjteJ7rY8y6hqBpAM1BSRysCTwPMFNSIid4tIvIjEHzx4sBjhljGl2L337vJ3aV6jOT2b9jx7x803w44dziS1XnZP7D2kZ6Xz8aqPvR2K8SFhYWEkJSVZkvICVSUpKSnPoe+F5a37oJ4DXlPVEwVd1FbVscBYcAZJeD40P5CaCl99BTfc4PHuvXUH1vHLzl945apX/jjvXlzc7918nTp5NI6CtK7dmh6NejB2+Vge7/q4V+YINL4nMjKSxMRE7I9b7wgLCyMyMrLIxxcnQe0GGuZ4Heluy6tMoogEAeFAEnAxMEBEXgaqAVkikqKqbxUjnvKjFLv33ot/j5DAkLzn3cvu5ps8GV5+2euj+UbGjmTw1MHM3TqXq5p5/r4w4/uCg4Np0sTzqz0bzyjOn5nLgBYi0kREQoCBwPRcZaYDw93nA4B56uihqlGqGgW8Drxoyek8TJpUKt17J9NOMm7NOG5ufTO1KtbKu9AttzjdfMuWeTSWwrip1U3UrFCT95bbMhzGlAVFTlDuNaVRwGxgIzBJVdeLyAsi0t8t9gHONacE4FHgD0PRzXkqxe69L9Z9wbHUY4yMHZl/oexuPh+4aTc0KJQ7Yu7gy01fsvf4Xm+HY4wpJrtR1998/TX07w8zZ0Lfvh5tqtP7nTidfrrgG2CvvRbWrXOmP/JyN9/mpM20fKslf7/i7zx96dNejcUYk7dSuVHXeMHkyc61n549Cy5bDPF74onfE8/I2JEFz86QPZrPB7r5WtRsQc8mPRm7YiyZWZneDscYUwyWoPxJdvdeKdyc+178e1QMrsjQtkMLLpxzNJ8PGBk7kp3JO5m5eaa3QzHGFIMlKH8yZw4cO+bxpTWSU5KZsG4Cg9oMIjwsvOADqlWDq6+GKVO8ftMuQNwFcURUiWDMsjHeDsUYUwyWoPxJKXXvfbzqY06ln+Le2HsLf5APjeYLDgzmno73MHvLbDYn/XGhNWOMf7AE5S9ydu8FB3usmSzN4q1lb9ElsgsdIzoW/sD+/X2qm++uDncRFBBk8/MZ48csQfmLUurem7NlDgmHExjVedT5HVitGvTu7ZzlZWV5JrjzUL9KfQa0HsCHKz/kZNpJb4djjCkCS1D+YsIEqFkTrrzSo828ufRN6lWux4DWA87/4FtvhZ07YeHCkg+sCO7vdD/JqclMWDvB26EYY4rAEpQ/OHbMWVrj1ls9Onov4XAC327+lns63kNIYBHauf56qFgRPvus5IMrgm4Nu9G2blvGLBtjk4Ua44csQfmDadMgJQWGDPFoM28ve5vAgEDu7nh30SqoXNmZ4WLiRGc5ei8TEUZ1GsXq/atZuMs3zuqMMYVnCcofjB8PTZvCJZd4rIkTaSf4cOWHDGg9gIgqEUWvaMgQOHIEvvWNdShvi76NamHVeH3J694OxRhznixB+bo9e2DuXOeL34PTCI1fM57k1GQe6PxA8Srq1Qvq1HGSqg+oFFKJkR1HMnXjVLYc3uLtcIwx58ESlK/7/HPn5tfBgz3WRGZWJq8uepWO9TvSJbJL8SoLCoJBg5w5A48eLZkAi+mBix8gUAJ5fbGdRRnjTyxB+brx46FzZ2jZ0mNNfLnpSzYf3syT3Z4seN69whg82Llv63//K35dJSCiSgSD2w7mw1UfknQqydvhGGMKyRKUL1u/Hlat8ujgCFXlpQUv0ax6M25sdWPJVBob6yRUH+nmA3isy2OcSj/Fu/HvejsUY0whWYLyZZ99BoGBzvByD5m/fT7L9izj8a6PExgQWDKVijhJdf58574oH9CmThv6NO/Dm0vfJCUjxdvhGGMKwRKUr8rIgE8/dWZnqFPHY828vPBl6lSqw/B2wwsufD6yr5mNG1ey9RbD410eZ//J/Xy2xjfu0zLGnJslKF/1zTeQmAh33eWxJlbvW82shFk82PlBKgRXKNnKmzZ1RvS9/z5k+sa6TFc2uZL29drzr0X/srWijPEDlqB81TvvQGSks1qth7y88GUqh1Tmvk73eaaBe+91uvhm+sa6TCLCn7v/mU2HNjFx/URvh2OMKUCxEpSI9BGRX0UkQUSeymN/qIhMdPcvEZEod/tVIrJcRNa6Pz07wZy/SUhwJoe9+25n2LYH/HroVyaum8jdHe6meoXqHmmD/v0hIgLeftsz9RfBTa1vom3dtjw3/zkysjK8HY4x5hyKnKBEJBAYA/QFWgODRKR1rmIjgCOq2hx4DXjJ3X4IuE5Vo4HhwKdFjaNMevddJzH96U8ea+IvP/yFsKAwnuz+pMfaICjI6aKcPRu2bvVcO+chQAJ4/vLn2Xx4M+PX+M4oQ2PMHxXnDKozkKCqW1U1DfgCiMtVJg74xH0+BegpIqKqK1V1j7t9PVBBREKLEUvZcfo0fPSRM/Fq/foeaWLF3hVM3jCZRy55hDqVPDcAA3ASVEAAvPeeZ9s5D3EXxNGhfgde+PEF0jPTvR2OMSYfxUlQDYBdOV4nutvyLKOqGUAyUDNXmZuAFaqamlcjInK3iMSLSPzBgweLEa6fmDwZDmiATV4AABPLSURBVB92rt94yNPznqZGhRo83vVxj7VxRoMGEBcHH3zgTHjrA0SEFy5/gW1Ht/Hxqo+9HY4xJh9eHSQhIhfhdPvdk18ZVR2rqrGqGlu7du3SC85b3nkHLrgArrjCI9X/tOMnZiX8//bOPbqq4t7jn985OXmSxCDIO7wM1wqLIkEeBcQCVqC14q3ysLYK0pda1F610F4pgrfK9YFe6aWLohVua5VaH4iIokBBCI8ElYYgD0UkGJKAQB7kfX73j9mHJBAhknOyTzjzWWvWOXvv2bN/mcyZ78zsmd+sYsbQGSTHJofkGWfwi1/A0aPw8svN87xGMC5tHIM6DWLu+rlUVDfYNrJYLC7TFIE6BHSpc9zZOddgHBGJApKBo85xZ+BV4Meqar14AmRmwubNpkIPgWNYVWXmezPpmNjx6++Y2xRGjoS0NHjmGeNXMAwQEeZ+ey4Hiw6yYOsCt82xWCwN0BSB2gakiUh3EYkGJgHLT4uzHDMJAuBGYI2qqohcBLwJzFDVjU2w4cJi7lyzdfptt4Uk+eW7l7Pp4CZmXTUr+OuezobHA7/6FWzdCu++23zPPQeje4xmXNo4HvrnQ3xR/MW5b7BYLM3KeQuU807pLuBtYBewTFV3isgcEfm+E+1Z4GIR2Qf8CghMRb8LuBSYJSIfOiHEb+vDnO3bYflyU5EnB3/orbSylOmrptO7bW+mXjE16OmfkylToEsXmD07rHpRT495moqaCu5ffb/b5lgsltOQlrQV9oABAzQzM9NtM0LD+PHwz3/CZ5+FRKDuf+d+Hs94nPenvM/Q1KFBT79RLFwId9xh1nhdc407NjTAg2se5OEND7Pu1nWM6DbCbXMslgseEclS1QHnimc9SYQDH3wAr78est7TR4c/Yv7m+Uy7Ypp74gQwdarxjhFGvSiAmcNn0jW5K3e9dZeddm6xhBFWoMKBhx4y756mTw960n718/M3f07ruNbMu2beuW8IJTEx8JvfwKZNZpfgMCHeF8/8a+eTXZBtJ0xYLGGEFSi3CfSe7r03JL2nRVmL2Jy7mSe+8wSt41oHPf2vTZj2osZfNp5xaeP47ZrfklOY47Y5FosFK1DuogozZhhhCkHvaVfhLu575z5GdR/FLX1Dt+nh1yLQi9q40UwKCRNEhMXXLSYhOoHJ/5hs94yyWMIAK1Bu8te/mgkDgenlQaS0spSb/n4T8b54loxfEpyt3IPFtGnQty/ceScUFbltzSk6JHZgyfgl7MjfwQOrH3DbHIsl4rEC5RaFhXDPPTBkiJnZFkRUlTtW3kFOYQ4v/OAFOiWd7oHKZXw+s09UXh7MnOm2NfUYlzaOewbdwzNbn2HFnhVum2OxRDSh2cvBcm7uvdf0Hv70J7OtexB57oPnWPrRUmaPmM3oHqODmnbQGDgQ7r4b5s+Hm2+GoS7OLjyNR0c/yroD65jy+hS2TttK95TubpsUOoqKYP9+OHwY8vOhoABKSozfxPJys9lkTAzExkJcHFx8MbRrZ0LnziZ4bDvXEhrsOig3eOstGDcOZs0yM/iCyKaDmxi1dBTDUoex6oer8HqCK35BpaQE+vQxFd+HH5qKMEzYfWQ3Q54dQpv4Nrw/9f3Qe30PNWVlsGOHmZSzfTvk5MDevUaQGiIgSh4PVFQYsfL7z4wXGwuXXgq9ekG/fnDFFdC/v/HEH07DypaworHroKxANTdHj5ofcHx80CvlrC+yGLl0JO0S2rWcSnXVKhg7Fh54AOa5PA3+NDYd3MTopaPpfUlv1vx4DYkxiW6b1HiOHIH16+H9903Yvt30hgBSUkzDoFcv4yOxZ08jKIGeUatWDYtLZaVJNz/f9LgOHDAit3cvfPyx+QzQuTMMG2bC8OHmebanZXGwAhWOVFQYDwpbthivEYMHBy3p7IJsRjw/gsToRDZM2UCX5C7nvilc+NnPYNEisw9WiPwQni9v7nmT61+8nm93/zZv3vwm0d5ot01qmLIyI0jvvmvChx+a87GxZjh16FC48krTOEpNDU3vprgYPvoIsrIgI8MI4yHHf3TbtjBqlAnXXmvcXlkiFitQ4YYq/OhHZubeCy/A5MlBS3r3kd2MeH4EXo+X9betp2frnkFLu1moqjJDnuvWmd13R45026J6LPlwCbe9fhtjLx3LSze+FD49qU8+gZUrzZDxunVGpKKjjRiNGmXyMT3dnHMDVfj8c2Pbe+8Z4czLM9d694YxY8z/fdgw92y0uEJjBQpVbTEhPT1dWyyzZqmC6sMPBzXZt/a+pRc9epG2/e+2mlOQE9S0m5Xjx1V791ZNTlbdudNta85gUeYi9T7k1b4L++qB4wfcMaKyUnXtWtX77lO97DJTnkA1LU11+nTVlStVS0vdsa0x+P2q2dmqjz+uOmqUqs9n7E9KUr3xRtXnn1fNz3fbSkszAGRqI+p810Xn64QWKVB+v+r8+Sarp041x0FJ1q+PbHhEZbZo34V99ZMvPwlKuq7y2Weq7durpqaq5oSf2L6z7x1NeiRJ2z3WTrfkbmmeh+bnqy5ZojphghFvUI2OVr3mGtWnnlLdu7d57AgFxcWqr72m+pOfqHbsaP42EdVBg1TnzFHNylKtqXHbSksIsAIVDpSXq95+u8nmG25QragISrJ5xXn6g5d+oMxGJ/59opZUlAQl3bAgK0v1kktUExNV33jDbWvOYGfBTu32VDf1zfHp79b+TsuryoP7gKoq1Y0bVR98UHXAAFNhgxHu229XfeUV1aKi4D4zHPD7zf9+zhwjUIG/u1071VtvVX3xRdXCQrettAQJK1Buc/iw6tChJov/8z+D0hKsrK7U+RnzNemRJPXN8eljGx9Tf5B6ZGHF55+r9u9vKqnf/z5ovc5gUVhaqJNfnqzMRr+x4Bu64cCG80/M7ze9xT/8QXX8eDPcBaoej+qQIabC3rYt8noShw+bnuOkSaopKbW9q/R01RkzVFevDu/hTMtZsQLlFlVVqn/8o+kFxMWZll9Tk6yp0mXZy7TP//ZRZqNj/jJGdx/ZHQRjw5jSUlM5gepVV6lu3eq2RWewcs9K7Tq/qzIbveHFGzTjYMa5b6qsNILz9NOqN91kykngXVK3bma4a9ky1aNHQ/8HtBSqq1UzMoxYDx+uGhVl8svnM43AmTNNb9v2sFoMjRUoO4svWKjCihXw61/Drl1mZtKCBfDNb553kgWlBSzevpiFmQvJLcqlZ0pPnrz2Sa7rdV14+dYLFapm+vmsWWZB6cSJxm9hWprblp2itLKUeRvnsWDrAo6VH2N46nCmD5rOuLRxxOODPXvMGqSsrNpQVmZu7tIFrr7ahBEjoEcPu7i1MRQXmy1b1q2DtWtNnlZXm2tpabXT6dPTzeLhIPu5tDSdZplmLiJjgKcBL7BYVR897XoMsBRIB44CE1X1M+faTOB2oAaYrqpvn+t5YSlQu3bVTh3fv98sfpw3D66//mtXNn71k1OYw4o9K3hjzxtkHMxAUUb3GM0vB/6S76Z9N7w9Q4SK4mJ47DF44gk4edKsH7v5ZpgwwSwsdZuiIko+3sGzWX/iyYLX+ZwTxFULY/fBv+9UrjoAXariTGU5cCB861vGB6NdCxQcTp6EzEyz9iojwwhWbm7t9U6dzELh3r1rFyenpZnzdvGwK4RcoETEC+wBrgFygW3AZFXNqRPnDqCvqv5cRCYBN6jqRBG5HPgbMBDoCLwL9FLVmrM901WBUoVjx8zak23bYPNmE/buNYV89Gi45RaYNMk4Qz0LfvWTV5zHp8c+5dNjn5JdkE1mXiZZX2RRXFkMQP8O/bmu13VM6D2By9te3hx/YfiTlwdLl5rGwI4dpgFw2WWmxTxwoKmAunQxXgya6qGjqgpOnDCeP44erfWgkJdnwqFDZo3PgQNw/Pip26o9sP7KS/hH/zhebXuEPE8pAJ0SOzG482D6te9HWus00i5Oo2dKT5JikiKjN9zc5Oebnuu//gXZ2Sbs2mVcNgXw+Ux56drVfHboUBvatoU2bUxo3Tqs3HBdCDSHQA0BZqvqtc7xTABVfaROnLedOBkiEgUcBtoCM+rGrRvvbM9sikCVHM1jy+o/Q40f1G/8itXUmKGB6hq0ugoqytGKCrSiHEpK0aIiKC5Cjx3DX3AYf1kZCtR4oCYlGX+vXlT3+QZVA9OpapVAlb+K8upyyqrKKK8up6SyhOLKYooqijhefpyC0gIKTxZSUFpAZU3lKduivdH0a9+P9A7pXNnxSr7T8zvh54E83Ni5E159FbZuNSE/v/71Nm3MPltJSZCYaBaCer0miJj/e02NEaKystpQUmKEKTAM1xBt2kDHjqZiS001nz171roNio8HTENke952Mg5mkJGbwebczew/vr9eUvG+eNq3ak/7Vu1JiU0hOTaZ5JhkEqMTifPFEe+LJy4qDp/XR7Q3Gp/HR5QnCq/Hi1e8eD1ePOI5FQQ5JXiB74JzXEcIA+cawwUjoH6/aWgcOmR6WPmOg9z8AjOE/OWXte6gTifaBwmtICHB+I4MhNhYU7ZiYkyIijLC5/OZ71FREOUFbxR4PeBxyqDHY8rh6Z8NBiDw/wqcq3OqgYPzGypu5D0ej5erx9/z9dOv96jQC9SNwBhVneYc/wgYpKp31YmT7cTJdY4/AQYBs4HNqvoX5/yzwFuq+nIDz/kp8FOA1NTU9AMHDpyXvTs3vUaf1Tec173nS4IvgcSYRJJikkiOSeaShEtOha7JXenZuic9UnrQNbkrPu/Ze12Ws6BqKpw9e+DgQRO++MJ46i4uNp9VVbWipFqn8ogyFU18vPlMSDDCFhC3Nm2MB++6Xryb4PXgZNVJ9n25j71H97L/+H4Olxw+FY6VH+NE+QlOVJyguKKYipqKIGaSxRIcYqqhfG7T5i40VqDCfrsNVV0ELALTgzrfdLr1Hsb6oj+alorHA+IxLZoon2nh+HxIbBzExCC+aMQZmw60NL0e76kWaaDlGvj0eXz4vD58Hh9xvjhio2KJ9kbjETu+3SyImCGaFvBOJ94XT992fenbru854/rVT1lVGWXVZVTVVFHlr6KyppJqfzU1/hpqtIZqf7WZ8YRS469BMT+RwLlAAzRwPnCtsdS9z9JIVJ2RmWqoMSM0VFfXjtoEGkl+ZyRH/aA43wNzOp1zgeNAunWf0dD3ho6DTHP2qJsiUIeAujVCZ+dcQ3FynSG+ZMxkicbcG1QSktswfMzPQvkIiyWoeMRDQnQCCdEJbptisbhCU5r424A0EekuItHAJGD5aXGWA7c6328E1jhz4JcDk0QkRkS6A2nA1ibYYrFYLJYLjPPuQalqtYjcBbyNmWb+nKruFJE5mEVYy4Fngf8TkX3AlxgRw4m3DMgBqoE7zzWDz2KxWCyRRYtaqCsihcD5zZKopQ1wJAjmXCjY/KiPzY/62Pyoj82PMzmfPOmqqm3PFalFCVQwEJHMxsweiRRsftTH5kd9bH7Ux+bHmYQyT+w0M4vFYrGEJVagLBaLxRKWRKJALXLbgDDD5kd9bH7Ux+ZHfWx+nEnI8iTi3kFZLBaLpWUQiT0oi8VisbQArEBZLBaLJSyJGIESkTEisltE9onIDLftaW5EpIuIrBWRHBHZKSJ3O+dbi8hqEdnrfKa4bWtzIiJeEflARFY4x91FZItTTl5yvKREDCJykYi8LCIfi8guERkSyWVERO51fi/ZIvI3EYmNpDIiIs+JSIHj+DtwrsHyIIb/cfJlh4j0b+rzI0KgnL2r/gCMBS4HJjt7UkUS1cB/qOrlwGDgTicPZgDvqWoa8J5zHEncDeyqczwPmK+qlwLHMJtqRhJPA6tU9TLgm5i8icgyIiKdgOnAAFXtg/GYM4nIKiPPA2NOO/dV5WEsxm1dGmYHioVNfXhECBRmY8R9qvqpqlYCLwLXu2xTs6Kqeaq63flejKl4OmHyYYkTbQkw3h0Lmx8R6Qx8F1jsHAswEghs+xJp+ZEMXIVxUYaqVqrqcSK4jGDcwcU5zq7jgTwiqIyo6nqMm7q6fFV5uB5YqobNwEUi0qEpz48UgeoEHKxznOuci0hEpBtwBbAFaKeqec6lw0AY7KHebDwFPAD4neOLgeOqWu0cR1o56Q4UAn92hj0Xi0gCEVpGVPUQ8DjwOUaYTgBZRHYZga8uD0GvZyNFoCwOItIK+Adwj6oW1b3meJqPiHUHIvI9oEBVs9y2JYyIAvoDC1X1CqCU04bzIqyMpGB6Bd2BjkACZw53RTShLg+RIlDNvv9UOCIiPow4/VVVX3FO5we64c5ngVv2NTNDge+LyGeYId+RmPcvFznDORB55SQXyFXVLc7xyxjBitQyMhrYr6qFqloFvIIpN5FcRuCry0PQ69lIEajG7F11QeO8X3kW2KWqT9a5VHfPrluB15vbNjdQ1Zmq2llVu2HKwxpV/SGwFrN3GURQfgCo6mHgoIj8m3NqFGZLnIgsI5ihvcEiEu/8fgL5EbFlxOGrysNy4MfObL7BwIk6Q4HnRcR4khCRcZh3DoG9q/7LZZOaFREZBmwA/kXtO5ffYN5DLQNSMVuZTFDV01+KXtCIyNXAfar6PRHpgelRtQY+AG5R1Qo37WtORKQfZtJINPApMAXTkI3IMiIiDwETMbNgPwCmYd6rREQZEZG/AVdjttTIB34HvEYD5cER8QWYYdCTwBRVzWzS8yNFoCwWi8XSsoiUIT6LxWKxtDCsQFksFoslLLECZbFYLJawxAqUxWKxWMISK1AWi8ViCUusQFksFoslLLECZbFYLJaw5P8B8+yyfxkpn3sAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXt8W3d9//86OrpLdnxLYjt27dhJk8a5NReadJR0o9CtQH8FCiv0wqBdRwd7lMu4toOOddtjGw/G+mB8gS8MKCNt1zLIt7ACvQMrSXpJmmsT25Jt2ZJtWZZ1O5LO7fP7Q/mcHEnn6C5bsc/z8UjTSPI5R8fSeZ33+/N6v98MIQQGBgYGBgaNhmmpD8DAwMDAwEALQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSc5mvN9pOGBgYGBhUC1PKi4wIysDAwMCgITEEysDAwMCgITEEysDAwMCgITEEysDAwMCgITEEymBF8Q//8A+46667lvowSuKBBx7AbbfdVvHPDw0N4YUXXqjdAdV4/9deey2++93vlrStF154AT09PTU6MoNLBUOglin9/f1wOBxwu91obW3FO97xDvh8vqU+rLKo9gKtxRe/+MWSL4r12H+9+LM/+zPcf//9WY+dPn0a11577dIcUM7+a3ku0+k07rzzTvT19aGpqQk7d+7EU089VZNtGzQWhkAtY5588knE43EEAgGsXbsWf/VXf1XRdkRRrPGRLQ5LfdxLvf/liiiK6O3txYsvvohIJIIHH3wQ73//+zE2NrbUh2ZQawgh5fwxuETo6+sjTz/9tPLvX/ziF2Tjxo3Kv3/+85+TnTt3kqamJtLT00O+/OUvK895vV4CgHz3u98lvb295JprriE33HADeeihh7L2sW3bNvLf//3fhBBCTp06Ra677jrS2tpK1qxZQ/7+7/+eEEKIJEnkH//xH8nAwABpa2sj73vf+0goFMrazw9+8APS29tL2tvbyYMPPkgIIeSpp54iFouFmM1m4nK5yPbt2wkhhCwsLJCPfOQjpLOzk3R3d5P77ruPiKJICCHk+9//Prn66qvJJz7xCdLW1kbuu+++vPPy5S9/mdx6662Ltn/62Mc+9jHS3NxMNm3aRJ555hnleKampsi73vUu0traSgYHB8l3vvMdzWMlhJCbb76ZrF27ljQ3N5NrrrmGnDp1ihBCyLe//W1iNpuJxWIhLpeLvPOd78z7DKRSKXLvvfeSrq4u0tXVRe69916SSqUIIYQ8//zzZN26deSrX/0qWb16Nens7CT/8R//ofGpIuS5554jW7duVf593XXXkT179ij/fvOb30x++tOfZu1f71weOHCA3H///eTqq68mbrebvO1tbyPBYFBzv/QY9di2bRt54okndJ83aDhK0hxDoJYp6otTIpEgd9xxB7n99tuV559//nly4sQJIkkSef3118maNWuUCwu9cN9+++0kHo8TjuPIY489Rt70pjcpP3/8+HHS1tZG0uk0iUajpLOzk3z1q18lyWSSRKNRcvjwYUIIIV//+tfJVVddRXw+H0mlUuTuu+8mt9xyS9Z+7rrrLsJxHDl+/DixWq3kzJkzhJD8CzQhhNx0003k7rvvJvF4nMzMzJC9e/eSb33rW4SQjECwLEseeughIggC4Tgu77xoCVQ9908f+9rXvkZ4niePPvooaW5uVkT6mmuuIffccw9JJpPk2LFjpKOjgzz77LOa+//e975HotGoIjY7duxQnvvQhz6UJ8jqz8Df/M3fkKuuuorMzMyQ2dlZsn//fnL//fcrnwWWZcnf/M3fEJ7nyS9+8QvicDjI/Px83vnjOI7YbDYSDAYJz/NkzZo1pLu7m0SjUcJxHLHb7WRubi5v/1rn8sCBA2RgYICcO3eOcBxHDhw4QD73uc/l7ZMeo55ATU9PE5vNRs6ePav5vEFDYgjUSqavr4+4XC6yatUqYjabSVdXFzlx4oTu6++9917yiU98ghBy8cI9OjqqPJ9MJklLSws5f/48IYSQT3/60+See+4hhBBy8OBBsnPnTs3tbt68OSti8Pv9xGw2E0EQlP34fD7l+b1795JHHnmEEJJ/UZueniZWqzVLeA4ePEiuvfZaQkhGIHp7ewueFy2Bquf+v//975Ouri4iy3LWPh5++GEyMTFBTCYTiUajynOf//znyYc+9CHN/asJh8MEAFlYWCCEFBeogYEB8otf/EJ57pe//CXp6+sjhGQu/na7nQiCoDy/evVq8vvf/15z329+85vJT37yE/L73/+evO1tbyPve9/7yFNPPUWee+45sm3bNs396wnU3/3d3yn//vd//3dy/fXXa+5TT6B4nidvfetbyd133635cwYNS0maU26rI4NLiJ/97Ge47rrrIEkSDh06hAMHDuDMmTPo7OzEkSNH8PnPfx6nTp0Cz/NIp9N43/vel/Xzvb29yv/b7Xb86Z/+Kf7zP/8TX/7yl/HII4/giSeeAAD4fD4MDg5qHsP4+Dje/e53w2S6uNzJsixmZmaUf3d2dir/73Q6EY/HdbclCAK6urqUx2RZzjpO9f+XSr33v27dOjDMxc4ufX198Pv98Pv9aGtrQ1NTU9Zzr7zySt42JEnCfffdh8cffxzBYFA5n3Nzc1i1alXR9+j3+9HX15d3DJT29naYzRcvB4XOw4EDBxRX3YEDB9Da2ooXX3wRNpsNBw4cKHosako991rIsozbb78dVqsV3/jGN8rar8GlgWGSWAGwLIv3vOc9YFkWv/vd7wAAH/zgB3HjjTfC5/MhEongox/9aCakVqG+qALAhz70Ifz4xz/Gs88+C6fTif379wPIXJQ9Ho/mvnt7e/HUU09hYWFB+ZNKpbBu3bqix527/97eXthsNszNzSnbikajOH36tO7PVEOt9j81NZV1bicmJtDd3Y3u7m7Mz88jFotlPad1bg4ePIhDhw7hmWeeQSQSUQwBdLvF3nd3dzfGx8fzjqESqED95je/wYEDB3DgwAG8+OKLePHFF3UFqpa/FyDzvu+8807MzMzgJz/5CSwWS023b9AYGAK1AiCE4NChQwiHw7jiiisAALFYDG1tbbDb7Th69CgOHjxYdDv79++HyWTCpz/9adx+++3K4+985zsRCATw9a9/Hel0GrFYDEeOHAEAfPSjH8V9992nXByDwSAOHTpU0nGvXbsWY2NjkGUZANDV1YW3v/3t+PSnP41oNApZljE6OooXX3yxrPNRKrXa/+zsLB566CEIgoDHH38cZ8+exQ033IDe3l5cffXV+MIXvoBUKoUTJ07ge9/7nqYdOxaLwWazob29HRzH4Ytf/GLeserdJADABz7wATz44IMIBoOYm5vDV77ylYpt31dffTXOnTuHo0eP4k1vehOGhoYwPj6OI0eO4C1veYvmz+Sey2q55557cPbsWTz55JNwOBw12aZB42EI1DLmXe96F9xuN5qbm3Hffffhhz/8IYaGhgAA3/zmN/GlL30JTU1N+MpXvoL3v//9JW3zjjvuwMmTJ7Mubk1NTXj66afx5JNPorOzExs3bsTzzz8PALj33ntx44034u1vfzuampqwb98+RbyKQVOO7e3t2LVrFwDg4YcfBs/z2LJlC1pbW3HzzTcjEAiUfE7KoVb7v+qqqzA8PIyOjg7cd999eOKJJ9De3g4AeOSRRzA2Nobu7m68+93vxt/+7d/iuuuuy9vGHXfcgb6+Pqxbtw5btmzBvn37sp6/8847cebMGbS0tOCmm27K+/n7778fe/bswfbt27Ft2zbs2rUrr26qVFwuF3bt2oWhoSFYrVYAmZuXvr4+rFmzRvNntM5lpYyPj+Pb3/42jh8/js7OTrjdbrjdbvz4xz+uarsGjQeTm9YpgjFuY4Xz8MMP4zvf+Y6SKjQozA9+8AN897vfNc6XgUE2JeV8DZOEQclwHIdvfvOb+Mu//MulPhQFQgh4nocsyzCbzTCZTDCZTDVf8zAwMFh8jBSfQUn86le/wurVq7F27Vp88IMfXOrDgSzLSCQSSKVS4HkeqVQKiUQCsVgMp0+fRjQaVZ4XBAGSJOWZQAwMDBobI8VncMlAayMEQYAsy/j973+Pq6++GqIoQpZlJWo6evQo9u7dm1VPwTAMCCEwmUxgWTYr2qIRlxF1GRgsGkaKz2B5QAiBLMuKEAFQBIVhGCU6Ylk277nc7QCZmqLcPnkMw2iKlyFcBgZLhyFQBg0LIQSSJEGSJCVCUguGLMt44403MDc3pzzmcDiQTqcxMzMDl8sFp9OpFLXS12gJDhVBSZLA83zWcyzLZv0xhMvAYHEwBMqg4aDCJIqikp5TC0IikYDX60UymURLSwsGBwchyzIIIUilUjh+/DiSySRCoRA4joMsy7Db7YpguVwuuFwuJeICoCs4auGix0IxmUxKtEWFyzBoGBjUDkOgDBoGQghEUcwSA3WLpEgkAo/HA0EQsH79ekQiEXR2dirpOpPJBKfTCYvFgv7+/qztplIpcByHRCKBqakpcBwHSZJgs9myRIv+PKWQcFEHoZZw5UZchnAZGJSPIVAGSw4VJio0amEihGB+fh5erxcmkwkDAwNoaWkBAAwPD2dtQ08AGIaBw+GAw+FQCmTpz/A8j0QigUQigenpaSQSCYiiCIvFkiVaLpdLKUql29QTLiAzs0gQBABAOByGyWRCa2urIVwGBmVgCJTBkkFTZ2phohdrQghmZ2fh9XrhdDqxadOmrKaqtYBhGNhsNthsNrS1tWU9R4WL4zgEg0GMjY1BEASYzeasiIsKV+76llp0UqmUIrhUuLSchVrCZYiXwUrGECiDRYc68iRJApAtTLIsIxAIYHx8HC0tLdixY8eS9FqzWq2wWq1obW3NelwURSXimp+fh8/nQzqdhslkyou47HZ7lmAZzkIDg/IwBMpgUcitYQKyhUmSJExOTmJychKrV6/G7t27YbPZqtpfPS7iZrMZq1atyhtxIUmSssYViUTg9/uVyIkQArvdDrPZrAiX4Sw0MCiOIVAGdaVQDRMACIKAiYkJTE9Po7u7G1dddVXWXKJStp8LTZ0t5sWaZVk0NTXlpSFlWYbX64UoiojH45iZmUEymQSQscTnGjTUppBKnYXGOpfBcsEQKIO6oLaKnzp1Clu3bs264KZSKYyNjSEUCuGyyy7Dvn37smzfpUCjk9yLLxWoRsBkMilOwdxBh7Q9UyKRwNzcHJLJZJYlXi1cpVriaZTK87whXAaXPIZAGdQUrRqmWCyWV8MUi8XQ39+Pyy+/PCtqKAeGYbJaHKkfbxSB0oNa4p1OJ1avXq08Ti3x1KARDoezLPG5tVzqaLMcZ2E8HkcqlcKaNWsM4TJoWAyBMqgJxWqYotEoPB4PeJ7H+vXrMTQ0VPVFUC+VdykIlB5qS7yaXEt8IBAAx3ElW+LVfwMZlyLHcQAMZ6FB42IIlEFVFKthohHA8PAwBgYG8lxx1aAnRJeyQOlRqSU+N+KilnitDh0Uw1lo0CgYAmVQEcVqmILBILxeL+x2O2w2G3bv3l3zY6BrULksR4EqhJ4lXhAExVkYCoUUSzzLsmAYBizLIhQKwel05lni1X+rKdVZSEXMEC6DajAEyqBkilnFZVnG9PQ0xsbG0NLSgm3btsHpdOKll16qy/EUiqAMAIvFomuJn5iYQCKRwMLCAqamphRLvMPhyDJoqC3xgOEsNFhcDIEyKEoxq3ita5hKhZokqHDmPm6gDcuySl1Wb2+v8rgkSUgmk8rgx1xLvHqdqxxLvOEsNKgUQ6AMdCk27oLWMAUCAXR3d+NNb3pTVqNVSj3rkmZmZhAIBCDLsuKM4zgO8/PzaGtry0pdGVxE6/fBsizcbjfcbnfW47IsI5lMKunCYDAIjuNACNGs5SrVEg9kOwuBTN9Cuj2z2ZyVjjR+jysPQ6AM8ig27iKdTmNsbAxzc3Po7e3F/v37C9YwmUwmyLJcdp2THrIsY2pqCqFQCGazGVdeeaUighzH4dy5c4jFYgiFQkrqKrd/3koXrnJuGNRtnPQs8YlEAuFwGIlEArIsl2SJV/9NmZ+fVyI89eePvtZwFq4sDIEyUChmFec4Dl6vF9FoFH19fdi4cWNJNUy1EihJkuDz+TA1NYW1a9eio6MD/f39sNls4Hle6ebgcDjQ29sLl8ul/JxeG6KVKlzUSl4Nakt8R0dH1rbT6bRyzgOBABKJBCRJyrLE0z/qqJt+TnKPzXAWrkwMgTIAIQSJREL5omvVMHm9XqRSKaxfvx5btmwp64tf7ZqQKIpKKrGrq0tph3Tq1CnN7eaaJ/TaEK1k4apnKyiGYWC322G327Ms8XQtikZcs7OzSCQSWZb4WCyGWCwGm81WtEu8erulOguNda5LC0OgVjBqq/iZM2ewfv16NDc3K8/TOUwAqqphohFUufA8j/HxcczOzqKnpyevHVK1dVArWbgWu1chkPm9FLPER6NRRKNRBINBJSrOXePKPeeGs3D5YgjUCkRr3AXLsorjSl3DtHHjxizRqoRyBSqdTsPr9WJ+fh6XXXYZ9u/fr5mOqlehbqnCFQgEkEwmL0nhWgqBKgS1xNtsNvT39yudNERRVM55riWeugnpOXc4HCULl+EsvDQwBGqFUKyGyWQyYWZmBmfOnEFzc7NSw1QL9Apqc0kmk/B6vVhYWCipT99id5IoJFzJZBLxeBzRaDRPuERRhN1uR0tLS8MIV6MJFIUQkhUlm81mNDc3590k5Vrip6enkUqlACCvlsvhcJRsiQfynYX0uXQ6jZaWFkW0DGdh/TEEaplTSg3T1NQUpqen0dbWhiuvvBJ2u72mx1AsgkokEvB4PEgkEli/fj2uuOKKkr74auHLvXNezE4ShezZHMdhYmICyWQSIyMjSKVSirnA5XLB7XbD6XTm3f3Xm0YVKEmSSjquYpZ4us5VriVe/TeFukO9Xi+uuOKKrOcMZ2F9MQRqmVLMKi4IAnw+H/x+P7q6urBu3TrlDr/W6AlULBbD6OgoeJ7HwMAA2tvba2K+aJRWRyaTCW63G83NzWBZVhm3QYUrkUhkRVwMw+SlCuslXI0qULSerVLUlng1uZb4+fl5cByXZYlXC1euJZ66C9WCZjgL648hUMsMLWFSf+HVNUw9PT1KDZPH46lb94VcIVlYWFD2NzAwkNf8tJztXoq9+Khw6UVc6rRVvYSrUQWqFvZ3LYpZ4mmzXb/fr1jirVarIlh6Y13Uf+e+D8NZWD2GQC0TSqlhGhsbU9Z3cmuYWJZVTBO1xmQyQZIkzM/Pw+PxgGVZDA4O5vWIKxe1EOUWdDayQOmxmMLVqAIFLG4vRbUlvr29XXk81xI/Pz+PeDyOo0ePKpb43PEmhrOw9hgCdYlTaNwFkEmjeTwepYZJb32nUit4KceXTCZx7tw5NDU1YdOmTXkmg0pRt1BayjWoelOOcFGjQDHhamSBagRyLfFWqxUcx6G/v18RLo7jEAqFMDExoWmJd7lcsNlshrOwCgyBukQpNO4CyPQ083g8IIQoNUyFPtAsyyKdTtfs+AghmJmZwdjYGGRZRm9vL/r6+mq2fcAYt1GNcHEch3Q6bQhViUiSpKxLWSwWtLS0oKWlJes1akt8OBzOs8Sro65yLPF027nOQmrQUK9x0T/LBUOgLiGKWcUJIZibm4PX64XVai2rhqlWEZR65EZrayt27NiB6enprAmvtaLRTRJLRTHhooMN/X4/fD4fgOIR10pHkqSiF/5ClvhcU0w5lnj13xS1QSOVSuGNN97A1q1bldc++OCD+Jd/+Zfq3nQDYAjUJQA1PkSjUaWAUS1Msiwr0UpTUxOGhobyXEzFqHYNijZwnZiYQEdHR9bIjWpbHelBhYiOQ6frACtdoPRQC9f8/Dy6u7vR3NycZc3OHbNBi2HdbrfmfKiVgiiKFdcF6tXPFbPEq9e4ClniaRRMi+0B4JlnnqnwnTYWhkA1MOpxF5Ik4fXXX8f+/fvzaph8Ph/a29urqmGqNILKbeCqNXKjXutbQMYR6PP5wDAMRFFUvqROp1NxYdUjervUUaf21NbsNWvWKK9RX0Dj8bjmfCh1HVcthKtRbyyqtb9rUcgSrx5vorbE2+32vHShKIpK+pFhGCSTyUWZx7YYGALVgBSyitML8cTEhFLDpDeHqRzKjaBEUcT4+DgCgQDWrVunNHDVgrr4agUhBIFAAF6vF06nEzt37lQWjQVBgNfrhSiKCAaDGBsbgyAIRbtorzRKWXvSu4CWIlx6Katqj2mpkCSpZuNiikHdmU6nU9cSn0gkMDU1BY7jwPM8ZFnG8PAwXn31VVgslrKMSL/85S9x7733QpIk3HXXXfj85z+f9Xw6ncYdd9yBV199Fe3t7XjssccUs8hdd92F1157DaIo4o477sAXvvCFmp0HwBCohqKYVVyWZZw/fx7BYBDr1q3Dvn37dEWhXEqNcnIbuBabBUW3nbvAWwmyLCMQCGB8fBxtbW3o6+tTbMK01sRisSjTXru7u7OOm36xZ2ZmkEgkIIqiEmWpo4FandNGphoxKEW4aLfycoSrHlFKrVhMgdJDzxIfDAYRDofR0dGBcDiM3/3udzh9+jR27tyJ1tZWbNu2Df/2b/+m+fuWJAkf+9jH8PTTT6Onpwd79+7FjTfeiC1btiiv+d73vofW1laMjIzg0Ucfxec+9zk89thjePzxx5FOp3Hy5ElwHIctW7bgAx/4APr7+2v2npf/N/ESoJhVnNYwcRwHl8uFDRs21PyLXCyCSqVSGBsbK9rAVYtqU3yyLMPv92NiYgLt7e3K+pbf79d1HuamirS6aNO1q9w7UkmSsroLUOFa6gtULalHtFKtcOVashuJRhAoPWivx9bWVtxzzz3YvXs3HnvsMXznO99BKBSCx+PRPa9Hjx7Fhg0bMDAwAAC45ZZbcOjQoSyBOnToEB544AEAwM0334yPf/zjyueH3uglk0lYrdaqG0vnYgjUElLMKh6LxeD1esFxHNavX49wOIzu7u66fIn1RIQ2cI1EIujv78emTZvK3n+pzWJzURsv1qxZgz179mStJ1XbSYJhGNhsNthstry5RepUis/ny1oDoKJF1wAa9a6/EIuZTitVuKanpxGLxfDyyy9XlSqsB40sUGoLPJBZl6UW+Pb29qxoK5epqSn09vYq/+7p6cGRI0d0X2M2m7Fq1SqEQiHcfPPNOHToELq6usBxHP71X/+14q4wehgCtQRojbtQXyzUrYDWr1+PtrY2MAwDr9db09HpanIjKHUD14GBgZIbuGpRrotPbf7QM17Q7dajDqpQdwHazy0ej2Nubk5xXWnZtBtduJY6WskVLtpQd2hoqKpUYT1oZIESBCFL/CORSF6NVj04evQoWJaF3+9HOBzGNddcg+uuu06JxmqBIVCLRDk1TBaLRbMVEBWRenxRaARVbQPXQtsuhtoR2NnZWdB4Qbe7mIW6ev3cZFlGKpVCPB7Pu6BSl5XD4cCqVasapr6oEQ0JdA2qWMTFcRzi8fiiClcjC1RuBFWOQK1bt06phQOAyclJrFu3TvM1PT09EEURkUgE7e3tOHjwIP74j/8YFosFa9aswR/8wR/glVdeMQTqUqLYuAtCiFLY2tTUhC1btuQVWFLq2S+Pjto+f/58VdNztSgmUKIoZnVWLyZMlEZpFqsenqeGFsb6fD6kUimMjo5qDjh0u92Lvv7SyAKlh1q4Vq9enfVz6siW1hMBUEZs0JRspcJVrya2tUAQhDyB2rRpU0k/u3fvXgwPD8Pr9WLdunV49NFHcfDgwazX3HjjjfjhD3+I/fv344knnsAf/dEfgWEYXHbZZXjuuedw++23I5FI4PDhw/jEJz5R0/dmCFSdKDbugq6v+Hy+kucw1VqgCCFKA1ez2QybzYbdu3fXbPsUPYGidvlSrOpaNHonCVoY29TUlDVuo9BIefX6llYT0lqh1Z17qanUxae+QdATLnUhLICstUT6s40qQMWoJoIym834xje+geuvvx6SJOEjH/kIhoaG8KUvfQl79uzBjTfeiDvvvBO33347NmzYgLa2Njz66KMAgI997GP48Ic/jKGhIRBC8OEPfxjbt2+v6XszBKrGFBt3QaMFmsbKXfgvRK0EiqYTPR4PHA4HrrjiCrjdbrz00ktVb1uLXIESBAETExOYnp5GT08P9u3bV1H6pFEiqHLR6yyg7uWW24RULVq1Kj5eLgKlR7nCpe7goC6EbXTh0oqgylmDuuGGG3DDDTdkPfaVr3xF+X+73Y7HH3887+fcbrfm47XEEKgaUayGSV0/VGkNE8uyeYPRyj3GmZkZeL1eNDU11XSseyHoWpEgCBgbG8Ps7Cx6e3vLsqprcakKlB56vdxEUcxKX9HiY7PZnCdcpRYfX4opvlqhJ1y0gwMVLrUJJpVKwePxNKRwqTtJAItnklgMDIGqEipMHMfh3Llz2L59e9YHN5lMYmxsDOFwuOz6oVzMZnNFEZS6wLW1tbUuY90LIYoiotEojh49WvU5UKMWouU8boNae3NNM4IgKMYMveJj+if3ZqgRz89SF+qqOzjkRlwvv/wympqa8oSrESKu3PWxSCRS0zXkpcQQqArJrWEym83KEDkAiMfj8Hg8ygyZzZs3V33HWm6KT5ZlTE5Owufz5TVwXQzo9N5gMAiTyVQzYaKs9HEbFosFra2tBYuPA4GAMiFWXXxMTTuN5ExbaoHSQ5ZlWCwWrF69uuSIaymFKxqNGhHUSoRaxbVqmOiCPa1hkiQJ69evr4lNm1KqQImiiMnJyYINXPWoReonlUrB6/UiHA6jv78ffX19OHnyZM2/oI1uklgKSi0+TqfTeP3117OKj9WmgaUQikYVKD2LuV7EtdTCJQiC0Sx2JVGKVTwUCiGRSMDr9WJgYKAudzDF1qDU5oPu7u6yXXHUzFDpXTXN0y8sLGD9+vVK1Kg+b7WECpEoiggEArDb7XC73StaoPTILT6emZnBnj178oqPQ6FQ1sVUvcZV76LYS02g9ChHuJLJJGRZrli4cudULbfPvSFQBVCPu6C23FxhoqYDt9uFuR0lAAAgAElEQVQNu92OK6+8sm7HYzabNXvPqQ0Yvb29FbviKi0ETiaT8Hg8iEajmmPl6zVuQ5IkxGIxHDlyBB0dHUprqHQ6rexPfYFtpHRWo1Cs+JgKV27xcT2GG8qy3JCNemtVpFtMuGgBMr1JoMJFz7fb7YbD4cg6llyLuXpfy4HG+zQ0AKXUMNHmpa2trdi5cyccDgdeeumlurqjclN81TRw1aJcIeE4Dh6PB/F4HAMDA9iyZYvme691RENHffj9fphMJuzbty8r5RqJRDA1NYX29nalCWwikVDSWVS06Be+Ee/al5pCFu3ccfJaxcd0uGE534VGrM0C6t9FotB4DbUdPncuFDW/0OsVy7JIpVLLJr0HGAKVRTGruLqGae3atXk1TNWmyIpBBYrjOHi9XkSj0YobuBbafjESiYTSFWFgYABDQ0MF91+ri466sLenpwe7du3C+fPnYTabIctylqPPZDKhra0tbx1Gq5cegKy71EourisFvXHyxYqP1edWr/i40UwblKVqc6QX3ao/x6FQCKlUCseOHcPXvvY1hMNhxONxHDx4EENDQ9i0aVNBx26ls6B+/OMfZ42UP3HiBF577TXs3LmzpufAECgUH3dBU2gzMzMFa5jMZrMy1bUe8DyPYDCopNL0IpZKKRZBxeNxjI6OIpVKYXBwsKYGkELkChNNYaZSqbJMEoXSWfTiGo1GlYsry7JZbXLcbrcxnVcHveJjSZKyIgB18XFu14zlsgZVb9SfYzrqfcOGDfjRj36E5557Dg899BAmJyfxq1/9Cj6fD88++2zNZ0HdeuutuPXWWwEAJ0+exE033VRzcQJWuEAVG3ehdqP19vbi6quvLvgFogJV6xA7Go3C4/EgmUzCbrdj7969dREGvQiKNpAVBAEDAwNKd/V6oydMlFoV6haKCtTmgfHx8bzpvPQC24hrJ40Ay7IFi49pJ4exsTHlPIdCoYaafNxoAqVGXaTLsixWrVqFyy+/HJ/97GeL/my1s6AojzzyCG655ZYavquLrMhvVbFxF/F4HF6vF/F4PMuNVgwqULViYWEBo6OjAICBgQHY7XacPXu2buKQG0FFo1GMjo5CkiRFmBaD3B59eqaPeneS0Lu4qgtkp6enEY/HlTojdbTVSN0GGg2t4uPz58+jvb0dJpOpouLjenGpCBSQPQuqGNXMglJnIB577DEcOnSomrehy4oRqGLjLoBMBbbH41EihXJTWLUQqNwGrhs2bFC+xIIg1FQAczGZTJAkCZFIBKOjoyCEYHBwcNGK/koVJvXx6glRPe22egWytM4oHo8rC9r0c2e322E2m2vqeltuSJIEq9WKpqamvHOrvinQKz6u1+RjSZKWPIrTIzdjs9htjo4cOQKn04mtW7fWZfvLXqBoDdP8/LySwsm1ilNBYFm2qhqmapq5EkIQDAbh9XqzGrjWavulwPM8hoeHYbfbNedR1Qv1uI1ShInSSL34Cg059Hq9ygU21/WWu761koVLz8XHMAysVqum6UVdfDw5OZnl1qxV8XGjR1CVDiusZhYU5dFHH8UHPvCBKt+FPstaoCRJgiAIIITg1KlT2L9/f14N09jYGJxOp6YglEslEZS6lqq5ublgA9dKR6cXY35+HqOjo0in0+jq6sLg4GDN96GF2hVZSVfzQp0kGgV6cXU4HMq4DeCi6y0ejyMcDmNychLpdFqJstTrW416915ryp25VMrkY+p0y+3kUM58qEYXKPXnY7FmQQGZG4r/+q//wm9/+9vavaEclrVAUegHkF7QaA1TS0sLduzYAYfDUZP9lCNQS93AlUaOo6OjsFqt2Lx5M+bn5+v6RaSLq7kR0/79+1fUuA2g8MgN9WTeeDyurMHkdi5v1ItmpdTKxVfInk07OZRTfNzoAqU+tsWaBQUAv/nNb9Db21vTCbp5x1i3LTcAJpMp627a6/XC7/dj9erVdWmcShvGFkKSJGVQ4erVq8uaB1ULaFum0dFROByOrAm+kUikbilEk8kEQRAwNTVVdipPD70O5peCQOlhNpvR0tKSdZFRN4CNx+NZhceVRASNSr1t5oW6lSeTScTjcc3i43g8DrfbDYvF0nD1cVoR1GLMggKAa6+9FocPHy7ziMtjWQsUkFlXmZiYUNxA5fanK4dCEZQ6aujs7CyrgWstUA8ppIua6tw1cFFEao0kSUin0zh69GhNhKkYl7JAaVGoAWwqlcqKuNQRgTriarQLqxZLVQelLiZWQ9OwZ8+eVeq4couPl3r9cDnPggKWuUARQnDs2DF0d3dj9erV6Orqqqs1VUugqm3gqkU57ZSo+cLj8cDtdhdd46plzzxJkjAxMaG0JNq9e3fN0qmFWG4CpYc6laXVjigej2d1daDFsXTcBs/zDVV43GiFujQNa7FYMDAwoNxQqouP1euH6vOr7ppRT3KbxS6nWVDAMhco2qeNEIJoNFpXizaQLVA8zyuzkKpp4JoLdfIVE7lc80Upa221cglKkqSYH6gonzhxYtHuMFeKQOmhV3hMB2vGYjFIkoTTp09nFR6rI66lKDxuxCm/QP4aVCnFx3NzczWZfFwK6nO2nGZBActcoNRYLJa6pK/U0G7jZ8+eRTgcRl9fHzZs2FDTu8JiAkUIwfT0NLxeL1paWsoyX9A6qEqhwkTtquposV4dzQkhmJ2dhcfjAcMwiqVYEISGXtxeCuhIeZfLhenpaaXzvnp9S11jtBRzohpRoEp1FxaafEzPr7r42GKx5AlXtTcGy2kWFLACBIreTVsslrpGUBzHYXR0FAsLC+jp6anJBF0t9KIcWZYxPT2NsbExtLW1YdeuXWW7AlmWrUhEciMmrV6FepbwSqFrahzHYXZ2FkNDQwCgdNnmeR7Hjh1TjAS5Hcwb8UK4WORGKlarFVarVbPwmK5vUas2AE1jxko+n8WwWCyaxpdSio8LOTZzf4/LMWuw7AWKYjab6xJB0dHuyWQS/f39iMViWfUutSZXoNS2+fb29qrcieWm+LRSeXp3gLWMoEKhEEZGRuB0OuFwOLB161alQ4jNZkNraytmZ2eVgXxqa/HMzIzi0FJfZFdSI9hSUmnqGqPcxrr0fOY63krtWm5QuPiY53lFuHJHxajPscVi0W0BtlxYMQJlsViQSCRqtj3ap04UxawGqrR3Xr2g61yyLGNqagoTExM1s6uXKiJqYerq6irJ+FELgZqfn8fIyAhsNpviQnzppZfyXpdrP9eyFhdqBKsWreVYb1TNWo9aiNasWaM8ri48Vnctp4XH6lTWSik8rgS1Y7NQ8fH8/Dzi8ThSqRROnjyJI0eOgGEYJVNUSqqw0lEbQGa8xl/8xV8gGo3CZDLh5Zdfrksd57IXKPpFrFUj13A4DI/HAyDTwHWxHTMmkwmBQABnzpzBmjVrampXLxZBVSJM6uOuVKAWFhYwMjICs9mcVbelJveCWyzdobfQrXf3upzShPUwI+gVHtP1F63mr7mNdRuRRkmbaRUfx2Ix+Hw+9Pf3Y2xsDC+88AJmZmawb98+AMDmzZvx8MMPa66fVTNqQxRF3HbbbfjRj36EHTt2IBQK1e2mY9kLFKUak4S6X5/FYsHGjRvzLmy1Yto7C0eTA6s68ufqTE5Owu/3o729vS51VHoiQvc9OTlZtjCpt13ulz0SiWBkZAQMw+Dyyy+v2zlXo5d2oYWc9EJbTpqwUS5ylMV0y+mtv6hvBHw+nzKP6+TJkw1VeNzIRhtqtHA6nXjXu96Fyy+/HJFIBI899hgEQcDY2Jjuuatm1Mavf/1rbN++HTt27ACArEiv1ix7gaJfxEoEqpQGrno/V8kFIL6QwKP/+FO0drbg9gfeB5PJlFXg29XVhb6+PjgcjrrcseQKVC2ESW/bhYjFYhgeHgYhJKubeznU8gKsThOqKTVNWA/3YjUstZ07K43V1gpAgkxYvPrqqxgcHNRsRZRbGGuz2RblPTS6QOUW6dLvCr2R1qOaURvnz58HwzC4/vrrEQwGccstt5Q0f6oSlr1AUcpJ8VGr9tjYWNEGrnr7qURA/vtff4FIKI5IKI7f/fQIeq5ci0AgkGVAmJiYqFs7Ipriq6UwUUoRqHg8jpGREQiCgA0bNpScPqURivrCuxhRS6lpwnA4rLgOGyFNuNQCBQCM7INFeAwMCQCwgmeuhsW8WrcVkbrweGpqKqswVr2+VWujy6UkUOXMgqp2v7/73e/w8ssvw+l04q1vfSt2796Nt771rTXf17IXKHUEVUyg1I64tra2ihq4VipQXCwJ7ykfyAWX1M/+z//gz//11rwCX5Zl61bPJcsyeJ7H4cOH0dnZWdO2UIVs5olEQhklT5tSlrPdRiM3Tejz+cCyLFpaWipOE9aSpRYoVnwJZvEnAOiNVhJm6Wlc1rEKILsBJvu7U6jwOHcqr1YE63Q6K/4cX0oCtVijNnp6evCWt7xFWQu74YYb8NprrxkCVQ2FugvUsoFrpWaM8TM+cIkE0uk07A4HVjWvQnpOzPtylNKQtlzUERMhpC79CrUiKFo7xnEcBgcHyx4QCVwaIzeAytOE6uigVhfKpRQok3QOZvFxADnfRQK4bFOwCAchWO4ASpxgrVUYq45g/X5/XuExPaelFB7LstzQAqW+gS5HoKoZtXH99dfjn//5n8FxHKxWK1588UV88pOfrOl7o6wYgdKiHg1cyxUonucxPj6OF5/6HUwmUyatdeHLOfKqFzv/MHtSZS2HFsqyjMnJSfh8PiViOnr0aF3a3KgFKplMwuPxIBaLYXBwEB0dHRVfMPVuPBrNmKBHpW7Caopkl0ygSAgW4YfIEycABJljMsnHYJK3QmZ3V7wbPaMLtWnH43GlyBtAnkNT3Vg3d5xFI6EVQZU6C6qaURutra341Kc+hb1794JhGNxwww14xzveUZf3uOwFSst+LIoixsfHMTMzk9eSp1pYli1JoHieh9frRSgUwmWXXQaH7II9p1fe6PExSKIE1pyd4qtWoLSEqd6910wmE9LpNM6cOYNIJIKBgQFs2bKl6gslFahGi5iqpZibMHc6bzlpwiU5X4TAIjwKgNN9nh6RWfx/4E1bAaZ2LXv0ZkQVGrVBu5vTrhqNVnhcbSfzakZt3HbbbbjtttvKPOLyWfYCpYZhGJw7dw6hUAi9vb3Yv39/zS2sZrO5oICk02l4vV7Mz8+jv78fGzduBCHA1PB03mtTSR4TZ6ewfttlymO5AkUIwTM/eRW7rrkc7WsL27CXQpiAzHuenp5GPB7H5s2bccUVV9Tsi04FKvf32EgXklpRyzThYp8fk3wCJnlY93kCKJkDhkTASs9CMt+g+/qaHVeBURs0ek2lUjh79qxSeJxbyL0UjXWB5T9qA1gBAsUwDFKpFLxeLxKJBDo7O+siTBS9FB89hnA4jPXr12PTpk3KRSLgmYHAa0dd518Z1RUoKk5Hnn8DnjcC+PBn/hhWW36KMleYiqUya3WHrY4SW1tb0drais7Ozqq3q4amDnPTMJdKiq8WFEsT5g45NJvNkGUZwWBwcXrpER5m8WeFX0IIGFw8BrP4AiT2DwGm/uNZtKDnNBaLobm5WTEQqBu/0puu3P551JhR79SgIVDLAEIIzpw5g+7ubgiCgI6OjroW/uX2/Esmk/B6vYhEIli/fr1mE9nJ8wHd7Q2/6sH1H/5D5d9qgZqbjuLI828AAIKBCH71X6/gXbfvV16rFqa1a9eWtMamd8EvB1okODs7i76+PmzcuBHBYBCxWKzibepBTRK0ZoZ26zbQTxNOT09jdnZWM6VVDzchK70IhoQLv4gAyPpa8GClw5DMf6jzA4uDJElZ56GcwuN6dyDRGve+nGZBAStAoBiGwe7du0EIQTgcXpSRG8lkEhzHwePxIB6PY/369QXTWuHpBd3thQILmJuaR8e6NmX7NELznssWtpMve3Dde3fBZreULUwUKoCVCBRd25uensZll12WFanWY9wGvTAcP34czc3NsNvt8Pv9iMfj4DgOJ0+eVFJcuYvfKxVaJOtyuZQuAkAd3YQkDbP4QvGXIT9qZ6XfQmLfAjBLZ1IQRbHoHLVC/fPUjYq1Co/pea2k8Dg3tb3cZkEBK0Cg1CzGTChRFDE9PY1QKISBgQEMDQ0V/eAtzEYKPj9+ZlIRKHUE5X0jW6BkUcZLzx2HvVUsW5golQiJKIrK5Fy9tb1aCxRtHJtKpbB161a0trZCEARlv0eOHMHAwEBe1211cSf9s1RrCEtJnhiUmSYs1U3ISr8HUEKTZpVJQjlGMg+TfBIyu7PMd1c7qskmFGpUTFs75U7kVd8I0I7lpbLcZkEBK0Sg6EJ6rRrGakHHbsRiMdjtduzevbvkO6LwTGGB8g9PY/fbtgO4eGGRRAnjwzOZF1yw0CaTSQyfnMKdf/2uiu3y5bgE1QMKe3p6sH//ft0vc60EKhKJYHh4GCzLYsuWLfB4PJrF1CaTCU6nM6/rNi3upKM3RkdH82pk6BrCco22ylljLOYm1EsTut1uuJw2uPFcaccEaNY+sdLhJRWoUqZXl4teY131Z5O2WMsdbEj/zr0BXK5rritCoCj1iKBisRhGR0fB8zwGBwdhs9mUBqelsjAbLfj81HD+GpV/PAQ+KSjCZLXZ0NLagoWZNEgRHSCEIBJJoqUlv31TKUJC17YmJiZ0BxRqbbeaL1E8Hsfw8DBkWcbGjRuV4ky9Oig9+7lWcWdujUwwGATHcfkX3Dq00lkKqr2YqSOD3JEb6jqjBfkIOldNwMQwYM1mmFkWrNkMlmU1yz+YvBgKMMnnABIBmPL7MdYCSZIWrVltKYXHNIqVJAnpdBoejwc+nw9utxsMw5R83al01MbY2BiuuOIKpd5q3759+Na3vlWbE6DBihAodbsjWpxXLep5UIODg8odZjqdLqtOKZVIIcWlC75m1jcHPsXDas9cHAkhePWl0wiHw4owMUzmSyQKEjxnAth85WWa2xJFCT/92WsYHw/hz+86gFWrsvPrhSIo9QyqtWvXliRMlEojKI7jlFTexo0b8xaBqUki94tZqHNILno1MrkXXNpKh46KUEdbS9lxu1zqVQeVlSYkBFb+p2BIC2RZhiRKECURQioFSRRBALAmU0a4LrgKTYzWOSRgpdeWzCzRCK2OtKLYVCqFM2fOoLm5GefOncMvf/lLjI+PY8+ePdi0aRO2bt2Kz3zmM5rfz2pGbQDA4OAgjh8/Xv83jhUiUJRapPgikQhGR0dBCNGcB1VqoS6lWPQEAIQAAc8sejd3K3dQU2ORLGFS88brPl2B+uWvT+HU6SkAwMFHD+Mjf3YNbLaLHwMtIZFlGYFAAGNjYxXPoCp35HsqlcLo6ChisRg2bNig2wapWARVDVrrMmrHFjUU0Jsep9OZJVyNVthJqZdAESJjQfgNIvxhSPIUXJhEO9sON+uGyWqCBarPDAEkWYIkihBFEXw6faEgNpUXbbHSKytaoLSg1vaOjg7cfffduPHGG/Hxj38cP//5zzE8PIwzZ87oHnc1ozYWmxUhUNWM3KAsLCwo03ILjYAot9NDKQIFQnDi8ClMhsexZs2azAgHPq4pTgAwcmoSkiSDZbOfl2WC06f9yr+npyN47dg49u8b1Dx+QogiTO3t7di7d2/FKa5SIyie5+HxeDA/P4/BwcGi3SbqKVB6+9NybKk7bofDYfh8PvA8D4vFAkIIHA5HzXvqVYpWYXO1SHIcU8n/i5Q0AQAwyX7EEUdcjqOTdKLdnDMziMl81liWhTXzT7AsC4vVCkmSMqLF85BEETI5jbG5Z2C29WVFrYtxHhtVoPRqoCwWC7Zs2ZIlNrlUM2oDALxeL6688ko0NzfjwQcfxDXXXFPLt5bFihAoSiUCFQ6HMTo6CpZlSxpUWO6daUEHn8r8MDUcwPW3/RGsVivmgiEshBK6+0olBQT9C+jsze4K7vOFwOWkE0+dmswSKJPJBEmSMD09DY/Hg7a2Nuzevbtqd1AxgVLXTuUWMhdisQVKD72O27RYWRTFLBecOtpyuVyLaoGv9XmRSRpTye8q4gQIAC7WvE2L0zDBhFazfo0ONUkwDAPzhbSfms0tKYS5dsTjcUxOTmadx9wBh7U8j7IsN2T6ttAsqHrS1dWFiYkJtLe349VXX8VNN92E06dP122Y6IoSqHJSfPPz8xgdHYXFYsGmTZvyHDe1QlOgVMJktdrQ0tKCdFhUohcuyoMQGUyB+pBJ71yeQJ19I99sMTkVxvx8HG1tbsWd5ff70dHRgV27dpU9bkQPPYGiFvVAIJBXO1XNdhdboPSwWq3KuIeuri4A2f3fIpEI/H4/UqmUYjNWC1c9LPC1TPERQjCd/BFS0rjyGEPmkdsQNiAG4DQ5YTPp3Oho2MzV2JgzaGt7Z2VuwirNLY2Ypq1mFlQ1ozZoBgEAdu/ejcHBQZw/fx579uypwbvKZ0UIFP2AFUu/0dHuo6OjsNlsJU/Q1dtWKR/shaAqxZclTFa0tLSAuXCxXghGkYhwcK1yIh7hi158p7xB7HnL5VnH88a5/H5/AHDi1CSGrmhXUpg9PT1ZRZy1INfFJ8syfD6f8iXInXtVKo0SQZWDuv/b2rVrlcfVbXQCgYDi1qLpQXrBrTZKqKVARYUjiIun1VsHQ/ILzwkI/KIf/ZZ+zX3r2cwpDPGDkYMgpov1RKW4CdVzoqxWa14pQSOm70qhmjZH1YzaCAaDaGtrA8uy8Hg8GB4ervm1Qs2KECiK3peSTjv1eDxwOBwYGhqqql1OOe2CIsFoQWFSMzUcwOV7BpGIpFHs2jvpncv692wwhnA4v2BSEAQ8++xraGvZiu3bt2N+fj5PxId9QTz7yghu++NdcDsqS/XRc0KHQo6Pj6Ozs7MsJ6AWl6JA6aHXRieVSimmDPWgQ3WEUE5RZ60ESpQjmEsfynqMIXFkUnz5cDKHsBRGm1ljIGWRCAoATPJJSKY/KnpcpRQd03ZE6vXBS6njSDWzoKoZtfGb3/wGX/rSl2CxWGAymfCtb32rrAGj5bIiBKqQMAWDQXg8Hrjd7rJGuxeCphKLCZQsy5j1BzN28QLCRJkansblewYRX0iDFCl2CgdjSMRScDVlPsR+f3YvNHq3Tu/m167tg9PpxMLCQtY63fHzfjz69DEQAnzv/x3F3Tftg0OjIW0ppNNpHD58GB0dHVUZLtSohUj9e74UBUoLtQVe3Y1Ar6jTZrNlpQkdDodmUWct1lVm0/8NiaSyj7dIz705aQ4tbEuepbxYBAUArPQ6JHNxgdKjkqJjnucRDofL7upQb6qZBQVUPmrjve99L9773vdWcMSVsSIESg3DMJAkSYmYmpubsWPHjqL9tsqBCpSesUCxbXvHEA8nigoTxT+aSdHFwqmSLr5T3iAu355x4kxPZ1KJoiginojDxJjQ1NSkiOj54RmsXbsqLw36vye8SrTmD0bx9JHzuPEtQ0X3TaE3AbRjw759+2rajkWvAHi5CJQeegXH6XRaiRKCwSCSyaSSCqOiJQhC1WuLSdGLuHAi59Fsc4QWAhGwIC3kRVGlRHUMGQdIDGBqtx5cKE0YjUaxsLDQkGnCldDJHFhhAkUIgSRJOHLkCFpaWrBz586aChNFz4xBhWl8fBwdHR3YsmkIz7gOl7zdmbEgCCGIzieLpvgAwOe5KFDj47OIRDKGDLcrv//c+HgI17w523QwG45jIqeR7bHzU7jhDzbDXMKXMhQKYWRkBC6XCzt37sSxY8dq3iuM1lcJgoBoNAq3261cMJazQGnBMAzsdjvsdntewTG1wIdCIczNzUGWZczMzBRtoaMFIQRz6Z/n758sQGtabi5z0hxa2dZsQSohxQcAJvkMZPaqEl5ZHbRno8PhwOWXX1zLbZQ0oSFQywy/34+xsTHIsoyhoaG6tqXPjULUwtTe3o49e/bAarViZjxY1nZj4QRmp+Yh8lJJEdekJzPi4vz58/B4AwVdYeMToQu1UxeP/dU3JvNex6UEnPbMYMfGbt39LiwsYHh4GFarFVu3bq3r+AtCCGZnZ5U0LR1zIAgCzGYz2traLpl1hXqR2/vNarXCbrejtbU162KbSGTWKIsVHHPSWSQlT85eSPGRGhcQiICIHEELq1prA4qm+ACAlU4vikAB2jVQemlC2vy1kJuwlmlCQ6CWGYIgYPfu3RgZGal7XQONoPSEiZJYKL/t0tipyZLSV5Io4o2THpw53YK1nb1wOHwFX8/zIqanI3C5qJmB4DUNgQKAl8/4NAWKiiHDMNi8eXPdrPnAxbZL4+PjaGlpwb59+yBJknJuTp06Bbvdjmg0ikAggFQqpUxDVZsLLlUXVzXQdJrWxTa34Jh22lYmybpdSDp+BmLKTskx4ADwJR9DWApnCVTpEdQbABEApv7rQaUW6TIMo7gyS3UTqiPXStKEWgK13GZBAStEoBiGQX9/v9LRvN4jN1iWRTAYxMjIiKYwUeILJYwhyGHiXABgGBCdoldJEpFIZKIIl8uJns5BxNKlvd/xiRC2bV2bKdQNRRFNaPcIHPbNIRzl0NqcMZQkEgkMDw9DEARs3LgRsykRL4xO4R3bN8Fkqm3UQgjBzMwMPB4POjo60N/fD/OFljg08mMYBhaLBa2trVlOLkEQNEdHqCOGpqamhm1RVCsKrffoFRzTcxdOnEQ06YEkSSCEXOgGYYbdMgczve8r4dRxMoeUnILdlFkLKzWCAniYZA9ktnRDQKVU20WiUKssKlzq4YbqouNiUX9uE9vlOAsKWCECBVxcNK/nTCjaGmhiYgIul0tXmCiVCFTAMwMTw0DKiaAy6wyZuhmX0wWL1QKAQWBiHvES12LGx0PYsb0LsixjbLpwuub4sB/7tqzDyMgIOI5T+uX9+tQIfnHiHABgLsbhtqt3wFKDKIUQoqxpNTc3K90tJicnSy7UpaKlvtPMLZqdmppCOp3OGtRXzvrMpUAlNnN67hK2k9tjrnQAACAASURBVHCLNDImkCQZksSDQRSiJClLULSzttJhW2N3YSmMLlPXxWMqKYYCTPLpS0KgtFC3yiolTUjXwtTCRdOE6t/hcpwFBawggaLUYyZUbs+6wcFBJZQvRLyCFF9wYg6mjlbl4itLEhIcB1EU4XI5L+zz4gd3diqMGFvaF398IqS0Ohqf1RcoWZbw0mtnYeeDGBwcxOrVq8EwDJK8gGfPjCqvO+4L4LJzq/DWLYO62yoFuqZls9mwffv2rFIAdRNa9YW3VBefXtFs7mK41voMjbYuNcoVqJTM4XziVcwLo4jwJ7HaYkab2ZwZo8GyMJtSYAgD5XJCMvsghECW5Yu/BybzezExDBjGhIgUwVrz2ouW8xIPySSfAfCeko+/UhazD1+paUJaTpBMJjEyMgK/3w+z2VzWzVOlozYoExMT2LJlCx544AH89V//ddXvvRArRqDUDWPp2OVqyRUmeldP7b3FSFQQQc0HwmjvaIUsy4jHYhBEEU6nE01Nbmh9w6d98+DcpV1Ek0kec6FM2mt8Or8Fk0wy6xMCz0OSXLhy9x7YrRfXAl4amUAqR/x/c34c125eD/bCF6ici6N6BpTemla96qBKWZ+ZmJhQxqI3NTVdMuM3yvkdjCVP41j0eYhEQFr2QZRFhEURbtaEKxwOWEym/M4RF4QoKyIiF/ctExmQRYhERCAdwCp2FQg1trBsUQMQQ+byukrUg0ZoFKuVJpQkCa+88gra2tpw5MgRPPnkkxgfH8fu3buxYcMGbNu2DZ/5zGc0SwmqHbUBAJ/61KfwJ3/yJ/V94xdYMQJFsVgsiEZL6CBeALUwaTVTLTVKqyTFl+J4xMIREJbJXBR1hIky618A3166i25ycgHJdBrh6EWBJUQGl0winU7D6XDA1doKBgzGA2Fs6svc7QmShBfPjeVtb4FL4oRvBlf2dSk1S8UujvTukOM4XH755QUXfxezk4Te+oy69kg9foOmZZLJZE0KwGtFqQI1wh3HsejzmZ8BD1G++L2JSzJOcUkMOVnYSxnpfmF3DMOAxcWLvsiIsLN2CDwPPs2Dk0SlkJhl2Uzj2Atdz9VrVCb5LKQVIFBayLKs3EDdeuuteM973oMbb7wR//u//4uRkRGcOHFCN7KvZtQGwzD42c9+hvXr19fVmatmxQlUNSm+YsJU7j7KcfGRC3fvSS4Jd0qEtcVZUs45leSRjrOwOkuLoianwhDYzHHRKvtUOgXHBVuy+q542DenCNQbgTlEkinNbb7whkcRqELdoXmex+joKBYWFrBhwwZ0dHQUL95sgFZHeuM31MMOw+EwAoFASZ0e6k0pAjWWPKOIEwAI8nzea5KyjOEkh632Ev0NGiRIAmABxmSCy33hokcy0bokihAlCRzPKwYYOidKNr0G2bGvrilWSZIaMoWr18mcZVls2rSpYEeJakZt2O12/NM//ROefvppfPWrX63xu9JmxQhUNTOhShUmSqkzoUqJoDLClATPp2G3O2AymUF4qeSLL8+L4OPpkgVqOhCB5E4hmeSRTCVht9nQ2tKqeUEb9l3s9/dGQL+mayy0gIlQRHNoYYLn8ZzXAzuXhJPjsH79emzevLnkFFSjdpIwmUxK7RG9oHR2doLnecRisbxOD/Wql9GimEBFxRCORZ9VPSJBlLXXJKOSiEnBjl6r9s1J0WMBQUSKZEVVYAATY4LJakXWWSAEopQZcigJ53DWewJpXs4ztNSqu0OjRlBLVQP1wAMP4JOf/GTFDbQrYcUIFKUcgSKEYHp6Gl6vt6y5SKVEULIsg4vpr1ORC+6ydDoNh8OB1tZWiEJG9Ph4CpaO0kJsQZCQTqThRmk1SZNTc5DbJMiyGS0t+T3T1EyHYoglUmhy2QsKFACcmJxGV85ojLlEAl98+peIJBJwOp340JW70d2tXwCshd6k3qUWKC3UDi690fLqhXC73Z4XbdXC/l5IoCQi4nDkfyCSi59fkSyAQKusQQRAMME70MYKcLGlD+pUE5EiaEMJDUdVs6JsAK7c5oLMXqFpaCGE5BUc22y2ss5fowoULUKnlDMLqppRG0eOHMETTzyBz372s1hYWIDJZILdbsfHP/7x2rwxDVaMQNEPZiniUakwUUrZRyqe0mxXpBYmWu1P8ycCn7kApONJuEpoKQNkBIpPFRfkdDoNjuMya3QRCW2dpd2RjUyG0NPdgrl44XTl6alZrOtyK66uqakpfPuVo0hJYiZ1yDD4rzdOY1NHB7rcpRf4NkKKr1r06mWKdTGnf8rtBl9IoN5IHEVEUHfCJ5rpPQBglK7lDMZ4J4Ychfvw6ZGUkxBRftrdJJ+FzF6ha2jRKh9QCo5VEaueCDWqQEmSVPEsqGpGbfz2t79VXvPAAw/A7XbXVZyAFSRQFL2UEJAtTK2trRVPki20D0oikhM90fWeVCpPmCg0ghJSPGSxtLtVnpfAp3jdixLP8+A4DqyZxapVqyATYCamfUHSYnRqDjGd8Qpq/AtRxNozDsepqSlwdhtmrWa4mIupR0KAn4+cx5/v3F3y/peDQGlRShfzmZkZpQmvw+HIEq1CRZ56n4W4uIBziVeyHpNIAjLR6hAhAypRWZAsCItmtJorW9/lTOWXXBSymxeauRWPx5FIJBAIBBCPxyHLsub5a1SB0oqgFmPUxlKwYgSqUGifK0y1nCSrh5LeUwmTzWYr2NlcHZUJXGltZQRBhCzKkHgRZtWYDDpug/Zpo1/EZIqHmCo9VTM+vYB5U/FjEXgBJyam0WS1YNeuXfj2yeOa6cPXAgFMDUaxrqm0EdKNugZVL/S6mKtHRtDWTrkTemm0oCVQhBAciz0PiWT/7kWd6AkaEc8470QLG63IMMEx5TtaK7GbaxVr643cSKUyUwNWrVpVcbRaD3IjqHLXoCodtaGGuvzqzdKf7SWCXrxo25zFEiZKIpJAKplEMpksKkwUUbi4DiAmtdsQZUPACzQtyMNssyh34AzDZAkTJc2LFwSKoJTKydn5GAIF7n5F4eL+gjYXBgYGkAJwLjSn+zP/MzKMP7+ytCiKChEhBIlEAg6HAyzLLluB0kJvZIQoikqKUB0tCIKAqakppZGuzWbDDD+G6fRY1nYJeIhEO23HaETNCdmMsGRBm7n8Ti1phgcv87CaynPN1cJurnf+jh07hrVr1yKdTmdFq3a7PW/C8WI6MXPHpZQ7C+pSYkUKlMlkUqa61lOYtO5UaQPZV4+8BkmSS54FBQCSKq2XiaAKi4goyiBy5iKdiiUhWTLuv0JdzdOCCEkgEAUJZkvxj0dalJCI8HA2ZadCJUlCIp5ZrHa5M/sLxBPg0jzOhEMFx4W8PjuDBM/DlWPxDXBRHJmbAC9L+P96h2BjzWAYBhzH4ciRI7BYLOB5XhEmu90Oq9V6yXZ8qBaz2aw5off48eNwOp3K2kwqncJo00vgrfELfQ0ztUeCbndyEdA0TQBTgr0igWIAROUoOkwdRV+rxiSfhYS3lL2/UpBlGa2trVk3cXRtUG1q4Tguq3M5/bten7lqI6hLiRUjUPSOemZmBvF4HPPz83WNmKhRgtqFc7tO9HZdBo/bX9Y26RoUAAhJHoQUrj8RBEmZgRWbj2Hdup6i9uU0NWJwPMyrin88OF5AikiKQMmSjASXgCRKcLloT8AMEiEYCc7jlWhhx58kyzg2E8Cbe/uUx4KpOP7l9ItIiZmL36nwND7cswMzo2NIp9PYs2cPzGaz4uobG8s8ru74QLtI064PTqdzWTeF1YK50J6oo6ND+ez7UucwHpYB0QZJEpFKJSFJImCdAZjMTZbJxAAXukNoRU+UqGRBTGLRVLajj0FUiqLDXK5ADQOEB5jai4FWzZ56bVDPiRkKhTA+Pg6e5/Pq3mrRZaSaNahLjRUjUIQQvPLKK3C73Whvb0d/f39d03lms1m506FpRLUjcPz3gbK3KYrqFJ++8QHI9MuLRmPK6HlWNpVUW5MWRDAMkE4IcJXgXE3yAlKClHFNcUnwPA+nywlbU765hAGDk/4gxsQFjS1l87LfrwgUL0v4v+ePKuIkSRI8swF8NxzDxzZfjbm5OTidTvB8Zi2M2l+tVit6enoAXOwiTdcZ1He+6t56haLL5YL6cyMTGafjL4FhTLBYLn5GRLKAtMReSJ9mxq8Qkkn9siYh68aIQXYz2Cnegc2OeOnHc8GRmiRJCESApaxRGiJM8jBktvQpz+VQ6g1Moc7lWl1Gis3cKsRKmQUFrCCBYhgGu3fvhslkwtmzZ2veMDYXlmUxMzMDv9+PVatW5UVrXLTMfoCEZEVQMi9B4gWY7NlCQPvFCQIPgL14wUkJkCUZJlb/7k0QJcgXUoJ8ojQTBscLSPI8FsIETpcTre4CM2kY4Lh/Fuya4ne7w+EQwskkWh0OPOsfxmRiATKRkUhwEEUBLqcLYasJYzIHl0YvPiB7oq66Bknd8UGSJOUCMj09jXg8rrjiaKS13EZwUIGKCAkcXTiKc4kg3KwJTWbThfdIIMghALQrOU1xsQDSYAijiAoIIIMA5IJGMUBItCAtMbCxJa4Bql4WlaJoN7frv1aDTHfz+ghUNeh95nJ7Ovp8PvA8rxQcq1OFWi7ClTILClhBAgVkohpZlus6E4oQgrm5OYRCIUiSpDtWvlCRrhaZO1jVN5nJ1ENZLggUIRc6TqTTcDidcLtdmJnJ7jnIczzsTfpRY1qgos0gzRU+PwSZ8QAxLgnWZILb2QyrvfDHiWEYTEVjWNfeCraAUGbeD/DKtB8H+vrxXGAECS6BdJpX7jypVPx06iz+1Lou7+dLNUmwLKvriovFYrojOJqamhq+KaweKZnHz+cO4xznwwzvg0gyv2s3a8Imtw1ONg2ZaHWGIJn0HoOLLa9o8EQy/yEX/jeQtqDHkokWGBOjdDFHTrSlcOGxqBxFO8oVqDMomu9uIPR6OtJoK5FI6M4rc7lceQK1XGdBAStMoCj1mAlFCMH8/DxGRkYUN1BnZ6emOAHlR1Dq6ImSTiThal+VKexNpZSOE0phb87PCInCAsWrXi8JEiRRBmvOvQATpC4U9cqmixFaKinA6ij8cSIAOEEExwlo0kgB5vJawI9ofA6+2WnYL7y33EtQVEzjrBTGbuSP26gUtatLbwTH+Pg4OI5b9DZF1RLkF/BrchKmhBVpmVPECcg0gD0eSWLQFUWz5q8y0zlCkwvhEz3rQeJEn5kHg4ujNyTV6A31rCii2mZSLj/Nx5AFMMQPwuTfqFTKUjhASyk49vv94DgOr732GoaHhxEIBP5/9t48SLKzPPf8fWfLtbKrunqTulst9aIFLUhYDQIvFww2Fr5wzcyEl7GxPQ7suDPjudh/TED4D4+XcJgwcWfudQC2I4xtjOeKxR7AXBuQHGaTAQkJZK0tdfXeVV37kutZvmX+OEuerMysyqruFoLy62iXqDqZJ/Pkye/53vd93ufBGNPH7BsW27XaePzxx/m1X/s1IL42v/M7v8M73/nOa3sBBsSOBKhr7QmVAlOhUOCuu+6iUqlw5syZDc+x1QxKrRvMFUBrpYk1tkKxWGR8ol8vT657TNjemJqeAlRc5IGwHVGqpUBiCMKQdquF63qMj4+z3Oq+B78dUds9GIzT6EiFwdDpbA5QQRDwnfPnuHSgwPjERLL7Hhzfbi/w87kFRRnFv7Rf4Fz7CtULVX50z32cKB+66hLdoAVkvUzR2bNnMypymmlFUfSKGPhcDNf42OVHaOJTw6Op+ll6Cs2pJtxedaitG7oVW7B0D43FsnKZdKKB1hsGg9Gx9YbRGmO6G4xlf5k93h5sy96CR9RzKOvaAdRGosYvZwwaOH788ce55557EEJw6dIllpaW+Imf+AlarRZHjx7lz//8z3vu0TSuxmrjrrvu4oknnojZuFeu8OpXv5q3v/3t171fu6MAKi8Y6/vbE7fMR2qk57our3rVq3pS9s1AsHMVGZRWCqU1YdsfCExxGKKolwq8WV8pK/ElCBV2Qkq1AlEU0kyGemu7dsULB9CJuu/P72yekbZlhDHQ3mDIOIxiO2zHcbArJZaUZGIDYBHAnOxwvrnCwUKVSEv+bvarvNA5j9KKMNL87ZWv8MbJ+3jDxLXvU2wmU5QSMqSUzM7O9hEyXq5FsKV8PjHzJXwdgIFAt4lM/2emTYQxgtOtKneN1SlY6T00nFo+LOaiApODKOdJiVAkRppGCLQx2FZMymjoBuV2GaUUArBTy43k56CxDFs9i3J+fEuvb6N4papIpCDuuvHA+3333cfnPvc5/uVf/iVjrw7T5bsaq428XYzv+y9bP3ZHAVQaV1viW1tbY2pqCiHEUCO9jfpcMpL4ndF3oxAz+LTWKKWwrJgqrPxo6I0ipe4rU4StYEPmX7fEFyOU3wygqCAZ6nXs3tvFD7vvLwrkprvOlopLREGgUEr39KG6A8RQG6th2zaX2qvQ1kxUN8i2kqb+l+fO8gtHXs0X57/F2XY/ff/LS09xQ2E3t5RvGP5c1yjWyxS5rovjOOzZs2egS+/6EuG1np/RRvPp2a+xJmNmncHQUv2GlGAwCWhJbTHVqvKqaqwMsZXsKY0V5RFqgWdtXC4zpssEFEIQElIql3CEk41JSCn7/KKcHHDZ1kUwayBGE03dLF6pABV//7vfm1SBBuJsKwWfQXE1Vht79uzhscce41d+5Ve4cOECH/vYx14WtuuOAqh8BrWdEl+j0eD06dMYYzh+/PiGCsKO4wx11e00tpC9JVTV+loDozWu44AQcRYVSmQocbz+j3F9eQ+IJY8iNfB4rQ1SpTtkg1KGVr3D7iMHcJ3+foA2mjB3DmMg6EhKlcGLq9SaMLMgMVkfSum4RKaVplKtZOfSxlAPfUQkNrWHMAaeWp7hB3ZP8q/1M/GCKujpbYDhM7OP8h+PvIOSvXV9xWsRg2R2UkZXo9HI5meiKMrmZ1Im4dUomX9z9QUuduay/61ERGh81tfPjOntMTWlw3xYYH+hDWxPqXxeFji0RSsOg6Gpm4zb44icgnnuALRWyAS4giBAac2VC58m5IFrMjLwSgWoYV5QL0e87nWv47nnnuOFF17gl37pl3jwwQevu/LOjgKoNLbK4ms2m0xNTRFFEcePHx+J0rlRiW/U/lMUhplenut6hE5/iSVsdXC8/gxuPUGie3w4EKCCSGZ+OybJhCxjYVuDbxE/kn3t8qATDQWo1rrr3e6ECBERRRGVSqUva6hHPjpuTNAOJJXi4Ka5SChkoZZ87MKjVDLsEX39/I4OeHTlWX5sz+hitNc7BjG6jDGZS2+j0ciUzPPaeukCvNkiOhss89Xlp3t+F1it3p5QfFb0gCzpUqfMbreOt81K5HxU4KDrb5lgV1d1xu0hzDQBlm3j2XbPfVMdb7Mc3DBwZGBUId00vpcAalQG39VYbeTjjjvuoFqt8uyzz3L//fdfxbvZPHYUQG3VtLDVajE1NUUQBJmy76ixIUBt0n+SiZCrELHpne041BfXqS8kNOqg6VOeGB2gonYAE73248YY6o0WkUya+ZYdN7INRJ2IwgDQyfef0vDbw7PSVhgCMWNLKcXqapNdtYmh5merYfcaNTrRUIBKgWgtarIQNbirsLG1+pNrL3Fy122Mu/F5jTEsRTMEusOYM0FtizM41yOEEBSLRYrFYo9aQV5bb2ZmJtPWK5fLWaaVautBnOX+w/w30TkB2EiHKBHi9FoBxkO4pn8DpAxc6lQ4Vtl6iQ+gY2wa2qFmb1KxWIcXTd1EGYUtRgcJhzPsqnns2tVddLcqpJvGKxmg8izRrWRQV2O1ce7cOQ4fPozjOFy4cIFTp05x8803X8u3NjB2FEClsZnjbbvd5syZM7Tb7QyYtlpe2egcwwAqBSaEiL8wuZ3SYMAxBM3BzxXJwQ3tPFHCYOi0Y+8pqcF1YyDSWmXJR9geDFD+AIAKNiBKtKIQrTVax198gYPnDS61KaNpyu7rbHQiDmyQtGoMq2EDZRSh0hQcK8us+o41ii8vPcVPHfghFsLLPNX4MqtRF/wPFG7m/tqPUbJfPtfQUWOQtl5KQ240Gj1Dn57ncbGwygV9Bcd2EgFdaKrBKh5maI9JsxiWubHYoLQZyAyJ+cjbBKBMX0ZniMkSQ7OogaGSod3urn6rQrrpzJFSKqPHv5IGtFNlmDS24gV1NVYbjz76KO9///txXRfLsvjwhz/cs3m6XrEjAWrYDdfpdDhz5gzNZpNjx46xZ8+ebd+cWynxqYQgkAm5rp+jMWYgzdyYuMQ3KAbNTUEXoDqJknqxVGR8YpzWQn6oNyWaQzgEdPIEiTSicPDsVLvj00iszS3LziwffD+iPMCKvh4FPQSPTiCRSuMMGO4VQIsAZWK5pflWyKFaERBDBWmfb17gRHOMU60vo9dlDbPBeb60/Al+eOKdjDmjZ8zfrcjTkPOx1F7l8xf+O1pp2mE7XnCFouWsxQuv1vG9LQQYlcgYrY947NYAl/wat1ZG9wnLx6IscNS0sYZ8lWLJ4/4/bljmGxK2+k4PQA2LYUK6qcLD3Nwc7XablZWVzOQwPyz73cquBmVQL4fVxrve9S7e9a53beMVX13sKIAaBja+73P27FnW1tY4evQod95551XvmkYp8elkhkapVFh1cP9Ga5NJEGUhRDyr1BrcgB5W4vObHZaXlykUCpmTLUAYrn+t8fkGKUoYYwiGGCYGnSgTjo2iiFazhY/BcVwMBq26gNDpyCEA1f+emn7EeKU/49IYmviYKFYSmG36jJkuwHU6fkxZd+xslqqjmnxu7vMcG/B8AC1V5ysrf8tbJn+BorVxyfCVGl9vPI9xoex2Z9NWogUsaSWZbMzyNICwAlKtomTMOXlE9zNeDks0Cy7VbSiVKwTLymOPs7Uy4XbKfJY+BaYDYuOZvEGRDl2nag2Tk5McPHgwMzlsNpuZwsMgS/mXQw5rfQb1/azDBzsMoPIhhMD3fc6fP8/y8jJHjx7ljjvuuGY32EYlvvpKg2ajQRRJKpVy3Ojd4Lzrs6d8yFAiwwjHy2ddpg+gtNZIpbCEoOyVKVZ62Td5Rp4Q3XZE1In6yhyBlDGBYUD4HUmh5NBsNRHE9PSO30ZEYSaHk0ZnQHamjaER9Q8UNzuyD6CkUsw3l9DGxLtKAT5QGqtgaUWnEzfngyBAtmScC9ialr3MaiQ4XHTwhuyEO6rFY6v/yI9M/A+IAcaKr+SYDZZ5pnGu53fSSHzdRFix3l5aPjZGxcOykAzQxnQJgem7JWeCMW51tpdFzUcbANQQ15jtl/meQduv3c7LzCKVRION2ZfD9PTy2da1nHWTUvbMJH0/e0HBDgOobrYQEgQBTzzxBEePHuW222675jufYfbq586d4/Tzp7MbeRR606ByXb7FEjZ9nN05WwvV1e1LZ6eEELiJHYXsRFDtAlQoVV85LP2fWhuiQOLlSAqDCBLxgwyN1SaWFzPz0lJEa0A5EMD3+8GvIf2BMjNNv/scWmuarRZKSTqOBJ3SyuMXvtCO2FewErHOIoVCfL0UioXgMuiY9n5utcF+m2Smxs68kOL5LMF8eInnW49xZ/X1g9/vKzCMMfzT4pOs77+11OpAkSJDQFZg68rrMWgodzks0fZsSonCxHoV841iRbkbz0QNeZ7tl/muDqCklBtSqDfT07tes27/lkF9H4cxhqmpKebm5vA8j1e/+tV9tfvrEVJKzp8/z9zcHEeOHGHPxF4axdFnQ+QgwkNuzidodSjv7jL5okihjUElJUbbcXqkgsJ1Sg5hHwD2rhZhO+oBqEEECaXiHpAVuT1fGKUNHZmCi1j3GE0YKgqFHG02HCzHFEYKP5SoKCAIQyqVMqHloPx4+DSSMn6PQjDfDKjIuOGdgp3BsCrn0SSDjgJWLItbd5UwJv6MlEpmapRGiLhM+53gn3HDy5QKC0RmDmM0jqhSdm5jzL2fon1o4Ov9bsTZ5jKfufwUX1o4g9YG1xbsKbnsL1u0db8zrjFySO9puGLETDjGMWelR8Ucuvss0YtyuRAsygI3DpmJGoZzTd1EGokjRl+qLP0imAaIfnbrqLFdqaNhenqDZt1Sf7KteEVdbQ/qey12FEAJIRgfH+fo0aM8//zz191ywxjDuXPnsuns17/+9ViWtbVBXWLh1v7Ildya3edTSrG2VkclO61BN3zUWg9Qg65Dd6e7nijRyWVEKTDFs1ouWpO48ca7vLbsPdf65KjTiTKA0hgaA/pPEJsYzi6usn+iwsRE/IWc68xjiEswxsT9La0UqwqigkjAJmYNBlaLQOcIJQYCpVkKJZOeg+e6kCuTah0SqHlCvcqTzSmONUxSGoszraZ9iWXnS9S817Cn8B9wre/eIhEqyd9Pv8BX5s5xsTOHTC5yoAzTzZDLzZC9VZtdxfx9ZNAM2gxohgrCAktRmcOmQcFSPVl8ulnKSr85+434h2BeekMBahhEGQx1VWf3lggrGls9gXLetIXH9MZ619qriWGzboO8olLWYX5sIA9IO8kLCnYYQAHs3bsXk/QsrhdAaa25fPlyJpf/+te/vict72xRKHaQKkQ+wlYn2aW1iCKJEPaGitphq3dhWp9BrV8qwhxRwmDwpczJLvUbIQadKAOonvLegDWo04kYH48b2s0o6OttZSVKywK7SLFUihmAKqCjYrXsNFsUloXrufHvCkWqpZio4ss2a3IRbQyCxP4BgbAEM75kj+cm5UGDQSP1IpFZAmGwbIsA6BQL3OC5SKlQUhKGAe22ZM18iRnxOGP6p9hdue9l945qy5A/Of0YF1or1GWL0PTe0yYZYr5cLxCpkD2V+O/GyAFzT4bN9PaMEcwFFW4qJazPdZlT9rZNTskjybYa0qYeQtXWmZJ5vhIwLNb0GrvZGqPSVo+j7Ddu24JDSnlddRI38idLs62FhQXOnTuHlDJTFmm1WoRhmCmLfD97QcEOBKjUJ+h6eEIZHfCn9gAAIABJREFUY5iZmeH8+fPs27eP8fFxDh8+3ANOxhja9a1lUDLaeNForTZZXVmhUo3r3PPz/eWcnucLZI95YbA+gxK9mU7YTntF0Gx3CIIwASaHQajjdySVRDu1FW3M3MoTJeo5ckQGOkLguDHotIIIndCjV6ImJlG+gP4y5pIvuaHqISyHVerYxsGGGISSf1ppFmTAnA6oeC6W08ZYyyBk8r66dPuLQcCkbePaFrZdoEAhe+tKaUL1aRba81yevpMwiJvl6S44DMPrQktuyZAPvvQNpttraGNYjvo/d2WibPmfa3nYFow54QDVCMOockbzQYWDxQa22ABYxGDPqCVdomq3YmKGSsqvxqBQCEtgpYSU3G3V1m1CE+JtwdZdmCsIcwkjbhr5MflIqwIvd9i2zdjYWI++Z15ZZHZ2lkuXLvFXf/VXfPzjH0drzUMPPcT999/PPffcs+HQ7natNh555BHe9773ZfN1H/jAB/jRH/3R63YN8vG9RU+6hnEtPaGMMczOzvKNb3yDZrPJyZMnOXHixMAsLQoiomEkgyExlMVnDFEYYaSiVhmjUIjnf4ZRzPORH9jdrAelpCbwA1ZXV2l0fFzHSb68g3enKTVdG9NDqEi0q3uOjSIVC9sSa+8ZY4ikzEosjuNkMCGVwQ8VgQpZC5tZGdNdB04Aq4EkUoZVuYDMZxVCICwLK1XHdl3qnoVVuIISsygdIKVERhEyyRSNMShjuBSm18xkdhGxcGmsLm2Pf4sbb5vi5Mn7ufPOO5mYmMD3fZaWljh37hxPPPEEL774ItPT09Tr9Q2HxTcLqTUfmfoW0+1Y9HU1aiLX9ZMMBrUuo7rS8GhJs67Wunnm1HNuY7EYbp3GjYAFVQDLwrZtHDf5fEWczWIMSsnk+kuUVGilMdqwKgcPGG8Utnps84OGxCtJSSJVFtmzZw+u63L33XfzG7/xGzzyyCNZZvXJT36Sd7zjHZw9e3bgc6RWG5///Od5/vnneeihh3j++ed7jslbbfzmb/4m733vewHYs2cPn/vc53jmmWf46Ec/+rLOQ+3IDAriBngQbOyPtFmk7rlnzpyhVqv12boPmoXastU7/Sw+rWI1cAA36ZsE7QCnGO8wo01KghB7QxVrxXUisfnI7W6VpL7cYPf+CYK2D/7GwB74seJ0K4o2Ld9AnEWZgiaQEUbrnmxo/aOX6y0it4mwBXZSWkyPyUOUMTDdXsV1W0POqjFGoom44ksOeCGW1bsgZZmWNhijmI4klTCk5rox6892chT0+NiV4GtEsske96cZHx9nYmIiA7C9e/fRarVoNBp98zR5e/nNDA+NMfztxWeYasa27MpoVqJm33FSR33XzxjDlWaZW9wIx0r9bzfuOw2K2WCMfV57yxW0yFisKpfd6TxV8nhLWL3bZZO//poFfwG35eLYsYJ5PNvmxI8b8hps9S2k8++3NRP1SgKoYVGtVhFC8O53v3vTkvLVWG3cd9992TF33nlnbJAaBJmk1vWMHQdQabiuS7PZ/6UeNVKTwmKxyD333NMzm5DGQIDaYv8Juj2ovN2G6zk9mVjY7FDZPcagGahBkWZQfeW9nvPKpBxq41nFWKF9CGU8H0pqZKg2Le+lsbbWolX0sYTAWgc6aWgdEyCavsEuG+zcatbl6XX/SxvFbLvNoV2JQndmSa4x9OrOSWOxFHrsLfS+3qxPAhAXCJm3LHY78YxbSsKwLCuWE0oJFHwHI0L2We9CSVhdXWNycnemFFKtVLjxhhuwLAudqBekDK/z589nFOe8mnle4PSbi5f4+uKF7HUuRw30ugxIG41i0GerkdrmSqPKoVodIbaXxXWUQ10W2OVufZM3FxW6ADUsEuuNvMKEV/YoUoytN6II1fHRRmMlc12Z/YZtJ72nEFt9C+X8yJZf4/cCQKUxSr/zaq020vi7v/s7XvOa17ws4AQ7EKCu1nJjbW2N06dPY9t2n0nh+hgIUGtbAyitNErG1gLpLNOgbWuqyadUXHraLKJ2ClDrFyiT6JCBbQusRM08ZvIZOiOWRf2OpKk3BqgUcP0AoqqFZXrzLUEvScJxXVoyYsz0XoKu+kE6waORRtIMXYzxEegcMA2+NnNhsQ+gBkVTa9aEzb5yN1PWWqOkRCpJp9NBSUVdfIPZ6BLB7JvZv+8Q+/btzySetNZJOSu+9sWCR6m4h/379mJZFgbRY3iYCpw6jkNYcvmblZcwSZlMGsVa1J8lSjPgvZhuptQKPRqhQ62w/TLjbFDZFkCtKJfICNx8D2uETGxVr3LQPYht2z0LZPf6K9ph2GN0iPV5WtbdVKtjW2blvZI0+KCf+p73gno54rnnnuO9730vDz/88Mt2zh0HUGlslSTRaDSYmppCa82tt97a46C60TnWA1RzbVjJqT9kFLG6UkclU+3rvzBx4zlerYNE8ijqkywaHKl5YV7iKKaMq0xYNF/yCtsRgVSoEcAPoNMO6QzZJWsdlw2FiEEniHQsgZQTa8sTINL3ro0h0ooohCE6sygUkQ5iRQQjaAYFakXVXf9ETAYwJgYsgwajaUmHprSpOpsv2OcDn92ug5N8HpZlYXkeLkmJNXEFtopXmDj2VeTa23n66aczMdJarZYNbjqOE2eHibWIUhJQOLZh90SVyd0VLEsALp1Q8YHnvkKoJDJQKKVYoUUkIiwhEMJCWAJtZF9GFQNz/DuRgNR8c4yKG2JvYig4LFajEr6yKdpbAzmDiG04tugTVVd1DjgH+qSPutc/d47M6HCFxvI3OHNmf4/1RpqZFgqFVxwQDYur8YK6WquNy5cv8853vpO//uu/5tixY9fg3YwWOxagRiVJtNttpqam8H2fEydObInSud0MKi8eW/CKOM6wx4hMJSZsdmLAGaG8B4l5YagIIonWKilVpfR00dfAjwJJszP6brnZDGDdeEa3p6BwHDfLgkKlEJHAKpBlFsaYvl5UmLi9RqHAK/QuqgZQRiJN2JOF1QObWs/8jwCcxCU2/VW8eC9FBSY8H23if8P6Z5E2nPd9jpd6extaKZqtuGw8lrgCwype9fMcr/wartiblfNWVla4ePEiYRhSLBZ75l5SlYG0/6U0YNr80+yLLMg6pYKAgoVvFNJX2MbCaJOUQTVKhJgekYfBfSapLRbbFfZXt1fqNsBcWOFIqb7psetjLipw4xZ9ojSaVbXK5AiWKHmjw2MHX+TwLQ9iILPeqNfrTE9PEwQBjuP0XP+XY3h/O3E1M1BXY7WxurrKT/7kT/L+97+fH/zBH7ym72mz2HEANaonlO/7nDlzhkajwfHjx5mcnNzyTmuQq25zrT30+EHisfXlDTKu3MtRUqHCaKT+UxqttRb1ZhtjyIBpo2hvYcC40wkxu+yE1k8GOunCAYnumzFIo7FDgXGISRK2HWvG5Z5PGY1K+kZRAOREAjQaqUPUACZaI3TQJhyqpB2HAGyWQpvj1QlKthU/qwnRpoMiB1oJU24ujNjnutQcB2NipYDUfDG1LUkj1ItcaP5nbii/i7Hq3VSrVW64Ibaej1XdfRqNBo1Gg9nZWTqdTg9NfWxsjCWt+KeFWcDN3uVC0ABjEGiEpRFoIqMQA+ebBseKX2ai1MHbYhaUxkJQ4dBmlPMB0TE2de2wa4sWHstqmd321uxvhLmApV9E27cPtN6IoohGo9EjT9RqtXj++eeHDsx+N+JqMqirsdr44Ac/yNTUFL/3e7+XKZ8//PDDPdfweoUYpHu2QWyvFvAKCq11Bkxf//rXecMb3tDz9zAMOXv2LCsrKxw9epR9+/ZtuwSwsLDA6uoqJ06cyH736f/6jzz91Rd6jjNa02q3icKoTzx2ea7O0vzgHaqSEsuyY4oucPg1J2hEhvomTMF0xqhyY401r790CHGZqm+hrVlE5dEmE5pRiLXPQdsmmymxLIsoirBTajEQKEWgIvDA3WP11Ni7GYzAV2GOBAHjeyVYGm3kQGDKx6FasE5FYXgcKXncMkTlPGbqhSjjo/EpCsVxS+P7i5RKpYTBufG9MlH4EfYW3461yUxPGIYZaK3W1/ir+edZVEFGBugQsqhy94UBjSLUiTI5EGdNm9PHxwoBB2trmx43LI6WV9hXGL7xGhZ7nIDbii1kJHHc0ffKR9wjVLfo16WtW4jc/zTS4K7WmieffJLbb7896wM2m80e8kq6cRjFnfdaxfLyMsvLyxw/fhyIQeKxxx7jj/7oj16W81/jGOmi7dgMan1EUcT58+eZn5/nlltuuSYCsoNKfK1cBmUSs7kgCGLp/kql7wu0mYqEoWv2FjQ7REMs2iHX10nKZ0gQhWHvMZ0+6v49akdQ3rwpq5PSlG5HWGNuz87TsuxkriuGm0CruBwlkx5K7nwiceD1dYhKMpcUpNp+hFsaDXTqgTMyQM34ETeVPeyBn71AiAKOKBBFJZZbLa64d/CjR34CKWYJ1DS+ukSgpgn10sDnXwm+Sit6nr2ln6Lq3DX0HvM8j8nJSSYnJ3l45iWkX2KXKSKlIpIhC+EqUsfvKWUbylS6SKST1oNlwuN7phuNoEAncii521NWmQ2q7N0G5XxJekSmParebPdxamnLAGXpc1j6WbR996bHpjN46cDs+mw3lSeam5uj0+lkw7XX2y9qp8kcwQ4EqPUhpeTixYtcuXKFm266KdPLuxYxEKBW25DYUHd8n1KxGPe1hny7ZbjBwrruMUGzQ1jqp7ubfF8np8/nNwOojFa2UFqjA73pZLfWGl/GjD9Lp8rg3aXStmOVcaVU3MhPeiVGG2RbIrxkwU1sIZSJhW8tsY5WHhZwyxKDTuwi9ND0vhnYKA0D/A77IjKGK37EodLgDEclZViI+0wNe5YlvcLB4p1U3Tu7x5lOD2D56jKhmk2khxaZbv05ZecYuwtvoeIMt3mZ7zT49PnnWesEaB0PBQd2iGVbeLaVlUljYohJSIq9/aae+bC+3yTnaY1x066VbSkDtZVLQ3nUtuj3ZBDMhQUOWFsbmG/qJr72KVrD1cYHhSM/S2jdDmLje34YxVwIQalUolQqsXfv3uz3qTvvoPm2PCFjuwrm+fP8G0DtkEhLfd/85jc5dOgQDzzwwDXf9di23QNQxhgWZhdZWVmJDQPHx2ONuQ1iswwqvyr7jQ7KLeb+FMv5qKTE5qw7V9QOMdpkJcJ8pJvwdMFS2oDUQ483OWkik5TvCLqgISDpRcmEwm4Tak2eJG5pC9u1MDpWlgiVJMopIWSLuBDIUGAnZIdYz40esMqDlgYagc34iBnXxU7IDUW3J4uK+0wdoijs6zM9tvqPvHnyf2aX250XsUWJsnOcsnM8+502EYGaIVCX8dU0gbrMTPsjOGKCmneSMffVeNb+7H2eWlrkdx/7EjONRu45NB0d4nqCSs1gO6CQaBFT14XoLemledRm0Yk82lGRipeChWH0R8OsX6FWSQBqCyB3RRbZ526dpLEgFzjsHd78wFwIs4itvoJy3rLhcVudgRrkzpv3i1peXs4UzFPlh7yC+aiVGillD8h9v3tBwQ4FqMuXL3PhwgWEENx7770bzjJdTaQZlDGG+fl5pqamaKw0GR8BmNIYZt0O/dJBfqONNTGeZShKa2zLipW6B4TSBhFKKG6eRSmdLHyhhmLuy7uODm4AnbxmIw3oGOWkiqndWS9Ka9R6YdjA4IwBloXUEiU0lrAyIdfsh9EowO8ovAIZvdrC6tFyi5dXgzGaVuiyvxIS6aCfgr0uQp3PouKyTqfjUyqVqFTGWb8CRzria8uf5i17fp6iPdyB1xIuJecIJedI7vIpQr2Ary6zFn4TZdoo7fH5Mzb/dKHFlY4PWFnBNUjUIcIQokVBYSzELvoMAxKR+0v6qofBzkK7TNmtJ5sSMeAok/vZ+7flqISv1vAsBQOUzIeBVqgtVnSB/SPqAKbR0A0CHVCwtjYH5MiH0darMdbeocdciyHdjRTM057WwsIC7XY7OzZfJhx0/kFmhf+WQX0fhjGG1772tX1aVNc6HMfB930ef/xxKpUKd5x4Ff9U/ubIjzdKZ5JGg6N3EdFSo4MQY1vYiZir2GA7q7XGCiRiIED19qBSBl0XoEyslZYI76a7wGgdPV11JMaLe0+242avJtT9/Q4dGqRWRPQ69saLXZJpJSufAZQEikm2FMXZUtqPsVLNPQQImyCyqVgTFF0LZSSRCYh0EP803R5XGhc7IXtsg99u47oe4+O7NnTWbak6X17+FG/c/T9RtEenKQthU7APULAPAPezFgT8yb9+izOr88z5ndizKSE7RMYgc7hggHbdwpMuXiXsK88NkoAa9L/TYzuRSzO0qXoRae1V9Dyqvy+ZB625qMaR0moi3NGrZL4RaF2RJfaztSzKYFiQCxzyturHFeJGf0Po/ScYYiV/vVQk8grmeXUGmYyVNJtNrly5QrPZzGbm8oSMKIp2XIlvx4nFCiG46aabcF33mgrGro96vc63v/1tgiDgrrvu4q677kIFowtywgjlPZFbHpKSpeoEmZjrhuBk4n6FCTbfuWqjuwIMQazsEEWJvYXr5koU8SAtxJmO0QYTxgBmWVY812M0vpJIoxNxIpNIE8VsvyCIhtrJr3vrREGsfu0kXlSu6yZDxvFQr4xiSZwoURm4vBbbktjCoWRXqLm7mfRu4EDhCAcKR5h0D1BzdlMQJfxAc7beyYZqR7F9X4sW+eelT9CS22PErfk+/+Vb3+RSvc6s72OMjSUK2KKEoIQyDkLYCGLH3/QqhW2XsNUt/eTpEaNW29JjlzpVwMrAziSaePE9kNwzPY+ysp/zwRjSVDCiBKIIwkNYNpaVbBhyLyYj0hhDQzusRdZWKorx9dJrdPTWpcOEuYCthqshvNwyR6ms0MGDB7n99tu5//77OXnyJLfccgulUom1tTVOnTrF3NwcU1NTPProo/zZn/0ZS0tLI89sfeELX+C2227j+PHjvP/97+/7exAE/MzP/AzHjx/nda97HefPnwdgaWmJN73pTVSrVX7913/9Wr7tkWJHZlCp5cb18IRqtVqcPn0aKSUnTpzgueeey26i5uroKhLASDNNxhhkFMWphbAQkRqppp0qQphg8PvP75WlSnfDBuVLBM7AmRBlkuc1pqulJrt6dgKBNhBplTH08rvtmPwAjNhL1kqgpMFxu69ZJK66ANjJc5oYZOfaEXttmei3Wdkgp5MAuidKyI7BlrC/EitHv2b8JIYmK9Ecq9ECDbm84RrakCs8vPgxXjv+ExwsHt/gyHWPCwP+yxOPMd9qUY986mF35swAvu66EndVB7tZTdj2sGyDU4qyv2wn/MihFblUvSiX8aRbnW6ZNe35ZR1EAcoIFoISB4pdqnt2rURKeVfx3JZQ2WdvjOBSWKIi1rIHpJlw6t017A3NyTmOuEe2PqMov4gRB9H2PX1/eyXo8AkhqFQqVCoV9u/fD8DTTz/NzTffzKVLl5iZmeGll17iF37hFyiVStx999381m/9ViYGm49UyfyRRx7h0KFDnDx5kne84x09QrF5JfOPf/zjvPe97+UTn/gExWKR3//93+fZZ5/l2Weffdnefxo7EqDSuJaeUPnB3hMnTvSYkKXR2mBId1BsxOBLmXkYE/slCUEUhehgNCaVTnpKJpDZAG1P5BBKKoXRGoTAUgzOJowhiMKMWZHtwEOTPb8BOkrmSk9pGSlXSArj3bsm2bVvsqUOA4HjDj8mXWTtpJclCyX2lNxYxV3GlhqtdoCMYuByHZdisYiVDBg/uTrNzx18c3Z9pA5ZlQusRPOsRvOsRHOsySV0bjg21AGPLn+Wm0q3cU/tR6jYG8tiBVLyJ99+gvlWC2U0M+3ufFO375T8nzEDrknMaPEbBUq2wCkkLL4UnbeYmiy2y1TctQGMvnyZNf+5mYRNCDOdArvtJrYluiAjLGKxXRtwekDLGIUxijXj4AtJ1Qnil57z7EpnNbvP1zU7bOkWdV1nlz3awGo+3OhvCMX/gbF6yRavBIAaFGkP6s477+R3f/d3efTRR/nqV7+KMYbnnnuux2Y+H1ejZF6pVPihH/ohpqamrvv7GxQ7EqBGVZMYJaIo4uzZsywtLXHs2DFe9apX9S326QK9VYAaqKuXAJM2BjtRw07Pp7UBf1SASpaJOKUBb/0XMs4yoyhCat1L6sgTJXKvRxn6GX7agDQYV+DLqNvLGhYhuHSHjw1x9hOrc/eDVuhDeQscl+lGyJ6Si2WJhBElCIJYbqhYLCb6bZJ2u4NSiifXViksa147cQe1Wo1qtcoe7yB7vK6OmTKSulxiJQGsGLwWuNh5kcv+aY6U7uBY+dXsdg/03RvaGP7ymae4sBaXBWc6dWTuGkVaIo0cAkzJFcraQgK/4VFx/fj65Zs++WM3AS0/cmhHbo7Rt1mI7FQRDnVTYdIKMEYnfloqeY0CKwdcxgiUFFi2h8HiYjjGbSUHIXyE8LHwAR8Iu9lWIumUB61pNU3B8fDcwhZHREK88E8Ivf8NY3V7WdfS7v1axnrgTFmBQgjuv//+oY+7Vkrm34145X0KL2NcjSeUlJILFy4wOzvLkSNHuPXWWweWGWzbzm74xvLWGsHrAUqp2MAtNumLezqotOcTLz46ij2VNmMJZqw84ixK5AAq1csDQNh91OUUoGJxWZ2pdPdbiMehfUMgop6Fd1gYYrKEXezSz21hYQsrEwPNQIt4h21p0FZiq7FJ1ENFPZCUbUGr1UIIQa1Wy+a1bNvC87rlS2MMz8ppjsqD1C/XaTZjJ99qtUqtVsuGOSfc/Uy4+4G7k8dpGnIlBiw5z9ONrxFqn0nvBva4Bxl391J1xvmH02d4Zn4egNXIZy30s2wp0hGhlkPeVQ6Y8nR4JfDrHsVd/aSJLuthAMnB9ILWYrtMeWAWtXlc8YtMuhv5a+lkg2QyKSytDUtG0tAeY/YYhtyuw2gQPgIfYafAFWTMTmUUV+Qsk/5krnxrZ6obtmVvUPNs44UfIvR+DWPdEj+fUi+rSvioka90bFEB6Hs2djRAbSeD0lpz+fJlLl26xMGDBzcd7E2p5o7jsLawNVHNKCnxpQaFtm1lBoWQfOeSGzXLiAzoIMIuDf+CpQSJNEwgYawAmAx0hLCwhEhmldY93pfoEjnbd3pU0defS3YiZHH0lc74wAYzmBloAQibMV1i71iRQEsCHRLoKP6p+g0TDXBmqcXN5bh8MYyCn51LCGzX5lHzIr9061upuRW01tlg5tzcHKdPn870E8fGxjLgqnmT1NxJjhCXUowxtNQaq9E8lzov8vjsZb7w4hoQC8LOdlRGvdfrGHs972AAMOVDBjbSt0dU2ujOluWjI218WabshaSK76NGWzmsSpcJt/e7FYNRDE6OYyelv64ppNaa0/U6x20L13Ezfy3LshGigjHl7qdpDIggBi3h08ZnsugybpXQRiOlRElJOwhQWscakHYOtBIyTfJu8cIPIp3/EeW84RVb4hsUo/TerlbJ/LsZOxKgtuMJZYzhypUrnDt3jv379/O6171upDJAXk1iSxmUMQR+QBTJzKCwbxsoukwunbPB0H64IUD1UdcD2WO14boeWsdA1eu2m3hN+WTvXZtYTy8uveWP7O7yREhW4hkldLC13eFKM2TvriJF26Vo57MfCHVEoCN8HdIKO3RkwJpt4ZbH8NzRF6E12eRvLj/CLx5+K1WnRK1W67FcMcZkbrmLi4ucO3eOKIoolUo9oFUp7KLqjCPkAZ652GSfV0MaydnmEoIQC400ahNw2vw6Bk0X21NY215nBYvtMkc8OxbaTRTfjUksSjKrksGPnvZLjDtRjg3YtVjpJdjE5b4UDwJAlYpUoMdfC0FiSBgbQ9q2gxAljCllm5CLsshB712UnADbmcEzMxSZRph6TCZKQMv3fZSMM9M8aDn641j6RYy+D9v+7i/O+VjfJ96KF9TVKJl/t2NHAlQao5AkUlv3qakpxsfHOXny5JYkS/IAVV9qbHJ0HFEY0mg0iSI11KBwfeQBSgUhG+UFvZ5OBtUJsRJWY8qOEMJC0/Up6rY5REzIUgaRlBmVVpn4q8mx8jI1CgUoRr7btDQYaRDOaF+QMFK0A0ll3TyXEFCwXYQC1Q7Z5+2itKuEROGqEq8b38dssMJssEywibkiwHJU5y8vfZ6fvvGN7C/0NqSFENnMSl67rdPp0Gg0WFtb49KlS3FJ2XH45PwVmlrh2A4LYZtQGWzhok2c9cUtuBwpImFGjgryRguChkdpfGvyQ/loRTatyKLqpYofdkJzz86SEB26gBWDlqElu1mUyoa0BwsTr4/zQch91VjNPztTAnBSSoIgQMoWGLBsG9eNMyLH9plX/8CN7v+ONPck3BGDJZpYZhq7cAXXm8Ez01gsgtFIpVBSEgYhbSUx5ivsK32D1uq/I4rezNjY+CvCM2p9VvdyKZkD3HzzzdTrdcIw5DOf+QwPP/xwD8HiesaOBKhRSRIrKyucPn2aUqnEvffeS2md/88okVeTqC9tnEGpRNNLCEGxUMJxRidV6FwpTm9ClEizoizD0WCb/CBmvA7mccxK6NtpH0G1QijbBLqry5AyvLvsLpESzChKC+WJmOwwQv1c+wa7OvqisNIM+wBKSjWwz+ThsBJE7HMP8WP7TmKMYU22uOIvMRssM+svcyVYoq367UXWoiZ/efELvHnPa3jN+K3YG8xHCSEye4eUKqy15sNPPk5Tx07JS+0mc1EbA0RCdUuSQmQtoVQpIw6TfW6bMRxlYCMDK2H1bS8WWgnpYuBH0QUt6A5hp+y86Y5NRa3gegJhj54V+1pzOQi5qdjNEGKbFhfHyX3GCUFHKkkURXQ6Hdb0CyzrDzBufp6x6gRjY2PY7i4Mu4jMHYTpvWcChJnBsWawvSu4ehqLK2AU9UadscrXCNV3mLt0F/OrJ7CdXl29crl8zTQ7R4mr1eF729vextve9rae36XWGQB0oiZOAAAgAElEQVTFYpFPfepTAx+bzkR9N2JHAlQag8RcIXbPfemll7Asa1Nb91HP0a53hqpC5H2gqtUqjutu6Bs18Dl6SnzBYOo4iehrAmb5vxs/QrjdL5yUilDKGGxyX8T0MY6yCIRIwClZMDOkyo7OQMsKwRvr+kDFrD/d8zO/hCnfsBXB6rVWyA27y9iWQGtDu91GRhGVajXrk62PT198ljtqe/Fsh3G3yrhb5Y6xI/FrNIaG7DAb5EFrmYZsIY3kiwuP8+21l/ihyXu4vXq4z+V1WDxy/hwvLC/jeR6RBUthiLZBGtUFniRr7V5FuvR9RO/nlvz/YaAVNFxsL9gW2QGgHVm0QovqVkDOCJSElvCIKkfZXfAwRJmnljKd5L+Hb6Smw4A9rkN5o16QENiOg+04dKtdBq1W0erzNBtvG+qvVSyWEOI4Uh8lMiZmwBuJxTwzK1/nyCGLijPPieqLnDj8PKG5h7p/B8t1h6WlJdrtdk/WnD739epdXY0X1Pdy7EiAygZH131rU/fcIAg4ceLENZERSQFqUHnPJIKS4QAfqGgjFfN1oXVKH06eV2lMJBHr2GhKKSI1eJA3JUpoHStFKDNk3imJqBMRVZ2cblv3h8lRmVPQMh2FkSLzr7KF6FnU+0ArNPFc54ibVK0Nq82QsmvwOx1K5XKiADH8MYtBi09deIafP3pf39+EENTcMjW3zK3VLkW3Jf0MtK74y/zz4rd5eP5b3Fo9zPHKQW4sTjLmDNbjO7W0yN+fPsVKvcNyo8Vyy4/npyzAFTExxOnSp7MaKV3QSj/mvHDuMNDCxKw+2XLxqnLTjGtYzLc8Kt5o7rcqmZmzExLEuXbI3oKLJVxs4WKLsRwbUyVA1UmAy8cYP7kX4KWOzz2VcuaqPFoILNvG2Bdw93+Ru2/5VWyr3OOvdeHCBVqtVp8Gnud5TJ1r4/u3c6PzKpRlgTEIVrCZoVaZYbxyGqwJjDhAZI7SbOmBEkV5MLxaFXPoB6jV1dXve5kj2KEAtT6CIODMmTPU6/Vtu+cOi7TP1VrMlYuS3oTvxwKkExP9PlADZ6CGhB6QmSk/xPJc1iuax3W7Acy8ToSOIoSwcByXMBxc+oxlb0ys+JDs6tfHQNDSgBRoR2HU+sHL2FpjPWjts6sUqw4dJemoiI6K8JUcSLHVWjO9sMbR/RXGE8HcUeIbixc4UdvDa/eMpoxdcYoccw5yrNJlQXVUwFywwhV/ieca52nIeOC2bBdxRQziC80On31smvqyRCmD1Hk1CCAwiIbAFEHUBCL9Zq7bTMXYn4JWfGGHgVY6BB21C5TLLpYTC+dqdPfnCKDVkRaNwKa2gaeW0XE/x7Ys7BwJwteGaT/i8AD7EoGNLSrYIi/Xo7NMKzQ+M2GBm4oB2mxd8aUjz3Kh+Z+5sfzLFL3Dmb9WGkqpzP797NmzrK6u4nkeu3btYn5+nkqlEmdFzl602YPUdyVvFtAtLHOJWtmiVinC/hrCPog2lazvuLKywsWLF7N5pd4MbmtGhzvRagN2OEBFUYTv+zz55JMcPXqUO+4Y7suz3UgFY+vLTTCpMnaH4iY+UKE/Ov29l/QQh/YDVLUY09MTRXODGVhmNMaALxPqrUWYKKGbdcf0nMWAiAzGG+16CQFWBFax1+69O3jZLTumoNVsBIzvKlG0XSYoJY8zBEolYBXRikJaoY8mZmRJ4W75M3zo3FPs8orcVhuucL1RlOwCN5cPcHP5QPa7QEfMBSvM+ks8Oz/Dp758iXY79v5VOn8tc9mvEIhAwCJQ0zAgEUuJKt0fohe0AHQ/aLUbgtoEIGxs4rmg9BHrLUoGOWvNt1zGCqr/djUGqeJS8DBCz/l2wF7PoTiKIRcWlihjiTIOsKTgVvcn2V8YT2xK4n+Buowym+vwhXqRC83/hz3FB9ldeBNCdJc827bxPI/FxUWKxSI//MM/jOM4tNvtHoAJw3iQOw8wrjsG3IYy3fIqUYhgmYLnUNxTZd/eXViWgyGet8yPJnQ6HRzH6cngKpXK0L7WvwHUDotz584xMzOD4zj8wA/8wHUbzEszqMvnpllZWcHzvM3tNowhHKKRNyj0ulklgyFsdbAna5miucEglc63Nnqm8TFgSQMuWRlQ5I8TCYEit55agUFtoXphfA1jcYYk0vPa6VnsLmglw5xr9Q6lZY3nxn0G13FxHJui7VCwLFqRomQcjuzaj7YFHRnhhTbH9k9yub1GMEAxfVBERvGnL36T/3jrA9y2a3sgtT4KlstNpX1cnvb5x68uIkIX17LwlcxdytxMU36EwABrFkgDY2aDIdM4ekAr+e/1oBV0DC1X4hW7mwBLWHEfRyQyRGm2S2wfb5JhaGM0oYIV32F3qXtNs3KebW94PysDZ1oBd9a2TjICeHzti7xp8qeZ9O6nRqyYYIxBmpUMrOKf00R6te/xBsWC/9+pR0+wt/gfqDh3AGRGpbfeemuPTNAgNqbv+1mJcH1fKwWYOCsqZfcvJh3p8HFswcT4GLsnxuMBZiGIoigDrUuXLmVGmOv7WvlZyjR2ghcU7GCAKhQKPPDAAzz99NOxpt11ik6nw5UrV7hyYZZdu3ZhjdBElZHaxGajN7TqLkTG6LgnEUbxBD3dxnkvey8lUfQSJULRO8QL5MBKdBcxYxAShGUlGcHmpSLjDzc8TJ6923tJ1jvbKlEqx/NqQRjQastMg9D1PMqlcjb0WfDi2/nf7T7OfXccYCFocbG1yqXWGpdaq1xqr9JRgzPTyCg+9OI3ePuhO3jLDcevOpM2xvD3T53ivz3xDKsdH19HRCk5JWHnWSIloHS17HpoDq0kzaltDlLrYxBohR2XUtnEdHBjkDrRYSQRZRXdf3GWZWdPZoBGp8jhikDqNp2wjbDpKedtFAuhZDGU7PG2vuQoI3l05TO8afKnqTlxiU4IgSt241q7GXO7gq9SNwjUTM7J+BKRXohBWs1yufVn2OpGli/fxO7KD3Dy5MlNiQ15J919+/Zlvx+lrxX3QUWsnpH0EVXuHqyNjbGrVsvWhdSxObWUP3PmTOaGnT5XGIY7pgcltiiZsb0u6yswwjDEGMMzzzzDkSNHeoYur0U0m01Onz5NFEVYlsXT/99pLr04M9Jj23Wf6QuLIx0bhhFhqLLFTQgrW8vKtx7GShlsBpqdIAEnMXABNrUCwfgWMklLIA6XSNXhlTEZjXwYaFl7XKzS6PTcQsHhppvGsy9mq93C8zwKXgGlZGylISVGx3b2juuwu1Tm//rhN1Ir99bIjDEsBW0utVcz4LrYXqUte9lkR6u7ecfhV3F8bHs6ZFJr/t9vPM0XT00x3awTqC593OgYbEYBwMzCvWwwNb1lkBoU5aqmtI4dGbeydNZfjEEr3nz0iLMamHQ1h8oW1UoVyxJEJoz/pd5aOhy6WfEswf3jZbxt0rOLdpk37f5pau7Whmi1CQjUNO3oItNz/0pHXqQ6EVF0d1PzTrLLPYln79v8iUaItK/VaDSo1+s9xInUuiXNitJqQX4NNsb0qFykNjWnTp3C8zzm5+f57d/+7UwN4k1vehP33nsvb37zm3ts6PPxhS98gfe85z0opXj3u9/N+973vp6/B0HAL/7iL/Lkk08yOTnJJz7xCW6++WYA/vAP/5CPfOQj2LbNH//xH/PWt771mlwnRrybdyxARVGE1ppTp06xd+/eaybr4fs+U1NTtFotTpw4Qblc5rnnnuNLH3yMVn0075qVhQaLs6N4Chk6nRApdZLl9H7mxZv244yV0dokvkiDqeeQlEw8G3XD1ij14sYSwhu84AwCLSoW9u6t7aJvPDiGUgGWEFQq1aF1+lToVUrJ3ZUqb6iNUyqVutJDtVpfKdcYw3LYiTOs1iqX2mtcbK3SlAFHq7s5OXmYeyZuYJe3gfZSLoJI8sdf/iZfPXOehXanC0zxBPPQ7HGzsMcs7JroE87dcggY36PZLJGPQSshVSS9QkMsUPzqySJjRS/JXHvfjzEgTdRrCKnDzMV4j+dw59jWCAL5KFhF3jDxDvYVtmb3ng7bHzx4kEOHDgGKQM8m5cFpjJG41m5Kzi2U7Jt7elVXG6n9e5ptNRqNgX0tz/MGghbA6dOnufHGG6nValiWxS//8i/znve8h1arxVNPPcWDDz7Ivffe23dupRS33nprj9XGQw891DNo++EPf5inn36aP/3TP+XjH/84n/70p/nEJz7B888/z8/93M/x+OOPMzMzw1ve8hZeeumla0WlH+kG2LElvjSulSdUFEWcO3eOxcVFjh07xp133okQIp6BanRGBicYjSCR6vNpbQaCE4DqBFCMqeva9BrG9RyXGBKKUA1l5g2NjoIhACWEwBGCPFfcNoLdtRq+lHSSf1IPLrEaE3/BFubrHDo8getsXE6ybRvbtikUCpwThn9/6wkOl8o0Gg1WV1d7Gt6pVNHY2BiTxTKThTL37r4xOa9hLfKzLOu/nX+KQEmqjsf+YpWaV6Rse1gipsa3ZMhq5HOpucZXvnOB+aU2Qerllegexpdh+ymQamgsx8Ipd0tvCZE/Aa2Y3qCS8u3QMDFhYmx8471mnEEJtLEwUmLZViYKfKEpOWZkVoa2UzWHRIrItVxcXNJBNmPIXIwDFdBWY0x6Af42zAYD7fOV5b/l3tobOV6+d1OgC4KAl156Ca019957L8ViutFwKNqHKNqHSKeJjDFEeoGWfBEhXCwKWKKAa+3GEtuniuft37fa1yoUCly+fJlWq0WhUEApRRiGvPDCC9x8883cdNNNPPjgg0PPfTVWG5/97Gf52Z/9WQqFArfccgvHjx/n8ccf5/Wvf/22r8VWY8cD1NV6QmmtuXjxItPT09x000088MADPTt827ZZm9+aSGywAUDpRIHAsi0c1yEYMi+ljUG2fdw94yilu0aCdJevfmaeQYQKUxj9tjC+QuwarQ8BoKShoC1qOSdQqXUMVlGUgFZEkGS4tm0jpYU14iBs7q3wkae/w//5ujewf//+TMkhXRjq9XqP/FC6m02Ba1ehyD0TN3DPxA3Zc66FPpfbq1xsrfHi2gIX26ushvEiq5Xh8lSTlZWAUCa9vrScdxXAlA+5qhGOwPK6vSWBiK9N7hSxl1YCXKRD0N1POvQFYWDwNqjmGkDJuDTpOE42iySEoKmgY5fYX3PjjElKpJIEfkBLxRJEtm33GEI6loND7GR8xRe8cfJBbijWMnuS1F+rpTb/rmij+fbaPzPjn+Xk+I9Ttsf6X78xzMzMcPHiRY4fPz60/JUPIQSeva+n3BdXAZpo06Er9SQQeBvOCY5yrs36WmfOnGFlZSVzXfjQhz7EwYMH+Yu/+Avuvvvuof5P+bgaq43p6WkeeOCBnsdOT09v+z1vJ3YsQOXljrZjuZEXjz1w4AAPPPDAwNRXCEFjaQtOukMYfOmciSVErIwgRGYJP8grSAgBYYRlCYJQ9zTNMypeMgiaf6Tw5ZYACl8NVa0YFs1Vn0KpC2qOZTHmeYx5HmEY0m4Z7GoRXJeOVHRkRNiSlGpb28W2wogPf/sJfuP+17Er2TnnF4Y8aAVBQL1ep16vMz09nYlx5suDtWKRO8cPcOd4l07eiAKmVhf5y689RWtVImW3PHOtgCkNYyBaVnj77A2f20Ik0lTdBdQkoKUSZl6nIXC9ftq4gWxY27ZtbMseWIs5u+YzUbTx7FjR3nWdTIE+zXyllPHn2W6jjca2uqD1qctf5n858iA3Fo9xY/FY9ryB7iRGkF1vraZcGZgTzgbn+fz8X3B79bXcVr0fR8T3VKvV4tSpU1SrVU6ePHlV3k5xFaAfALWJMEb1ynphXTW5xvM8JiYmWF1dJYoiTp48SblcZmpqioceeohPfvKTuK7L6dOn+dVf/VX+4A/+YKCL7vdL7FiASsNxnIzeOUpsRzy2uTj68wedqK9pqqQEBI6TF9s0ce8pITykbqvpgKYxBhVGdJodpLB6hme7Q5xkoJVSnkWgk5LgiO1GAwQ5A8MRorEWsPtAtefLrKSi2WpiWRa1XbUsCx1LdvkF4fCeNzzAcuBzqb7GxfoaF+t1Vjobl4nmWy0+8NjX+V9fcz8HxwYTYYQQmWFhfjeblmDq9TozMzP4vo/neT3lQdt2+Mw3XmTqygpGGQoILMeLM5Ck/Ka0GThbtJ0wCuSKxtm9tcVQkA5CJ6BlYEwW2VWzCVRsT9KRAZ0oQFgC13UHAlMaUhtOr/q8anep73UIAY5j4zg2EH+AxoDWMWhFMmLRX+K/PvVxfty9h4O79mebgGKxyP7CEfYXjuTOFbsYL0dzGXjVExdjaSTPNr7OVOs7HC/fhz2/i/pyk9tuu+26SgFZor9qMKh3FF+P0T+ntbU1Tp06xf79+7n//vtjgtXTT/Oe97yHt771rXz0ox+lUCggpeSll17aNDO8GquNUR57vWPHkiTSHd7KygpXrlwZSZ13bW2Nl156iUKhwPHjxymXB0varI//+zc+RONSv/DooFhdaLAwu5YMQMbZiWM7PWKh6Y9WO8y+FIP6UAaD2TeJVSnlvjjZ4E2v4kMSwhLYx2LCiNJxT0Nr0zuQuC7ELhcxsbXs5oabxylXPYw2tNotpJRUK1WcIbp5AD9y68288zV39PyuEQZcqte5WF/Lfi4PAC3PtnnbsRO86cjNOFch8plmWo1GgzNz8/z5v55mrp1oH1pxn2aQNE/ch4mzF5WQRkbeBAwIp2bhjF2dWKkQ/z97bx5fV13n/z/P3ZfsS5MmadKkWZoutE26IJtVFAQB/SKyiAMuIOgoRZxhGRV0BGTxJ6OiLCMjDIrKCA9B7MDIUlBEugCldEnTpmmz3aw3d1/O9vvj3HNyb3LT7E2h9/V45FFKbpNzb24+r/N+v1/v1wtqy3KxW0yEwmEkScTldiObVGJyPBFTIhJXRMb71a/Nd7DQPb35jKqC2+Tgk1lrsYRVAoGAMYdJDoPU5dXJkFUJnzjAsNSPV+ylJ3CEbl87DoeD+vxVLHavYIFtkbbrNY/QfzdH/+6MeT6yTFtbGz6fj8bGRtxuN7FYjHvuuYctW7bwwAMPpBVBTARJkqivr+ell16ivLycdevW8cQTT7B8+XLjMT//+c/ZtWuXIZJ4+umnefLJJ9m9ezef+9znDJHEmWeeSWtra0YkcSwxmdDCUChkhNI1NDRMWZIeHAyDKkxKfBAOxVKSalMVayPkIoqSFiyIkPaXUEVTzZmiMXAn3+WOEJ0uTU/+uigqakzC5LBgMZuT3iAqippo/4wiLTUiI+RP6SUh6I0imGWi0Sgul2tShrx/P3CE0+oqKc4emV9l2+wsKypmWdHInWQwHk9UWf5EpaWR1h/37+PvXR1srFzMhrJyHNNo/djtdqJ2O1s6O3nq3QOEwnG06tacqHZlZPQFaFNKxLnF+DmNiBxGDHNH1I6TgexXMNlH5lHTgaLCkV4/RS4V1yjvQqfZlvQ4NSlXSzTIC1TahmPk2My4p5CtpUMQIKxG+VNoGxeXf4TVTq3Vp89h/H4//f39hMNhzGazQVi6XLvAVkq2UEi03UxZtICPLL0EyRrBK/bRE22jLfwuLnM2xbYKFtgWYTUd+5Tc8Xw/k+H1emlpaaGsrIzm5mYEQWDHjh1885vf5MILL+S1114blaE1ecwkamP58uVcfPHFLFu2DIvFws9//vNjHuR4wlZQiqIYVke7d++mubl5zGOSPfrq6uqmJUVXVZWbz/sBTptzQveISDTK4ZZejXSS3wj6z0jfN5JkYnEJVU2n3SMxIE+07Jx2zOWT3fFIkFahEyHXDghJB6wpTcU1QlpZS3KJoRCJSylx8umgRX7LlNfm4Xa7ptQCqSzM4xtnbphyFRSKx+kIjBBWTzBIvsNBfUEhlTm5lLjd5NjsmEd9XUlR8EYjdAYCHBr28l5/H4eHhjlyeAhRlDGbLZgS1a0uJQcSP6uR3SL9Z6hHZ2hODmkqLUZMcyciLcHMhPOo8aCoiQBBBCqKsynOm5rLg6qqxBWJmCJiM8P6kly8kh9RnZ7gyCSYOLOoifV56e3GJEkyxAN+v59QKIQoioiiSHFxMRUVFYmW69iY+ZDswycNaHZMgh2LyYbbnIPNNLnVgbmCJEnGSsqyZctwOp1EIhHuvPNOtm7dykMPPXTMcpfmAZkKajJIV0FJksShQ4fo7++fsUeffzCIFJNQrCpp7z1UVVtADYU080xz8o9kNDFJRhy7qlvl6I9SdScJNeU2Qo3FpyBi0KTopriK2aoptPRDVpYl7ZskDladtEyCRqYuyUTpghxARZQVIqJINC4REbUPWUn+OgIWswU5JiBMIfMJ4MjgMP/33gHOPal+Sv/ObbOxtLCIpYUjy7fJpPV6ZwedAT8hMY7NpNkuiYpMaJRprnc4SE93QHNbsFgQ4ipKWEaNKahi0gtvEhBsAoJDk4YLFiHxemq7RXr7FFJJK51pbjJppcSTyJqyz5I/+XmUSrLjuKbO6x2OkuO2YZ9CFSQIAnazFXsiwTgey+ebdWfjl0N4okN4YoP0RIcmHQapqAp/6d9OW6iHc0o2kGdNragtFgv5+fnk5+cTiUTYt28fbrebhQsXEolE6O7uNpZi9b0iQ65tzSPLMuK6oKoqUSVMSPZjxpxYbhewCLZj1hIcHByktbWVRYsW0dDQgCAI/P3vf+fGG2/k85//PK+88sqMxB0fFJzwFRTA3//+d0455RQURaGjo4OOjg4qKyupqKiYcSjZ3jf288itv8HpdGIZVaZLCS8us9mM2+0mMByhr3uYpNtwQDN4VWQFs9mEyWwmGhWRdSlzourRSEo1yCoZ5ooSBMfk5wSC2YS5piDNoaemkJaWQaWRlsNto6SuAIvFOuY1UxQFfzBIOB5HsFiJyyoRUUQwC1TWT905XkDg8g+dRHNV2ZT+3WQQFsXEPEtrEXb4ffSHw4iSiKfHRyAgal5qEQXVL6Omz2YffcGYsswIOWOrnWTSSh6y6w7vBnGN+pLJpOUqtKE61XGd3nXo6jyT2aTFniR9zmm3ULMwe4rRFqlYV7iIK2qaUn6eqqoyLAbpiQ0amVqe2BCRNGGQOiyChdMKVrI+fyk208jvjP77mc4/L/kxoVDIqLQCgQCSJOF2u1NahOmETXKSY7pgiPjTu65MF6Io0traSiwWo7GxEYfDQSgU4vvf/z67d+/moYceor5+ajdf71NknCSOBjVRuQC8/vrr1NTU0NbWRklJCYsXL561u5eXfvNXnn/sJex2uxFhLcsyoWAQVVVTQs662gcIB6PoPztFHjlQzCbN2FOWFKITLPKOJi1TYR5C3lip7NFgqcpHmJTcXDUO2aK6XFRkFEXFbDZhsViQEzcCbpcr4eIwMgOLywobVlXizLXTOeSjY8hPZJI7aXNJUskQRZE3dr3H/7x7gAFRJRISCQ5EkOPTcHEwC5jyzJhcR69UxictIZW4Eo8XBIGqqnysNhMxWRoTT6IkVhRAc3wf78AtznVQWjA54c94OGNBDZ+tWnnUQ10LgwzTExtKSTEOyqkhnS6zg5Pzl7Emtw4xFGPfvn0UFBRQXV09pVmIqqqGk4NOWskL28kuI2OdMcZpr06DtPr7+zlw4ACLFy+mtFRbVXjttde45ZZbuPrqq7n22muP+YxnHpEhqKNBJ6jBwUHeeustysvLWbJkyay7mj/+/f9h19/3JnZFrIneuYQ7y40tUVFprS+F9n2elD0UQRCwmM0jUnBVszaaqsONJceNrbxYkzsrCdlzmoiOZJiL3JimeFgVLMolp9iNSiJWJBw2ZmnJXnkWswWL1YJJMLEg3831l55uKJ0Gg2E6vH46hnx0Dvnp8PqIiumdPgQEPtpYzSdW1s1ImZcOqqrS0dnJczveoyUgogpmBnoCBH0x4/O6uEGfFU1WlWfKMiPkjU8Uaa8HDOuhsaQl4HRaWVSZnzJDU9Fyx4LRCILdhiSoCeIav9KqKskixzWzgL2Tiyq5rHr1iKR9kghKEYOsPAny8sYDxMMxyuRczqzZQH1B1axUNMlODjppJa8R6NWWyzV2RpquZX60Nno8HqelpQVVVVm6dCk2mw2/3893vvMdjhw5wsMPP2x4351AyBDU0aAoCm+88QYWi4VgMMgpp5wy43beaKiqyj1X/Jyh/iEkSXPhdjpdOBx24/M6/N4wvV3exM4T2nxjVKskGhUN5/KpQLCacdUtSv0FUvVBeWKmMYq0BKcVy6KpuSU7sm0U1eQRCgYxmc24Xcn5NhoJS5KY2IUZMXg9e301p65aQk5Ozhi1kqqqDATDGmF5/RwZ9NHl9RNNsqcqy8vmnJV1LC9bMCuH1+CQlz/9YwfvDYWQTFZCgRgD3QHkCV77qZCWYDdhKrLMaJl3NGm53WZyc63aeweBuBjHYbfjdLlSVhBUIK5ojh06YUVlEUVVMZsFlizMmdI8Kh2W55VyZU0zrgnsqY6G/v5+dh/Yh6M0GyXHgifuJSLHKLHnUeuuYJGzOGVWNxuIxWIppBUOh7FYLCmVlsvlGnNWjEdafX19tLW1sWTJEhYsWICqqrz44ot897vf5brrruNLX/rSrJ877xNkCGoiDA8P43Q62b59OytXrpz16mmw28v/d/UvCAaDWKxWcpPk6aOXcdtbPUTD8TTSci3OPBabHjnpcNVVYLJNcFiojFRZqop1SSGTGbGAXgXK5FW7ycvPwTKpg0n7NyZB5eLTa1DEqNYOdLtTlmHTkVZ/IEyH12dUWp1eP/luB81VZaysKGFB9tjdmaNBUhQO9PTz4lu72NPnxWJ3AkJK1TQdqKq2pCsrY0lLsAqYiqwIltmbcZSWZqGqcRRFwWIxI8taaq7FnLAcsmp/ptN/xhStPWizmFhRUYgn5h83nmQyKLZncXXdespcU1vLiMVitLS0ANDQ0DDm9zImx+mNefGKQWwmCw6zDZfZQbEtd05EDqIoppCWHquRItpp6nAAACAASURBVMRIatXrz2Hfvn2YzWYaGhqwWq14vV5uueUWvF4vDzzwQMK09oRFhqAmgh65sXPnTpYsWTKpXZzJYnBwkBf/Zwvbn96FxWIxLPf111ufM4TDYULBCN7esJbflPixqfrOkaQgSdOYd4yCvaIYa+7Unl9xfQnOwiyicU2RF41pf4op15MQcSiaNU5eaTYFFVPPqVlRU8Lnzl4DQDgcNmyH/H4/siwbcQX6x+gZoaKq9AdCdCRmWcPhKCZBINdlJ9/lJNthw261YDGZkBSFuCTjj8TwhiN0DvnZ3+UhEArjcrmw2W2EAzH6uwKz8tqPhToSSWIG8wILojDzXy09N6iyKpcs90h7VkVbTdCd3iVJSiWtxEcyoS8tLOKaNU34xdiE8SRHg0Uwc255A2curJ2w5aeqKl1dXXR0dEzaP0+HqEgMi0HMggmLYMYsmLGazCkii9mEJElGXHwgECAYDALgdrtRVRWfz0ddXR0lJSWoqsqf//xnfvCDH3DjjTdy+eWXz3rV9KUvfYnnnnuOBQsW8N577435vKqqbNq0ic2bN+NyuXj00Udpamqa1WuYIjIENRF0gtq9ezfl5eWzEgAWCAQMS/q217rYtWWvISO32+1YrFYsZgvxeIxwJILDbsc/GCUwHNaWXxMVjCJPPCeaCiz5WTjKppYW6y7OZkFDyZj/L8sKkZhEMBQhGI4gKfoSsoDJLFCxogTTpOK9U3HuKUs5fXX1mP+vqiqhUMggrEAggCzLYyqtdKTV50+Qlnek0hKTAipFUSQU1DKmnC4niqIy6AkS8E7O+WM2YLGaKF2ch2RSiUqiJs2XRGKTDNJUlMROk2DCbDHjsFtYtCjP2M9KBzVRvUqiZJi9aq4lZiO9uGlhGVevaU6da6njx5McDWXOXC6sXM7S3PQ7ecFgkH379pGdnc2SJUtmRaQkqzKSqqAnpOmKvKnOxiaLUCjEnj17DL/HF154wbAmMplM3HrrrZx55pnk509xq30SeO2118jKyuKKK65IS1CbN2/mZz/7GZs3b+bNN99k06ZNY0xjjzEyBDUR9Eyo/fv3k5+fP6U7ttGIRqO0trYSiUSor68nJyeH+65+iMCQdmclyzKiJBGPxRBFEUHQ/M5URaD3iC/h6znauTOVsGRFy+WZDtLOoSaAyWKmcv3iMXMSWZINebzL5cJkNiFJilFlldUWIjtMhCJTbw9ddtZqTqpdOOHj9Iyd5EpL34FJnheMVkXJikKfP8RBTz9v7T9IXzBCxGRFVlVC/hiDniCSOBdV09FhtZkpq87DkjT7UVQ1EUuik5ZETB6ZvanqSNVktqRaLGVn2yktzZ6iEEMdydQSNdKqc7r5VOVi8nNzjdc0Xcs1OZ7kSHiYztAwPnEsyTfkLOCssjrqs4vQk2YPHTrE4OAgS5cunfXg0DHPMdFy1UXkOmYyu1RVlc7OTrq6ugz5u6qqPP3009x7771ceeWVFBcX88477/DWW2/x2GOPUVVVNfEXniLa29s577zz0hLUNddcw8aNG7nssssArXW6ZcsWI/5jHpBZ1J0sZpIJJUkSbW1tDAwMUFtbS1GRtgjaub/bICf9zR+PxRAEgfz8fEwmE5Ik0d0+iKwk9mkEDIcBbXkTzGYTZrMJEmeCvn+kyIpBXpNR9amijBoTp7QPpUgyUX8EZ57WLlIVrZLRq5dk3zyLxUSWxUaWy0YOVq75pzMIRuJ09vno6vfR2e+jq99PZAKJ/O9f3Ek4GmfD8sqjHhrJGTtlZZrUXN+B8fv9eDweWltbU0hLH3BHhvqxDPdx+alNFBYW0jPo5w9bdrEn0EuOzU5EkIiKIlO7d5sZxLhMd/sw5dX5mC3aHb5JEHBZrbisVkgYPeik5QuHCUSjKBYLUpr7xkAght1uoWAKSkwhsUBtMVt0j1f6gdciIT5dWMjAwACHDh1CFMWUlmt2djZ5Nid5Nue48SQdoWGOhIdp8ffR4u+jwpXLalcRzl4/VQvLDWPUuYYWZz9WzDBdk9dwOMzevXsN53Sz2YzH4+GGG27A7Xbz8ssvG2fCFVdcMTtPYhpIF7vR1dU1nwQ1KZzQBKW/AaeTCaUoCp2dnXR0dLBo0SJOPvlkBEEw7mhbd7Rpf1cUwsGgcagn330OD4SJx+SRdoY6ErmtJJGW4dyQiOA2mwXMZpPOWdrjZRVZUQzySne4SqEItikQFECwL4Az10UkEiEWi2kzGpvtqPc/A4MB3n6ng3VrF5OX7WTFklLjOof8Ebr6NdLq6tNIKxofuTlQFJVnXttDR+8w55yylCzn5IUryYNr3XVZURRjVtDW1obX68VqtVJQUEB33xAvbG3jvfYBVBXyXE70Jq+KSkyUiCacMCJxkagkzSlpiTGZnvZhFlbnaTclaaDKCmI4TLbZTGnxgkSooDoSAJnI1IrJEgMDIaxWM9nZMxP/7PcN83tUrl7dRIPDacxO/X4/g4ODKaSVkqllc5BrGxtPcsg3wLa2FrYOHkTJcVIh9rHaa2FZbsmMVH/TRToimqizpKoqR44cwePx0NDQQF5eHoqi8Jvf/Iaf/vSn3H777VxwwQWzuuR7IuKEJigd+n7SZKBLRw8ePEhxcTEbNmzAbDYbu0ugveFbth0kFAoRj8eNQ11/s6qqirc/wPBgMPWLp/NnSyYtSSO/EdIascgxWwTMScm1qpJMWNp/y8EIFE4tgiDQF8BcYMXpcmozukn+vm15tYWVK8pxOEYOHEEQKMx1UZjrMtp4qqoy4AslKi2/RloDft5q6WbPoT5OW13NusYKctzT800zJRzG+/r6sNvtnHrqqXT0B/jbOwfZdaCVuCimSPstFgtWi5YO67BacVitY0hLs29KCEdmmbRiUYneIz5Kq1JnSDopiKJIVlZWyowmtdLSSi2dtOIhmbqyfIKqiCcUnPa1Hvb5uOuN1/niSatZWliE2+02rIb064tEIvj9frxeL4cPHyYej+N0Og3Sys7OJjQ8TOjQET5ZvYySkhIEQSAkxekIDfOPgSNYBK0Sz7c7WeTKm/X9tsniaMQSDAbZu3cv+fn5rFu3DpPJRFdXF5s2baK0tJTXXnttTuZMM8HxEJ0xHZzQMyi93z4wMMDg4CANDQ1HfbzX62X//v243W5qa2ux2+0J49ORPSIxJtLy7n5+fdtTOBMZQwYxKSrhUIzBPj+xacxndOgtCVVVEnswmkZBIyuTsbyZDgvXLSUmysSiItGohDJOf1BVVGNZuLi+hNyyqQtIPrRhCWd9fPnEDxwFRVHpHw4apNUz4MfpsFJTVkB1WQElBVnaAvME0Nuvvf2DOHIX4BmOsbutF19w7GxEU7pp+1mSJKWQljVBXOY08uy5Ii13to2SylwEQSAeixMKh3A6nUmR5ZOHw2rhnz+6geJsF52BAB1+Hx0BzcqpJxiY8rVurFrMp+oasE3wM0hOLx4aGqK3txdVVcnJySEvL++oDg5hSaQ/GsRiMmEzmbEIZpwWKw7z/N1TK4rC4cOH6e/vN+ZliqLw2GOP8fDDD3P33Xdz9tlnz1vVdLQZ1J///Gfuv/9+QyRx3XXXsXXr1nm4SgMZkcRE0AlKj/5esWJF2seFQiH279+Poig0NDTgdrsNYoKRu62BgQEOHjzI9v/ZTc/efhRZJR4XiUVExLhEPCbNqjIvGaqqGkubhpN5kpeblrAqULG6FnfRyCA6HpeIRkWiMZFYVCIajSNJ+uDdgiCAPdtB2aqp72wICFx2yXrq6sYqAacKSVbo9wbp6vfRMxggEhOJxSVcDhtupw2rxYzZJCArKqIk0+3pp9PTjyzYiMvaSHyy0MIeZSRJRopLSIqMigKCouVl6aRltWI2m9OSlt4ajMY1gUNMTDcpOjrcOTacOQIms4ksd9aMlnrdNhvXfmQdFfmpIoS4LNMZ8Bv+gx1+Pz3B4ISuGPkOBxc2NLKmpPSoB7KiKGNaYckODn6/n1gsZqQX65VW8o2djpgsGao8kzDyMVeqvGQEAgH27t1LUVERixcvxmQy0d7ezje+8Q3q6+u55557yM6emp3YbOKyyy5jy5YtDAwMUFJSwve//31jbHHttdeiqipf//rXef7553G5XPzqV79i7dq183a9ZAhqYugEFQ6HaWlpYc2aNSmfj8fjHDhwwIjbKCgo0EQJalJIoCDg9/tpbW3FbrdTmFXMIzc+keoormox7tFInFhYJBqJE4+Kc/5iaqSVHPkAOeUFFNdXjNl90Vs0sVgMi8WOokA0ppFXPC5RtmYRtmlY4DjsVq7+8hkUFLgnfvAUIckynsFg0jzLR0evl0AwiMVsSUR5THx4qYpKNBgnGogRDcaIR6Rx1ZI2pwWr24Ity4pg0VzJBUi8nlYsVsvRSSuuCTAmIi09EyyvyE1JRe6s3JW7bFauPmMti4uOXg2LBmmNENd4pFWVm8s5S+pYUVQ85hr9fj/79u2jsLCQ6urqcUUQqqqmBEH6/X6i0Sh2uz1lppWOtGRVGekgGHLymanykqEoijG7bGxsJCsrC1mW+eUvf8ljjz3Gfffdx8aNGzOzpqkjQ1ATQXc0j8fj7Ny5k3Xr1gHa4dDe3o7H46G6utros+sCCJ2YotEoBw4cIBaLUVdXR05ODs/c/zy7Xt07ie+tEouKxCJxohHtz3hsekrCqcBsNVO+vt4gZ1QVwaSJO2w2e9r0UlVVqWwopeHkGrq7h+nuGWZgIGjEfUyEgnw3n//cyeTnzz5J6dBvJgLBEDlFZQyHJE052Oejzzt29qKqKrFgnOBQhPBwZFouHTanhZySLFx59oSNk6RZOclygrSshnPDeKSVTFgagWkVrD47A8grclFQMjVnjPFgNZu54pRVrCifWlWrk1ZHwM8Rn9Ye9IQCyAkiL83KYmNlFWsXlmFF4ODBgwQCAZYuXTrtBfjRpBWJRLDZbCmk5XSOjZyfLYPX4eFh9u3bx8KFC6ms1FSlra2tXHfddTQ1NXH77bfjds/de/oDjgxBTQSdoFRV5R//+Acnn3wyXV1dHD58mLKyMqqqqoxdjeR2niRJtLe3MzQ0RE1NDUVF2k7Hu6/u5dn7n5/29ciyos2GwnGDuCRxcsuaU8GipjpcBdnGNrzJJCSk9vJIXpMl2WVAMza9+t8+SVGpJrKIxSR6PD66u4fp6dFIa8g7vtDE7bJz2aUbKJ/GLOtoUBSFrq4uOjs7qa6uNgbvyYiJEj0Dfjr7fBw8Msju3V30HPEixWfntbXazeRX5OLKHZkPqaqitQgT3oOSYf47YjekzdESzvWKTDAUQlFULHYHcVk25loxUSa/2EX+gtkhKQGBT55Uz0cbq2f09URZpisY0EIgfT46An66vF6KZIXTqms4Y2kjtlnONIrH4ykL2+FwOCUiXl8lOJqZa7LRbjrIssyBAwcIBoM0NjbicrmQJImf//zn/OEPf+CnP/0pp5566qw+rxMQGYKaCMmRG3qscn5+vrHJPpqYdCuWzs5OFi1aRFlZmdG26DnYy2O3PokUn90qSJJkYhExpT0oyzNbJM1ZWEBWZSGKomj7TKMOET0cUUxUBLIkgyBQu2Ih519x8riHQDgcx+Px0dXtpadHIy9fIGJ83iQIbNhQw8YzGrDZZn5w6aIVvYU0XlSBKMq07Pewc2cHB9v6UdGUjdG4lPgQicYk4tLMCMuZa6dwUR4WW/rr0EgrSYiRIC0AJWHnpIkgUl9XRVWIijK1NUXkF7vp9Prp84cmXcGOhxXlJVy6fgVu+8zcy2HEP09SFLLLy/BEI/SGQritNvIdDuoKCih0zizKYzwkR8T7/f4Ug1eduNJ1BtJhaGiI/fv3U15eTkVFBYIgsGfPHjZt2sTpp5/O9773vWkJVTIYgwxBTQRVVRkYGGD//v0MDw9zyimn4HQ6U+Iu9Dd1f38/bW1tFBcXU1VVZRzqqqqy4//e5S+Pvqod5MfgmiVxhLT09uCkxBeqJjdHgJrTV+BwTj7mWz9cz71iDTa3tqCoRxMcbUYQDEbp7vHR1eU1Ki5VVWlaU8Wa1ZXTmk3prh2yLFNfX4/LNfbgkySZ9vZBdu/pYl+Lh2hsYtWkLKsT+A5ODJNZoKAiF3fB2NbTaIiSFlhpMZsxm81IsjwSs5KsHkyqtE5fXc05H2ogLst0eQOGy3vHkG9apJXjsHPxuhUsL09vQTQRJuOfJyoy3YEAEUnCbjZjN1twWCzkp3m/zBaSDV510jKbzSmSd7d7xG1fkiTDCaaxsRGn04koitx3331s3ryZX/ziF/MtKvigIUNQE0GSJLZv305NTQ27d+9m/fr1Kf1rWVIYGhhi354WBNlESVEJLrcLQYDAUBBPez+7X29huNc3j89COyTEuEQ0rM+04sSiqU4IKeGHZhNlK2vILpn6rkZRaQ5fvPETWK0W4vE4Pp/POAT0wXZubq5BWqOdqFVVxe+P0N3to7tnGEmScblsFBVls7A0l9zc8Q92Xebb29ub4toBWnu0r8/PkSNDHDo8wKFDA8THyZGaCmRZs3CKxEYqLWkSFaw730nholxMlrHCAEXVHC8UWRnjgg3azYBeZUliotIyCQZhrV9eyUVnrh4jtY+KEp1eP11eP0eGfHQO+egLTG6/b0V5CZ9a3UBR9uRvGGbinycqMsF4HIvJhFkwaWo8k4DVNHeBfTpp6cSlu5JbrVYCgQDl5eWUl5fjcDjYuXMnmzZt4pxzzuHb3/522gTe2cDzzz/Ppk2bkGWZq666iptvvjnl80eOHOHKK69keHgYWZa56667OPfcc+fkWo4xMgQ1GUSj2k7Mjh07sFgs5OXlkZubi8lkoq2tDVmWqaurIysri3g0jqetj64DHroP9NJ90IOvzz/PzyA91ERERzgYxe8LIsV1SyTtfeEuyqFide20vnbz6XWcffG6sd8zSY2lE5e+qJxcaaXzchsaCtHdM8zgYIhoVCQSjWO3WXG77djtZsLhEB5PD/n5+RQWFhGPy4RCMXy+CEPeEAMDQa06PAZI9h3UyEs0xALJsNjNLKguwOYyPD+0IMdIFJfbhd1mY7Lyd0VVEsauIpIkU5pn4+NrKigsyDtqBRuJi3R5/XR4/VpqsddP/zikZTGZ2FBTwceW1ZDnGr+6lmWZQ4cOMTQ0NKv+ebKSWJEQ9LD1EReVuYAoiuzdu5dYLEZBQQH9/f189atfRVEU/H4/1157LZ/+9KdZvnz5nBCU3gH4y1/+QkVFBevWreO3v/0ty5YtMx7zla98hTVr1vDVr36VPXv2cO6559Le3j7r1zIPyHjxTQSPx8Nzzz1HU1MTy5cvJxqN0tnZaRCTw+GgoKCAQCCAIAi4XC4ql1VQuWxkJyjkC9N9sJeeAx66D3joOtBLJGnuMl9QVAVRimGyKlQsXpCYqakpqkGH3UQ0NvVDfcdfWylbXMTK9anO44Ig4EgsJy9YoLWMdPm6z+djYGDAeG1dLpdRaWVnZ1NYmEVh4YjaS5YVBgeDtB3qZefOfQx5Y4iiBRUP4JnRazNTJPsOAqBqe1rRmKip8hLVlhST6Wnpp7AyD0eejWAwiNViIS8vd1Ly92SYBBM2m804KMMKvNEW4fyShYRCIXp6egyV2+i2a21JIbUlhcbXisRFoy2o/zkQDCMpCq8fOMKbbZ2srlzIGfVVLCpIdR7RZzQLFy6cdf88s8nE6PppJj55R4PuBlNTU8OCBVrQpdfrJSsri0996lNs3LiRnTt38pOf/IRTTz2Vq6++ekbfLx22bt1KbW0tNTU1AFx66aU888wzKQSlr7EA+Hw+w3fyRMEJXUH19vbyyCOPsGPHDlpaWpBlmXA4zLXXXstnP/tZiouLjXaAz+cz5i7JLazRA1NVVfH1B+hOEFb3Qa3amm3xxHjQLHEixOOxMRZLo7HyjEbO+vJH8BwZovvwID1Hhug5MkhgeGKCFQT45OUnc9KGmmldo27q6vP5CAQCKIqSIh92uVy0t7fj9Xqpq6sjPz8fWVbo7fNrUveE3L2/PzDpqPVjChVESSYSE/EFQthzLOQtKkBhdpdKnQ4rl3xsFQ2V2uxHr2BHt12TSSutc0NcTMSRaHlaHUM+BkNhyvNzWLe4nBULi/B0aPZFS5cuxTmF+eVsY6qR68mIx+Ps27cPQRBoaGjAZrMRiUS444472L59Ow8++GAKQcwl/vCHP/D888/zy1/+EoDHH3+cN998k/vvv994TE9PD2eddRZer5dQKMSLL75Ic3PzMbm+OUamxTdZvPrqq2zatIlzzz2X1atX884777Bt2zY8Hg81NTU0NzfT3NxMU1MTdrudQCBgtLB0A9WjtbBkWWGgc5Ceg710tWrE1d8xiDJDNV4ytPZanHAkrMV8p9kPGQ3BJPDPP/0ieSWpd8kBX5iewxpZ6cQVDacPqTv17OWc9okVmC0zmx3opq4+n4/e3l58Ph82m43CwkLjhiB5qK1DFCU8ngRpeYbp6hpmcCg4znc5hlA1sgiHtRBEu91OeVkeHz1rGf5IPOHu7qO73098FlYJTl21mLM31GNN83PQ7YaSl2AdDseYJdjRCMXidA752HXoCHsOd7KgqIj6ioUsK1tASc7sSN5nCxMRlKqqeDwe2tvbDTGHqqq88cYb3HjjjXz+85/nuuuum5UcqsliMgT14x//GFVV+da3vsUbb7zBl7/8Zd57770PQkx8hqAmi/b2dlwul9GW0qEoCq2trWzdupWtW7eyY8cOIpEIy5Yto7m5mbVr17JixQoURUkRC8iybEQ85CZydMYcrHGJ3kPaPKvnYC/drR6GPMPTun5RFAmFQpjN5rSH+NGw5mMr+eQ1HzvqY1RVZXggSPeRQYO4PB1DiIk9opKKfM78f2uoqhu7gzQV6GGPLpeLJUuWYDabU5RYegZVdna2QVrp5O7RqEiPx6ftZ3UP09U9zLAvPO3rmiqS87LcbneKRZHbZefC/9dETbVW8SiKysBwyCCszj4fPQP+KasHAYrz3Xz6wyuoKSs46uOSZ4XJdkMOhyPlRktRFPbu3YvD4aCurg6r1UowFqdryE8gFsNps2K3WCjKch51ZjXfiEaj7N27F7vdPvI8gkG+//3vs3fvXh566CHq6uqO+XW98cYbfO973+OFF14A4Ic//CEAt9xyi/GY5cuX8/zzzxtRGTU1NfzjH/8Yc1a9D5EhqLlAPB7n3Xff5c0332Tr1q3s2rULq9XKmjVraGpqYu3atSxZsoRoNGqQlj7DSj5Y0+1lRIJReto0stLmWR5Cw+MfrLIsEwqFUdX0+0yTggBfuP1SKuqnlgsjywqDHp/RFuw5MoTVZmHlhmoaTlqEYwq2SKIocvDgQYLBoBH2eLTHjm67Wq3WMW3XsTtaMUM52J0grkAa09gZQdXk9/F4XHMct6b/eQgIfGRjA6edWpeW0GVFoc8bNOJIOvt89Az6kSfpdtHUUMbHN9STlzWVNYIRY1efz0d/fz/RaJScnBwKCwuN9246sUAwGiMUF7GaNT9EsyDgsFnnzYlcR/LeYl1dHYWFhaiqyquvvsott9zCNddcw7XXXjtv1YgkSdTX1/PSSy9RXl7OunXreOKJJ1i+fMRg+ZxzzuGSSy7hC1/4Anv37uXMM8+kq6vruKpep4kMQR0LqKpKIBBgx44dvPnmm2zbto3W1laKioqM1uDatWtZsGBBysEaCoVSDtbc3NwxswFVVQkMBo0qq6vVQ89BD7FIfNJzpsmgsCyfq+79PNYZLs+KokR/1zB93cOYzSbsTit2p43SinzszrEHW/IOzeLFiyktPbrx6HjQ3QX0G4LkuYv++o6WuwMEAlFjlqX/GY6kb2VOeA2xOOFw2BCJTObXb0n1Aj79qTVkZU2c1yTJCr1DgaRYkmE8Q8Fx99+sFhMfWlnFaauqyXZNPg/K5/PR0tJCYWEhixcvTnFu0FWZTqczpdJKR1pRUQLUkQBONBHEsTpYI5EIe/fuxeVyUVtbi8Viwe/3853vfIeOjg4eeughFi9efEyu5WjYvHkz119/PbIs86UvfYlvf/vb3Hrrraxdu5YLLriAPXv2cPXVVxMMBhEEgXvuuYezzjprvi97NpAhqPmC3u/eunWrQVq6r59OWE1NTTgcjpR5VjQaNX759YM1eZ6lqio9PT3s2r4bU9SK6JPxtPXhOdQ343nWyec387ErzpjpUx+DWFSkt2OISFjzmItHJcwWEyarwoC3h4XlC1hSO7UdmmRIokw4GCUUiBIOxhIfUUKBCH5fgGAgRCgURlEVnE47ufnZFBbnUVpexIKyAnILRipZVVUZ9kVSRBg9PcPEjiJwUWTFODzcbjemcYIGx0OW286nzl9Dbe3UWzaiJOMZDGgmuQmz3L6hVN9Bq8VE89IKPrSyigX543viSZJk+Oc1NjaO6zGXnPukf4xO2E03hwWQEsa6gpDqSjibpKWqKh0dHXR3d9PQ0EB+fj6qqvKXv/yFW2+9lU2bNvHFL37xgzDDeb8jQ1DHExRF4cCBA0ZrMHmepbcG9bgPnbB8Pp+RxGuz2RgaGiIvL48lS5ak3LVKokTf4QG6D/ZqysFWDwPdQ1P+aX3iyx9h7SdWz+bTHoNYLMaunXvo7fTiMOXg7QvhGwqhquBw2XA4rVjtmv+ffthrS8aKFlkS1Vzho+E44WCM2AQR8snQDXJ1fzxFUXE4bZRVFVK9tIxlq6upqClOObxUVWVwMJggLK1F6PH4EEXZcH93u91YbTNLgl3btJiPnbkMu31mVWxMlPAMBFJmWgPD2utbU15A89IKlleXYE+qlvv7+zlw4ACVlZWUlZVNmTCSE3b1LoEoirjd7hQhRjrSmk0JeSgUYu/eveTm5lJTU4PZbGZoaIhbbrkFn8/HAw888L4I6TtBkCGo4x3J86xt27axa9cuLBZLyjzLZDLxpz/9iQ996EO43W5jsdiI1c7NTTvPioVj9LT10tXaS89BbZ4VMQDq9AAAHV5JREFUGJ3gmwbnfe0sVn9k6iGDEyE5F2jJkiWGwS4k3CW8YWOW1X14EM+RoSmRz3Qhy5pbg+7cYHOYqVleysp11dQtryQ7O3uM08PAwADbtu8GnEiSDY/HT2+ff8aLwrk5Ls4796RpVVNHQzQu0j0QMCJJeoeCFOW5qavIh8gQTruV+vr6tG3Q6SKZtPQPSZJwu90pHnnplranSlD6e6u3t5elS5eSm5uLqqo899xz3H777dx8881cdtllmarp+EKGoN5vSJ5n/fWvf+V3v/sd/f39rF69mlWrVtHc3My6detYsGCBIcnWLVt0c0y9NZjWF88bSuxleQziioZiY66j+ayT+NiVH57xTErH4OAgra2tLFiwgKqqqnFNXUe/FkN9gYTMXSOu3k7vnLi7j/rOhgu5O8dGeX0uixuLKCjKw+VyMTQ0hCAIY3aBRFGmr8+vVVndXrp7fPT3B6Zl6Nq4dCFnfWw5eXlzY66qqioH2trZte8Q9uxC8vNycTqsFOa6KS/OwTxHB3ny/ptebekdgmQ38qm0e/UgweTMqf7+fv71X/8VVVW5//77KSmZeWBmBrOODEG9XyHLMh/+8Ie55JJLuOaaaxgcHDSk7tu2baOnpydlnrVmzRqcTmeKCEPfdUkmrdHDbFVV8fb6NNVgYqHY09aHJEoULMznI5edwtKT0yvNJoNIJML+/fsRBIH6+voZu0DLkky/x0fP4RG5e3+Pb85SinVYbWYWLsmmsNJKcWk+kiSlGI/m5uamlbvH4xIej9YW7Ooapsfjm/SOltViZsP6Gk750BKcaQQm00UwGDTaYLqUX0coEmdgOITZLGCzWDCbBXLcjrS7VbMFRVHGVFq6y35ypTWatBRF4dChQwwODtLY2Eh2djaqqvLUU09x7733cuutt3LRRRd9ENRuH1RkCOr9DEmSxr2TTDfPCofDY/azAOOX3ufzIUmSYTGk72eNrmZkSaa/YzBRZXmQRImK+jKWnVKPO3dyd/R64OPAwICRRDxXEOMSvZ3ekUrr8BBD/YFZ+/qSJBIMhrBZrbiz3axcV82HPr6c3EJXyqGqqzInqmIjkbjh6q6pB334/OOvEjjsVtavq2bD+hpc00g01jFd/7xwNI6sqJhNmieeySRgS+SDzRUURRlTaSmKYuwWmkwmOjs7KS0tpbKyEpPJhMfj4YYbbiArK4v/+I//SDESnm1MZPAK8OSTT/K9730PQRBYtWoVTzzxxJxdz/sUGYI6kRCPx9m1a1fKfpbFYmH16tXGPKuuri5l1yUQCKCqakolkG7RNx6N09s+gMlswpXjwOaw4chyYB6lWFNVlb6+Ptra2ow8nfno+0fCMTxHhkZ2tA4P4T/KPlk6qKpCKBQ2lq6TiVwQoLGpitM+scIIcATGSLIjkUiKzZC+SjAaoVBsjNw9OKr1arWYWb1qEevX11BUOLWE2mT/vEWLFs3oZ6KqKpKsoPGTYEStm0xzW6noBq5tbW0EAgFsNhtvvfUWr776Kvn5+bzxxhv88Ic/nPOqaTIGr62trVx88cW8/PLL5Ofn09fX90FYrJ1tZAjqRMbo/azt27cb4X76fpY+zwqFQsY8S3dASK4E0tkmiXEJQcCwOAoGg7S2tmrmpLW1cxZPMF0k2zfpxBUJpd95ikWjhCMRXC4ndvv4bUlBgKWrKzn1EytYME5SsH5DkOzYMNEekaqq+PUdLUPu7iMS1a63qrKQNasrWdqw8Kiqv3g8Tmtr65z7581WxPrR4PV6aWlpoaysjEWLFiEIWqz8TTfdhCRJlJWVsXfvXhRF4cEHH5wzv7rJuD/ceOON1NfXc9VVV83JNXxAkCGoDFKhqiq9vb0p+1nd3d1j9rNcLlfKPEuvBJKXivVDVRRF2tra8Pv91C6pTWkdCSbhuFVOqarK8GBQI6uE32DnoT68Q8OYzRbcbteUHMeXrl7EKWcvp7RiYpuhdHtEyTOXdEIBVVXxesMpVdbAQJDFVYU0NpZRu2SBQVbJvnPJbt3HEsnnSrJac6rXIUkSBw4cIBQKsWzZMiNQ9NFHH+Xhhx/m3nvv5ayzzjK+biymVZ6zqUhMxmT88z796U9TX1/P66+/jizLfO973+MTn/jEnFzP+xgZghqNyfSOTzQkz7O2bdvG9u3bU+ZZzc3NnHTSSQBjcp5MJhPRaJSysjIWL16cVjI8eoHYZD52bgKThSRJtLW1Mewdpii/jMBQzCCuvq5h5CksQdcuL+NDH1/GoiWTb+mMVrfpQgF95qILBUbPCxVF29Hq6h6mr8+P1WrGahUQ40MsWJBDfX192t2j+UI60joadPXnokWLjP2s9vZ2vvGNb9DQ0MDdd99Ndnb2XF7yGEyGoM477zysVitPPvkknZ2dnHHGGezatYu8vPRV9gmKTB5UMmRZ5p//+Z9TescXXHDBMbPWP15hMpmor6+nvr6ef/qnfwJS51mPPvoo7777bsp+lsVi4emnn+bWW2+lrKyMUCjE22+/jaqqZGVlGZVWVlbWGJdzRVHGkNZMndCni+SZ2aJFi6irG1Esrjp5CaA5VfR1DydmWZq7+2Cvn/Hu6w7s7ubA7m7KFxey4cxG6lZWjJnVjYYgCGRlZZGVlWXk/eju7n6/n+7ubgIBTfiRvPialZVFcXE2xcXZRtpwT4+HsrJyBJOdri4fVpsFp8NKfv5YleGxxmS/vyiKtLa2EovFWL16NQ6HA1mW+c///E8ef/xxfvzjH7Nx48Z5eT7l5eV0dHQYf+/s7Byz/FtRUcGGDRuwWq1UV1dTX19Pa2sr69aNDfnM4Og4YSqoyfSOM0gPfZ710ksvceedd+LxeIxo7OR5VmlpqXGo+ny+lHmW3hpMN8+SZYWUE18QJjzUZ4pwOMy+ffsMh+upzMx0+6YeI0drkOHB9Cm1ufkumk6v46STl+DOnqHMXpbHuLubTCbsdjt+v5/i4mLq6urGVFqiKBMIRDFbTJgTbVet2pqfG4OjQXe1SPZm3L9/P5s2baKpqYk77rgDl2tu9sMmg8kYvD7//PP89re/5bHHHmNgYIA1a9bwzjvvUFhYeJSvfMIhU0Elo6ury7CsB+0u580335zHK3r/QBAEcnJyeOaZZ7j55pu58MILAVLmWY8++ig9PT0sXrw4ZZ7ldrsNv8G+vj7C4fCkjFxlSQadyFR11uZZyRL4hoaGabVd7A4rlXUlVNaNLICGg1GjLahnaIUCUXzeMK88u5PX/ryLhlUVnHRyDYsbSqf1XMxmM3l5ecY1S5LE/v378fv9lJSUEI1G2bp1qyF31z+cTicFBaneeqIoE094DAqCpsYzz2P7NR6P09LSgqqqNDc3Y7PZkCSJ+++/n6eeeoqf/vSnnHrqqfNybcmwWCzcf//9nH322YbB6/Lly1MMXs8++2z+7//+j2XLlmE2m7n33nsz5DRNnDAV1GR6xxnMDIqicPDgQUPqvn37dmO4rZNW8jxLr7Ti8XhKBPx4IoHRC7mmxG7OZDEwMMCBAwdmRW49EVRVJTAcTkkq9hwZIhoRyc510thUybKmKhZWFU6LFPTI8nT+eRPJ3ccLKEyetemkpf/3XCG5zbpkyRJDjr1nzx6uu+46PvzhD3PbbbfNeMk7g+MOGZFEMjItvvlB8jxr27ZtvPvuu5jNZtasWcOaNWtYu3Yt9fX1RoCeLsIYHQGfLvQxhbRUFRKLpGMDDKO0tLTMmqPFdKHbN6UkFYdi1Cwro25lOYtqiiecx+nPxWQyGZHlk8F05O76NesQBGFaSrzxEIvF2LdvHxaLxRB0xONx7rvvPv73f/+XX/ziF6xdu3ZWvlcGxx0yBJWMyfSOM5h7qKpKMBhMyc/av38/BQUFY+ZZyftZgUAAk8mUMs9KZy+kKIoxzlIUhc6ODnr7eo3AuuMNI/ZNQwz1+XE4bWTlOqmsW0B+0YhCTVVVOjs76erqora2dsZOCXpAYXIS9GTl7jpRJWMqpKXHxhw+fJi6ujrjuezcuZNNmzZx7rnn8m//9m/H3S5dBrOKDEGNRrpwsAzmH8n7WbrfYHd3N1VVVSnzrKysrDFpujabbYy9EGiLnfv376e4uDjRztMqE0HQ21fHl9Q9GaKo2TdFgjGsdguiGKfLc4SFFcXU1tZOymx3Opiu3H0qpBWJRNi3b58RI2+xWIjFYtx999289tprPPjgg0YbOIMPNDIEdbyho6ODK664gt7eXgRB4Ctf+QqbNm1iaGiISy65hPb2dhYvXsyTTz5Jfn7+fF/uvGL0PGvHjh2EQiEaGxtT5lmCIIxJ05VlGZPJRHV1NcXFxWl3gZSkaAxVnfo861gg2T+vZnEtgmrBYjFhspgwmUw4nNY5l+jrvnjJlSyMlbtPNM9LrgDr6+sNf8Zt27Zxww038NnPfpZvfetbx9XeVgZzigxBHW/o6emhp6eHpqYmAoEAzc3N/PGPf+TRRx+loKCAm2++mbvuuguv18vdd98935d73EEUxRS/wXfffReTycSaNWtYvXo1bW1tDAwMcMsttxgR336/3/DT0yut8eZZ2gcp4oD5Ii19STXZ2mc0YpG4Rq5mAcEkICBgOQbS8fHk7smtweSMsnA4zN69e8nKyjIqwHA4zJ133smOHTt48MEHaWxsnPPrzuC4Qoagjnd86lOf4utf/zpf//rX2bJlCwsXLqSnp4eNGzfS0tIy35d33EOfZ/32t7/lhz/8IYWFhciyTG5uLs3NzTQ1NRnzrEgkklIFCIJAdna20RpMF/qok1Yy5tq6KR6Ps3//fkRRnLJ/XopzR0KFd6xIVpKkMe7uFosFQRCIRqNUV1ezcOFCBEHg73//OzfeeCNXXHEF11133Zy1LHVM1kHmqaee4qKLLmLbtm0ZccbcI0NQxzPa29s544wzeO+996isrGR4eBjQDpn8/Hzj7xkcHZFIhMsvv5x///d/Z8WKFYZsOdlvsKura8x+VnZ2dso8S4/LSPYbtNvt45JW8v+fDQJIFg7Mpn/esTByTYdgMMju3btxOp243W62bdvGHXfcgc1mIxKJcNNNN3HBBRfMeQT7ZNzHQQs+/OQnP0k8Huf++++fFYLy+Xz09vZSX18/46/1AURmUfd4RTAY5DOf+Qz/8R//MSaX53gf4B9vcDqdPP3008bfBUGgpKSE888/n/PPPx9InWe9+OKL3HXXXQSDwZR51urVqzGbzUaV1d3dTTQaNaTYOnFZrda0pDUaU/kZ6q4WTqeTtWvXzuocJt11jL5e/e+z8b7TLZf6+/tpbGwkJycHVVXp6OggKyuLyy67jMbGRnbs2MFVV13FFVdcwWWXXTbj7zsetm7dSm1tLTU1NQBceumlPPPMM2MI6rvf/S433XQT995776x83+3bt/PEE0+wdOlS6uvrZ1WefyIhQ1DHGKIo8pnPfIbLL7/ccGQoKSmhp6fHaPFlsmNmFyaTibq6Ourq6vj85z8PpM6z/vu//ztlnqXnZ61cuRJRFPH5fAwODtLW1mZElOuElU7VBmNJIN3hpB/mfX1903a1mA5GX0s6Bd50oMevFxcXs3btWkwmEz6fj+9+97t0dnby7LPPUlVVBWjt7WOByTjIvPXWW3R0dPDJT35yxgQ1MDDApz/9aYqKitixYweXXnopMPcV6wcVGYI6hlBVlS9/+cs0NjZyww03GP//ggsu4LHHHuPmm2/mscceO2a/vCcyrFYrTU1NNDU18dWvfjVlP2vr1q3cfffdtLS0kJ+fP2Y/S4/LGG3iqicVp5tnQSppDQ8PGzL4devWzXssyXgH6GTu/BVFoa2tDa/Xy7Jly8jKykJVVV544QVuu+02rr/+er7whS/M+3NMB0VRuOGGG3j00Udn5esdPHiQj3/849x222187Wtf4+DBg8b3OR6f//GOzAzqGOJvf/sbp59+OitXrjTerHfeeScbNmzg4osv5siRI1RVVfHkk0/OaUx6BpPDRPMsXYiRk5NDMBg02oO6QCBd/HtyvlFDQwNud6pH3vvtTnt4eJiWlhYjfl0QBIaGhrj55pvx+/088MADcz5nOhomcpDx+XwsWbKErCwtpdjj8VBQUMCzzz47rTnUnXfeya5du/jtb39LJBKhqamJp556ymgpZlp9BjIiiQwmD1mWWbt2LeXl5Tz33HMcOnSISy+9lMHBQZqbm3n88cczm/2MVAvJfoOj51knnXQSZrM5xW8wGo0iCAKxWIzS0lIWL16c1iR3pvOsYwVZljlw4IDx3F0uF6qq8txzz3H77bdz8803c9lll8171TBVB5mNGzfyox/9aNoiibfffpuHH36Y6667jsbGRk466SQcDgennXYad9xxx5ylGr8PkRFJZDB5/OQnP6GxsRG/3w/ATTfdxDe/+U0uvfRSrr32Wh555BG++tWvzvNVzj9MJhO1tbXU1tZy+eWXA2PnWbt27UIQBFavXk1zczPl5eU8+OCD3HDDDdTW1hIOh9m1a5dhLZRskjvdedaxxNDQEPv376e8vJz6+noEQaC/v59/+Zd/QRAEXnzxRUpKSib+QscAk3Efn024XC6cTid//etfAfj4xz9OU1MTH/3oRzPkNA1kKqgM6Ozs5Morr+Tb3/42P/7xj/nTn/5EcXExHo8Hi8Uypk2SwdGhz7O2bt3Kz372M/72t7/R0NCAxWIxWoNr166lrKzMmGf5fD4CgQCqqhouDfo8K10VktwqOlZtI0mSaG1tJRKJ0NjYaMSvP/XUU/zoRz/itttu4zOf+cy8E+h84/e//z0vvPACf/rTn/jRj37ElVdeCWTae6OQqaAymByuv/567rnnHmPgPzg4SF5enmEUWlFRQVdX13xe4vsK+hLwW2+9RWNjI0888QROp5O+vj62bdvGm2++yeOPP05nZydVVVWsXbs2ZZ6lWwsdPnw4JfRRr7RGhz4ei0NvYGCA1tZWqqqqWLp0KYIg4PF4+OY3v0lOTg6vvPLKjA1sPyi45JJLOP/887nnnnuM1yRDTtNDhqBOcDz33HMsWLCA5uZmtmzZMt+X84GC3vLSUVJSwnnnncd5550HpM6zXnrpJe6++26CwSBLly41qqxVq1ZhNpuNpWKPx2PkOyUvFc/VfFAURVpaWpBlmaamJux2O4qi8Jvf/Ib777+fO+64g/POOy9z+I6Cy+XC5XIhyzJmsznz+kwTGYI6wfH666/z7LPPsnnzZiMzaNOmTQwPDyNJEhaLhc7OznlVYr1fMdGhNN4867333uPNN9/kN7/5Df/6r/+KyWQy5llr165lxYoVhrXQ8PAwR44cIR6PG1EZut/g6KiMZExmOVcPRUx2tujs7OS6666joqKC11577Zjtbr1fMdc2Th90ZGZQGRjYsmULP/rRj3juuef47Gc/y2c+8xlDJHHSSSfxta99bb4v8YTD6P2sbdu20dLSQl5enkFY+jxrdL6THvqoV1qTcR0HzQ9w3759CIJghCIqisKjjz7Kf/7nf3LPPfdw1llnZaqCDGaCjMw8g6khmaDa2tq49NJLGRoaYs2aNfz6179OK4vO4NhDVVX6+/tT9rOS51lNTU00NzeTm5tLMBg0RBjJ8yz9Izn0UVVVPB4P7e3t1NbWUlxcDMChQ4f4xje+QWNjI3fddRfZ2dlHu7wMMpgMMgSVwfsbw8PDXHXVVbz33nsIgsB//dd/0dDQkMnOSoPkeda2bdvYvn07gUBgzDzLYrEQCASMSiscDmO323G5XAwPD+N2u1m6dClWqxVZlnn44Yf59a9/zX333ceHP/zhOa+aJnIe//GPf8wvf/lLLBYLxcXF/Nd//Zdhn5TB+woZgsrg/Y0rr7yS008/nauuuop4PG5kCGWysyaH5HnWtm3beOeddzCZTKxatcogrbq6Oh555BFqa2spLS0lHo9z2223IYoig4ODrFixgp/97GfHZK9pMs7jr7zyChs2bMDlcvHAAw+wZcsWfv/738/5tWUw68gQVAbvX/h8PiOEMPmuvaGhIZOdNU0kz7O2bdvGK6+8wj/+8Q/q6urYsGEDGzZsYNWqVTzzzDNs3ryZM888E5/Px44dO7Barbz88stzWkFNZEs0Gm+//TZf//rXef311+fsmjKYM2T2oDJ4/+LQoUMUFxfzxS9+kZ07d9Lc3MxPfvITent7WbhwIQClpaX09vbO85W+f6DvZ23cuBFJkvjd737HM888Q0NDgzHPuvvuu2lsbOSll17C4XAY/1aW5Tlv703GeTwZjzzyCOecc86cXlMG84sMQWVwXEKSJN566y1+9rOfsWHDBjZt2sRdd92V8phMdtb0sX79ev72t78Z9jv6ftYPfvCDtI8/3uTSv/71r9m+fTuvvvrqfF9KBnOIjP97BsclKioqqKioYMOGDQBcdNFFvPXWW0Z2FpDJzpoBdEeK4wnl5eV0dHQYfx9v/+7FF1/kjjvu4Nlnn80oSz/gyBBUBsclSktLWbRokTFfeumll1i2bJmRnQVksrM+YFi3bh2tra0cOnSIeDzO7373uzFmrm+//TbXXHMNzz77bObm5ARARiSRwXGLd955x1Dw1dTU8Ktf/QpFUTLZWR9gbN68meuvv95wHv/2t7+d4jz+sY99jF27dhlzyMrKSp599tl5vuoMpoGMii+DucG2bdv48pe/zNatW5FlmfXr1/P73/+eFStWzPelHRPcd999/PKXv0QQBFauXMmvfvUrenp6MvlZGWQweWQIKoO5w3e+8x2i0SiRSISKiopxpcAfNHR1dXHaaaexZ88enE4nF198Meeeey6bN2/mwgsvNKyhVq1alcnPyiCD8TEpgsrMoDKYFm699Vb+8pe/sH37dm688cb5vpxjCkmSiEQiSJJEOBxm4cKFvPzyy1x00UWAtmD8xz/+cZ6vMoMM3v/IEFQG08Lg4CDBYJBAIEA0Gp3vyzlmKC8v51/+5V+orKxk4cKF5Obm0tzcnMnPyiCDOUCGoDKYFq655hp+8IMfcPnll3PTTTfN9+UcM3i9Xp555hkOHTpEd3c3oVCI559/fr4vK4MMPpDILOpmMGX893//N1arlc997nPIsswpp5zCyy+/zEc/+tH5vrQ5x4svvkh1dbXh9H3hhRfy+v/f3t28RBWFcRz/PiRtRShTeqHgipt04WZylwyD/QGWrdQU3BiCyzYlbdKNqzYJtmkxEAol4egm2khK4a6BuC6Mil5kRtpIgvq0mCluFuSV1HHm91mde3iYc1bzcM99zjnz87o/S2Qf6A1KYuvq6mJqagoonDCwuLhYEckJCmXNCwsLrK+v4+6/9me1tbUxOTkJVM7+rNnZWRobGwmC4I9TPgA2Njbo7OwkCAISiQQrKysHP0k50pSgRGJIJBJ0dHTQ0tJCU1MT29vb9Pf3Mzo6ytjYGEEQkMvl6OvrO+yp7qutrS0GBgbIZDJks1nS6TTZbPa3mImJCWpqalheXmZoaKiiloLl/1CZuYjEtpuTx9vb2xkeHqa1tZXNzU3q6upYXV3V+YkCKjMXqQy9vb3U1tb+tlE6n8+TSqVoaGgglUqxtrYGFK7cGBwcJAgCmpubWVpa2tOYfzt5fGflYjSmqqqK6upqcrncnsaTyqQEJXLE9fT0/FFJODIyQjKZJAxDksnkr29EmUyGMAwJw5Dx8XFtJpaSFneJT0RKkJmdB565+8Xi81vgsrt/MrN64IW7N5rZg2I7vTMu5nitwLC7txefbwG4+71IzFwx5qWZVQGfgZOuPx3ZJb1BiZSnU5Gk8xn4eWf7aeB9JO5DsS+uV0CDmV0ws+PAdWDnqa3TQHex3QE8V3KSOLQPSqTMubub2X9NDO6+aWY3gTngGPDQ3d+Y2V3gtbtPAxPAIzNbBvIUkpjIrilBiZSnL2ZWH1ni+1rs/wicjcSdKfbF5u4zwMyOvtuR9nfg6l5+WwS0xCdSrqLLa93A00h/lxVcAr7F/f4kclBUJCFyxJlZGrgMnAC+AHeAJ8Bj4BzwDrjm7nkrbEK6D1wB1oEb7v76MOYt8i9KUCIiUpK0xCciIiVJCUpEREqSEpSIiJQkJSgRESlJPwDFktDSR/aUIwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl8G/WZ/z8zI1mSLd9HbMeOr9zOBU4gDoTQQqGcP9pCS2mg25aWdtt9Qct2oUAp22Xb7tJXt8uv27J9lYUCDaTQIwv8uEogIRwJkPu2Lcn3IUuydR8z8/39oXwnI2l0S7Ziz/v1CiE6RqORNJ95nu/neR6GEAIVFRUVFZVCg53tHVBRUVFRUVFCFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEk+bj1bYTKioqKirZwqTyIDWCUlFRUVEpSFSBUlFRUVEpSFSBUlFRUVEpSFSBUlFRUVEpSFSBUplRfvKTn+D222+f7d1IiYceeghbt27N+PmdnZ14++23c7dDOX79Sy+9FL/73e9mbofOUd555x0sW7ZstndjXqIKVJ5obW2FwWCA0WhEZWUlrrnmGgwODs72bqVFtidoJe67776UT4r5eP188Xd/93d44IEHIm47duwYLr300tnZoajXz/ZYLlu2DNu3b5f+/e6774JhmJjbSktLwfN8xq8zEzz55JO4+OKLU3785s2bcerUqTzukUo8VIHKIy+++CLcbjdGR0exYMEC/MM//ENG2yn0H3w8Znu/Z/v15xKXXHIJdu/eLf179+7dWL58ecxt3d3d0GjSrV7JLYQQiKI4q/ugkiMIIen8UUmRlpYW8sYbb0j/fvnll8mSJUukf7/00ktk3bp1pLS0lDQ1NZEf/ehH0n1ms5kAIL/73e9Ic3Mz2bx5M7n66qvJo48+GvEaq1evJn/+858JIYQcPXqUXH755aSyspLU1dWRf/3XfyWEECIIAvnpT39K2tvbSVVVFbnpppuIzWaLeJ0nn3ySNDc3k+rqavLwww8TQgh55ZVXiFarJRqNhpSUlJA1a9YQQgiZmpoiX/3qV0l9fT1pbGwk999/P+F5nhBCyBNPPEE2bdpE7rrrLlJVVUXuv//+mOPyox/9iHzpS1+asdent337298mZWVlZNmyZeRvf/ubtD/Dw8PkuuuuI5WVlaSjo4P89re/VdxXQgi58cYbyYIFC0hZWRnZvHkzOXr0KCGEkP/+7/8mGo2GaLVaUlJSQq699tqY74Df7yd33nknaWhoIA0NDeTOO+8kfr+fEELIW2+9RRYuXEh+/vOfk9raWlJfX0/+53/+R+FbRcjOnTvJqlWrpH9ffvnlZP369dK/L774YvKXv/wl4vXjHcstW7aQBx54gGzatIkYjUbyqU99ilitVsXXfeqppyJe96qrriJPPPFEzG3/8i//QgghpLe3l3ziE58gVVVVpLq6mtxyyy3E4XBIj/3Zz35GGhsbidFoJEuXLpU+k71795Kuri5SWlpK6urqyHe/+13pOe+//z7p7u4m5eXlZM2aNeStt96S7tuyZQu57777yKZNm4heryc9PT3kiSeeIG1tbcRoNJLW1lbyzDPPkOPHjxOdTkdYliUlJSWkvLxc+nzuvvtu0tzcTOrq6sgdd9xBvF5vxOdDaWlpIY888ghZvXo1KSsrI5///OeJz+dTPG4qcUlJc1SByhPyk5PH4yG33XYbufXWW6X733rrLXL48GEiCAI5dOgQqaurk04s9MR96623ErfbTbxeL9m+fTu54IILpOcfPHiQVFVVkUAgQJxOJ6mvryc///nPic/nI06nk3zwwQeEEEJ++ctfkgsvvJAMDg4Sv99PvvGNb5Cbb7454nVuv/124vV6ycGDB0lRURE5fvw4IST2BE0IITfccAP5xje+QdxuNxkfHycbNmwgjz32GCEkLBAcx5FHH32UhEIh6QcuR0mg8vn69LZf/OIXJBgMkueee46UlZVJIr1582byrW99i/h8PnLgwAFSU1ND3nzzTcXXf/zxx4nT6ZTEZu3atdJ9X/7yl2MEWf4d+OEPf0guvPBCMj4+TiYmJkh3dzd54IEHpO8Cx3Hkhz/8IQkGg+Tll18mBoOB2O32mOPn9XqJTqcjVquVBINBUldXRxobG4nT6SRer5fo9XoyOTkZ8/pKx3LLli2kvb2dnDp1ini9XrJlyxZyzz33xLwmIYRYLBbCMAyx2WxEEARSW1tLvF4vaWpqkm4rKysju3btIoQQ0tPTQ15//XXi9/vJxMQE2bx5M7nzzjsJIYScPHmSNDU1keHhYel70NvbSwghZOPGjeSpp54ihBDicrnI+++/TwghZGhoiFRVVZGXX36ZCIJAXn/9dVJVVUUmJiak99Lc3EyOHj1KQqEQmZqaIqWlpeTkyZOEEEJGRkakC4onnniCXHTRRRHv76677iLXXXcdsdlsxOl0kmuvvZbce++90ucTLVAbNmwgw8PDxGazkeXLl5Pf/OY3isdNJS6qQM0mLS0t0hWaRqMhDQ0N5PDhw3Eff+edd5K77rqLEHL2xN3X1yfd7/P5SEVFBTl9+jQhhJC7776bfOtb3yKEELJt2zaybt06xe0uX748ImIYGRkhGo2GhEIh6XUGBwel+zds2ECeffZZQkjsSW1sbIwUFRVFCM+2bdvIpZdeSggJ//Cbm5sTHhclgcrn6z/xxBOkoaGBiKIY8RpPPfUUGRgYICzLEqfTKd137733ki9/+cuKry/H4XAQAGRqaooQklyg2tvbycsvvyzd9+qrr5KWlhZCSPgEqNfrSSgUku6vra2VTs7RXHzxxeRPf/oTef/998mnPvUpctNNN5FXXnmF7Ny5k6xevVrx9eMJFI14CCHkv/7rv8iVV16p+Jp0e3/961/J/v37yaZNmwghhHzhC1+QbtPr9VJUGM1f/vIX6Tva09NDamtryRtvvEGCwWDE4zZv3kwefPDBmEjuZz/7Gdm6dWvEbVdccQV58sknpffywx/+ULrP7XaT8vJy8sILL8RcKEULlCiKpLi4WBJJQgh57733SGtrKyFEWaCefvpp6d/f//73yR133KH4vlXikpLmqGtQeeSvf/0rpqam4Pf78atf/QpbtmzB2NgYAGDv3r34xCc+gdraWpSXl+Oxxx7D5ORkxPObm5ul/9fr9fjCF76AZ555BqIo4tlnn8Wtt94KABgcHERHR4fiPvT39+Mzn/kMKioqUFFRgRUrVoDjOIyPj0uPqa+vl/6/uLgYbrc77rZCoRAaGhqk7d1xxx2YmJhQ3OdUyffrL1y4EAxztrNKS0sLRkZGMDIygqqqKpSWlkbcNzw8HLMNQRBw7733oqOjA2VlZWhtbQWAmM8sHiMjI2hpaYnZB0p1dXXE2k2i47Blyxa8/fbb2L17N7Zs2YJLL70Uu3btwq5du7Bly5aU9oeS6rEHzq5D7d69G5s3bwYAXHzxxdJtF1xwAXQ6HQBgfHwcN998MxYuXIiysjJs3bpVOlaLFy/GL3/5Szz00EOoq6vDzTffLB2Lxx9/HKdPn8by5cuxYcMGvPTSSwDCn/3zzz8vfe4VFRXYs2cPRkdHpf2Tf/YlJSXYvn07HnvsMTQ0NOCaa67ByZMnFd+X1WqF1+tFV1eXtO1Pf/rTsFqtOTluKpmjCtQMwHEcPvvZz4LjOOzZswcAcMstt+D666/H4OAgpqen8c1vfjMc0sqQn1QB4Mtf/jL+8Ic/4M0330RxcTG6u7sBhH+YJpNJ8bWbm5vxyiuvYGpqSvrj9/uxcOHCpPsd/frNzc3Q6XSYnJyUtuV0OnHs2LG4z8mGXL3+8PBwxLEdGBhAY2MjGhsbYbfb4XK5Iu5TOjbbtm3Djh078Le//Q3T09OwWCwAIG032ftubGxEf39/zD5kQrRAbdmyJalA5eJzoQL1zjvvSAK1efNm6bZLLrlEeux9990HhmFw5MgROJ1OPPPMMxGfwS233II9e/agv78fDMPgnnvuAQAsWbIEzz77LCYmJnDPPffgxhtvhMfjQXNzM2699daI77HH48G9994b9z1eeeWVeOONNzA6Oorly5fj61//uuLjampqYDAYcOzYMWnb09PTqugUAKpAzQCEEOzYsQMOhwMrVqwAALhcLlRVVUGv12Pfvn3Ytm1b0u10d3eDZVncfffdUvQEANdeey1GR0fxy1/+EoFAAC6XC3v37gUAfPOb38T9998vnRytVit27NiR0n4vWLAAFotFckQ1NDTgiiuuwN133w2n0wlRFNHX14ddu3aldTxSJVevPzExgUcffRShUAjPP/88Tpw4gauvvhrNzc3YtGkTfvCDH8Dv9+Pw4cN4/PHHFe3YLpcLOp0O1dXV8Hq9uO+++2L2Nd5FAgB88YtfxMMPPwyr1YrJyUn8+Mc/ztj2vWnTJpw6dQr79u3DBRdcgM7OTvT392Pv3r0RIhG9f/JjmQmXXHIJDhw4gN27d+Oiiy4CAKxevRpmsxlvvfVWxGu7XC4YjUaUl5djeHgYjzzyiHTfqVOnsHPnTgQCAej1ehgMBrBs+FT0zDPPwGq1gmVZVFRUAABYlsXWrVvx4osv4rXXXoMgCPD7/Xj77bcxNDSkuK/j4+PYsWMHPB4PdDodjEaj9BoLFizA0NAQgsGgtP2vf/3r+O53vytF48PDw3jttdcyPlYquUEVqDxy3XXXwWg0oqysDPfffz9+//vfo7OzEwDw61//Gg8++CBKS0vx4x//GJ///OdT2uZtt92GI0eORJzcSktL8cYbb+DFF19EfX09lixZgrfeegsAcOedd+L666/HFVdcgdLSUmzcuFESr2TcdNNNAMLpp/PPPx8A8NRTTyEYDGLlypWorKzEjTfeGJFmySW5ev0LL7wQPT09qKmpwf33348XXngB1dXVAIBnn30WFosFjY2N+MxnPoN//ud/xuWXXx6zjdtuuw0tLS1YuHAhVq5ciY0bN0bc/7WvfQ3Hjx9HRUUFbrjhhpjnP/DAA1i/fj3WrFmD1atX4/zzz4+pm0qVkpISnH/++ejs7ERRURGA8MVLS0sL6urqFJ+jdCzTZenSpaitrUV9fX2EeFxwwQVwOp3YtGmT9Ngf/ehH2L9/P8rLy3HNNdfgs5/9rHRfIBDAvffei5qaGtTX12NiYgI//elPAQCvvvoqOjs7YTQaceedd+K5556DwWBAc3MzduzYgZ/85Ceora1Fc3MzHnnkkbiCK4oifvGLX6CxsRFVVVXYtWsXfvOb3wAAPvnJT6KzsxP19fWoqakBAPzbv/0bFi9ejI0bN6KsrAyXX365WvtUADDRaaUkqOM2ZpmnnnoKv/3tb6VUoUpinnzySfzud79Tj5eKSmGRUs55divqVNLC6/Xi17/+Nf7+7/9+tnelYCCEIBgMQhRFaDQasCwLlmVzuhamoqIyO6gpvnOE1157DbW1tViwYAFuueWW2d6dWUcURXg8Hvj9fgSDQfj9fng8HrhcLhw7dgxOpxMejwehUAiEEAiCEGNCUVFRKWzUFJ/KOQOtjQiFQhBFEe+//z42bdoEnuchiqIUNe3btw8bNmyIqKdgGCZcV8Gy4DguItqiEZcadamozBhqik9lbkDO9FajQgRAEhSGYaToiOO4mPuitwOEa5qi+/QxDKMoXqpwqajMHqpAqRQsNDUnCIIUIckFQxRFnDx5EpOTk9JtBoMBgUAA4+PjKCkpQXFxsWQvpo9REhwqgoIgSPZjCsdxEX9U4VJRmRlUgVIpOKgw8TwvpefkguDxeGA2m+Hz+VBRUYGOjg6IoghCCPx+Pw4ePAifzwebzQav1wtRFKHX6yXBKikpQUlJiRRxAYgrOHLhovtCYVlWiraocKkGDRWV3KEKlErBQAgBz/MRYkCjHwCYnp6GyWRCKBRCW1sbpqenUV9fL6XrWJZFcXExtFqt1IqIbtfv98Pr9cLj8WB4eBherxeCIECn00WIFn0+JZFwUQehknBFR1yqcKmopI8qUCqzDhUmKjRyYSKEwG63w2w2g2VZtLe3S0WiPT09EduIJwAMw8BgMMBgMEgFuvQ5wWAQHo8HHo8HY2Nj8Hg84HkeWq02QrRKSkqkoli6zXjCBYRnUYVCIQCAw+EAy7KorKxUhUtFJQ1UgVKZNWjqTC5M9GRNCMHExATMZjOKi4uxbNmyiKauuYBhGOh0Ouh0OlRVVUXcR4XL6/XCarXCYrEgFApBo9FERFxUuKLXt+Si4/f7JcGlwqXkLFQSLlW8VOYzqkCpzDjUkScIAoBIYRJFEaOjo+jv70dFRQXWrl0Lg8Ew4/tYVFSEoqIiVFZWRtzO87wUcdntdgwODiIQCIBl2ZiIS6/XRwiW6ixUUUkPVaBUZoToGiYgUpgEQcDQ0BCGhoZQW1uLrq4uaXRDpq+Xj5O4RqNBeXk5ysvLI24XBEFa45qensbIyIgUORFCoNfrodFoJOFSnYUqKslRBUolrySqYQKAUCiEgYEBjI2NobGxERdeeGHEXKRUth8NTZ3N5Mma4ziUlpbGpCFFUYTZbAbP83C73RgfH4fP5wMQtsRHGzTkppBMnYXqOpfKXEEVKJW8ILeKHz16FKtWrYo44fr9flgsFthsNixatAgbN26MsH2nAo1Ook++VKAKAZZlJadgQ0ODdLsoilJ7Jo/Hg8nJSfh8vghLvFy4UrXE0yg1GAyqwqVyzqMKlEpOUaphcrlcMTVMLpcLra2tWLp0aUTUkA4Mw0S0OJLfXigCFQ9qiS8uLkZtba10O7XEU4OGw+GIsMRH13LJo810nIVutxt+vx91dXWqcKkULKpAqeSEZDVMTqcTJpMJwWAQbW1t6OzszPokGC+Vdy4IVDzklng50Zb40dFReL3elC3x8r+BsEvR6/UCUJ2FKoWLKlAqWZGsholGAD09PWhvb49xxWVDPCE6lwUqHpla4qMjLmqJV+rQQVGdhSqFgipQKhmRrIbJarXCbDZDr9dDp9Ohq6sr5/tA16CimYsClYh4lvhQKCQ5C202m2SJ5zgODMOA4zjYbDYUFxfHWOLlf8tJ1VlIRUwVLpVsUAVKJWWSWcVFUcTY2BgsFgsqKiqwevVqFBcX47333svL/iSKoFQArVYb1xI/MDAAj8eDqakpDA8PS5Z4g8EQYdCQW+IB1VmoMrOoAqWSlGRW8VzXMKUKNUlQ4Yy+XUUZjuOkuqzm5mbpdkEQ4PP5pMGP0ZZ4+TpXOpZ41VmokimqQKnEJdm4C1rDNDo6isbGRlxwwQURjVYp+axLGh8fx+joKERRlJxxXq8XdrsdVVVVEakrlbMofR4cx8FoNMJoNEbcLooifD6flC60Wq3wer0ghCjWcqVqiQcinYVAuG8h3Z5Go4lIR6qf4/xDFSiVGJKNuwgEArBYLJicnERzczO6u7sT1jCxLAtRFNOuc4qHKIoYHh6GzWaDRqPBeeedJ4mg1+vFqVOn4HK5YLPZpNRVdP+8+S5c6VwwyNs4xbPEezweOBwOeDweiKKYkiVe/jfFbrdLEZ78+0cfqzoL5xeqQKlIJLOKe71emM1mOJ1OtLS0YMmSJSnVMOVKoARBwODgIIaHh7FgwQLU1NSgtbUVOp0OwWBQ6uZgMBjQ3NyMkpIS6Xnx2hDNV+GiVvJskFvia2pqIrYdCASkYz46OgqPxwNBECIs8fSPPOqm35PofVOdhfMTVaBUQAiBx+ORfuhKNUxmsxl+vx9tbW1YuXJlWj/8bNeEeJ6XUokNDQ1SO6SjR48qbjfaPBGvDdF8Fq58toJiGAZ6vR56vT7CEk/XomjENTExAY/HE2GJd7lccLlc0Ol0SbvEy7ebqrNQXec6t1AFah4jt4ofP34cbW1tKCsrk+6nc5gAZFXDRCOodAkGg+jv78fExASamppi2iFlWwc1n4VrpnsVAuHPJZkl3ul0wul0wmq1SlFx9BpX9DFXnYVzF1Wg5iFK4y44jpMcV/IapiVLlkSIViakK1CBQABmsxl2ux2LFi1Cd3e3YjoqX4W6qQrX6OgofD7fOSlcsyFQiaCWeJ1Oh9bWVqmTBs/z0jGPtsRTNyE95gaDIWXhUp2F5waqQM0TktUwsSyL8fFxHD9+HGVlZVINUy6IV1Abjc/ng9lsxtTUVEp9+ma6k0Qi4fL5fHC73XA6nTHCxfM89Ho9KioqCka4Ck2gKISQiChZo9GgrKws5iIp2hI/NjYGv98PADG1XAaDIWVLPBDrLKT3BQIBVFRUSKKlOgvzjypQc5xUapiGh4cxNjaGqqoqnHfeedDr9Tndh2QRlMfjgclkgsfjQVtbG1asWJHSD18ufNFXzjPZSSKRPdvr9WJgYAA+nw+9vb3w+/2SuaCkpARGoxHFxcUxV//5plAFShCElPYrmSWernOla4mX/02h7lCz2YwVK1ZE3Kc6C/OLKlBzlGRW8VAohMHBQYyMjKChoQELFy6UrvBzTTyBcrlc6OvrQzAYRHt7O6qrq3NiviiUVkcsy8JoNKKsrAwcx0njNqhweTyeiIiLYZiYVGG+hKtQBYrWs2WK3BIvJ9oSb7fb4fV6IyzxcuGKtsRTd6Fc0FRnYf5RBWqOoSRM8h+8vIapqalJqmEymUx5674QLSRTU1PS67W3t8c0P01nu+diLz4qXPEiLnnaKl/CVagClQv7uxLJLPG02e7IyIhkiS8qKpIEK95YF/nf0e9DdRZmjypQc4RUapgsFou0vhNdw8RxnGSayDUsy0IQBNjtdphMJnAch46OjpgecekiF6Logs5CFqh4zKRwFapAATPbS1Fuia+urpZuj7bE2+12uN1u7Nu3T7LER483UZ2FuUcVqHOcROMugHAazWQySTVM8dZ3MrWCp7J/Pp8Pp06dQmlpKZYtWxZjMsgUeQul2VyDyjfpCBc1CiQTrkIWqEIg2hJfVFQEr9eL1tZWSbi8Xi9sNhsGBgYULfElJSXQ6XSqszALVIE6R0k07gII9zQzmUwghEg1TIm+0BzHIRAI5Gz/CCEYHx+HxWKBKIpobm5GS0tLzrYPqOM2shEur9eLQCCgClWKCIIgrUtptVpUVFSgoqIi4jFyS7zD4YixxMujrnQs8XTb0c5CatCQr3HRP3MFVaDOIZJZxQkhmJychNlsRlFRUVo1TLmKoOQjNyorK7F27VqMjY1FTHjNFYVukpgtkgkXHWw4MjKCwcFBAMkjrvmOIAhJT/yJLPHRpph0LPHyvylyg4bf78fJkyexatUq6bEPP/wwHnnkkezedAGgCtQ5ADU+OJ1OqYBRLkyiKErRSmlpKTo7O2NcTMnIdg2KNnAdGBhATU1NxMiNbFsdxYMKER2HTtcB5rtAxUMuXHa7HY2NjSgrK4uwZkeP2aDFsEajUXE+1HyB5/mM6wLj1c8ls8TL17gSWeJpFEyL7QHgb3/7W4bvtLBQBaqAkY+7EAQBhw4dQnd3d0wN0+DgIKqrq7OqYco0gopu4Ko0ciNf61tA2BE4ODgIhmHA87z0Iy0uLpZcWPmI3s515Kk9uTW7rq5Oeoz8BOp2uxXnQ8nruHIhXIV6YZGt/V2JRJZ4+XgTuSVer9fHpAt5npfSjwzDwOfzzcg8tplAFagCJJFVnJ6IBwYGpBqmeHOY0iHdCIrnefT392N0dBQLFy6UGrgqQV18uYIQgtHRUZjNZhQXF2PdunXSonEoFILZbAbP87BarbBYLAiFQkm7aM83Ull7incCTUW44qWsst2n2UIQhJyNi0kGdWcWFxfHtcR7PB4MDw/D6/UiGAxCFEX09PTg448/hlarTcuI9Oqrr+LOO++EIAi4/fbbce+990bcHwgEcNttt+Hjjz9GdXU1tm/fLplFbr/9duzfvx88z+O2227DD37wg5wdB0AVqIIimVVcFEWcPn0aVqsVCxcuxMaNG+OKQrqkGuVEN3BNNguKbjt6gTcTRFHE6Ogo+vv7UVVVhZaWFskmTGtNtFqtNO21sbExYr/pD3t8fBwejwc8z0tRljwayNUxLWSyEYNUhIt2K09HuPIRpeSKmRSoeMSzxFutVjgcDtTU1MDhcGDPnj04duwY1q1bh8rKSqxevRr/+Z//qfh5C4KAb3/723jjjTfQ1NSEDRs24Prrr8fKlSulxzz++OOorKxEb28vnnvuOdxzzz3Yvn07nn/+eQQCARw5cgRerxcrV67EF7/4RbS2tubsPc/9X+I5QDKrOK1h8nq9KCkpweLFi3P+Q04WQfn9flgslqQNXJXINsUniiJGRkYwMDCA6upqaX1rZGQkrvMwOlWk1EWbrl1FX5EKghDRXYAK12yfoHJJPqKVbIUr2pJdSBSCQMWD9nqsrKzEt771LXR1dWH79u347W9/C5vNBpPJFPe47tu3D4sXL0Z7ezsA4Oabb8aOHTsiBGrHjh146KGHAAA33ngjvvOd70jfH3qh5/P5UFRUlHVj6WhUgZpFklnFXS4XzGYzvF4v2tra4HA40NjYmJcfcTwRoQ1cp6en0draimXLlqX9+qk2i41Gbryoq6vD+vXrI9aTsu0kwTAMdDoddDpdzNwieSplcHAwYg2AihZdAyjUq/5EzGQ6LVXhGhsbg8vlwocffphVqjAfFLJAyS3wQHhdllrgq6urI6KtaIaHh9Hc3Cz9u6mpCXv37o37GI1Gg/LycthsNtx4443YsWMHGhoa4PV68R//8R8Zd4WJhypQs4DSuAv5yULeCqitrQ1VVVVgGAZmszmno9PlREdQ8gau7e3tKTdwVSJdF5/c/BHPeEG3m486qETdBWg/N7fbjcnJScl1pWTTLnThmu1oJVq4aEPdzs7OrFKF+aCQBSoUCkWI//T0dEyNVj7Yt28fOI7DyMgIHA4HNm/ejMsvv1yKxnKBKlAzRDo1TFqtVrEVEBWRfPxQaASVbQPXRNtOhtwRWF9fn9B4Qbc7k4W68fq5iaIIv98Pt9sdc0KlLiuDwYDy8vKCqS8qREMCXYNKFnF5vV643e4ZFa5CFqjoCCodgVq4cKFUCwcAQ0NDWLhwoeJjmpqawPM8pqenUV1djW3btuHTn/40tFot6urqcNFFF+G1HJk3AAAgAElEQVSjjz5SBepcItm4C0KIVNhaWlqKlStXxhRYUvLZL4+O2j59+nRW03OVSCZQPM9HdFZPJkyUQmkWKx+eJ4cWxg4ODsLv96Ovr09xwKHRaJzx9ZdCFqh4yIWrtrY24nnyyJbWEwGQRmzQlGymwpWvJra5IBQKxQjUsmXLUnruhg0b0NPTA7PZjIULF+K5557Dtm3bIh5z/fXX4/e//z26u7vxwgsv4JOf/CQYhsGiRYuwc+dO3HrrrfB4PPjggw9w11135fS9qQKVJ5KNu6DrK4ODgynPYcq1QBFCpAauGo0GOp0OXV1dOds+JZ5AUbt8KlZ1JQq9kwQtjC0tLY0Yt5FopLx8fUupCWmuUOrOPdtk6uKTXyDEEy55ISyAiLVE+txCFaBkZBNBaTQa/OpXv8KVV14JQRDw1a9+FZ2dnXjwwQexfv16XH/99fja176GW2+9FYsXL0ZVVRWee+45AMC3v/1tfOUrX0FnZycIIfjKV76CNWvW5PS9qQKVY5KNu6DRAk1jRS/8JyJXAkXTiSaTCQaDAStWrIDRaMR7772X9baViBaoUCiEgYEBjI2NoampCRs3bswofVIoEVS6xOssIO/lFt2EVC5auSo+nisCFY90hUvewUFeCFvowqUUQaWzBnX11Vfj6quvjrjtxz/+sfT/er0ezz//fMzzjEaj4u25RBWoHJGshkleP5RpDRPHcTGD0dLdx/HxcZjNZpSWluZ0rHsi6FpRKBSCxWLBxMQEmpub07KqK3GuClQ84vVy43k+In1Fi481Gk2McKVafHwupvhyRTzhoh0cqHDJTTB+vx8mk6kghUveSQKYOZPETKAKVJZQYfJ6vTh16hTWrFkT8cX1+XywWCxwOBxp1w9Fo9FoMoqg5AWulZWVeRnrngie5+F0OrFv376sj4EcuRDN5XEb1NobbZoJhUKSMSNe8TH9E30xVIjHZ7YLdeUdHKIjrg8//BClpaUxwlUIEVf0+tj09HRO15BnE1WgMiS6hkmj0UhD5ADA7XbDZDJJM2SWL1+e9RVruik+URQxNDSEwcHBmAauMwGd3mu1WsGybM6EiTLfx21otVpUVlYmLD4eHR2VJsTKi4+paaeQnGmzLVDxEEURWq0WtbW1KUdcsylcTqdTjaDmI9QqrlTDRBfsaQ2TIAhoa2vLiU2bkqpA8TyPoaGhhA1c45GL1I/f74fZbIbD4UBraytaWlpw5MiRnP9AC90kMRukWnwcCARw6NChiOJjuWlgNoSiUAUqnsU8XsQ128IVCoXUZrHziVSs4jabDR6PB2azGe3t7Xm5gkm2BiU3HzQ2NqbtiqNmhkyvqmmefmpqCm1tbVLUKD9uuYQKEc/zGB0dhV6vh9FonNcCFY/o4uPx8XGsX78+pvjYZrNFnEzla1z5Loo91wQqHukIl8/ngyiKGQtX9Jyqufa9VwUqAfJxF9SWGy1M1HRgNBqh1+tx3nnn5W1/NBqNYu85uQGjubk5Y1dcpoXAPp8PJpMJTqdTcax8vsZtCIIAl8uFvXv3oqamRmoNFQgEpNeTn2ALKZ1VKCQrPqbCFV18nI/hhqIoFmSj3lwV6SYTLlqATC8SqHDR4200GmEwGCL2JdpiLn+tuUDhfRsKgFRqmGjz0srKSqxbtw4GgwHvvfdeXt1R0Sm+bBq4KpGukHi9XphMJrjdbrS3t2PlypWK7z3XEQ0d9TEyMgKWZbFx48aIlOv09DSGh4dRXV0tNYH1eDxSOouKFv3BF+JV+2yTyKIdPU5eqfiYDjdM57dQiLVZQP67SCQaryG3w0fPhaLmF3q+4jgOfr9/zqT3AFWgIkhmFZfXMC1YsCCmhinbFFkyqEB5vV6YzWY4nc6MG7gm2n4yPB6P1BWhvb0dnZ2dCV8/VycdeWFvU1MTzj//fJw+fRoajQaiKEY4+liWRVVVVcw6jFIvPQARV6mZnFznC/HGyScrPpYf23jFx4Vm2qDMVpujeNGt/Htss9ng9/tx4MAB/OIXv4DD4YDb7ca2bdvQ2dmJZcuWJXTsZjoL6g9/+EPESPnDhw9j//79WLduXU6PgSpQSD7ugqbQxsfHE9YwaTQaaaprPggGg7BarVIqLV7EkinJIii3242+vj74/X50dHTk1ACSiGhhoilMv9+flkkiUTqLnlydTqd0cuU4LqJNjtFoVKfzxiFe8bEgCBERgLz4OLprxlxZg8o38u8xHfW+ePFiPP3009i5cyceffRRDA0N4bXXXsPg4CDefPPNnM+C+tKXvoQvfelLAIAjR47ghhtuyLk4AfNcoJKNu5C70Zqbm7Fp06aEPyAqULkOsZ1OJ0wmE3w+H/R6PTZs2JAXYYgXQdEGsqFQCO3t7VJ39XwTT5gouSrUTRQVyM0D/f39MdN56Qm2ENdOCgGO4xIWH9NODhaLRTrONputoCYfF5pAyZEX6XIch/LycixduhT/9E//lPS52c6Cojz77LO4+eabc/iuzjIvf1XJxl243W6YzWa43e4IN1oyqEDliqmpKfT19QEA2tvbodfrceLEibyJQ3QE5XQ60dfXB0EQJGGaCaJ79MUzfeS7k0S8k6u8QHZsbAxut1uqM5JHW4XUbaDQUCo+Pn36NKqrq8GybEbFx/niXBEoIHIWVDKymQUlz0Bs374dO3bsyOZtxGXeCFSycRdAuALbZDJJkUK6KaxcCFR0A9fFixdLP+JQKJRTAYyGZVkIgoDp6Wn09fWBEIKOjo4ZK/pLVZjk+xtPiPJpt41XIEvrjNxut7SgTb93er0eGo0mp663uYYgCCgqKkJpaWnMsZVfFMQrPs7X5GNBEGY9iotHdMZmptsc7d27F8XFxVi1alVetj/nBYrWMNntdimFE20Vp4LAcVxWNUzZNHMlhMBqtcJsNkc0cM3V9lMhGAyip6cHer1ecR5VvpCP20hFmCiF1Isv0ZBDs9ksnWCjXW/R61vzWbjiufgYhkFRUZGi6UVefDw0NBTh1sxV8XGhR1CZDivMZhYU5bnnnsMXv/jFLN9FfOa0QAmCgFAoBEIIjh49iu7u7pgaJovFguLiYkVBSJdMIih5LVVZWVnCBq6Zjk5Pht1uR19fHwKBABoaGtDR0ZHz11BC7orMpKt5ok4ShQI9uRoMBmncBnDW9eZ2u+FwODA0NIRAICBFWfL1rUK9es816c5cSmXyMXW6RXdySGc+VKELlPz7MVOzoIDwBcUf//hHvPPOO7l7Q1HMaYGi0C8gPaHRGqaKigqsXbsWBoMhJ6+TjkDNdgNXGjn29fWhqKgIy5cvh91uz+sPkS6uRkdM3d3d82rcBpB45IZ8Mq/b7ZbWYKI7lxfqSTNTcuXiS2TPpp0c0ik+LnSBku/bTM2CAoDdu3ejubk5pxN0Y/Yxb1suAFiWjbiaNpvNGBkZQW1tbV4ap9KGsYkQBEEaVFhbW5vWPKhcQNsy9fX1wWAwREzwnZ6ezlsKkWVZhEIhDA8Pp53Ki0e8DubngkDFQ6PRoKKiIuIkI28A63a7IwqPM4kICpV828wTdSv3+Xxwu92KxcdutxtGoxFarbbg6uOUIqiZmAUFAJdeeik++OCDNPc4Pea0QAHhdZWBgQHJDZRuf7p0SBRByaOG+vr6tBq45gL5kEK6qCnPXQNnRSTXCIKAQCCAffv25USYknEuC5QSiRrA+v3+iIhLHhHII65CO7EqMVt1UPJiYjk0DXvixAmpjiu6+Hi21w/n8iwoYI4LFCEEBw4cQGNjI2pra9HQ0JBXa6qSQGXbwFWJdNopUfOFyWSC0WhMusaVy555giBgYGBAaknU1dWVs3RqIuaaQMVDnspSakfkdrsjujrQ4lg6biMYDBZU4XGhFerSNKxWq0V7e7t0QSkvPpavH8qPr7xrRj6JbhY7l2ZBAXNcoGifNkIInE5nXi3aQKRABYNBaRZSNg1co6FOvmQiF22+SGWtLVcuQUEQJPMDFeXDhw/P2BXmfBGoeMQrPKaDNV0uFwRBwLFjxyIKj+UR12wUHhfilF8gdg0qleLjycnJnEw+TgX5MZtLs6CAOS5QcrRabV7SV3Jot/ETJ07A4XCgpaUFixcvzulVYTKBIoRgbGwMZrMZFRUVaZkvaB1UplBhonZVebSYr47mhBBMTEzAZDKBYRjJUhwKhQp6cXs2oCPlS0pKMDY2JnXel69vyWuMZmNOVCEKVKruwkSTj+nxlRcfa7XaGOHK9sJgLs2CAuaBQNGraa1Wm9cIyuv1oq+vD1NTU2hqasrJBF0l4kU5oihibGwMFosFVVVVOP/889N2BXIcl5GIREdMSr0K41nCM4WuqXm9XkxMTKCzsxMApC7bwWAQBw4ckIwE0R3MC/FEOFNERypFRUUoKipSLDym61vUqg1A0Zgxn49nMrRaraLxJZXi40SOzejPcS5mDea8QFE0Gk1eIig62t3n86G1tRUulyui3iXXRAuU3DZfXV2dlTsx3RSfUiov3hVgLiMom82G3t5eFBcXw2AwYNWqVVKHEJ1Oh8rKSkxMTEgD+eTW4vHxccmhJT/JzqdGsKmk0uQ1RtGNdenxjHa8pdq1XCVx8XEwGJSEK3pUjPwYa7XauC3A5grzRqC0Wi08Hk/Otkf71PE8H9FAlfbOyxd0nUsURQwPD2NgYCBndvVURUQuTA0NDSkZP3IhUHa7Hb29vdDpdJIL8b333ot5XLT9XMlanKgRrFy05mK9UTZrPXIhqqurk26XFx7Lu5bTwmN5Kmu+FB5ngtyxmaj42G63w+12w+/348iRI9i7dy8YhpEyRamkCjMdtQGEx2vccccdcDqdYFkWH374YV7qOOe8QNEfYq4auTocDphMJgDhBq4z7ZhhWRajo6M4fvw46urqcmpXTxZBZSJM8v3OVKCmpqbQ29sLjUYTUbclJ/qEmyzdEW+hO97V61xKE+bDjBCv8Jiuvyg1f41urFuIFEraTKn42OVyYXBwEK2trbBYLHj77bcxPj6OjRs3AgCWL1+Op556SnH9LJtRGzzPY+vWrXj66aexdu1a2Gy2vF10zHmBomRjkpD369NqtViyZEnMiS3fCIKAoaEhjIyMoLq6Oi91VPFEhL720NBQ2sIk33a6P/bp6Wn09vaCYRgsXbp0Ro55vLQLLeSkJ9p00oSFcpKjzKRbTqvVorLMgWrjaTB1IQjchRCZmogLgcHBQWke15EjRwqq8LiQjTbUaFFcXIzrrrsOS5cuxfT0NLZv345QKASLxRL32GUzauP111/HmjVrsHbtWgCIiPRyzZwXKPpDzESgUmngGu95uZwiSwt8Gxoa0NLSAoPBkJcrlmiByoUwxdt2IlwuF3p6ekAIiejmng65PAHL04RyUk0T5sO9mA0zJlAkBA3/EjhhN4CwSHPCW+A1V4HRXR6RxhJFER9//DE6OjoUWxFFF8bqdLoZeQ+FLlDRRbr0t0IvpOORzaiN06dPg2EYXHnllbBarbj55ptTmj+VCXNeoCjppPioVdtisSRt4BrvdbIVEPnoCbkBYWBgIG/tiGiKL5fCRElFoNxuN3p7exEKhbB48eKU06c0QpGfeGciakk1TehwOCTXYSGkCTMRqLSfQwg0/PPghH1RdwjQ8C+BMGUQuQukW+m493itiOSFx8PDwxGFsfL1rVwbXc4lgUpnFlS2r7tnzx58+OGHKC4uxmWXXYauri5cdtllOX+tOS9Q8ggqmUDJHXFVVVUZNXDNVqB4nkd/fz/GxsYU2wJxHJe3ei5RFBEMBvHBBx+gvr4+p22hEtnMPR6PNEqeNqVMZ7uFRnSacHBwEBzHoaKiIuM0YS5JR2yCwgSsgR3w8ifAsaWoKvoUyrUXJX0+J+xSEKezaEPbEWQWgLAtABJ3kUhUeBw9lVcpgi0uLs74e3wuCdRMjdpoamrCJZdcIq2FXX311di/f78qUNmQqLtALhu4ZmrGCIVC6O/vx/j4eMLOE6k0pE0XecRECMlLv0KlCIrWjnm9XnR0dKQ9IBI4N0ZuAJmnCeXRQa5OlKkKlE+wYMj7XyAk/H3mRScm/H9CQBhCnf4LcbfBiEPQ8MkmrArQhv6EYNF3gTOfYbprTfEKY+UR7MjISEzhMT2mqRQe08iuEOF5PuICOh2BymbUxpVXXol///d/h9frRVFREXbt2oXvfve7OX1vlHkjUErko4FrugIVDAbR39+PiYkJLFq0CN3d3Ql/NLkcWiiKIoaGhjA4OChFTPv27ctLmxu5QPl8PphMJrhcLnR0dKCmpiZjQYl34VFoxoR4ZOomTLVINiD6YPEdg09wYaF+CWq0C1MSqJDowKj3cUmc5EyH9kLPLUJ50abYJxICDf8n0DWnRDBkAKx4ECJ3Xk778MUzulCbttvtloq8AcQ4NOWNdaPHWRQSShFUqrOgshm1UVlZie9973vYsGEDGIbB1VdfjWuuuSYv73HOC5SS/Zim0cbHx2Na8mQLx3EpCVQwGITZbIbNZktJmOTbz1aglIQp373XWJZFIBDA8ePHMT09jfb2dqxcuTLrSIcKVKFFTNmSzE0YPZ1XKU1oD41hl/0F8CScEu7xHsQK4wVYRFYnPF6EiBj1PQGeuOM+xhrYgWLNUmjZmojbWfEjsKI55fep4V9EkF01I6M2lGZEJRq1Qbub064ahVZ4nG0n82xGbWzduhVbt25Nc4/TZ84LlByGYXDq1CnYbDY0NzenLArpoNFoEgpIIBCA2WyG3W5Ha2srlixZktY+ZCNQsyFMQPg9j42Nwe12Y/ny5VixYkXOfuhUoKKPYSGdSDKFEAJHyAVrcBqLDHUwcLqU04RuYQqm0vdBNCI0Gg4cp4GG43DCvQ+ChkDP1MZ5VcAZ2ge/MBj3fgAQSRAT/j9jYfE3ZDscgoZ/Ma33yBA7WPEARHF5wY3aoNGr3+/HiRMnpMLj6ELu2WisC8z9URvAPBAohmHg9/thNpvh8XhQX1+fF2GixEvx0X1wOBxoa2vDsmXLMjqJZiJQ0cKULJWZq4hEHiVWVlaisrIS9fX1WW9XDk0dRqdhzpUUXzwIIXht8kPsnz4NACjm9Ph07QVYblwU89joNKFIBLxhewaGkA48z4PnBYRCPgiCAEKAj5g3scxzCaqsVbHTY4kfk4GXU9pHD38CfmEIeq4pvB/C+2CIM+33quH3QBSXFtyojbKyMrhcLpSVlUkGAnnjV3rRFd0/jxoz8p0aVAVqDkAIwfHjx9HY2IhQKISampq8/hCie/75fD6YzWZMT0+jra0t6yay6QiUXJgWLFiQ0hpbvBN+OtAiwYmJCbS0tGDJkiWwWq1wuVwZbzMe1CRBa2Zot+5CYNTngp7TpC2WhBC8Yt2Hg84e6Tav4Mefx97BbQuvQJMhfvQDAH2+w3DydjAMC622CJEfeThdNSaeQqOrJSalxZbvA6+zQ8NpwKTwO3EE/4YGw98BhAcn7EzrfVIYMgCWDIBlC6+bhCAIEYapeI1flQqP892BRGnc+1yaBQXMA4FiGAZdXV3hdInDMSMjN3w+H7xeL0wmE9xuN9ra2nKW1krFhJGJMFGoAGYiUHKLfPS6Wj7GbdATw8GDB1FWVga9Xo+RkRG43W54vV4cOXJEMhREL37nE14U8dLwCewcD/dlrBI1+LuFa1J+/knPQIQ4nYXgxYn38LXmq1HEKn+eAdGH4+73E2ydAcuy8OgmYWzSoL1oNYDwidjltmIw8DH4YAg+wSetC3Gc5kyaMJwqlB9Dd+gQgkUT0MMEhkyl/B6j0eEDsOzlGT8/X/A8n3SOWqL+efJGxUqFx1S8Mik8jk5tz7VZUMA8ECg5MzETiud5jI2NwWazob29HZ2dnTk9KSaKoOQNZNMVJkomQkKLikdGRuKu7eVaoGjjWL/fj1WrVqGyshKhUEh63b1796K9vT2m67a8uJP+iV5DCPA8Ttgm0VFZhdIMyg2e6z+EfbazazjDATeeHTuOf2xogJZNLPwhkcebk/vj3u8IufC27RCuqF2veP8J914ExUBK+3nM/T7qqsIpQ47jIOqPQMdw0OFsBEpEEbxA04T+M2lCIomVRsNhgryJdr0ppdeMh449Ao69JKtt5INssgmJGhXT1k7RE3nlZQW0Y3mqzLVZUMA8ESi6kJ6rhrFK0LEbLpcLer0eXV1deblaV9pmLoSJkk4KUT6gsKmpCd3d3XF/zLkSqOnpafT09IDjOKxcuRImk0mxmJplWRQXF8d03abFnXT0Rl9fX0SNzCAfxJ/7LSAMA2NREb64chXW1NbFbD8eJ53WCHGimH3TeGXkNK5vWpHw+e85jsHJJ+66f8DZg4sqO1GiibyyD4g+mH1HUtxTBpPBEUyFrKjQ1kIkIUwFd8c+imWhZWPThIIgQhB48DwPW+A1VPkIWDDgNGEzBqfRgOO4NNLpPEqKegEsT/HxM0Mq06vTJV5jXfl3k7ZYix5sSP+OPq7n+pprPOaFQFHyEUG5XC709fUhGAyio6MDOp1OanCab+TClKvO5qkICU0hDgwMxB1QqLTdbH5EbrcbPT09EEURS5YskYoz5XVQR4cncHLMhsV1YWu2ktlDqbiT1sgM2Cbxx5NH4Q0EIQgCphngP999B3/fuRrtNbVJW+kEBB7bLYfi3r97woRLF7ShTKvcncQvBLFv6mTSYyEQAR9Nn8aW6rURt5t9R8Er1C1FI/8YTL7DOF97GVyhjxPayiNhzkRQHIqKdGDFSXDaCpSypRAEATzPIxgMQuB5iISAZWKFS6n8o6ToGIBrU9yHmUEQhBkzb6RSeExr4gRBQCAQgMlkwuDgIIxGIxiGSfm8k+moDYvFghUrVkj1Vhs3bsRjjz2WmwOgwLwQKHm7I1qcly3yeVAdHR1SvUogEMhbrzwKIQSDg4M5FSZKOinEVISJkkj4QrwA65QHDdWlMT8wr9crpfKWLFkSswhMTRK7Tlvw14+PgwDYax7C8hIO56coiAzDQKfX469Dg+B0OpSeSZMQQiDwAl4ZHsTnCaRWOnRUBP1DOxK8a+2HLRj/+xUUBbw+2osbF61SvP+Qqw8hktoF1P7p0+iuXCmtRYlEQJ/3YErPBQjoYe73ncCqkosxFXonxedGEwTgxpQAlHFl0Gg0Md8JURQh8AJ4gUfI74fA8yAAOJYNC5dGEx7Ix5kB4gKYUsVXmg0KodWRUk2c3+/H8ePHUVZWhlOnTuHVV19Ff38/1q9fj2XLlmHVqlX4/ve/r/j7zGbUBgB0dHTg4MFUv2vZMS8EipKLFN/09DT6+vpACFGcB5VqoW4mUIHweDzw+/0zNnJDFEWMjo7CYrFIgqjRaOCY8qKqMrWvULyWRB8eH8Sf3z4MUQQu7erApzcuk0oD+vr64HK5sHjx4rhtkBiGwZDDiR37T4YjgzMP+XDUgS0TdixtSOx4oxyaGMeQO9IizTAMNFoNxvkQ7MZibFy6NMKxReuOvF4vRELwv/4B+CCcOelyYBlW2h/Ku1YLLqvvQGVRZHpOJCI+mjqV0r4CgE8M4IjLjK7ypQCAIX8PvEKqEdBZeBKCybcHrDiS9nMBgCV2AARu0Q2e8NAwsd8HlmXBFrHQQvZdJYAgChD4cJowGAiAEILx8T/CTzZFdMuYzUnHhSBQSlBre01NDb7xjW/g+uuvx3e+8x289NJL6OnpwfHjx+PudzajNmaaeSFQ2YzcoExNTUnTchONgMhlKyIKbWLb39+Puro6GI1GdHR0pJ16GOybQGlFMSqq448Mke8/IUQSpurqamzYsAFFRUWYnvZhx4sfwmy2Yssly7D54qXguMT7oiR8tmkP/vedY6A3v/1xH0BEtFWxsNvt6OjoSNptgmEYvH4itnMBIcCzHx7F/ddugSbJcSKE4M3+xN0PXjH14cKGhXEdW4fsIwieHgbLE4RCIfh8PhBRPGPVJuBYDjzHgWg0+GByAFc1Rrak6fUOY5pPT2COuEySQJl9R1N/IgHkytnn3YMlGQ1DFQHiOLNJApfgQqUmRZszg7NpwjN7w3EcllQ5YQ8ulNoRyaNWubllJuqMgMIVqHg1UFqtFitXrowQm2iyGbUBAGazGeeddx7Kysrw8MMPY/Pmzbl8axHMC4GiZCJQDocDfX194R9PCoMKc7n29P9+9yZ6D5tQtqgYF/2fCySBcDgcaefGhy2T+MP/fRMCL2D9lmW48qYNio9jWRaCIGBsbAwmkwlVVVXo6uqKcAe98OePMDAQ/rK+9fZJ8LyIyy+L/4Og25ULFCEEz795GMFQWAxFIsLn9eKvOz/GXV+4GN3d3Skdy2GnF6fH7bGRJANMewM4NDiGrpbGhNvom3Kg3zmd8DF2vw8nbJNYWaMcke22WqDRcNBoOMh9VKJI4PV6pXUuXhDwsnM/mmxBlJaWSlHCR1Onk77XaEb8k7CHXNCxBBPBxJ0f5EReBwuYDA2jpciAojQveBjiAnD2YswpOlGJzOpwwprJgMMAykoZlJVFfmbyqHVoaEjqTUiNMKn2JkyXfLdgypREs6DySUNDAwYGBlBdXY2PP/4YN9xwA44dO5a3YaLzSqDSSfHZ7Xb09fVBq9Vi2bJlMY6bfCKKIg68ewivb9uJIq0OxUPFuPqmSinVQaOcVNN77mkf/vibt8CfEYMP3z6FVetbsbAt8mRL6zZGRkZQU1OD888/P8Yh198/KYkTZe8+E7o3dqCkJL7FNVqg+sccMI/YQUi4F5o/EIDBYEB5SSVOj3qwYklqJ5m9Q1aQOI1JCQje6RnA+YsaEp603hqwpPRa7w4PKgrUuN+NHtek4nNYlpFMAXo9XdsCsKACBlIUThkPW3AwdBJgAI1Uc6QBp+HAJjnZHndZUFWU2PUXy9k1KJ44QYgIG8+jIc1UGnMmeqJ4RA8EIoBjMog4CDkT0xGw4jGI3MaIu5P1JlTqo5erNGEhts3KZhZUNqM2aAYBALq6utDR0YHTp09j/XrlsodsmRcCRbLjlYQAACAASURBVL9gydJvdLR7X18fdDpdyhN0420r3S82TeVZzBa8/9QBVJRXSNX8bzy9C1964HMpvY9ojuwzweOOrI15868HcOtdn5JccJOTk1IKs6mpScpPR/POntgC0mCQx553e3DlFcqL/0Csi++jE4Pw+bzw+fzQG/SorKiUjteHxwdx2YYlMBoS13S4fAH0O1zQKAg1c+Z0N2ifhsU2hbYa5St7byiEY5PWhK9DOWq1wuH3ozJKtPfbh1N6vrRvDHDIM4mtbedhwYIFsE2dQMVkOUSRSC64QMAP3num5ojlwGk4SbxYlpME5qjLjEWG1PZfCV4Mi4wtlK5ABQFECiMBgUt0oYJLv1iURlAAwAlHYgRKCXmdkbyUQN6bUD4narbShPkgmzZH2YzasFqtqKqqAsdxMJlM6OnpiXuuyAXzQqAo8QSDnqBNJhMMBgM6OzuzapeTbrsg+RpTbW0tFpQ2wmvfG9FqpveABaZD/Whf25K2QB37yBJz20DvBE4fHkRNUwl6e3tRXFyMNWvWwG63x932+Pg0enrHFe/78CMzNnUvRmmp8mIGPSaiKKJ/YBA7PzgKVqNFZWUFGCYyhRLiRbxz0IyruhPXxBwcHA2f2JQCKObs7e+cHogrUIcmxiGkuPgrguCDkSFc1b5Yuo0Qgv329A0GBx0juGnRaug4DY65LADC0RbLaqDVnv1ZEhL+fvA8L1mLBVEAAwYaDQcnNw2WuFCh08Ycx3iQM2tQBEEIJNzZwCkICIpiymm+cPQUe9xcQmYCdTaCAljxFEACAJNZ0WmyESZut1tqR0QIgcFgiBCumeo4kg3ZzILKZtTG7t278eCDD0Kr1YJlWTz22GNpDRhNl3khUImEyWq1wmQywWg0pjXaPRE0lZhMoKKFia4x7dy2R/Hxu1/4AO1rW9JKVVpHpzE25Ii5PRQK4i9P78RVt56HVatWSYI8NTUVd53u2PH4J+JQSMDH+/tx6Zb482gCgQA++OADTHpZlJSWhV1ucfj45BCuvHAZWDb+iWJ//ygAnE3xRT2U3n5sZAL+EA+9NvbrfmBiLO72lTgwPhYhUCM+J8b96fcYDIoCTjitaC4pwWjAFvdxDANwHAuOi4xuxDMW+GneiglfAGzAL7W+0ZyJtrgz7YliDgzC0T0vRrYmsvM86lOKoggYorxm5xbdEImY8LNV3iKkCArgwYonIXJrEzwjfTJJEwaDQTgcjrS7OuSbbGZBAZmP2vjc5z6Hz33ucxnscWbMC4GSwzAMBEGQIqaysjKsXbs2ab+tdKACEq/tCLVt9/f3o6amRhImiulQv+LzBk4MwT3lSSuCOvZRpDuNdmNmWQYsU4K2RYsjosVE244XPVGOHx+OESh6EUA7NmzcuBHPvHYw6QnM5QnAMmpH+8JqxfsdHh9MVnv8qa6ykzIvijgxasV5ixoiHuMJBXHKFl8clBj1uGH1elF75kImk+iJcnRqDC6SWYqJZRgwGg14MQg3o0F5eTEAcibaEiAIPALeIEQx/FnKWxPR9DMfJTJTvID6FPSJIR6EU3yxiBDhET0o5dJbs41OibPi8ZwLlBKJ0oROpxNTU1MFmSacD53MgXkmUISEc/x79+5FRUUF1q1bl1NhosSLcKKFSWm0vM/tx0if8lU9IcDJvb2oXGxMWaBO7B8AAPB8WJgAJqL/3IkDA7jwk2fb78QrqHW5/RgZSdwMdHzCCavVhdra8MnJZrOht7cXJSUlWLduHQ4cOACW08A0bE9p34/2jcUVqIMDo9L/E0IgknAaTMNpzgYMsgzUkaGJGIE6NDEBMYXJr9Ecto7jspa2cHrPkY1AjcPLZt7ZJEh8ECHCLQABQYSOY8GyHIqKOACy79WZ7z0v8AgGQwgGgwDrB6vzgGFYMAzAMCymhLOdHxLBIPH3wC260xYoeYoPAFjxRPgLP0upNtqz0WAwYOnSpdLthZImVAVqjjEyMgKLxQJRFNHZ2ZnXtvTRUYhcmKqrqxWFiWI5MoBESyIn3j+Nzcs2pCRQbqcP4yP2M8JEzgxXi0xTnNjfHyFQ8SKo3t6JpK8HAMeOD2Pd2nr09PSgqKgoIn0IAOYRO3ghtZ58R/pGcd1m5TqoE6NnjQHBQBBerxcaLjwskoCAiOErcm2RFhpOgxOjVgR5AUWas1e7h62JI8J4HJ4IC9So3wVbIF0H3VmmQj70uZ0o12V2Be4Tzr62LSSgMV4t2plWQ5xGA50uvNZFODcIGx4FIooEIhEg8ATDU1OoOFNorNFowHGaM2lW+hkIQJKZT27RnbZJKDLFBzDECYYMgTDNcZ+Tb5RqoOKlCWnz10RuwlymCVWBmmOEQiF0dXWht7c373UNNIJKR5gofXHSexTLsUFc6F0H1pj4Pbjdbrz1+l643W6UlJTE/WEMmScxbfegvCosIvEiqGTpPQDgBR5vvX0QZaVLsXz5ckVrfs9g6o4zpycAy6gDbY2Ri7AhXkDfhB1+nx8+rw9arRaVlZURLkGXywWWY8OOOH8ATpeA/931LtY018NoNEJXbMDpNNN7FPP0FJyBAI5NZSZwFI/gA+/nMxIoQgC/eFag7EEejfpUT34EIlxgEO7dJp2DOSBUpEWxNvz9DQVD8Al+iKIAhgmvbem0Hmi5sEkjZmnrDEESRJAEoUvH5BAVQQHhNJ/AFpZAKcEwjNSBPFU3obz5ayZpQiWBmmuzoIB5IlAMw6C1tVXqaJ7vkRscx8FqtaK3tzdlYaIMnUqcMhJFgv4jw1h8QYvi/R6PB319ffD7/SCBopSuqk4c6MfGM4W2ShGUKBL09cWPoOgPUSQijCVGNDUtjls31jOoXC8UjyO9oxECRQjBvpM9sE7aUFRUBEOxASzDRjSNBcKfuVarjfgR+wxlqK2thdvtxr7eXkw67CAk/J41Gu5MQ1NN+AImwcU/AXDEOoGj7iwFivfBI/JoL0/frRY4k96jOEICBELApRC1iPCBQACD2IscBy+gTaeDTqeBvOKYkPDaFktGIQqidKwZJvwf+hmEbwRcogs6NvX3FR1BAQAnHIeguTLlbeSabLtIKLkJaassKlzy4YbyouNkacLoQv25OAsKmCcCBZztep3PmVC0NdDAwABKSkrSEiYAEHgBkymsz5j296P1/MjCOq/Xi76+Pni9Xska+tSe11N63ZMHBiSBUoqgJidd8Ptjj5koilJnZXmUduLkKOrqYivLfUEeo5PpOd5O9E/genSCECKtaR2e9KC8ohwsy8Lv8ysW6jIKCtMz4UBF91pUVlbiI58H5RUVZ9Znzsw8CvHw+/wQRREMy5ypO9KcqUHiIk6gh6zjsAix7shU4UURPjEIiICfF6HXpBfV+4XI1KIIYDokoKoo+U+aMPE/g4Aowi8SGLjI48cwLIq0PBgxAODMSfvMYSdEhEhEEJFItzl4B4wao9TBPFm6jxAS85kxZGBWm8fmo82RvFVWKmlCuhYmFy76O5Mf07k4CwqYRwJFycdMqOiedR0dHVIonw62YQeEFNZnRk6PI+APu6h8Pp80h6qjowM1NTVhpyIvYHQgNTPCsGUSfm8Q+uIixQhqaDjyRCyKIrxeL0KhkGKVPu3RF82o3ZfS/sixT3thHhzF5NgQdDod1qxZg91vfwyW9YcfwABSICFrFiuvg6J4gkEMT7nQVFmGE7YzkRzDhO3YGi4iYojowO0LghfOuuE0nAZ7/QMw1rJJexDGwyOcPRaOAI8GTerflej0nrSdlASKQGQ8SODex5TAw8Ap7E/0xFwaMDEsIk7jJJzmE4mIQIAHf8ZIELbAy8ZusFxkpBqzTwSseBoi15XkPeWHmezDl2qakM6I8vl86O3txcjICDQaTVrLFpmO2qAMDAxg5cqVeOihh/CP//iPWb/3RMwbgZI3jKVjl7MlWphozzqr1ZrRa4wPpLY+Iwoihk+PguUYTE9Po729Paap6tiQQ2ptlPx9AAN9E1i6ukkxgho6U0dFr/KCwSCKi4vjdtkYGLQjGORRFHWyHJ/yI3z1ndriOS+EB7i9+/Fx/J/LLkBpaSlcvgCGpyIX6ZPVQck5PWZDiaEIo57EjVmVO3DTTg8CJn1O+B0EOi481C/ixMtxSc1nHsEv/f9UQEBDGnXhQeKPSO9RHCl83gJxI6zo8XdwmhfQEKNPJPWR7mc8FYJWOOvmI4AoCuClThkBCKIYbhKr0YCIIkKhEDQcF1Ggzoon5oVAxUMpTSgIAj766CNUVVVh7969ePHFF9Hf34+uri4sXrwYq1evxve//33FQZ7ZjtoAgO9973u46qqr8vvGzzBvBIqi1WrhdCZ2ISVDLkxKzVQzjdIm+pMLlCiEe9f1HDBh7UWrsGLFCsX0ybA5vfY3llNjWLq6STGCGhwMj5QInOmXl2wxVhBEDAzYsHjxgojbrc4AiKY4qTwJoiClDo0lJYC+QlrT6pmINDYopfIS3X563AZDWYZOKuqG4zQIBAhKNTpUVBjO1h7xPII+n3T86NqWIER2FREJgVc423pqKiCk5XpTip4AwCOISbtB8CmIzLQgxNjNGXgRr/bp/7P3rjGSnfd55+89l7p0Vd/mQg45HIqXGVISSYkSNRK1iRebtRHb8FpZOwbixHFsGLaBBQw4BhZWEHgDJUEQBfAXB04+Jd7Y3oUsbbKwI2CjFROvbVmmREm2LGkoitNzn+6ZnulrXc85720/vOecOnXtqq4eklL7kYYz6K46tzr1Pud/e55x6JuHEuD5PiXf74u4s9EPmSSuG1OrPNryfR/P/ws6wd9iYWHYRfZB451AUKNgjMm7CX/qp36KH//xH+djH/sYX/ziF10K/BvfGJu9mcdqQwjB7//+7/Pkk0/OpbQzC44dQc2T4juImObdx72b47vKbJpWS5KESqVCe7PLmTNnxm9rfcqn3RTX33SzV8UISmvNlSvX+M6bN6lUKjN1CV25er+PoGKp2G1LlpfGz7YYa+i02wOpQ8GV29sYY/E8wdX7A3WfEam8ST+/trVL+cR8t31XS7S1tCLFQ7hrVip5UOoRn7XkunpaJ0gpiaMIz/eQnkFbnTugKmNpScNi6eDF0Nrh+lMRu1LzcHncQm7Qpkl/LnQY2lpa2rBUaMmfOnoqoGUOtg8RQhAEAcLzqNXTRc+6e0ErhdIt7q5/hd2GI7rBtu0H6RWltX5bvajGYZySue/7PPvssxMVJeax2qhUKvyrf/WveOWVV/j1X//1Iz6r0Tg2BDWPJ9S0xJThsJ5Qm9eHO+UcMXVJkl70Yq3l/o0dZKIIx9Qc7h0wVDv0+vU92s2I2mIFay03b97k1q1bGFtjZXVlbEQyDtcGIrhbm3tgRy+N1ho63S5xHBdSh71XdSLJ+v19zj28wrX7/XU1gZioZj4IZQxfX9+EOcZRWspFEp1YoY3FH1HQEYLcfiN7+qyUyxhruBvtYJVTfci64e7stQgWy7mS+TiJJ2ljNOPvrd1E83B59Mlp2xx7rQaxp1WBoDSMkTaahNjGJDahJGZc5AV4wsMrlQiBZ59W6OBi3pTTarXY2dnh5s2bJElCGIZDDsdHEfm8UyOot2sG6hOf+AS/8iu/cmgB7cPg2BBUhlkIylrL3bt3uXbt2lTElOEwEVTUjtjf7j1xWuNSeX1ptZRkBa7j7/Z3NnjyhcdHHvf9O7M/8V7/zh1WHinRbreJ45gPf/jDfOnL12YmJ4A7d/dpt+PcguPW5p47fGtz7rE4HbSoG+XnOG5fa7e3OLVaY313oANtTKQ0bjuJ1tzf63L69OFTFC3l0nPWQjuSLC1MuQAL8PCIGdZp7KQzSXGcoLVz6B2lYj4uvZdhV45PFyrjSGYaitpXOm8aEbYBI2pe06Ct25RmaAAZBc98G83fxPM8FhcXh0YYBtUd2u021tr8YSf7Uy6XZxoefqcSlJTy0F5Q81htfPnLX+Y//sf/yK/+6q+yt7eH53lUKhV+6Zd+6WhObASODUFlN+Y05HFYYspwGIK6f8ul94rElKfVRnyprLVc/9bNkQS1t91CJrNEcJY4Tvj/PvclfuAnPsDCwgIXLlwA4M4hiC7DtWv3ef75xwDn/4QQqUqGM+/rdLuUy+WRiuaDuHxrizOPLE8dAeB2M4S2lHTmGDPQ1tJRvfe3IzU9QQGxlSg7/Nm0lSUsl/o8o0apmLf9Xaxn8vSgcDpF+XYSa+kay4I/eM9olC2m3CYv1E2tUdYSCDHk+zQLWqZ1sInhAR+pZ66D7YAYLeQ8St3BpN+jVqvF/v4+6+vrxHFMEAR9Q7L1en0sCb1TCUprfWgvqHmsNr7whS/kr/nEJz5BvV5/oOQEx4igMgz6EhVRJKbV1dWZiWmafYzD1voO3U6HKIomEhOQ//z6t26P/PX9qdN72dBghyAIMNEK7373u/mzP/uz/BV3Nw/fUHLt+hbPP/+YSxne3UUASRITRRFhyQ0RT6t6ffPuLmubw0O+Y1N8Yy5dWyYksUobF2YvundU0re3djTbg0hbRSN/biw0E81K2X0lR6mYS5PQTXaw1kslilyK0Kavz3T1duKEhYUyxYugbIPpYqceGkpzMtRAZ6b3FdE27QMbQCwHNYhYPPMdjP+BqfebyQzVajUefrhXC5VS0mq1aLfb3Llzh1arhTGGarXaF21VKpV3LEGNiqDeCquNtwPHhqAmfkEGiGmUk+yDgjGGW7du8doXv4q1lpWVlb4220lYv3wHGUvCgZrDNPUnKR0xeZ7H0tISvu/T2O3S2OstRkmi2Nk5vNbcrVuuXrTT6LDbaJNIiQWWl5fxvNm++FIZvnF9hHLDRMWH4QW5nbhjiCJFrTZ76qkl+zvZokSjjcGf8jMrtpcPYj/uEdQoRKYDWeTU9xuLta6WZy3c70TUkyitg7muQ+PvjhTRnYR9rTgVHD6CBtBourbLwpjoxx3PsMzRIFy7+fQENQ6ZLFax4Wec5UYUOQuT5eXlnLiKxPB2YTCCmrUGdVirjSKyLr8Hjbf/ar9NyCKczc1Nrl69+rYQ0/r6Ojdv3uTMmTOcrJ3ibm26wdoMWhtuv3lnKM13f2N8QVspSbvVRgjBYr2OP/CFW7/qmhustdy715g5Eixi816Dzc0t/vgr3yTqdimFIdWFhZnJKTueK+tbLJ4YoT5v3R+t0ideMboGlWiNtK6W0u3IwxGU6ncmtkA70iwtHExQ2hoiM75Vez+enJYdX38SaQTlrmtXwPKyq7FprZAqQpomWJsLEWf6esITY+t1e0pBaT6CAhdFLXjjCWqUzNEgPPPGA1M3H2e58Rd/8Rc8/PDDxHHM5uZmbhlTqVT6UoTVavUtbYGXUg6ZFc7iBfXdhGNJUJ7n5UaBD5KYRqU2MgHZ69ev89BDD/HhD3+YMAz5o/tfHrOViTtg/fLdYYIaUTfSyg29Wiy1+rCqeYbbV++zdM51Ic6T3ssm4L/0pW8SLK6wtNSh1WrCIQkvUopWFA8RlMD5e+3u7eKJ/iFjz/fwhJe2MQvahdpTtzt7HUoaTWyGSaQTSZYWDm4LnBQ9gUvxjdPTU1Yh7XRzSNK6mah64BMEIdbbx5jeV10pmUt/GWXS+5S+upYQHl2TkBhNac61t23anOb0+BdMEUE5dfN1rHhsvoOZAcYYVldX+9J81rr6aVHdodPp9CmXZ38/qBb1eSOo7yYcG4LKvpCbm5t5m+qDjJiyRolMN2tQdWLQpHDn7mxPqhnx3X6zX1xWK812gVhyIVdjJqqaZ7h9bYvn33USYwybm7O3Fg/q89XqD3O9mXXeiUO4Lzl0E0nUkX2kr6Si2WpijHGp0Wxht9DpOgFOKSXdbhdjDdtSorVGeIJuV2K0xRtqJhiPrL18EO14ujpUZ0z9KYOhvw5VxKTZp1HYk5p62iY+aEwIAuF5eH20YF09y1q0MWA1nojZSXweCuO0vtUTg50FHdNBW40vRkfO00RQkKmbv7UENRgZCSGoVqtUq1VOnTqV/7woSbS9vc2NGzdIkoRyuTzUAj9vtDVPDeq7DceGoKy1fPWrX6Ver3Py5EmeeOKJB5rOC4Igf9LJ0ojjOgKjdkSnOZs0Uka462/e6Vu097bbaG0wRtNud1BKpUOvIdOsLHdv7fC8PTVzBNUng1RboFxy53jz1ja3VTc9Zg4dQXUSiVYGGWv8ULho0FgWqgvESYzv+73oSYDv+XkbbIbN7W086yIGpQ337+9QqfRUzINMpmjMDFJbjiaobqzHzkP10K8eMQ7j6lAHtZcPYk9qHquCsTHGTiZGhyxyItU4NwhradgyDwmnq2d1QS0+TQ3mKcIDaoEd0xlrYjitioavL6GDvznFuRwdpm1Ln6RcnrXAb287RRZgqAW+VCpNva/j4gUFx4ighBC89NJLeJ7Ht7/97SMXjB2E7/tsbm6ysbHB8vLyxGht9xCRCilBtfY77N9vsPKQm4PY3Nih1WohZcLCQo3Fxf6h14OgtWHvfgetNffuHUxQWYF5nAzS9RvbRKsuxdZrM58dnUQClt3tBqUFkStNaKWJkzELf2FfUhukNQjPxQ2eD0FYZWm56kRhlSKKI7Ryc0TDFhxibARlcUO7i9Xx0WlsFXqKWaJRdShtFYk9mNz6tqOcXJEa2SI+RUqNBATsmxAhPDyPXMQcSx5t9VtvCPrb33vbm+iyO0WKD95+dfNZUVQuP3my5wydiS23Wi12d3e5detW38BxMVU4qovwuHhBwTEiKHBRjTHmgXpCWWvZ2tpie3sbrfVUtvI7h5g1EvT8j26/eYfa6gLXr1/ntT/7ZjrrUWPmXEyK7bttdnfbIy02iuh2u3S73Yn6fK1OjC5bKvVSejSzM5TUmm6cuLmgJOThswUDwwlSR8UGj7YaPpduRyJOLhCEAUFY+CpYpweoVM+CI9KSSMcuYkjTXcUn3k40maA6ZjqCGVWH6s6Y3gNQFtpa4x9gzz4aFnAPcIn16FqPBVEg16xeVby/0vk25847HG3tm31Oc8otrAORwrQpPtdu/m2M/+FDnNM7B57n5ZFTEVm01W63WV9fz1PzxWirVqsNEdT3qhcUHDOCyvAgPKGstezs7LC2tpZ3A505c+ZAcoLDRVAiXYCtMXz9i99gX2zz+OOPc3r1EW5XDj+3ArB9pzkxeorjmE6nkw7Zrk5MTUSxxLQdQSFmq0FZLFE3YqfZQgj3uamkfwvTqly0k+HoJ4rU6PSScBGw7/csOJKoQ9CVA3WaXuSw34o4UQ/GyhR1TcwIf8AhGKCVaJYLab5Z03sZtpM2p0uzS26Bi1Yz7OuQBe8AghXuP3lNbyDaklbSiJp42l2ETPk98AOMnV6lwtevvyUENU/36mExzcDxxsYGnU6HP//zP+fy5cvcueNS/IOdfeNwWKuN1157jV/8xV8E3LX5xCc+wY/92I8d7QUYgWNJUEftCZURU7lc5vnnn6dWq3HlypWp97E7Y4MEuEUxiiKklNy7Uefv/q9/G9/3+aN7b8y8rUFsbTTZHEFQmRNoGIb9TQkT0E0UtmVYfjglk6m++DYnwVKpRFCp4Em3iMlEo6QmCAudVeMMCws/7oyIoIy1xLGmUjn4a9BScd8MUpFrrDFE0hBFMUan3ke+MzkMgoDESKTVeNMwFC7NlxGUtnrm9F6GXRlxemwj2fjPTtB/rfZUyCPh4Y6hL9oqw0qwkiuYa6VIZIJMEkz6s5y4RvlFkbWbKxAPduka1SDxdmDUwPFrr73G+973PoQQ3Lp1i+3tbX7oh36IdrvNU089xb/7d/+uj+QyzGO18fzzz/PVr36VIAi4c+cO73//+/nRH/3RBz4XdqwIqigYG0XTFI4nY29vj8uXLxOGIe9973v7QvZZSHDv/gwRVNrmGscxYejUGDpbkXMz9WFnirrRQYg6kls3esrqUkra7Ta+76dDttN/ceNEYlWajpyCnxLpSDBTUfY8n/vb/XWUqCOpL6cENS7FV4AyhniMeG/UlQcSlB2QNxpENljthRUWF4M0RZiqcStFM+mg0b3ZI5E2F4wh+P2CTFVXH6wIPhqGfakxlonmhMNQDOru7evwSEaQWqbFCU7kCuZBEFAGkiBAaU2lXEFphVaKTpK4jktII60s4jJ45grGf7BzP+9UFYks4g/DkA9+8IN84AMf4LOf/Sxf/OIXMcZw/fr1sbp881htLCz05tiiKJpJ03AeHCuCyjBvim9/f5+1tTWEELz73e8eEq8EZqpz7d+fglRsf1RRqVQJAmfuprXh7rV7nH78NM39+c0YhRCsX91Gl0Pa7XSod3Fx5i+s0galLWiLljo1vx3NJkop2u0WQgiWFhfx/ezWtHST/uvoCMqlM6aROmpP+By6XcnK6uQ0bFvJscddRCdW1CpBmiJ0MkWlcon7poFv/VQCy6QRRH9zgZdq6nnCo5H0/Ji6U1hWjIK1CmMFbR2wGAw8KE04FcFwpKQRtIzPon+YdGEPbdPGWDMkb5Utup7vUfJLMMIvSimV+0Vtrf9ndro/2NcFV61Wj3TRfKcSlNa67wExiqK8K9jzvJx8RmEeq41Tp07x5S9/mZ/7uZ/jxo0b/O7v/u5boqpxrAiqGEEdJsXXbDa5fPky1lrOnz8/UUE4CIKpXHWttezfb056Qa6XF4YBy8sreL5HN7XRznD7O3fwK7PrBo6CMZaNG/epnV2iXju8vEtUIJa4LfEXBAy49WbmhEYbavUa4cAAcaxcC3ffdjsFwpkQQWXENUkctjuuDlVAe0z33tDrIsXpgVtCW0tkZX6sQnjDKUJrscam7e8Ki+XuboN6WRB73Vxjb/qmF4tJ03QNNYKgxmI4esqwp8O5Ccpg6JgOdb+/OcBZsIw+t2K0lWFpucVJc55WOne0ublJt9vF9/28A25xcZFarXboe/edSlDjvKDeCnzkIx/h0qVLfPvb3+ZnfuZn+OEf/uEHrrxzrAgqw6xdfK1Wi7W1NaSUnD9/fqqWzmlTgOP7+QAAIABJREFUfK3dNkqN/uLLtObjUmtLeIUvTDYHlWFj7S6Lj5wctZmpkc1OdbsRKrKsLM/XGRQlvfOP2wm1hUrOJc6csIOUSZ854SA6yfDnFHcV1th8XmlsDSrFpAhKKYNShjAcvxg11XT1l048THYdHXGQQaAQAjHQXCD9EO03sQaMUblLyXAr9yilew1p40FDhZxlunS2mOCYu6tKnCvNnxZvmuYQQR1weYYg2Gehcp/qwrs4fbqnUKFStZRWq8Xdu3dptVporUcKwR4UbX03EdS0HXzzWG0U8Z73vId6vc63vvUtPvShD81xNgfjWBHUrKaF7XabtbU14jjOlX2nxbQEtb81nN5Tac1HCOd/M6iXB+5cirI+G1fucurZc0OvmwbW9tx6FxZqJIlBddt9JHAYRHE/QdUfcmaI7Y7zm1qoVqnXV5m0Og2m99zxWuJIUVkIx3fxpZGVtpZYT/4coq4aS1DKGKID3p9BG0ssNZWCiWRLHS7l2pSGajVO1RfSY7M9tYd+JXORpwmFENhCk0NTBVPWoRRMMEJsGh9lBYGYr7utZVpDJG6xU6vaZ/D1N1Heu/p+lqWkihHFoBDsnTt3iKII3/f7SGvQduOdTFBFNZhZIqh5rDauXbvGuXPnCIKAGzdu8MYbb/DEE08c5amNxLEiqAwHOd52Oh2uXLlCp9PJiWnW/Pa0rrp7haaGjJgQwn1hJqQnBiOo7Tt7bN6aTWw2H7KNIqoLVVZXnMXH3l4HayxJJ6FcP3zasC+C6iTEcUKcONfc1ZXJ7ekZRhEUuDRfZSE8MMXXSRXUJ+4jkiwujT7PccO549COegRlrD1Qf28c9mLJqpH9AdJYJXOXIjTWYI3BiiR9jWvrb0iflQPazUfVngZfsa8DTgbzjWckNiGxCWVRuN5TDuoW4Zm/BPsjB3ZujBOCVUrlCg9F241s5khrnT8MvFUNAdNAqX6zy1m8oOax2vjTP/1TPvnJTxKGIZ7n8W//7b/tk3p6UDiWBDXuhut2u1y5coVWq8XTTz/NqVOnDn1zTh1B3W/0hFytdXnzA/TyYJigANbfvDPdwVlLN4rodrtUKhVWBmaZEukWs7gZHZqgtLHINHVpjEFL5QhvocxCdYL1QgHGGiI5+hpGnQTo346UEk94Tq4oXfLGyRMV0e2O/5xacrb26k6sOJkOT3V0PJvBYgGJVXSVx0J40IxQSlrpmmVshLUeGWtbC/vSpyac/UY2i2atST9zgZt7OngWaU+FcxMUuDRf2evdV9MP6vYg7H2EvY0Vh8saBEHAyspK3+KeyXVlda1Op8Pu7m5uclgcln27oqtREdRbYbXx0z/90/z0T//0IY54PhwrghpHNlEUcfXqVfb393nqqad47rnn5n5qmoagut0ur3/9DZrNphNynUH9eBRB3bm2yeIjk55qip2A451sZWKwWOJWBByuABsnEmsNSmnXFhuECDvb7dZN1NjlvdgoYa1ld3fXLRrWpWcsFizsa+lSlQPSO0UkscIYOzxgaw8TQfUEbdv68B2Vxio6yTQE1fcubNaQkcVQAlqmQhi687DWoIzOU4RY8P0I0tRdHp+NuFa7R9Ru3jRNTtG7T621Uw9cF+Hrv0B5hyOoURBC5DNHSilOnjzJ2bNnc5PDVquVKzyMspSfRU/vsBiMoL6XdfjgmBFUEdmg6/Xr19nZ2eGpp57iPe95z5HdYJNSfHEcc+XKFfb390EKd4PN+gQ5oGtnlKGx3R5DUCM6AcfMMrmpdA0W4ubhhjO11uzsNXKx3OyayrYkmMGDaVx6D0BJQ9xNiJKus0VYWe1bXKWUtDtd4qSXqsl+6Xn9TQYWNw+1MHBsXS1RM6gcAEhtkcoQBj6tA9TLx0FbR8xt6XOK6btNe+TUj5YK8vqR6yLUhTb+CGF7WVKTXacCEWXpwhifyHpUxWzXZBAd00FaSSjCfF+HUeXyzF+A/dH5GXMEMkk0GG1yeJCeXjHaOsqBX6VU30zS97IXFBwzgsoWyiRJiOOYr371qzz11FM8++yzR/7kM2p7SZJw7do1tre3c0L8+qe/c6gvmCuG9xgqSRRRY1gSJxuyLTrnToKUOt+q7CQYbfCmtEYvWm1Y4Q95TsUdSdUenL7MMKqDz8GilWZ3u8HJh5dp6ZabMTIFIrIQWzNkjthrMrCu2w0Awd5emyCw+AUFg+aM6b0M7VgRComZIm02Cto6UupIf4aIxWLGEBS4ZonVcPD32qlGiF7klO/L9rojbfZvC1txwNlSNFIQdhY0dZMTwYl0V4er8wi7i7DXseLJwx3EBCilJrZQH6Sn12q1uHXrlqspQ5/B4TxeUX8VQX0Pw1rL2toam5ublEol3v/+91Or1R74fpVSXL9+nc3NTd71rndx4cKFdGjT9jVJzAIh+mUZZKKQUYJKJEEpzFtugZmsqpOk/4k9bsVUlycPshatNrKW8Z317aHXqVhj9LSLth1JUFq79JTv+wRemSAIsFiajSZ+4BP4LrUaJ/GAYE+/4rZDTzBOKovSmjhOFQyEYNdEGMyQMOxB6EQKPzgcuVlrcmIzlinrUGBtwqQJ3D0ZDhCURUxqPxf96T7h3sKeLXOWqJcizH6fDhlP6xnVNE1OcCI7+MPyHL7+Cso7eoI6rNTROD29TqdDs9nMvaKklJRKpZm9ouatQX234VgRlBAunfbUU0/x+uuvP3DLDWst165dy6ezP/rRj/bdgN1WRBIfrujs2swLBJW2dHf2WlDxpzYoHEQcq77GuLgZjSUoS9YF2G+1YazNGy36jhlIOhqmcAZIlEYV2uiNMWnrr5efU9SVYGFlZQWtNVEU0ew2c0JpxDEam6s0DNc5erklmViq+XyMQBpFst+BAWFYCu3c4+aQWpHCrx4uvacGUnrT1aEM5gC33Ybqvw9c196MEZ6Apgkwnt9rN8/+slkXYS9fmM9rjfCMapt2bmJ4mCaJDL7+c1TwP4M4WvfaQdfaeTAq2hrnFZV1HS4uLubvKX6Hj5MXFBwzggI4ffo01tpDq0lMA2MMt2/fzuXyP/rRj45MrTW2JihIHATR31+dxBKtFLub2zzy7Lmxg68HIY+g0gU5bo5eaKO0C7BcLrOyutK3+MfjmhsEyGhK99k0erLGoFJ5l0GyjVN1caVVrt93YvUEwhMoYzBb9/FSNW0XuWVRVM8uI1NoMMYJx5bLAWBoyiRdXL1h1YfCHFK6wb45pE4iWTCW2R/ALcb2X59p6lAHkRNApH0i7VHxDcJTMENtq/8IBXs65FSQ7jMLmITAxy++8EDPqH21z4nwxKGbJNIzwzN/ifEvHvL9o6GUeqBiseO8orTWebR1//59rl27hlIqd+Ztt9skSZJLO30ve0HBVAYA31vIUhAPwhPKWsv6+jqvvvoqcRyzsrLCuXPnxtZ9ptLgO2ifxtButWk22wjPw9dQKpU5bHEgTlTfW+NWf6oqSRJ2d3fRWrOyssLCwsLQ4hIl4xc/2ZluYWx2I5SSGGMIU6fbQRhj2d7ao9vt5k+c2WBxW0pHGp5rOw/DgDAMCYIw7dazGKNRSqKURGtFo9FNG1uEU4/I0qiFPwLwhHDCpWFIEIaurV0IZxCoFYmWRB2dpyOnbTTPmiOK6EgfM2kDVo9tjhjEvgoBiSfmu+931BRRuQDhOX09P/Cd51YQ4Kf1TGMNW9F99vb2UErlppda6wPFfwfh6y8f/KIZkaWR32r4vs/i4iKPPvoozzzzDB/84Ae5ePEizz77LMvLyyiluHXrFr/xG7/Byy+/zPr6Op/61Kf4whe+4JquJuBzn/sczz77LOfPn+eTn/zk0O/jOObv/J2/w/nz5/nIRz7C9evXAXjllVd46aWXeOGFF3jppZf4wz/8wwdx6iNx7Agqw1F6QllruXv3Lq+++iqtVouLFy9y4cKFA6O0vXkIKn2K393bc4uACPA8j6hxeC8ol3boP14dK7R0Yp17e3vEcczy8jK1Wm182/7YtKVARXqi147WmkZjn2Y3wvcDN6w8uB9rc6VwYf2RzR+tEf5P4DaVkVYQpKQVhnieTxxrojhir7HPbreNUmooUioewxBp+T6+H2A9sDrIRwGy9KSUEq00Ro++BsoO3yvGQleO+5pa9JQyRuDmoSbWnabErgonk+Y4pHNYnu+uvwo1taUavucRhAFGazrtNnv7e+zv79NutYiiCCXlxHvGM2sIc+/Q5zMK7yQlCSEElUqFU6dOEYYhL7zwAv/wH/5DXnnllTyy+sxnPsPHPvYxrl69OnIbmdXGf/kv/4XXX3+dT33qU7z++ut9rylabfzKr/wKH//4xwE4deoUn/3sZ/nmN7/Jb//2b7+l81DHLsVXjKDi+JAeNyky99wrV66wtLQ0ZOt+0CzU/mFSfKndRiZEe2J1FaOdOjaAiiUqTgjKs+fks/ZyQc9Y0FrLzt1tSktl6ot1Av/gW2ZSBGW0QcWacMDiwmnztZFSUl2oYUU0IgZ055k93YaeN2RgmGEcQY2CwD3tK2Wp1+o0VEzQjnspKmux2chAIZ2X/dsdmiMrZRVYkAnU0hRR1qbt+VmnocmVCtwmBVYYLAYGajUA7cSnVhquF1krc829g2FoqAOisSmh8GjogJWpRWhHw2JpmAYBPuVSqe8BwOYPIZoojtHtNhYXYWQ+W34QOIkkAb7+E5T3E3OeWQ/vJIIah3q9jhCCn//5nz+wiWceq40PfOAD+Wuee+65PNrNVNQfJI4dQWUIw5BW67BeOz2Twkqlwvve976+2YQMBxLUvdl8oIp2GysrK+ztOaPDZNCOotGhPt6pbiziuHisFqVS8VPJ1Hpf1lriMeoP+X7aSU5QmdxSFEcsLCxQq9dpRfFQlieLQgZrUX3K5tn2lUaa2ZW3M+HYhoxyYdZ80fTTYn6RtIquup6ra0mrQYDWrq4lhE2tM0hniwTC84fqWrFJ8n9nvRvZktNOMmWIYgSnMVMZGVpcM4RFW0FTlVn054+itlRpboIC2Nf7aTdf/wIrhMhTqDmsU79XSpFIie5GqX2HwPP/kB31ErX66am64Q7CdwNBZZimw3Req40M/+k//Sc++MEPviXkBMeQoOa13Njf3+fy5cv4vj9kUjiIo4qgMlXz3MQv/eJkKSQZ9+/DEdTsnT1xIrHY/Ole+B6B56EmSAENIkoUE7Ixbj+dhPrJKlFKuJVyhdXUoddaS7uQIsybJIQgHJHuU9IMOezOKk9URLub0Biz8Lt+ijSCKvzcZsdpdZ+Ab9xRBCWL53tuHqswY1R8t8kbFgS5sIftvbAjBVGsCLxek4EVB6lUWHrk1MOurBwJQe3oEtZ25p6R7douCcl0JVNBmkb1+xZIk5pDhvI1btx4Pu+Gq9Vqfd1ws3blvZM0+GC49b3oBfVW4NKlS3z84x/n85///Fu2z2NHUBlmbZJoNpusra1hjOGZZ55haWlpqn1MJKgDalB9quYj6iyZmkQygqBmhrW0W12kVPi+hxAefvpliFvx1KKZ4+tPPXSaEd6uya3jvfQ8TFrP6SQyN6oD+tQoRu6z6LALNGdI7w1irxVhF2bLg7kUoYcxKp9vs9ailEe5arEWZOrIO2hOaAUoU7hmBWLq7UCQEFIJTBq9RVhrCq8ThYjLFv4MY1dWOHcEa5q0Hg0TsOzPH0W1vBYP8dDBLxwDz/PwSiXOlF/nxJkfBxGitfMZazabbG5ucuXKlT7rjYy4yuXyO46IxmEeL6h5rTZu377Nj/3Yj/E7v/M7PP3000dwNtPh2BLUtE0SnU6HtbU1oijiwoULM7V0TiIomSha+6OJZFrx2ExNQibDBDW9CrMlimK6nQ5JognDAIHIa1oARmpUrAgrB3dvdSfUn9zC7QjvkfopgtDPiQncAqu0ptnpYq1TdZiKFAsOu9baif5PB6HZjhALYmb1HWMtypiUONI5NeXj+xlR+KlIa88yQ2mFFhIjioOqmYBrARZacchSqYMlAqELZDQbYhPQNQH1Oc0HwaX5joKg2mK00+6sEHYfX7+KDv57fN81zxQfJIvWG41Gg/X1deI4JgiCvkjrrRjePwzmmYGax2pjb2+PH/mRH+GTn/wkf+2v/bUjPaeDcOwIalpPqCiKuHLlCs1mk/Pnz3Py5MmZn7QmueqOmoEy6VOf1noq8dhMTWIwglKJRMWSsDL5/UmaOgzDgKWlZe5v3R+7KMeteCqCGhlBWafS4EgTfD9AxRov8Ppe0+l22e90Xbv8DDWEYh2qdUDH1yRYC7HUlLUPvhi5/I+6PhaIdZIrhGf3iVakIrS99xbrWsY3KGMRtjfTlkkKQX82s5X4KJuk7SuD12Zy1DSIPVWhHrTHn9CU2JIlnix1pvCamgyDoWEarPjzD5z6+r+i/Y+CGL5Xx1lvSClpNpt98kTtdpvXX3997MDs24F5Iqh5rDZ+8zd/k7W1Nf7ZP/tnufL55z//+b5r+KBw7AgqQ5aKGUSSJFy9epXd3V2eeuop3vve9x46BRAEwVjB2GJ6zxpDu9NBJpJabcEN2U6xz0xNYjCCAhdFjSMopSStVr8+XxRNToslzQhOja+3Qc+wrwdbkCZybfBSuoU8aseUa6kiRGb9Ua3ilyp4yWwpyiTqqZE35ujMlKk2n0ksfnVUD+EwBRjj5p20MK5RYnCbMZRHCHFYQJr0WEX+n94/C6k+iyXRhlhaygGFdF62t/6h7eGj7f/dnqxyttzKd1HY/ZDiwyQoPHb10Vhw7Kgdlr3ludNtwjbw9RfQwf849XvCMOyTJzLG8LWvfY1z587RarX6BmYrlUpOWIuLi1O58x4VBglqFi8oOLzVxq/92q/xa7/2a4c44vlx7Ahq3M0kpeT69evcu3ePJ5988kgEZCel+Hbv7WONyVs2FxYWqNdqM0m+CCHSWZ1hoo0abRYf6r95XV6+hTV2qGgcD0RhbsnrTfgPDuyOQlToJjRao43G93zCMCNKi+85lfe9+w1MKDHWOr+dxUWCIGCztTfl2fdgrROirdRK8xFU2vlnE2AEqRQ/mayrUHge1hdgh5NuApCJoFzt/3wsIG3CxBHevKHC5E3/HVmmEnbTVCH0GiCKNajim0dJO0FTlUkIKHturCAXHba4Y5qBtO7J8pEQVNd26dgONTF/ei1Qn0f7F0EsHur9mczR4uIii4uLPPLII4BLEUZRlMsTbW5u0u128+HaB+0XddxkjuAYEtQglFLcvHmTO3fu8Pjjjw/p5c2DcQRljOHK61fY3dujWqm4utYhFc0H03sZio0SxqQzRkpRH5M6HCSood+3ogPrWt1Ypgu3KrSD9z/de76PsAIda/wgYKFUQqdELZVyKT5S/bai+OgBiLoSUxboGe0xMmhr0WlEbeLxxGHTdCW4z9cKiLUcSQUWSxK7GS8hUnt2BMrqXLF8+F2k7DMcr7VkiRNEBfLotQX2SMv2PVgMRlvuNT7bySqPVLogDI7oNEIYBGZ60sJ5REkrCA9rBV9425baolY6ivpPRKD+Myr8qUO9e1yLuRCCarVKtVrl9OnT+c8zd95msznSLyojr8MqmBf381cEdUxgjEFKyZe+9CUee+wxXn755SN/6vF9v4+grLVsbGxw/fp19u41XGv1HGQohBhqMc8QNTqYdOFPUpv1+mKdcY/C8ajmhkKngNUW2Uko1Ua3gEkp2d1rptJEYYFweyuQtaC1xFoIAp+Fco2gVOi+i2KCVF/PGCdFNKjh5nlerp/Xd75tSVQ95CIJJIW5KSudhbooFFcsqRFiOiScPcRk80uDyEjBGrDaw0u/adomadfebHUjgI4M0QaG3U9EH2kVY7lsrMqm0VYWDW0nJR6pxLh6lgXC3pEIR1hgEELnpOW2mpJ4wdbkbhxwthT3mhwOmXhomRaRiah4420upoWvv4L2P4z1Lsz83llnoEa58xb9onZ2dnIF80z5oahgPu1DmFKqj+S+172g4JgS1O3bt7lx4wZCCF588cWJs0zzIIugrLXcu3ePK1eucPLkSS5evMgbn70xFzkBrv14DEHJKGZ78z71lUVWVw6K0CxxNJCmGfH6qBkNEVTWzmutxeARBH2DPPk/tdYYm9WiXKda3E4ISr1cWitOAEdE/euDTYUaDEbrXtdfTlqCqCOJpxSiHTp7C6pIULgoyq+65Joxbr+e7+OHYb7+amumithkAl4A2kqkVem1LV7frDHiANKy0JYllsrTtNGnFClsLsaai17gTAzbsabs9xo73B8PZ0PiU4ij+iMtDEKY/Lg31QKPBjGa4QeKWX2j7ql7PF56fLoXH4BQ/p8kpV8FMTxEPwlHMaQ7ScE8a8i4f/8+nU4nf20xTThq/6PMCv8qgvoehLWWD3/4w0NaVEeNIAiIoojXXnuNWq3WJ4U0lw5fCoEYapAoKi6URUi1evCXU0o9VMfKEnPFdSVuxnDG/dtaS7vt9OpqtRrGCsxuzODi6qSJ0lpUEPZtMW4n1FYHCWrMmQoQwgev4OJUUMtOpCJuA6FXcMz1JvNyisToIUqwMZhyr84UFIiJ9CwjM13tJYnBq8ZoO661W8BQVDg63deMpyUoW3AI6SfEbFf7tsajQZReR5PqDqZirWLAeTgnraAYE4PQRBgaCFaDDpA43hqh+j6WtAqn3TRNOqbDgjcbqYyCsHuE8jPI8GdmSqE/KBWJooJ5UZ0h825rtVrcuXOHVquFMabPUn5xcREp5V+l+L7XIYTg8ccfzy03jlrRPEOj0eDNN98kjmM++MEP9s1WyETR2ht2v50VQmQ+UGKk4kLU6LB05sSB24nGRR7W9n2x41aExdLtFBo76nUslt1GlyI59UkT9aX8eojbvWufaE2iZpvNyRc6z0Mqha8FourlKUJrFRnNCm/Ax6lwiokZPn8Vafy6GDsknORpuvFwdSFDHBsCo2csM2bFnv43daSHc8HVLm03IoKzKakNEtMgtpIyj5Qzd9zJzsPuVhAMR1suRbihFlgKHwWrQUQIESOI8IiAOCdaY1PfKF2kOScbJdIU4abc5InSE0fSHeeZr+Prx2fq6nurZY4yhZhiy3hmAtpqtdjf32d9fZ39/X2azSZRFHHp0iW2t7enntn63Oc+xy//8i+jtebnf/7n+Uf/6B/1/T6OY/7BP/gHfO1rX+PkyZN8+tOf5oknnmB7e5uf+Imf4Ctf+Qo/+7M/y2/+5m8e6bkfhGNHUEAuqfMgPKHa7TaXL19GKcWFCxe4dOnS0E20tzmDBt8k2Ezg1RHJ4GI6raJEPKVpYtSM2N3aoVKr5h5Q2dNxN5aAwFqDUs6RNgjCiYtM0knyWk/rgDb3ybAuRRd7eIt+mvYr/DZNDzp1ikyBwS2yaqCXLtPCExb8VIi0z7rdgrI6b0kfjnl6tvO9RgOBlh7BCMHXWaGtR0dWqJfTbQkLuMjHWO1IWYCYwqigq33a2qcejDCX7CPynvNwrz5o8rk2ITy2jaQdBtSCEKhjqfWuq7WOtIgRIiUtP4L8M9GptqET2m3QYFNushqsOFsT3z9UE1GGQP1nrDiB8V+c6vXvBB2+TKqpVqvx8MMPA/CNb3yDJ554glu3brGxscGbb77J3//7f59qtcoLL7zAP/7H/zgXgy0iUzJ/5ZVXeOyxx7h48SIf+9jH+oRii0rmv/d7v8fHP/5xPv3pT1OpVPjn//yf861vfYtvfetbb9n5ZziWBJXhKD2hioO9Fy5c6DMhG8RR+EBprWnst7DGuPTTqJpRoz2VokQ0WH+CvpXXFKKzSlBlobrgnnoLc2SdboJSEotrgBBTqAJYC0lXUq6VaEbztIenJBPbkeebLaJAXttyChaGROnCyFFGXO5NJoGg2u/Eq9AkVvWR0DRtDir2j4SgABpJQD1P8wmwHloZhAgJ/Er62TlVC5s2O1hG+yzdT8rUg2nnzkbVB3vkf73d4Vx6SEEQEPgBfuAsSIRYwNqFvu5ARIwxHZRpUQ0tEAGOpHbZpWZqiK7s65rMtnmQ/NUgQvm7SHyM/8KBr30nENQoZDWo5557jn/6T/8pf/qnf8qf/MmfYK3l0qVLfTbzRcyjZF6r1fjrf/2vs7a29sDPbxSOJUFNqyYxDaSUXL16le3tbZ5++umRg72Di+buLCrmA7DG0G63kVIh8HMV7VEw2pC0I8r10Zbt6RZHtphn0ZGUEtK0oRCCuNVvAW+tpdFs0Y3jfBh3FkSthKAa0B5bfzoYMpNlMhaUhfDghUsIR2xAXmwTwsv6sF07eUdjAxcNCs/DYEisShsO+jv8RkZOBejYw9bnCgRyNCM/3VYq7GusM03su/Y+QvgICuoHIq0xpYRlMWwlZR6vdvDnOK6s1tcUUK7VqHgeWju/rjiOUaoN1o0YhGGQWmYEKO3TaftUKg+jRSm9kAohIiwRu0GVs9WH8MVOHmkppUhSkWFr7bD9xtj7TxPK/x3J38P4H5p4Pkdp936UGCTOrCtQCMGHPjT+nI5KyfztwDvvU3gLMY8nlFKKGzducPfuXd71rnfxzDPPjCQK3/eHbvjdw6T40px0sfZz/87BQ61RozORoKQ0fbp7blcWbVwqLAhCJ+aa/i9pxJBqTHa7XWcoh1+YeZoNcSvBLvkzNFv3Y7CTzsZ2lMrNEJQxxNoRc7GdPGMQAQgJfuCDtSRWIQdqVfnnLcRY0spmiqz2sNpDBPNHUcoKGhEsBArf8/DDab/GXh5J9o7U0NI1TpcTjI0wtouZ0qF3ENbCrTjhmYUqQeDci4u/1Fo7x+EkoRm3wFqCMECnIx+BHyC8EEuIpc6egYD/gSXvRYRdJ/DuEpTWKZkNPO6CNWPsNzyCwHfpwSDAz5XkDaH8P9BmHRX8CIjR101r/ZaqhE+L4oPuYeW8vttwrAnqMBGUMYbbt29z69Ytzp49e+Bgb9ZqXiSonTu70+/Q9gwKKwNDvUms8if+cejut1l+dHy6sVh/yqw2jLFpQ4F7Mi5uH6pEAAAgAElEQVRGBHErIoqiXOp/dXWVja0Ghx1+iVox3c7hH9+TQXKNDbbee8ocGqBNW967Jh2unRDSWA1aGqSvsNj8c7bZhrJ/F2zdB0nL/T8lPVmhXEo75tIUnMFMmSTsnYC1sB8FLK8O9lkeBh4bkcejleWcqC0qJStHWNpGWDvs0TUK96XkEV1icTBFJgR+4COlRErJ4mKdUlhK08e9aCtrrMlSeffN/02ldo5q+CzKXEBam3bAKzw28fwN/GCDCuv4dgNsjLEGpRRaKTpxjDaulT7wM9J6hUCvoUt/F+s9OnQO79QU3yhMk+acV8n87cSxJKjDeEJZa7lz5w7Xrl3j4Ycf5iMf+chUaYBRahJTEVQ6M9Fut3ODwsG5KRmrAxeNqDG5W7DbdQSltUYbg+97hKHvZn+MRRQGVq2xRO2IuBOxvJouaNZ5KPUKHLMtmFoZOq0Ywtlnwqy1ffNL4CIo0idN10XXI1htnC6gAuwBc2HZ+3RkYKBRqkhs2b8nkZYjK5CRoFoDT/j4uKf67B3GOkddM460bO+4hBC0VQlt1Iih3dnR1oYdqTlZCtJzCvBFHV8U5wMNxkZo2+2RF9HIJ/mr3Yj31foHUJ3+Yyu1WFnNf+f5PiXfp1Qa9ndSWtHptnh9/9cRe3+bxerZfFaoVqshxOMYew6Vp2ot2C0CsYEf3KFk16mwgbANd6+kpBVFEVp9E2sv0ZQfIhF/g1r9TC4I+04kqMEywSxeUPMomb/dOJYElWGaJonM1n1tbY2VlRUuXrw4k2TJIEEZY9i9OznFN86gsAijjevgOwBxsztkdNaDpdXqkkiJ73m51YbFplbaBm0MVpu8TuN5HiQ9ko8ShTbZk3xxyHTK6XhjsBGIQxBUPEqIV/fqUNm8jzU2n2cSno82LiLC9ghiLNHHAmoHxw7TkFaSuIFoP+i1amfeUL5I54wKw7QGjU3TWCZ16s0eFoyFRhywWj2aLtTb3SQnqNHw8MQCXt/Qq8HYxEVZRDlxtbRmU0rOlEpYa2i3O2itWKwv4k/xUJf5O4X0vmfBqS+wan+ObksMzQotLS1Rq9WcvmR4BmMfRpn3u8/eWjzRxLMb+OU7hKV1SnYdjy2wlrp+HaXeYKf1Xt64+SzduIaUMleaWVxcfEd4Rg2S5lulZA7wxBNP0Gg0SJKE3//93+fzn/98X4PFg8SxJKhpmyR2d3e5fPky1WqVF198kWp1UrPBaAwSVGOriRoz76NTTS8hBIuLk7/MQ8oPY2CtJW52qS73hwFSSlrNFt0oyRsgsjoTkJOR1RoQeIHvKMhaWttNbKpG04o1RutUO2/U3M24xd29Tirtmrdm1PU01o61dbeRq0O5p2add5VJa4iyulOefusdS4+0CoSVCMcGh4hUhkgLgdEh5bLrILS5h1Sq9OANzBml3Xm+F1IK3AUvpgYbEZyoHhxFT4NdqWlIzVI4S+Tg4YkKnqgUFhKLtQmbSnFCnaXduEp9pURYl0z70DIKyu6z6/0Wjz3yizz2mFscMzmhZrPJ7u4uN2/eJEkSKpVKHmktLi7ihytYVpD2PSS5RFOEsHcIvA2C0gZnKus8eur/wYgnuHzjBOHCQzSbTTY2NojjmDAM+9QejsJWfqbzn1OH77BK5gDXr1+f7WCPEMeSoDKME3NtNpu8+eabeJ53oK37rPvYGdHYUPSBck+BB1f54+70tbNov50TVGaGCBCWKgR+3E9M+TGZPOXne8WajgAJK6srrh14Y9s97euiWZ9HJkE0nrTcPI22FmI989KVNTiMgo0Mquran30/QHiCWKs+vb1RGKwZuSO1eNLHVjIx2fnoQEaChZp1M1bFY8ZFei5iMthU2SMjrSzF4+OR+cJrXWJRnKIcaqRJkDZ2f0wyW10rxdVOzPuXqnNGCwJjfFqtLm/4Xf7WU/8b5VIFZRpE+jaxvk2kbxHrdRKzPdOWldnnZus3OFP9eyyVPtAnJzSoON5sNmk2m9y9e5dut0sYhn2kVaksIMR5lHlqoK51D2u/yJnVrxOGiwhvCeM9TixP00odere3t3Nb+aLSwziJoqPAPF5Q3804lgSVfQEHv4iZe24cx1y4cOFIZEQGCWq7UH+y6RNgMqMPFEAyZQQFrg6VKZor7aSJwjBke7s1TEypAoSzyRh9eyTtBKOMU/KWZuBL2Rvm1CNIK1N0AEGSpeiUxSqDGKXjN4K6lDG9usMArLXYrkac8AiCEG0MsZK5UvmsEAi8RBAuuHM09NQQDMYNmM5ABkoKtLZDs0QCwBNY7c4hCFzbuLVOZUEXJIPyBhZPsNGWPHuiSskrk4Wh1oKyCdImSNMjrb6B4xHYk7qvFjUrMvUDKROnMBLEvN59lQ+U/gaBt0Tdey/1sJca0rZLrNdzwor0bRJ9d+L1NDZho/MfaKlv8nDlb+N7/ZmBouJ40VAv08BrNpvcuHGDdrs9pIFXKpVYu9Yhit7Do8F7McIDYxFmh0BcZ2WxzOpyGeE9AtTRxs+tNwbTjkUynFfFHOb3gvpuxbEkqEHEccyVK1doNBqHds8dh8E61/bGLlibt2hXq1VWV2fzgQIONBgsorm1T2Vvj4VajXqpnjcPdAtRmEnrNE4qKTwgG2OJmxHxyOGZcWKvTiHcaNcWbq2bX7Kkpx5pqHv5NgrvLNSKXGqvq4bJ2WYnlRaeTGKIQ31oYirCdC122UUwHlndqBcB2ZS0tDUpgU3uzEu6UB0IynX+YOBsSrIrIIQA3y9oOdB3LTcaHVZtRCV0LdXZn9BLazh+Pb8+Tqy2n7Q0/VHl1XbMauinDxHTImvo6VCtVqjVVsg+wzfbf04tWOKZ2ktD7/JFlYXgPAvB+fxnxkpivZETVqxvE5t1zIA9SSP5Gm15iZOVH2Sl9H14B8wWlEolTp482deZprXO7d+vXr3K3t4epVKJ5eVl7t27l9e1/OAhrD2NMcbp5RrAdrFWU6+FLNZXeeTMSTwvxFhBt9vtSztm80r9EdxsRofH0WoDjjlBSSmJooivfe1rPPXUU7znPe858mJoJhgLbmG5/p0b7O7uDrWMzwRjSaZQ7jZao7XB15rFhTpBOUxr9q4bLIqc9YVOIzw3nT/dIUSNiGZ52hx8WlPxe6WcWCn3dJq2TZu2xJZ7Eju5UGlfrcgSKd07B3oLdo70d7pj0UtH81laAzYBMaZpSiDwhehL21lcnclY40ZiC6QVR4JKzckEFf2lwiA88Po7kQtBb7LWpxuUObHgo5QmSWI6nTYmHWINs1mgICDwQgJCqr6LOqwFg+qlB01CZGJudyWPL0z31G+MzuumK8vLIxX6v77/R4SizJMLzx+4PU+EVIN3UQ3elf/MWkNi7hVShO5vbbvc6/4BO9F/Y6X8fayUPkrgTZ/28n2fUqnE1tYWlUqF7/u+7yMIgqnqWmGYXUObCy1r7fQZyyWfyqkTPHT6FJ7nZvziOM49ozKjwyAI+iK4Wq02tq71VwR1zHDt2jU2NjYIgoCXXnrpgQ3mZRHUvXv3WFtbY2t9Z2TL+CxIYtW/KGctdilyoVYhCEvOI7yz32axnH15Bd1uTJLIfBq/b1h1CnT3u3SWDpe6sNYis/Re2oItEhDpFzBTKB+01YiNRhu3sDsHW+uk6EQvNZiRlhdbZq9sjYfpWrzy9NsTOC0/X3i5lkNOWsZSNgJFTGwUfjBrxNKP9XbC2cU6lUoAuPs4m/fKhlhVp+vsTjy/L9LyvICKH1Ch150XG3hh8SU80WFXbrIr79FSuwMxoU3T0wm1Wj0d1B4NC7y29/8Smy7vrl+c+fyE8Cj7Zyj7Z4APpednUXa3QFo3udH6EmX/ERbDD1APX8AX45uarLW5UekzzzzTJxM0a10rI5gsKspU3N1wsov2A99ndWWFE6urjoSEcI1KKWndunUrrw0P1rVGzVIeBy8oOMYEVS6Xefnll/nGN76BHtWufETodrvcuXMHKSXPP/cC/zV6dW4fqKjbS+8JyPkpm/UQoqdo7mCJ9lssPrSCtZZut83WVgvhefgzElOG9l4Hu1jUQ5t+O4nOoqACtAVpEaVUusnz8rSWsYauVE4xwvYiJpG2aGft5MX2Bl8LSiLEeDZ3y3VRzOGgI4NvxVwRtgDXvm8M8Z7l3EMnKVfKJEYRm4TYSPe3ljPVtbSxrLcS3rXUe8gSwmkiBoFPkbSMcUOsKpsHMtopL4RO5y4InBTRqzs3+JlzP0iQNshIk7Cn7rMrN1nfu8bNnSt4C376FD/dNfnLxp+wr7Z4aen7Cbz56jJCCEJxgtA7wWL4vvznyjSJ9Tr7yZcQBATeIoFYoeI/hkiVIxqNBm+88QYnTpzg4sWLBzY2zFPXcvNaws0VOtXivvVmaXGR5aWlfJQk81fLLOWvXLni5KxSXTwhBEmS/FUN6nsZQgjOnj2bFqNHd/LNi1arxeXLl/NZihdeeIGNK3cPEn6YCt1OQZ4pfWLLbuJ+Ec3eTFJ3r00Udel2I6qVChDgeYfXIUwShRdrqIT0zz/19lxssM6QCbSORKSh1E/eyhgilc4tpbNW/Z2Bqe9R3/hVGpVFlrDuF9Xo0lpRWi9K/57mI7EarAQxx7pqrEWnDxCxDQhLJSfA64dU/N5RWuvsPDLCioxMSWt8k8N6K+HReolwwgOHK2d5+H6Jcrl3IjobjFWKdifGaMO+2OO39xN+6OTFfM5o0ZzkzpVtTtjzfPTZHyEsB+zLLXblPfbUPfe3vD/Gzt7heud1tpM7vLT8AzxcPhpjwiICb5HAezc13p3/zNiY2NzFaMHNG+s0Gh3e/Z7nWFo8PWFLB2NSXavZbE6e1woCip5ZOm36yYioXq9z5swZN+phLW+88QalUonr16/zT/7JP+H27du8+uqr/PEf/zEvvvgi3//9399nQ1/EYa02AP7lv/yX/Pt//+/xfZ9//a//NT/4gz841zWbFceSoIA8FD9qT6goilhbW6PdbnPhwgUWFha4dOkSAPdubh3NPtpZBOWK5cpolybqi8x6FGGMobm9zwmpWFlZxhiI4sML1mrt8u6iIxGV0Rp8IiOOfBTW/bc7ylo+PzENS2E+H5SY1Iah0AAx7M4qilzVG7y1oNsKXbZ9BoZeOhwbFgabTCHCyqKtkYKvHYNXmr2N2AJaKyfqGgQunWdht5VwennY3lwIKPshZT+ENPVmLUiriHVKWCl5mbRLUhvLjUbM+ZXZ7dJ9z8Mvlfq6zYyx3FDb/HlrjSd2TrC7u4uUktXVVR566KF8NuhE6QwnSmd677OGptphV95jV26yJ++xq+4hTS/qb6pd/mj7/+KxygWeX/zvWA4frCCpJ8q0diusra1x9uxZnj3/GKDRtouzJcn0CUUeZR0Wvu8PeTtNO69VKpX6SAvIoy1rLSdPnuTJJ5/klVde4Wd/9mf55V/+ZdrtNl//+tdZX18fSVDzWG28/vrr/N7v/R6XLl1iY2ODH/iBH+DNN998a72y3rI9vUNxVJ5QUkquXbvG1tYWTz/9NM899xxCiDydArB5/f7c+9FKkyQqb4BAuPx2L22YEZNw5KVV2lXn4xsnFtppd+c6BplGQKYrJ8yv9izGSY8oURnhFEmroOPQscRx7MpL6QuyLj5E//bG7LIXtQlApsoXgiEDw1GkxUjS6kVbxW6+aWAZtIv3+rh1qxFxcqk8Vf1JCCiJgJIX5DPNrp1cE6XpwUY3QdYDwmD++9nzBKVSyFflFZrdBh85+17OnTuXL7S3b9+m1WoBUKvVWFpayusxy+EplsNTPMF70+O0tPQee/J+j7TkJrejy9yOLnO28jRPL7yfM+UnjrxJKY5j3nzzTYwxvPjii7mjNQT4A8ufIwc3mO4wehxlVhxmXisjrnK5zO3bt2m325TLZbTWJEnCt7/9bZ544gkef/xxfviHf3jsvuex2viDP/gDfvInf5JyucyTTz7J+fPnee211/joRz861/WYBceeoOb1hDLGcPPmTdbX13n88cd5+eWX+yKZTM0cjiCCspbGXguZSDzfIyyFaOUaJoQTaQMGUn4F8urutagu12i1D++9ZC2oVKDVduWQRtg4SK2JU2LL59Dy34p0cYBAgQqFiwwyYjpsyc4CscVb8AcMDNOnVGuxepTrbpG0IDPsMxZWqSAqgq6WdLUa0gLMkKfzRtjFZ1DKsNuKObk4e9QD7uMOhU/oVVnENQRU9DL/y4WL3I/3uBPvcDfa5k68Q1PN5uBsjKXdbmOM5s264MnViKfCkJWVlb7ahzEmT2ndvXuXy5cv96W0ssV2sbTKYrDKueozQLpAm3behHGl8w2+3foyJ0pneKxygZPhI0zjKTYO1lo2Nja4efMm58+fH5v+KqJnbd+/nVH3+LT3/aR9HVTXunLlCru7u7nrwr/5N/+Gs2fP8lu/9Vu88MILY/2fipjHamN9fZ2XX365773r6+uHPufD4NgSVFHu6DCWG0Xx2DNnzvDyyy+PDH2LN/E8EVSmz9dpJm6ANhPb9Dy0NmitCqku15nnBT5FGujut9HazEVQiSw8nRsLkYLq5BkUqTWRnPxUL9Jmh1IMfkkgvAA8r5d2M7MNxGawXQML/Z9L3soO+Xrk6tdmAmm5v2Xb8NhqL32jrHFkpSSRVnRUQiQTLPTSeROwtR9xon50Wm/r3X3+5O5NPnbuvVyoP5b/vK0iNuMd7sQ73Im2uRvvsCebQ++3FqLYqefXFhYoleoIAf9t62vciXf4nx5+mZLX+7w9z2NpaYmlpaVcIdtaR27NZpOtrS2uXbuGlJJqtdpHWpVyjUcrT/No5el8e7Hpsivvca17ibJXJRRlqn6dur8y9TVqt9u88cYb1Ot1Ll68OJe306R99jXrHBFKpRKrq6vs7e0hpeTixYssLCywtrbGpz71KT7zmc8QhiGXL1/mF37hF/gX/+JfjHTR/V7BsSWoDEEQ5O2d0+Cw4rGtvTbtxuyptUF9vub2TkpOmRSOR+AJNwCbC6J66eCtI60sKujuNmk2uyMVqKeBMRap+gv1piPxxxCUtZZY6V5L+QGw1kBHEa4uFDoQC7NFg7WiKUjLRqOfgAfhGgK9kaRVtIrf31csLnpUqqX/v703D4+qsPe4P2e2TCaTDQiEJBAIWQg7SRBcqliv2tqW9rpi9WKrtmoXUNsqXlu1rVpRX62V1qVatbZqfWvfarmorVq1bhDABVmyEALZ98y+neX9Y3IOZ7KQyR7gfJ4nDySZZM5MZs7v/LbvNzr1ZjaTbEnAabERCAQIKQoJySlIZoGgJPYErsiAMkvhiEyXN8yU5NFbc/hnUyV5yVNYlHakN5RksZNnySIv6Yi9REAK0RLq0gJWnaeFw64mLBYLaalpmHoNXOz1HKQh2MZXpq+K+T290UsA6Uta6gJrd3c3dXV1hEIhEhIStKCVkpKC3W4nMyE35vdF5DBeqVtTgRcEExbBirlXv0iWZQ4ePEhHRwdFRUVjKgUUd5l3iJmWy+Vi//79zJgxg7KyMkwmE5999hkbNmzg3HPP5ZlnniEhIQFRFKmsrBw0MxyJ1UY8PzvWCEM8WY2GLuWkQN0R6erqoqmpKS51XpfLRWVlJQkJCeTn5+NwOAb9GYAPPviAzKRsnv3FX+M+PlmS8fm8SJLUs2diQRJlavY30XsAQhIlTGahx5it15tBLWUpUckcy+xMJMGM6hJr6jN0oP/Z2D94MBTpUS4/guCwYsmJHXeVe5ZPw5IcVzBUesZv1VKkkJOokz0a/GcHC1qmqRZMjtFp7CoKpKbaSEmJ9i4lKSpGK0syVpsVh8OBxdz3uk9SZAKSSFCK9GRcIuEeA0SL2URhTgrmURQfTTRbub74NLIdg5+kRVHUlFTyCvPx2yJa0GoOdtIW7u7znBYmzeL0qUvJtA9eZhoIRYn2HD0eD263G4/Ho/Vh9JmWOl6tR1YkZGR6rCLp6uqmsrKSmZkzmT179rgKuR6NeAOUJEnU1NTgcrkoLi4mKSmJUCjEvffey9tvv80jjzzCsmXLhnz/oihSWFjIm2++SXZ2NitWrOC5555j4cKF2m1++9vfsnv3bh599FFeeOEF/va3v/Hiiy+yZ88evvnNb7J9+3YaGxs566yzqKqqGq0hibii9gmfQcUzxefz+aiqqkKSJIqKikhJSRnSfQiCQH1lY1y3jerzBQiHo8656gKxoij4PEH1N6LIMqIUtSO3WC0Dvwl0vRRZMCF6Q1jTU3qClowoRU/oR9S0dUFLF7siEann5A9q5FIA/GGkcARFXVDs+YjrsaqBqWfvScMvQUp8JxhBELD0GnDoHbQIAPFdS8Rxf+D1Rpg+PRkFBZ83mn07EhORZBm/z9+TyQpRySGLBYvFitlsxmmx4bToxrt71NUDUoQk0UFqipXWYF99xOEQkCI8vP8Dri8+jczE/qXiFUWhpaWFgwcPMnv2bM0VeiowK/FIXyQii7SFu2kOdvb0tTqp9jdQ6atjriOLsrRC8pOyeyxD4kcQBOx2O3a7PSYTUPswbrebtrY2/H4/ZrNZC1jquLbFFH3vVlVVEgwGWbpkqeY4MBblt+EQz/13dXVRUVFBVlYWpaWlCILAzp07ueGGGzj//PN59913j7oIfTRGYrWxcOFCLr74YhYsWIDFYuG3v/3tuPtknbAZlOr3EgwG2bNnD6WlfbXC9Bp9BQUFw3aYLC8vZ/+rtdR8enjgGymxzrm932gALfVduLv9SKIEREeWh/IGDIVEcNix50zv+00FLWgpcmzQUhQIho9SppuZjJwYte7WxsKPhjrJJwyw+JpoxjRjeIMD/SEIkF0whTDRhd+AGCEoigPadQyGAqSkWEi0M6CKgurqqn5I6sWETsVBn2mZTQI3rzqVaQ4H9X4Xdb5u6vwuDvu6aQ54hh20Uqx2vluwkjnO9Jiv+3w+KioqsNvt5OfnD1nQVFIk2sMumoKdNIc6cUd8pFmdzHXMZI4jE6tpdK99RVHUhgfcbjc+n09z583IyCAnJydqrTHACVQfsEY64DBaiKKoraQsWLCAxMREAoEAd999N9u3b+exxx4bN9+lCSCuP8AJH6AkSaK8vDxmWkUURQ4ePEhbWxt5eXnMmDFjRC/oXbt28dr/8x8i/ennKbHOuQ7HESdS/d9GVhSq9zQgiVHjsqGWMBRZwR8II5hNOApnx/d4FBAliWBY1O00qaO3aP83pSdiznBqPyT3lNqi/8YGrai6+SCKDAIIsxxDll86GtNmOkmdGptGibJMQBQJitGgFYgMHrRUGSmbzcK8/GlRZYg4URQZUZSIiJHYoGW2YLFayE5O5X9POx17r4AXlkQaAm7qfGrg6qbR7xlUnVzFIpj55txlrJiao/VpOjs7KSwsHFU1AlmR6Qi76Qi7sZrMJJhsJJisTLElDzm7OhqBQID9+/djtVqZOXMmgUAAt9utLcWqe0Xqx3Czj7Gko6ODqqoqZs2aRVZWFoIg8MEHH3DTTTdx+eWXs379+hENdxwDGAHqaKgBCqI9olNOOQVZlqmrq6Ouro7Zs2eTk5MzKrXs/7zxPv/8zX/6+DyJPVpcZrM5Riiy998kEAjgcfnobg30664bD+GwSKQnC3LMy8ZkH/yKWRRlQhGxn4xInyUpYDVjzk3T9or6G8kVxR7nXZMQLQPKR88JhIwEhKTRe4MmJFrIzksfNDBLclQtPdAraEXHxqUeNYaoqO706U7S0oZuYqlHfW6iHxHmJybxXxkztFKWWs7q/TqMyBKNfreWZdX5umkMuKNyUAOQb0tlsd9CQU7uqL22B0NRFDxiIPq8CWbMPRcnVmFo2T+gvT/708/T30adIFT7WqIYtZjRlwhHwwJjOERLklWEQiGKi4ux2+34fD5+/vOfs2fPHh577DEKCwsn5NjGGaMHdTT0bw51ZLympoYZM2awatWqUb166azrjgk6kiTh83pRFCWmLNE7MIVCYfwBP/aEBATZEn9w6r0IqxBjDy/6g9iOEqBkWSEckbR9p77ol2aFqMV6REaxmHpkbhRtlFudhDObzVitJvSyD30yLX3Q8oowigEqFBAJBUTsjqNfTZtNAk6bDWfPCUyRFTw+L75wGCHRQbhHFzAiS3R0+ElOTsBsHv6JXhAErFZrz1V+Ig2AJ2MqBWlTNI03r9erLXuqQcvpdJLrTCdXV7oTZZkmNdPyd3PY102D301IjODzetkleKhNSeUsYSrTZBHHCPXw4n18KdbYzDUq9CpxZG25R5rqKJl1vPp5JpNJC0RZWVna/akLxp2dnRw6dEhTctBPEI61tXtbWxvV1dXMmTOHzMzohOU777zDLbfcwne+8x0eeuihce/xTHZO2AxK6SmtdXR0sGvXLrKzs5k3b96YqJo/ecefqNlxGKvV2lM7F0lyJmHryaj0fwNBEAhHIvh9PiwWS8+koMDB/U2arP9QCQTCSNIRwTpTsoOErOmo7rGKovSoHhwJFEPFnOHElK5mE9GxbFmSdFOFSkyGpX7EEhu0rLlJhGQ57qGLwUhKSSBzdvyjx2pP0JHoIMEe+7pQM615WVPIyHBy2O2i3e8fleMEuGLxUk7KOjLSK0lSTFagqjjos4Lejq6yLHPwUC37Gg9jy5xGt1mm3t9NvT8qc3XStNmcmpFLjiN1UvRk+jsXiaJITU0NHo+H+fPnj8jduvd9qUoO6nMaDAax2WwxE4T6kvtwCYfDVFRUoCgK8+fPx2az4Xa7+elPf8rhw4d5/PHHNe27EwijxHc0ZFnmww8/xGKx4PV6OeWUU8ak5KEoCndd/iBdLd1IkkRiogO7/chknooqi6TuZCUlJWlZnLvLT0tDV99fHgeRiEQ41Kv3ZTGRVDAbuUfdWuopuQ03AMKRcXO1z6LKK+mFa7W9Ilmd9IsNWtHpwSOv2ymzUknOcBAWJQIRkWA4WnILRsRhB63ZhVOxDqKnJ0ZEvD4vVkt0bPxovTCLycSPzj2FzFtTGqYAACAASURBVNRk/JEIh90u6twuDrvd1LldtA0zaJkEgYuKF3D6rNwBb6M33FN7MIAWqDo6OsjMzGTu3Lkxr21ZUWgNerXSYFiWmJrgoCBlGrlJ6SOy/hhN2traqKquYlbOLLKzs2MCxVgF1N5j736/H4vFEpNpORyOuM4ViqLQ2tpKTU0N8+bNY/r06SiKwhtvvMHPfvYz1q9fz5VXXjlpRuLHGSNADUZ3dzeJiYns2LGDxYsXj3r2pCgKn+/cy+9/9CcsViupuvF0/fOuliBEUcSRdCSzUqmvaSPgj99BV0USZYIDWMMn5mVhTox9vIpCT6CSkeSenaJ4Xx8CkJsW1Qa0mOOUqVF04pjqfR0JWnanjaz5GX1+l4KiBa1AOEJwCEErdWoi02YOMHYtK3h9PY32JCdmS3zlluy0FK4/exWWfsoz/kiEOrdbF7iGFrRW587hG4VFWE3xHUsgEGDfvn0Eg0GSk5MJBALa4IBaHuxv2k1RFFqDPtpDPhLNVuxmCwlmC2k2e4wR43gQCoWoqKgAoKioqM/7cqDX5FgFrUgkEhO0VFsN/SBG7+w1FAqxf/9+zGYzRUVFWK1Wurq6uOWWW+jq6uKRRx4hJyfnKPd63GMEqMEIh8MoisKnn37KvHnzRq18ANEpncrKSg7vaOKTV/dq+mSxgSl6QgmFgtrOU+83WcAfpr5m6BJJoihFx8oH+IvZpqdhy0jv/5s61KCllv76C1pqYDFnJmNOTSTO195A9xgTtNLnJmGymjCbzbq9IstRglaEQFgkEBEJ9RO0BJPA7IIpWKxm/Q8TCAYIBaO7Z7aEofdmzpw/lzXL5g9+Q44ErTqPqydwuWk9iprJTKeT/1m0hNzUgSfuFEWhvr6e+vp67WpdRdXLU0+wHo8nZtpNDVq9+67RAYcQZsGkuQabBAFLP4Mwo4GiKDQ0NFBXVxe3fp7+Z/WMdclS7FF46V1yTUpKQlEUXC4XBQUFzJgxA0VR+L//+z9++ctfctNNN3HZZZeNetZ05ZVXsmXLFqZPn87nn3/e5/uKorBhwwa2bt2Kw+Hg6aefpqSkZFSPYYgYAWow1AC1Z88esrOzR2Xk1uPxaJL0hYWFPP/Lv1Ozu1ZTI7ZYrVjMlqg1dyCAPSFB23lS0f9JGmvbh5Q9RXtrImLk6CPIpkQbjrzhyZYoPaVBUYqW8xR13Nxpw5w1uvIyKdOTmJKTgtij/CFGRERJ1IRwLT2LsP1lbQpRqSW1NBgtD0ZwptmZnh3NZiORCD5vdMQ/0ZE4ohPbZauWUDZneM+pPxKh3hPNtAYKWqUzZ/KVeQXMSIq9kHK5XFRUVJCenk5eXl5cjXZ12k0ftKKqJUkxQav3iLa6BC309C+1MYcRBgSv18v+/ftJTk5m3rx5oz5i3bucPhb4fD727t2rCcG+/vrrmjSRyWTitttu46yzziI9ffALw6Hy7rvv4nQ6WbduXb8BauvWrTz88MNs3bqVbdu2sWHDhj6iseOMMcU3GKPpCRUMBqmqqiIQCFBYWEhqairuTg/1FY2ahH5EFAn4/UQiEW16S+096Y0G1feP1x3A7wtpqg36ZUNda0fLNkRJjmrGxXEZIQfCyKLUIyg7dBRZxmISSEhMIOrmC7KokJxkJ9yzO9VbFmk4eDv8pM1M7tG9s6jmsCgomlxVKBTC54ugQE/QskYDl9WC3RL9UC891EzrjLmzqG1upEUKY0tLRRmFk9YL2z7HmWBj/syhG+E5rFYKp0ylcMqRZfCAGKHe7eaw+0jguvP9/7BgWgan5cwiPzWN2poa/H4/CxYsGFIFQF+iUlF9i9xuN62trZqbq16ZPCUlpd+gNdyym14/b/78+UNWaYmX3ruFo7m4q2avDQ0N2vi7ajKYmJjIFVdcQUZGBh988AGbN2/mmWeeITd34N7icDj99NOpra0d8Psvv/wy69atQxAEVq1aRXd3N01NTZpW4mTlhA5QKiPxhFKnjNrb28nPz2fatKj5miRJ7PuwMubFHw6FEASB9PR0TCZTjPV29P6FqE231YpJMNHe5EI16FMNKhRFQZaihn6yrCBL8uDKDQMgef2Y0vrvx/SLgmbjYTabY4YHonsuAg5JYUZmGihR36hgWCQYipbdgmFxyIMYsqTg7QyQkpEU83UBYeCgFREJhYL4fGJs0LJG7cylcIhPdlXx/Yu+wLRp0xBlmWaXl/pOF4c7XTR0uWns9iDK8S3CqkiKzB/e+5jLVi1h6azMwX9gEBItVgqmTKWgV9Cqc7n57HAtW8vLycuaSWFONhb7yJU39L5F+hHt/pTJ1aClBq7+9ooGq86oEj+ZmZmaMOpYc+QicHSyKL/fz759+zTldLPZTHNzMzfeeCNJSUm89dZb2jlh3bp1o3Kfw6E/242GhgYjQE1m1BfpcDyhZFmmvr6euro6Zs2axapVqxAEQTuBA+z8525kRcHv9WrlE/3V55H9lyiKohARRcRIhMb6TgK+sE6NPCruKggCZouAWa89p+sRyVL0//FkUaLHjzXOACVLUVtqs9mM+ShTbd42D8mZKSCA1WrGajWTnKRFEMKiRDAU6Qlc0SGHwQKsp9VL8rTBx31jghb2nrtUNDtzv68nezUJtElW3v+sltWlVpxOJznpKeSkp7BqXvRNLMoyzd0eDne6qO9yU9fpotnlHTRoRSSJZ97/hPOWFHBWcd6ol5OkYAhPbS2LkpL4+jnnYrVaCYoiTV4PJkEgwWLBZjKTaLWQaBm5gsJAyuRqptXR0RETtPQLxgMtw+qXVZcuXdqnxD3eDOdvpCgKhw8fprm5maKiItLS0pBlmT//+c/85je/4c4772TNmjWTYnz/WOaEDlAq6n5SPKijowcOHCAjI4OVK1diNps1CRyIvuAPfFrLoYqotbPD4cBms8Vh+SBgtVjobvMhhhWsNit6NXJZ7Al+OgsNwRTVy7P0mvJSp/HULEuSlT5BS/IFBi1vRG07JMwmU9SHahCCriBiSMSS0M9tBbBZzdisZrRCjgLhiBSdxgtFR8mPSCtFiYQk/N1BktKHfiJTlz9DoTAms4kpyVMQTAKSKPLe7nqmJpmwEr046T3pljMllZwpOu8nSaKx20t9l4u6Tjd1XS6au7191BsUFP7vs0r2NbVz6UmLmJYcm/0NB1V+q7u7u49gsd1iYW5abF8jLEn4IxFMQnS4AQHMqhDwCBEEgaSkJJKSkvrYabjdbrq6urRl2MTExJieVnd3NwcPHmTu3LmahNhk0caLF6/Xy759+0hPT2fFihWYTCYaGhrYsGEDmZmZvPvuu2PSZxoJk8E6Yzic0AFKn0HFU+Lr6uqisrKSpKQkSkpKSEhIiA4LqK62goAkybS0NPPKH7ZiMplIS4vfaE2MSLQ0dOH36gwFdWrkR3yK1Ek3GVmM7hcJApoauSBELc1N/QUtSY6dyvMFsDj7Sn0rPYFJDZrxD+YpeFvdpM2K04ZBAJvNjM1mJtWpPr6oMaKaYQVDIq4mD45U+5D0+RQl2lOJRCIkOZ1YdRmFpef/22u8XPvfq0iwmrWpLL2duT4jcDqdzJ6ayuypR4JWRJJo6vZS1+mirstFfaebJpcHWVGoaetk06vvcfK8WZy1II/UxKGX4RRFoa2tjQMHDjBr1izy8/Pjej3ZzGZsvYYlVMUO1RxSZTSCgyAIOBwOHA6HppKgLsO63W7a29vZs2cPiqKQkpKCz+ejra1NU3CIh4kOZLIsc+jQIdra2rR+mSzLPPXUUzz++ONs2rSJc889d1IG2zVr1rB582bWrl3Ltm3bSE1NnfTlPTjBA5TKYEMSPp+PyspKZFlm4cKFJCUlaYEJjji0tre3c+DAAUS3gqc+gM1qQ4xIKApYrOY+BnAQfdOFAhE8rgCuTl9ce0dHVBhMsUFLjno+SUo0W4qWBY+4wfYJWoqCw6SQMj2VUChCIBghFIog9WRqUbX0IT2VAHia3KRmpw9b7FUQIMFmIcFmIVUt1Smwcn4uU2Ym09DqoqHNRXOnd4CelkIwFCLgD5CYaCcpKYmBImxbl48/bt3JVWtOIjU1NcbkTr8IW1dXpxlHqplWamoqSUlJ/Qathi4PDV1uDne6ONDWyUdb6lmSM4NV82YxL2NwTUCI9jcqKiqw2WyUlpaOWD+u9yI0HLnY6S39NVpBKyEhgUAggMvlYunSpaSlpcUoONTX18cYF6qZlt1un1Qneo/Hw759+5g2bZrWL6utreWHP/whhYWFvPfeezEDJ+PNpZdeyttvv017ezs5OTn8/Oc/185p1157Leeddx5bt27VfOyeeuqpCTvWoXBCj5mrU2DqiWD58uUx3w+Hw1RXV2t2G1OmTEGW5Zg3tSAIuN1uqqqqSEhIIC8vj+d/8XeaDrRov0eRFUKhCGJYIhKRiIREwqEIkhgd0x6JgsPRUE0KVZ8mFLSApQUti5l5py9BMAnRnaxgELMlAVkWCIUiBIMRwmFpyHYPGUUzcGaM7hs2yZHAD773Rez2aPYTESWaOjw0tLqob4sGrcbWbjxeLxazhaQkR5wLwzAvZyqXnbucxISj9230kkOqeoM6EXdUcdeeoFXX6cITDJHmsDPV6WDutHRslt6ZrkxtbS1tbW0UFhaOe7lotAKUqp83derUPmoWve8vFAppI+9ut5tgMEhCQkLM8zpY0BoLDyhZlqmpqaGrq4vi4mKcTieSJPHEE0/wzDPP8OCDD7J69epJFUyPEYw9qMFQFc3D4TCffvopK1asAKInodraWpqbm5k7d66WCqsDEOoJPhgMUl1dTSgUoqCggJSUFMpf/YTX//DvuO47FIgQDIS1fyNH81waJdSgpfa1UGBq0UwS0pOw2RL6dS9VZCU62BCMlttCwQjhyNFLognJdrKWjv6m/JLFOfz31/suGGoXEx4fKVNn0uUXaWhzUd/qor3bF9ek4/T0JNadV8bU1KG5G/b2KlKDlnpiHUgeJySKtLp9mE0mbBYzVrMJv9vNoYM1ZGZmTipn2N4cLYipDr0j1c/rHbQCgQA2my0maCUmjmx37Wh0d3ezf/9+Zs6MuvQKgkBVVRXr16+npKSEO++8syc7NxgGRoAaDDVAKYrCRx99xKpVq2hoaODQoUNkZWWRm5uLIAg9wwbRRri6t1RbW0tnZyd5eXlMmzYt+uLdWcP/e98/kAdUAT86kijHBKxQIIwoDu93xYMiK4iSSOIUJ1lL5iKKEpKkjrvrjPUsZnq/nmRJjg419JQFg8EIETE2wM5cko09ZfQntC48v4yFC6Jj0LIs09DQQH19fUzjXU8wHKGx3aOVButbXXS4+pcbslnNfPnkIlYujNMzawDUoKVmWj6fT3OF1Wda6n0Eg0EqKyuJSBLz8gtwJCZG+4o9Qw7HyhW6qtg9a1Zf/bzRIBwOa8+pqpWnt4hXLwZGcr+SJFFdXY3X66W4uBiHw4Eoivz2t7/lr3/9K7/5zW849dRTR/FRnZAYAWowVEVzQLNVTk9P1zbZewcmVYqlvr5eMxpTr3Aryg/w/z24FXGQzGKoiBGJYCBMMBAh5A8TDIRHXBJUFEXLBi1mCyaziXmnL8bcM6WnKNHR7EiPR5EkRlXJrT3Lr6qFeW8kSe7JsiKEghFMiTamFE0f9ZNUot3GVd8+DZMpQmVlpVZCGopVgT8YobE9Gqwa2tw0tLro8gS072dlpHDOykIKZ00btePXa7q53W7NyhyiAWru3Ln9ntRVuabeRzGZgtZg+nljid4iXn1eVYFXNXD1Vxnoj87OTiorK8nOziYnJwdBENi7dy8bNmzgC1/4AnfccQf2Udg5MzAC1KAoikJ7ezuVlZV0d3dzyimnkJiYqA1AmExHNMfa2tqoqakhIyOD3NxcTYqlo7GTd178iL3vV4zbMUfCEqFA+EjgCkTiE3XtmeKSJRmzJdaVN6Mghym5/VjBaz8afU4ikSMW5iaTScuyrJb+/arOu3wVCamJNDZ209jUTVOTi0Bw6MK3emRJRhAinPNfc1i2bGGPJcnI8QXCNLQdybIa2twkJlhZuXAWS/Jn4ojD5HEoqCUkp9OJw+HA6/VqJ1d9ptVfRjAe0j3xMBL9vLFkoIsB/ci7vlcoiqKmBFNcXExiYiKRSIQHH3yQrVu38rvf/Y6ysrIJflTHFUaAGgxRFNmxYwd5eXns2bOHk046KeaNHwlGaG1uY//nFcghheSEVMwmM2JYpKvFRVNNCy21QxdyHW0URSEcEqNlQX+0PBgORmL+WLIU3dMymU09Bnuxrw+r3cbcUxcO6WSnyLKWZYkREUmWMfXsS6lyQ9Oz0rhq43maqZ+iKHR1+WlsigasxsZo0BqspxX9YVVcN4QjycGsnGlc/s1VOJ1jd0Xr8YdoaHXR1BENVs7EBLIyUpiSMvygGA6HtUXV+fPn9wmwkUhEO7GqJ1e1jDXU3stYjmaPtX7eaKMGLTVwqarkVqsVj8dDdnY22dnZ2O12Pv30UzZs2MCXv/xlbr311jFz4H3ttdfYsGEDkiRx9dVXs3HjxpjvHz58mCuuuILu7qhdzz333MN55503JscyzhgBKh6CwSAAO3fuxGKxkJaWRmpqKiaTiZqaGiRJoqCgIDq9I0q0Hm6nsbqZxuoWGqubaavvmJTPiiwrhIIR/N6oXbwYkVEk+owZ68laPJfkGSObGJNlKSbTkmWZsi/mcdKZ87WTa28tN1lW6Ojw0tDYTVNP4GpudiNKR3pa4VAYv99Pgiqu2/MwUpMTWbv2JDJnjK5I7UAoioLbF8IfCmOzWLBaTFjMJhITrIMGAn22kZeXx/Tp8Zc/++u9qOZ6R5tyG4tMS5IkDh48SGdn55jq5401kUiEffv2EQqFmDJlCm1tbVx33XXIsozb7ebaa6/lG9/4BgsXLhyTACVJEoWFhfzrX/8iJyeHFStW8Pzzz7NgwQLtNt/97ndZvnw51113HXv37uW88847qubeMYQhFjsYzc3NbNmyhZKSEhYuXEgwGKS+vl4LTHa7nSlTotbb6iLizLwZzMybQek50d8RCoRprmml8cCRoOVqc0/sA6OnJCeFMNsUcuZOx2KxIEkyoWCEoD/cUyKMIOqs4LsOt444QJlM5p7F2yM9iAMfd7JgeZhwuF17bh0OB6mpqVq5JSMj+rFsaVRqSJJk2to81Bxs4dNPq+jqNmGzpfYJsC5PgD889R6rz5jPypPmjsh+PR4EQSDVaSdVl7UpikI4Imkivuq/Zl0J1ePxsH//flJTU1mxYsWQsw2bzca0adM0XTeIDVpNTU3alNtgQUt/3OpjijfTUns0M2fOHDf9vLFAVYPRXyh0dXXhdDr5+te/zurVq/n000956KGHOPXUU/nOd74z6sewfft28vPzycvLA2Dt2rW8/PLLMQFKXWOBqGq9qpF4onBCZ1AtLS08+eST7Ny5k4qKCiRJwu/3c+2113LRRReRkZGhlQNcLpd21aqeWNUTQG98Lj+N1c00VDfT1BO0At7guDymqE5agHA4FJfEkihKR6YG/RFySgvAOnINt95My0zh2z/5ElabRRMgVZ9X1Z+od9+ltraWrq4uCgoKSE9PJxKRaGlxa6XBxqZu2tu92o5W5vRUVp9RRGFh30m+8UbdPZNEiZqa6Mh1b4misUAdzVY/1H0ifdDqz3dssEwrEokOpITDYebPnz/h+nnDJRwOs3//fgRBoKioCJvNRiAQ4K677mLHjh08+uijMQFiLPnrX//Ka6+9xhNPPAHAs88+y7Zt29i8ebN2m6amJs455xy6urrw+Xy88cYblJaWjsvxjTFGiS9e3nnnHTZs2MB5553HsmXL+OSTTygvL6e5uZm8vDxKS0spLS3V5I08Hg8ulwu32x3th+iUnQeyI+huddFY1RO0DrTQdKB1VCf+osuOYfwBv+YxNZyT9Kz5WXz9+q/QXNdJ0+FOGg910Hy4k9AAzrxDoXBxNv995Wn9OtWqpnoul4uWlhZcLhc2m42pU6dqFwT9LcCGQiJNza6eXlY0aFmtZkqW57J4UTaJiWPTOxgMRVFoaWnh4MGD5ObmHlVWZqyDqSo3pF+CtdvtfZZg+0NRFJqbm6mtrR1wjP9YQP841GEORVH48MMPuemmm7j88stZv379uPbR4glQDzzwAIqi8KMf/YgPP/yQq666is8///yYzVx1GAEqXmpra3E4HDEupBA9aVZVVbF9+3a2b9/Ozp07CQQCLFiwgNLSUsrKyli0aBGyLGsBy+12I0lSjBxOcnJynxeUJMm013X0ZFnNNFS30FbXjjKMEfJIJKLt2fR3Eh8qF9z4FYpPLtQ+VxSFzlY3jYc6aTrcQdOhDlrqu4a1o7WwLJc1607p9ySnmj06HA7mzZuH2Wzuo9qgTmKpQau/CTe/P0xzs4vmFjcJCRaSk+1kTHOSnj4+S5U+n4/9+/fjcDjIz8/vc8Gip7/331gHAL1yg/oRCoWw2+0xF1qyLLNv3z7sdjsFBQUDPo6J1sgbjGAwyL59+0hISNAeh9fr5ec//zn79u3jscceo6CgYNyP68MPP+SOO+7g9ddfB+BXv/oVALfccot2m4ULF/Laa69pVhl5eXl89NFHfc5VxyBGgBoLwuEwn332Gdu2bWP79u3s3r0bq9XK8uXLKSkpoaysjHnz5hEMBrWgpfaw9CfW/vYyIqEIzQfbtPJgY3Uz3S2uAY9FkiR8Pj+KIpOUlDRqV3+pGSlc++srsNoG/n2SKNHW7KLpUAdNPYGrrckV145W/sIs1qw7Bbsjmt1EIhEOHDiA1+ulsLDwqGUw/fiwWna1Wq19yq69n1uvN0ggEMFqNWOxmDGbBez2wQcbhoJ+eKCoqChG12+4jNc4uV7Y1eVy0dbWRjAYJCUlhalTp2qv3aH4Pk100NLvLRYUFDB16lQUReGdd97hlltu4ZprruHaa6+dsGxEFEUKCwt58803yc7OZsWKFTz33HMsXLhQu82Xv/xlLrnkEr71rW+xb98+zjrrLBoaGib8uR0FjAA1HiiKgsfjYefOnWzbto3y8nKqqqqYNm2aVhosKytj+vTpMSdWn88Xc2JNTU3ttzfgdwdiBjAaq5vxufxD6jMNh5O/XsZZl39hSD8TCYu01HfRdLiDxp7A1dnm6fe2UzKS+erlq8AWoq6ujjlz5pCZmTmsx6EOC6gXBPq+i/r89l4cVRSFSJ/BBqFfQd94UBXH9Queo4mapfR+v472/aj28VOnTmXOnDkxgxhut1uz0NBnWgMFrd4utmNxvAMRCATYt2+flsVaLBbcbjc//elPqaur47HHHmPOnDnjcixHY+vWrVx//fVIksSVV17Jrbfeym233UZZWRlr1qxh7969fOc739GEiu+9917OOeeciT7s0cAIUBOFWu/evn27FrRUXT81YJWUlGC322P6WcFgUHvzqyfW3oaGTU1N7P1kP+aQlYhbormmlaYDrURCI+8R9eaSjV+noDRvRL8j6A9Hy4KH1fJgJ+5uP2Ikgtfno7h0Fmu+eTpTp4/emHjvEpbL5dJOrPpMq79eYX8c7aQaCASoqKjAbDZTWFg4rgoKo1la0+vnFRcXD6gxp/d9Uj96O+z299yqPwtjnwnW1dXR2NhIUVER6enpKIrCv/71L2677TY2bNjAt7/97eOhh3OsYwSoyYQsy1RXV2ulQX0/Sy0NLlq0CEALWC6XS3PitdlsdHZ2kpaWxrx582KuWmVZpr2+k8YDLTRWRbOs1sPtw9YEVLEnJXD1pstIG8Udo1AoxGef7KG5rgu7KYXOFi8t9V3kFs5g6cnzyC0Ymyb8QCfWpKSkmF5h7zLpQO8PRVE4dOgQLS0tFBYWMmVKnP5XkxBVP2/27NlkZWUN+fnXO+yqVQL1udUPYhytFzca+Hw+9u3bR2pqKnl5eZjNZjo7O7nllltwuVw88sgjx4RJ3wmCEaAmO/p+Vnl5Obt378ZiscT0s0wmE//4xz84+eSTSUpK0haL1Te96knUp58VFmmpbdPKgo3VLXQ2dQ35GFMzUvifOy4ibfrIxqNlWdYssufNm6cJ7ELPlGOHl6bDnfjcQZJTE3GmJjIjJ/2ofbCRoh93Vz9kWY4ZcHE6nX00/jo6OqisrGTGjBnMmTMHk8k06QcF+iMUCrF//35MJtOoZ3/6oKV+iKKoXRCo+2/xDJAM9ryqr62Wlhbmz59PamoqiqKwZcsW7rzzTjZu3Mill15qZE2TCyNAHWvo+1n/+c9/eOGFF2hra2PZsmUsXbqU0tJSVqxYwfTp07WRbFWyRRXHVEtY/Q0KBLxBmmqOZFkN1c34uvtX9daTMi2Zb/70fKZlDy9L6OjooKqqiunTp5ObmxuXqKssy7g6fJhMAharGbPFjNkan+38SFDH3fWqDRB11nU4HHR2diIIQp9doN4n0/EoZw0XRVGor6/XhgemTZs2buU3/QWBx+PRKgR6NfKhDPuoRoJ6z6m2tjZ+8pOfoCgKmzdvZsaMGWP2mAyGjRGgjlUkSeKMM87gkksu4ZprrqGjo0MbdS8vL6epqSmmn7V8+XISExNjhjDUXRd90OrdzFYUBU+HV9vNaqhqpulAM+F+dp4sNgtfuvqLLF29IO6TWCAQoLKyEkEQKCwsHLEKtCRF1eVVZ1j9cMNYovZnmpubSUpKQhTFGOHR1NTUAQVd9YMNkyFYeb1erQymjvKrTEQWKMtyn0xLluU+mVbvoCXLMgcPHqSjo4Pi4mKSk5NRFIWXXnqJ++67j9tuu40LL7xwUjznBv1iBKhjGVEUB7yS7K+f5ff7++xnATGDAqIoahJDas+ldzajKArtDZ00Vbdoo+4ttW1aP2vu4tl88fLTmJk38FWpavjY3t6uORGPFWM9IaZOtU2ZMiXG0kMUxZiTqjqVOVgW2/uYx/LY9YxEP2+sJwd7I8tyn0xLX3o1mUzU19fHmDo2Nzdz44034nQ6+fWvfx0jCTXaZB9KQgAAGEtJREFUDCbwCvDiiy9yxx13IAgCS5cu5bnnnhuz4zlGMQLUiUQ4HGb37t0x+1kWi4Vly5Zp/ayCgoKYXRePx4OiKDGZQH+LvmJEpPVQe4x8U9r0FErPXUresjkxSuWtra3U1NRo49YTXfcfbvYSiUSorq7G7/czf/78uJxTe49kBwKBGJkhdZVgtI4xXvT6ebNmzRrR36S/YDUemZcq4FpTU4PH48Fms7Fr1y7eeecd0tPT+fDDD/nVr3415llTPAKvVVVVXHzxxbz11lukp6fT2tp6PCzWjjZGgDqR6b2ftWPHDs3cT93PUvtZPp9P62epag36TKA/2aSgL0TzwRa6W92kTE0Gi0Kbu5XkVCf5+fljZk8wXOI9iaqj/IcOHRrRbpaKekGgV2yId49Iz3D3w6qqqsZcP288FnW7urqoqKggKyuLWbNmIQgCBw4c4Oabb0YURbKysti3bx+yLPPoo4+OmV5dPOoPN910E4WFhVx99dVjcgzHCYaa+YmMIAikpKRw5plncuaZZwJH9OHU/aynnnqKxsbGPvtZDodD62c1NzdrmYB+qdielMCcRbOJRCLU1NTgdrvJnTWblJRUBEVAkuQxVxYfCvFYYagSRU6nk7KyslEZi7bb7djtdu0KWj/u3tnZSW1tbcy4u/oxUHk3nsCl150bqq3HcBjoGHqrpQ9026MhiiLV1dX4fD6WLl2qGYo+9dRTPP7449x3332cc8452u8NhUIjfDRHp6GhQZMdAsjJyWHbtm0xt6msrATg1FNPRZIk7rjjDr70pS+N6XEdr5xQASqe2vHxjCAIZGZmsmbNGtasWQPE9rP++c9/cvfdd8f0s0pLS1m+fDkQ7Wd1d3dz+PBhwuEwJpOJYDBIVlYWy5Yt6/eELolSz8kq+vkRw8TJgyiK1NTU4HK5YqSWxqJ0pdq2OBwOMjMztftRey6tra1UV1fH9FzUQQGz2RxzPPogoOL3+6moqMBut49akB0OvZ83NUgNJVCp05+zZs2iqKgIQRCora3lhz/8IUVFRbz//vskJyfH/Mx4LkoPhOrO+/bbb1NfX8/pp5/O7t27SUtLm+hDO+Y4YQKUJEl8//vfj6kdr1mzZtyk9Scr6g5MYWEh//M//wPE9rOefvppPvvss5j9LIvFwt/+9jduu+02srKy8Pl8fPzxxyiKgtPp1DItp9PZR7lcEiXCwXDMOLY1DrO/sUDfM5s1axYFBQUTchyCIOB0OnE6nZrfj37cvbGxMWbcXQ1aTqdT6yfJssyhQ4dobm7WFBTUx6jex0QT7zFEIhHNcXjZsmXY7XYkSeL3v/89zz77LA888ACrV6+ekMeUnZ1NXV2d9nl9fX2f5d+cnBxWrlyJ1Wpl7ty5FBYWUlVVxYoVK8b7cI95TpgeVDy1Y4P+UftZb775JnfffTfNzc2aNba+n5WZmamdVF0uV0w/Sy0N9tfPioRF1BRLzVqsCWN75e/3+9m/f7+mcD3Untl4T7ZB9CKrt7q7yWQiISEBt9tNRkYGBQUF/U5m9j7WybpYrKpa6Pt/lZWVbNiwgZKSEu666y4cDseEHV88Aq+vvfYazz//PM888wzt7e0sX76cTz75hKlTp07YcU9CjB6Unnhqxwb9o/azXn75ZTZu3Mj5558PENPPevrpp2lqamLOnDkx/aykpCRNb7C1tVWzbT+akCvQR1tQMAlYRmFJVz8CX1RUNOyyy0B9l7E86ZvNZtLS0rRjFkWRyspK3G43M2bMIBgMsn37dm3cXf2IxxtsojOtcDhMRUUFiqJQWlqKzWZDFEU2b97MSy+9xG9+8xtOPfXUCTk2PRaLhc2bN3PuuedqAq8LFy6MEXg999xz+ec//8mCBQswm83cd999RnAaJidMBhWPOZjByJBlmQMHDmij7jt27MDn88XsZy1ZsgSI3c8Kh8MxFvD9DQkoioIYFo9YvitKtJ/Vj/nhQLS3t1NdXT0q49YTjWpZ3p9+3mDj7gMZFPa3UzbWQVdfZp03b542TLJ3717Wr1/PGWecwe233z7iJW+DSYeRQemJp3ZsMDJMJhMFBQUUFBRw+eWXA7H9rGeeeYbPPvsMs9nM8uXLWb58OWVlZSxdulRTH9cPCej7LcnJyX3KfpIkR8uDEC0RClFZpD4j8cEgFRUVCIKg9TQmkpEsF6uPxWQyaZlGb2w2G9OmTYtZVtWPu9fX18c97t77eIdzzAOhagFaLBZtoCMcDvPggw/y6quv8rvf/Y6ysrJRuS+DY5MTJoOKp3ZsMPYoioLX643xz6qsrGTKlCl9+ln6/SyPx4PJZIrpZ/UnLySJkmaaKMsy9XV1tHW0aYZ1xyqqfl5DQwP5+fkjVkpQDQr1TtDxjLuPhgqGftdM1QIE+PTTT9mwYQPnnXce//u//zvpdukMRhVjUbc3/ZmDGUw8+v0sVW+wsbGR3NzcmH6W0+ns46Zrs9n6yAtBdLGzsrKSjIwMsrOyMZmOlAIFgVHpZ40XR9PPG00GU3fXj7sP9PN6+gtcgUCA/fv3azbyFouFUCjEpk2bePfdd3n00Ue1MrDBcY0RoCYbdXV1rFu3jpaWFgRB4Lvf/S4bNmygs7OTSy65hNraWubMmcOLL76ojQmfqPTuZ+3cuROfz0dxcXFMP0sQhD5uupIkYTKZmDt3LhkZGf0aE4oRSd/OmpT7WXr9vOLiYpxO54SIufbOZGHgcfeB0GeAev+s8vJybrzxRi666CJ+9KMfTdjelsG4YwSoyUZTUxNNTU2UlJTg8XgoLS3l73//O08//TRTpkxh48aN3HPPPXR1dbFp06aJPtxJRyQSidEb/OyzzzCZTCxfvpxly5ZRU1NDe3s7t9xyi2bx7Xa7kSQpxuMpOTm5zwlVURQkUYr5mtnSt581XqhLqnppn8nCQOPu+tKg3qPM7/ezb98+nM6oDJbZbMbv93P33Xezc+dOHn30UYqLiyf4URmMM0aAmux8/etf5wc/+AE/+MEPePvtt5k5cyZNTU2sXr2aioqKiT68SY/az3r++ef51a9+xdSpU5EkidTUVEpLSykpKdH6WYFAICYLEASB5ORkrTTYn+mjJMkoclTFXf2eyWwa02ARDoeprKwkEomMWD9vPHed+lN3t1gsCIJAMBhk7ty5zJw5E0EQ+OCDD7jppptYt24d69evH7OSpUq8CjIvvfQSF154IeXl5cZwxthjBKjJTG1tLaeffjqff/45s2fPpru7G4ieVNLT07XPDY5OIBDgsssu4xe/+AWLFi3SxpbV/azy8nIaGhr67GclJyfH9LNUuwy93mBCQkK/Qxi9Gcqo+0DoBwdGWz9PH6jGK2h5vV727NlDYmIiSUlJlJeXc9ddd2Gz2QgEAtx8882sWbNmzCdp41Efh6jx4Ve+8hXC4TCbN28elQDlcrloaWmhsLBwxL/rOMQYM5+seL1eLrjgAn7961/38eUZDwO+44nExET+9re/aZ8LgsCMGTP42te+xte+9jUgtp/1xhtvcM899+D1emP6WcuWLcNsNmtZVmNjI8FgUBvFVgPXQHqDegSTMKQdK1XVIjExcUz08/Svp/GwxTh06BBtbW0UFxeTkpKCoijU1dXhdDq59NJLKS4uZufOnVx99dWsW7eOSy+9dMyOZ/v27eTn55OXlwfA2rVrefnll/sEqJ/97GfcfPPN3HfffaNyvzt27OC5555j/vz5FBYWTlrljsmOEaDGmUgkwgUXXMBll12mKTLMmDGDpqYmrcRneMeMLv3tZ+n7WX/84x9j+lmqf9bixYuJRCK4XC46OjqoqanRLMrVgJWcnNwng+rTzxIETKa+Fx7qyby1tXVEqhaTBdV+PSMjg7KyMkwmEy6Xi5/97GfU19fzyiuvkJubC0TL2+NBPAoyu3btoq6ujq985SsjDlDt7e184xvfYNq0aezcuZO1a9cCk0ML8VjECFDjiKIoXHXVVRQXF3PjjTdqX1+zZg3PPPMMGzdu5Jlnnhm3N++JjNVqpaSkhJKSEq677rqY/azt27ezadMmKioqSE9P77Ofpdpl9BZxVZ2Kk5KS+g9aktrPgu7ubqqqqsjIyGDFihXHtKqFLMvU1NTQ1dXFggULcDqdKIrC66+/zu23387111/Pt771rUn5GGVZ5sYbb+Tpp58eld934MABzj77bG6//Xa+973vceDAAe1+JuPjn+wYPahx5L333uMLX/gCixcv1l6sd999NytXruTiiy/m8OHD5Obm8uKLL46pTbpBfAzWz1IHMVJSUvB6vVp5UB0Q6M/+Xe9vVFRU1Ef49Fg7iXV3d1NRUaHZrwuCQGdnJxs3bsTtdvPII49MqGLLYCLRLpeLefPm4XQ6AWhubmbKlCm88sorw+pD3X333ezevZvnn3+eQCBASUkJL730klZSNEp9GsaQhEH8SJJEWVkZ2dnZbNmyhYMHD7J27Vo6OjooLS3l2WefNTb7OZIt6PUGe/ezlixZgtlsjtEbDAaDCIJAKBQiMzOTOXPmDGj/3lsKaTKe0CRJorq6WnvsDocDRVHYsmULd955Jxs3buTSSy+d8IA7VAWZ1atXc//99w97SOLjjz/m8ccfZ/369RQXF7NkyRLsdjunnXYad91115i5Gh+DGEMSBvHz0EMPUVxcjNvtBuDmm2/mhhtuYO3atVx77bU8+eSTXHfddRN8lBOPyWQiPz+f/Px8LrvsMqBvP2v37t2a7l9paSnZ2dk8+uij3HjjjeTn5+P3+9m9e7cmLaQXye1tSghHgtZ4Djscjc7OTiorK8nOzqawsBBBEGhra+PHP/4xgiDwxhtvMGPGjAk7Pj3xqI+PJg6Hg8TERP7zn/8AcPbZZ1NSUsIXv/hFIzgNAyODMqC+vp4rrriCW2+9lQceeIB//OMfZGRk0NzcjMVi6VMmMTg6aj9r+/btPPzww7z33nsUFRVhsVi00mBZWRlZWVlaP8vlcuHxeFAURVNpUPtZ/S0V92Y8ApbqFBsIBCguLtbs11966SXuv/9+br/9di644IJJmfGNJ3/5y194/fXX+cc//sH999/PFVdcARjlvV4YGZRBfFx//fXce++9WsO/o6ODtLQ0TSg0JyeHhoaGiTzEYwp1CXjXrl0UFxfz3HPPkZiYSGtrK+Xl5Wzbto1nn32W+vp6cnNzKSsri+lnqdJChw4dijF9VDOtgfydxtJEsb29naqqKnJzc5k/fz6CINDc3MwNN9xASkoK//73v0csYHu8cMkll/C1r32Ne++9V3tOjOA0PIwAdYKzZcsWpk+fTmlpKW+//fZEH85xhVryUpkxYwZf/epX+epXvwrE9rPefPNNNm3ahNfrZf78+VqWtXTpUsxms7ZU3NzcrPk76ZeKbTZbv6VBleGeHCORCBUVFUiSRElJCQkJCciyzJ///Gc2b97MXXfdxVe/+lXj5NsLh8OBw+FAkqR+y7YG8WEEqBOc999/n1deeYWtW7dqnkEbNmygu7sbURSxWCyGd9YwGeykNFA/6/PPP2fbtm38+c9/5ic/+Qkmk0nrZ5WVlbFo0SJNWqi7u5vDhw8TDoc1qwxVb7C3VQYcuZKPx0FXNUXUK1vU19ezfv16cnJyePfdd4/53a2xZqxlnI53jB6Ugcbbb7/N/fffz5YtW7jooou44IILtCGJJUuW8L3vfW+iD/GEo/d+Vnl5ORUVFaSlpWkBS+1n9fZ3Uk0f1UwrHtVxiOoB7t+/H0EQKCoqwmazIcsyTz/9NL///e+59957Oeecc4yswGAkGGPmBkNDH6BqampYu3YtnZ2dLF++nD/96U/9jkUbjD+KotDW1hazn6XvZ5WUlFBaWkpqaiper1cbwtD3s9QPvemjoig0NzdTW1tLfn4+GRkZABw8eJAf/vCHFBcXc88995CcnDyRD9/g+MAIUAbHNt3d3Vx99dV8/vnnCILAH/7wB4qKigzvrH7Q97PKy8vZsWMHHo+nTz/LYrHg8Xi0TMvv95OQkIDD4aC7u5ukpCTmz5+P1WpFkiQef/xx/vSnP/Hggw9yxhlnjHnWNJjy+AMPPMATTzyBxWIhIyODP/zhD5p8ksExhRGgDI5trrjiCr7whS9w9dVXEw6HNQ8hwzsrPvT9rPLycj755BNMJhNLly7VglZBQQFPPvkk+fn5ZGZmEg6Huf3224lEInR0dLBo0SIefvjhcdlrikd5/N///jcrV67E4XDwyCOP8Pbbb/OXv/xlzI/NYNQxApTBsYvL5dJMCPVX7UVFRYZ31jDR97PKy8v597//zUcffURBQQErV65k5cqVLF26lJdffpmtW7dy1lln4XK52LlzJ1arlbfeemtMM6jBZIl68/HHH/ODH/yA999/f8yOyWDMMPagDI5dDh48SEZGBt/+9rf59NNPKS0t5aGHHqKlpYWZM2cCkJmZSUtLywQf6bGDup+1evVqRFHkhRde4OWXX6aoqEjrZ23atIni4mLefPNN7Ha79rOSJI15eS8e5XE9Tz75JF/+8pfH9JgMJhYjQBlMSkRRZNeuXTz88MOsXLmSDRs2cM8998TcZrLq1B0LnHTSSbz33nua/I66n/XLX/6y39tPtnHpP/3pT+zYsYN33nlnog/FYAw5tqSTDU4YcnJyyMnJYeXKlQBceOGF7Nq1S/POAgzvrBGgKlJMJrKzs6mrq9M+H2j/7o033uCuu+7ilVdeMSZLj3OMAGUwKcnMzGTWrFlaf+nNN99kwYIFmncWYHhnHWesWLGCqqoqDh48SDgc5oUXXugj5vrxxx9zzTXX8MorrxgXJycAxpCEwaTlk08+0Sb48vLyeOqpp5Bl2fDOOo7ZunUr119/vaY8fuutt8Yoj//Xf/0Xu3fv1vqQs2fP5pVXXpngozYYBsYUn8HYUF5ezlVXXcX27duRJImTTjqJv/zlLyxatGiiD21cePDBB3niiScQBIHFixfz1FNP0dTUZPhnGRjEjxGgDMaOn/70pwSDQQKBADk5OQOOAh9vNDQ0cNppp7F3714SExO5+OKLOe+889i6dSvnn3++Jg21dOlSwz/LwGBg4gpQRg/KYFjcdttt/Otf/2LHjh3cdNNNE30444ooigQCAURRxO/3M3PmTN566y0uvPBCILpg/Pe//32Cj9LA4NjHCFAGw6KjowOv14vH4yEYDE704Ywb2dnZ/PjHP2b27NnMnDmT1NRUSktLDf8sA4MxwAhQBsPimmuu4Ze//CWXXXYZN99880QfzrjR1dXFyy+/zMGDB2lsbMTn8/Haa69N9GEZGByXGIu6BkPmj3/8I1arlW9+85tIksQpp5zCW2+9xRe/+MWJPrQx54033mDu3Lma0vf555/P+++/b/hnGRiMAUYGZTBk1q1bx0svvQREFQa2bdt2QgQniI41f/TRR/j9fhRF0fazzjzzTP76178CJ85+1muvvUZRURH5+fl9VD4AQqEQl1xyCfn5+axcuZLa2trxP0iDYxojQBkYDIGVK1dy4YUXUlJSwuLFi5Flme9+97ts2rSJBx54gPz8fDo6Orjqqqsm+lDHFEmS+P73v8+rr77K3r17ef7559m7d2/MbZ588knS09Oprq7mhhtuOKFKwQajgzFmbmBgMGTiUR4/99xzueOOOzj55JMRRZHMzEza2toM/UQDMMbMDQxODK688kqmT58esyjd2dnJ2WefTUFBAWeffTZdXV1A1HJj/fr15Ofns2TJEnbt2jWs++xPebz35KL+NhaLhdTUVDo6OoZ1fwYnJkaAMjA4xvnWt77VZ5Lwnnvu4ayzzqKqqoqzzjpL6xG9+uqrVFVVUVVVxeOPP24sExtMaoZa4jMwMJiECIIwB9iiKMqins8rgNWKojQJgjATeFtRlCJBEB7r+f/zvW83xPs7GbhDUZRzez6/BUBRlF/pbvN6z20+FATBAjQDGYpx0jGIEyODMjA4PpmhCzrNgOrZng3U6W5X3/O1oVIOFAiCMFcQBBuwFuit2voKcEXP/y8E3jKCk8FQMPagDAyOcxRFUQRBGNXAoCiKKAjCD4DXATPwB0VR9giC8Atgh6IorwBPAs8KglANdBINYgYGcWMEKAOD45MWQRBm6kp8rT1fbwBm6W6X0/O1IaMoylZga6+v3ab7fxC4aDi/28AAjBKfgcHxir68dgXwsu7r64QoqwDXUPtPBgbjhTEkYWBwjCMIwvPAamAa0ALcDvwdeBGYDRwCLlYUpVOILiFtBr4E+IFvK4qyYyKO28BgMIwAZWBgYGAwKTFKfAYGBgYGkxIjQBkYGBgYTEqMAGVgYGBgMCkxApSBgYGBwaTk/wd1sUcynvMIGwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Author: Remi Flamary \n", "#\n", @@ -88,12 +47,26 @@ "import ot\n", "# necessary for 3d plot even if not used\n", "from mpl_toolkits.mplot3d import Axes3D # noqa\n", - "from matplotlib.collections import PolyCollection\n", - "\n", - "#\n", - "# Generate data\n", - "# -------------\n", - "\n", + "from matplotlib.collections import PolyCollection" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate data\n", + "-------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ "#%% parameters\n", "\n", "n = 100 # nb bins\n", @@ -111,24 +84,74 @@ "\n", "# loss matrix + normalization\n", "M = ot.utils.dist0(n)\n", - "M /= M.max()\n", - "\n", - "#\n", - "# Plot data\n", - "# ---------\n", - "\n", + "M /= M.max()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot data\n", + "---------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAADQCAYAAAB2rXoYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8VfX9+PHX+96bQfZkZwBho6yAKG4caKs4q1atWqy21tbW+rVaZ+1Qa6tf+6sdfl046ijaiorigqpggbBBVlhJmAlkk3VzP78/zomNMSE35Cbnjvfz8cgj955z7jnvXA73fT9bjDEopZRSClxOB6CUUkoFC02KSimllE2TolJKKWXTpKiUUkrZNCkqpZRSNk2KSimllE2TolIBICJ/FZF7AnSubBGpERG3/XyRiFwfiHPb53tXRK4J1PmUCicepwNQKhSIyE6gH+AFmoEvgOeBJ40xPmPM97twnuuNMR92dIwxpghI6G7M9vXuB/KMMVe1Ov85gTi3UuFIS4pK+e88Y0wikAM8BPwceDqQFxAR/aKqlIM0KSrVRcaYSmPMPOAy4BoRGSciz4nIrwFEJENE3haRChE5JCKfiohLRF4AsoG37OrR20UkV0SMiMwWkSLg41bbWifIYSKyTESqRORNEUmzr3WqiJS0jk9EdorIGSIyE/gFcJl9vTX2/i+rY+247haRXSJyQESeF5Fke19LHNeISJGIlInIXa2uM1VECuyY9ovIoz31nivVWzQpKnWUjDHLgBLgpDa7fmZvz8Sqcv2Fdbi5GijCKnEmGGN+1+o1pwCjgbM7uNx3gO8CA7CqcP/oR3zvAb8FXrWvN76dw661f04DhmJV2/6pzTEnAiOBGcC9IjLa3v448LgxJgkYBrzWWUxKBTtNikp1zx4grc22JqzklWOMaTLGfGo6n2T4fmNMrTGmroP9Lxhj1htjaoF7gG+1dMTppiuBR40x240xNcCdwOVtSqm/NMbUGWPWAGuAluTaBOSJSIYxpsYY858AxKOUozQpKtU9g4BDbbY9AhQC74vIdhG5w4/zFHdh/y4gCsjwO8qODbTP1/rcHqwSbot9rR4f5r+dgGYDI4BNIrJcRL4ZgHiUcpQmRaWOkohMwUqKn7XeboypNsb8zBgzFDgfuFVEZrTs7uB0nZUks1o9zsYqpZUBtUBcq5jcWNW2/p53D1bHodbn9gL7O3kdxpitxpgrgL7Aw8BcEYnv7HVKBTNNikp1kYgk2aWiV4AXjTHr2uz/pojkiYgAlVhDOHz27v1YbXdddZWIjBGROOABYK4xphnYAsSKyDdEJAq4G4hp9br9QK6IdPR//WXgpyIyREQS+G8bpLezgETkKhHJNMb4gAp7s+9Ir1Eq2GlSVMp/b4lINVZV5l3Ao8B17Rw3HPgQqAE+B/5sjFlo73sQuNvumXpbF679AvAcVlVmLPBjsHrCAjcBTwG7sUqOrXuj/sP+fVBEVrZz3mfsc38C7ADqgR/5GdNMYIOI1GB1urn8CG2iSoUE0UWGlVJKKYuWFJVSSimbJkWllFLKpklRKaWUsmlSVEoppWxBN/lwRkaGyc3NdToMpZRSYWTFihVlxpjMzo4LuqSYm5tLQUGB02EopZQKIyKyq/OjtPpUKaWU+pImRaWUUsrmV1IUkZkisllECtub3FhEYkTkVXv/UhHJtbdHicgcEVknIhtF5M7Ahq+UUkoFTqdJ0Z5g+AngHGAMcIWIjGlz2Gyg3BiTBzyGNTkwwKVAjDHmGGAycGNLwlRKKaWCjT8lxalAob3eWiPWJMiz2hwzC5hjP54LzLAnQzZAvL02Wx+gEagKSOQqYHSqP6WUsviTFAfx1bXcSuxt7R5jz65fCaRjJchaYC/WiuO/N8a0XXsOEblBRApEpKC0tLTLf4Q6OsYY/vbvbUz81QfMWbJTk6NSKuL1dEebqVjL5gwEhgA/E5GvLZtjjHnSGJNvjMnPzOx0GIkKgOr6Jn7w4koefHcT8dEe7pu3gZ++uprDjZ2uGKSUUmHLn6S4m68ucDrY3tbuMXZVaTJwEPg28J4xpskYcwBYDOR3N2jVPVv2VzPrT4v5YON+7v7GaD65/TR+duYI3lyzh4v+vIQdZbVOh6iUUo7wJykuB4bbi5BGA5cD89ocMw+4xn58CfCxseriioDTAewVuacBmwIRuDo6lYebuOQvS6hu8PL364/j+pOG4nYJP5oxnDnXTWV/VT2X/nWJlhiVUhGp06RotxHeDCwANgKvGWM2iMgDInK+fdjTQLqIFAK3Ai3DNp4AEkRkA1ZyfdYYszbQf4Ty39+XFVFV7+XZa6dw3ND0r+w7eUQmf7s6n7KaRl5f2bYyQCmlwp9f07wZY+YD89tsu7fV43qs4RdtX1fT3nbljEavj+eW7GB6XjrjBiW3e8yU3FTGZ6XwzGc7uHJqNi6X9HKUSinlHJ3RJoLMX7eX/VUNXH/i1/o6fUlEuP7EIewoq+WjTQd6MTqllHKeJsUIYYzhqc+2MywznlNGHLmH7znj+jMopQ9Pfbq9l6JTSqngoEkxQizdcYj1u6uYfeLQTqtEPW4X156Qy9Idh1hXUtlLESqllPM0KUaIpz7dQVp8NBdNajvvQvsum5pFfLSbpz/T0qJSKnJoUowA20tr+GjTfq6alkNslNuv1yTFRnHZlGzeXruXvZV1PRyhUkoFB02KEeC5JTuJcrm4elpOl1533fRcfMYwZ4lfa3MqpVTI06QY5nw+w/x1ezlrbD8yE2O69NqstDhOHpHJ/HV7dV5UpVRE0KQY5tbvqaSsppEZo/se1etnjOpL0aHDbNep35RSEUCTYphbuKkUETh5+NFNtH7qyL72eXTMolIq/GlSDHMfbz7A+MEppCd0req0RVZaHHl9E1i0WZf0UkqFP02KYayspoG1JRWcPuroqk5bnD6qL0t3HKS2QScJV0qFN02KYeyTLaUYA6eN7F5SPHVkJk3NhsWFZQGKTCmlgpMmxTC2cHMpGQkxjB2Y1K3z5OekkRDjYeFmbVdUSoU3TYphytvs45MtpZw6MrPbK11Ee1ycmJfBwk2lOjRDKRXWNCmGqVXFFVTWNXW76rTFaaMy2VdVz6Z91QE5n1JKBSNNimFq4aYDuF3CSSMyAnK+L4dmaBWqUiqMaVIMUws3l5Kfk0pSbFRAztcvKZaxA5NYtEmHZiilwpcmxTC0r7KejXurOK2bQzHaOm1kX1YUlVN5uCmg51VKqWChSTEMLbKrOAPVntjitFGZNPsMnxZqaVEpFZ40KYahpTsOkZEQw4h+CQE97/jBKcRHu1m6/VBAz6uUUsFCk2IYWr7zEFNyUxHp3lCMtjxuF5NyUlm+U5OiUio8aVIMM/sq6ykpryM/N61Hzp+fk8bm/dVU1mm7olIq/GhSDDMFu6xSXH5Oao+cPz83FWNgVVF5j5xfKaWcpEkxzBTsLKdPlJsx3ZzarSMTslJwu4SCnZoUlVLhR5NimFm+8xATs1OIcvfMP218jIexA5O0XVEpFZY0KYaRmgYvG/dW9VjVaYvJOamsKamg0evr0esopVRv06QYRlYVleMz9FgnmxZTctOob/KxYU9lj15HKaV6mybFMLJ8ZzkugYnZKT16nZaSqLYrKqXCjV9JUURmishmESkUkTva2R8jIq/a+5eKSG6rfceKyOciskFE1olIbODCV62t2HWI0QOSSAzQfKcd6ZsUS0563Jc9XZVSKlx0mhRFxA08AZwDjAGuEJExbQ6bDZQbY/KAx4CH7dd6gBeB7xtjxgKnAjrArQc0NftYVVTR4+2JLSbnpFKws1zXV1RKhRV/SopTgUJjzHZjTCPwCjCrzTGzgDn247nADLGmUzkLWGuMWQNgjDlojGkOTOiqtY17qzjc2Nzj7YktpuSmcbC2kR1ltb1yPaWU6g3+JMVBQHGr5yX2tnaPMcZ4gUogHRgBGBFZICIrReT29i4gIjeISIGIFJSW6mTTR6OlfS8/t3dKilPs6xTs0nZFpVT46OmONh7gROBK+/eFIjKj7UHGmCeNMfnGmPzMzMweDik8Few6xKCUPgxI7tMr1xuakUBKXBQFOl5RKRVG/EmKu4GsVs8H29vaPcZuR0wGDmKVKj8xxpQZYw4D84FJ3Q1afZUxhuU7y78svfUGl0vIt9sVlVIqXPiTFJcDw0VkiIhEA5cD89ocMw+4xn58CfCxsXpgLACOEZE4O1meAnwRmNBVi6JDhymtbui19sQW+blpbC+rpaymoVevq5RSPaXTpGi3Ed6MleA2Aq8ZYzaIyAMicr592NNAuogUArcCd9ivLQcexUqsq4GVxph3Av9nRLbVxRVAz49PbGtStlUyXWNfXymlQp3Hn4OMMfOxqj5bb7u31eN64NIOXvsi1rAM1UNWFVXQJ8rNyH6JvXrdcYOScLuE1cUVzBjdr1evrZRSPUFntAkDa0oqOGZQMp4emgS8I3HRHkb0S/yypKqUUqFOk2KIa/T62LCnivFZyY5cf0JWCmuKK/D5dBC/Uir0aVIMcZv2VdHo9TEhq/d6nrY2ISuZqnovOw/qIH6lVOjTpBjiWqounSsppn4lDqWUCmWaFEPc6uIKMhJiGJTSO4P228rrm0BctFt7oCqlwoImxRC3priCCVnJWFPN9j63SzhmUDKrS3RtRaVU6NOkGMIq65rYVlrLhKzeHZ/Y1oTsFDbuqaLBq3O9K6VCmybFELbOLp2NdzopDk6hsdnHxr3VjsahlFLdpUkxhK0utuYdPXaw8yVFgNVFOg+qUiq0aVIMYauLKxmaGU9ynyhH4+ifFEvfxBjWaLuiUirEaVIMUcYYVhdXMMHhUiKAiDAhK0WHZSilQp4mxRC1p7KespqGL6sunTY+K4UdZbVUHG50OhSllDpqfk0IroLP6iJ70H4QlBQBJtqdfdaUVHLKCF0oOuJU74NtH8PetbBvLexbD7HJMOBY6H8sDJwAw04Ht7NV/Up1RpNiiFpTUkG028XoAUlOhwLAMYOTEbHGTWpSjCCNtbD4j7D4cfDWQVQc9BsHx1wMdRVWgtz0DmAgYySc9WsYfiY4NK5Wqc5oUgxRq4srGDMwiWhPcNSAJ8ZGkZeZoDPbRAqfD9a+Ah89ANV7YeyFcNJt0Hc0uNxfPbahBrZ9BB/eD3+/1CoxnvUb6DfGkdCVOpLg+ERVXeJt9rGupNLxQfttjbc72xijK2aENW8DvD4b/vUDSBwA310Alz4H/cd9PSECxCTAmFlw01I4+0HYvQKePAU2/LPXQ1eqM5oUQ9DWAzXUNTUHXVKckJXCwdpGSsrrnA5F9ZSGavj7t2DDGzDjPrj+I8ie5t9rPdFw/E3wo1UwcBL84zpY/lTPxqtUF2lSDEH/XRkj+JIi6IoZYau2DOacBzs+hVl/hpNuBddRfITEp8PV/4QRZ8M7P4OFD4LWLqggoUkxBK0priC5TxS56XFOh/IVI/snEuNxabtiOKophWfOhgMb4fKXYOKV3TtfdBxc9hJMuBL+/RAsuCswcSrVTdrRJgStLq5gfFaKYytjdCTK7WLcoGQtKYYbbyO89h2oLLFKeDknBOa8bg/MegJiEuE/T0D6MJgyOzDnVuooaUkxxNQ2eNmyv5oJg51ZVLgz4wensH5PJU3NPqdDUYFgDMy/DYqWWAksUAmxhQic/VsYfha8e7tVNauUgzQphpj1uyvxGYJmJpu2JmSnUN/kY8t+XTEjLCz7P1g5B076GRxzSc9cw+WGi5+CtKFWibR8Z89cRyk/aFIMMWtKgmsmm7Za5mLVKtQwsH0RvHcHjDwXTru7Z68VmwxXvALGBy9fYfVyVcoBmhRDzOriCrLS+pCeEON0KO3KSutDWny0drYJdTUHYO53IWMEXPTk0fUy7ar0YdZ4x9LN8M5tPX89pdqhSTHErCmuDNpSIlgrZowfrJ1tQpox8NZPrJloLn3O6gjTW4adBiffZs2Ws/Ht3ruuUjZNiiHkQHU9uyvqgm7Qflvjs1LYeqCGmgav06Goo7H2Vdj8Dsy4B/qO6v3rn3SbNYn42z+xxkYq1Ys0KYaQNcXWIr7BnhQnZKVgDKzTRYdDT+VumH87ZB8P025yJgZPNFz4V6ivhLd/qgP7Va/SpBhC1hRX4HYJYwcG53CMFuO1s01oMgbm3Qy+Jrjgz+3PY9pb+o2FU++EjfNg/evOxaEijl9JUURmishmESkUkTva2R8jIq/a+5eKSG6b/dkiUiMi2nreDWtKKhjZL5E+0Q5+WPkhNT6anPQ47WwTalY8Z62JeNavrOERTjvhxzB4ijUVXPV+p6NREaLTpCgibuAJ4BxgDHCFiLRd82U2UG6MyQMeAx5us/9R4N3uhxu5fD7D6uKKoB2f2NYEe8UMFSJqy+DD+yD3JMgPklll3B644C/QdBg+uMfpaFSE8KekOBUoNMZsN8Y0Aq8As9ocMwuYYz+eC8wQew4yEbkA2AFsCEzIkWnHwVqq671fjgMMduMHp7Cvqp59lfVOh6L88eF91oLB3/hDcC0AnDEcpt9idf7ZudjpaFQE8CcpDgKKWz0vsbe1e4wxxgtUAukikgD8HPjlkS4gIjeISIGIFJSWlvobe0RZXRScK2N0pCXOlskGVBArXgarXoTjfwiZI52O5utOvBWSs63p5pqbnI5Ghbme7mhzP/CYMabmSAcZY540xuQbY/IzMzN7OKTQtKakgvhoN3l9E5wOxS9jBybhcYlWoQY7X7PVZpc4EE6+3elo2hcdB+c8BAe+gGVPOh2NCnP+rJKxG8hq9Xywva29Y0pExAMkAweB44BLROR3QArgE5F6Y8yfuh15hFlZVM6xg1Nwu4KoausIYqPcjBmYxMpd5U6Hoo6k4BnYt9YepB/EX7hGnmtNGr7wQRh3MST2dzoiFab8KSkuB4aLyBARiQYuB+a1OWYecI39+BLgY2M5yRiTa4zJBf4X+K0mxK6rbfCycW81+bmpTofSJZNzUllTUqErZgSrmlL4+Fcw9FQYc4HT0RyZCMx8CJob4P0enodVRbROk6LdRngzsADYCLxmjNkgIg+IyPn2YU9jtSEWArcCXxu2oY7emuIKmn2GSTmhlxTrm3x8safK6VBUexb91upcc84jwdW5piPpw6xON+v+AcXLnY5GhSm/Fhk2xswH5rfZdm+rx/XApZ2c4/6jiE8BK+wqyEnZoZcUwYo/VDoIRYwDm6xxiVO+B5kjnI7Gf9N/AiufhwW/gNnvh0YyVyFFZ7QJAQW7yhnRL4HkPlFOh9IlA5L7MCilz5dJXQWRD+6B6EQ45edOR9I1MQlw+t1Qsgy++JfT0agwpEkxyPl8hpVF5UzOSXM6lKMyKSeVgl2HMDp/ZfDYthC2vm+tRhGf7nQ0XTfhSug3Dj64D7wNTkejwowmxSC39UAN1fXeL6siQ01+Tir7qxrYXVHndCgKrCEY798NKTlw3I1OR3N0XG5rKrqKXTpEQwWcJsUg11L1mB+iSbF1u6IKAqtfgv3r4Yz7wROcC1X7ZdjpkHcm/PsRqD3odDQqjGhSDHIrdpWTbk+wHYpG9U8kLtqt4xWDQWMtfPwbGDwVxl7odDTdd9avoLEaPvmd05GoMKJJMcit2HWIyTmpSIj2svO4XUzISqFAk6LzPv8z1OyDs34dHr02+46GiVfD8qfh0A6no1FhQpNiECuraWDnwcMh257YIj8nlY17q6ht8DodSuSqLYPFj8Oob0L2cU5HEzin3gkuD3z8a6cjUWFCk2IQ+7I9McRmsmlrUk4qPqOLDjvqk99DUy3MuM/pSAIraQAcfxOsnwt7VjsdjQoDmhSD2Mpd5US7XYwdmOx0KN0yMTsVEe1s45jynbD8KauqMZQG6vtr+i3QJw0+vN/pSFQY0KQYxAp2lXPM4GRio9xOh9ItyX2iGNE3UdsVnfLxr60qxlPvdDqSnhGbDCf/D2xfCNs+djoaFeI0KQapBm8z60oqQ749scWknFRW7SrH59NB/L1q7xprrtDjb7KqGsPVlNmQkm2VFn06Ab06epoUg9T63ZU0NvtCbr7TjuTnpFLd4GXLgWqnQ4ksH94PfVKtKsZw5omB0++xvgRseMPpaFQI06QYpJbtsKoaw6Wk2NJZaPmOQw5HEkG22dWJJ91mVTGGu3GXQL9jrOWwvI1OR6NClCbFILVkWxkj+iWQmRjCs460kp0Wx8DkWBYX6uwjvcLns0qJydkw9XtOR9M7XC44836rY9GKZ52ORoUoTYpBqMHbzPKdhzhhWIbToQSMiHBCXgafbz9Is7Yr9rwNb8De1XD6XaE9nVtXDZsBQ06Gfz8M9bqOp+o6TYpBaOWuCuqbfEzPC5+kCDA9L53KuiZddLineRutKsR+4+CYIy5zGn5ErHldDx+Ez//kdDQqBGlSDEJLtpXhEjhuaGguF9WRlpLvkm1lDkcS5lY8Z1UhnnG/taJEpBk02ZrbdcmfoHq/09GoEKNJMQgtLizj2MEpJMWG1qLCnemXFEte3wQWb9N2xR7TUG1VHeaeBHlnOB2Nc06/B5obrPdCqS7QpBhkquubWFNSyfS8EFz81Q/Th6WzfMchGr06lqxHLPl/cLgMzvxleEz6fbTSh8Hk66xSc9lWp6NRIUSTYpBZtuMQzT7D9DDqZNPaCXkZ1DU1s6pIZ7cJuKo9sPiPVtXhoMlOR+O8U26HqD46/ZvqEk2KQWZx4UFiPC4mhcn4xLamDU3HJWgVak9Y+BswzVZbooKEvnDiT2DT27BzsdPRqBChSTHILNlWRn5uasjPd9qR5D5RHDMomSWF2tkmoPatg1UvwdQbIDXX6WiCx7QfQtIgeP8unf5N+UWTYhApq2lg077qsBqf2J4T8jJYXVyh6ysGijHw/t3QJwVOvs3paIJLdJzV6WbPKlj/utPRqBCgSTGILLGrFMNtfGJb04dl4PUZlumUb4FR+BFsXwSn/Nya51R91bGXQf9j4KNfQlO909GoIKdJMYgsKSwjMdbDMYPCe57K/NxUoj0uFmsVavc1e61SYuoQyJ/tdDTByeWCs34DlcWw9K9OR6OCnCbFILJ4WxnThqbjdoV3V/rYKDeTs1O1s00grJwDpRutIRieaKejCV5DT4HhZ8Mnv9cB/eqINCkGiV0Hayk+VMf0YeE5PrGt6XnpbNxbRWl1g9OhhK7Dh6zp3HJPgtHnOx1N8Dv7N+Cth48ecDoSFcT8SooiMlNENotIoYjc0c7+GBF51d6/VERy7e1nisgKEVln/z49sOGHjw++sL69zhjdz+FIesfpo6y/86ON+q39qC38jTXp9TkPR/ZAfX9lDIdpP4DVL0JJgdPRqCDVaVIUETfwBHAOMAa4QkTGtDlsNlBujMkDHgNa5lYqA84zxhwDXAO8EKjAw8176/cxekASWWlxTofSK0YPSCQrrQ/vbdjndCihad86KHgGplwP/cY6HU3oOOV2SOgH8/9Hh2iodvlTUpwKFBpjthtjGoFXgFltjpkFzLEfzwVmiIgYY1YZY/bY2zcAfUQkgtax8U9pdQMrisqZOba/06H0GhFh5tj+LCk8SHV9k9PhhBZjYP7tEJsCp93pdDShJSYRznwA9qyE1S85HY0KQv4kxUFAcavnJfa2do8xxniBSqBt49jFwEpjjDYitfHBF/sxBs4eFxlVpy3OHtufxmYfCzeXOh1KaFn/OhQtgRn36hCMo3HsZTB4qjX9W12F09GoINMrHW1EZCxWleqNHey/QUQKRKSgtDTyPiAXbNhHTnocI/slOh1Kr5qUnUpGQgwLtArVfw3V8P49MGA8TPqO09GEJhE49xFrzcVFDzodjQoy/iTF3UBWq+eD7W3tHiMiHiAZOGg/Hwz8E/iOMWZbexcwxjxpjMk3xuRnZmZ27S8IcVX1TSzZVsbZY/sjEdZZwuUSzhzTj0WbDlDf1Ox0OKHhowegei+c+4fIXCsxUAZOgCmzYenfoGSF09GoIOJPUlwODBeRISISDVwOzGtzzDysjjQAlwAfG2OMiKQA7wB3GGN0Rt52LNx0gKZmw9kR1J7Y2sxx/altbNaB/P4oXgbL/g+mfg+ypjgdTeibcS8k9od5P4JmbddWlk6Tot1GeDOwANgIvGaM2SAiD4hIy+Cop4F0ESkEbgVahm3cDOQB94rIavunb8D/ihC2YMM++ibGMDErxelQHHH80HQSYz1ahdoZbyPM+zEkDbQ+zFX3xSbDub+HAxtgyR+djkYFCY8/Bxlj5gPz22y7t9XjeuDSdl73a+DX3YwxbNU3NbNwUykXTRqEK8xnselItMfF6aP68sEX+/E2+/C4dT6Jdi1+3Jq55opXrR6UKjBGf9Oa+GDRwzDmAmtxYhXR9BPIQZ9uLaOuqZmZ4yKz6rTFzLH9KT/cxPKduvBwu8q2wie/sxYPHjnT6WjCz7mPgCcW3rrFGu6iIpomRQct2LCPpFgP04ZGxtRuHTllZCYxHpdWobbH1wxv3mytID/z4c6PV12X2N+aO3bnp7DiWaejUQ7TpOiQusZm3t+wjzNG9yMqwqsM46I9nDwik3fW7aWpWWcZ+YrPHoXi/8A5j0BiZI1j7VWTroGhp8GCu6Cs0OlolIMi+9PYQW+v3UNVvZdvTcnq/OAIcFl+FqXVDToXamu7V8Cih2DcxXDst5yOJry5XHDBX8ATA29cr71RI5gmRYe8tLSIvL4JHDckzelQgsJpo/oyMDmWl5YWOR1KcGiogde/Bwn94RuP6oTfvSFpAJz3R9izSgf1RzBNig5Yv7uS1cUVXHlcdsQN2O+I2yVcMTWbT7eWsbOs1ulwnLfgF3BoO1z0N+gTmcN1HDHmfJh4FXz6KOxa4nQ0ygGaFB3w92VFxEa5uGjiYKdDCSqXTcnC7RJeXhbhpcUv5lmLB0+/BXJPdDqayDPzYUjNhTdutNasVBFFk2Ivq2nw8uaq3Zx37ECS46KcDieo9E2K5awx/XitoJgGb4RO+3ZgE/zrBzBwEpx2l9PRRKaYBLj4aWs6vddnWz2AVcTQpNjL/rlqN7WNzVw5LcfpUILSlcflUH64iXfXReDwjLoKeOXb1vCLy14ET7TTEUWuwZPhG3+AbR/DR790OhrVizQp9iJjDC/9ZxfnNdk3AAAPLUlEQVRjByYxfnCy0+EEpROGpZObHsdLS3c5HUrv8vngjRugYhd863lIbrs6m+p1k6+B/O9aswmtf93paFQv0aTYi1YWVbBpXzVXHpejHWw64HIJ3z4um+U7y9m8r9rpcHrPot/C1gUw8yHIOcHpaFSLmQ9D1jRrAoV965yORvUCTYq96JnPdhAf7eb8CQOdDiWoXTI5i2iPi6c/2+50KL1j9cvwySMw8WqYcr3T0ajWPNFWyT02GV6+AipLnI5I9TBNir1kVVE576zby+yThpIQ49c87BErLT6aq47LYe6KErbsD/PS4qb58OYPYcgpVhuW1iAEn8R+8O1XrTbfFy6E2oNOR6R6kCbFXmCM4cH5m8hIiOaGk4c6HU5I+NHpecTHeHjo3U1Oh9JzdnwK/7jWWvD28pes2VRUcBowHr79ClQUwUsXQ0OYf1mLYJoUe8GHGw+wbOchbjljhJYS/ZQaH80PT8vj400HWLItDBcg3r3Sqo5LGwJXztXloEJB7olw6RzYu9b6t2uqdzoi1QM0KfYwb7OPh97dyNDMeC7XeU675NoTchmYHMtD727C5wujJX1KCuDFiyAuFa7+J8TpVH8hY+RMuPCv1ooar1xhTcenwoomxR72akEx20pr+fnMURG/GkZXxUa5ue3skawtqeSttXucDicwtn4Ac86D2BT4zjxI0k5XIefYb8GsJ2D7Inj+fG1jDDP6Kd2Dahu8PPbBVvJzUjlrjC77czQumDCI0QOSeGTB5tCf5Wbta/Dy5ZCeB7Pft6pOVWiaeBVc9hLs3wDPnA0VxU5HpAJEk2IPeuCtLyiraeDOc0fruMSj5HIJd507mpLyOh5+d7PT4RwdY+Czx+CN70H28XDtO5DQ1+moVHeNOteq/q45AE+fZa2uoUKeJsUe8uryIl4tKObm0/KYnJPqdDgh7cThGVx7Qi7PLN7B26FWjXr4kNUp48P7YeyFVqea2CSno1KBknMCXDcfxGUlxmX/Z30JUiFLk2IPWFdSyT1vbuCk4Rn89MwRTocTFn5x7mgmZadw+9y1FB4Ike7wJSvgb6dA4YfWzCiXPAtRsU5HpQKt/zi48RNrrOn822Dud6G+yumo1FHSpBhgFYcb+cFLK8iIj+bxyyfidmm1aSBEe1z8+crJ9Ilyc+MLK6hp8DodUse8DbDoYautCeC7C2Da93VgfjiLT4dvvwYz7oMv3oS/nWx1xFEhR5NiADU1+/jJq6vZX1XPE1dOIi1eVzkIpP7Jsfy/Kyayo6yW2+euoTkYh2lsXwR/OcGay3T0eXDjv60VF1T4c7ngpFvh2ret58/Pgtevh+r9zsalukSTYoBU1Tdx3bPLWbS5lPvPH8vEbG1H7Akn5GVwxzmjmL9uHze+UMDhxiApMR7cBnNnWx+Evma46g249FkdgxiJck6Am/4Dp9xhlRr/NAU+fwKa6pyOTPlBTJA1Cufn55uCggKnw+iS3RV1XPfsMraX1vLQxcdyyeTBTocU9l74fCf3zdvA2IHJPH1tPn0THWqrK9sKn/we1r0G7miYfguceKu2HSpLWSG8+z/WuozxfWH6j63lqKLjnY4s4ojICmNMfqfHaVLsnnUllcyes5y6pmb+etVkpudlOB1SxPho435u/vsq0uKjefrafEb176Venb5m2L4QVsyBjW9ZiwJPmQ3H/8iaPFqptnYuhk9+Z1Wvx6XD5GutsY5pOhdyb9Gk2MNKqxv43w+38MryYvonxfLsdVMY0U/nr+xt60oq+e6c5ZTXNnL18TncMmM4KXE90JZrDJRtgXVzYfXfoaoE+qRZC9EefzPE65ch5YfiZfDpH2Dr+2B8kHMiTLwSRp4DfbTJpSdpUuwhtQ1enluyk78s2kZ9UzNXTbM+iFO1U41jSqsbePSDLby6vIiEGA8/njGcq6blEBvl7t6JG2qgeKn1AbblPSjfCQjkzbC+5Y88V1e2UEenao/15WrVi1C+A8QN2dNgxNmQdwZkjrY67qiACWhSFJGZwOOAG3jKGPNQm/0xwPPAZOAgcJkxZqe9705gNtAM/NgYs+BI1wrGpFjf1My/t5Ty1po9fLTxAHVNzZw5ph93njOKoZkJToenbJv3VfPb+Rv595ZS4qPdnDmmH+eNH8hJwzOJ9nTyAdN42CoJHtgIuwusb/T7N4BpBk8sDD0Vhp9lfaPX+UpVoBhjTRC/5T3YsgD2r7O2xyRbvZYHT7WWFsscBSk5mii7IWBJUUTcwBbgTKAEWA5cYYz5otUxNwHHGmO+LyKXAxcaYy4TkTHAy8BUYCDwITDCGNPhJJZOJ8X6pmZ2V9SxcW8V63ZXsq6kkrUlldQ0eEmLj+bcY/pz0aTBTNLepUFr6faD/Gv1buav20dlXRNJsS6mD/QwOdPLMckNDImtIbVpP1HVJdb6eAcLoXwXYP9fiE6AQZMhaypkTbN6E0bHOfo3qQhRWQI7PrG+lJUshwNfWNWsAJ4+kDkCUnMhOQtSsiF5MCT0s6rv4zO1A88RBDIpHg/cb4w5235+J4Ax5sFWxyywj/lcRDzAPiATuKP1sa2P6+h6gUqKyz/8B95mLz4fNBtDs8/gbfbR1Gxo9PpobPZR1+jlcKOPw41eKuuaOHS4kZr6/3bxd7uErLQ4hmTEMSk7jTEDEnFHwje1LlWptzn2K681bbaZdh4b6z99y2Ofz37us0ppvmbwea3nzU3ga7J+NzdBcwN4G63fTfXQVGuV+JoOQ0MVpq4S7+EK3I1VuPB9LfIKEilz9+VgzGAO9hlKRcJQDqcMpy5xCNFRUcR4XER73HjcgscluO0flwguARGhZTh+y+OW8flf/uYIA/Z1LL/qhLupmvjKQuIrtxJfWUhcZSF9akuIObwHd3PD145vdsfgjUrCG52INyqJZk+c/dMHnycOnysan9v+cUVjXFEY8eBzeTAuD0bcIG6MuOzHgsEF4sKIAGJv++/jlhvZIK3u6bY391efmy5MZDFs8pkkJHW/EOJvUvRnxdtBQOsp4EuA4zo6xhjjFZFKIN3e/p82rx3UTrA3ADcAZGdn+xFS50Z/+iMS5CjGBbVtGqyyf7YHICgVWK4oq03PHW31AI2Ks0p0UfGQOADJGElUbDLEJkN8Jo2xaRQ3xLP1cDw7mlIpqhH2VNRTfriRqromqiq8VBc20dS8zem/TKk2htg/Z9rPDRlUMUAOki6VZEgV6VSR5q0iseEwSVJHErXESylxNNCHBuKkgWiaiKGJaJpwS3D1J+nIzv4fkZDUaS4LmKBYBt4Y8yTwJFglxUCcs/zSuVQY35ff7t0iRLldRHsEj9uFJxJKfN3ShWLM1w5tteHLb4Sti1CtHouLr3zjdLmtbSJW5wOXx97mBrfHSoTuKOt3F/8No4Fh9s+ReJutmoSGJh8NXh9en8+qafBZNQ7GgM+ufWhhDBi7ZNxSGD7SjRxsHdxU+Kq3f8rb7vB5EZ8X8TVZv41VI2M9tmprxPgAH+LzYd3Rxt5u/vucll+taoFaka/d612797OzR3bp+O7yJynuBlovGT/Y3tbeMSV29WkyVocbf17bI7LGndgbl1FhyON24XG76ImRHUqp4ObPV+3lwHARGSIi0cDlwLw2x8wDrrEfXwJ8bKyvwvOAy0UkRkSGAMOBZYEJXSmllAqsTkuKdhvhzcACrCEZzxhjNojIA0CBMWYe8DTwgogUAoewEif2ca8BXwBe4IdH6nmqlFJKOUkH7yullAp7/vY+1d4mSimllE2TolJKKWULuupTESkFdgXodBlAWYDOFc70ffKfvlf+0/fKP/o++a8771WOMSazs4OCLikGkogU+FOHHOn0ffKfvlf+0/fKP/o++a833iutPlVKKaVsmhSVUkopW7gnxSedDiBE6PvkP32v/KfvlX/0ffJfj79XYd2mqJRSSnVFuJcUlVJKKb9pUlRKKaVsYZkURWSmiGwWkUIRucPpeIKJiGSJyEIR+UJENojILfb2NBH5QES22r+7v6pnGBARt4isEpG37edDRGSpfW+9ak+SH/FEJEVE5orIJhHZKCLH6z3VPhH5qf1/b72IvCwisXpfWUTkGRE5ICLrW21r9z4Syx/t92ytiEwKRAxhlxRFxA08AZwDjAGuEJExzkYVVLzAz4wxY4BpwA/t9+cO4CNjzHDgI/u5gluAja2ePww8ZozJw1qibrYjUQWfx4H3jDGjgPFY75neU22IyCDgx0C+MWYc1iILl6P3VYvngJlttnV0H52DtfLScKxF6v8SiADCLikCU4FCY8x2Y0wj8Aowy+GYgoYxZq8xZqX9uBrrw2sQ1ns0xz5sDnCBMxEGDxEZDHwDeMp+LsDpwFz7EH2fABFJBk7GWi0HY0yjMaYCvac64gH62GvPxgF70fsKAGPMJ1grLbXW0X00C3jeWP4DpIjIgO7GEI5JcRBQ3Op5ib1NtSEiucBEYCnQzxiz1961D+jnUFjB5H+B2wGf/TwdqDDGeO3nem9ZhgClwLN2VfNTIhKP3lNfY4zZDfweKMJKhpXACvS+OpKO7qMe+awPx6So/CAiCcDrwE+MMVWt99kLREf0WB0R+SZwwBizwulYQoAHmAT8xRgzEailTVWp3lMWuz1sFtYXiYFAPF+vLlQd6I37KByT4m4gq9XzwfY2ZRORKKyE+JIx5g178/6Wqgf79wGn4gsS04HzRWQnVhX86VjtZil2tRfovdWiBCgxxiy1n8/FSpJ6T33dGcAOY0ypMaYJeAPrXtP7qmMd3Uc98lkfjklxOTDc7s0VjdWIPc/hmIKG3S72NLDRGPNoq13zgGvsx9cAb/Z2bMHEGHOnMWawMSYX6x762BhzJbAQuMQ+LOLfJwBjzD6gWERG2ptmAF+g91R7ioBpIhJn/19sea/0vupYR/fRPOA7di/UaUBlq2rWoxaWM9qIyLlY7UFu4BljzG8cDiloiMiJwKfAOv7bVvYLrHbF14BsrKW7vmWMadvgHZFE5FTgNmPMN0VkKFbJMQ1YBVxljGlwMr5gICITsDokRQPbgeuwvnTrPdWGiPwSuAyrJ/gq4HqstrCIv69E5GXgVKwlovYD9wH/op37yP5S8Ses6ufDwHXGmIJuxxCOSVEppZQ6GuFYfaqUUkodFU2KSimllE2TolJKKWXTpKiUUkrZNCkqpZRSNk2KSimllE2TolJKKWX7/0J1xNhklKqsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ "#%% plot the distributions\n", "\n", "pl.figure(1, figsize=(6.4, 3))\n", "for i in range(n_distributions):\n", " pl.plot(x, A[:, i])\n", "pl.title('Distributions')\n", - "pl.tight_layout()\n", - "\n", - "#\n", - "# Barycenter computation\n", - "# ----------------------\n", - "\n", + "pl.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Barycenter computation\n", + "----------------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8VFX6+PHPk04NvYQAoSpIIEBAaTZQikosqCBNZVVU7PrVRddVd9ffqrvqqlhwbYgoZUFREFAQCz30qoQeOgFCTX9+f9wbDDEhIclkZpLn/XrNKzP3nnvOk2GYJ/fcc88RVcUYY4zxNQHeDsAYY4zJiyUoY4wxPskSlDHGGJ9kCcoYY4xPsgRljDHGJ1mCMsYY45MsQRmTDxF5V0T+UkJ1NRKREyIS6L6eLyJ/Kom63fq+FZHhJVWfMb4gyNsBGOMtIrIdqAtkAJnABmAcMFZVs1R15HnU8ydV/T6/Mqq6E6hc3Jjd9p4DmqvqkBz19y2Juo3xJXYGZcq761S1CtAY+CfwJPBBSTYgIvaHoDFFYAnKGEBVk1V1OnArMFxE2ojIxyLydwARqSUi34jIURE5LCI/i0iAiHwKNAK+drvw/k9EokRERWSEiOwE5uXYljNZNRORpSJyTES+EpEabluXi0hizvhEZLuI9BKRPsBo4Fa3vdXu/jNdhm5cz4jIDhE5ICLjRCTc3Zcdx3AR2Skih0Tk6RztdBaReDem/SLyqqfec2MKYgnKmBxUdSmQCPTItesxd3ttnG7B0U5xHQrsxDkTq6yqL+c45jKgFdA7n+aGAXcC9XG6Gd8oRHyzgBeBiW577fIodrv7uAJoitO1+FauMt2BC4CewLMi0srd/h/gP6paFWgGTCooJmM8xRKUMX+0B6iRa1s6TiJprKrpqvqzFjyR5XOqelJVT+ez/1NVXaeqJ4G/ALdkD6IopsHAq6q6VVVPAH8GBuY6e3teVU+r6mpgNZCd6NKB5iJSS1VPqOriEojHmCKxBGXMHzUADufa9gqQAMwRka0i8lQh6tl1Hvt3AMFArUJHmb8It76cdQfhnPll25fj+Sl+H8AxAmgJbBKRZSJybQnEY0yRWIIyJgcR6YSToH7JuV1Vj6vqY6raFOgPPCoiPbN351NdQWdYDXM8b4Rz9nIIOAlUzBFTIE7XYmHr3YMz6CNn3RnA/gKOQ1U3q+ogoA7wEjBFRCoVdJwxnmAJyhhARKq6ZwtfAONVdW2u/deKSHMRESAZZ1h6lrt7P861nvM1RERai0hF4AVgiqpmAr8BYSJyjYgEA88AoTmO2w9EiUh+/38/Bx4RkSYiUpnfr1llFBSQiAwRkdqqmgUcdTdnnesYYzzFEpQp774WkeM43W1PA68Cd+RRrgXwPXACWAS8rao/uPv+H/CMO8Lv8fNo+1PgY5zutjDgQXBGFAL3Af8FduOcUeUc1TfZ/ZkkIivyqPdDt+6fgG1ACvBAIWPqA6wXkRM4AyYGnuMamjEeJbZgoTHGGF9kZ1DGGGN8kiUoY4wxPskSlDHGGJ9kCcoYY4xP8qtJLGvVqqVRUVHeDsMYY0wxLF++/JCq1i6onF8lqKioKOLj470dhjHGmGIQkR0Fl7IuPmOMMT7KEpQxxhif5FddfKZkHE9J5+MF2/lk0XYa16zEQz1b0KNFLZxZfIwxxjdYgipHUjMyGfvjVv77yzaST6dzWcvaJBw4wbAPl9KhUTWe6H0hXZrV9HaYxhgDWIIqV57/egMTluykV6u6PNSzBdGR4aRlZDF5+S7GzEtg6AdL+PL+brRpEO7tUI0xpnDXoESkj4j8KiIJea2DIyKhIjLR3b9ERKLc7YNFZFWOR5aIxLj75rt1Zu+rU5K/mDnbD5sOMGHJTu65tCn/HR5LdKSThEKCAhh8cWNmPtSDmpVDeGTiKlLSM70crTHGFCJBuWvRjAH6Aq2BQSLSOlexEcARVW0OvIazjgyq+pmqxqhqDDAU2Kaqq3IcNzh7v6oeKIHfx+Th8Mk0npiyhgvrVeHRq1vmWaZaxRBeGdCOzQdO8PKsX0s5QmOM+aPCnEF1BhLc5aPTcNbLictVJg74xH0+Begpf7ziPsg91pQiVWX01LUcO53Oa7fGEBqU/4ril7aszfAujflwwTYWJBwqxSiNMeaPCpOgGnD20tSJ7rY8y7iLoiUDua+234qzkFpOH7nde3/JI6EBICJ3i0i8iMQfPHiwEOGanKau2M2s9ft49OqWtKpftcDyT/VtRdPalXh88mqST6eXQoTGGJO3UrkPSkQuBk6p6rocmwerajTQw30MzetYVR2rqrGqGlu7doEzY5gcUjMy+X/fbqJj4+rc1aNwC75WCAnktVti2Hcshf/+vNXDERpjTP4Kk6B2Aw1zvI50t+VZRkSCgHAgKcf+geQ6e1LV3e7P48AEnK5EU4K+WrmHQydSeaRXSwIDCn+PU7uG1ejVqi7jF+/gdJoNmDDGeEdhEtQyoIWINBGREJxkMz1XmenAcPf5AGCeukv1ikgAcAs5rj+JSJCI1HKfBwPXAuswJUZV+e8vW7mwXhW6NT//e5vu6tGUI6fSmbIiseDCxhjjAQUmKPea0ihgNrARmKSq60XkBRHp7xb7AKgpIgnAo0DOoeiXArtUNWd/USgwW0TWAKtwzsDeL/ZvY8748beD/Lb/BHf1aFqkGSI6RVWnXWQ4H/6yjcws9UCExhhzboW6UVdVZwIzc217NsfzFODmfI6dD1ySa9tJoON5xmrOw/s/b6Vu1VCuaxdRpONFhLsubcqoCSv5fuN+el9Ur4QjNMaYc7PJYsug9XuSWZCQxO1dmxASVPR/4j4X1aNBtQo2WMIY4xWWoMqgD37eRqWQQG67uFGx6gkKDGBE9yYs236EVbuOllB0xhhTOJagypj9x1KYvnoPt3RqSHiF4GLXd0unhlQJC7KzKGNMqbMEVcZ8uXI3GVnKsC5RJVJf5dAgBnSMZM76/SSfsht3jTGlxxJUGTNt5W7aN6pGk1qVSqzOG9tHkpaZxYy1e0usTmOMKYglqDJkw55jbNp3nBvb556JqnjaNKhK8zqVmbbS7okyxpQeS1BlyLSViQQFCNe0LdrQ8vyICDe0b8Cy7UfYdfhUidZtjDH5sQRVRmRmKV+t2sPlF9ShRqWQEq8/LsZJel+uzD3LlTHGeIYlqDJi4ZZDHDieyo0dSrZ7L1tk9Ypc3KQG01buxp3FyhhjPMoSVBkxbcVuqoQFceWFnluY+MYODdh66CSrE5M91oYxxmSzBFUGnErLYNb6fVwTXZ+w4PwXJCyuvtH1CQkKYJpNIGuMKQWWoMqA2ev3cSotkxtKePReblXDgrmqVV2+XrOX9Mwsj7ZljDGWoMqA6av20KBaBTpF1fB4W9e3b8Dhk2n8YkvCG2M8zBKUn0s+nc4vCYfoF12PgPNYlLCoLm1ZiyqhQcxcYzftGmM8yxKUn/t+w37SM5V+0fVLpb3QoEB6ta7LnA37rZvPGONRlqD83My1e4kIDyOmYbVSa7NfdH2ST6ezcEtSqbVpjCl/LEH5sWMp6fy8+RB9o+sXadXcourRohaVrZvPGONhlqD82NyN+0nLzCq17r1sYcGB9GxVh9kb9lk3nzHGYwqVoESkj4j8KiIJIvJUHvtDRWSiu3+JiES526NE5LSIrHIf7+Y4pqOIrHWPeUNK8xSgjJixZh/1w8NoX4rde9n6Rdfn6Kl0Fm+1bj5jjGcUmKBEJBAYA/QFWgODRKR1rmIjgCOq2hx4DXgpx74tqhrjPkbm2P4OcBfQwn30KfqvUf4cT0nnp80H6dumfqmM3svtspa1qRQSyExbgsMY4yFBhSjTGUhQ1a0AIvIFEAdsyFEmDnjOfT4FeOtcZ0QiUh+oqqqL3dfjgOuBb8/3Fyiv5m06QFpGFv2i63ml/bDgQK5sVZfZ6/fzt7gsggKtt9jvZWVB4jI4sAGSd8HRXZB2EsIjoVpDqNYYmvSACtW9HakpJwqToBoAu3K8TgQuzq+MqmaISDJQ093XRERWAseAZ1T1Z7d8zvlyEt1tfyAidwN3AzRq1KgQ4ZYPM9bspV7VMDo08t6XxTXR9fh69R6WbDtMt+a1vBaHKaaDv8GaL2DNZEje6WyTQAhvAMGVYPvPkHrM2R4YAi37QLuB0PwqCCr5mfONyVaYBFUce4FGqpokIh2BL0XkovOpQFXHAmMBYmNjbRpt4ERqBj/+dpBBnRt5pXsv2+UX1KFiSCAz1u61BOWPju6EOX+BDV+CBECzK6Hns9DoEqhSHwJzfD2cPgoHf4X102DdFNg4HcIbQe+/Q6v+YJeQjQcUJkHtBhrmeB3pbsurTKKIBAHhQJI66zKkAqjqchHZArR0y0cWUKfJx7xNB0jNyOKatqU7ei+3sOBArrywDrPX7eNvcW0I9GKyNOch/TQseAN+ec15fdlTEHsHVDlHd3GFatDoYudx9d8g4XuY+zeYNAyaXAZ9X4I6rUonflNuFObCwTKghYg0EZEQYCAwPVeZ6cBw9/kAYJ6qqojUdgdZICJNcQZDbFXVvcAxEbnEvVY1DPiqBH6fcmHmmr3UqRJKRy9272XrF12fpJNpLNlmo/n8woFN8G4PmP8iXNAHRi2DK/587uSUW2AwXNAX7vkJ+v0L9q6Gd7vDojFga4WZElRgglLVDGAUMBvYCExS1fUi8oKI9HeLfQDUFJEE4FEgeyj6pcAaEVmFM3hipKoedvfdB/wXSAC2YAMkCuVkagY//HqAvm1KZ+69glxxQR0qBNtoPr+wfhq8fyWkHIWh0+Dmj53BD0UVGASd74IHVjjXpWaPhil3QuqJEgvZlG+FugalqjOBmbm2PZvjeQpwcx7H/Q/4Xz51xgNtzidYAz/86nTv9S3lm3PzUyEkkCsurM2sdft5vr918/mkrEz47llY9BZEdoZbPoGqESVXf6WacOt4WPA6zH0BDmyEgZ9BzWYl14Ypl2xssJ+ZuXYvtSqHlsrSGoXVL7o+h06ksmz74YILm9KVkQb/G+Ekp053we0zSjY5ZROB7o/AkKlwYj98cDXsW1vy7ZhyxRKUHzmVlsEPmw7Sp01dnzpTueKCOoQGBfCtdfP5lvTTMHGI07V31d/gmn95flh4sytgxHcQFAYfXwO7lnm2PVOmWYLyI/N/Pcjp9MxSn3uvIJVCg7jigjp8u24fWVl2kdwnpB6Hz26GzXPg2teg24Ol13at5nDnt1ChBoyLg60/ll7bpkyxBOVHZqzdS81KIXT2oe69bH2j63HgeCrxO454OxSTdgo+uwV2LIQbx0LsnaUfQ7VGcOcsqN4YJtwC238p/RiM37ME5SdOp2Xyw6YD9G5TzyenFerZqi4hQQE2ms/bMtKce5N2LoKb3oe2t3gvlir1YPg3UD0KJgyE3Su8F4vxS773TWfy9ONvBziVlkm/Nr7VvZetcmgQl7Wszbfr9lo3n7dkZcK0eyDhO7judWhzk7cjckb4DZ0GFavD+Juc+7CMKSRLUH7iq1V7qFU5hEua+l73XrZr29Zn/7FUlmyz0XylThVmPAbrp8JVL0DH270d0e+qRsDQL50bfD+9Ho7s8HZExk9YgvIDx1LSmbvpANe2jfDJ7r1sV7WuS8WQQL5aZbNWlbqf/wXLP3KGend7yNvR/FHNZs6ZVPopZ/DGabtWaQrmu9925oxZ6/aRlpFFXIwH7l8pQRVDguh9UT1mrt1Lakamt8MpP9ZMgnl/h7YDoedfvR1N/upeBLd+Boe3wsShzvUyY87BEpQf+GrVbhrXrEiMF1bOPV9xMREcS3Hu1zKlYPsv8NX9ENUD+r/p+7OKN+kBcWOcJTymP2Bz95lzsgTl4/YfS2HhliTiYhpwjjUgfUb35rWoVTnEuvlKw8Hf4IvbnFFyt37qP2sztbsVrnjGWYNq/v/zdjTGh1mC8nFfr96DKlzv49172YICA7i2bQRzNx3gWEq6t8Mpu04ddu4vCgyBwZP9b5XbSx+HmCHw40vOQonG5MESlI/7ctVu2kaG07R2ZW+HUmhxMRGkZWQxa90+b4dSNmWkOVMYHdsDAyc4Z1D+RsSZ4aJxN6eLctdSb0dkfJAlKB+WcOAE63YfIy6mgbdDOS8xDavRuGZF6+bzBFWY8QjsWABxb0HDzt6OqOiCQuCWT6Fqfaer8uhOb0dkfIwlKB82fdVuAgSua+ebN+fmR0SIi2nAwi1J7D+W4u1wypaFb8LK8XDpE96dJaKkVKoJt01yzgonDHTmEDTGZQnKR2VlKVNX7qZb81rUqRLm7XDO2/UxEajCtJV2FlViNs101nVqHQeXj/Z2NCWn9gVw80dwcBP870/OjBjGYAnKZ/20+SCJR05za6dirHjqRU1rV6ZzVA0+X7rTpj4qCfvWOV/eETFw/bsQUMb+6zbvCX1fgt9mOUnYGCxB+azPluykVuUQrm5dz9uhFNngSxqxI+kUC7Yc8nYo/u3EAfh8IISFw8DPIaSityPyjM53OYsqLnoLVozzdjTGBxQqQYlIHxH5VUQSROSpPPaHishEd/8SEYlyt18lIstFZK3788ocx8x361zlPuqU1C/l7/Ymn2buxv3cEtuQkCD//RuiT5t61KgUwmeL7eJ3kaWnOAMITiXBoM+dAQVlWZ9/QrMr4ZtHYNvP3o7GeFmB334iEgiMAfoCrYFBItI6V7ERwBFVbQ68Brzkbj8EXKeq0cBw4NNcxw1W1Rj3caAYv0eZ8sXSXSgwqHMjb4dSLKFBgdzcMZLvNu63wRJFkZUFX46ExGVww3tO915ZFxgEAz6CGs2cofSHNns7IuNFhfnzvDOQoKpbVTUN+AKIy1UmDvjEfT4F6CkioqorVXWPu309UEFEQksi8LIqPTOLL5bt5LKWtWlYw/+7cgZ1bkRmljJx2S5vh+J/5j7/+3Ltrft7O5rSU6EaDJ7kzH7+2QA4aV3E5VVhElQDIOe3S6K7Lc8yqpoBJAM1c5W5CVihqqk5tn3kdu/9RfKZx0dE7haReBGJP3iw7M/vNnfjAfYfS2XwxY29HUqJiKpViR4tavH50p1kZGZ5Oxz/sfxjWPC6sxpu1we8HU3pqx4Fg76A4/uc62/pp70dkfGCUrnAISIX4XT73ZNj82C366+H+xia17GqOlZVY1U1tnbt2p4P1ss+W7KDiPAwrryw7FySG3xxY/YmpzD/17L/B0aJSPgevnkUml8FfV/x/QlgPSUyFm58HxLjnYUYs+wPnPKmMAlqN5BzrHOkuy3PMiISBIQDSe7rSGAaMExVt2QfoKq73Z/HgQk4XYnl2vZDJ/l58yEGdm5EYEDZ+VLq2aoOdauG8uliW6iuQInLYeIwqNPauTcoMMjbEXlX6/5w9d9hw1cw60mb/bycKUyCWga0EJEmIhICDASm5yozHWcQBMAAYJ6qqohUA2YAT6nqguzCIhIkIrXc58HAtcC64v0q/u/t+QmEBgUwsLN/3vuUn+DAAIZe0pgffzvIut3J3g7Hdx38zbnmUqkWDJkCoVW8HZFv6DrK6eZcOhZ+esXb0ZhSVGCCcq8pjQJmAxuBSaq6XkReEJHsK7cfADVFJAF4FMgeij4KaA48m2s4eSgwW0TWAKtwzsDeL8lfzN/sOnyKqSt2M6hzI7+cOaIgw7pGUTUsiDfm2qisPCXvhvE3QkCgs/JsFf+9/80jer0A7W6DH/4Byz7wdjSmlBSq/0BVZwIzc217NsfzFODmPI77O/D3fKrtWPgwy7635ycQIMLIy5p5OxSPqBoWzJ3dm/D695vZsOcYrSOqejsk33HykJOcTh+FO2Y4y6ObswUEQP834PRhmPGYc9Ny9ABvR2U8zH/vAi1DEo+cYsryRAZ2bki98LJ39pTtjm5NqBIaxJvz7CzqjJNJ8El/OLLduRG3fjtvR+S7AoOde6Qad4WpdztD8E2ZZgnKB7wz3xk7UlbPnrKFVwjmjm5RfLtuH5v2HfN2ON536jCM6w+HtzhDqpv08HZEvi+kojP7ecPOMGWEM3jClFmWoLxsz9HTTIrfxc2xDYmoVsHb4Xjcnd2bUDk0iDfnJXg7FO/KTk6HNjtnTs2u8HZE/iO0srOKcGQsTLkTNuQes2XKCktQXvbmvARU4b7Ly/bZU7ZqFUMY3rUxM9fuZf2ecjqiL3k3fNTXGbU3aIIz95w5P6FVYPAUiOgAk2+HlZ95OyLjAZagvGj5jiN8sWwnQ7s0JrK6/09rVFh39WhKjYohjJ62jszythTHwV/hg6udJDVkCjTv5e2I/FdYVRg61eka/eo++OV1u0+qjLEE5SVpGVmMnrqW+lXDeOzqC7wdTqmqVjGEZ69rzepdRxlfnm7eTYyHD3tDZpozWq/Jpd6OyP+FVoHbJsNFN8L3f4U5z9iME2WIJSgvef/nrfy6/zgvxLWhcmj5my2gf7sILm1Zm5dnbWLP0XIwz9qaSfDxNRBWDUbMttF6JSkoBG76ADrf46wlNWkopNggnLLAEpQXbDt0kv/M3cw10fXp1bqut8PxChHhH9e3IVOVZ79aj5bVrpnMDJg1GqbeBQ1iYcR3UKOpt6MqewICnBV5+/wTfv0W/tsTDpXzgThlgCWoUpaVpYyeupbQoAD+el3uZbXKl4Y1KvLoVS35fuN+vl23z9vhlLwTB2D8DbB4DFw8EoZ9CZXL/oTHXiMCl9zrvM+nkuD9K2DTDG9HZYrBElQpe2n2JhZtTeLpfq2oU7Xs3pRbWHd2a0J0g3D+b8oaft133NvhlJyNX8Pbl8DOJXD9O85f94HB3o6qfGhyKdw9H2o0cVYjnv4gpJ7wdlSmCCxBlaIvlu7kvR+3MuSSRtzaqWxNCFtUQYEBvDe0IxVDArnz42UcOO7nK++mHIMv73NWgw2PhHt+gpjbvB1V+VOtkdOd2u1hWDEO3u0GOxd7OypznixBlZIFCYd45st19GhRi+euu4h81mcslyKqVeCD4Z04fDKNu8YtJyU909shnT9VZyDEmM6w+nO49AkY8T3UudDbkZVfQaFw1fNwx0zQLPiwj3M2ZSv0+g1LUKVg075jjBy/nKa1KzFmcAeCAu1tzy06MpzXB8awJvEoj0xcRbo/rb67Z5UzfHzqXc4s5CO+hyufcUaXGe9r3BXuXQhd7odVn8EbHWDxu5CZ7u3ITAHsm9LD5m3az4B3FlEhOJAPhneiaphdh8hP74vq8XS/Vny7bh/DPljKkZNp3g7p3PashC8Gw9jL4PBWiBsDf5oHkTZRv88JrQK9/+EkqsiOzuKHb3aE5R9DRqq3ozP5EH8a3hsbG6vx8fHeDqNQVJX//ryNF7/dSOv6VXl/WGy5mGuvJExdkchT/1tL/WphfDA8luZ1fGjhvqws2PYjLH4bNs9xln24eKTz13lYuLejM4Wh6vzbzf8n7FkBVRtAl1EQMwgqVPd2dOWCiCxX1dgCy1mCKnkHjqfwjxkb+WrVHvpF1+NfN7ejYkj5uxm3OJbvOMI9ny4nNT2Tv/a/iBvbNyAgwIvX7Y7vc7qHVoxzlsaoUMNJSp3vssTkr1Rh6w/w4yuwcyEEhUHrOOgwHBp1ce6tMh5hCcoLTqdl8v7PW3n3xy2kZ2bxwJUtGHVFc+9+sfqxPUdPc/+EFazceZQ2DarydL/WdGlWs/QCOLwVNn4Dm76BXUsBhcbdoePt0Oo6CLbbBMqMvWtgxSfOQJfUY1ClPlx4DVx4LUR1t1sESpglqFK07dBJvly5m4nLdrHvWAp929TjyT4XElWrkrdD83tZWcrXa/bw8qxf2X30ND1a1GJAx0iubl2PCiGBJdmQk5B2LYEdC2D7L3DUnSewXjRceB20uQlqNS+5No3vSTvl/EGycTokzIX0UxBcCRpdDI27OY960c6SH6bISjRBiUgf4D9AIPBfVf1nrv2hwDicZdyTgFtVdbu778/ACCATeFBVZxemzrz4SoI6lZbB6l3JrNh5hDkb9rN611FEoGuzmjzcqyWdomp4O8QyJyU9k48WbOfTRdvZk5xCxZBAel9Ujy7NatKhUXWa1qpUuDPVjFRIToSkLU5CStoM+9bB/nWQ5t7MWaEGRHWDqB7Qsg9Ub+zR3834qPTTsGUebJ0P2xfAgfXuDoGazZ1EVftCqNnMmb6qepRzDctuISlQiSUoEQkEfgOuAhKBZcAgVd2Qo8x9QFtVHSkiA4EbVPVWEWkNfA50BiKA74GW7mHnrDMvnkxQWVlKakYWp9MzOZ2eybHT6Rw5lcbRU+kcPJ7KrsOn2HXkFDuSTrH5wIkzy0S0ql+VG9pH0L9dgzK9XLtXqTr3sWSmk5WRyopt+5mzZicLNu0hPfUUFUilVmgWLatDZIUM6ldIo3ZQClX1OJUzkwnLOErIqQMEntxHwKlc98CEVIG6F0H9tlCvLTTo6Hzp2PUHk9vJJOcMe99a2LfG6RZM3nl2maAKUDXCeVSqBRVrOn/wVKjujCQMqwohlSGkEgRXgOCKzv1agaHObQmBoU53YkBQmU50hU1Qhbly3xlIUNWtbsVfAHFAzmQSBzznPp8CvCXOnahxwBeqmgpsE5EEtz4KUWeJ2rl5DfLZzWdeK06Cyc7PufN0BfcR4b4WgaAAISgwgNCqAYQEBRAaFEAgAitxHuVGjjfrD3/gaB5Pc77JuZ5r1u8JKOcjKxM00/mZ9fv9KgFArPsAIDRH00fch+ukhnKEKuzRyhzQ6uzTduzT6uyjJrskgt0B9TmWVo2gPQHIXiEwAAJkL8LeMzdSZ39HiIBw9hdGGf7+MPmqgPMV5nyNhVRMpYHuo0HWXiJ0P7WykqiVfJjaRw8RrlsJ12NU5QQBnP+llAwCyCSQLALOeihCFoKKU2tWjruF1P2M/v4TyPW51RyvNZ/t55IpwTR+dt15/z5FUZgE1QDYleN1InBxfmVUNUNEkoGa7vbFuY5t4D4vqE4ARORu4G6ARo0aFSLcvIVVqExieLT7pSIEiPPPJiIEBDivA0UIDHAewYFOEgoJDCA0OIDQoMBC/vOVE2d9O0vB+85sk9+LS4D7WkACndfZj4DA338GuH9RBgY5z4PCfv9rM/uv0OAKznWB0KqkBlZkX2oIR9IC3bPgNE6lZXI6LZPQ9EzqpmdRIyttLOCIAAAgAElEQVSLizKV9MwsslTJzHLOorPU+dNF9fc/YlD+8PXiT9dujafV5STt2AxszmOvaCZhWacIyzpJWKbzM0RTCMlyHkGaRpCmn3kEaAaBmkkAmQSc+emkJ1QRlAAyne8vzULOpKHsz6T7Oo/PqORKSXlvPzcNCKa0Or19fuyzqo4FxoLTxVfUeupENqXOI1NKLC7ju0KBxu7DGOO/CtPRvhvIObNppLstzzIiEgSE4wyWyO/YwtRpjDGmHCtMgloGtBCRJiISAgwEpucqMx0Y7j4fAMxTpw9kOjBQREJFpAnQAlhayDqNMcaUYwV28bnXlEYBs3GGhH+oqutF5AUgXlWnAx8An7qDIA7jJBzccpNwBj9kAPeraiZAXnUWFMvy5csPiciOovyiOdQCbDrj39n7cTZ7P85m78fZ7P34o6K8J4XqgferG3VLgojEF2Z4Y3lh78fZ7P04m70fZ7P34488+Z7YzR7GGGN8kiUoY4wxPqk8Jqix3g7Ax9j7cTZ7P85m78fZ7P34I4+9J+XuGpQxxhj/UB7PoIwxxvgBS1DGGGN8UrlJUCLSR0R+FZEEEXnK2/GUNhFpKCI/iMgGEVkvIg+522uIyHcistn9Wa7WvBaRQBFZKSLfuK+biMgS93My0b2RvNwQkWoiMkVENonIRhHpUp4/IyLyiPv/ZZ2IfC4iYeXpMyIiH4rIARFZl2Nbnp8Hcbzhvi9rRKRDcdsvFwnKXTJkDNAXaA0McpcCKU8ygMdUtTVwCXC/+x48BcxV1RbAXPd1efIQsDHH65eA11S1Oc7c6CO8EpX3/AeYpaoXAu1w3pty+RkRkQbAg0CsqrbBmVRgIOXrM/Ix0CfXtvw+D31xZgtqgTPB9zvFbbxcJChyLBmiqmlA9vIe5Yaq7lXVFe7z4zhfPA1w3odP3GKfANd7J8LSJyKRwDXAf93XAlyJs2QMlL/3Ixy4FGdmGFQ1TVWPUo4/Iziz7VRw5xitCOylHH1GVPUnnNmBcsrv8xAHjFPHYqCaiNQvTvvlJUHltWRIg3zKlnkiEgW0B5YAdVV1r7trH1DXS2F5w+vA/wFZ7uuawFFVzXBfl7fPSRPgIPCR2+35XxGpRDn9jKjqbuBfwE6cxJQMLKd8f0Yg/89DiX/PlpcEZVwiUhn4H/Cwqh7Luc+d4Ldc3HcgItcCB1R1ubdj8SFBQAfgHVVtD5wkV3deOfuMVMc5K2iCs3ZpJf7Y3VWuefrzUF4SlC3vAYhIME5y+kxVp7qb92efhrs/D3grvlLWDegvIttxunyvxLn+Us3tzoHy9zlJBBJVdYn7egpOwiqvn5FewDZVPaiq6cBUnM9Nef6MQP6fhxL/ni0vCarcL+/hXl/5ANioqq/m2JVzqZThwFelHZs3qOqfVTVSVaNwPg/zVHUw8APOkjFQjt4PAFXdB+wSkQvcTT1xViIol58RnK69S0Skovv/J/v9KLefEVd+n4fpwDB3NN8lQHKOrsAiKTczSYhIP5xrDtnLe/zDyyGVKhHpDvwMrOX3ay6jca5DTQIaATuAW1Q190XRMk1ELgceV9VrRaQpzhlVDWAlMERVU70ZX2kSkRicQSMhwFbgDpw/ZMvlZ0REngduxRkFuxL4E851lXLxGRGRz4HLcZbU2A/8FfiSPD4PbhJ/C6cb9BRwh6rGF6v98pKgjDHG+Jfy0sVnjDHGz1iCMsYY45MsQRljjPFJlqCMMcb4JEtQxhhjfJIlKGOMMT7JEpQxxhifZAnKGGOMT7IEZYwxxidZgjLGGOOTLEEZY4zxSZagjDHG+CRLUMYYY3ySJShT7onIdhE5LSInROSIiMwQkYYFH+kbROQ5ERnv7TiMKWmWoIxxXKeqlYH6OOvevHm+FeRYZdWv+GvcpuyzBGVMDqqagrPUeWsAEblGRFaKyDER2SUiz2WXFZEoEVERGSEiO4F57tnXAznrFJE1InKD+/wiEflORA6LyH4RGe1uDxCRp0Rki4gkicgkEamRq53hIrJTRA6JyNPuvj44C0/e6p4Brna3h4vIByKyV0R2i8jfRSTQ3Xe7iCwQkddEJAl4TkSai8iPIpLs1j/Ro2+0MYVgCcqYHESkIs4KqovdTSeBYUA14BrgXhG5PtdhlwGtgN7AJ8CQHPW1w1mBdYaIVAG+B2YBEUBzYK5b9AHgereuCOAIMCZXO92BC3CWHn9WRFqp6izgRWCiqlZW1XZu2Y9xVoFtDrQHrsZZDTbbxTgr5tYF/gH8DZgDVAciKcIZpDElzRKUMY4vReQokAxcBbwCoKrzVXWtqmap6hrgc5wkktNzqnpSVU8D04GWItLC3TcUJ3mkAdcC+1T136qaoqrHVXWJW24k8LSqJrrLhz8HDMjV/fa8qp5W1dXAaqAdeRCRukA/4GE3rgPAa8DAHMX2qOqbqprhxp0ONAYi3Nh+Ob+3z5iSZwnKGMf1qloNCANGAT+KSD0RuVhEfhCRgyKSjJNIauU6dlf2E7eLcCIwREQCgEHAp+7uhsCWfNpvDEwTkaNuotwIZOKc4WTbl+P5KaDyOeoKBvbmqO89oE5eMbv+DxBgqYisF5E786nbmFJjCcqYHFQ1U1Wn4iSH7sAEnLOihqoaDryL80V+1mG5Xn8CDMbpijulqovc7buApvk0vQvoq6rVcjzCVHV3YcLOo65UoFaOuqqq6kX5HaOq+1T1LlWNAO4B3haR5oVo2xiPsQRlTA7iiMO5FrMRqAIcVtUUEekM3FZQHW5CygL+ze9nTwDfAPVF5GERCRWRKiJysbvvXeAfItLYjaO2G0dh7Aei3DM2VHUvzvWkf4tIVXcARjMRyd01mfP3vllEIt2XR3ASWFYh2zfGIyxBGeP4WkROAMdwBg0MV9X1wH3ACyJyHHgWmFTI+sYB0cCZ+5NU9TjO9a3rcLrrNgNXuLv/g3OmNsdtazHOQIbCmOz+TBKRFe7zYUAIsAEn4UzBGUKfn07AEvc9mA48pKpbC9m+MR4hqrl7B4wxxSUiw4C7VbW7t2Mxxl/ZGZQxJcwdqn4fMNbbsRjjzyxBGVOCRKQ3cBDnutAEL4djjF+zLj5jjDE+yc6gjDHG+CS/miSyVq1aGhUV5e0wjDHGFMPy5csPqWrtgsr5VYKKiooiPj7e22EYY4wpBhHZUZhy1sVnjDHGJ1mCMqVux9EdfLjyQ5btXkZmVqa3wzHG+Ci/6uIzJejYMfjiC2jWDK68EiT39HIlKyMrg29++4axy8cyK2EW6k4FFx4azuVRl/NA5wfo2bSnR2MwxvgXS1DlTXIyvPkmvPoqHDnibOvaFZ59Fq6+2iOJ6kTaCfp+1pdfdv5CRJUInrn0GW5qdRMbD21k3rZ5fJvwLb3H92bsdWO5s71Nom1KTnp6OomJiaSkpHg7lHIpLCyMyMhIgoODi3S8Jajy5KefIC4Ojh6F666Dp56CNWvgxRehTx/o1QtmzICQkBJr8mTaSa6ZcA2Ldi3ig/4fMKzdMIICnI9du3rtGNhmIMdTjzNg8gBGTB/BnuN7eLrH04iHz+hM+ZCYmEiVKlWIioqyz1QpU1WSkpJITEykSZMmRaqjWNegRKSPiPwqIgki8lQe+0NFZKK7f4mIROXY11ZEFrlrz6wVkbDixGIKcOQI3HYb1K4Ny5fD9OnOmdPIkZCQ4JxRff+9cyZVQk6nnybuizh+2fkL428cz53t7zyTnHKqElqFrwd9zdC2Q/nLD3/h/pn3YzeQm5KQkpJCzZo1LTl5gYhQs2bNYp29FvkMSkQCcZakvgpIBJaJyHRV3ZCj2AjgiKo2F5GBwEvAre4qoeOBoaq6WkRq4qzoaTzlvvtg/35YtAg6dDh7X0gIPPIIbNwIL78M/frBpZcWq7mMrAxunHQj87bN45PrP2Fgm4HnLB8SGMIn139CnUp1+Peif9Ohfgf+1OFP5zzGmMKw5OQ9xX3vi3MG1RlIUNWt7nLWXwC516+Jw1m8DZzp/nuKE/HVwBp36WpUNUlVbTiXp0yY4AyIeO45iI3Nv9yrrzqDJoYNc65VFcMbS95gVsIs3rnmHYa2G1qoY0SEl696mSuiruCR2Y+w7ci2YsVgjPFvxUlQDTh72ehEd1ueZVQ1A0gGagItARWR2SKyQkT+L79GRORuEYkXkfiDBw8WI9xyaudO5+ypa1d48slzl61cGT79FBIT4YEHitzktiPb+MsPf+G6ltdxd8e7z+vYAAngo7iPEIQ7vrqDLLU184x/q1y5MgCrVq2iS5cuXHTRRbRt25aJEyd6OTLf5637oIJwltMe7P68QUTyHGOsqmNVNVZVY2vXLnBmDJPbyJGQmekknqBC9Ohecgk8/bRTfubM825OVbl3xr0ESABj+o0p0il+42qNeb3P6/y440feWPLGeR9vjC+qWLEi48aNY/369cyaNYuHH36Yo0ePejssn1acBLUbaJjjdaS7Lc8y7nWncCAJ52zrJ1U9pKqngJlArgsjpthWrYJvv4XRo6Fp08If98wz0LixM7rvPE1YO4HZW2bz4pUv0jC8YcEH5OOOmDu4tuW1/Hnun9l0aFOR6zHGV7Rs2ZIWLVoAEBERQZ06dbBeoXMrzjDzZUALEWmCk4gGArflKjMdGA4sAgYA81RVRWQ28H/uwm5pwGXAa8WIxeTlX/9yuu3uvff8jgsOdgZNPPywM6iiS5dCHZZ0KomHZz/MxQ0u5r5O9xUh4N+JCO9f9z6txrTiie+e4OtBXxerPmN4+GHnj7aSFBMDr79+3octXbqUtLQ0mjVrVrLxlDFFPoNyrymNAmYDG4FJqrpeRF4Qkf5usQ+AmiKSADwKPOUeewR4FSfJrQJWqOqMov8a5g927XIGRtx1F1Srdv7HjxgB1as7Sa6Q/jr/rxxNOcr7171PYEDg+beZS73K9Xii6xN889s3LE5cXOz6jPEFe/fuZejQoXz00UcEBNhsc+ekqn7z6Nixo5pCevRR1cBA1R07il7H6NGqIqqbNxdYdFfyLg35W4jeNf2uoreXh+Opx7XOK3X0yk+uLNF6TfmwYcMGb4eglSpVOvM8OTlZ27dvr5MnT/ZiRKUrr38DIF4L8Z1v6bssOnoUxo6FW2+FRo2KXs+oUU5336uvFlj0pV9eIkuzGN1jdNHby0PlkMqM7j6aedvmMW/bvBKt25jSlJaWxg033MCwYcMYMGCAt8PxC5agyqKxY+HECXjiieLVU78+DB0KH30E57iYu/vYbsauGMvt7W4nqlpU8drMwz2x9xBZNZKn5z1tM0wYvzVp0iR++uknPv74Y2JiYoiJiWFVSV8TK2MsQZU1aWnwn/848+rFxBS/vsceg5QUGDMm3yIvLfDM2VO2sKAwnr30WRYnLuab377xSBvGeMqJEycAGDJkCOnp6axaterMI6Yk/o+WYZagypqvv4Y9e+DRR0umvlatnKmPxo517qfKZc/xPYxd7pw9NaletAkhC+P2mNtpVr0Zz85/1s6ijCknLEGVNePGQUSEs3RGSbnzTti7F+bO/cOul355iUzN9NjZU7bgwGBG9xjNqn2r+GH7Dx5tyxjjGyxBlSUHDzqzPwweDIHFH+Z9xrXXOkPVx407a3PSqSTGrhjL0LZDPXr2lO226NuoU6kOry4qeNCGMcb/WYIqS774AjIynMleS1JoqDMicNo0OH78zOaxy8eSkpHCY10eK9n28hEWFMb9ne5nxuYZNruEMeWAJaiyZNw4aN8e2rQp+bqHDYNTp2DqVADSM9MZs2wMvZr24qI6F5V8e/kYGTuS0MBQXl98/nfvG2P8iyWosmLjRoiPL/mzp2xdujhLcbjdfFM3TmX38d08dPFDnmkvH3Uq1WFo26GMWz2OQ6cOlWrbxpjSZQmqrPj0U+e606BBnqlfxEl+P/wAO3fy+pLXaV6jOf1a9PNMe+fw8CUPczrjNO/Fv1fqbRtzPh555BFezzFXX+/evfnTn35fiPOxxx7j1ULcCO9JR48e5e233y5U2a5du3o4mrNZgioLsrKcBNWnD9St67l2hgwBVZZ++k8WJy7mwc4PEiCl/xG6qM5F9G7Wm7eWvUVqRmqpt29MYXXr1o2FCxcCkJWVxaFDh1i/fv2Z/QsXLiy1L/2MjIw8t59Pgsr+XUqLJaiyYP58Z5FBT3XvZWvaFHr04D9bPqNqaFVuj7nds+2dw6NdHmXfiX1M3jDZazEYU5CuXbuyaNEiANavX0+bNm2oUqUKR44cITU1lY0bN9K6dWt69uxJhw4diI6O5quvvgLg5MmTXHPNNbRr1442bdqcWeDwqaeeonXr1rRt25bHH38cgIMHD3LTTTfRqVMnOnXqxIIFCwB47rnnGDp0KN26dWPo0KGsX7+ezp07ExMTQ9u2bdm8eTNPPfUUW7ZsISYmhifc2WdeeeUVOnXqRNu2bfnrX/965vfJXnxx/vz5XH755QwYMIALL7yQwYMHe+T+xOIst2F8xfjxULUqXHedx5vac9t1TNrzM6MiBlEltIrH28tPr6a9aFGjBe/Ev8OQtkO8FofxHw/PephV+0p2aqGYejG83if/ATsREREEBQWxc+dOFi5cSJcuXdi9ezeLFi0iPDyc6OhoKlasyLRp06hatSqHDh3ikksuoX///syaNYuIiAhmzHAWekhOTiYpKYlp06axadMmROTMgocPPfQQjzzyCN27d2fnzp307t2bjRs3ArBhwwZ++eUXKlSowAMPPMBDDz3E4MGDSUtLIzMzk3/+85+sW7fuzLRLc+bMYfPmzSxduhRVpX///vz0009ceumlZ/1uK1euZP369URERNCtWzcWLFhA9+7dS/T9tTMof5eW5gz/vv56qFDB482NbXyIzAAYtdF7yQmcpeHvjb2XhbsWsnrfaq/GYsy5dO3alYULF55JUF26dDnzulu3bqgqo0ePpm3btvTq1Yvdu3ezf/9+oqOj+e6773jyySf5+eefCQ8PJzw8nLCwMEaMGMHUqVOpWLEiAN9//z2jRo0iJiaG/v37c+zYsTNTLPXv358K7ndDly5dePHFF3nppZfYsWPHme05zZkzhzlz5tC+fXs6dOjApk2b2Lx58x/Kde7cmcjISAICAoiJiWH79u0l/t7ZGZS/+/57Z/byW27xeFMZWRm8v3E8vZNr0eyr7+BFdQZPeMnwmOGMnjead+Lf4d1r3/VaHMY/nOtMx5Oyr0OtXbuWNm3a0LBhQ/79739TtWpV7rjjDj777DMOHjzI8uXLCQ4OJioqipSUFFq2bMmKFSuYOXMmzzzzDD179uTZZ59l6dKlzJ07lylTpvDWW28xb948srKyWLx4MWFhYX9ov1KlSmee33bbbVx88cXMmDGDfv368d5779E012rbqsqf//xn7rnnnnP+XqGhoWeeBwYG5nuNqzjsDMrfTZoE4eFw1VUeb+qb375hz/E9jGw+CLZtg+XLPd7mudSoUIOBbQYyfs14jqUe82osxuSna9eufPPNN9SoUYPAwEBq1KjB0aNHWbRoEV27diU5OZk6deoQHBzMDz/8wI4dOwDYs2cPFStWZMiQITzxxBOsWLGCEydOkJycTL9+/XjttddYvdrpPbj66qt58803z7SZ3yzpW7dupWnTpjz44IPExcWxZs0aqlSpwvEcN+D37t2bDz/88MwZ2O7duzlw4ICn3p5zsgTlz9LS4Msvne69kBCPN/dO/DtEVo3kmlufgaAgmOz9AQr3xd7HyfSTfLr6U2+HYkyeoqOjz1xbyrktPDycWrVqMXjwYOLj44mOjmbcuHFceOGFAKxdu/bMgIbnn3+eZ555huPHj3PttdfStm1bunfvfmaI+htvvEF8fDxt27aldevWvPtu3j0KkyZNok2bNsTExLBu3TqGDRtGzZo16datG23atOGJJ57g6quv5rbbbqNLly5ER0czYMCAsxJYaRJ/mhk6NjZW4+PjvR2G75gxw5knb8YMZ8ZxD9pyeAvN32zO85c/z7OXPeu0t3EjbN3q1W4+gNixsaRkpLD23rWIl2MxvmXjxo20atXK22GUa3n9G4jIclWNLejYYp1BiUgfEflVRBJE5Kk89oeKyER3/xIRicq1v5GInBCRx4sTR7k1ebIziWuvXh5v6r3l7xEogYxoP8LZcPPNsH2717v5AO6NvZf1B9fz886fvR2KMaYEFTlBiUggMAboC7QGBolI61zFRgBHVLU58BrwUq79rwLfFjWGci01tdS691IzUvlw5YfEXRhHg6oNnI3XX+8sBz9pkkfbLoxB0YMIDw3nnfh3vB2KMaYEFecMqjOQoKpbVTUN+AKIy1UmDvjEfT4F6CluH4yIXA9sA9Zjzt9330FysnMm42FTNkwh6XQSIzuO/H1j9erOwIxJk8DL3cQVgysyvN1w/rfhfxw46Z2LucZ3+dNljLKmuO99cRJUA2BXjteJ7rY8y6hqBpAM1BSRysCTwPMFNSIid4tIvIjEHzx4sBjhljGl2L337vJ3aV6jOT2b9jx7x803w44dziS1XnZP7D2kZ6Xz8aqPvR2K8SFhYWEkJSVZkvICVSUpKSnPoe+F5a37oJ4DXlPVEwVd1FbVscBYcAZJeD40P5CaCl99BTfc4PHuvXUH1vHLzl945apX/jjvXlzc7918nTp5NI6CtK7dmh6NejB2+Vge7/q4V+YINL4nMjKSxMRE7I9b7wgLCyMyMrLIxxcnQe0GGuZ4Heluy6tMoogEAeFAEnAxMEBEXgaqAVkikqKqbxUjnvKjFLv33ot/j5DAkLzn3cvu5ps8GV5+2euj+UbGjmTw1MHM3TqXq5p5/r4w4/uCg4Np0sTzqz0bzyjOn5nLgBYi0kREQoCBwPRcZaYDw93nA4B56uihqlGqGgW8Drxoyek8TJpUKt17J9NOMm7NOG5ufTO1KtbKu9AttzjdfMuWeTSWwrip1U3UrFCT95bbMhzGlAVFTlDuNaVRwGxgIzBJVdeLyAsi0t8t9gHONacE4FHgD0PRzXkqxe69L9Z9wbHUY4yMHZl/oexuPh+4aTc0KJQ7Yu7gy01fsvf4Xm+HY4wpJrtR1998/TX07w8zZ0Lfvh5tqtP7nTidfrrgG2CvvRbWrXOmP/JyN9/mpM20fKslf7/i7zx96dNejcUYk7dSuVHXeMHkyc61n549Cy5bDPF74onfE8/I2JEFz86QPZrPB7r5WtRsQc8mPRm7YiyZWZneDscYUwyWoPxJdvdeKdyc+178e1QMrsjQtkMLLpxzNJ8PGBk7kp3JO5m5eaa3QzHGFIMlKH8yZw4cO+bxpTWSU5KZsG4Cg9oMIjwsvOADqlWDq6+GKVO8ftMuQNwFcURUiWDMsjHeDsUYUwyWoPxJKXXvfbzqY06ln+Le2HsLf5APjeYLDgzmno73MHvLbDYn/XGhNWOMf7AE5S9ydu8FB3usmSzN4q1lb9ElsgsdIzoW/sD+/X2qm++uDncRFBBk8/MZ48csQfmLUurem7NlDgmHExjVedT5HVitGvTu7ZzlZWV5JrjzUL9KfQa0HsCHKz/kZNpJb4djjCkCS1D+YsIEqFkTrrzSo828ufRN6lWux4DWA87/4FtvhZ07YeHCkg+sCO7vdD/JqclMWDvB26EYY4rAEpQ/OHbMWVrj1ls9Onov4XAC327+lns63kNIYBHauf56qFgRPvus5IMrgm4Nu9G2blvGLBtjk4Ua44csQfmDadMgJQWGDPFoM28ve5vAgEDu7nh30SqoXNmZ4WLiRGc5ei8TEUZ1GsXq/atZuMs3zuqMMYVnCcofjB8PTZvCJZd4rIkTaSf4cOWHDGg9gIgqEUWvaMgQOHIEvvWNdShvi76NamHVeH3J694OxRhznixB+bo9e2DuXOeL34PTCI1fM57k1GQe6PxA8Srq1Qvq1HGSqg+oFFKJkR1HMnXjVLYc3uLtcIwx58ESlK/7/HPn5tfBgz3WRGZWJq8uepWO9TvSJbJL8SoLCoJBg5w5A48eLZkAi+mBix8gUAJ5fbGdRRnjTyxB+brx46FzZ2jZ0mNNfLnpSzYf3syT3Z4seN69whg82Llv63//K35dJSCiSgSD2w7mw1UfknQqydvhGGMKyRKUL1u/Hlat8ujgCFXlpQUv0ax6M25sdWPJVBob6yRUH+nmA3isy2OcSj/Fu/HvejsUY0whWYLyZZ99BoGBzvByD5m/fT7L9izj8a6PExgQWDKVijhJdf58574oH9CmThv6NO/Dm0vfJCUjxdvhGGMKwRKUr8rIgE8/dWZnqFPHY828vPBl6lSqw/B2wwsufD6yr5mNG1ey9RbD410eZ//J/Xy2xjfu0zLGnJslKF/1zTeQmAh33eWxJlbvW82shFk82PlBKgRXKNnKmzZ1RvS9/z5k+sa6TFc2uZL29drzr0X/srWijPEDlqB81TvvQGSks1qth7y88GUqh1Tmvk73eaaBe+91uvhm+sa6TCLCn7v/mU2HNjFx/URvh2OMKUCxEpSI9BGRX0UkQUSeymN/qIhMdPcvEZEod/tVIrJcRNa6Pz07wZy/SUhwJoe9+25n2LYH/HroVyaum8jdHe6meoXqHmmD/v0hIgLeftsz9RfBTa1vom3dtjw3/zkysjK8HY4x5hyKnKBEJBAYA/QFWgODRKR1rmIjgCOq2hx4DXjJ3X4IuE5Vo4HhwKdFjaNMevddJzH96U8ea+IvP/yFsKAwnuz+pMfaICjI6aKcPRu2bvVcO+chQAJ4/vLn2Xx4M+PX+M4oQ2PMHxXnDKozkKCqW1U1DfgCiMtVJg74xH0+BegpIqKqK1V1j7t9PVBBREKLEUvZcfo0fPSRM/Fq/foeaWLF3hVM3jCZRy55hDqVPDcAA3ASVEAAvPeeZ9s5D3EXxNGhfgde+PEF0jPTvR2OMSYfxUlQDYBdOV4nutvyLKOqGUAyUDNXmZuAFaqamlcjInK3iMSLSPzBgweLEa6fmDwZDmiATV4AABPLSURBVB92rt94yNPznqZGhRo83vVxj7VxRoMGEBcHH3zgTHjrA0SEFy5/gW1Ht/Hxqo+9HY4xJh9eHSQhIhfhdPvdk18ZVR2rqrGqGlu7du3SC85b3nkHLrgArrjCI9X/tOMnZiX8//bOPbqq4t7jn985OXmSxCDIO7wM1wqLIkEeBcQCVqC14q3ysLYK0pda1F610F4pgrfK9YFe6aWLohVua5VaH4iIokBBCI8ElYYgD0UkGJKAQB7kfX73j9mHJBAhknOyTzjzWWvWOXvv2bN/mcyZ78zsmd+sYsbQGSTHJofkGWfwi1/A0aPw8svN87xGMC5tHIM6DWLu+rlUVDfYNrJYLC7TFIE6BHSpc9zZOddgHBGJApKBo85xZ+BV4Meqar14AmRmwubNpkIPgWNYVWXmezPpmNjx6++Y2xRGjoS0NHjmGeNXMAwQEeZ+ey4Hiw6yYOsCt82xWCwN0BSB2gakiUh3EYkGJgHLT4uzHDMJAuBGYI2qqohcBLwJzFDVjU2w4cJi7lyzdfptt4Uk+eW7l7Pp4CZmXTUr+OuezobHA7/6FWzdCu++23zPPQeje4xmXNo4HvrnQ3xR/MW5b7BYLM3KeQuU807pLuBtYBewTFV3isgcEfm+E+1Z4GIR2Qf8CghMRb8LuBSYJSIfOiHEb+vDnO3bYflyU5EnB3/orbSylOmrptO7bW+mXjE16OmfkylToEsXmD07rHpRT495moqaCu5ffb/b5lgsltOQlrQV9oABAzQzM9NtM0LD+PHwz3/CZ5+FRKDuf+d+Hs94nPenvM/Q1KFBT79RLFwId9xh1nhdc407NjTAg2se5OEND7Pu1nWM6DbCbXMslgseEclS1QHnimc9SYQDH3wAr78est7TR4c/Yv7m+Uy7Ypp74gQwdarxjhFGvSiAmcNn0jW5K3e9dZeddm6xhBFWoMKBhx4y756mTw960n718/M3f07ruNbMu2beuW8IJTEx8JvfwKZNZpfgMCHeF8/8a+eTXZBtJ0xYLGGEFSi3CfSe7r03JL2nRVmL2Jy7mSe+8wSt41oHPf2vTZj2osZfNp5xaeP47ZrfklOY47Y5FosFK1DuogozZhhhCkHvaVfhLu575z5GdR/FLX1Dt+nh1yLQi9q40UwKCRNEhMXXLSYhOoHJ/5hs94yyWMIAK1Bu8te/mgkDgenlQaS0spSb/n4T8b54loxfEpyt3IPFtGnQty/ceScUFbltzSk6JHZgyfgl7MjfwQOrH3DbHIsl4rEC5RaFhXDPPTBkiJnZFkRUlTtW3kFOYQ4v/OAFOiWd7oHKZXw+s09UXh7MnOm2NfUYlzaOewbdwzNbn2HFnhVum2OxRDSh2cvBcm7uvdf0Hv70J7OtexB57oPnWPrRUmaPmM3oHqODmnbQGDgQ7r4b5s+Hm2+GoS7OLjyNR0c/yroD65jy+hS2TttK95TubpsUOoqKYP9+OHwY8vOhoABKSozfxPJys9lkTAzExkJcHFx8MbRrZ0LnziZ4bDvXEhrsOig3eOstGDcOZs0yM/iCyKaDmxi1dBTDUoex6oer8HqCK35BpaQE+vQxFd+HH5qKMEzYfWQ3Q54dQpv4Nrw/9f3Qe30PNWVlsGOHmZSzfTvk5MDevUaQGiIgSh4PVFQYsfL7z4wXGwuXXgq9ekG/fnDFFdC/v/HEH07DypaworHroKxANTdHj5ofcHx80CvlrC+yGLl0JO0S2rWcSnXVKhg7Fh54AOa5PA3+NDYd3MTopaPpfUlv1vx4DYkxiW6b1HiOHIH16+H9903Yvt30hgBSUkzDoFcv4yOxZ08jKIGeUatWDYtLZaVJNz/f9LgOHDAit3cvfPyx+QzQuTMMG2bC8OHmebanZXGwAhWOVFQYDwpbthivEYMHBy3p7IJsRjw/gsToRDZM2UCX5C7nvilc+NnPYNEisw9WiPwQni9v7nmT61+8nm93/zZv3vwm0d5ot01qmLIyI0jvvmvChx+a87GxZjh16FC48krTOEpNDU3vprgYPvoIsrIgI8MI4yHHf3TbtjBqlAnXXmvcXlkiFitQ4YYq/OhHZubeCy/A5MlBS3r3kd2MeH4EXo+X9betp2frnkFLu1moqjJDnuvWmd13R45026J6LPlwCbe9fhtjLx3LSze+FD49qU8+gZUrzZDxunVGpKKjjRiNGmXyMT3dnHMDVfj8c2Pbe+8Z4czLM9d694YxY8z/fdgw92y0uEJjBQpVbTEhPT1dWyyzZqmC6sMPBzXZt/a+pRc9epG2/e+2mlOQE9S0m5Xjx1V791ZNTlbdudNta85gUeYi9T7k1b4L++qB4wfcMaKyUnXtWtX77lO97DJTnkA1LU11+nTVlStVS0vdsa0x+P2q2dmqjz+uOmqUqs9n7E9KUr3xRtXnn1fNz3fbSkszAGRqI+p810Xn64QWKVB+v+r8+Sarp041x0FJ1q+PbHhEZbZo34V99ZMvPwlKuq7y2Weq7durpqaq5oSf2L6z7x1NeiRJ2z3WTrfkbmmeh+bnqy5ZojphghFvUI2OVr3mGtWnnlLdu7d57AgFxcWqr72m+pOfqHbsaP42EdVBg1TnzFHNylKtqXHbSksIsAIVDpSXq95+u8nmG25QragISrJ5xXn6g5d+oMxGJ/59opZUlAQl3bAgK0v1kktUExNV33jDbWvOYGfBTu32VDf1zfHp79b+TsuryoP7gKoq1Y0bVR98UHXAAFNhgxHu229XfeUV1aKi4D4zHPD7zf9+zhwjUIG/u1071VtvVX3xRdXCQrettAQJK1Buc/iw6tChJov/8z+D0hKsrK7U+RnzNemRJPXN8eljGx9Tf5B6ZGHF55+r9u9vKqnf/z5ovc5gUVhaqJNfnqzMRr+x4Bu64cCG80/M7ze9xT/8QXX8eDPcBaoej+qQIabC3rYt8noShw+bnuOkSaopKbW9q/R01RkzVFevDu/hTMtZsQLlFlVVqn/8o+kFxMWZll9Tk6yp0mXZy7TP//ZRZqNj/jJGdx/ZHQRjw5jSUlM5gepVV6lu3eq2RWewcs9K7Tq/qzIbveHFGzTjYMa5b6qsNILz9NOqN91kykngXVK3bma4a9ky1aNHQ/8HtBSqq1UzMoxYDx+uGhVl8svnM43AmTNNb9v2sFoMjRUoO4svWKjCihXw61/Drl1mZtKCBfDNb553kgWlBSzevpiFmQvJLcqlZ0pPnrz2Sa7rdV14+dYLFapm+vmsWWZB6cSJxm9hWprblp2itLKUeRvnsWDrAo6VH2N46nCmD5rOuLRxxOODPXvMGqSsrNpQVmZu7tIFrr7ahBEjoEcPu7i1MRQXmy1b1q2DtWtNnlZXm2tpabXT6dPTzeLhIPu5tDSdZplmLiJjgKcBL7BYVR897XoMsBRIB44CE1X1M+faTOB2oAaYrqpvn+t5YSlQu3bVTh3fv98sfpw3D66//mtXNn71k1OYw4o9K3hjzxtkHMxAUUb3GM0vB/6S76Z9N7w9Q4SK4mJ47DF44gk4edKsH7v5ZpgwwSwsdZuiIko+3sGzWX/iyYLX+ZwTxFULY/fBv+9UrjoAXariTGU5cCB861vGB6NdCxQcTp6EzEyz9iojwwhWbm7t9U6dzELh3r1rFyenpZnzdvGwK4RcoETEC+wBrgFygW3AZFXNqRPnDqCvqv5cRCYBN6jqRBG5HPgbMBDoCLwL9FLVmrM901WBUoVjx8zak23bYPNmE/buNYV89Gi45RaYNMk4Qz0LfvWTV5zHp8c+5dNjn5JdkE1mXiZZX2RRXFkMQP8O/bmu13VM6D2By9te3hx/YfiTlwdLl5rGwI4dpgFw2WWmxTxwoKmAunQxXgya6qGjqgpOnDCeP44erfWgkJdnwqFDZo3PgQNw/Pip26o9sP7KS/hH/zhebXuEPE8pAJ0SOzG482D6te9HWus00i5Oo2dKT5JikiKjN9zc5Oebnuu//gXZ2Sbs2mVcNgXw+Ux56drVfHboUBvatoU2bUxo3Tqs3HBdCDSHQA0BZqvqtc7xTABVfaROnLedOBkiEgUcBtoCM+rGrRvvbM9sikCVHM1jy+o/Q40f1G/8itXUmKGB6hq0ugoqytGKCrSiHEpK0aIiKC5Cjx3DX3AYf1kZCtR4oCYlGX+vXlT3+QZVA9OpapVAlb+K8upyyqrKKK8up6SyhOLKYooqijhefpyC0gIKTxZSUFpAZU3lKduivdH0a9+P9A7pXNnxSr7T8zvh54E83Ni5E159FbZuNSE/v/71Nm3MPltJSZCYaBaCer0miJj/e02NEaKystpQUmKEKTAM1xBt2kDHjqZiS001nz171roNio8HTENke952Mg5mkJGbwebczew/vr9eUvG+eNq3ak/7Vu1JiU0hOTaZ5JhkEqMTifPFEe+LJy4qDp/XR7Q3Gp/HR5QnCq/Hi1e8eD1ePOI5FQQ5JXiB74JzXEcIA+cawwUjoH6/aWgcOmR6WPmOg9z8AjOE/OWXte6gTifaBwmtICHB+I4MhNhYU7ZiYkyIijLC5/OZ71FREOUFbxR4PeBxyqDHY8rh6Z8NBiDw/wqcq3OqgYPzGypu5D0ej5erx9/z9dOv96jQC9SNwBhVneYc/wgYpKp31YmT7cTJdY4/AQYBs4HNqvoX5/yzwFuq+nIDz/kp8FOA1NTU9AMHDpyXvTs3vUaf1Tec173nS4IvgcSYRJJikkiOSeaShEtOha7JXenZuic9UnrQNbkrPu/Ze12Ws6BqKpw9e+DgQRO++MJ46i4uNp9VVbWipFqn8ogyFU18vPlMSDDCFhC3Nm2MB++6Xryb4PXgZNVJ9n25j71H97L/+H4Olxw+FY6VH+NE+QlOVJyguKKYipqKIGaSxRIcYqqhfG7T5i40VqDCfrsNVV0ELALTgzrfdLr1Hsb6oj+alorHA+IxLZoon2nh+HxIbBzExCC+aMQZmw60NL0e76kWaaDlGvj0eXz4vD58Hh9xvjhio2KJ9kbjETu+3SyImCGaFvBOJ94XT992fenbru854/rVT1lVGWXVZVTVVFHlr6KyppJqfzU1/hpqtIZqf7WZ8YRS469BMT+RwLlAAzRwPnCtsdS9z9JIVJ2RmWqoMSM0VFfXjtoEGkl+ZyRH/aA43wNzOp1zgeNAunWf0dD3ho6DTHP2qJsiUIeAujVCZ+dcQ3FynSG+ZMxkicbcG1QSktswfMzPQvkIiyWoeMRDQnQCCdEJbptisbhCU5r424A0EekuItHAJGD5aXGWA7c6328E1jhz4JcDk0QkRkS6A2nA1ibYYrFYLJYLjPPuQalqtYjcBbyNmWb+nKruFJE5mEVYy4Fngf8TkX3AlxgRw4m3DMgBqoE7zzWDz2KxWCyRRYtaqCsihcD5zZKopQ1wJAjmXCjY/KiPzY/62Pyoj82PMzmfPOmqqm3PFalFCVQwEJHMxsweiRRsftTH5kd9bH7Ux+bHmYQyT+w0M4vFYrGEJVagLBaLxRKWRKJALXLbgDDD5kd9bH7Ux+ZHfWx+nEnI8iTi3kFZLBaLpWUQiT0oi8VisbQArEBZLBaLJSyJGIESkTEisltE9onIDLftaW5EpIuIrBWRHBHZKSJ3O+dbi8hqEdnrfKa4bWtzIiJeEflARFY4x91FZItTTl5yvKREDCJykYi8LCIfi8guERkSyWVERO51fi/ZIvI3EYmNpDIiIs+JSIHj+DtwrsHyIIb/cfJlh4j0b+rzI0KgnL2r/gCMBS4HJjt7UkUS1cB/qOrlwGDgTicPZgDvqWoa8J5zHEncDeyqczwPmK+qlwLHMJtqRhJPA6tU9TLgm5i8icgyIiKdgOnAAFXtg/GYM4nIKiPPA2NOO/dV5WEsxm1dGmYHioVNfXhECBRmY8R9qvqpqlYCLwLXu2xTs6Kqeaq63flejKl4OmHyYYkTbQkw3h0Lmx8R6Qx8F1jsHAswEghs+xJp+ZEMXIVxUYaqVqrqcSK4jGDcwcU5zq7jgTwiqIyo6nqMm7q6fFV5uB5YqobNwEUi0qEpz48UgeoEHKxznOuci0hEpBtwBbAFaKeqec6lw0AY7KHebDwFPAD4neOLgeOqWu0cR1o56Q4UAn92hj0Xi0gCEVpGVPUQ8DjwOUaYTgBZRHYZga8uD0GvZyNFoCwOItIK+Adwj6oW1b3meJqPiHUHIvI9oEBVs9y2JYyIAvoDC1X1CqCU04bzIqyMpGB6Bd2BjkACZw53RTShLg+RIlDNvv9UOCIiPow4/VVVX3FO5we64c5ngVv2NTNDge+LyGeYId+RmPcvFznDORB55SQXyFXVLc7xyxjBitQyMhrYr6qFqloFvIIpN5FcRuCry0PQ69lIEajG7F11QeO8X3kW2KWqT9a5VHfPrluB15vbNjdQ1Zmq2llVu2HKwxpV/SGwFrN3GURQfgCo6mHgoIj8m3NqFGZLnIgsI5ihvcEiEu/8fgL5EbFlxOGrysNy4MfObL7BwIk6Q4HnRcR4khCRcZh3DoG9q/7LZZOaFREZBmwA/kXtO5ffYN5DLQNSMVuZTFDV01+KXtCIyNXAfar6PRHpgelRtQY+AG5R1Qo37WtORKQfZtJINPApMAXTkI3IMiIiDwETMbNgPwCmYd6rREQZEZG/AVdjttTIB34HvEYD5cER8QWYYdCTwBRVzWzS8yNFoCwWi8XSsoiUIT6LxWKxtDCsQFksFoslLLECZbFYLJawxAqUxWKxWMISK1AWi8ViCUusQFksFoslLLECZbFYLJaw5P8B8+yyfxkpn3sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ "#%% barycenter computation\n", "\n", "alpha = 0.2 # 0<=alpha<=1\n", @@ -153,12 +176,47 @@ "pl.plot(x, bary_wass, 'g', label='Wasserstein')\n", "pl.legend()\n", "pl.title('Barycenters')\n", - "pl.tight_layout()\n", - "\n", - "#\n", - "# Barycentric interpolation\n", - "# -------------------------\n", - "\n", + "pl.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Barycentric interpolation\n", + "-------------------------\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXt8W3d9//86OrpLdnxLYjt27dhJk8a5NReadJR0o9CtQH8FCiv0wqBdRwd7lMu4toOOddtjGw/G+mB8gS8MKCNt1zLIt7ACvQMrSXpJmmsT25Jt2ZJtWZZ1O5LO7fP7Q/mcHEnn6C5bsc/z8UjTSPI5R8fSeZ33+/N6v98MIQQGBgYGBgaNhmmpD8DAwMDAwEALQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSQ6AMDAwMDBoSc5mvN9pOGBgYGBhUC1PKi4wIysDAwMCgITEEysDAwMCgITEEysDAwMCgITEEysDAwMCgITEEymBF8Q//8A+46667lvowSuKBBx7AbbfdVvHPDw0N4YUXXqjdAdV4/9deey2++93vlrStF154AT09PTU6MoNLBUOglin9/f1wOBxwu91obW3FO97xDvh8vqU+rLKo9gKtxRe/+MWSL4r12H+9+LM/+zPcf//9WY+dPn0a11577dIcUM7+a3ku0+k07rzzTvT19aGpqQk7d+7EU089VZNtGzQWhkAtY5588knE43EEAgGsXbsWf/VXf1XRdkRRrPGRLQ5LfdxLvf/liiiK6O3txYsvvohIJIIHH3wQ73//+zE2NrbUh2ZQawgh5fwxuETo6+sjTz/9tPLvX/ziF2Tjxo3Kv3/+85+TnTt3kqamJtLT00O+/OUvK895vV4CgHz3u98lvb295JprriE33HADeeihh7L2sW3bNvLf//3fhBBCTp06Ra677jrS2tpK1qxZQ/7+7/+eEEKIJEnkH//xH8nAwABpa2sj73vf+0goFMrazw9+8APS29tL2tvbyYMPPkgIIeSpp54iFouFmM1m4nK5yPbt2wkhhCwsLJCPfOQjpLOzk3R3d5P77ruPiKJICCHk+9//Prn66qvJJz7xCdLW1kbuu+++vPPy5S9/mdx6662Ltn/62Mc+9jHS3NxMNm3aRJ555hnleKampsi73vUu0traSgYHB8l3vvMdzWMlhJCbb76ZrF27ljQ3N5NrrrmGnDp1ihBCyLe//W1iNpuJxWIhLpeLvPOd78z7DKRSKXLvvfeSrq4u0tXVRe69916SSqUIIYQ8//zzZN26deSrX/0qWb16Nens7CT/8R//ofGpIuS5554jW7duVf593XXXkT179ij/fvOb30x++tOfZu1f71weOHCA3H///eTqq68mbrebvO1tbyPBYFBzv/QY9di2bRt54okndJ83aDhK0hxDoJYp6otTIpEgd9xxB7n99tuV559//nly4sQJIkkSef3118maNWuUCwu9cN9+++0kHo8TjuPIY489Rt70pjcpP3/8+HHS1tZG0uk0iUajpLOzk3z1q18lyWSSRKNRcvjwYUIIIV//+tfJVVddRXw+H0mlUuTuu+8mt9xyS9Z+7rrrLsJxHDl+/DixWq3kzJkzhJD8CzQhhNx0003k7rvvJvF4nMzMzJC9e/eSb33rW4SQjECwLEseeughIggC4Tgu77xoCVQ9908f+9rXvkZ4niePPvooaW5uVkT6mmuuIffccw9JJpPk2LFjpKOjgzz77LOa+//e975HotGoIjY7duxQnvvQhz6UJ8jqz8Df/M3fkKuuuorMzMyQ2dlZsn//fnL//fcrnwWWZcnf/M3fEJ7nyS9+8QvicDjI/Px83vnjOI7YbDYSDAYJz/NkzZo1pLu7m0SjUcJxHLHb7WRubi5v/1rn8sCBA2RgYICcO3eOcBxHDhw4QD73uc/l7ZMeo55ATU9PE5vNRs6ePav5vEFDYgjUSqavr4+4XC6yatUqYjabSVdXFzlx4oTu6++9917yiU98ghBy8cI9OjqqPJ9MJklLSws5f/48IYSQT3/60+See+4hhBBy8OBBsnPnTs3tbt68OSti8Pv9xGw2E0EQlP34fD7l+b1795JHHnmEEJJ/UZueniZWqzVLeA4ePEiuvfZaQkhGIHp7ewueFy2Bquf+v//975Ouri4iy3LWPh5++GEyMTFBTCYTiUajynOf//znyYc+9CHN/asJh8MEAFlYWCCEFBeogYEB8otf/EJ57pe//CXp6+sjhGQu/na7nQiCoDy/evVq8vvf/15z329+85vJT37yE/L73/+evO1tbyPve9/7yFNPPUWee+45sm3bNs396wnU3/3d3yn//vd//3dy/fXXa+5TT6B4nidvfetbyd133635cwYNS0maU26rI4NLiJ/97Ge47rrrIEkSDh06hAMHDuDMmTPo7OzEkSNH8PnPfx6nTp0Cz/NIp9N43/vel/Xzvb29yv/b7Xb86Z/+Kf7zP/8TX/7yl/HII4/giSeeAAD4fD4MDg5qHsP4+Dje/e53w2S6uNzJsixmZmaUf3d2dir/73Q6EY/HdbclCAK6urqUx2RZzjpO9f+XSr33v27dOjDMxc4ufX198Pv98Pv9aGtrQ1NTU9Zzr7zySt42JEnCfffdh8cffxzBYFA5n3Nzc1i1alXR9+j3+9HX15d3DJT29naYzRcvB4XOw4EDBxRX3YEDB9Da2ooXX3wRNpsNBw4cKHosako991rIsozbb78dVqsV3/jGN8rar8GlgWGSWAGwLIv3vOc9YFkWv/vd7wAAH/zgB3HjjTfC5/MhEongox/9aCakVqG+qALAhz70Ifz4xz/Gs88+C6fTif379wPIXJQ9Ho/mvnt7e/HUU09hYWFB+ZNKpbBu3bqix527/97eXthsNszNzSnbikajOH36tO7PVEOt9j81NZV1bicmJtDd3Y3u7m7Mz88jFotlPad1bg4ePIhDhw7hmWeeQSQSUQwBdLvF3nd3dzfGx8fzjqESqED95je/wYEDB3DgwAG8+OKLePHFF3UFqpa/FyDzvu+8807MzMzgJz/5CSwWS023b9AYGAK1AiCE4NChQwiHw7jiiisAALFYDG1tbbDb7Th69CgOHjxYdDv79++HyWTCpz/9adx+++3K4+985zsRCATw9a9/Hel0GrFYDEeOHAEAfPSjH8V9992nXByDwSAOHTpU0nGvXbsWY2NjkGUZANDV1YW3v/3t+PSnP41oNApZljE6OooXX3yxrPNRKrXa/+zsLB566CEIgoDHH38cZ8+exQ033IDe3l5cffXV+MIXvoBUKoUTJ07ge9/7nqYdOxaLwWazob29HRzH4Ytf/GLeserdJADABz7wATz44IMIBoOYm5vDV77ylYpt31dffTXOnTuHo0eP4k1vehOGhoYwPj6OI0eO4C1veYvmz+Sey2q55557cPbsWTz55JNwOBw12aZB42EI1DLmXe96F9xuN5qbm3Hffffhhz/8IYaGhgAA3/zmN/GlL30JTU1N+MpXvoL3v//9JW3zjjvuwMmTJ7Mubk1NTXj66afx5JNPorOzExs3bsTzzz8PALj33ntx44034u1vfzuampqwb98+RbyKQVOO7e3t2LVrFwDg4YcfBs/z2LJlC1pbW3HzzTcjEAiUfE7KoVb7v+qqqzA8PIyOjg7cd999eOKJJ9De3g4AeOSRRzA2Nobu7m68+93vxt/+7d/iuuuuy9vGHXfcgb6+Pqxbtw5btmzBvn37sp6/8847cebMGbS0tOCmm27K+/n7778fe/bswfbt27Ft2zbs2rUrr26qVFwuF3bt2oWhoSFYrVYAmZuXvr4+rFmzRvNntM5lpYyPj+Pb3/42jh8/js7OTrjdbrjdbvz4xz+uarsGjQeTm9YpgjFuY4Xz8MMP4zvf+Y6SKjQozA9+8AN897vfNc6XgUE2JeV8DZOEQclwHIdvfvOb+Mu//MulPhQFQgh4nocsyzCbzTCZTDCZTDVf8zAwMFh8jBSfQUn86le/wurVq7F27Vp88IMfXOrDgSzLSCQSSKVS4HkeqVQKiUQCsVgMp0+fRjQaVZ4XBAGSJOWZQAwMDBobI8VncMlAayMEQYAsy/j973+Pq6++GqIoQpZlJWo6evQo9u7dm1VPwTAMCCEwmUxgWTYr2qIRlxF1GRgsGkaKz2B5QAiBLMuKEAFQBIVhGCU6Ylk277nc7QCZmqLcPnkMw2iKlyFcBgZLhyFQBg0LIQSSJEGSJCVCUguGLMt44403MDc3pzzmcDiQTqcxMzMDl8sFp9OpFLXS12gJDhVBSZLA83zWcyzLZv0xhMvAYHEwBMqg4aDCJIqikp5TC0IikYDX60UymURLSwsGBwchyzIIIUilUjh+/DiSySRCoRA4joMsy7Db7YpguVwuuFwuJeICoCs4auGix0IxmUxKtEWFyzBoGBjUDkOgDBoGQghEUcwSA3WLpEgkAo/HA0EQsH79ekQiEXR2dirpOpPJBKfTCYvFgv7+/qztplIpcByHRCKBqakpcBwHSZJgs9myRIv+PKWQcFEHoZZw5UZchnAZGJSPIVAGSw4VJio0amEihGB+fh5erxcmkwkDAwNoaWkBAAwPD2dtQ08AGIaBw+GAw+FQCmTpz/A8j0QigUQigenpaSQSCYiiCIvFkiVaLpdLKUql29QTLiAzs0gQBABAOByGyWRCa2urIVwGBmVgCJTBkkFTZ2phohdrQghmZ2fh9XrhdDqxadOmrKaqtYBhGNhsNthsNrS1tWU9R4WL4zgEg0GMjY1BEASYzeasiIsKV+76llp0UqmUIrhUuLSchVrCZYiXwUrGECiDRYc68iRJApAtTLIsIxAIYHx8HC0tLdixY8eS9FqzWq2wWq1obW3NelwURSXimp+fh8/nQzqdhslkyou47HZ7lmAZzkIDg/IwBMpgUcitYQKyhUmSJExOTmJychKrV6/G7t27YbPZqtpfPS7iZrMZq1atyhtxIUmSssYViUTg9/uVyIkQArvdDrPZrAiX4Sw0MCiOIVAGdaVQDRMACIKAiYkJTE9Po7u7G1dddVXWXKJStp8LTZ0t5sWaZVk0NTXlpSFlWYbX64UoiojH45iZmUEymQSQscTnGjTUppBKnYXGOpfBcsEQKIO6oLaKnzp1Clu3bs264KZSKYyNjSEUCuGyyy7Dvn37smzfpUCjk9yLLxWoRsBkMilOwdxBh7Q9UyKRwNzcHJLJZJYlXi1cpVriaZTK87whXAaXPIZAGdQUrRqmWCyWV8MUi8XQ39+Pyy+/PCtqKAeGYbJaHKkfbxSB0oNa4p1OJ1avXq08Ti3x1KARDoezLPG5tVzqaLMcZ2E8HkcqlcKaNWsM4TJoWAyBMqgJxWqYotEoPB4PeJ7H+vXrMTQ0VPVFUC+VdykIlB5qS7yaXEt8IBAAx3ElW+LVfwMZlyLHcQAMZ6FB42IIlEFVFKthohHA8PAwBgYG8lxx1aAnRJeyQOlRqSU+N+KilnitDh0Uw1lo0CgYAmVQEcVqmILBILxeL+x2O2w2G3bv3l3zY6BrULksR4EqhJ4lXhAExVkYCoUUSzzLsmAYBizLIhQKwel05lni1X+rKdVZSEXMEC6DajAEyqBkilnFZVnG9PQ0xsbG0NLSgm3btsHpdOKll16qy/EUiqAMAIvFomuJn5iYQCKRwMLCAqamphRLvMPhyDJoqC3xgOEsNFhcDIEyKEoxq3ita5hKhZokqHDmPm6gDcuySl1Wb2+v8rgkSUgmk8rgx1xLvHqdqxxLvOEsNKgUQ6AMdCk27oLWMAUCAXR3d+NNb3pTVqNVSj3rkmZmZhAIBCDLsuKM4zgO8/PzaGtry0pdGVxE6/fBsizcbjfcbnfW47IsI5lMKunCYDAIjuNACNGs5SrVEg9kOwuBTN9Cuj2z2ZyVjjR+jysPQ6AM8ig27iKdTmNsbAxzc3Po7e3F/v37C9YwmUwmyLJcdp2THrIsY2pqCqFQCGazGVdeeaUighzH4dy5c4jFYgiFQkrqKrd/3koXrnJuGNRtnPQs8YlEAuFwGIlEArIsl2SJV/9NmZ+fVyI89eePvtZwFq4sDIEyUChmFec4Dl6vF9FoFH19fdi4cWNJNUy1EihJkuDz+TA1NYW1a9eio6MD/f39sNls4Hle6ebgcDjQ29sLl8ul/JxeG6KVKlzUSl4Nakt8R0dH1rbT6bRyzgOBABKJBCRJyrLE0z/qqJt+TnKPzXAWrkwMgTIAIQSJREL5omvVMHm9XqRSKaxfvx5btmwp64tf7ZqQKIpKKrGrq0tph3Tq1CnN7eaaJ/TaEK1k4apnKyiGYWC322G327Ms8XQtikZcs7OzSCQSWZb4WCyGWCwGm81WtEu8erulOguNda5LC0OgVjBqq/iZM2ewfv16NDc3K8/TOUwAqqphohFUufA8j/HxcczOzqKnpyevHVK1dVArWbgWu1chkPm9FLPER6NRRKNRBINBJSrOXePKPeeGs3D5YgjUCkRr3AXLsorjSl3DtHHjxizRqoRyBSqdTsPr9WJ+fh6XXXYZ9u/fr5mOqlehbqnCFQgEkEwmL0nhWgqBKgS1xNtsNvT39yudNERRVM55riWeugnpOXc4HCULl+EsvDQwBGqFUKyGyWQyYWZmBmfOnEFzc7NSw1QL9Apqc0kmk/B6vVhYWCipT99id5IoJFzJZBLxeBzRaDRPuERRhN1uR0tLS8MIV6MJFIUQkhUlm81mNDc3590k5Vrip6enkUqlACCvlsvhcJRsiQfynYX0uXQ6jZaWFkW0DGdh/TEEaplTSg3T1NQUpqen0dbWhiuvvBJ2u72mx1AsgkokEvB4PEgkEli/fj2uuOKKkr74auHLvXNezE4ShezZHMdhYmICyWQSIyMjSKVSirnA5XLB7XbD6XTm3f3Xm0YVKEmSSjquYpZ4us5VriVe/TeFukO9Xi+uuOKKrOcMZ2F9MQRqmVLMKi4IAnw+H/x+P7q6urBu3TrlDr/W6AlULBbD6OgoeJ7HwMAA2tvba2K+aJRWRyaTCW63G83NzWBZVhm3QYUrkUhkRVwMw+SlCuslXI0qULSerVLUlng1uZb4+fl5cByXZYlXC1euJZ66C9WCZjgL648hUMsMLWFSf+HVNUw9PT1KDZPH46lb94VcIVlYWFD2NzAwkNf8tJztXoq9+Khw6UVc6rRVvYSrUQWqFvZ3LYpZ4mmzXb/fr1jirVarIlh6Y13Uf+e+D8NZWD2GQC0TSqlhGhsbU9Z3cmuYWJZVTBO1xmQyQZIkzM/Pw+PxgGVZDA4O5vWIKxe1EOUWdDayQOmxmMLVqAIFLG4vRbUlvr29XXk81xI/Pz+PeDyOo0ePKpb43PEmhrOw9hgCdYlTaNwFkEmjeTwepYZJb32nUit4KceXTCZx7tw5NDU1YdOmTXkmg0pRt1BayjWoelOOcFGjQDHhamSBagRyLfFWqxUcx6G/v18RLo7jEAqFMDExoWmJd7lcsNlshrOwCgyBukQpNO4CyPQ083g8IIQoNUyFPtAsyyKdTtfs+AghmJmZwdjYGGRZRm9vL/r6+mq2fcAYt1GNcHEch3Q6bQhViUiSpKxLWSwWtLS0oKWlJes1akt8OBzOs8Sro65yLPF027nOQmrQUK9x0T/LBUOgLiGKWcUJIZibm4PX64XVai2rhqlWEZR65EZrayt27NiB6enprAmvtaLRTRJLRTHhooMN/X4/fD4fgOIR10pHkqSiF/5ClvhcU0w5lnj13xS1QSOVSuGNN97A1q1bldc++OCD+Jd/+Zfq3nQDYAjUJQA1PkSjUaWAUS1Msiwr0UpTUxOGhobyXEzFqHYNijZwnZiYQEdHR9bIjWpbHelBhYiOQ6frACtdoPRQC9f8/Dy6u7vR3NycZc3OHbNBi2HdbrfmfKiVgiiKFdcF6tXPFbPEq9e4ClniaRRMi+0B4JlnnqnwnTYWhkA1MOpxF5Ik4fXXX8f+/fvzaph8Ph/a29urqmGqNILKbeCqNXKjXutbQMYR6PP5wDAMRFFUvqROp1NxYdUjervUUaf21NbsNWvWKK9RX0Dj8bjmfCh1HVcthKtRbyyqtb9rUcgSrx5vorbE2+32vHShKIpK+pFhGCSTyUWZx7YYGALVgBSyitML8cTEhFLDpDeHqRzKjaBEUcT4+DgCgQDWrVunNHDVgrr4agUhBIFAAF6vF06nEzt37lQWjQVBgNfrhSiKCAaDGBsbgyAIRbtorzRKWXvSu4CWIlx6Katqj2mpkCSpZuNiikHdmU6nU9cSn0gkMDU1BY7jwPM8ZFnG8PAwXn31VVgslrKMSL/85S9x7733QpIk3HXXXfj85z+f9Xw6ncYdd9yBV199Fe3t7XjssccUs8hdd92F1157DaIo4o477sAXvvCFmp0HwBCohqKYVVyWZZw/fx7BYBDr1q3Dvn37dEWhXEqNcnIbuBabBUW3nbvAWwmyLCMQCGB8fBxtbW3o6+tTbMK01sRisSjTXru7u7OOm36xZ2ZmkEgkIIqiEmWpo4FandNGphoxKEW4aLfycoSrHlFKrVhMgdJDzxIfDAYRDofR0dGBcDiM3/3udzh9+jR27tyJ1tZWbNu2Df/2b/+m+fuWJAkf+9jH8PTTT6Onpwd79+7FjTfeiC1btiiv+d73vofW1laMjIzg0Ucfxec+9zk89thjePzxx5FOp3Hy5ElwHIctW7bgAx/4APr7+2v2npf/N/ESoJhVnNYwcRwHl8uFDRs21PyLXCyCSqVSGBsbK9rAVYtqU3yyLMPv92NiYgLt7e3K+pbf79d1HuamirS6aNO1q9w7UkmSsroLUOFa6gtULalHtFKtcOVashuJRhAoPWivx9bWVtxzzz3YvXs3HnvsMXznO99BKBSCx+PRPa9Hjx7Fhg0bMDAwAAC45ZZbcOjQoSyBOnToEB544AEAwM0334yPf/zjyueH3uglk0lYrdaqG0vnYgjUElLMKh6LxeD1esFxHNavX49wOIzu7u66fIn1RIQ2cI1EIujv78emTZvK3n+pzWJzURsv1qxZgz179mStJ1XbSYJhGNhsNthstry5RepUis/ny1oDoKJF1wAa9a6/EIuZTitVuKanpxGLxfDyyy9XlSqsB40sUGoLPJBZl6UW+Pb29qxoK5epqSn09vYq/+7p6cGRI0d0X2M2m7Fq1SqEQiHcfPPNOHToELq6usBxHP71X/+14q4wehgCtQRojbtQXyzUrYDWr1+PtrY2MAwDr9db09HpanIjKHUD14GBgZIbuGpRrotPbf7QM17Q7dajDqpQdwHazy0ej2Nubk5xXWnZtBtduJY6WskVLtpQd2hoqKpUYT1oZIESBCFL/CORSF6NVj04evQoWJaF3+9HOBzGNddcg+uuu06JxmqBIVCLRDk1TBaLRbMVEBWRenxRaARVbQPXQtsuhtoR2NnZWdB4Qbe7mIW6ev3cZFlGKpVCPB7Pu6BSl5XD4cCqVasapr6oEQ0JdA2qWMTFcRzi8fiiClcjC1RuBFWOQK1bt06phQOAyclJrFu3TvM1PT09EEURkUgE7e3tOHjwIP74j/8YFosFa9aswR/8wR/glVdeMQTqUqLYuAtCiFLY2tTUhC1btuQVWFLq2S+Pjto+f/58VdNztSgmUKIoZnVWLyZMlEZpFqsenqeGFsb6fD6kUimMjo5qDjh0u92Lvv7SyAKlh1q4Vq9enfVz6siW1hMBUEZs0JRspcJVrya2tUAQhDyB2rRpU0k/u3fvXgwPD8Pr9WLdunV49NFHcfDgwazX3HjjjfjhD3+I/fv344knnsAf/dEfgWEYXHbZZXjuuedw++23I5FI4PDhw/jEJz5R0/dmCFSdKDbugq6v+Hy+kucw1VqgCCFKA1ez2QybzYbdu3fXbPsUPYGidvlSrOpaNHonCVoY29TUlDVuo9BIefX6llYT0lqh1Z17qanUxae+QdATLnUhLICstUT6s40qQMWoJoIym834xje+geuvvx6SJOEjH/kIhoaG8KUvfQl79uzBjTfeiDvvvBO33347NmzYgLa2Njz66KMAgI997GP48Ic/jKGhIRBC8OEPfxjbt2+v6XszBKrGFBt3QaMFmsbKXfgvRK0EiqYTPR4PHA4HrrjiCrjdbrz00ktVb1uLXIESBAETExOYnp5GT08P9u3bV1H6pFEiqHLR6yyg7uWW24RULVq1Kj5eLgKlR7nCpe7goC6EbXTh0oqgylmDuuGGG3DDDTdkPfaVr3xF+X+73Y7HH3887+fcbrfm47XEEKgaUayGSV0/VGkNE8uyeYPRyj3GmZkZeL1eNDU11XSseyHoWpEgCBgbG8Ps7Cx6e3vLsqprcakKlB56vdxEUcxKX9HiY7PZnCdcpRYfX4opvlqhJ1y0gwMVLrUJJpVKwePxNKRwqTtJAItnklgMDIGqEipMHMfh3Llz2L59e9YHN5lMYmxsDOFwuOz6oVzMZnNFEZS6wLW1tbUuY90LIYoiotEojh49WvU5UKMWouU8boNae3NNM4IgKMYMveJj+if3ZqgRz89SF+qqOzjkRlwvv/wympqa8oSrESKu3PWxSCRS0zXkpcQQqArJrWEym83KEDkAiMfj8Hg8ygyZzZs3V33HWm6KT5ZlTE5Owufz5TVwXQzo9N5gMAiTyVQzYaKs9HEbFosFra2tBYuPA4GAMiFWXXxMTTuN5ExbaoHSQ5ZlWCwWrF69uuSIaymFKxqNGhHUSoRaxbVqmOiCPa1hkiQJ69evr4lNm1KqQImiiMnJyYINXPWoReonlUrB6/UiHA6jv78ffX19OHnyZM2/oI1uklgKSi0+TqfTeP3117OKj9WmgaUQikYVKD2LuV7EtdTCJQiC0Sx2JVGKVTwUCiGRSMDr9WJgYKAudzDF1qDU5oPu7u6yXXHUzFDpXTXN0y8sLGD9+vVK1Kg+b7WECpEoiggEArDb7XC73StaoPTILT6emZnBnj178oqPQ6FQ1sVUvcZV76LYS02g9ChHuJLJJGRZrli4cudULbfPvSFQBVCPu6C23FxhoqYDt9uFuR0lAAAgAElEQVQNu92OK6+8sm7HYzabNXvPqQ0Yvb29FbviKi0ETiaT8Hg8iEajmmPl6zVuQ5IkxGIxHDlyBB0dHUprqHQ6rexPfYFtpHRWo1Cs+JgKV27xcT2GG8qy3JCNemtVpFtMuGgBMr1JoMJFz7fb7YbD4cg6llyLuXpfy4HG+zQ0AKXUMNHmpa2trdi5cyccDgdeeumlurqjclN81TRw1aJcIeE4Dh6PB/F4HAMDA9iyZYvme691RENHffj9fphMJuzbty8r5RqJRDA1NYX29nalCWwikVDSWVS06Be+Ee/al5pCFu3ccfJaxcd0uGE534VGrM0C6t9FotB4DbUdPncuFDW/0OsVy7JIpVLLJr0HGAKVRTGruLqGae3atXk1TNWmyIpBBYrjOHi9XkSj0YobuBbafjESiYTSFWFgYABDQ0MF91+ri466sLenpwe7du3C+fPnYTabIctylqPPZDKhra0tbx1Gq5cegKy71EourisFvXHyxYqP1edWr/i40UwblKVqc6QX3ao/x6FQCKlUCseOHcPXvvY1hMNhxONxHDx4EENDQ9i0aVNBx26ls6B+/OMfZ42UP3HiBF577TXs3LmzpufAECgUH3dBU2gzMzMFa5jMZrMy1bUe8DyPYDCopNL0IpZKKRZBxeNxjI6OIpVKYXBwsKYGkELkChNNYaZSqbJMEoXSWfTiGo1GlYsry7JZbXLcbrcxnVcHveJjSZKyIgB18XFu14zlsgZVb9SfYzrqfcOGDfjRj36E5557Dg899BAmJyfxq1/9Cj6fD88++2zNZ0HdeuutuPXWWwEAJ0+exE033VRzcQJWuEAVG3ehdqP19vbi6quvLvgFogJV6xA7Go3C4/EgmUzCbrdj7969dREGvQiKNpAVBAEDAwNKd/V6oydMlFoV6haKCtTmgfHx8bzpvPQC24hrJ40Ay7IFi49pJ4exsTHlPIdCoYaafNxoAqVGXaTLsixWrVqFyy+/HJ/97GeL/my1s6AojzzyCG655ZYavquLrMhvVbFxF/F4HF6vF/F4PMuNVgwqULViYWEBo6OjAICBgQHY7XacPXu2buKQG0FFo1GMjo5CkiRFmBaD3B59eqaPeneS0Lu4qgtkp6enEY/HlTojdbTVSN0GGg2t4uPz58+jvb0dJpOpouLjenGpCBSQPQuqGNXMglJnIB577DEcOnSomrehy4oRqGLjLoBMBbbH41EihXJTWLUQqNwGrhs2bFC+xIIg1FQAczGZTJAkCZFIBKOjoyCEYHBwcNGK/koVJvXx6glRPe22egWytM4oHo8rC9r0c2e322E2m2vqeltuSJIEq9WKpqamvHOrvinQKz6u1+RjSZKWPIrTIzdjs9htjo4cOQKn04mtW7fWZfvLXqBoDdP8/LySwsm1ilNBYFm2qhqmapq5EkIQDAbh9XqzGrjWavulwPM8hoeHYbfbNedR1Qv1uI1ShInSSL34Cg059Hq9ygU21/WWu761koVLz8XHMAysVqum6UVdfDw5OZnl1qxV8XGjR1CVDiusZhYU5dFHH8UHPvCBKt+FPstaoCRJgiAIIITg1KlT2L9/f14N09jYGJxOp6YglEslEZS6lqq5ublgA9dKR6cXY35+HqOjo0in0+jq6sLg4GDN96GF2hVZSVfzQp0kGgV6cXU4HMq4DeCi6y0ejyMcDmNychLpdFqJstTrW416915ryp25VMrkY+p0y+3kUM58qEYXKPXnY7FmQQGZG4r/+q//wm9/+9vavaEclrVAUegHkF7QaA1TS0sLduzYAYfDUZP9lCNQS93AlUaOo6OjsFqt2Lx5M+bn5+v6RaSLq7kR0/79+1fUuA2g8MgN9WTeeDyurMHkdi5v1ItmpdTKxVfInk07OZRTfNzoAqU+tsWaBQUAv/nNb9Db21vTCbp5x1i3LTcAJpMp627a6/XC7/dj9erVdWmcShvGFkKSJGVQ4erVq8uaB1ULaFum0dFROByOrAm+kUikbilEk8kEQRAwNTVVdipPD70O5peCQOlhNpvR0tKSdZFRN4CNx+NZhceVRASNSr1t5oW6lSeTScTjcc3i43g8DrfbDYvF0nD1cVoR1GLMggKAa6+9FocPHy7ziMtjWQsUkFlXmZiYUNxA5fanK4dCEZQ6aujs7CyrgWstUA8ppIua6tw1cFFEao0kSUin0zh69GhNhKkYl7JAaVGoAWwqlcqKuNQRgTriarQLqxZLVQelLiZWQ9OwZ8+eVeq4couPl3r9cDnPggKWuUARQnDs2DF0d3dj9erV6Orqqqs1VUugqm3gqkU57ZSo+cLj8cDtdhdd46plzzxJkjAxMaG0JNq9e3fN0qmFWG4CpYc6laXVjigej2d1daDFsXTcBs/zDVV43GiFujQNa7FYMDAwoNxQqouP1euH6vOr7ppRT3KbxS6nWVDAMhco2qeNEIJoNFpXizaQLVA8zyuzkKpp4JoLdfIVE7lc80Upa221cglKkqSYH6gonzhxYtHuMFeKQOmhV3hMB2vGYjFIkoTTp09nFR6rI66lKDxuxCm/QP4aVCnFx3NzczWZfFwK6nO2nGZBActcoNRYLJa6pK/U0G7jZ8+eRTgcRl9fHzZs2FDTu8JiAkUIwfT0NLxeL1paWsoyX9A6qEqhwkTtquposV4dzQkhmJ2dhcfjAcMwiqVYEISGXtxeCuhIeZfLhenpaaXzvnp9S11jtBRzohpRoEp1FxaafEzPr7r42GKx5AlXtTcGy2kWFLACBIreTVsslrpGUBzHYXR0FAsLC+jp6anJBF0t9KIcWZYxPT2NsbExtLW1YdeuXWW7AlmWrUhEciMmrV6FepbwSqFrahzHYXZ2FkNDQwCgdNnmeR7Hjh1TjAS5Hcwb8UK4WORGKlarFVarVbPwmK5vUas2AE1jxko+n8WwWCyaxpdSio8LOTZzf4/LMWuw7AWKYjab6xJB0dHuyWQS/f39iMViWfUutSZXoNS2+fb29qrcieWm+LRSeXp3gLWMoEKhEEZGRuB0OuFwOLB161alQ4jNZkNraytmZ2eVgXxqa/HMzIzi0FJfZFdSI9hSUmnqGqPcxrr0fOY63krtWm5QuPiY53lFuHJHxajPscVi0W0BtlxYMQJlsViQSCRqtj3ap04UxawGqrR3Xr2g61yyLGNqagoTExM1s6uXKiJqYerq6irJ+FELgZqfn8fIyAhsNpviQnzppZfyXpdrP9eyFhdqBKsWreVYb1TNWo9aiNasWaM8ri48Vnctp4XH6lTWSik8rgS1Y7NQ8fH8/Dzi8ThSqRROnjyJI0eOgGEYJVNUSqqw0lEbQGa8xl/8xV8gGo3CZDLh5Zdfrksd57IXKPpFrFUj13A4DI/HAyDTwHWxHTMmkwmBQABnzpzBmjVrampXLxZBVSJM6uOuVKAWFhYwMjICs9mcVbelJveCWyzdobfQrXf3upzShPUwI+gVHtP1F63mr7mNdRuRRkmbaRUfx2Ix+Hw+9Pf3Y2xsDC+88AJmZmawb98+AMDmzZvx8MMPa66fVTNqQxRF3HbbbfjRj36EHTt2IBQK1e2mY9kLFKUak4S6X5/FYsHGjRvzLmy1Yto7C0eTA6s68ufqTE5Owu/3o729vS51VHoiQvc9OTlZtjCpt13ulz0SiWBkZAQMw+Dyyy+v2zlXo5d2oYWc9EJbTpqwUS5ylMV0y+mtv6hvBHw+nzKP6+TJkw1VeNzIRhtqtHA6nXjXu96Fyy+/HJFIBI899hgEQcDY2Jjuuatm1Mavf/1rbN++HTt27ACArEiv1ix7gaJfxEoEqpQGrno/V8kFIL6QwKP/+FO0drbg9gfeB5PJlFXg29XVhb6+PjgcjrrcseQKVC2ESW/bhYjFYhgeHgYhJKubeznU8gKsThOqKTVNWA/3YjUstZ07K43V1gpAgkxYvPrqqxgcHNRsRZRbGGuz2RblPTS6QOUW6dLvCr2R1qOaURvnz58HwzC4/vrrEQwGccstt5Q0f6oSlr1AUcpJ8VGr9tjYWNEGrnr7qURA/vtff4FIKI5IKI7f/fQIeq5ci0AgkGVAmJiYqFs7Ipriq6UwUUoRqHg8jpGREQiCgA0bNpScPqURivrCuxhRS6lpwnA4rLgOGyFNuNQCBQCM7INFeAwMCQCwgmeuhsW8WrcVkbrweGpqKqswVr2+VWujy6UkUOXMgqp2v7/73e/w8ssvw+l04q1vfSt2796Nt771rTXf17IXKHUEVUyg1I64tra2ihq4VipQXCwJ7ykfyAWX1M/+z//gz//11rwCX5Zl61bPJcsyeJ7H4cOH0dnZWdO2UIVs5olEQhklT5tSlrPdRiM3Tejz+cCyLFpaWipOE9aSpRYoVnwJZvEnAOiNVhJm6Wlc1rEKILsBJvu7U6jwOHcqr1YE63Q6K/4cX0oCtVijNnp6evCWt7xFWQu74YYb8NprrxkCVQ2FugvUsoFrpWaM8TM+cIkE0uk07A4HVjWvQnpOzPtylNKQtlzUERMhpC79CrUiKFo7xnEcBgcHyx4QCVwaIzeAytOE6uigVhfKpRQok3QOZvFxADnfRQK4bFOwCAchWO4ASpxgrVUYq45g/X5/XuExPaelFB7LstzQAqW+gS5HoKoZtXH99dfjn//5n8FxHKxWK1588UV88pOfrOl7o6wYgdKiHg1cyxUonucxPj6OF5/6HUwmUyatdeHLOfKqFzv/MHtSZS2HFsqyjMnJSfh8PiViOnr0aF3a3KgFKplMwuPxIBaLYXBwEB0dHRVfMPVuPBrNmKBHpW7Caopkl0ygSAgW4YfIEycABJljMsnHYJK3QmZ3V7wbPaMLtWnH43GlyBtAnkNT3Vg3d5xFI6EVQZU6C6qaURutra341Kc+hb1794JhGNxwww14xzveUZf3uOwFSst+LIoixsfHMTMzk9eSp1pYli1JoHieh9frRSgUwmWXXQaH7II9p1fe6PExSKIE1pyd4qtWoLSEqd6910wmE9LpNM6cOYNIJIKBgQFs2bKl6gslFahGi5iqpZibMHc6bzlpwiU5X4TAIjwKgNN9nh6RWfx/4E1bAaZ2LXv0ZkQVGrVBu5vTrhqNVnhcbSfzakZt3HbbbbjtttvKPOLyWfYCpYZhGJw7dw6hUAi9vb3Yv39/zS2sZrO5oICk02l4vV7Mz8+jv78fGzduBCHA1PB03mtTSR4TZ6ewfttlymO5AkUIwTM/eRW7rrkc7WsL27CXQpiAzHuenp5GPB7H5s2bccUVV9Tsi04FKvf32EgXklpRyzThYp8fk3wCJnlY93kCKJkDhkTASs9CMt+g+/qaHVeBURs0ek2lUjh79qxSeJxbyL0UjXWB5T9qA1gBAsUwDFKpFLxeLxKJBDo7O+siTBS9FB89hnA4jPXr12PTpk3KRSLgmYHAa0dd518Z1RUoKk5Hnn8DnjcC+PBn/hhWW36KMleYiqUya3WHrY4SW1tb0drais7Ozqq3q4amDnPTMJdKiq8WFEsT5g45NJvNkGUZwWBwcXrpER5m8WeFX0IIGFw8BrP4AiT2DwGm/uNZtKDnNBaLobm5WTEQqBu/0puu3P551JhR79SgIVDLAEIIzpw5g+7ubgiCgI6OjroW/uX2/Esmk/B6vYhEIli/fr1mE9nJ8wHd7Q2/6sH1H/5D5d9qgZqbjuLI828AAIKBCH71X6/gXbfvV16rFqa1a9eWtMamd8EvB1okODs7i76+PmzcuBHBYBCxWKzibepBTRK0ZoZ26zbQTxNOT09jdnZWM6VVDzchK70IhoQLv4gAyPpa8GClw5DMf6jzA4uDJElZ56GcwuN6dyDRGve+nGZBAStAoBiGwe7du0EIQTgcXpSRG8lkEhzHwePxIB6PY/369QXTWuHpBd3thQILmJuaR8e6NmX7NELznssWtpMve3Dde3fBZreULUwUKoCVCBRd25uensZll12WFanWY9wGvTAcP34czc3NsNvt8Pv9iMfj4DgOJ0+eVFJcuYvfKxVaJOtyuZQuAkAd3YQkDbP4QvGXIT9qZ6XfQmLfAjBLZ1IQRbHoHLVC/fPUjYq1Co/pea2k8Dg3tb3cZkEBK0Cg1CzGTChRFDE9PY1QKISBgQEMDQ0V/eAtzEYKPj9+ZlIRKHUE5X0jW6BkUcZLzx2HvVUsW5golQiJKIrK5Fy9tb1aCxRtHJtKpbB161a0trZCEARlv0eOHMHAwEBe1211cSf9s1RrCEtJnhiUmSYs1U3ISr8HUEKTZpVJQjlGMg+TfBIyu7PMd1c7qskmFGpUTFs75U7kVd8I0I7lpbLcZkEBK0Sg6EJ6rRrGakHHbsRiMdjtduzevbvkO6LwTGGB8g9PY/fbtgO4eGGRRAnjwzOZF1yw0CaTSQyfnMKdf/2uiu3y5bgE1QMKe3p6sH//ft0vc60EKhKJYHh4GCzLYsuWLfB4PJrF1CaTCU6nM6/rNi3upKM3RkdH82pk6BrCco22ylljLOYm1EsTut1uuJw2uPFcaccEaNY+sdLhJRWoUqZXl4teY131Z5O2WMsdbEj/zr0BXK5rritCoCj1iKBisRhGR0fB8zwGBwdhs9mUBqelsjAbLfj81HD+GpV/PAQ+KSjCZLXZ0NLagoWZNEgRHSCEIBJJoqUlv31TKUJC17YmJiZ0BxRqbbeaL1E8Hsfw8DBkWcbGjRuV4ky9Oig9+7lWcWdujUwwGATHcfkX3Dq00lkKqr2YqSOD3JEb6jqjBfkIOldNwMQwYM1mmFkWrNkMlmU1yz+YvBgKMMnnABIBmPL7MdYCSZIWrVltKYXHNIqVJAnpdBoejwc+nw9utxsMw5R83al01MbY2BiuuOIKpd5q3759+Na3vlWbE6DBihAodbsjWpxXLep5UIODg8odZjqdLqtOKZVIIcWlC75m1jcHPsXDas9cHAkhePWl0wiHw4owMUzmSyQKEjxnAth85WWa2xJFCT/92WsYHw/hz+86gFWrsvPrhSIo9QyqtWvXliRMlEojKI7jlFTexo0b8xaBqUki94tZqHNILno1MrkXXNpKh46KUEdbS9lxu1zqVQeVlSYkBFb+p2BIC2RZhiRKECURQioFSRRBALAmU0a4LrgKTYzWOSRgpdeWzCzRCK2OtKLYVCqFM2fOoLm5GefOncMvf/lLjI+PY8+ePdi0aRO2bt2Kz3zmM5rfz2pGbQDA4OAgjh8/Xv83jhUiUJRapPgikQhGR0dBCNGcB1VqoS6lWPQEAIQAAc8sejd3K3dQU2ORLGFS88brPl2B+uWvT+HU6SkAwMFHD+Mjf3YNbLaLHwMtIZFlGYFAAGNjYxXPoCp35HsqlcLo6ChisRg2bNig2wapWARVDVrrMmrHFjUU0Jsep9OZJVyNVthJqZdAESJjQfgNIvxhSPIUXJhEO9sON+uGyWqCBarPDAEkWYIkihBFEXw6faEgNpUXbbHSKytaoLSg1vaOjg7cfffduPHGG/Hxj38cP//5zzE8PIwzZ87oHnc1ozYWmxUhUNWM3KAsLCwo03ILjYAot9NDKQIFQnDi8ClMhsexZs2azAgHPq4pTgAwcmoSkiSDZbOfl2WC06f9yr+npyN47dg49u8b1Dx+QogiTO3t7di7d2/FKa5SIyie5+HxeDA/P4/BwcGi3SbqKVB6+9NybKk7bofDYfh8PvA8D4vFAkIIHA5HzXvqVYpWYXO1SHIcU8n/i5Q0AQAwyX7EEUdcjqOTdKLdnDMziMl81liWhTXzT7AsC4vVCkmSMqLF85BEETI5jbG5Z2C29WVFrYtxHhtVoPRqoCwWC7Zs2ZIlNrlUM2oDALxeL6688ko0NzfjwQcfxDXXXFPLt5bFihAoSiUCFQ6HMTo6CpZlSxpUWO6daUEHn8r8MDUcwPW3/RGsVivmgiEshBK6+0olBQT9C+jsze4K7vOFwOWkE0+dmswSKJPJBEmSMD09DY/Hg7a2Nuzevbtqd1AxgVLXTuUWMhdisQVKD72O27RYWRTFLBecOtpyuVyLaoGv9XmRSRpTye8q4gQIAC7WvE2L0zDBhFazfo0ONUkwDAPzhbSfms0tKYS5dsTjcUxOTmadx9wBh7U8j7IsN2T6ttAsqHrS1dWFiYkJtLe349VXX8VNN92E06dP122Y6IoSqHJSfPPz8xgdHYXFYsGmTZvyHDe1QlOgVMJktdrQ0tKCdFhUohcuyoMQGUyB+pBJ71yeQJ19I99sMTkVxvx8HG1tbsWd5ff70dHRgV27dpU9bkQPPYGiFvVAIJBXO1XNdhdboPSwWq3KuIeuri4A2f3fIpEI/H4/UqmUYjNWC1c9LPC1TPERQjCd/BFS0rjyGEPmkdsQNiAG4DQ5YTPp3Oho2MzV2JgzaGt7Z2VuwirNLY2Ypq1mFlQ1ozZoBgEAdu/ejcHBQZw/fx579uypwbvKZ0UIFP2AFUu/0dHuo6OjsNlsJU/Q1dtWKR/shaAqxZclTFa0tLSAuXCxXghGkYhwcK1yIh7hi158p7xB7HnL5VnH88a5/H5/AHDi1CSGrmhXUpg9PT1ZRZy1INfFJ8syfD6f8iXInXtVKo0SQZWDuv/b2rVrlcfVbXQCgYDi1qLpQXrBrTZKqKVARYUjiIun1VsHQ/ILzwkI/KIf/ZZ+zX3r2cwpDPGDkYMgpov1RKW4CdVzoqxWa14pQSOm70qhmjZH1YzaCAaDaGtrA8uy8Hg8GB4ervm1Qs2KECiK3peSTjv1eDxwOBwYGhqqql1OOe2CIsFoQWFSMzUcwOV7BpGIpFHs2jvpncv692wwhnA4v2BSEAQ8++xraGvZiu3bt2N+fj5PxId9QTz7yghu++NdcDsqS/XRc0KHQo6Pj6Ozs7MsJ6AWl6JA6aHXRieVSimmDPWgQ3WEUE5RZ60ESpQjmEsfynqMIXFkUnz5cDKHsBRGm1ljIGWRCAoATPJJSKY/KnpcpRQd03ZE6vXBS6njSDWzoKoZtfGb3/wGX/rSl2CxWGAymfCtb32rrAGj5bIiBKqQMAWDQXg8Hrjd7rJGuxeCphKLCZQsy5j1BzN28QLCRJkansblewYRX0iDFCl2CgdjSMRScDVlPsR+f3YvNHq3Tu/m167tg9PpxMLCQtY63fHzfjz69DEQAnzv/x3F3Tftg0OjIW0ppNNpHD58GB0dHVUZLtSohUj9e74UBUoLtQVe3Y1Ar6jTZrNlpQkdDodmUWct1lVm0/8NiaSyj7dIz705aQ4tbEuepbxYBAUArPQ6JHNxgdKjkqJjnucRDofL7upQb6qZBQVUPmrjve99L9773vdWcMSVsSIESg3DMJAkSYmYmpubsWPHjqL9tsqBCpSesUCxbXvHEA8nigoTxT+aSdHFwqmSLr5T3iAu355x4kxPZ1KJoiginojDxJjQ1NSkiOj54RmsXbsqLw36vye8SrTmD0bx9JHzuPEtQ0X3TaE3AbRjw759+2rajkWvAHi5CJQeegXH6XRaiRKCwSCSyaSSCqOiJQhC1WuLSdGLuHAi59Fsc4QWAhGwIC3kRVGlRHUMGQdIDGBqtx5cKE0YjUaxsLDQkGnCldDJHFhhAkUIgSRJOHLkCFpaWrBz586aChNFz4xBhWl8fBwdHR3YsmkIz7gOl7zdmbEgCCGIzieLpvgAwOe5KFDj47OIRDKGDLcrv//c+HgI17w523QwG45jIqeR7bHzU7jhDzbDXMKXMhQKYWRkBC6XCzt37sSxY8dq3iuM1lcJgoBoNAq3261cMJazQGnBMAzsdjvsdntewTG1wIdCIczNzUGWZczMzBRtoaMFIQRz6Z/n758sQGtabi5z0hxa2dZsQSohxQcAJvkMZPaqEl5ZHbRno8PhwOWXX1zLbZQ0oSFQywy/34+xsTHIsoyhoaG6tqXPjULUwtTe3o49e/bAarViZjxY1nZj4QRmp+Yh8lJJEdekJzPi4vz58/B4AwVdYeMToQu1UxeP/dU3JvNex6UEnPbMYMfGbt39LiwsYHh4GFarFVu3bq3r+AtCCGZnZ5U0LR1zIAgCzGYz2traLpl1hXqR2/vNarXCbrejtbU162KbSGTWKIsVHHPSWSQlT85eSPGRGhcQiICIHEELq1prA4qm+ACAlU4vikAB2jVQemlC2vy1kJuwlmlCQ6CWGYIgYPfu3RgZGal7XQONoPSEiZJYKL/t0tipyZLSV5Io4o2THpw53YK1nb1wOHwFX8/zIqanI3C5qJmB4DUNgQKAl8/4NAWKiiHDMNi8eXPdrPnAxbZL4+PjaGlpwb59+yBJknJuTp06Bbvdjmg0ikAggFQqpUxDVZsLLlUXVzXQdJrWxTa34Jh22lYmybpdSDp+BmLKTskx4ADwJR9DWApnCVTpEdQbABEApv7rQaUW6TIMo7gyS3UTqiPXStKEWgK13GZBAStEoBiGQX9/v9LRvN4jN1iWRTAYxMjIiKYwUeILJYwhyGHiXABgGBCdoldJEpFIZKIIl8uJns5BxNKlvd/xiRC2bV2bKdQNRRFNaPcIHPbNIRzl0NqcMZQkEgkMDw9DEARs3LgRsykRL4xO4R3bN8Fkqm3UQgjBzMwMPB4POjo60N/fD/OFljg08mMYBhaLBa2trVlOLkEQNEdHqCOGpqamhm1RVCsKrffoFRzTcxdOnEQ06YEkSSCEXOgGYYbdMgczve8r4dRxMoeUnILdlFkLKzWCAniYZA9ktnRDQKVU20WiUKssKlzq4YbqouNiUX9uE9vlOAsKWCECBVxcNK/nTCjaGmhiYgIul0tXmCiVCFTAMwMTw0DKiaAy6wyZuhmX0wWL1QKAQWBiHvES12LGx0PYsb0LsixjbLpwuub4sB/7tqzDyMgIOI5T+uX9+tQIfnHiHABgLsbhtqt3wFKDKIUQoqxpNTc3K90tJicnSy7UpaKlvtPMLZqdmppCOp3OGtRXzvrMpUAlNnN67hK2k9tjrnQAACAASURBVHCLNDImkCQZksSDQRSiJClLULSzttJhW2N3YSmMLlPXxWMqKYYCTPLpS0KgtFC3yiolTUjXwtTCRdOE6t/hcpwFBawggaLUYyZUbs+6wcFBJZQvRLyCFF9wYg6mjlbl4itLEhIcB1EU4XI5L+zz4gd3diqMGFvaF398IqS0Ohqf1RcoWZbw0mtnYeeDGBwcxOrVq8EwDJK8gGfPjCqvO+4L4LJzq/DWLYO62yoFuqZls9mwffv2rFIAdRNa9YW3VBefXtFs7mK41voMjbYuNcoVqJTM4XziVcwLo4jwJ7HaYkab2ZwZo8GyMJtSYAgD5XJCMvsghECW5Yu/BybzezExDBjGhIgUwVrz2ouW8xIPySSfAfCeko+/UhazD1+paUJaTpBMJjEyMgK/3w+z2VzWzVOlozYoExMT2LJlCx544AH89V//ddXvvRArRqDUDWPp2OVqyRUmeldP7b3FSFQQQc0HwmjvaIUsy4jHYhBEEU6nE01Nbmh9w6d98+DcpV1Ek0kec6FM2mt8Or8Fk0wy6xMCz0OSXLhy9x7YrRfXAl4amUAqR/x/c34c125eD/bCF6ici6N6BpTemla96qBKWZ+ZmJhQxqI3NTVdMuM3yvkdjCVP41j0eYhEQFr2QZRFhEURbtaEKxwOWEym/M4RF4QoKyIiF/ctExmQRYhERCAdwCp2FQg1trBsUQMQQ+byukrUg0ZoFKuVJpQkCa+88gra2tpw5MgRPPnkkxgfH8fu3buxYcMGbNu2DZ/5zGc0SwmqHbUBAJ/61KfwJ3/yJ/V94xdYMQJFsVgsiEZL6CBeALUwaTVTLTVKqyTFl+J4xMIREJbJXBR1hIky618A3166i25ycgHJdBrh6EWBJUQGl0winU7D6XDA1doKBgzGA2Fs6svc7QmShBfPjeVtb4FL4oRvBlf2dSk1S8UujvTukOM4XH755QUXfxezk4Te+oy69kg9foOmZZLJZE0KwGtFqQI1wh3HsejzmZ8BD1G++L2JSzJOcUkMOVnYSxnpfmF3DMOAxcWLvsiIsLN2CDwPPs2Dk0SlkJhl2Uzj2Atdz9VrVCb5LKQVIFBayLKs3EDdeuuteM973oMbb7wR//u//4uRkRGcOHFCN7KvZtQGwzD42c9+hvXr19fVmatmxQlUNSm+YsJU7j7KcfGRC3fvSS4Jd0qEtcVZUs45leSRjrOwOkuLoianwhDYzHHRKvtUOgXHBVuy+q542DenCNQbgTlEkinNbb7whkcRqELdoXmex+joKBYWFrBhwwZ0dHQUL95sgFZHeuM31MMOw+EwAoFASZ0e6k0pAjWWPKOIEwAI8nzea5KyjOEkh632Ev0NGiRIAmABxmSCy33hokcy0bokihAlCRzPKwYYOidKNr0G2bGvrilWSZIaMoWr18mcZVls2rSpYEeJakZt2O12/NM//ROefvppfPWrX63xu9JmxQhUNTOhShUmSqkzoUqJoDLClATPp2G3O2AymUF4qeSLL8+L4OPpkgVqOhCB5E4hmeSRTCVht9nQ2tKqeUEb9l3s9/dGQL+mayy0gIlQRHNoYYLn8ZzXAzuXhJPjsH79emzevLnkFFSjdpIwmUxK7RG9oHR2doLnecRisbxOD/Wql9GimEBFxRCORZ9VPSJBlLXXJKOSiEnBjl6r9s1J0WMBQUSKZEVVYAATY4LJakXWWSAEopQZcigJ53DWewJpXs4ztNSqu0OjRlBLVQP1wAMP4JOf/GTFDbQrYcUIFKUcgSKEYHp6Gl6vt6y5SKVEULIsg4vpr1ORC+6ydDoNh8OB1tZWiEJG9Ph4CpaO0kJsQZCQTqThRmk1SZNTc5DbJMiyGS0t+T3T1EyHYoglUmhy2QsKFACcmJxGV85ojLlEAl98+peIJBJwOp340JW70d2tXwCshd6k3qUWKC3UDi690fLqhXC73Z4XbdXC/l5IoCQi4nDkfyCSi59fkSyAQKusQQRAMME70MYKcLGlD+pUE5EiaEMJDUdVs6JsAK7c5oLMXqFpaCGE5BUc22y2ss5fowoULUKnlDMLqppRG0eOHMETTzyBz372s1hYWIDJZILdbsfHP/7x2rwxDVaMQNEPZiniUakwUUrZRyqe0mxXpBYmWu1P8ycCn7kApONJuEpoKQNkBIpPFRfkdDoNjuMya3QRCW2dpd2RjUyG0NPdgrl44XTl6alZrOtyK66uqakpfPuVo0hJYiZ1yDD4rzdOY1NHB7rcpRf4NkKKr1r06mWKdTGnf8rtBl9IoN5IHEVEUHfCJ5rpPQBglK7lDMZ4J4Ychfvw6ZGUkxBRftrdJJ+FzF6ha2jRKh9QCo5VEaueCDWqQEmSVPEsqGpGbfz2t79VXvPAAw/A7XbXVZyAFSRQFL2UEJAtTK2trRVPki20D0oikhM90fWeVCpPmCg0ghJSPGSxtLtVnpfAp3jdixLP8+A4DqyZxapVqyATYCamfUHSYnRqDjGd8Qpq/AtRxNozDsepqSlwdhtmrWa4mIupR0KAn4+cx5/v3F3y/peDQGlRShfzmZkZpQmvw+HIEq1CRZ56n4W4uIBziVeyHpNIAjLR6hAhAypRWZAsCItmtJorW9/lTOWXXBSymxeauRWPx5FIJBAIBBCPxyHLsub5a1SB0oqgFmPUxlKwYgSqUGifK0y1nCSrh5LeUwmTzWYr2NlcHZUJXGltZQRBhCzKkHgRZtWYDDpug/Zpo1/EZIqHmCo9VTM+vYB5U/FjEXgBJyam0WS1YNeuXfj2yeOa6cPXAgFMDUaxrqm0EdKNugZVL/S6mKtHRtDWTrkTemm0oCVQhBAciz0PiWT/7kWd6AkaEc8470QLG63IMMEx5TtaK7GbaxVr643cSKUyUwNWrVpVcbRaD3IjqHLXoCodtaGGuvzqzdKf7SWCXrxo25zFEiZKIpJAKplEMpksKkwUUbi4DiAmtdsQZUPACzQtyMNssyh34AzDZAkTJc2LFwSKoJTKydn5GAIF7n5F4eL+gjYXBgYGkAJwLjSn+zP/MzKMP7+ytCiKChEhBIlEAg6HAyzLLluB0kJvZIQoikqKUB0tCIKAqakppZGuzWbDDD+G6fRY1nYJeIhEO23HaETNCdmMsGRBm7n8Ti1phgcv87CaynPN1cJurnf+jh07hrVr1yKdTmdFq3a7PW/C8WI6MXPHpZQ7C+pSYkUKlMlkUqa61lOYtO5UaQPZV4+8BkmSS54FBQCSKq2XiaAKi4goyiBy5iKdiiUhWTLuv0JdzdOCCEkgEAUJZkvxj0dalJCI8HA2ZadCJUlCIp5ZrHa5M/sLxBPg0jzOhEMFx4W8PjuDBM/DlWPxDXBRHJmbAC9L+P96h2BjzWAYBhzH4ciRI7BYLOB5XhEmu90Oq9V6yXZ8qBaz2aw5off48eNwOp3K2kwqncJo00vgrfELfQ0ztUeCbndyEdA0TQBTgr0igWIAROUoOkwdRV+rxiSfhYS3lL2/UpBlGa2trVk3cXRtUG1q4Tguq3M5/bten7lqI6hLiRUjUPSOemZmBvF4HPPz83WNmKhRgtqFc7tO9HZdBo/bX9Y26RoUAAhJHoQUrj8RBEmZgRWbj2Hdup6i9uU0NWJwPMyrin88OF5AikiKQMmSjASXgCRKcLloT8AMEiEYCc7jlWhhx58kyzg2E8Cbe/uUx4KpOP7l9ItIiZmL36nwND7cswMzo2NIp9PYs2cPzGaz4uobG8s8ru74QLtI064PTqdzWTeF1YK50J6oo6ND+ez7UucwHpYB0QZJEpFKJSFJImCdAZjMTZbJxAAXukNoRU+UqGRBTGLRVLajj0FUiqLDXK5ADQOEB5jai4FWzZ56bVDPiRkKhTA+Pg6e5/Pq3mrRZaSaNahLjRUjUIQQvPLKK3C73Whvb0d/f39d03lms1m506FpRLUjcPz3gbK3KYrqFJ++8QHI9MuLRmPK6HlWNpVUW5MWRDAMkE4IcJXgXE3yAlKClHFNcUnwPA+nywlbU765hAGDk/4gxsQFjS1l87LfrwgUL0v4v+ePKuIkSRI8swF8NxzDxzZfjbm5OTidTvB8Zi2M2l+tVit6enoAXOwiTdcZ1He+6t56haLL5YL6cyMTGafjL4FhTLBYLn5GRLKAtMReSJ9mxq8Qkkn9siYh68aIQXYz2Cnegc2OeOnHc8GRmiRJCESApaxRGiJM8jBktvQpz+VQ6g1Moc7lWl1Gis3cKsRKmQUFrCCBYhgGu3fvhslkwtmzZ2veMDYXlmUxMzMDv9+PVatW5UVrXLTMfoCEZEVQMi9B4gWY7NlCQPvFCQIPgL14wUkJkCUZJlb/7k0QJcgXUoJ8ojQTBscLSPI8FsIETpcTre4CM2kY4Lh/Fuya4ne7w+EQwskkWh0OPOsfxmRiATKRkUhwEEUBLqcLYasJYzIHl0YvPiB7oq66Bknd8UGSJOUCMj09jXg8rrjiaKS13EZwUIGKCAkcXTiKc4kg3KwJTWbThfdIIMghALQrOU1xsQDSYAijiAoIIIMA5IJGMUBItCAtMbCxJa4Bql4WlaJoN7frv1aDTHfz+ghUNeh95nJ7Ovp8PvA8rxQcq1OFWi7ClTILClhBAgVkohpZlus6E4oQgrm5OYRCIUiSpDtWvlCRrhaZO1jVN5nJ1ENZLggUIRc6TqTTcDidcLtdmJnJ7jnIczzsTfpRY1qgos0gzRU+PwSZ8QAxLgnWZILb2QyrvfDHiWEYTEVjWNfeCraAUGbeD/DKtB8H+vrxXGAECS6BdJpX7jypVPx06iz+1Lou7+dLNUmwLKvriovFYrojOJqamhq+KaweKZnHz+cO4xznwwzvg0gyv2s3a8Imtw1ONg2ZaHWGIJn0HoOLLa9o8EQy/yEX/jeQtqDHkokWGBOjdDFHTrSlcOGxqBxFO8oVqDMomu9uIPR6OtJoK5FI6M4rc7lceQK1XGdBAStMoCj1mAlFCMH8/DxGRkYUN1BnZ6emOAHlR1Dq6ImSTiThal+VKexNpZSOE0phb87PCInCAsWrXi8JEiRRBmvOvQATpC4U9cqmixFaKinA6ij8cSIAOEEExwlo0kgB5vJawI9ofA6+2WnYL7y33EtQVEzjrBTGbuSP26gUtatLbwTH+Pg4OI5b9DZF1RLkF/BrchKmhBVpmVPECcg0gD0eSWLQFUWz5q8y0zlCkwvhEz3rQeJEn5kHg4ujNyTV6A31rCii2mZSLj/Nx5AFMMQPwuTfqFTKUjhASyk49vv94DgOr732GoaHhxEIBP5/9t48SLKzPPf8fWfLtbKrunqTulst9aIFLUhYDQIvFww2Fr5wzcyEl7GxPQ7suDPjudh/TED4D4+XcJgwcWfudQC2I4xtjOeKxR7AXBuQHGaTAQkJZK0tdfXeVV37kutZvmX+OEuerMysyqruFoLy62iXqDqZJ/Pkye/53vd93ufBGNPH7BsW27XaePzxx/m1X/s1IL42v/M7v8M73/nOa3sBBsSOBKhr7QmVAlOhUOCuu+6iUqlw5syZDc+x1QxKrRvMFUBrpYk1tkKxWGR8ol8vT657TNjemJqeAlRc5IGwHVGqpUBiCMKQdquF63qMj4+z3Oq+B78dUds9GIzT6EiFwdDpbA5QQRDwnfPnuHSgwPjERLL7Hhzfbi/w87kFRRnFv7Rf4Fz7CtULVX50z32cKB+66hLdoAVkvUzR2bNnMypymmlFUfSKGPhcDNf42OVHaOJTw6Op+ll6Cs2pJtxedaitG7oVW7B0D43FsnKZdKKB1hsGg9Gx9YbRGmO6G4xlf5k93h5sy96CR9RzKOvaAdRGosYvZwwaOH788ce55557EEJw6dIllpaW+Imf+AlarRZHjx7lz//8z3vu0TSuxmrjrrvu4oknnojZuFeu8OpXv5q3v/3t171fu6MAKi8Y6/vbE7fMR2qk57our3rVq3pS9s1AsHMVGZRWCqU1YdsfCExxGKKolwq8WV8pK/ElCBV2Qkq1AlEU0kyGemu7dsULB9CJuu/P72yekbZlhDHQ3mDIOIxiO2zHcbArJZaUZGIDYBHAnOxwvrnCwUKVSEv+bvarvNA5j9KKMNL87ZWv8MbJ+3jDxLXvU2wmU5QSMqSUzM7O9hEyXq5FsKV8PjHzJXwdgIFAt4lM/2emTYQxgtOtKneN1SlY6T00nFo+LOaiApODKOdJiVAkRppGCLQx2FZMymjoBuV2GaUUArBTy43k56CxDFs9i3J+fEuvb6N4papIpCDuuvHA+3333cfnPvc5/uVf/iVjrw7T5bsaq428XYzv+y9bP3ZHAVQaV1viW1tbY2pqCiHEUCO9jfpcMpL4ndF3oxAz+LTWKKWwrJgqrPxo6I0ipe4rU4StYEPmX7fEFyOU3wygqCAZ6nXs3tvFD7vvLwrkprvOlopLREGgUEr39KG6A8RQG6th2zaX2qvQ1kxUN8i2kqb+l+fO8gtHXs0X57/F2XY/ff/LS09xQ2E3t5RvGP5c1yjWyxS5rovjOOzZs2egS+/6EuG1np/RRvPp2a+xJmNmncHQUv2GlGAwCWhJbTHVqvKqaqwMsZXsKY0V5RFqgWdtXC4zpssEFEIQElIql3CEk41JSCn7/KKcHHDZ1kUwayBGE03dLF6pABV//7vfm1SBBuJsKwWfQXE1Vht79uzhscce41d+5Ve4cOECH/vYx14WtuuOAqh8BrWdEl+j0eD06dMYYzh+/PiGCsKO4wx11e00tpC9JVTV+loDozWu44AQcRYVSmQocbz+j3F9eQ+IJY8iNfB4rQ1SpTtkg1KGVr3D7iMHcJ3+foA2mjB3DmMg6EhKlcGLq9SaMLMgMVkfSum4RKaVplKtZOfSxlAPfUQkNrWHMAaeWp7hB3ZP8q/1M/GCKujpbYDhM7OP8h+PvIOSvXV9xWsRg2R2UkZXo9HI5meiKMrmZ1Im4dUomX9z9QUuduay/61ERGh81tfPjOntMTWlw3xYYH+hDWxPqXxeFji0RSsOg6Gpm4zb44icgnnuALRWyAS4giBAac2VC58m5IFrMjLwSgWoYV5QL0e87nWv47nnnuOFF17gl37pl3jwwQevu/LOjgKoNLbK4ms2m0xNTRFFEcePHx+J0rlRiW/U/lMUhplenut6hE5/iSVsdXC8/gxuPUGie3w4EKCCSGZ+OybJhCxjYVuDbxE/kn3t8qATDQWo1rrr3e6ECBERRRGVSqUva6hHPjpuTNAOJJXi4Ka5SChkoZZ87MKjVDLsEX39/I4OeHTlWX5sz+hitNc7BjG6jDGZS2+j0ciUzPPaeukCvNkiOhss89Xlp3t+F1it3p5QfFb0gCzpUqfMbreOt81K5HxU4KDrb5lgV1d1xu0hzDQBlm3j2XbPfVMdb7Mc3DBwZGBUId00vpcAalQG39VYbeTjjjvuoFqt8uyzz3L//fdfxbvZPHYUQG3VtLDVajE1NUUQBJmy76ixIUBt0n+SiZCrELHpne041BfXqS8kNOqg6VOeGB2gonYAE73248YY6o0WkUya+ZYdN7INRJ2IwgDQyfef0vDbw7PSVhgCMWNLKcXqapNdtYmh5merYfcaNTrRUIBKgWgtarIQNbirsLG1+pNrL3Fy122Mu/F5jTEsRTMEusOYM0FtizM41yOEEBSLRYrFYo9aQV5bb2ZmJtPWK5fLWaaVautBnOX+w/w30TkB2EiHKBHi9FoBxkO4pn8DpAxc6lQ4Vtl6iQ+gY2wa2qFmb1KxWIcXTd1EGYUtRgcJhzPsqnns2tVddLcqpJvGKxmg8izRrWRQV2O1ce7cOQ4fPozjOFy4cIFTp05x8803X8u3NjB2FEClsZnjbbvd5syZM7Tb7QyYtlpe2egcwwAqBSaEiL8wuZ3SYMAxBM3BzxXJwQ3tPFHCYOi0Y+8pqcF1YyDSWmXJR9geDFD+AIAKNiBKtKIQrTVax198gYPnDS61KaNpyu7rbHQiDmyQtGoMq2EDZRSh0hQcK8us+o41ii8vPcVPHfghFsLLPNX4MqtRF/wPFG7m/tqPUbJfPtfQUWOQtl5KQ240Gj1Dn57ncbGwygV9Bcd2EgFdaKrBKh5maI9JsxiWubHYoLQZyAyJ+cjbBKBMX0ZniMkSQ7OogaGSod3urn6rQrrpzJFSKqPHv5IGtFNlmDS24gV1NVYbjz76KO9///txXRfLsvjwhz/cs3m6XrEjAWrYDdfpdDhz5gzNZpNjx46xZ8+ebd+cWynxqYQgkAm5rp+jMWYgzdyYuMQ3KAbNTUEXoDqJknqxVGR8YpzWQn6oNyWaQzgEdPIEiTSicPDsVLvj00iszS3LziwffD+iPMCKvh4FPQSPTiCRSuMMGO4VQIsAZWK5pflWyKFaERBDBWmfb17gRHOMU60vo9dlDbPBeb60/Al+eOKdjDmjZ8zfrcjTkPOx1F7l8xf+O1pp2mE7XnCFouWsxQuv1vG9LQQYlcgYrY947NYAl/wat1ZG9wnLx6IscNS0sYZ8lWLJ4/4/bljmGxK2+k4PQA2LYUK6qcLD3Nwc7XablZWVzOQwPyz73cquBmVQL4fVxrve9S7e9a53beMVX13sKIAaBja+73P27FnW1tY4evQod95551XvmkYp8elkhkapVFh1cP9Ga5NJEGUhRDyr1BrcgB5W4vObHZaXlykUCpmTLUAYrn+t8fkGKUoYYwiGGCYGnSgTjo2iiFazhY/BcVwMBq26gNDpyCEA1f+emn7EeKU/49IYmviYKFYSmG36jJkuwHU6fkxZd+xslqqjmnxu7vMcG/B8AC1V5ysrf8tbJn+BorVxyfCVGl9vPI9xoex2Z9NWogUsaSWZbMzyNICwAlKtomTMOXlE9zNeDks0Cy7VbSiVKwTLymOPs7Uy4XbKfJY+BaYDYuOZvEGRDl2nag2Tk5McPHgwMzlsNpuZwsMgS/mXQw5rfQb1/azDBzsMoPIhhMD3fc6fP8/y8jJHjx7ljjvuuGY32EYlvvpKg2ajQRRJKpVy3Ojd4Lzrs6d8yFAiwwjHy2ddpg+gtNZIpbCEoOyVKVZ62Td5Rp4Q3XZE1In6yhyBlDGBYUD4HUmh5NBsNRHE9PSO30ZEYSaHk0ZnQHamjaER9Q8UNzuyD6CkUsw3l9DGxLtKAT5QGqtgaUWnEzfngyBAtmScC9ialr3MaiQ4XHTwhuyEO6rFY6v/yI9M/A+IAcaKr+SYDZZ5pnGu53fSSHzdRFix3l5aPjZGxcOykAzQxnQJgem7JWeCMW51tpdFzUcbANQQ15jtl/meQduv3c7LzCKVRION2ZfD9PTy2da1nHWTUvbMJH0/e0HBDgOobrYQEgQBTzzxBEePHuW222675jufYfbq586d4/Tzp7MbeRR606ByXb7FEjZ9nN05WwvV1e1LZ6eEELiJHYXsRFDtAlQoVV85LP2fWhuiQOLlSAqDCBLxgwyN1SaWFzPz0lJEa0A5EMD3+8GvIf2BMjNNv/scWmuarRZKSTqOBJ3SyuMXvtCO2FewErHOIoVCfL0UioXgMuiY9n5utcF+m2Smxs68kOL5LMF8eInnW49xZ/X1g9/vKzCMMfzT4pOs77+11OpAkSJDQFZg68rrMWgodzks0fZsSonCxHoV841iRbkbz0QNeZ7tl/muDqCklBtSqDfT07tes27/lkF9H4cxhqmpKebm5vA8j1e/+tV9tfvrEVJKzp8/z9zcHEeOHGHPxF4axdFnQ+QgwkNuzidodSjv7jL5okihjUElJUbbcXqkgsJ1Sg5hHwD2rhZhO+oBqEEECaXiHpAVuT1fGKUNHZmCi1j3GE0YKgqFHG02HCzHFEYKP5SoKCAIQyqVMqHloPx4+DSSMn6PQjDfDKjIuOGdgp3BsCrn0SSDjgJWLItbd5UwJv6MlEpmapRGiLhM+53gn3HDy5QKC0RmDmM0jqhSdm5jzL2fon1o4Ov9bsTZ5jKfufwUX1o4g9YG1xbsKbnsL1u0db8zrjFySO9puGLETDjGMWelR8Ucuvss0YtyuRAsygI3DpmJGoZzTd1EGokjRl+qLP0imAaIfnbrqLFdqaNhenqDZt1Sf7KteEVdbQ/qey12FEAJIRgfH+fo0aM8//zz191ywxjDuXPnsuns17/+9ViWtbVBXWLh1v7Ildya3edTSrG2VkclO61BN3zUWg9Qg65Dd6e7nijRyWVEKTDFs1ouWpO48ca7vLbsPdf65KjTiTKA0hgaA/pPEJsYzi6usn+iwsRE/IWc68xjiEswxsT9La0UqwqigkjAJmYNBlaLQOcIJQYCpVkKJZOeg+e6kCuTah0SqHlCvcqTzSmONUxSGoszraZ9iWXnS9S817Cn8B9wre/eIhEqyd9Pv8BX5s5xsTOHTC5yoAzTzZDLzZC9VZtdxfx9ZNAM2gxohgrCAktRmcOmQcFSPVl8ulnKSr85+434h2BeekMBahhEGQx1VWf3lggrGls9gXLetIXH9MZ619qriWGzboO8olLWYX5sIA9IO8kLCnYYQAHs3bsXk/QsrhdAaa25fPlyJpf/+te/vict72xRKHaQKkQ+wlYn2aW1iCKJEPaGitphq3dhWp9BrV8qwhxRwmDwpczJLvUbIQadKAOonvLegDWo04kYH48b2s0o6OttZSVKywK7SLFUihmAKqCjYrXsNFsUloXrufHvCkWqpZio4ss2a3IRbQyCxP4BgbAEM75kj+cm5UGDQSP1IpFZAmGwbIsA6BQL3OC5SKlQUhKGAe22ZM18iRnxOGP6p9hdue9l945qy5A/Of0YF1or1GWL0PTe0yYZYr5cLxCpkD2V+O/GyAFzT4bN9PaMEcwFFW4qJazPdZlT9rZNTskjybYa0qYeQtXWmZJ5vhIwLNb0GrvZGqPSVo+j7Ddu24JDSnlddRI38idLs62FhQXOnTuHlDJTFmm1WoRhmCmLfD97QcEOBKjUJ+h6eEIZHfCn9gAAIABJREFUY5iZmeH8+fPs27eP8fFxDh8+3ANOxhja9a1lUDLaeNForTZZXVmhUo3r3PPz/eWcnucLZI95YbA+gxK9mU7YTntF0Gx3CIIwASaHQajjdySVRDu1FW3M3MoTJeo5ckQGOkLguDHotIIIndCjV6ImJlG+gP4y5pIvuaHqISyHVerYxsGGGISSf1ppFmTAnA6oeC6W08ZYyyBk8r66dPuLQcCkbePaFrZdoEAhe+tKaUL1aRba81yevpMwiJvl6S44DMPrQktuyZAPvvQNpttraGNYjvo/d2WibPmfa3nYFow54QDVCMOockbzQYWDxQa22ABYxGDPqCVdomq3YmKGSsqvxqBQCEtgpYSU3G3V1m1CE+JtwdZdmCsIcwkjbhr5MflIqwIvd9i2zdjYWI++Z15ZZHZ2lkuXLvFXf/VXfPzjH0drzUMPPcT999/PPffcs+HQ7natNh555BHe9773ZfN1H/jAB/jRH/3R63YN8vG9RU+6hnEtPaGMMczOzvKNb3yDZrPJyZMnOXHixMAsLQoiomEkgyExlMVnDFEYYaSiVhmjUIjnf4ZRzPORH9jdrAelpCbwA1ZXV2l0fFzHSb68g3enKTVdG9NDqEi0q3uOjSIVC9sSa+8ZY4ikzEosjuNkMCGVwQ8VgQpZC5tZGdNdB04Aq4EkUoZVuYDMZxVCICwLK1XHdl3qnoVVuIISsygdIKVERhEyyRSNMShjuBSm18xkdhGxcGmsLm2Pf4sbb5vi5Mn7ufPOO5mYmMD3fZaWljh37hxPPPEEL774ItPT09Tr9Q2HxTcLqTUfmfoW0+1Y9HU1aiLX9ZMMBrUuo7rS8GhJs67Wunnm1HNuY7EYbp3GjYAFVQDLwrZtHDf5fEWczWIMSsnk+kuUVGilMdqwKgcPGG8Utnps84OGxCtJSSJVFtmzZw+u63L33XfzG7/xGzzyyCNZZvXJT36Sd7zjHZw9e3bgc6RWG5///Od5/vnneeihh3j++ed7jslbbfzmb/4m733vewHYs2cPn/vc53jmmWf46Ec/+rLOQ+3IDAriBngQbOyPtFmk7rlnzpyhVqv12boPmoXastU7/Sw+rWI1cAA36ZsE7QCnGO8wo01KghB7QxVrxXUisfnI7W6VpL7cYPf+CYK2D/7GwB74seJ0K4o2Ld9AnEWZgiaQEUbrnmxo/aOX6y0it4mwBXZSWkyPyUOUMTDdXsV1W0POqjFGoom44ksOeCGW1bsgZZmWNhijmI4klTCk5rox6892chT0+NiV4GtEsske96cZHx9nYmIiA7C9e/fRarVoNBp98zR5e/nNDA+NMfztxWeYasa27MpoVqJm33FSR33XzxjDlWaZW9wIx0r9bzfuOw2K2WCMfV57yxW0yFisKpfd6TxV8nhLWL3bZZO//poFfwG35eLYsYJ5PNvmxI8b8hps9S2k8++3NRP1SgKoYVGtVhFC8O53v3vTkvLVWG3cd9992TF33nlnbJAaBJmk1vWMHQdQabiuS7PZ/6UeNVKTwmKxyD333NMzm5DGQIDaYv8Juj2ovN2G6zk9mVjY7FDZPcagGahBkWZQfeW9nvPKpBxq41nFWKF9CGU8H0pqZKg2Le+lsbbWolX0sYTAWgc6aWgdEyCavsEuG+zcatbl6XX/SxvFbLvNoV2JQndmSa4x9OrOSWOxFHrsLfS+3qxPAhAXCJm3LHY78YxbSsKwLCuWE0oJFHwHI0L2We9CSVhdXWNycnemFFKtVLjxhhuwLAudqBekDK/z589nFOe8mnle4PSbi5f4+uKF7HUuRw30ugxIG41i0GerkdrmSqPKoVodIbaXxXWUQ10W2OVufZM3FxW6ADUsEuuNvMKEV/YoUoytN6II1fHRRmMlc12Z/YZtJ72nEFt9C+X8yJZf4/cCQKUxSr/zaq020vi7v/s7XvOa17ws4AQ7EKCu1nJjbW2N06dPY9t2n0nh+hgIUGtbAyitNErG1gLpLNOgbWuqyadUXHraLKJ2ClDrFyiT6JCBbQusRM08ZvIZOiOWRf2OpKk3BqgUcP0AoqqFZXrzLUEvScJxXVoyYsz0XoKu+kE6waORRtIMXYzxEegcMA2+NnNhsQ+gBkVTa9aEzb5yN1PWWqOkRCpJp9NBSUVdfIPZ6BLB7JvZv+8Q+/btzySetNZJOSu+9sWCR6m4h/379mJZFgbRY3iYCpw6jkNYcvmblZcwSZlMGsVa1J8lSjPgvZhuptQKPRqhQ62w/TLjbFDZFkCtKJfICNx8D2uETGxVr3LQPYht2z0LZPf6K9ph2GN0iPV5WtbdVKtjW2blvZI0+KCf+p73gno54rnnnuO9730vDz/88Mt2zh0HUGlslSTRaDSYmppCa82tt97a46C60TnWA1RzbVjJqT9kFLG6UkclU+3rvzBx4zlerYNE8ijqkywaHKl5YV7iKKaMq0xYNF/yCtsRgVSoEcAPoNMO6QzZJWsdlw2FiEEniHQsgZQTa8sTINL3ro0h0ooohCE6sygUkQ5iRQQjaAYFakXVXf9ETAYwJgYsgwajaUmHprSpOpsv2OcDn92ug5N8HpZlYXkeLkmJNXEFtopXmDj2VeTa23n66aczMdJarZYNbjqOE2eHibWIUhJQOLZh90SVyd0VLEsALp1Q8YHnvkKoJDJQKKVYoUUkIiwhEMJCWAJtZF9GFQNz/DuRgNR8c4yKG2JvYig4LFajEr6yKdpbAzmDiG04tugTVVd1DjgH+qSPutc/d47M6HCFxvI3OHNmf4/1RpqZFgqFVxwQDYur8YK6WquNy5cv8853vpO//uu/5tixY9fg3YwWOxagRiVJtNttpqam8H2fEydObInSud0MKi8eW/CKOM6wx4hMJSZsdmLAGaG8B4l5YagIIonWKilVpfR00dfAjwJJszP6brnZDGDdeEa3p6BwHDfLgkKlEJHAKpBlFsaYvl5UmLi9RqHAK/QuqgZQRiJN2JOF1QObWs/8jwCcxCU2/VW8eC9FBSY8H23if8P6Z5E2nPd9jpd6extaKZqtuGw8lrgCwype9fMcr/wartiblfNWVla4ePEiYRhSLBZ75l5SlYG0/6U0YNr80+yLLMg6pYKAgoVvFNJX2MbCaJOUQTVKhJgekYfBfSapLRbbFfZXt1fqNsBcWOFIqb7psetjLipw4xZ9ojSaVbXK5AiWKHmjw2MHX+TwLQ9iILPeqNfrTE9PEwQBjuP0XP+XY3h/O3E1M1BXY7WxurrKT/7kT/L+97+fH/zBH7ym72mz2HEANaonlO/7nDlzhkajwfHjx5mcnNzyTmuQq25zrT30+EHisfXlDTKu3MtRUqHCaKT+UxqttRb1ZhtjyIBpo2hvYcC40wkxu+yE1k8GOunCAYnumzFIo7FDgXGISRK2HWvG5Z5PGY1K+kZRAOREAjQaqUPUACZaI3TQJhyqpB2HAGyWQpvj1QlKthU/qwnRpoMiB1oJU24ujNjnutQcB2NipYDUfDG1LUkj1ItcaP5nbii/i7Hq3VSrVW64Ibaej1XdfRqNBo1Gg9nZWTqdTg9NfWxsjCWt+KeFWcDN3uVC0ABjEGiEpRFoIqMQA+ebBseKX2ai1MHbYhaUxkJQ4dBmlPMB0TE2de2wa4sWHstqmd321uxvhLmApV9E27cPtN6IoohGo9EjT9RqtXj++eeHDsx+N+JqMqirsdr44Ac/yNTUFL/3e7+XKZ8//PDDPdfweoUYpHu2QWyvFvAKCq11Bkxf//rXecMb3tDz9zAMOXv2LCsrKxw9epR9+/ZtuwSwsLDA6uoqJ06cyH736f/6jzz91Rd6jjNa02q3icKoTzx2ea7O0vzgHaqSEsuyY4oucPg1J2hEhvomTMF0xqhyY401r790CHGZqm+hrVlE5dEmE5pRiLXPQdsmmymxLIsoirBTajEQKEWgIvDA3WP11Ni7GYzAV2GOBAHjeyVYGm3kQGDKx6FasE5FYXgcKXncMkTlPGbqhSjjo/EpCsVxS+P7i5RKpYTBufG9MlH4EfYW3461yUxPGIYZaK3W1/ir+edZVEFGBugQsqhy94UBjSLUiTI5EGdNm9PHxwoBB2trmx43LI6WV9hXGL7xGhZ7nIDbii1kJHHc0ffKR9wjVLfo16WtW4jc/zTS4K7WmieffJLbb7896wM2m80e8kq6cRjFnfdaxfLyMsvLyxw/fhyIQeKxxx7jj/7oj16W81/jGOmi7dgMan1EUcT58+eZn5/nlltuuSYCsoNKfK1cBmUSs7kgCGLp/kql7wu0mYqEoWv2FjQ7REMs2iHX10nKZ0gQhWHvMZ0+6v49akdQ3rwpq5PSlG5HWGNuz87TsuxkriuGm0CruBwlkx5K7nwiceD1dYhKMpcUpNp+hFsaDXTqgTMyQM34ETeVPeyBn71AiAKOKBBFJZZbLa64d/CjR34CKWYJ1DS+ukSgpgn10sDnXwm+Sit6nr2ln6Lq3DX0HvM8j8nJSSYnJ3l45iWkX2KXKSKlIpIhC+EqUsfvKWUbylS6SKST1oNlwuN7phuNoEAncii521NWmQ2q7N0G5XxJekSmParebPdxamnLAGXpc1j6WbR996bHpjN46cDs+mw3lSeam5uj0+lkw7XX2y9qp8kcwQ4EqPUhpeTixYtcuXKFm266KdPLuxYxEKBW25DYUHd8n1KxGPe1hny7ZbjBwrruMUGzQ1jqp7ubfF8np8/nNwOojFa2UFqjA73pZLfWGl/GjD9Lp8rg3aXStmOVcaVU3MhPeiVGG2RbIrxkwU1sIZSJhW8tsY5WHhZwyxKDTuwi9ND0vhnYKA0D/A77IjKGK37EodLgDEclZViI+0wNe5YlvcLB4p1U3Tu7x5lOD2D56jKhmk2khxaZbv05ZecYuwtvoeIMt3mZ7zT49PnnWesEaB0PBQd2iGVbeLaVlUljYohJSIq9/aae+bC+3yTnaY1x066VbSkDtZVLQ3nUtuj3ZBDMhQUOWFsbmG/qJr72KVrD1cYHhSM/S2jdDmLje34YxVwIQalUolQqsXfv3uz3qTvvoPm2PCFjuwrm+fP8G0DtkEhLfd/85jc5dOgQDzzwwDXf9di23QNQxhgWZhdZWVmJDQPHx2ONuQ1iswwqvyr7jQ7KLeb+FMv5qKTE5qw7V9QOMdpkJcJ8pJvwdMFS2oDUQ483OWkik5TvCLqgISDpRcmEwm4Tak2eJG5pC9u1MDpWlgiVJMopIWSLuBDIUGAnZIdYz40esMqDlgYagc34iBnXxU7IDUW3J4uK+0wdoijs6zM9tvqPvHnyf2aX250XsUWJsnOcsnM8+502EYGaIVCX8dU0gbrMTPsjOGKCmneSMffVeNb+7H2eWlrkdx/7EjONRu45NB0d4nqCSs1gO6CQaBFT14XoLemledRm0Yk82lGRipeChWH0R8OsX6FWSQBqCyB3RRbZ526dpLEgFzjsHd78wFwIs4itvoJy3rLhcVudgRrkzpv3i1peXs4UzFPlh7yC+aiVGillD8h9v3tBwQ4FqMuXL3PhwgWEENx7770bzjJdTaQZlDGG+fl5pqamaKw0GR8BmNIYZt0O/dJBfqONNTGeZShKa2zLipW6B4TSBhFKKG6eRSmdLHyhhmLuy7uODm4AnbxmIw3oGOWkiqndWS9Ka9R6YdjA4IwBloXUEiU0lrAyIdfsh9EowO8ovAIZvdrC6tFyi5dXgzGaVuiyvxIS6aCfgr0uQp3PouKyTqfjUyqVqFTGWb8CRzria8uf5i17fp6iPdyB1xIuJecIJedI7vIpQr2Ary6zFn4TZdoo7fH5Mzb/dKHFlY4PWFnBNUjUIcIQokVBYSzELvoMAxKR+0v6qofBzkK7TNmtJ5sSMeAok/vZ+7flqISv1vAsBQOUzIeBVqgtVnSB/SPqAKbR0A0CHVCwtjYH5MiH0darMdbeocdciyHdjRTM057WwsIC7XY7OzZfJhx0/kFmhf+WQX0fhjGG1772tX1aVNc6HMfB930ef/xxKpUKd5x4Ff9U/ubIjzdKZ5JGg6N3EdFSo4MQY1vYiZir2GA7q7XGCiRiIED19qBSBl0XoEyslZYI76a7wGgdPV11JMaLe0+242avJtT9/Q4dGqRWRPQ69saLXZJpJSufAZQEikm2FMXZUtqPsVLNPQQImyCyqVgTFF0LZSSRCYh0EP803R5XGhc7IXtsg99u47oe4+O7NnTWbak6X17+FG/c/T9RtEenKQthU7APULAPAPezFgT8yb9+izOr88z5ndizKSE7RMYgc7hggHbdwpMuXiXsK88NkoAa9L/TYzuRSzO0qXoRae1V9Dyqvy+ZB625qMaR0moi3NGrZL4RaF2RJfaztSzKYFiQCxzyturHFeJGf0Po/ScYYiV/vVQk8grmeXUGmYyVNJtNrly5QrPZzGbm8oSMKIp2XIlvx4nFCiG46aabcF33mgrGro96vc63v/1tgiDgrrvu4q677kIFowtywgjlPZFbHpKSpeoEmZjrhuBk4n6FCTbfuWqjuwIMQazsEEWJvYXr5koU8SAtxJmO0QYTxgBmWVY812M0vpJIoxNxIpNIE8VsvyCIhtrJr3vrREGsfu0kXlSu6yZDxvFQr4xiSZwoURm4vBbbktjCoWRXqLm7mfRu4EDhCAcKR5h0D1BzdlMQJfxAc7beyYZqR7F9X4sW+eelT9CS22PErfk+/+Vb3+RSvc6s72OMjSUK2KKEoIQyDkLYCGLH3/QqhW2XsNUt/eTpEaNW29JjlzpVwMrAziSaePE9kNwzPY+ysp/zwRjSVDCiBKIIwkNYNpaVbBhyLyYj0hhDQzusRdZWKorx9dJrdPTWpcOEuYCthqshvNwyR6ms0MGDB7n99tu5//77OXnyJLfccgulUom1tTVOnTrF3NwcU1NTPProo/zZn/0ZS0tLI89sfeELX+C2227j+PHjvP/97+/7exAE/MzP/AzHjx/nda97HefPnwdgaWmJN73pTVSrVX7913/9Wr7tkWJHZlCp5cb18IRqtVqcPn0aKSUnTpzgueeey26i5uroKhLASDNNxhhkFMWphbAQkRqppp0qQphg8PvP75WlSnfDBuVLBM7AmRBlkuc1pqulJrt6dgKBNhBplTH08rvtmPwAjNhL1kqgpMFxu69ZJK66ANjJc5oYZOfaEXttmei3Wdkgp5MAuidKyI7BlrC/EitHv2b8JIYmK9Ecq9ECDbm84RrakCs8vPgxXjv+ExwsHt/gyHWPCwP+yxOPMd9qUY986mF35swAvu66EndVB7tZTdj2sGyDU4qyv2wn/MihFblUvSiX8aRbnW6ZNe35ZR1EAcoIFoISB4pdqnt2rURKeVfx3JZQ2WdvjOBSWKIi1rIHpJlw6t017A3NyTmOuEe2PqMov4gRB9H2PX1/eyXo8AkhqFQqVCoV9u/fD8DTTz/NzTffzKVLl5iZmeGll17iF37hFyiVStx999381m/9ViYGm49UyfyRRx7h0KFDnDx5kne84x09QrF5JfOPf/zjvPe97+UTn/gExWKR3//93+fZZ5/l2Weffdnefxo7EqDSuJaeUPnB3hMnTvSYkKXR2mBId1BsxOBLmXkYE/slCUEUhehgNCaVTnpKJpDZAG1P5BBKKoXRGoTAUgzOJowhiMKMWZHtwEOTPb8BOkrmSk9pGSlXSArj3bsm2bVvsqUOA4HjDj8mXWTtpJclCyX2lNxYxV3GlhqtdoCMYuByHZdisYiVDBg/uTrNzx18c3Z9pA5ZlQusRPOsRvOsRHOsySV0bjg21AGPLn+Wm0q3cU/tR6jYG8tiBVLyJ99+gvlWC2U0M+3ufFO375T8nzEDrknMaPEbBUq2wCkkLL4UnbeYmiy2y1TctQGMvnyZNf+5mYRNCDOdArvtJrYluiAjLGKxXRtwekDLGIUxijXj4AtJ1Qnil57z7EpnNbvP1zU7bOkWdV1nlz3awGo+3OhvCMX/gbF6yRavBIAaFGkP6s477+R3f/d3efTRR/nqV7+KMYbnnnuux2Y+H1ejZF6pVPihH/ohpqamrvv7GxQ7EqBGVZMYJaIo4uzZsywtLXHs2DFe9apX9S326QK9VYAaqKuXAJM2BjtRw07Pp7UBf1SASpaJOKUBb/0XMs4yoyhCat1L6sgTJXKvRxn6GX7agDQYV+DLqNvLGhYhuHSHjw1x9hOrc/eDVuhDeQscl+lGyJ6Si2WJhBElCIJYbqhYLCb6bZJ2u4NSiifXViksa147cQe1Wo1qtcoe7yB7vK6OmTKSulxiJQGsGLwWuNh5kcv+aY6U7uBY+dXsdg/03RvaGP7ymae4sBaXBWc6dWTuGkVaIo0cAkzJFcraQgK/4VFx/fj65Zs++WM3AS0/cmhHbo7Rt1mI7FQRDnVTYdIKMEYnfloqeY0CKwdcxgiUFFi2h8HiYjjGbSUHIXyE8LHwAR8Iu9lWIumUB61pNU3B8fDcwhZHREK88E8Ivf8NY3V7WdfS7v1axnrgTFmBQgjuv//+oY+7Vkrm34145X0KL2NcjSeUlJILFy4wOzvLkSNHuPXWWweWGWzbzm74xvLWGsHrAUqp2MAtNumLezqotOcTLz46ij2VNmMJZqw84ixK5AAq1csDQNh91OUUoGJxWZ2pdPdbiMehfUMgop6Fd1gYYrKEXezSz21hYQsrEwPNQIt4h21p0FZiq7FJ1ENFPZCUbUGr1UIIQa1Wy+a1bNvC87rlS2MMz8ppjsqD1C/XaTZjJ99qtUqtVsuGOSfc/Uy4+4G7k8dpGnIlBiw5z9ONrxFqn0nvBva4Bxl391J1xvmH02d4Zn4egNXIZy30s2wp0hGhlkPeVQ6Y8nR4JfDrHsVd/aSJLuthAMnB9ILWYrtMeWAWtXlc8YtMuhv5a+lkg2QyKSytDUtG0tAeY/YYhtyuw2gQPgIfYafAFWTMTmUUV+Qsk/5krnxrZ6obtmVvUPNs44UfIvR+DWPdEj+fUi+rSvioka90bFEB6Hs2djRAbSeD0lpz+fJlLl26xMGDBzcd7E2p5o7jsLawNVHNKCnxpQaFtm1lBoWQfOeSGzXLiAzoIMIuDf+CpQSJNEwgYawAmAx0hLCwhEhmldY93pfoEjnbd3pU0defS3YiZHH0lc74wAYzmBloAQibMV1i71iRQEsCHRLoKP6p+g0TDXBmqcXN5bh8MYyCn51LCGzX5lHzIr9061upuRW01tlg5tzcHKdPn870E8fGxjLgqnmT1NxJjhCXUowxtNQaq9E8lzov8vjsZb7w4hoQC8LOdlRGvdfrGHs972AAMOVDBjbSt0dU2ujOluWjI218WabshaSK76NGWzmsSpcJt/e7FYNRDE6OYyelv64ppNaa0/U6x20L13Ezfy3LshGigjHl7qdpDIggBi3h08ZnsugybpXQRiOlRElJOwhQWscakHYOtBIyTfJu8cIPIp3/EeW84RVb4hsUo/TerlbJ/LsZOxKgtuMJZYzhypUrnDt3jv379/O6171upDJAXk1iSxmUMQR+QBTJzKCwbxsoukwunbPB0H64IUD1UdcD2WO14boeWsdA1eu2m3hN+WTvXZtYTy8uveWP7O7yREhW4hkldLC13eFKM2TvriJF26Vo57MfCHVEoCN8HdIKO3RkwJpt4ZbH8NzRF6E12eRvLj/CLx5+K1WnRK1W67FcMcZkbrmLi4ucO3eOKIoolUo9oFUp7KLqjCPkAZ652GSfV0MaydnmEoIQC400ahNw2vw6Bk0X21NY215nBYvtMkc8OxbaTRTfjUksSjKrksGPnvZLjDtRjg3YtVjpJdjE5b4UDwJAlYpUoMdfC0FiSBgbQ9q2gxAljCllm5CLsshB712UnADbmcEzMxSZRph6TCZKQMv3fZSMM9M8aDn641j6RYy+D9v+7i/O+VjfJ96KF9TVKJl/t2NHAlQao5AkUlv3qakpxsfHOXny5JYkS/IAVV9qbHJ0HFEY0mg0iSI11KBwfeQBSgUhG+UFvZ5OBtUJsRJWY8qOEMJC0/Up6rY5REzIUgaRlBmVVpn4q8mx8jI1CgUoRr7btDQYaRDOaF+QMFK0A0ll3TyXEFCwXYQC1Q7Z5+2itKuEROGqEq8b38dssMJssEywibkiwHJU5y8vfZ6fvvGN7C/0NqSFENnMSl67rdPp0Gg0WFtb49KlS3FJ2XH45PwVmlrh2A4LYZtQGWzhok2c9cUtuBwpImFGjgryRguChkdpfGvyQ/loRTatyKLqpYofdkJzz86SEB26gBWDlqElu1mUyoa0BwsTr4/zQch91VjNPztTAnBSSoIgQMoWGLBsG9eNMyLH9plX/8CN7v+ONPck3BGDJZpYZhq7cAXXm8Ez01gsgtFIpVBSEgYhbSUx5ivsK32D1uq/I4rezNjY+CvCM2p9VvdyKZkD3HzzzdTrdcIw5DOf+QwPP/xwD8HiesaOBKhRSRIrKyucPn2aUqnEvffeS2md/88okVeTqC9tnEGpRNNLCEGxUMJxRidV6FwpTm9ClEizoizD0WCb/CBmvA7mccxK6NtpH0G1QijbBLqry5AyvLvsLpESzChKC+WJmOwwQv1c+wa7OvqisNIM+wBKSjWwz+ThsBJE7HMP8WP7TmKMYU22uOIvMRssM+svcyVYoq367UXWoiZ/efELvHnPa3jN+K3YG8xHCSEye4eUKqy15sNPPk5Tx07JS+0mc1EbA0RCdUuSQmQtoVQpIw6TfW6bMRxlYCMDK2H1bS8WWgnpYuBH0QUt6A5hp+y86Y5NRa3gegJhj54V+1pzOQi5qdjNEGKbFhfHyX3GCUFHKkkURXQ6Hdb0CyzrDzBufp6x6gRjY2PY7i4Mu4jMHYTpvWcChJnBsWawvSu4ehqLK2AU9UadscrXCNV3mLt0F/OrJ7CdXl29crl8zTQ7R4mr1eF729vextve9rae36XWGQB0oiZOAAAgAElEQVTFYpFPfepTAx+bzkR9N2JHAlQag8RcIXbPfemll7Asa1Nb91HP0a53hqpC5H2gqtUqjutu6Bs18Dl6SnzBYOo4iehrAmb5vxs/QrjdL5yUilDKGGxyX8T0MY6yCIRIwClZMDOkyo7OQMsKwRvr+kDFrD/d8zO/hCnfsBXB6rVWyA27y9iWQGtDu91GRhGVajXrk62PT198ljtqe/Fsh3G3yrhb5Y6xI/FrNIaG7DAb5EFrmYZsIY3kiwuP8+21l/ihyXu4vXq4z+V1WDxy/hwvLC/jeR6RBUthiLZBGtUFniRr7V5FuvR9RO/nlvz/YaAVNFxsL9gW2QGgHVm0QovqVkDOCJSElvCIKkfZXfAwRJmnljKd5L+Hb6Smw4A9rkN5o16QENiOg+04dKtdBq1W0erzNBtvG+qvVSyWEOI4Uh8lMiZmwBuJxTwzK1/nyCGLijPPieqLnDj8PKG5h7p/B8t1h6WlJdrtdk/WnD739epdXY0X1Pdy7EiAygZH131rU/fcIAg4ceLENZERSQFqUHnPJIKS4QAfqGgjFfN1oXVKH06eV2lMJBHr2GhKKSI1eJA3JUpoHStFKDNk3imJqBMRVZ2cblv3h8lRmVPQMh2FkSLzr7KF6FnU+0ArNPFc54ibVK0Nq82QsmvwOx1K5XKiADH8MYtBi09deIafP3pf39+EENTcMjW3zK3VLkW3Jf0MtK74y/zz4rd5eP5b3Fo9zPHKQW4sTjLmDNbjO7W0yN+fPsVKvcNyo8Vyy4/npyzAFTExxOnSp7MaKV3QSj/mvHDuMNDCxKw+2XLxqnLTjGtYzLc8Kt5o7rcqmZmzExLEuXbI3oKLJVxs4WKLsRwbUyVA1UmAy8cYP7kX4KWOzz2VcuaqPFoILNvG2Bdw93+Ru2/5VWyr3OOvdeHCBVqtVp8Gnud5TJ1r4/u3c6PzKpRlgTEIVrCZoVaZYbxyGqwJjDhAZI7SbOmBEkV5MLxaFXPoB6jV1dXve5kj2KEAtT6CIODMmTPU6/Vtu+cOi7TP1VrMlYuS3oTvxwKkExP9PlADZ6CGhB6QmSk/xPJc1iuax3W7Acy8ToSOIoSwcByXMBxc+oxlb0ys+JDs6tfHQNDSgBRoR2HU+sHL2FpjPWjts6sUqw4dJemoiI6K8JUcSLHVWjO9sMbR/RXGE8HcUeIbixc4UdvDa/eMpoxdcYoccw5yrNJlQXVUwFywwhV/ieca52nIeOC2bBdxRQziC80On31smvqyRCmD1Hk1CCAwiIbAFEHUBCL9Zq7bTMXYn4JWfGGHgVY6BB21C5TLLpYTC+dqdPfnCKDVkRaNwKa2gaeW0XE/x7Ys7BwJwteGaT/i8AD7EoGNLSrYIi/Xo7NMKzQ+M2GBm4oB2mxd8aUjz3Kh+Z+5sfzLFL3Dmb9WGkqpzP797NmzrK6u4nkeu3btYn5+nkqlEmdFzl602YPUdyVvFtAtLHOJWtmiVinC/hrCPog2lazvuLKywsWLF7N5pd4MbmtGhzvRagN2OEBFUYTv+zz55JMcPXqUO+4Y7suz3UgFY+vLTTCpMnaH4iY+UKE/Ov29l/QQh/YDVLUY09MTRXODGVhmNMaALxPqrUWYKKGbdcf0nMWAiAzGG+16CQFWBFax1+69O3jZLTumoNVsBIzvKlG0XSYoJY8zBEolYBXRikJaoY8mZmRJ4W75M3zo3FPs8orcVhuucL1RlOwCN5cPcHP5QPa7QEfMBSvM+ks8Oz/Dp758iXY79v5VOn8tc9mvEIhAwCJQ0zAgEUuJKt0fohe0AHQ/aLUbgtoEIGxs4rmg9BHrLUoGOWvNt1zGCqr/djUGqeJS8DBCz/l2wF7PoTiKIRcWlihjiTIOsKTgVvcn2V8YT2xK4n+Buowym+vwhXqRC83/hz3FB9ldeBNCdJc827bxPI/FxUWKxSI//MM/jOM4tNvtHoAJw3iQOw8wrjsG3IYy3fIqUYhgmYLnUNxTZd/eXViWgyGet8yPJnQ6HRzH6cngKpXK0L7WvwHUDotz584xMzOD4zj8wA/8wHUbzEszqMvnpllZWcHzvM3tNowhHKKRNyj0ulklgyFsdbAna5miucEglc63Nnqm8TFgSQMuWRlQ5I8TCYEit55agUFtoXphfA1jcYYk0vPa6VnsLmglw5xr9Q6lZY3nxn0G13FxHJui7VCwLFqRomQcjuzaj7YFHRnhhTbH9k9yub1GMEAxfVBERvGnL36T/3jrA9y2a3sgtT4KlstNpX1cnvb5x68uIkIX17LwlcxdytxMU36EwABrFkgDY2aDIdM4ekAr+e/1oBV0DC1X4hW7mwBLWHEfRyQyRGm2S2wfb5JhaGM0oYIV32F3qXtNs3KebW94PysDZ1oBd9a2TjICeHzti7xp8qeZ9O6nRqyYYIxBmpUMrOKf00R6te/xBsWC/9+pR0+wt/gfqDh3AGRGpbfeemuPTNAgNqbv+1mJcH1fKwWYOCsqZfcvJh3p8HFswcT4GLsnxuMBZiGIoigDrUuXLmVGmOv7WvlZyjR2ghcU7GCAKhQKPPDAAzz99NOxpt11ik6nw5UrV7hyYZZdu3ZhjdBElZHaxGajN7TqLkTG6LgnEUbxBD3dxnkvey8lUfQSJULRO8QL5MBKdBcxYxAShGUlGcHmpSLjDzc8TJ6923tJ1jvbKlEqx/NqQRjQastMg9D1PMqlcjb0WfDi2/nf7T7OfXccYCFocbG1yqXWGpdaq1xqr9JRgzPTyCg+9OI3ePuhO3jLDcevOpM2xvD3T53ivz3xDKsdH19HRCk5JWHnWSIloHS17HpoDq0kzaltDlLrYxBohR2XUtnEdHBjkDrRYSQRZRXdf3GWZWdPZoBGp8jhikDqNp2wjbDpKedtFAuhZDGU7PG2vuQoI3l05TO8afKnqTlxiU4IgSt241q7GXO7gq9SNwjUTM7J+BKRXohBWs1yufVn2OpGli/fxO7KD3Dy5MlNiQ15J919+/Zlvx+lrxX3QUWsnpH0EVXuHqyNjbGrVsvWhdSxObWUP3PmTOaGnT5XGIY7pgcltiiZsb0u6yswwjDEGMMzzzzDkSNHeoYur0U0m01Onz5NFEVYlsXT/99pLr04M9Jj23Wf6QuLIx0bhhFhqLLFTQgrW8vKtx7GShlsBpqdIAEnMXABNrUCwfgWMklLIA6XSNXhlTEZjXwYaFl7XKzS6PTcQsHhppvGsy9mq93C8zwKXgGlZGylISVGx3b2juuwu1Tm//rhN1Ir99bIjDEsBW0utVcz4LrYXqUte9lkR6u7ecfhV3F8bHs6ZFJr/t9vPM0XT00x3awTqC593OgYbEYBwMzCvWwwNb1lkBoU5aqmtI4dGbeydNZfjEEr3nz0iLMamHQ1h8oW1UoVyxJEJoz/pd5aOhy6WfEswf3jZbxt0rOLdpk37f5pau7Whmi1CQjUNO3oItNz/0pHXqQ6EVF0d1PzTrLLPYln79v8iUaItK/VaDSo1+s9xInUuiXNitJqQX4NNsb0qFykNjWnTp3C8zzm5+f57d/+7UwN4k1vehP33nsvb37zm3ts6PPxhS98gfe85z0opXj3u9/N+973vp6/B0HAL/7iL/Lkk08yOTnJJz7xCW6++WYA/vAP/5CPfOQj2LbNH//xH/PWt771mlwnRrybdyxARVGE1ppTp06xd+/eaybr4fs+U1NTtFotTpw4Qblc5rnnnuNLH3yMVn0075qVhQaLs6N4Chk6nRApdZLl9H7mxZv244yV0dokvkiDqeeQlEw8G3XD1ij14sYSwhu84AwCLSoW9u6t7aJvPDiGUgGWEFQq1aF1+lToVUrJ3ZUqb6iNUyqVutJDtVpfKdcYw3LYiTOs1iqX2mtcbK3SlAFHq7s5OXmYeyZuYJe3gfZSLoJI8sdf/iZfPXOehXanC0zxBPPQ7HGzsMcs7JroE87dcggY36PZLJGPQSshVSS9QkMsUPzqySJjRS/JXHvfjzEgTdRrCKnDzMV4j+dw59jWCAL5KFhF3jDxDvYVtmb3ng7bHzx4kEOHDgGKQM8m5cFpjJG41m5Kzi2U7Jt7elVXG6n9e5ptNRqNgX0tz/MGghbA6dOnufHGG6nValiWxS//8i/znve8h1arxVNPPcWDDz7Ivffe23dupRS33nprj9XGQw891DNo++EPf5inn36aP/3TP+XjH/84n/70p/nEJz7B888/z8/93M/x+OOPMzMzw1ve8hZeeumla0WlH+kG2LElvjSulSdUFEWcO3eOxcVFjh07xp133okQIp6BanRGBicYjSCR6vNpbQaCE4DqBFCMqeva9BrG9RyXGBKKUA1l5g2NjoIhACWEwBGCPFfcNoLdtRq+lHSSf1IPLrEaE3/BFubrHDo8getsXE6ybRvbtikUCpwThn9/6wkOl8o0Gg1WV1d7Gt6pVNHY2BiTxTKThTL37r4xOa9hLfKzLOu/nX+KQEmqjsf+YpWaV6Rse1gipsa3ZMhq5HOpucZXvnOB+aU2Qerllegexpdh+ymQamgsx8Ipd0tvCZE/Aa2Y3qCS8u3QMDFhYmx8471mnEEJtLEwUmLZViYKfKEpOWZkVoa2UzWHRIrItVxcXNJBNmPIXIwDFdBWY0x6Af42zAYD7fOV5b/l3tobOV6+d1OgC4KAl156Ca019957L8ViutFwKNqHKNqHSKeJjDFEeoGWfBEhXCwKWKKAa+3GEtuniuft37fa1yoUCly+fJlWq0WhUEApRRiGvPDCC9x8883cdNNNPPjgg0PPfTVWG5/97Gf52Z/9WQqFArfccgvHjx/n8ccf5/Wvf/22r8VWY8cD1NV6QmmtuXjxItPT09x000088MADPTt827ZZm9+aSGywAUDpRIHAsi0c1yEYMi+ljUG2fdw94yilu0aCdJevfmaeQYQKUxj9tjC+QuwarQ8BoKShoC1qOSdQqXUMVlGUgFZEkGS4tm0jpYU14iBs7q3wkae/w//5ujewf//+TMkhXRjq9XqP/FC6m02Ba1ehyD0TN3DPxA3Zc66FPpfbq1xsrfHi2gIX26ushvEiq5Xh8lSTlZWAUCa9vrScdxXAlA+5qhGOwPK6vSWBiK9N7hSxl1YCXKRD0N1POvQFYWDwNqjmGkDJuDTpOE42iySEoKmgY5fYX3PjjElKpJIEfkBLxRJEtm33GEI6loND7GR8xRe8cfJBbijWMnuS1F+rpTb/rmij+fbaPzPjn+Xk+I9Ttsf6X78xzMzMcPHiRY4fPz60/JUPIQSeva+n3BdXAZpo06Er9SQQeBvOCY5yrs36WmfOnGFlZSVzXfjQhz7EwYMH+Yu/+Avuvvvuof5P+bgaq43p6WkeeOCBnsdOT09v+z1vJ3YsQOXljrZjuZEXjz1w4AAPPPDAwNRXCEFjaQtOukMYfOmciSVErIwgRGYJP8grSAgBYYRlCYJQ9zTNMypeMgiaf6Tw5ZYACl8NVa0YFs1Vn0KpC2qOZTHmeYx5HmEY0m4Z7GoRXJeOVHRkRNiSlGpb28W2wogPf/sJfuP+17Er2TnnF4Y8aAVBQL1ep16vMz09nYlx5suDtWKRO8cPcOd4l07eiAKmVhf5y689RWtVImW3PHOtgCkNYyBaVnj77A2f20Ik0lTdBdQkoKUSZl6nIXC9ftq4gWxY27ZtbMseWIs5u+YzUbTx7FjR3nWdTIE+zXyllPHn2W6jjca2uqD1qctf5n858iA3Fo9xY/FY9ryB7iRGkF1vraZcGZgTzgbn+fz8X3B79bXcVr0fR8T3VKvV4tSpU1SrVU6ePHlV3k5xFaAfALWJMEb1ynphXTW5xvM8JiYmWF1dJYoiTp48SblcZmpqioceeohPfvKTuK7L6dOn+dVf/VX+4A/+YKCL7vdL7FiASsNxnIzeOUpsRzy2uTj68wedqK9pqqQEBI6TF9s0ce8pITykbqvpgKYxBhVGdJodpLB6hme7Q5xkoJVSnkWgk5LgiO1GAwQ5A8MRorEWsPtAtefLrKSi2WpiWRa1XbUsCx1LdvkF4fCeNzzAcuBzqb7GxfoaF+t1Vjobl4nmWy0+8NjX+V9fcz8HxwYTYYQQmWFhfjeblmDq9TozMzP4vo/neT3lQdt2+Mw3XmTqygpGGQoILMeLM5Ck/Ka0GThbtJ0wCuSKxtm9tcVQkA5CJ6BlYEwW2VWzCVRsT9KRAZ0oQFgC13UHAlMaUhtOr/q8anep73UIAY5j4zg2EH+AxoDWMWhFMmLRX+K/PvVxfty9h4O79mebgGKxyP7CEfYXjuTOFbsYL0dzGXjVExdjaSTPNr7OVOs7HC/fhz2/i/pyk9tuu+26SgFZor9qMKh3FF+P0T+ntbU1Tp06xf79+7n//vtjgtXTT/Oe97yHt771rXz0ox+lUCggpeSll17aNDO8GquNUR57vWPHkiTSHd7KygpXrlwZSZ13bW2Nl156iUKhwPHjxymXB0varI//+zc+RONSv/DooFhdaLAwu5YMQMbZiWM7PWKh6Y9WO8y+FIP6UAaD2TeJVSnlvjjZ4E2v4kMSwhLYx2LCiNJxT0Nr0zuQuC7ELhcxsbXs5oabxylXPYw2tNotpJRUK1WcIbp5AD9y68288zV39PyuEQZcqte5WF/Lfi4PAC3PtnnbsRO86cjNOFch8plmWo1GgzNz8/z5v55mrp1oH1pxn2aQNE/ch4mzF5WQRkbeBAwIp2bhjF2dWKkQ/z97bx5fV13n/z/P3ZfsS5MmadKkWZoutE26IJtVFAQB/SKyiAMuIOgoRZxhGRV0BGTxJ6OiLCMjDIrKCA9B7MDIUlBEugCldEnTpmmz3aw3d1/O9vvj3HNyb3LT7E2h9/V45FFKbpNzb24+r/N+v1/v1wtqy3KxW0yEwmEkScTldiObVGJyPBFTIhJXRMb71a/Nd7DQPb35jKqC2+Tgk1lrsYRVAoGAMYdJDoPU5dXJkFUJnzjAsNSPV+ylJ3CEbl87DoeD+vxVLHavYIFtkbbrNY/QfzdH/+6MeT6yTFtbGz6fj8bGRtxuN7FYjHvuuYctW7bwwAMPpBVBTARJkqivr+ell16ivLycdevW8cQTT7B8+XLjMT//+c/ZtWuXIZJ4+umnefLJJ9m9ezef+9znDJHEmWeeSWtra0YkcSwxmdDCUChkhNI1NDRMWZIeHAyDKkxKfBAOxVKSalMVayPkIoqSFiyIkPaXUEVTzZmiMXAn3+WOEJ0uTU/+uigqakzC5LBgMZuT3iAqippo/4wiLTUiI+RP6SUh6I0imGWi0Sgul2tShrx/P3CE0+oqKc4emV9l2+wsKypmWdHInWQwHk9UWf5EpaWR1h/37+PvXR1srFzMhrJyHNNo/djtdqJ2O1s6O3nq3QOEwnG06tacqHZlZPQFaFNKxLnF+DmNiBxGDHNH1I6TgexXMNlH5lHTgaLCkV4/RS4V1yjvQqfZlvQ4NSlXSzTIC1TahmPk2My4p5CtpUMQIKxG+VNoGxeXf4TVTq3Vp89h/H4//f39hMNhzGazQVi6XLvAVkq2UEi03UxZtICPLL0EyRrBK/bRE22jLfwuLnM2xbYKFtgWYTUd+5Tc8Xw/k+H1emlpaaGsrIzm5mYEQWDHjh1885vf5MILL+S1114blaE1ecwkamP58uVcfPHFLFu2DIvFws9//vNjHuR4wlZQiqIYVke7d++mubl5zGOSPfrq6uqmJUVXVZWbz/sBTptzQveISDTK4ZZejXSS3wj6z0jfN5JkYnEJVU2n3SMxIE+07Jx2zOWT3fFIkFahEyHXDghJB6wpTcU1QlpZS3KJoRCJSylx8umgRX7LlNfm4Xa7ptQCqSzM4xtnbphyFRSKx+kIjBBWTzBIvsNBfUEhlTm5lLjd5NjsmEd9XUlR8EYjdAYCHBr28l5/H4eHhjlyeAhRlDGbLZgS1a0uJQcSP6uR3SL9Z6hHZ2hODmkqLUZMcyciLcHMhPOo8aCoiQBBBCqKsynOm5rLg6qqxBWJmCJiM8P6kly8kh9RnZ7gyCSYOLOoifV56e3GJEkyxAN+v59QKIQoioiiSHFxMRUVFYmW69iY+ZDswycNaHZMgh2LyYbbnIPNNLnVgbmCJEnGSsqyZctwOp1EIhHuvPNOtm7dykMPPXTMcpfmAZkKajJIV0FJksShQ4fo7++fsUeffzCIFJNQrCpp7z1UVVtADYU080xz8o9kNDFJRhy7qlvl6I9SdScJNeU2Qo3FpyBi0KTopriK2aoptPRDVpYl7ZskDladtEyCRqYuyUTpghxARZQVIqJINC4REbUPWUn+OgIWswU5JiBMIfMJ4MjgMP/33gHOPal+Sv/ObbOxtLCIpYUjy7fJpPV6ZwedAT8hMY7NpNkuiYpMaJRprnc4SE93QHNbsFgQ4ipKWEaNKahi0gtvEhBsAoJDk4YLFiHxemq7RXr7FFJJK51pbjJppcSTyJqyz5I/+XmUSrLjuKbO6x2OkuO2YZ9CFSQIAnazFXsiwTgey+ebdWfjl0N4okN4YoP0RIcmHQapqAp/6d9OW6iHc0o2kGdNragtFgv5+fnk5+cTiUTYt28fbrebhQsXEolE6O7uNpZi9b0iQ65tzSPLMuK6oKoqUSVMSPZjxpxYbhewCLZj1hIcHByktbWVRYsW0dDQgCAI/P3vf+fGG2/k85//PK+88sqMxB0fFJzwFRTA3//+d0455RQURaGjo4OOjg4qKyupqKiYcSjZ3jf288itv8HpdGIZVaZLCS8us9mM2+0mMByhr3uYpNtwQDN4VWQFs9mEyWwmGhWRdSlzourRSEo1yCoZ5ooSBMfk5wSC2YS5piDNoaemkJaWQaWRlsNto6SuAIvFOuY1UxQFfzBIOB5HsFiJyyoRUUQwC1TWT905XkDg8g+dRHNV2ZT+3WQQFsXEPEtrEXb4ffSHw4iSiKfHRyAgal5qEQXVL6Omz2YffcGYsswIOWOrnWTSSh6y6w7vBnGN+pLJpOUqtKE61XGd3nXo6jyT2aTFniR9zmm3ULMwe4rRFqlYV7iIK2qaUn6eqqoyLAbpiQ0amVqe2BCRNGGQOiyChdMKVrI+fyk208jvjP77mc4/L/kxoVDIqLQCgQCSJOF2u1NahOmETXKSY7pgiPjTu65MF6Io0traSiwWo7GxEYfDQSgU4vvf/z67d+/moYceor5+ajdf71NknCSOBjVRuQC8/vrr1NTU0NbWRklJCYsXL561u5eXfvNXnn/sJex2uxFhLcsyoWAQVVVTQs662gcIB6PoPztFHjlQzCbN2FOWFKITLPKOJi1TYR5C3lip7NFgqcpHmJTcXDUO2aK6XFRkFEXFbDZhsViQEzcCbpcr4eIwMgOLywobVlXizLXTOeSjY8hPZJI7aXNJUskQRZE3dr3H/7x7gAFRJRISCQ5EkOPTcHEwC5jyzJhcR69UxictIZW4Eo8XBIGqqnysNhMxWRoTT6IkVhRAc3wf78AtznVQWjA54c94OGNBDZ+tWnnUQ10LgwzTExtKSTEOyqkhnS6zg5Pzl7Emtw4xFGPfvn0UFBRQXV09pVmIqqqGk4NOWskL28kuI2OdMcZpr06DtPr7+zlw4ACLFy+mtFRbVXjttde45ZZbuPrqq7n22muP+YxnHpEhqKNBJ6jBwUHeeustysvLWbJkyay7mj/+/f9h19/3JnZFrIneuYQ7y40tUVFprS+F9n2elD0UQRCwmM0jUnBVszaaqsONJceNrbxYkzsrCdlzmoiOZJiL3JimeFgVLMolp9iNSiJWJBw2ZmnJXnkWswWL1YJJMLEg3831l55uKJ0Gg2E6vH46hnx0Dvnp8PqIiumdPgQEPtpYzSdW1s1ImZcOqqrS0dnJczveoyUgogpmBnoCBH0x4/O6uEGfFU1WlWfKMiPkjU8Uaa8HDOuhsaQl4HRaWVSZnzJDU9Fyx4LRCILdhiSoCeIav9KqKskixzWzgL2Tiyq5rHr1iKR9kghKEYOsPAny8sYDxMMxyuRczqzZQH1B1axUNMlODjppJa8R6NWWyzV2RpquZX60Nno8HqelpQVVVVm6dCk2mw2/3893vvMdjhw5wsMPP2x4351AyBDU0aAoCm+88QYWi4VgMMgpp5wy43beaKiqyj1X/Jyh/iEkSXPhdjpdOBx24/M6/N4wvV3exM4T2nxjVKskGhUN5/KpQLCacdUtSv0FUvVBeWKmMYq0BKcVy6KpuSU7sm0U1eQRCgYxmc24Xcn5NhoJS5KY2IUZMXg9e301p65aQk5Ozhi1kqqqDATDGmF5/RwZ9NHl9RNNsqcqy8vmnJV1LC9bMCuH1+CQlz/9YwfvDYWQTFZCgRgD3QHkCV77qZCWYDdhKrLMaJl3NGm53WZyc63aeweBuBjHYbfjdLlSVhBUIK5ojh06YUVlEUVVMZsFlizMmdI8Kh2W55VyZU0zrgnsqY6G/v5+dh/Yh6M0GyXHgifuJSLHKLHnUeuuYJGzOGVWNxuIxWIppBUOh7FYLCmVlsvlGnNWjEdafX19tLW1sWTJEhYsWICqqrz44ot897vf5brrruNLX/rSrJ877xNkCGoiDA8P43Q62b59OytXrpz16mmw28v/d/UvCAaDWKxWcpPk6aOXcdtbPUTD8TTSci3OPBabHjnpcNVVYLJNcFiojFRZqop1SSGTGbGAXgXK5FW7ycvPwTKpg0n7NyZB5eLTa1DEqNYOdLtTlmHTkVZ/IEyH12dUWp1eP/luB81VZaysKGFB9tjdmaNBUhQO9PTz4lu72NPnxWJ3AkJK1TQdqKq2pCsrY0lLsAqYiqwIltmbcZSWZqGqcRRFwWIxI8taaq7FnLAcsmp/ptN/xhStPWizmFhRUYgn5h83nmQyKLZncXXdespcU1vLiMVitLS0ANDQ0DDm9zImx+mNefGKQWwmCw6zDZfZQbEtd05EDqIoppCWHquRItpp6nAAACAASURBVMRIatXrz2Hfvn2YzWYaGhqwWq14vV5uueUWvF4vDzzwQMK09oRFhqAmgh65sXPnTpYsWTKpXZzJYnBwkBf/Zwvbn96FxWIxLPf111ufM4TDYULBCN7esJbflPixqfrOkaQgSdOYd4yCvaIYa+7Unl9xfQnOwiyicU2RF41pf4op15MQcSiaNU5eaTYFFVPPqVlRU8Lnzl4DQDgcNmyH/H4/siwbcQX6x+gZoaKq9AdCdCRmWcPhKCZBINdlJ9/lJNthw261YDGZkBSFuCTjj8TwhiN0DvnZ3+UhEArjcrmw2W2EAzH6uwKz8tqPhToSSWIG8wILojDzXy09N6iyKpcs90h7VkVbTdCd3iVJSiWtxEcyoS8tLOKaNU34xdiE8SRHg0Uwc255A2curJ2w5aeqKl1dXXR0dEzaP0+HqEgMi0HMggmLYMYsmLGazCkii9mEJElGXHwgECAYDALgdrtRVRWfz0ddXR0lJSWoqsqf//xnfvCDH3DjjTdy+eWXz3rV9KUvfYnnnnuOBQsW8N577435vKqqbNq0ic2bN+NyuXj00Udpamqa1WuYIjIENRF0gtq9ezfl5eWzEgAWCAQMS/q217rYtWWvISO32+1YrFYsZgvxeIxwJILDbsc/GCUwHNaWXxMVjCJPPCeaCiz5WTjKppYW6y7OZkFDyZj/L8sKkZhEMBQhGI4gKfoSsoDJLFCxogTTpOK9U3HuKUs5fXX1mP+vqiqhUMggrEAggCzLYyqtdKTV50+Qlnek0hKTAipFUSQU1DKmnC4niqIy6AkS8E7O+WM2YLGaKF2ch2RSiUqiJs2XRGKTDNJUlMROk2DCbDHjsFtYtCjP2M9KBzVRvUqiZJi9aq4lZiO9uGlhGVevaU6da6njx5McDWXOXC6sXM7S3PQ7ecFgkH379pGdnc2SJUtmRaQkqzKSqqAnpOmKvKnOxiaLUCjEnj17DL/HF154wbAmMplM3HrrrZx55pnk509xq30SeO2118jKyuKKK65IS1CbN2/mZz/7GZs3b+bNN99k06ZNY0xjjzEyBDUR9Eyo/fv3k5+fP6U7ttGIRqO0trYSiUSor68nJyeH+65+iMCQdmclyzKiJBGPxRBFEUHQ/M5URaD3iC/h6znauTOVsGRFy+WZDtLOoSaAyWKmcv3iMXMSWZINebzL5cJkNiFJilFlldUWIjtMhCJTbw9ddtZqTqpdOOHj9Iyd5EpL34FJnheMVkXJikKfP8RBTz9v7T9IXzBCxGRFVlVC/hiDniCSOBdV09FhtZkpq87DkjT7UVQ1EUuik5ZETB6ZvanqSNVktqRaLGVn2yktzZ6iEEMdydQSNdKqc7r5VOVi8nNzjdc0Xcs1OZ7kSHiYztAwPnEsyTfkLOCssjrqs4vQk2YPHTrE4OAgS5cunfXg0DHPMdFy1UXkOmYyu1RVlc7OTrq6ugz5u6qqPP3009x7771ceeWVFBcX88477/DWW2/x2GOPUVVVNfEXniLa29s577zz0hLUNddcw8aNG7nssssArXW6ZcsWI/5jHpBZ1J0sZpIJJUkSbW1tDAwMUFtbS1GRtgjaub/bICf9zR+PxRAEgfz8fEwmE5Ik0d0+iKwk9mkEDIcBbXkTzGYTZrMJEmeCvn+kyIpBXpNR9amijBoTp7QPpUgyUX8EZ57WLlIVrZLRq5dk3zyLxUSWxUaWy0YOVq75pzMIRuJ09vno6vfR2e+jq99PZAKJ/O9f3Ek4GmfD8sqjHhrJGTtlZZrUXN+B8fv9eDweWltbU0hLH3BHhvqxDPdx+alNFBYW0jPo5w9bdrEn0EuOzU5EkIiKIlO7d5sZxLhMd/sw5dX5mC3aHb5JEHBZrbisVkgYPeik5QuHCUSjKBYLUpr7xkAght1uoWAKSkwhsUBtMVt0j1f6gdciIT5dWMjAwACHDh1CFMWUlmt2djZ5Nid5Nue48SQdoWGOhIdp8ffR4u+jwpXLalcRzl4/VQvLDWPUuYYWZz9WzDBdk9dwOMzevXsN53Sz2YzH4+GGG27A7Xbz8ssvG2fCFVdcMTtPYhpIF7vR1dU1nwQ1KZzQBKW/AaeTCaUoCp2dnXR0dLBo0SJOPvlkBEEw7mhbd7Rpf1cUwsGgcagn330OD4SJx+SRdoY6ErmtJJGW4dyQiOA2mwXMZpPOWdrjZRVZUQzySne4SqEItikQFECwL4Az10UkEiEWi2kzGpvtqPc/A4MB3n6ng3VrF5OX7WTFklLjOof8Ebr6NdLq6tNIKxofuTlQFJVnXttDR+8w55yylCzn5IUryYNr3XVZURRjVtDW1obX68VqtVJQUEB33xAvbG3jvfYBVBXyXE70Jq+KSkyUiCacMCJxkagkzSlpiTGZnvZhFlbnaTclaaDKCmI4TLbZTGnxgkSooDoSAJnI1IrJEgMDIaxWM9nZMxP/7PcN83tUrl7dRIPDacxO/X4/g4ODKaSVkqllc5BrGxtPcsg3wLa2FrYOHkTJcVIh9rHaa2FZbsmMVH/TRToimqizpKoqR44cwePx0NDQQF5eHoqi8Jvf/Iaf/vSn3H777VxwwQWzuuR7IuKEJigd+n7SZKBLRw8ePEhxcTEbNmzAbDYbu0ugveFbth0kFAoRj8eNQ11/s6qqirc/wPBgMPWLp/NnSyYtSSO/EdIascgxWwTMScm1qpJMWNp/y8EIFE4tgiDQF8BcYMXpcmozukn+vm15tYWVK8pxOEYOHEEQKMx1UZjrMtp4qqoy4AslKi2/RloDft5q6WbPoT5OW13NusYKctzT800zJRzG+/r6sNvtnHrqqXT0B/jbOwfZdaCVuCimSPstFgtWi5YO67BacVitY0hLs29KCEdmmbRiUYneIz5Kq1JnSDopiKJIVlZWyowmtdLSSi2dtOIhmbqyfIKqiCcUnPa1Hvb5uOuN1/niSatZWliE2+02rIb064tEIvj9frxeL4cPHyYej+N0Og3Sys7OJjQ8TOjQET5ZvYySkhIEQSAkxekIDfOPgSNYBK0Sz7c7WeTKm/X9tsniaMQSDAbZu3cv+fn5rFu3DpPJRFdXF5s2baK0tJTXXnttTuZMM8HxEJ0xHZzQMyi93z4wMMDg4CANDQ1HfbzX62X//v243W5qa2ux2+0J49ORPSIxJtLy7n5+fdtTOBMZQwYxKSrhUIzBPj+xacxndOgtCVVVEnswmkZBIyuTsbyZDgvXLSUmysSiItGohDJOf1BVVGNZuLi+hNyyqQtIPrRhCWd9fPnEDxwFRVHpHw4apNUz4MfpsFJTVkB1WQElBVnaAvME0Nuvvf2DOHIX4BmOsbutF19w7GxEU7pp+1mSJKWQljVBXOY08uy5Ii13to2SylwEQSAeixMKh3A6nUmR5ZOHw2rhnz+6geJsF52BAB1+Hx0BzcqpJxiY8rVurFrMp+oasE3wM0hOLx4aGqK3txdVVcnJySEvL++oDg5hSaQ/GsRiMmEzmbEIZpwWKw7z/N1TK4rC4cOH6e/vN+ZliqLw2GOP8fDDD3P33Xdz9tlnz1vVdLQZ1J///Gfuv/9+QyRx3XXXsXXr1nm4SgMZkcRE0AlKj/5esWJF2seFQiH279+Poig0NDTgdrsNYoKRu62BgQEOHjzI9v/ZTc/efhRZJR4XiUVExLhEPCbNqjIvGaqqGkubhpN5kpeblrAqULG6FnfRyCA6HpeIRkWiMZFYVCIajSNJ+uDdgiCAPdtB2aqp72wICFx2yXrq6sYqAacKSVbo9wbp6vfRMxggEhOJxSVcDhtupw2rxYzZJCArKqIk0+3pp9PTjyzYiMvaSHyy0MIeZSRJRopLSIqMigKCouVl6aRltWI2m9OSlt4ajMY1gUNMTDcpOjrcOTacOQIms4ksd9aMlnrdNhvXfmQdFfmpIoS4LNMZ8Bv+gx1+Pz3B4ISuGPkOBxc2NLKmpPSoB7KiKGNaYckODn6/n1gsZqQX65VW8o2djpgsGao8kzDyMVeqvGQEAgH27t1LUVERixcvxmQy0d7ezje+8Q3q6+u55557yM6emp3YbOKyyy5jy5YtDAwMUFJSwve//31jbHHttdeiqipf//rXef7553G5XPzqV79i7dq183a9ZAhqYugEFQ6HaWlpYc2aNSmfj8fjHDhwwIjbKCgo0EQJalJIoCDg9/tpbW3FbrdTmFXMIzc+keoormox7tFInFhYJBqJE4+Kc/5iaqSVHPkAOeUFFNdXjNl90Vs0sVgMi8WOokA0ppFXPC5RtmYRtmlY4DjsVq7+8hkUFLgnfvAUIckynsFg0jzLR0evl0AwiMVsSUR5THx4qYpKNBgnGogRDcaIR6Rx1ZI2pwWr24Ity4pg0VzJBUi8nlYsVsvRSSuuCTAmIi09EyyvyE1JRe6s3JW7bFauPmMti4uOXg2LBmmNENd4pFWVm8s5S+pYUVQ85hr9fj/79u2jsLCQ6urqcUUQqqqmBEH6/X6i0Sh2uz1lppWOtGRVGekgGHLymanykqEoijG7bGxsJCsrC1mW+eUvf8ljjz3Gfffdx8aNGzOzpqkjQ1ATQXc0j8fj7Ny5k3Xr1gHa4dDe3o7H46G6utros+sCCJ2YotEoBw4cIBaLUVdXR05ODs/c/zy7Xt07ie+tEouKxCJxohHtz3hsekrCqcBsNVO+vt4gZ1QVwaSJO2w2e9r0UlVVqWwopeHkGrq7h+nuGWZgIGjEfUyEgnw3n//cyeTnzz5J6dBvJgLBEDlFZQyHJE052Oejzzt29qKqKrFgnOBQhPBwZFouHTanhZySLFx59oSNk6RZOclygrSshnPDeKSVTFgagWkVrD47A8grclFQMjVnjPFgNZu54pRVrCifWlWrk1ZHwM8Rn9Ye9IQCyAkiL83KYmNlFWsXlmFF4ODBgwQCAZYuXTrtBfjRpBWJRLDZbCmk5XSOjZyfLYPX4eFh9u3bx8KFC6ms1FSlra2tXHfddTQ1NXH77bfjds/de/oDjgxBTQSdoFRV5R//+Acnn3wyXV1dHD58mLKyMqqqqoxdjeR2niRJtLe3MzQ0RE1NDUVF2k7Hu6/u5dn7n5/29ciyos2GwnGDuCRxcsuaU8GipjpcBdnGNrzJJCSk9vJIXpMl2WVAMza9+t8+SVGpJrKIxSR6PD66u4fp6dFIa8g7vtDE7bJz2aUbKJ/GLOtoUBSFrq4uOjs7qa6uNgbvyYiJEj0Dfjr7fBw8Msju3V30HPEixWfntbXazeRX5OLKHZkPqaqitQgT3oOSYf47YjekzdESzvWKTDAUQlFULHYHcVk25loxUSa/2EX+gtkhKQGBT55Uz0cbq2f09URZpisY0EIgfT46An66vF6KZIXTqms4Y2kjtlnONIrH4ykL2+FwOCUiXl8lOJqZa7LRbjrIssyBAwcIBoM0NjbicrmQJImf//zn/OEPf+CnP/0pp5566qw+rxMQGYKaCMmRG3qscn5+vrHJPpqYdCuWzs5OFi1aRFlZmdG26DnYy2O3PokUn90qSJJkYhExpT0oyzNbJM1ZWEBWZSGKomj7TKMOET0cUUxUBLIkgyBQu2Ih519x8riHQDgcx+Px0dXtpadHIy9fIGJ83iQIbNhQw8YzGrDZZn5w6aIVvYU0XlSBKMq07Pewc2cHB9v6UdGUjdG4lPgQicYk4tLMCMuZa6dwUR4WW/rr0EgrSYiRIC0AJWHnpIkgUl9XRVWIijK1NUXkF7vp9Prp84cmXcGOhxXlJVy6fgVu+8zcy2HEP09SFLLLy/BEI/SGQritNvIdDuoKCih0zizKYzwkR8T7/f4Ug1eduNJ1BtJhaGiI/fv3U15eTkVFBYIgsGfPHjZt2sTpp5/O9773vWkJVTIYgwxBTQRVVRkYGGD//v0MDw9zyimn4HQ6U+Iu9Dd1f38/bW1tFBcXU1VVZRzqqqqy4//e5S+Pvqod5MfgmiVxhLT09uCkxBeqJjdHgJrTV+BwTj7mWz9cz71iDTa3tqCoRxMcbUYQDEbp7vHR1eU1Ki5VVWlaU8Wa1ZXTmk3prh2yLFNfX4/LNfbgkySZ9vZBdu/pYl+Lh2hsYtWkLKsT+A5ODJNZoKAiF3fB2NbTaIiSFlhpMZsxm81IsjwSs5KsHkyqtE5fXc05H2ogLst0eQOGy3vHkG9apJXjsHPxuhUsL09vQTQRJuOfJyoy3YEAEUnCbjZjN1twWCzkp3m/zBaSDV510jKbzSmSd7d7xG1fkiTDCaaxsRGn04koitx3331s3ryZX/ziF/MtKvigIUNQE0GSJLZv305NTQ27d+9m/fr1Kf1rWVIYGhhi354WBNlESVEJLrcLQYDAUBBPez+7X29huNc3j89COyTEuEQ0rM+04sSiqU4IKeGHZhNlK2vILpn6rkZRaQ5fvPETWK0W4vE4Pp/POAT0wXZubq5BWqOdqFVVxe+P0N3to7tnGEmScblsFBVls7A0l9zc8Q92Xebb29ub4toBWnu0r8/PkSNDHDo8wKFDA8THyZGaCmRZs3CKxEYqLWkSFaw730nholxMlrHCAEXVHC8UWRnjgg3azYBeZUliotIyCQZhrV9eyUVnrh4jtY+KEp1eP11eP0eGfHQO+egLTG6/b0V5CZ9a3UBR9uRvGGbinycqMsF4HIvJhFkwaWo8k4DVNHeBfTpp6cSlu5JbrVYCgQDl5eWUl5fjcDjYuXMnmzZt4pxzzuHb3/522gTe2cDzzz/Ppk2bkGWZq666iptvvjnl80eOHOHKK69keHgYWZa56667OPfcc+fkWo4xMgQ1GUSj2k7Mjh07sFgs5OXlkZubi8lkoq2tDVmWqaurIysri3g0jqetj64DHroP9NJ90IOvzz/PzyA91ERERzgYxe8LIsV1SyTtfeEuyqFide20vnbz6XWcffG6sd8zSY2lE5e+qJxcaaXzchsaCtHdM8zgYIhoVCQSjWO3WXG77djtZsLhEB5PD/n5+RQWFhGPy4RCMXy+CEPeEAMDQa06PAZI9h3UyEs0xALJsNjNLKguwOYyPD+0IMdIFJfbhd1mY7Lyd0VVEsauIpIkU5pn4+NrKigsyDtqBRuJi3R5/XR4/VpqsddP/zikZTGZ2FBTwceW1ZDnGr+6lmWZQ4cOMTQ0NKv+ebKSWJEQ9LD1EReVuYAoiuzdu5dYLEZBQQH9/f189atfRVEU/H4/1157LZ/+9KdZvnz5nBCU3gH4y1/+QkVFBevWreO3v/0ty5YtMx7zla98hTVr1vDVr36VPXv2cO6559Le3j7r1zIPyHjxTQSPx8Nzzz1HU1MTy5cvJxqN0tnZaRCTw+GgoKCAQCCAIAi4XC4ql1VQuWxkJyjkC9N9sJeeAx66D3joOtBLJGnuMl9QVAVRimGyKlQsXpCYqakpqkGH3UQ0NvVDfcdfWylbXMTK9anO44Ig4EgsJy9YoLWMdPm6z+djYGDAeG1dLpdRaWVnZ1NYmEVh4YjaS5YVBgeDtB3qZefOfQx5Y4iiBRUP4JnRazNTJPsOAqBqe1rRmKip8hLVlhST6Wnpp7AyD0eejWAwiNViIS8vd1Ly92SYBBM2m804KMMKvNEW4fyShYRCIXp6egyV2+i2a21JIbUlhcbXisRFoy2o/zkQDCMpCq8fOMKbbZ2srlzIGfVVLCpIdR7RZzQLFy6cdf88s8nE6PppJj55R4PuBlNTU8OCBVrQpdfrJSsri0996lNs3LiRnTt38pOf/IRTTz2Vq6++ekbfLx22bt1KbW0tNTU1AFx66aU888wzKQSlr7EA+Hw+w3fyRMEJXUH19vbyyCOPsGPHDlpaWpBlmXA4zLXXXstnP/tZiouLjXaAz+cz5i7JLazRA1NVVfH1B+hOEFb3Qa3amm3xxHjQLHEixOOxMRZLo7HyjEbO+vJH8BwZovvwID1Hhug5MkhgeGKCFQT45OUnc9KGmmldo27q6vP5CAQCKIqSIh92uVy0t7fj9Xqpq6sjPz8fWVbo7fNrUveE3L2/PzDpqPVjChVESSYSE/EFQthzLOQtKkBhdpdKnQ4rl3xsFQ2V2uxHr2BHt12TSSutc0NcTMSRaHlaHUM+BkNhyvNzWLe4nBULi/B0aPZFS5cuxTmF+eVsY6qR68mIx+Ps27cPQRBoaGjAZrMRiUS444472L59Ow8++GAKQcwl/vCHP/D888/zy1/+EoDHH3+cN998k/vvv994TE9PD2eddRZer5dQKMSLL75Ic3PzMbm+OUamxTdZvPrqq2zatIlzzz2X1atX884777Bt2zY8Hg81NTU0NzfT3NxMU1MTdrudQCBgtLB0A9WjtbBkWWGgc5Ceg710tWrE1d8xiDJDNV4ytPZanHAkrMV8p9kPGQ3BJPDPP/0ieSWpd8kBX5iewxpZ6cQVDacPqTv17OWc9okVmC0zmx3opq4+n4/e3l58Ph82m43CwkLjhiB5qK1DFCU8ngRpeYbp6hpmcCg4znc5hlA1sgiHtRBEu91OeVkeHz1rGf5IPOHu7qO73098FlYJTl21mLM31GNN83PQ7YaSl2AdDseYJdjRCMXidA752HXoCHsOd7KgqIj6ioUsK1tASc7sSN5nCxMRlKqqeDwe2tvbDTGHqqq88cYb3HjjjXz+85/nuuuum5UcqsliMgT14x//GFVV+da3vsUbb7zBl7/8Zd57770PQkx8hqAmi/b2dlwul9GW0qEoCq2trWzdupWtW7eyY8cOIpEIy5Yto7m5mbVr17JixQoURUkRC8iybEQ85CZydMYcrHGJ3kPaPKvnYC/drR6GPMPTun5RFAmFQpjN5rSH+NGw5mMr+eQ1HzvqY1RVZXggSPeRQYO4PB1DiIk9opKKfM78f2uoqhu7gzQV6GGPLpeLJUuWYDabU5RYegZVdna2QVrp5O7RqEiPx6ftZ3UP09U9zLAvPO3rmiqS87LcbneKRZHbZefC/9dETbVW8SiKysBwyCCszj4fPQP+KasHAYrz3Xz6wyuoKSs46uOSZ4XJdkMOhyPlRktRFPbu3YvD4aCurg6r1UowFqdryE8gFsNps2K3WCjKch51ZjXfiEaj7N27F7vdPvI8gkG+//3vs3fvXh566CHq6uqO+XW98cYbfO973+OFF14A4Ic//CEAt9xyi/GY5cuX8/zzzxtRGTU1NfzjH/8Yc1a9D5EhqLlAPB7n3Xff5c0332Tr1q3s2rULq9XKmjVraGpqYu3atSxZsoRoNGqQlj7DSj5Y0+1lRIJReto0stLmWR5Cw+MfrLIsEwqFUdX0+0yTggBfuP1SKuqnlgsjywqDHp/RFuw5MoTVZmHlhmoaTlqEYwq2SKIocvDgQYLBoBH2eLTHjm67Wq3WMW3XsTtaMUM52J0grkAa09gZQdXk9/F4XHMct6b/eQgIfGRjA6edWpeW0GVFoc8bNOJIOvt89Az6kSfpdtHUUMbHN9STlzWVNYIRY1efz0d/fz/RaJScnBwKCwuN9246sUAwGiMUF7GaNT9EsyDgsFnnzYlcR/LeYl1dHYWFhaiqyquvvsott9zCNddcw7XXXjtv1YgkSdTX1/PSSy9RXl7OunXreOKJJ1i+fMRg+ZxzzuGSSy7hC1/4Anv37uXMM8+kq6vruKpep4kMQR0LqKpKIBBgx44dvPnmm2zbto3W1laKioqM1uDatWtZsGBBysEaCoVSDtbc3NwxswFVVQkMBo0qq6vVQ89BD7FIfNJzpsmgsCyfq+79PNYZLs+KokR/1zB93cOYzSbsTit2p43SinzszrEHW/IOzeLFiyktPbrx6HjQ3QX0G4LkuYv++o6WuwMEAlFjlqX/GY6kb2VOeA2xOOFw2BCJTObXb0n1Aj79qTVkZU2c1yTJCr1DgaRYkmE8Q8Fx99+sFhMfWlnFaauqyXZNPg/K5/PR0tJCYWEhixcvTnFu0FWZTqczpdJKR1pRUQLUkQBONBHEsTpYI5EIe/fuxeVyUVtbi8Viwe/3853vfIeOjg4eeughFi9efEyu5WjYvHkz119/PbIs86UvfYlvf/vb3Hrrraxdu5YLLriAPXv2cPXVVxMMBhEEgXvuuYezzjprvi97NpAhqPmC3u/eunWrQVq6r59OWE1NTTgcjpR5VjQaNX759YM1eZ6lqio9PT3s2r4bU9SK6JPxtPXhOdQ343nWyec387ErzpjpUx+DWFSkt2OISFjzmItHJcwWEyarwoC3h4XlC1hSO7UdmmRIokw4GCUUiBIOxhIfUUKBCH5fgGAgRCgURlEVnE47ufnZFBbnUVpexIKyAnILRipZVVUZ9kVSRBg9PcPEjiJwUWTFODzcbjemcYIGx0OW286nzl9Dbe3UWzaiJOMZDGgmuQmz3L6hVN9Bq8VE89IKPrSyigX543viSZJk+Oc1NjaO6zGXnPukf4xO2E03hwWQEsa6gpDqSjibpKWqKh0dHXR3d9PQ0EB+fj6qqvKXv/yFW2+9lU2bNvHFL37xgzDDeb8jQ1DHExRF4cCBA0ZrMHmepbcG9bgPnbB8Pp+RxGuz2RgaGiIvL48lS5ak3LVKokTf4QG6D/ZqysFWDwPdQ1P+aX3iyx9h7SdWz+bTHoNYLMaunXvo7fTiMOXg7QvhGwqhquBw2XA4rVjtmv+ffthrS8aKFlkS1Vzho+E44WCM2AQR8snQDXJ1fzxFUXE4bZRVFVK9tIxlq6upqClOObxUVWVwMJggLK1F6PH4EEXZcH93u91YbTNLgl3btJiPnbkMu31mVWxMlPAMBFJmWgPD2utbU15A89IKlleXYE+qlvv7+zlw4ACVlZWUlZVNmTCSE3b1LoEoirjd7hQhRjrSmk0JeSgUYu/eveTm5lJTU4PZbGZoaIhbbrkFn8/HAw888L4I6TtBkCGo4x3J86xt27axa9cuLBZLyjzLZDLxpz/9iQ996EO43W5jsdiI1c7NTTvPioVj9LT10tXaS89BbZ4VMQDq9AAAHV5JREFUGJ3gmwbnfe0sVn9k6iGDEyE5F2jJkiWGwS4k3CW8YWOW1X14EM+RoSmRz3Qhy5pbg+7cYHOYqVleysp11dQtryQ7O3uM08PAwADbtu8GnEiSDY/HT2+ff8aLwrk5Ls4796RpVVNHQzQu0j0QMCJJeoeCFOW5qavIh8gQTruV+vr6tG3Q6SKZtPQPSZJwu90pHnnplranSlD6e6u3t5elS5eSm5uLqqo899xz3H777dx8881cdtllmarp+EKGoN5vSJ5n/fWvf+V3v/sd/f39rF69mlWrVtHc3My6detYsGCBIcnWLVt0c0y9NZjWF88bSuxleQziioZiY66j+ayT+NiVH57xTErH4OAgra2tLFiwgKqqqnFNXUe/FkN9gYTMXSOu3k7vnLi7j/rOhgu5O8dGeX0uixuLKCjKw+VyMTQ0hCAIY3aBRFGmr8+vVVndXrp7fPT3B6Zl6Nq4dCFnfWw5eXlzY66qqioH2trZte8Q9uxC8vNycTqsFOa6KS/OwTxHB3ny/ptebekdgmQ38qm0e/UgweTMqf7+fv71X/8VVVW5//77KSmZeWBmBrOODEG9XyHLMh/+8Ie55JJLuOaaaxgcHDSk7tu2baOnpydlnrVmzRqcTmeKCEPfdUkmrdHDbFVV8fb6NNVgYqHY09aHJEoULMznI5edwtKT0yvNJoNIJML+/fsRBIH6+voZu0DLkky/x0fP4RG5e3+Pb85SinVYbWYWLsmmsNJKcWk+kiSlGI/m5uamlbvH4xIej9YW7Ooapsfjm/SOltViZsP6Gk750BKcaQQm00UwGDTaYLqUX0coEmdgOITZLGCzWDCbBXLcjrS7VbMFRVHGVFq6y35ypTWatBRF4dChQwwODtLY2Eh2djaqqvLUU09x7733cuutt3LRRRd9ENRuH1RkCOr9DEmSxr2TTDfPCofDY/azAOOX3ufzIUmSYTGk72eNrmZkSaa/YzBRZXmQRImK+jKWnVKPO3dyd/R64OPAwICRRDxXEOMSvZ3ekUrr8BBD/YFZ+/qSJBIMhrBZrbiz3axcV82HPr6c3EJXyqGqqzInqmIjkbjh6q6pB334/OOvEjjsVtavq2bD+hpc00g01jFd/7xwNI6sqJhNmieeySRgS+SDzRUURRlTaSmKYuwWmkwmOjs7KS0tpbKyEpPJhMfj4YYbbiArK4v/+I//SDESnm1MZPAK8OSTT/K9730PQRBYtWoVTzzxxJxdz/sUGYI6kRCPx9m1a1fKfpbFYmH16tXGPKuuri5l1yUQCKCqakolkG7RNx6N09s+gMlswpXjwOaw4chyYB6lWFNVlb6+Ptra2ow8nfno+0fCMTxHhkZ2tA4P4T/KPlk6qKpCKBQ2lq6TiVwQoLGpitM+scIIcATGSLIjkUiKzZC+SjAaoVBsjNw9OKr1arWYWb1qEevX11BUOLWE2mT/vEWLFs3oZ6KqKpKsoPGTYEStm0xzW6noBq5tbW0EAgFsNhtvvfUWr776Kvn5+bzxxhv88Ic/nPOqaTIGr62trVx88cW8/PLL5Ofn09fX90FYrJ1tZAjqRMbo/azt27cb4X76fpY+zwqFQsY8S3dASK4E0tkmiXEJQcCwOAoGg7S2tmrmpLW1cxZPMF0k2zfpxBUJpd95ikWjhCMRXC4ndvv4bUlBgKWrKzn1EytYME5SsH5DkOzYMNEekaqq+PUdLUPu7iMS1a63qrKQNasrWdqw8Kiqv3g8Tmtr65z7581WxPrR4PV6aWlpoaysjEWLFiEIWqz8TTfdhCRJlJWVsXfvXhRF4cEHH5wzv7rJuD/ceOON1NfXc9VVV83JNXxAkCGoDFKhqiq9vb0p+1nd3d1j9rNcLlfKPEuvBJKXivVDVRRF2tra8Pv91C6pTWkdCSbhuFVOqarK8GBQI6uE32DnoT68Q8OYzRbcbteUHMeXrl7EKWcvp7RiYpuhdHtEyTOXdEIBVVXxesMpVdbAQJDFVYU0NpZRu2SBQVbJvnPJbt3HEsnnSrJac6rXIUkSBw4cIBQKsWzZMiNQ9NFHH+Xhhx/m3nvv5ayzzjK+biymVZ6zqUhMxmT88z796U9TX1/P66+/jizLfO973+MTn/jEnFzP+xgZghqNyfSOTzQkz7O2bdvG9u3bU+ZZzc3NnHTSSQBjcp5MJhPRaJSysjIWL16cVjI8eoHYZD52bgKThSRJtLW1Mewdpii/jMBQzCCuvq5h5CksQdcuL+NDH1/GoiWTb+mMVrfpQgF95qILBUbPCxVF29Hq6h6mr8+P1WrGahUQ40MsWJBDfX192t2j+UI60joadPXnokWLjP2s9vZ2vvGNb9DQ0MDdd99Ndnb2XF7yGEyGoM477zysVitPPvkknZ2dnHHGGezatYu8vPRV9gmKTB5UMmRZ5p//+Z9TescXXHDBMbPWP15hMpmor6+nvr6ef/qnfwJS51mPPvoo7777bsp+lsVi4emnn+bWW2+lrKyMUCjE22+/jaqqZGVlGZVWVlbWGJdzRVHGkNZMndCni+SZ2aJFi6irG1Esrjp5CaA5VfR1DydmWZq7+2Cvn/Hu6w7s7ubA7m7KFxey4cxG6lZWjJnVjYYgCGRlZZGVlWXk/eju7n6/n+7ubgIBTfiRvPialZVFcXE2xcXZRtpwT4+HsrJyBJOdri4fVpsFp8NKfv5YleGxxmS/vyiKtLa2EovFWL16NQ6HA1mW+c///E8ef/xxfvzjH7Nx48Z5eT7l5eV0dHQYf+/s7Byz/FtRUcGGDRuwWq1UV1dTX19Pa2sr69aNDfnM4Og4YSqoyfSOM0gPfZ710ksvceedd+LxeIxo7OR5VmlpqXGo+ny+lHmW3hpMN8+SZYWUE18QJjzUZ4pwOMy+ffsMh+upzMx0+6YeI0drkOHB9Cm1ufkumk6v46STl+DOnqHMXpbHuLubTCbsdjt+v5/i4mLq6urGVFqiKBMIRDFbTJgTbVet2pqfG4OjQXe1SPZm3L9/P5s2baKpqYk77rgDl2tu9sMmg8kYvD7//PP89re/5bHHHmNgYIA1a9bwzjvvUFhYeJSvfMIhU0Elo6ury7CsB+0u580335zHK3r/QBAEcnJyeOaZZ7j55pu58MILAVLmWY8++ig9PT0sXrw4ZZ7ldrsNv8G+vj7C4fCkjFxlSQadyFR11uZZyRL4hoaGabVd7A4rlXUlVNaNLICGg1GjLahnaIUCUXzeMK88u5PX/ryLhlUVnHRyDYsbSqf1XMxmM3l5ecY1S5LE/v378fv9lJSUEI1G2bp1qyF31z+cTicFBaneeqIoE094DAqCpsYzz2P7NR6P09LSgqqqNDc3Y7PZkCSJ+++/n6eeeoqf/vSnnHrqqfNybcmwWCzcf//9nH322YbB6/Lly1MMXs8++2z+7//+j2XLlmE2m7n33nsz5DRNnDAV1GR6xxnMDIqicPDgQUPqvn37dmO4rZNW8jxLr7Ti8XhKBPx4IoHRC7mmxG7OZDEwMMCBAwdmRW49EVRVJTAcTkkq9hwZIhoRyc510thUybKmKhZWFU6LFPTI8nT+eRPJ3ccLKEyetemkpf/3XCG5zbpkyRJDjr1nzx6uu+46PvzhD3PbbbfNeMk7g+MOGZFEMjItvvlB8jxr27ZtvPvuu5jNZtasWcOaNWtYu3Yt9fX1RoCeLsIYHQGfLvQxhbRUFRKLpGMDDKO0tLTMmqPFdKHbN6UkFYdi1Cwro25lOYtqiiecx+nPxWQyGZHlk8F05O76NesQBGFaSrzxEIvF2LdvHxaLxRB0xONx7rvvPv73f/+XX/ziF6xdu3ZWvlcGxx0yBJWMyfSOM5h7qKpKMBhMyc/av38/BQUFY+ZZyftZgUAAk8mUMs9KZy+kKIoxzlIUhc6ODnr7eo3AuuMNI/ZNQwz1+XE4bWTlOqmsW0B+0YhCTVVVOjs76erqora2dsZOCXpAYXIS9GTl7jpRJWMqpKXHxhw+fJi6ujrjuezcuZNNmzZx7rnn8m//9m/H3S5dBrOKDEGNRrpwsAzmH8n7WbrfYHd3N1VVVSnzrKysrDFpujabbYy9EGiLnfv376e4uDjRztMqE0HQ21fHl9Q9GaKo2TdFgjGsdguiGKfLc4SFFcXU1tZOymx3Opiu3H0qpBWJRNi3b58RI2+xWIjFYtx999289tprPPjgg0YbOIMPNDIEdbyho6ODK664gt7eXgRB4Ctf+QqbNm1iaGiISy65hPb2dhYvXsyTTz5Jfn7+fF/uvGL0PGvHjh2EQiEaGxtT5lmCIIxJ05VlGZPJRHV1NcXFxWl3gZSkaAxVnfo861gg2T+vZnEtgmrBYjFhspgwmUw4nNY5l+jrvnjJlSyMlbtPNM9LrgDr6+sNf8Zt27Zxww038NnPfpZvfetbx9XeVgZzigxBHW/o6emhp6eHpqYmAoEAzc3N/PGPf+TRRx+loKCAm2++mbvuuguv18vdd98935d73EEUxRS/wXfffReTycSaNWtYvXo1bW1tDAwMcMsttxgR336/3/DT0yut8eZZ2gcp4oD5Ii19STXZ2mc0YpG4Rq5mAcEkICBgOQbS8fHk7smtweSMsnA4zN69e8nKyjIqwHA4zJ133smOHTt48MEHaWxsnPPrzuC4Qoagjnd86lOf4utf/zpf//rX2bJlCwsXLqSnp4eNGzfS0tIy35d33EOfZ/32t7/lhz/8IYWFhciyTG5uLs3NzTQ1NRnzrEgkklIFCIJAdna20RpMF/qok1Yy5tq6KR6Ps3//fkRRnLJ/XopzR0KFd6xIVpKkMe7uFosFQRCIRqNUV1ezcOFCBEHg73//OzfeeCNXXHEF11133Zy1LHVM1kHmqaee4qKLLmLbtm0ZccbcI0NQxzPa29s544wzeO+996isrGR4eBjQDpn8/Hzj7xkcHZFIhMsvv5x///d/Z8WKFYZsOdlvsKura8x+VnZ2dso8S4/LSPYbtNvt45JW8v+fDQJIFg7Mpn/esTByTYdgMMju3btxOp243W62bdvGHXfcgc1mIxKJcNNNN3HBBRfMeQT7ZNzHQQs+/OQnP0k8Huf++++fFYLy+Xz09vZSX18/46/1AURmUfd4RTAY5DOf+Qz/8R//MSaX53gf4B9vcDqdPP3008bfBUGgpKSE888/n/PPPx9InWe9+OKL3HXXXQSDwZR51urVqzGbzUaV1d3dTTQaNaTYOnFZrda0pDUaU/kZ6q4WTqeTtWvXzuocJt11jL5e/e+z8b7TLZf6+/tpbGwkJycHVVXp6OggKyuLyy67jMbGRnbs2MFVV13FFVdcwWWXXTbj7zsetm7dSm1tLTU1NQBceumlPPPMM2MI6rvf/S433XQT995776x83+3bt/PEE0+wdOlS6uvrZ1WefyIhQ1DHGKIo8pnPfIbLL7/ccGQoKSmhp6fHaPFlsmNmFyaTibq6Ourq6vj85z8PpM6z/vu//ztlnqXnZ61cuRJRFPH5fAwODtLW1mZElOuElU7VBmNJIN3hpB/mfX1903a1mA5GX0s6Bd50oMevFxcXs3btWkwmEz6fj+9+97t0dnby7LPPUlVVBWjt7WOByTjIvPXWW3R0dPDJT35yxgQ1MDDApz/9aYqKitixYweXXnopMPcV6wcVGYI6hlBVlS9/+cs0NjZyww03GP//ggsu4LHHHuPmm2/mscceO2a/vCcyrFYrTU1NNDU18dWvfjVlP2vr1q3cfffdtLS0kJ+fP2Y/S4/LGG3iqicVp5tnQSppDQ8PGzL4devWzXssyXgH6GTu/BVFoa2tDa/Xy7Jly8jKykJVVV544QVuu+02rr/+er7whS/M+3NMB0VRuOGGG3j00Udn5esdPHiQj3/849x222187Wtf4+DBg8b3OR6f//GOzAzqGOJvf/sbp59+OitXrjTerHfeeScbNmzg4osv5siRI1RVVfHkk0/OaUx6BpPDRPMsXYiRk5NDMBg02oO6QCBd/HtyvlFDQwNud6pH3vvtTnt4eJiWlhYjfl0QBIaGhrj55pvx+/088MADcz5nOhomcpDx+XwsWbKErCwtpdjj8VBQUMCzzz47rTnUnXfeya5du/jtb39LJBKhqamJp556ymgpZlp9BjIiiQwmD1mWWbt2LeXl5Tz33HMcOnSISy+9lMHBQZqbm3n88cczm/2MVAvJfoOj51knnXQSZrM5xW8wGo0iCAKxWIzS0lIWL16c1iR3pvOsYwVZljlw4IDx3F0uF6qq8txzz3H77bdz8803c9lll8171TBVB5mNGzfyox/9aNoiibfffpuHH36Y6667jsbGRk466SQcDgennXYad9xxx5ylGr8PkRFJZDB5/OQnP6GxsRG/3w/ATTfdxDe/+U0uvfRSrr32Wh555BG++tWvzvNVzj9MJhO1tbXU1tZy+eWXA2PnWbt27UIQBFavXk1zczPl5eU8+OCD3HDDDdTW1hIOh9m1a5dhLZRskjvdedaxxNDQEPv376e8vJz6+noEQaC/v59/+Zd/QRAEXnzxRUpKSib+QscAk3Efn024XC6cTid//etfAfj4xz9OU1MTH/3oRzPkNA1kKqgM6Ozs5Morr+Tb3/42P/7xj/nTn/5EcXExHo8Hi8Uypk2SwdGhz7O2bt3Kz372M/72t7/R0NCAxWIxWoNr166lrKzMmGf5fD4CgQCqqhouDfo8K10VktwqOlZtI0mSaG1tJRKJ0NjYaMSvP/XUU/zoRz/itttu4zOf+cy8E+h84/e//z0vvPACf/rTn/jRj37ElVdeCWTae6OQqaAymByuv/567rnnHmPgPzg4SF5enmEUWlFRQVdX13xe4vsK+hLwW2+9RWNjI0888QROp5O+vj62bdvGm2++yeOPP05nZydVVVWsXbs2ZZ6lWwsdPnw4JfRRr7RGhz4ei0NvYGCA1tZWqqqqWLp0KYIg4PF4+OY3v0lOTg6vvPLKjA1sPyi45JJLOP/887nnnnuM1yRDTtNDhqBOcDz33HMsWLCA5uZmtmzZMt+X84GC3vLSUVJSwnnnncd5550HpM6zXnrpJe6++26CwSBLly41qqxVq1ZhNpuNpWKPx2PkOyUvFc/VfFAURVpaWpBlmaamJux2O4qi8Jvf/Ib777+fO+64g/POOy9z+I6Cy+XC5XIhyzJmsznz+kwTGYI6wfH666/z7LPPsnnzZiMzaNOmTQwPDyNJEhaLhc7OznlVYr1fMdGhNN4867333uPNN9/kN7/5Df/6r/+KyWQy5llr165lxYoVhrXQ8PAwR44cIR6PG1EZut/g6KiMZExmOVcPRUx2tujs7OS6666joqKC11577Zjtbr1fMdc2Th90ZGZQGRjYsmULP/rRj3juuef47Gc/y2c+8xlDJHHSSSfxta99bb4v8YTD6P2sbdu20dLSQl5enkFY+jxrdL6THvqoV1qTcR0HzQ9w3759CIJghCIqisKjjz7Kf/7nf3LPPfdw1llnZaqCDGaCjMw8g6khmaDa2tq49NJLGRoaYs2aNfz6179OK4vO4NhDVVX6+/tT9rOS51lNTU00NzeTm5tLMBg0RBjJ8yz9Izn0UVVVPB4P7e3t1NbWUlxcDMChQ4f4xje+QWNjI3fddRfZ2dlHu7wMMpgMMgSVwfsbw8PDXHXVVbz33nsIgsB//dd/0dDQkMnOSoPkeda2bdvYvn07gUBgzDzLYrEQCASMSiscDmO323G5XAwPD+N2u1m6dClWqxVZlnn44Yf59a9/zX333ceHP/zhOa+aJnIe//GPf8wvf/lLLBYLxcXF/Nd//Zdhn5TB+woZgsrg/Y0rr7yS008/nauuuop4PG5kCGWysyaH5HnWtm3beOeddzCZTKxatcogrbq6Oh555BFqa2spLS0lHo9z2223IYoig4ODrFixgp/97GfHZK9pMs7jr7zyChs2bMDlcvHAAw+wZcsWfv/738/5tWUw68gQVAbvX/h8PiOEMPmuvaGhIZOdNU0kz7O2bdvGK6+8wj/+8Q/q6urYsGEDGzZsYNWqVTzzzDNs3ryZM888E5/Px44dO7Barbz88stzWkFNZEs0Gm+//TZf//rXef311+fsmjKYM2T2oDJ4/+LQoUMUFxfzxS9+kZ07d9Lc3MxPfvITent7WbhwIQClpaX09vbO85W+f6DvZ23cuBFJkvjd737HM888Q0NDgzHPuvvuu2lsbOSll17C4XAY/1aW5Tlv703GeTwZjzzyCOecc86cXlMG84sMQWVwXEKSJN566y1+9rOfsWHDBjZt2sRdd92V8phMdtb0sX79ev72t78Z9jv6ftYPfvCDtI8/3uTSv/71r9m+fTuvvvrqfF9KBnOIjP97BsclKioqqKioYMOGDQBcdNFFvPXWW0Z2FpDJzpoBdEeK4wnl5eV0dHQYfx9v/+7FF1/kjjvu4Nlnn80oSz/gyBBUBsclSktLWbRokTFfeumll1i2bJmRnQVksrM+YFi3bh2tra0cOnSIeDzO7373uzFmrm+//TbXXHMNzz77bObm5ARARiSRwXGLd955x1Dw1dTU8Ktf/QpFUTLZWR9gbN68meuvv95wHv/2t7+d4jz+sY99jF27dhlzyMrKSp599tl5vuoMpoGMii+DucG2bdv48pe/zNatW5FlmfXr1/P73/+eFStWzPelHRPcd999/PKXv0QQBFauXMmvfvUrenp6MvlZGWQweWQIKoO5w3e+8x2i0SiRSISKiopxpcAfNHR1dXHaaaexZ88enE4nF198Meeeey6bN2/mwgsvNKyhVq1alcnPyiCD8TEpgsrMoDKYFm699Vb+8pe/sH37dm688cb5vpxjCkmSiEQiSJJEOBxm4cKFvPzyy1x00UWAtmD8xz/+cZ6vMoMM3v/IEFQG08Lg4CDBYJBAIEA0Gp3vyzlmKC8v51/+5V+orKxk4cKF5Obm0tzcnMnPyiCDOUCGoDKYFq655hp+8IMfcPnll3PTTTfN9+UcM3i9Xp555hkOHTpEd3c3oVCI559/fr4vK4MMPpDILOpmMGX893//N1arlc997nPIsswpp5zCyy+/zEc/+tH5vrQ5x4svvkh1dbXh9H3hhRfy+v/f3t28RBWFcRz/PiRtRShTeqHgipt04WZylwyD/QGWrdQU3BiCyzYlbdKNqzYJtmkxEAol4egm2khK4a6BuC6Mil5kRtpIgvq0mCluFuSV1HHm91mde3iYc1bzcM99zjnz87o/S2Qf6A1KYuvq6mJqagoonDCwuLhYEckJCmXNCwsLrK+v4+6/9me1tbUxOTkJVM7+rNnZWRobGwmC4I9TPgA2Njbo7OwkCAISiQQrKysHP0k50pSgRGJIJBJ0dHTQ0tJCU1MT29vb9Pf3Mzo6ytjYGEEQkMvl6OvrO+yp7qutrS0GBgbIZDJks1nS6TTZbPa3mImJCWpqalheXmZoaKiiloLl/1CZuYjEtpuTx9vb2xkeHqa1tZXNzU3q6upYXV3V+YkCKjMXqQy9vb3U1tb+tlE6n8+TSqVoaGgglUqxtrYGFK7cGBwcJAgCmpubWVpa2tOYfzt5fGflYjSmqqqK6upqcrncnsaTyqQEJXLE9fT0/FFJODIyQjKZJAxDksnkr29EmUyGMAwJw5Dx8XFtJpaSFneJT0RKkJmdB565+8Xi81vgsrt/MrN64IW7N5rZg2I7vTMu5nitwLC7txefbwG4+71IzFwx5qWZVQGfgZOuPx3ZJb1BiZSnU5Gk8xn4eWf7aeB9JO5DsS+uV0CDmV0ws+PAdWDnqa3TQHex3QE8V3KSOLQPSqTMubub2X9NDO6+aWY3gTngGPDQ3d+Y2V3gtbtPAxPAIzNbBvIUkpjIrilBiZSnL2ZWH1ni+1rs/wicjcSdKfbF5u4zwMyOvtuR9nfg6l5+WwS0xCdSrqLLa93A00h/lxVcAr7F/f4kclBUJCFyxJlZGrgMnAC+AHeAJ8Bj4BzwDrjm7nkrbEK6D1wB1oEb7v76MOYt8i9KUCIiUpK0xCciIiVJCUpEREqSEpSIiJQkJSgRESlJPwDFktDSR/aUIwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl8G/WZ/z8zI1mSLd9HbMeOr9zOBU4gDoTQQqGcP9pCS2mg25aWdtt9Qct2oUAp22Xb7tJXt8uv27J9lYUCDaTQIwv8uEogIRwJkPu2Lcn3IUuydR8z8/39oXwnI2l0S7Ziz/v1CiE6RqORNJ95nu/neR6GEAIVFRUVFZVCg53tHVBRUVFRUVFCFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEFSgVFRUVlYJEk+bj1bYTKioqKirZwqTyIDWCUlFRUVEpSFSBUlFRUVEpSFSBUlFRUVEpSFSBUlFRUVEpSFSBUplRfvKTn+D222+f7d1IiYceeghbt27N+PmdnZ14++23c7dDOX79Sy+9FL/73e9mbofOUd555x0sW7ZstndjXqIKVJ5obW2FwWCA0WhEZWUlrrnmGgwODs72bqVFtidoJe67776UT4r5eP188Xd/93d44IEHIm47duwYLr300tnZoajXz/ZYLlu2DNu3b5f+/e6774JhmJjbSktLwfN8xq8zEzz55JO4+OKLU3785s2bcerUqTzukUo8VIHKIy+++CLcbjdGR0exYMEC/MM//ENG2yn0H3w8Znu/Z/v15xKXXHIJdu/eLf179+7dWL58ecxt3d3d0GjSrV7JLYQQiKI4q/ugkiMIIen8UUmRlpYW8sYbb0j/fvnll8mSJUukf7/00ktk3bp1pLS0lDQ1NZEf/ehH0n1ms5kAIL/73e9Ic3Mz2bx5M7n66qvJo48+GvEaq1evJn/+858JIYQcPXqUXH755aSyspLU1dWRf/3XfyWEECIIAvnpT39K2tvbSVVVFbnpppuIzWaLeJ0nn3ySNDc3k+rqavLwww8TQgh55ZVXiFarJRqNhpSUlJA1a9YQQgiZmpoiX/3qV0l9fT1pbGwk999/P+F5nhBCyBNPPEE2bdpE7rrrLlJVVUXuv//+mOPyox/9iHzpS1+asdent337298mZWVlZNmyZeRvf/ubtD/Dw8PkuuuuI5WVlaSjo4P89re/VdxXQgi58cYbyYIFC0hZWRnZvHkzOXr0KCGEkP/+7/8mGo2GaLVaUlJSQq699tqY74Df7yd33nknaWhoIA0NDeTOO+8kfr+fEELIW2+9RRYuXEh+/vOfk9raWlJfX0/+53/+R+FbRcjOnTvJqlWrpH9ffvnlZP369dK/L774YvKXv/wl4vXjHcstW7aQBx54gGzatIkYjUbyqU99ilitVsXXfeqppyJe96qrriJPPPFEzG3/8i//QgghpLe3l3ziE58gVVVVpLq6mtxyyy3E4XBIj/3Zz35GGhsbidFoJEuXLpU+k71795Kuri5SWlpK6urqyHe/+13pOe+//z7p7u4m5eXlZM2aNeStt96S7tuyZQu57777yKZNm4heryc9PT3kiSeeIG1tbcRoNJLW1lbyzDPPkOPHjxOdTkdYliUlJSWkvLxc+nzuvvtu0tzcTOrq6sgdd9xBvF5vxOdDaWlpIY888ghZvXo1KSsrI5///OeJz+dTPG4qcUlJc1SByhPyk5PH4yG33XYbufXWW6X733rrLXL48GEiCAI5dOgQqaurk04s9MR96623ErfbTbxeL9m+fTu54IILpOcfPHiQVFVVkUAgQJxOJ6mvryc///nPic/nI06nk3zwwQeEEEJ++ctfkgsvvJAMDg4Sv99PvvGNb5Cbb7454nVuv/124vV6ycGDB0lRURE5fvw4IST2BE0IITfccAP5xje+QdxuNxkfHycbNmwgjz32GCEkLBAcx5FHH32UhEIh6QcuR0mg8vn69LZf/OIXJBgMkueee46UlZVJIr1582byrW99i/h8PnLgwAFSU1ND3nzzTcXXf/zxx4nT6ZTEZu3atdJ9X/7yl2MEWf4d+OEPf0guvPBCMj4+TiYmJkh3dzd54IEHpO8Cx3Hkhz/8IQkGg+Tll18mBoOB2O32mOPn9XqJTqcjVquVBINBUldXRxobG4nT6SRer5fo9XoyOTkZ8/pKx3LLli2kvb2dnDp1ini9XrJlyxZyzz33xLwmIYRYLBbCMAyx2WxEEARSW1tLvF4vaWpqkm4rKysju3btIoQQ0tPTQ15//XXi9/vJxMQE2bx5M7nzzjsJIYScPHmSNDU1keHhYel70NvbSwghZOPGjeSpp54ihBDicrnI+++/TwghZGhoiFRVVZGXX36ZCIJAXn/9dVJVVUUmJiak99Lc3EyOHj1KQqEQmZqaIqWlpeTkyZOEEEJGRkakC4onnniCXHTRRRHv76677iLXXXcdsdlsxOl0kmuvvZbce++90ucTLVAbNmwgw8PDxGazkeXLl5Pf/OY3isdNJS6qQM0mLS0t0hWaRqMhDQ0N5PDhw3Eff+edd5K77rqLEHL2xN3X1yfd7/P5SEVFBTl9+jQhhJC7776bfOtb3yKEELJt2zaybt06xe0uX748ImIYGRkhGo2GhEIh6XUGBwel+zds2ECeffZZQkjsSW1sbIwUFRVFCM+2bdvIpZdeSggJ//Cbm5sTHhclgcrn6z/xxBOkoaGBiKIY8RpPPfUUGRgYICzLEqfTKd137733ki9/+cuKry/H4XAQAGRqaooQklyg2tvbycsvvyzd9+qrr5KWlhZCSPgEqNfrSSgUku6vra2VTs7RXHzxxeRPf/oTef/998mnPvUpctNNN5FXXnmF7Ny5k6xevVrx9eMJFI14CCHkv/7rv8iVV16p+Jp0e3/961/J/v37yaZNmwghhHzhC1+QbtPr9VJUGM1f/vIX6Tva09NDamtryRtvvEGCwWDE4zZv3kwefPDBmEjuZz/7Gdm6dWvEbVdccQV58sknpffywx/+ULrP7XaT8vJy8sILL8RcKEULlCiKpLi4WBJJQgh57733SGtrKyFEWaCefvpp6d/f//73yR133KH4vlXikpLmqGtQeeSvf/0rpqam4Pf78atf/QpbtmzB2NgYAGDv3r34xCc+gdraWpSXl+Oxxx7D5ORkxPObm5ul/9fr9fjCF76AZ555BqIo4tlnn8Wtt94KABgcHERHR4fiPvT39+Mzn/kMKioqUFFRgRUrVoDjOIyPj0uPqa+vl/6/uLgYbrc77rZCoRAaGhqk7d1xxx2YmJhQ3OdUyffrL1y4EAxztrNKS0sLRkZGMDIygqqqKpSWlkbcNzw8HLMNQRBw7733oqOjA2VlZWhtbQWAmM8sHiMjI2hpaYnZB0p1dXXE2k2i47Blyxa8/fbb2L17N7Zs2YJLL70Uu3btwq5du7Bly5aU9oeS6rEHzq5D7d69G5s3bwYAXHzxxdJtF1xwAXQ6HQBgfHwcN998MxYuXIiysjJs3bpVOlaLFy/GL3/5Szz00EOoq6vDzTffLB2Lxx9/HKdPn8by5cuxYcMGvPTSSwDCn/3zzz8vfe4VFRXYs2cPRkdHpf2Tf/YlJSXYvn07HnvsMTQ0NOCaa67ByZMnFd+X1WqF1+tFV1eXtO1Pf/rTsFqtOTluKpmjCtQMwHEcPvvZz4LjOOzZswcAcMstt+D666/H4OAgpqen8c1vfjMc0sqQn1QB4Mtf/jL+8Ic/4M0330RxcTG6u7sBhH+YJpNJ8bWbm5vxyiuvYGpqSvrj9/uxcOHCpPsd/frNzc3Q6XSYnJyUtuV0OnHs2LG4z8mGXL3+8PBwxLEdGBhAY2MjGhsbYbfb4XK5Iu5TOjbbtm3Djh078Le//Q3T09OwWCwAIG032ftubGxEf39/zD5kQrRAbdmyJalA5eJzoQL1zjvvSAK1efNm6bZLLrlEeux9990HhmFw5MgROJ1OPPPMMxGfwS233II9e/agv78fDMPgnnvuAQAsWbIEzz77LCYmJnDPPffgxhtvhMfjQXNzM2699daI77HH48G9994b9z1eeeWVeOONNzA6Oorly5fj61//uuLjampqYDAYcOzYMWnb09PTqugUAKpAzQCEEOzYsQMOhwMrVqwAALhcLlRVVUGv12Pfvn3Ytm1b0u10d3eDZVncfffdUvQEANdeey1GR0fxy1/+EoFAAC6XC3v37gUAfPOb38T9998vnRytVit27NiR0n4vWLAAFotFckQ1NDTgiiuuwN133w2n0wlRFNHX14ddu3aldTxSJVevPzExgUcffRShUAjPP/88Tpw4gauvvhrNzc3YtGkTfvCDH8Dv9+Pw4cN4/PHHFe3YLpcLOp0O1dXV8Hq9uO+++2L2Nd5FAgB88YtfxMMPPwyr1YrJyUn8+Mc/ztj2vWnTJpw6dQr79u3DBRdcgM7OTvT392Pv3r0RIhG9f/JjmQmXXHIJDhw4gN27d+Oiiy4CAKxevRpmsxlvvfVWxGu7XC4YjUaUl5djeHgYjzzyiHTfqVOnsHPnTgQCAej1ehgMBrBs+FT0zDPPwGq1gmVZVFRUAABYlsXWrVvx4osv4rXXXoMgCPD7/Xj77bcxNDSkuK/j4+PYsWMHPB4PdDodjEaj9BoLFizA0NAQgsGgtP2vf/3r+O53vytF48PDw3jttdcyPlYquUEVqDxy3XXXwWg0oqysDPfffz9+//vfo7OzEwDw61//Gg8++CBKS0vx4x//GJ///OdT2uZtt92GI0eORJzcSktL8cYbb+DFF19EfX09lixZgrfeegsAcOedd+L666/HFVdcgdLSUmzcuFESr2TcdNNNAMLpp/PPPx8A8NRTTyEYDGLlypWorKzEjTfeGJFmySW5ev0LL7wQPT09qKmpwf33348XXngB1dXVAIBnn30WFosFjY2N+MxnPoN//ud/xuWXXx6zjdtuuw0tLS1YuHAhVq5ciY0bN0bc/7WvfQ3Hjx9HRUUFbrjhhpjnP/DAA1i/fj3WrFmD1atX4/zzz4+pm0qVkpISnH/++ejs7ERRURGA8MVLS0sL6urqFJ+jdCzTZenSpaitrUV9fX2EeFxwwQVwOp3YtGmT9Ngf/ehH2L9/P8rLy3HNNdfgs5/9rHRfIBDAvffei5qaGtTX12NiYgI//elPAQCvvvoqOjs7YTQaceedd+K5556DwWBAc3MzduzYgZ/85Ceora1Fc3MzHnnkkbiCK4oifvGLX6CxsRFVVVXYtWsXfvOb3wAAPvnJT6KzsxP19fWoqakBAPzbv/0bFi9ejI0bN6KsrAyXX365WvtUADDRaaUkqOM2ZpmnnnoKv/3tb6VUoUpinnzySfzud79Tj5eKSmGRUs55divqVNLC6/Xi17/+Nf7+7/9+tnelYCCEIBgMQhRFaDQasCwLlmVzuhamoqIyO6gpvnOE1157DbW1tViwYAFuueWW2d6dWUcURXg8Hvj9fgSDQfj9fng8HrhcLhw7dgxOpxMejwehUAiEEAiCEGNCUVFRKWzUFJ/KOQOtjQiFQhBFEe+//z42bdoEnuchiqIUNe3btw8bNmyIqKdgGCZcV8Gy4DguItqiEZcadamozBhqik9lbkDO9FajQgRAEhSGYaToiOO4mPuitwOEa5qi+/QxDKMoXqpwqajMHqpAqRQsNDUnCIIUIckFQxRFnDx5EpOTk9JtBoMBgUAA4+PjKCkpQXFxsWQvpo9REhwqgoIgSPZjCsdxEX9U4VJRmRlUgVIpOKgw8TwvpefkguDxeGA2m+Hz+VBRUYGOjg6IoghCCPx+Pw4ePAifzwebzQav1wtRFKHX6yXBKikpQUlJiRRxAYgrOHLhovtCYVlWiraocKkGDRWV3KEKlErBQAgBz/MRYkCjHwCYnp6GyWRCKBRCW1sbpqenUV9fL6XrWJZFcXExtFqt1IqIbtfv98Pr9cLj8WB4eBherxeCIECn00WIFn0+JZFwUQehknBFR1yqcKmopI8qUCqzDhUmKjRyYSKEwG63w2w2g2VZtLe3S0WiPT09EduIJwAMw8BgMMBgMEgFuvQ5wWAQHo8HHo8HY2Nj8Hg84HkeWq02QrRKSkqkoli6zXjCBYRnUYVCIQCAw+EAy7KorKxUhUtFJQ1UgVKZNWjqTC5M9GRNCMHExATMZjOKi4uxbNmyiKauuYBhGOh0Ouh0OlRVVUXcR4XL6/XCarXCYrEgFApBo9FERFxUuKLXt+Si4/f7JcGlwqXkLFQSLlW8VOYzqkCpzDjUkScIAoBIYRJFEaOjo+jv70dFRQXWrl0Lg8Ew4/tYVFSEoqIiVFZWRtzO87wUcdntdgwODiIQCIBl2ZiIS6/XRwiW6ixUUUkPVaBUZoToGiYgUpgEQcDQ0BCGhoZQW1uLrq4uaXRDpq+Xj5O4RqNBeXk5ysvLI24XBEFa45qensbIyIgUORFCoNfrodFoJOFSnYUqKslRBUolrySqYQKAUCiEgYEBjI2NobGxERdeeGHEXKRUth8NTZ3N5Mma4ziUlpbGpCFFUYTZbAbP83C73RgfH4fP5wMQtsRHGzTkppBMnYXqOpfKXEEVKJW8ILeKHz16FKtWrYo44fr9flgsFthsNixatAgbN26MsH2nAo1Ook++VKAKAZZlJadgQ0ODdLsoilJ7Jo/Hg8nJSfh8vghLvFy4UrXE0yg1GAyqwqVyzqMKlEpOUaphcrlcMTVMLpcLra2tWLp0aUTUkA4Mw0S0OJLfXigCFQ9qiS8uLkZtba10O7XEU4OGw+GIsMRH13LJo810nIVutxt+vx91dXWqcKkULKpAqeSEZDVMTqcTJpMJwWAQbW1t6OzszPokGC+Vdy4IVDzklng50Zb40dFReL3elC3x8r+BsEvR6/UCUJ2FKoWLKlAqWZGsholGAD09PWhvb49xxWVDPCE6lwUqHpla4qMjLmqJV+rQQVGdhSqFgipQKhmRrIbJarXCbDZDr9dDp9Ohq6sr5/tA16CimYsClYh4lvhQKCQ5C202m2SJ5zgODMOA4zjYbDYUFxfHWOLlf8tJ1VlIRUwVLpVsUAVKJWWSWcVFUcTY2BgsFgsqKiqwevVqFBcX47333svL/iSKoFQArVYb1xI/MDAAj8eDqakpDA8PS5Z4g8EQYdCQW+IB1VmoMrOoAqWSlGRW8VzXMKUKNUlQ4Yy+XUUZjuOkuqzm5mbpdkEQ4PP5pMGP0ZZ4+TpXOpZ41VmokimqQKnEJdm4C1rDNDo6isbGRlxwwQURjVYp+axLGh8fx+joKERRlJxxXq8XdrsdVVVVEakrlbMofR4cx8FoNMJoNEbcLooifD6flC60Wq3wer0ghCjWcqVqiQcinYVAuG8h3Z5Go4lIR6qf4/xDFSiVGJKNuwgEArBYLJicnERzczO6u7sT1jCxLAtRFNOuc4qHKIoYHh6GzWaDRqPBeeedJ4mg1+vFqVOn4HK5YLPZpNRVdP+8+S5c6VwwyNs4xbPEezweOBwOeDweiKKYkiVe/jfFbrdLEZ78+0cfqzoL5xeqQKlIJLOKe71emM1mOJ1OtLS0YMmSJSnVMOVKoARBwODgIIaHh7FgwQLU1NSgtbUVOp0OwWBQ6uZgMBjQ3NyMkpIS6Xnx2hDNV+GiVvJskFvia2pqIrYdCASkYz46OgqPxwNBECIs8fSPPOqm35PofVOdhfMTVaBUQAiBx+ORfuhKNUxmsxl+vx9tbW1YuXJlWj/8bNeEeJ6XUokNDQ1SO6SjR48qbjfaPBGvDdF8Fq58toJiGAZ6vR56vT7CEk/XomjENTExAY/HE2GJd7lccLlc0Ol0SbvEy7ebqrNQXec6t1AFah4jt4ofP34cbW1tKCsrk+6nc5gAZFXDRCOodAkGg+jv78fExASamppi2iFlWwc1n4VrpnsVAuHPJZkl3ul0wul0wmq1SlFx9BpX9DFXnYVzF1Wg5iFK4y44jpMcV/IapiVLlkSIViakK1CBQABmsxl2ux2LFi1Cd3e3YjoqX4W6qQrX6OgofD7fOSlcsyFQiaCWeJ1Oh9bWVqmTBs/z0jGPtsRTNyE95gaDIWXhUp2F5waqQM0TktUwsSyL8fFxHD9+HGVlZVINUy6IV1Abjc/ng9lsxtTUVEp9+ma6k0Qi4fL5fHC73XA6nTHCxfM89Ho9KioqCka4Ck2gKISQiChZo9GgrKws5iIp2hI/NjYGv98PADG1XAaDIWVLPBDrLKT3BQIBVFRUSKKlOgvzjypQc5xUapiGh4cxNjaGqqoqnHfeedDr9Tndh2QRlMfjgclkgsfjQVtbG1asWJHSD18ufNFXzjPZSSKRPdvr9WJgYAA+nw+9vb3w+/2SuaCkpARGoxHFxcUxV//5plAFShCElPYrmSWernOla4mX/02h7lCz2YwVK1ZE3Kc6C/OLKlBzlGRW8VAohMHBQYyMjKChoQELFy6UrvBzTTyBcrlc6OvrQzAYRHt7O6qrq3NiviiUVkcsy8JoNKKsrAwcx0njNqhweTyeiIiLYZiYVGG+hKtQBYrWs2WK3BIvJ9oSb7fb4fV6IyzxcuGKtsRTd6Fc0FRnYf5RBWqOoSRM8h+8vIapqalJqmEymUx5674QLSRTU1PS67W3t8c0P01nu+diLz4qXPEiLnnaKl/CVagClQv7uxLJLPG02e7IyIhkiS8qKpIEK95YF/nf0e9DdRZmjypQc4RUapgsFou0vhNdw8RxnGSayDUsy0IQBNjtdphMJnAch46OjpgecekiF6Logs5CFqh4zKRwFapAATPbS1Fuia+urpZuj7bE2+12uN1u7Nu3T7LER483UZ2FuUcVqHOcROMugHAazWQySTVM8dZ3MrWCp7J/Pp8Pp06dQmlpKZYtWxZjMsgUeQul2VyDyjfpCBc1CiQTrkIWqEIg2hJfVFQEr9eL1tZWSbi8Xi9sNhsGBgYULfElJSXQ6XSqszALVIE6R0k07gII9zQzmUwghEg1TIm+0BzHIRAI5Gz/CCEYHx+HxWKBKIpobm5GS0tLzrYPqOM2shEur9eLQCCgClWKCIIgrUtptVpUVFSgoqIi4jFyS7zD4YixxMujrnQs8XTb0c5CatCQr3HRP3MFVaDOIZJZxQkhmJychNlsRlFRUVo1TLmKoOQjNyorK7F27VqMjY1FTHjNFYVukpgtkgkXHWw4MjKCwcFBAMkjrvmOIAhJT/yJLPHRpph0LPHyvylyg4bf78fJkyexatUq6bEPP/wwHnnkkezedAGgCtQ5ADU+OJ1OqYBRLkyiKErRSmlpKTo7O2NcTMnIdg2KNnAdGBhATU1NxMiNbFsdxYMKER2HTtcB5rtAxUMuXHa7HY2NjSgrK4uwZkeP2aDFsEajUXE+1HyB5/mM6wLj1c8ls8TL17gSWeJpFEyL7QHgb3/7W4bvtLBQBaqAkY+7EAQBhw4dQnd3d0wN0+DgIKqrq7OqYco0gopu4Ko0ciNf61tA2BE4ODgIhmHA87z0Iy0uLpZcWPmI3s515Kk9uTW7rq5Oeoz8BOp2uxXnQ8nruHIhXIV6YZGt/V2JRJZ4+XgTuSVer9fHpAt5npfSjwzDwOfzzcg8tplAFagCJJFVnJ6IBwYGpBqmeHOY0iHdCIrnefT392N0dBQLFy6UGrgqQV18uYIQgtHRUZjNZhQXF2PdunXSonEoFILZbAbP87BarbBYLAiFQkm7aM83Ull7incCTUW44qWsst2n2UIQhJyNi0kGdWcWFxfHtcR7PB4MDw/D6/UiGAxCFEX09PTg448/hlarTcuI9Oqrr+LOO++EIAi4/fbbce+990bcHwgEcNttt+Hjjz9GdXU1tm/fLplFbr/9duzfvx88z+O2227DD37wg5wdB0AVqIIimVVcFEWcPn0aVqsVCxcuxMaNG+OKQrqkGuVEN3BNNguKbjt6gTcTRFHE6Ogo+vv7UVVVhZaWFskmTGtNtFqtNO21sbExYr/pD3t8fBwejwc8z0tRljwayNUxLWSyEYNUhIt2K09HuPIRpeSKmRSoeMSzxFutVjgcDtTU1MDhcGDPnj04duwY1q1bh8rKSqxevRr/+Z//qfh5C4KAb3/723jjjTfQ1NSEDRs24Prrr8fKlSulxzz++OOorKxEb28vnnvuOdxzzz3Yvn07nn/+eQQCARw5cgRerxcrV67EF7/4RbS2tubsPc/9X+I5QDKrOK1h8nq9KCkpweLFi3P+Q04WQfn9flgslqQNXJXINsUniiJGRkYwMDCA6upqaX1rZGQkrvMwOlWk1EWbrl1FX5EKghDRXYAK12yfoHJJPqKVbIUr2pJdSBSCQMWD9nqsrKzEt771LXR1dWH79u347W9/C5vNBpPJFPe47tu3D4sXL0Z7ezsA4Oabb8aOHTsiBGrHjh146KGHAAA33ngjvvOd70jfH3qh5/P5UFRUlHVj6WhUgZpFklnFXS4XzGYzvF4v2tra4HA40NjYmJcfcTwRoQ1cp6en0draimXLlqX9+qk2i41Gbryoq6vD+vXrI9aTsu0kwTAMdDoddDpdzNwieSplcHAwYg2AihZdAyjUq/5EzGQ6LVXhGhsbg8vlwocffphVqjAfFLJAyS3wQHhdllrgq6urI6KtaIaHh9Hc3Cz9u6mpCXv37o37GI1Gg/LycthsNtx4443YsWMHGhoa4PV68R//8R8Zd4WJhypQs4DSuAv5yULeCqitrQ1VVVVgGAZmszmno9PlREdQ8gau7e3tKTdwVSJdF5/c/BHPeEG3m486qETdBWg/N7fbjcnJScl1pWTTLnThmu1oJVq4aEPdzs7OrFKF+aCQBSoUCkWI//T0dEyNVj7Yt28fOI7DyMgIHA4HNm/ejMsvv1yKxnKBKlAzRDo1TFqtVrEVEBWRfPxQaASVbQPXRNtOhtwRWF9fn9B4Qbc7k4W68fq5iaIIv98Pt9sdc0KlLiuDwYDy8vKCqS8qREMCXYNKFnF5vV643e4ZFa5CFqjoCCodgVq4cKFUCwcAQ0NDWLhwoeJjmpqawPM8pqenUV1djW3btuHTn/40tFot6urqcNFFF+G1HJk3AAAgAElEQVSjjz5SBepcItm4C0KIVNhaWlqKlStXxhRYUvLZL4+O2j59+nRW03OVSCZQPM9HdFZPJkyUQmkWKx+eJ4cWxg4ODsLv96Ovr09xwKHRaJzx9ZdCFqh4yIWrtrY24nnyyJbWEwGQRmzQlGymwpWvJra5IBQKxQjUsmXLUnruhg0b0NPTA7PZjIULF+K5557Dtm3bIh5z/fXX4/e//z26u7vxwgsv4JOf/CQYhsGiRYuwc+dO3HrrrfB4PPjggw9w11135fS9qQKVJ5KNu6DrK4ODgynPYcq1QBFCpAauGo0GOp0OXV1dOds+JZ5AUbt8KlZ1JQq9kwQtjC0tLY0Yt5FopLx8fUupCWmuUOrOPdtk6uKTXyDEEy55ISyAiLVE+txCFaBkZBNBaTQa/OpXv8KVV14JQRDw1a9+FZ2dnXjwwQexfv16XH/99fja176GW2+9FYsXL0ZVVRWee+45AMC3v/1tfOUrX0FnZycIIfjKV76CNWvW5PS9qQKVY5KNu6DRAk1jRS/8JyJXAkXTiSaTCQaDAStWrIDRaMR7772X9baViBaoUCiEgYEBjI2NoampCRs3bswofVIoEVS6xOssIO/lFt2EVC5auSo+nisCFY90hUvewUFeCFvowqUUQaWzBnX11Vfj6quvjrjtxz/+sfT/er0ezz//fMzzjEaj4u25RBWoHJGshkleP5RpDRPHcTGD0dLdx/HxcZjNZpSWluZ0rHsi6FpRKBSCxWLBxMQEmpub07KqK3GuClQ84vVy43k+In1Fi481Gk2McKVafHwupvhyRTzhoh0cqHDJTTB+vx8mk6kghUveSQKYOZPETKAKVJZQYfJ6vTh16hTWrFkT8cX1+XywWCxwOBxp1w9Fo9FoMoqg5AWulZWVeRnrngie5+F0OrFv376sj4EcuRDN5XEb1NobbZoJhUKSMSNe8TH9E30xVIjHZ7YLdeUdHKIjrg8//BClpaUxwlUIEVf0+tj09HRO15BnE1WgMiS6hkmj0UhD5ADA7XbDZDJJM2SWL1+e9RVruik+URQxNDSEwcHBmAauMwGd3mu1WsGybM6EiTLfx21otVpUVlYmLD4eHR2VJsTKi4+paaeQnGmzLVDxEEURWq0WtbW1KUdcsylcTqdTjaDmI9QqrlTDRBfsaQ2TIAhoa2vLiU2bkqpA8TyPoaGhhA1c45GL1I/f74fZbIbD4UBraytaWlpw5MiRnP9AC90kMRukWnwcCARw6NChiOJjuWlgNoSiUAUqnsU8XsQ128IVCoXUZrHziVSs4jabDR6PB2azGe3t7Xm5gkm2BiU3HzQ2NqbtiqNmhkyvqmmefmpqCm1tbVLUKD9uuYQKEc/zGB0dhV6vh9FonNcCFY/o4uPx8XGsX78+pvjYZrNFnEzla1z5Loo91wQqHukIl8/ngyiKGQtX9Jyqufa9VwUqAfJxF9SWGy1M1HRgNBqh1+tx3nnn5W1/NBqNYu85uQGjubk5Y1dcpoXAPp8PJpMJTqdTcax8vsZtCIIAl8uFvXv3oqamRmoNFQgEpNeTn2ALKZ1VKCQrPqbCFV18nI/hhqIoFmSj3lwV6SYTLlqATC8SqHDR4200GmEwGCL2JdpiLn+tuUDhfRsKgFRqmGjz0srKSqxbtw4GgwHvvfdeXt1R0Sm+bBq4KpGukHi9XphMJrjdbrS3t2PlypWK7z3XEQ0d9TEyMgKWZbFx48aIlOv09DSGh4dRXV0tNYH1eDxSOouKFv3BF+JV+2yTyKIdPU5eqfiYDjdM57dQiLVZQP67SCQaryG3w0fPhaLmF3q+4jgOfr9/zqT3AFWgIkhmFZfXMC1YsCCmhinbFFkyqEB5vV6YzWY4nc6MG7gm2n4yPB6P1BWhvb0dnZ2dCV8/VycdeWFvU1MTzj//fJw+fRoajQaiKEY4+liWRVVVVcw6jFIvPQARV6mZnFznC/HGyScrPpYf23jFx4Vm2qDMVpujeNGt/Htss9ng9/tx4MAB/OIXv4DD4YDb7ca2bdvQ2dmJZcuWJXTsZjoL6g9/+EPESPnDhw9j//79WLduXU6PgSpQSD7ugqbQxsfHE9YwaTQaaaprPggGg7BarVIqLV7EkinJIii3242+vj74/X50dHTk1ACSiGhhoilMv9+flkkiUTqLnlydTqd0cuU4LqJNjtFoVKfzxiFe8bEgCBERgLz4OLprxlxZg8o38u8xHfW+ePFiPP3009i5cyceffRRDA0N4bXXXsPg4CDefPPNnM+C+tKXvoQvfelLAIAjR47ghhtuyLk4AfNcoJKNu5C70Zqbm7Fp06aEPyAqULkOsZ1OJ0wmE3w+H/R6PTZs2JAXYYgXQdEGsqFQCO3t7VJ39XwTT5gouSrUTRQVyM0D/f39MdN56Qm2ENdOCgGO4xIWH9NODhaLRTrONputoCYfF5pAyZEX6XIch/LycixduhT/9E//lPS52c6Cojz77LO4+eabc/iuzjIvf1XJxl243W6YzWa43e4IN1oyqEDliqmpKfT19QEA2tvbodfrceLEibyJQ3QE5XQ60dfXB0EQJGGaCaJ79MUzfeS7k0S8k6u8QHZsbAxut1uqM5JHW4XUbaDQUCo+Pn36NKqrq8GybEbFx/niXBEoIHIWVDKymQUlz0Bs374dO3bsyOZtxGXeCFSycRdAuALbZDJJkUK6KaxcCFR0A9fFixdLP+JQKJRTAYyGZVkIgoDp6Wn09fWBEIKOjo4ZK/pLVZjk+xtPiPJpt41XIEvrjNxut7SgTb93er0eGo0mp663uYYgCCgqKkJpaWnMsZVfFMQrPs7X5GNBEGY9iotHdMZmptsc7d27F8XFxVi1alVetj/nBYrWMNntdimFE20Vp4LAcVxWNUzZNHMlhMBqtcJsNkc0cM3V9lMhGAyip6cHer1ecR5VvpCP20hFmCiF1Isv0ZBDs9ksnWCjXW/R61vzWbjiufgYhkFRUZGi6UVefDw0NBTh1sxV8XGhR1CZDivMZhYU5bnnnsMXv/jFLN9FfOa0QAmCgFAoBEIIjh49iu7u7pgaJovFguLiYkVBSJdMIih5LVVZWVnCBq6Zjk5Pht1uR19fHwKBABoaGtDR0ZHz11BC7orMpKt5ok4ShQI9uRoMBmncBnDW9eZ2u+FwODA0NIRAICBFWfL1rUK9es816c5cSmXyMXW6RXdySGc+VKELlPz7MVOzoIDwBcUf//hHvPPOO7l7Q1HMaYGi0C8gPaHRGqaKigqsXbsWBoMhJ6+TjkDNdgNXGjn29fWhqKgIy5cvh91uz+sPkS6uRkdM3d3d82rcBpB45IZ8Mq/b7ZbWYKI7lxfqSTNTcuXiS2TPpp0c0ik+LnSBku/bTM2CAoDdu3ejubk5pxN0Y/Yxb1suAFiWjbiaNpvNGBkZQW1tbV4ap9KGsYkQBEEaVFhbW5vWPKhcQNsy9fX1wWAwREzwnZ6ezlsKkWVZhEIhDA8Pp53Ki0e8DubngkDFQ6PRoKKiIuIkI28A63a7IwqPM4kICpV828wTdSv3+Xxwu92KxcdutxtGoxFarbbg6uOUIqiZmAUFAJdeeik++OCDNPc4Pea0QAHhdZWBgQHJDZRuf7p0SBRByaOG+vr6tBq45gL5kEK6qCnPXQNnRSTXCIKAQCCAffv25USYknEuC5QSiRrA+v3+iIhLHhHII65CO7EqMVt1UPJiYjk0DXvixAmpjiu6+Hi21w/n8iwoYI4LFCEEBw4cQGNjI2pra9HQ0JBXa6qSQGXbwFWJdNopUfOFyWSC0WhMusaVy555giBgYGBAaknU1dWVs3RqIuaaQMVDnspSakfkdrsjujrQ4lg6biMYDBZU4XGhFerSNKxWq0V7e7t0QSkvPpavH8qPr7xrRj6JbhY7l2ZBAXNcoGifNkIInE5nXi3aQKRABYNBaRZSNg1co6FOvmQiF22+SGWtLVcuQUEQJPMDFeXDhw/P2BXmfBGoeMQrPKaDNV0uFwRBwLFjxyIKj+UR12wUHhfilF8gdg0qleLjycnJnEw+TgX5MZtLs6CAOS5QcrRabV7SV3Jot/ETJ07A4XCgpaUFixcvzulVYTKBIoRgbGwMZrMZFRUVaZkvaB1UplBhonZVebSYr47mhBBMTEzAZDKBYRjJUhwKhQp6cXs2oCPlS0pKMDY2JnXel69vyWuMZmNOVCEKVKruwkSTj+nxlRcfa7XaGOHK9sJgLs2CAuaBQNGraa1Wm9cIyuv1oq+vD1NTU2hqasrJBF0l4kU5oihibGwMFosFVVVVOP/889N2BXIcl5GIREdMSr0K41nCM4WuqXm9XkxMTKCzsxMApC7bwWAQBw4ckIwE0R3MC/FEOFNERypFRUUoKipSLDym61vUqg1A0Zgxn49nMrRaraLxJZXi40SOzejPcS5mDea8QFE0Gk1eIig62t3n86G1tRUulyui3iXXRAuU3DZfXV2dlTsx3RSfUiov3hVgLiMom82G3t5eFBcXw2AwYNWqVVKHEJ1Oh8rKSkxMTEgD+eTW4vHxccmhJT/JzqdGsKmk0uQ1RtGNdenxjHa8pdq1XCVx8XEwGJSEK3pUjPwYa7XauC3A5grzRqC0Wi08Hk/Otkf71PE8H9FAlfbOyxd0nUsURQwPD2NgYCBndvVURUQuTA0NDSkZP3IhUHa7Hb29vdDpdJIL8b333ot5XLT9XMlanKgRrFy05mK9UTZrPXIhqqurk26XFx7Lu5bTwmN5Kmu+FB5ngtyxmaj42G63w+12w+/348iRI9i7dy8YhpEyRamkCjMdtQGEx2vccccdcDqdYFkWH374YV7qOOe8QNEfYq4auTocDphMJgDhBq4z7ZhhWRajo6M4fvw46urqcmpXTxZBZSJM8v3OVKCmpqbQ29sLjUYTUbclJ/qEmyzdEW+hO97V61xKE+bDjBCv8Jiuvyg1f41urFuIFEraTKn42OVyYXBwEK2trbBYLHj77bcxPj6OjRs3AgCWL1+Op556SnH9LJtRGzzPY+vWrXj66aexdu1a2Gy2vF10zHmBomRjkpD369NqtViyZEnMiS3fCIKAoaEhjIyMoLq6Oi91VPFEhL720NBQ2sIk33a6P/bp6Wn09vaCYRgsXbp0Ro55vLQLLeSkJ9p00oSFcpKjzKRbTqvVorLMgWrjaTB1IQjchRCZmogLgcHBQWke15EjRwqq8LiQjTbUaFFcXIzrrrsOS5cuxfT0NLZv345QKASLxRL32GUzauP111/HmjVrsHbtWgCIiPRyzZwXKPpDzESgUmngGu95uZwiSwt8Gxoa0NLSAoPBkJcrlmiByoUwxdt2IlwuF3p6ekAIiejmng65PAHL04RyUk0T5sO9mA0zJlAkBA3/EjhhN4CwSHPCW+A1V4HRXR6RxhJFER9//DE6OjoUWxFFF8bqdLoZeQ+FLlDRRbr0t0IvpOORzaiN06dPg2EYXHnllbBarbj55ptTmj+VCXNeoCjppPioVdtisSRt4BrvdbIVEPnoCbkBYWBgIG/tiGiKL5fCRElFoNxuN3p7exEKhbB48eKU06c0QpGfeGciakk1TehwOCTXYSGkCTMRqLSfQwg0/PPghH1RdwjQ8C+BMGUQuQukW+m493itiOSFx8PDwxGFsfL1rVwbXc4lgUpnFlS2r7tnzx58+OGHKC4uxmWXXYauri5cdtllOX+tOS9Q8ggqmUDJHXFVVVUZNXDNVqB4nkd/fz/GxsYU2wJxHJe3ei5RFBEMBvHBBx+gvr4+p22hEtnMPR6PNEqeNqVMZ7uFRnSacHBwEBzHoaKiIuM0YS5JR2yCwgSsgR3w8ifAsaWoKvoUyrUXJX0+J+xSEKezaEPbEWQWgLAtABJ3kUhUeBw9lVcpgi0uLs74e3wuCdRMjdpoamrCJZdcIq2FXX311di/f78qUNmQqLtALhu4ZmrGCIVC6O/vx/j4eMLOE6k0pE0XecRECMlLv0KlCIrWjnm9XnR0dKQ9IBI4N0ZuAJmnCeXRQa5OlKkKlE+wYMj7XyAk/H3mRScm/H9CQBhCnf4LcbfBiEPQ8MkmrArQhv6EYNF3gTOfYbprTfEKY+UR7MjISEzhMT2mqRQe08iuEOF5PuICOh2BymbUxpVXXol///d/h9frRVFREXbt2oXvfve7OX1vlHkjUErko4FrugIVDAbR39+PiYkJLFq0CN3d3Ql/NLkcWiiKIoaGhjA4OChFTPv27ctLmxu5QPl8PphMJrhcLnR0dKCmpiZjQYl34VFoxoR4ZOomTLVINiD6YPEdg09wYaF+CWq0C1MSqJDowKj3cUmc5EyH9kLPLUJ50abYJxICDf8n0DWnRDBkAKx4ECJ3Xk778MUzulCbttvtloq8AcQ4NOWNdaPHWRQSShFUqrOgshm1UVlZie9973vYsGEDGIbB1VdfjWuuuSYv73HOC5SS/Zim0cbHx2Na8mQLx3EpCVQwGITZbIbNZktJmOTbz1aglIQp373XWJZFIBDA8ePHMT09jfb2dqxcuTLrSIcKVKFFTNmSzE0YPZ1XKU1oD41hl/0F8CScEu7xHsQK4wVYRFYnPF6EiBj1PQGeuOM+xhrYgWLNUmjZmojbWfEjsKI55fep4V9EkF01I6M2lGZEJRq1Qbub064ahVZ4nG0n82xGbWzduhVbt25Nc4/TZ84LlByGYXDq1CnYbDY0NzenLArpoNFoEgpIIBCA2WyG3W5Ha2srlixZktY+ZCNQsyFMQPg9j42Nwe12Y/ny5VixYkXOfuhUoKKPYSGdSDKFEAJHyAVrcBqLDHUwcLqU04RuYQqm0vdBNCI0Gg4cp4GG43DCvQ+ChkDP1MZ5VcAZ2ge/MBj3fgAQSRAT/j9jYfE3ZDscgoZ/Ma33yBA7WPEARHF5wY3aoNGr3+/HiRMnpMLj6ELu2WisC8z9URvAPBAohmHg9/thNpvh8XhQX1+fF2GixEvx0X1wOBxoa2vDsmXLMjqJZiJQ0cKULJWZq4hEHiVWVlaisrIS9fX1WW9XDk0dRqdhzpUUXzwIIXht8kPsnz4NACjm9Ph07QVYblwU89joNKFIBLxhewaGkA48z4PnBYRCPgiCAEKAj5g3scxzCaqsVbHTY4kfk4GXU9pHD38CfmEIeq4pvB/C+2CIM+33quH3QBSXFtyojbKyMrhcLpSVlUkGAnnjV3rRFd0/jxoz8p0aVAVqDkAIwfHjx9HY2IhQKISampq8/hCie/75fD6YzWZMT0+jra0t6yay6QiUXJgWLFiQ0hpbvBN+OtAiwYmJCbS0tGDJkiWwWq1wuVwZbzMe1CRBa2Zot+5CYNTngp7TpC2WhBC8Yt2Hg84e6Tav4Mefx97BbQuvQJMhfvQDAH2+w3DydjAMC622CJEfeThdNSaeQqOrJSalxZbvA6+zQ8NpwKTwO3EE/4YGw98BhAcn7EzrfVIYMgCWDIBlC6+bhCAIEYapeI1flQqP892BRGnc+1yaBQXMA4FiGAZdXV3hdInDMSMjN3w+H7xeL0wmE9xuN9ra2nKW1krFhJGJMFGoAGYiUHKLfPS6Wj7GbdATw8GDB1FWVga9Xo+RkRG43W54vV4cOXJEMhREL37nE14U8dLwCewcD/dlrBI1+LuFa1J+/knPQIQ4nYXgxYn38LXmq1HEKn+eAdGH4+73E2ydAcuy8OgmYWzSoL1oNYDwidjltmIw8DH4YAg+wSetC3Gc5kyaMJwqlB9Dd+gQgkUT0MMEhkyl/B6j0eEDsOzlGT8/X/A8n3SOWqL+efJGxUqFx1S8Mik8jk5tz7VZUMA8ECg5MzETiud5jI2NwWazob29HZ2dnTk9KSaKoOQNZNMVJkomQkKLikdGRuKu7eVaoGjjWL/fj1WrVqGyshKhUEh63b1796K9vT2m67a8uJP+iV5DCPA8Ttgm0VFZhdIMyg2e6z+EfbazazjDATeeHTuOf2xogJZNLPwhkcebk/vj3u8IufC27RCuqF2veP8J914ExUBK+3nM/T7qqsIpQ47jIOqPQMdw0OFsBEpEEbxA04T+M2lCIomVRsNhgryJdr0ppdeMh449Ao69JKtt5INssgmJGhXT1k7RE3nlZQW0Y3mqzLVZUMA8ESi6kJ6rhrFK0LEbLpcLer0eXV1deblaV9pmLoSJkk4KUT6gsKmpCd3d3XF/zLkSqOnpafT09IDjOKxcuRImk0mxmJplWRQXF8d03abFnXT0Rl9fX0SNzCAfxJ/7LSAMA2NREb64chXW1NbFbD8eJ53WCHGimH3TeGXkNK5vWpHw+e85jsHJJ+66f8DZg4sqO1GiibyyD4g+mH1HUtxTBpPBEUyFrKjQ1kIkIUwFd8c+imWhZWPThIIgQhB48DwPW+A1VPkIWDDgNGEzBqfRgOO4NNLpPEqKegEsT/HxM0Mq06vTJV5jXfl3k7ZYix5sSP+OPq7n+pprPOaFQFHyEUG5XC709fUhGAyio6MDOp1OanCab+TClKvO5qkICU0hDgwMxB1QqLTdbH5EbrcbPT09EEURS5YskYoz5XVQR4cncHLMhsV1YWu2ktlDqbiT1sgM2Cbxx5NH4Q0EIQgCphngP999B3/fuRrtNbVJW+kEBB7bLYfi3r97woRLF7ShTKvcncQvBLFv6mTSYyEQAR9Nn8aW6rURt5t9R8Er1C1FI/8YTL7DOF97GVyhjxPayiNhzkRQHIqKdGDFSXDaCpSypRAEATzPIxgMQuB5iISAZWKFS6n8o6ToGIBrU9yHmUEQhBkzb6RSeExr4gRBQCAQgMlkwuDgIIxGIxiGSfm8k+moDYvFghUrVkj1Vhs3bsRjjz2WmwOgwLwQKHm7I1qcly3yeVAdHR1SvUogEMhbrzwKIQSDg4M5FSZKOinEVISJkkj4QrwA65QHDdWlMT8wr9crpfKWLFkSswhMTRK7Tlvw14+PgwDYax7C8hIO56coiAzDQKfX469Dg+B0OpSeSZMQQiDwAl4ZHsTnCaRWOnRUBP1DOxK8a+2HLRj/+xUUBbw+2osbF61SvP+Qqw8hktoF1P7p0+iuXCmtRYlEQJ/3YErPBQjoYe73ncCqkosxFXonxedGEwTgxpQAlHFl0Gg0Md8JURQh8AJ4gUfI74fA8yAAOJYNC5dGEx7Ix5kB4gKYUsVXmg0KodWRUk2c3+/H8ePHUVZWhlOnTuHVV19Ff38/1q9fj2XLlmHVqlX4/ve/r/j7zGbUBgB0dHTg4MFUv2vZMS8EipKLFN/09DT6+vpACFGcB5VqoW4mUIHweDzw+/0zNnJDFEWMjo7CYrFIgqjRaOCY8qKqMrWvULyWRB8eH8Sf3z4MUQQu7erApzcuk0oD+vr64HK5sHjx4rhtkBiGwZDDiR37T4YjgzMP+XDUgS0TdixtSOx4oxyaGMeQO9IizTAMNFoNxvkQ7MZibFy6NMKxReuOvF4vRELwv/4B+CCcOelyYBlW2h/Ku1YLLqvvQGVRZHpOJCI+mjqV0r4CgE8M4IjLjK7ypQCAIX8PvEKqEdBZeBKCybcHrDiS9nMBgCV2AARu0Q2e8NAwsd8HlmXBFrHQQvZdJYAgChD4cJowGAiAEILx8T/CTzZFdMuYzUnHhSBQSlBre01NDb7xjW/g+uuvx3e+8x289NJL6OnpwfHjx+PudzajNmaaeSFQ2YzcoExNTUnTchONgMhlKyIKbWLb39+Puro6GI1GdHR0pJ16GOybQGlFMSqq448Mke8/IUQSpurqamzYsAFFRUWYnvZhx4sfwmy2Yssly7D54qXguMT7oiR8tmkP/vedY6A3v/1xH0BEtFWxsNvt6OjoSNptgmEYvH4itnMBIcCzHx7F/ddugSbJcSKE4M3+xN0PXjH14cKGhXEdW4fsIwieHgbLE4RCIfh8PhBRPGPVJuBYDjzHgWg0+GByAFc1Rrak6fUOY5pPT2COuEySQJl9R1N/IgHkytnn3YMlGQ1DFQHiOLNJApfgQqUmRZszg7NpwjN7w3EcllQ5YQ8ulNoRyaNWubllJuqMgMIVqHg1UFqtFitXrowQm2iyGbUBAGazGeeddx7Kysrw8MMPY/Pmzbl8axHMC4GiZCJQDocDfX194R9PCoMKc7n29P9+9yZ6D5tQtqgYF/2fCySBcDgcaefGhy2T+MP/fRMCL2D9lmW48qYNio9jWRaCIGBsbAwmkwlVVVXo6uqKcAe98OePMDAQ/rK+9fZJ8LyIyy+L/4Og25ULFCEEz795GMFQWAxFIsLn9eKvOz/GXV+4GN3d3Skdy2GnF6fH7bGRJANMewM4NDiGrpbGhNvom3Kg3zmd8DF2vw8nbJNYWaMcke22WqDRcNBoOMh9VKJI4PV6pXUuXhDwsnM/mmxBlJaWSlHCR1Onk77XaEb8k7CHXNCxBBPBxJ0f5EReBwuYDA2jpciAojQveBjiAnD2YswpOlGJzOpwwprJgMMAykoZlJVFfmbyqHVoaEjqTUiNMKn2JkyXfLdgypREs6DySUNDAwYGBlBdXY2PP/4YN9xwA44dO5a3YaLzSqDSSfHZ7Xb09fVBq9Vi2bJlMY6bfCKKIg68ewivb9uJIq0OxUPFuPqmSinVQaOcVNN77mkf/vibt8CfEYMP3z6FVetbsbAt8mRL6zZGRkZQU1OD888/P8Yh198/KYkTZe8+E7o3dqCkJL7FNVqg+sccMI/YQUi4F5o/EIDBYEB5SSVOj3qwYklqJ5m9Q1aQOI1JCQje6RnA+YsaEp603hqwpPRa7w4PKgrUuN+NHtek4nNYlpFMAXo9XdsCsKACBlIUThkPW3AwdBJgAI1Uc6QBp+HAJjnZHndZUFWU2PUXy9k1KJ44QYgIG8+jIc1UGnMmeqJ4RA8EIoBjMog4CDkT0xGw4jGI3MaIu5P1JlTqo5erNGEhts3KZhZUNqM2aAYBALq6utDR0YHTp09j/XrlsodsmRcCRbLjlYQAACAASURBVL9gydJvdLR7X18fdDpdyhN0420r3S82TeVZzBa8/9QBVJRXSNX8bzy9C1964HMpvY9ojuwzweOOrI15868HcOtdn5JccJOTk1IKs6mpScpPR/POntgC0mCQx553e3DlFcqL/0Csi++jE4Pw+bzw+fzQG/SorKiUjteHxwdx2YYlMBoS13S4fAH0O1zQKAg1c+Z0N2ifhsU2hbYa5St7byiEY5PWhK9DOWq1wuH3ozJKtPfbh1N6vrRvDHDIM4mtbedhwYIFsE2dQMVkOUSRSC64QMAP3num5ojlwGk4SbxYlpME5qjLjEWG1PZfCV4Mi4wtlK5ABQFECiMBgUt0oYJLv1iURlAAwAlHYgRKCXmdkbyUQN6bUD4narbShPkgmzZH2YzasFqtqKqqAsdxMJlM6OnpiXuuyAXzQqAo8QSDnqBNJhMMBgM6OzuzapeTbrsg+RpTbW0tFpQ2wmvfG9FqpveABaZD/Whf25K2QB37yBJz20DvBE4fHkRNUwl6e3tRXFyMNWvWwG63x932+Pg0enrHFe/78CMzNnUvRmmp8mIGPSaiKKJ/YBA7PzgKVqNFZWUFGCYyhRLiRbxz0IyruhPXxBwcHA2f2JQCKObs7e+cHogrUIcmxiGkuPgrguCDkSFc1b5Yuo0Qgv329A0GBx0juGnRaug4DY65LADC0RbLaqDVnv1ZEhL+fvA8L1mLBVEAAwYaDQcnNw2WuFCh08Ycx3iQM2tQBEEIJNzZwCkICIpiymm+cPQUe9xcQmYCdTaCAljxFEACAJNZ0WmyESZut1tqR0QIgcFgiBCumeo4kg3ZzILKZtTG7t278eCDD0Kr1YJlWTz22GNpDRhNl3khUImEyWq1wmQywWg0pjXaPRE0lZhMoKKFia4x7dy2R/Hxu1/4AO1rW9JKVVpHpzE25Ii5PRQK4i9P78RVt56HVatWSYI8NTUVd53u2PH4J+JQSMDH+/tx6Zb482gCgQA++OADTHpZlJSWhV1ucfj45BCuvHAZWDb+iWJ//ygAnE3xRT2U3n5sZAL+EA+9NvbrfmBiLO72lTgwPhYhUCM+J8b96fcYDIoCTjitaC4pwWjAFvdxDANwHAuOi4xuxDMW+GneiglfAGzAL7W+0ZyJtrgz7YliDgzC0T0vRrYmsvM86lOKoggYorxm5xbdEImY8LNV3iKkCArgwYonIXJrEzwjfTJJEwaDQTgcjrS7OuSbbGZBAZmP2vjc5z6Hz33ucxnscWbMC4GSwzAMBEGQIqaysjKsXbs2ab+tdKACEq/tCLVt9/f3o6amRhImiulQv+LzBk4MwT3lSSuCOvZRpDuNdmNmWQYsU4K2RYsjosVE244XPVGOHx+OESh6EUA7NmzcuBHPvHYw6QnM5QnAMmpH+8JqxfsdHh9MVnv8qa6ykzIvijgxasV5ixoiHuMJBXHKFl8clBj1uGH1elF75kImk+iJcnRqDC6SWYqJZRgwGg14MQg3o0F5eTEAcibaEiAIPALeIEQx/FnKWxPR9DMfJTJTvID6FPSJIR6EU3yxiBDhET0o5dJbs41OibPi8ZwLlBKJ0oROpxNTU1MFmSacD53MgXkmUISEc/x79+5FRUUF1q1bl1NhosSLcKKFSWm0vM/tx0if8lU9IcDJvb2oXGxMWaBO7B8AAPB8WJgAJqL/3IkDA7jwk2fb78QrqHW5/RgZSdwMdHzCCavVhdra8MnJZrOht7cXJSUlWLduHQ4cOACW08A0bE9p34/2jcUVqIMDo9L/E0IgknAaTMNpzgYMsgzUkaGJGIE6NDEBMYXJr9Ecto7jspa2cHrPkY1AjcPLZt7ZJEh8ECHCLQABQYSOY8GyHIqKOACy79WZ7z0v8AgGQwgGgwDrB6vzgGFYMAzAMCymhLOdHxLBIPH3wC260xYoeYoPAFjxRPgLP0upNtqz0WAwYOnSpdLthZImVAVqjjEyMgKLxQJRFNHZ2ZnXtvTRUYhcmKqrqxWFiWI5MoBESyIn3j+Nzcs2pCRQbqcP4yP2M8JEzgxXi0xTnNjfHyFQ8SKo3t6JpK8HAMeOD2Pd2nr09PSgqKgoIn0IAOYRO3ghtZ58R/pGcd1m5TqoE6NnjQHBQBBerxcaLjwskoCAiOErcm2RFhpOgxOjVgR5AUWas1e7h62JI8J4HJ4IC9So3wVbIF0H3VmmQj70uZ0o12V2Be4Tzr62LSSgMV4t2plWQ5xGA50uvNZFODcIGx4FIooEIhEg8ATDU1OoOFNorNFowHGaM2lW+hkIQJKZT27RnbZJKDLFBzDECYYMgTDNcZ+Tb5RqoOKlCWnz10RuwlymCVWBmmOEQiF0dXWht7c373UNNIJKR5gofXHSexTLsUFc6F0H1pj4Pbjdbrz1+l643W6UlJTE/WEMmScxbfegvCosIvEiqGTpPQDgBR5vvX0QZaVLsXz5ckVrfs9g6o4zpycAy6gDbY2Ri7AhXkDfhB1+nx8+rw9arRaVlZURLkGXywWWY8OOOH8ATpeA/931LtY018NoNEJXbMDpNNN7FPP0FJyBAI5NZSZwFI/gA+/nMxIoQgC/eFag7EEejfpUT34EIlxgEO7dJp2DOSBUpEWxNvz9DQVD8Al+iKIAhgmvbem0Hmi5sEkjZmnrDEESRJAEoUvH5BAVQQHhNJ/AFpZAKcEwjNSBPFU3obz5ayZpQiWBmmuzoIB5IlAMw6C1tVXqaJ7vkRscx8FqtaK3tzdlYaIMnUqcMhJFgv4jw1h8QYvi/R6PB319ffD7/SCBopSuqk4c6MfGM4W2ShGUKBL09cWPoOgPUSQijCVGNDUtjls31jOoXC8UjyO9oxECRQjBvpM9sE7aUFRUBEOxASzDRjSNBcKfuVarjfgR+wxlqK2thdvtxr7eXkw67CAk/J41Gu5MQ1NN+AImwcU/AXDEOoGj7iwFivfBI/JoL0/frRY4k96jOEICBELApRC1iPCBQACD2IscBy+gTaeDTqeBvOKYkPDaFktGIQqidKwZJvwf+hmEbwRcogs6NvX3FR1BAQAnHIeguTLlbeSabLtIKLkJaassKlzy4YbyouNkacLoQv25OAsKmCcCBZztep3PmVC0NdDAwABKSkrSEiYAEHgBkymsz5j296P1/MjCOq/Xi76+Pni9Xska+tSe11N63ZMHBiSBUoqgJidd8Ptjj5koilJnZXmUduLkKOrqYivLfUEeo5PpOd5O9E/genSCECKtaR2e9KC8ohwsy8Lv8ysW6jIKCtMz4UBF91pUVlbiI58H5RUVZ9Znzsw8CvHw+/wQRREMy5ypO9KcqUHiIk6gh6zjsAix7shU4UURPjEIiICfF6HXpBfV+4XI1KIIYDokoKoo+U+aMPE/g4Aowi8SGLjI48cwLIq0PBgxAODMSfvMYSdEhEhEEJFItzl4B4wao9TBPFm6jxAS85kxZGBWm8fmo82RvFVWKmlCuhYmFy76O5Mf07k4CwqYRwJFycdMqOiedR0dHVIonw62YQeEFNZnRk6PI+APu6h8Pp80h6qjowM1NTVhpyIvYHQgNTPCsGUSfm8Q+uIixQhqaDjyRCyKIrxeL0KhkGKVPu3RF82o3ZfS/sixT3thHhzF5NgQdDod1qxZg91vfwyW9YcfwABSICFrFiuvg6J4gkEMT7nQVFmGE7YzkRzDhO3YGi4iYojowO0LghfOuuE0nAZ7/QMw1rJJexDGwyOcPRaOAI8GTerflej0nrSdlASKQGQ8SODex5TAw8Ap7E/0xFwaMDEsIk7jJJzmE4mIQIAHf8ZIELbAy8ZusFxkpBqzTwSseBoi15XkPeWHmezDl2qakM6I8vl86O3txcjICDQaTVrLFpmO2qAMDAxg5cqVeOihh/CP//iPWb/3RMwbgZI3jKVjl7MlWphozzqr1ZrRa4wPpLY+Iwoihk+PguUYTE9Po729Paap6tiQQ2ptlPx9AAN9E1i6ukkxgho6U0dFr/KCwSCKi4vjdtkYGLQjGORRFHWyHJ/yI3z1ndriOS+EB7i9+/Fx/J/LLkBpaSlcvgCGpyIX6ZPVQck5PWZDiaEIo57EjVmVO3DTTg8CJn1O+B0EOi481C/ixMtxSc1nHsEv/f9UQEBDGnXhQeKPSO9RHCl83gJxI6zo8XdwmhfQEKNPJPWR7mc8FYJWOOvmI4AoCuClThkBCKIYbhKr0YCIIkKhEDQcF1Ggzoon5oVAxUMpTSgIAj766CNUVVVh7969ePHFF9Hf34+uri4sXrwYq1evxve//33FQZ7ZjtoAgO9973u46qqr8vvGzzBvBIqi1WrhdCZ2ISVDLkxKzVQzjdIm+pMLlCiEe9f1HDBh7UWrsGLFCsX0ybA5vfY3llNjWLq6STGCGhwMj5QInOmXl2wxVhBEDAzYsHjxgojbrc4AiKY4qTwJoiClDo0lJYC+QlrT6pmINDYopfIS3X563AZDWYZOKuqG4zQIBAhKNTpUVBjO1h7xPII+n3T86NqWIER2FREJgVc423pqKiCk5XpTip4AwCOISbtB8CmIzLQgxNjNGXgRr/bp/7P3rjGSnfd55+89l7p0Vd/mQg45HIqXGVISSYkSNRK1iRebtRHb8FpZOwbixHFsGLaBBQw4BhZWEHgDJUEQBfAXB04+Jd7Y3oUsbbKwI2CjFROvbVmmREm2LGkoitNzn+6ZnulrXc85720/vOecOnXtqq4eklL7kYYz6K46tzr1Pud/e55x6JuHEuD5PiXf74u4s9EPmSSuG1OrPNryfR/P/ws6wd9iYWHYRfZB451AUKNgjMm7CX/qp36KH//xH+djH/sYX/ziF10K/BvfGJu9mcdqQwjB7//+7/Pkk0/OpbQzC44dQc2T4juImObdx72b47vKbJpWS5KESqVCe7PLmTNnxm9rfcqn3RTX33SzV8UISmvNlSvX+M6bN6lUKjN1CV25er+PoGKp2G1LlpfGz7YYa+i02wOpQ8GV29sYY/E8wdX7A3WfEam8ST+/trVL+cR8t31XS7S1tCLFQ7hrVip5UOoRn7XkunpaJ0gpiaMIz/eQnkFbnTugKmNpScNi6eDF0Nrh+lMRu1LzcHncQm7Qpkl/LnQY2lpa2rBUaMmfOnoqoGUOtg8RQhAEAcLzqNXTRc+6e0ErhdIt7q5/hd2GI7rBtu0H6RWltX5bvajGYZySue/7PPvssxMVJeax2qhUKvyrf/WveOWVV/j1X//1Iz6r0Tg2BDWPJ9S0xJThsJ5Qm9eHO+UcMXVJkl70Yq3l/o0dZKIIx9Qc7h0wVDv0+vU92s2I2mIFay03b97k1q1bGFtjZXVlbEQyDtcGIrhbm3tgRy+N1ho63S5xHBdSh71XdSLJ+v19zj28wrX7/XU1gZioZj4IZQxfX9+EOcZRWspFEp1YoY3FH1HQEYLcfiN7+qyUyxhruBvtYJVTfci64e7stQgWy7mS+TiJJ2ljNOPvrd1E83B59Mlp2xx7rQaxp1WBoDSMkTaahNjGJDahJGZc5AV4wsMrlQiBZ59W6OBi3pTTarXY2dnh5s2bJElCGIZDDsdHEfm8UyOot2sG6hOf+AS/8iu/cmgB7cPg2BBUhlkIylrL3bt3uXbt2lTElOEwEVTUjtjf7j1xWuNSeX1ptZRkBa7j7/Z3NnjyhcdHHvf9O7M/8V7/zh1WHinRbreJ45gPf/jDfOnL12YmJ4A7d/dpt+PcguPW5p47fGtz7rE4HbSoG+XnOG5fa7e3OLVaY313oANtTKQ0bjuJ1tzf63L69OFTFC3l0nPWQjuSLC1MuQAL8PCIGdZp7KQzSXGcoLVz6B2lYj4uvZdhV45PFyrjSGYaitpXOm8aEbYBI2pe06Ct25RmaAAZBc98G83fxPM8FhcXh0YYBtUd2u021tr8YSf7Uy6XZxoefqcSlJTy0F5Q81htfPnLX+Y//sf/yK/+6q+yt7eH53lUKhV+6Zd+6WhObASODUFlN+Y05HFYYspwGIK6f8ul94rElKfVRnyprLVc/9bNkQS1t91CJrNEcJY4Tvj/PvclfuAnPsDCwgIXLlwA4M4hiC7DtWv3ef75xwDn/4QQqUqGM+/rdLuUy+WRiuaDuHxrizOPLE8dAeB2M4S2lHTmGDPQ1tJRvfe3IzU9QQGxlSg7/Nm0lSUsl/o8o0apmLf9Xaxn8vSgcDpF+XYSa+kay4I/eM9olC2m3CYv1E2tUdYSCDHk+zQLWqZ1sInhAR+pZ66D7YAYLeQ8St3BpN+jVqvF/v4+6+vrxHFMEAR9Q7L1en0sCb1TCUprfWgvqHmsNr7whS/kr/nEJz5BvV5/oOQEx4igMgz6EhVRJKbV1dWZiWmafYzD1voO3U6HKIomEhOQ//z6t26P/PX9qdN72dBghyAIMNEK7373u/mzP/uz/BV3Nw/fUHLt+hbPP/+YSxne3UUASRITRRFhyQ0RT6t6ffPuLmubw0O+Y1N8Yy5dWyYksUobF2YvundU0re3djTbg0hbRSN/biw0E81K2X0lR6mYS5PQTXaw1kslilyK0Kavz3T1duKEhYUyxYugbIPpYqceGkpzMtRAZ6b3FdE27QMbQCwHNYhYPPMdjP+BqfebyQzVajUefrhXC5VS0mq1aLfb3Llzh1arhTGGarXaF21VKpV3LEGNiqDeCquNtwPHhqAmfkEGiGmUk+yDgjGGW7du8doXv4q1lpWVlb4220lYv3wHGUvCgZrDNPUnKR0xeZ7H0tISvu/T2O3S2OstRkmi2Nk5vNbcrVuuXrTT6LDbaJNIiQWWl5fxvNm++FIZvnF9hHLDRMWH4QW5nbhjiCJFrTZ76qkl+zvZokSjjcGf8jMrtpcPYj/uEdQoRKYDWeTU9xuLta6WZy3c70TUkyitg7muQ+PvjhTRnYR9rTgVHD6CBtBourbLwpjoxx3PsMzRIFy7+fQENQ6ZLFax4Wec5UYUOQuT5eXlnLiKxPB2YTCCmrUGdVirjSKyLr8Hjbf/ar9NyCKczc1Nrl69+rYQ0/r6Ojdv3uTMmTOcrJ3ibm26wdoMWhtuv3lnKM13f2N8QVspSbvVRgjBYr2OP/CFW7/qmhustdy715g5Eixi816Dzc0t/vgr3yTqdimFIdWFhZnJKTueK+tbLJ4YoT5v3R+t0ideMboGlWiNtK6W0u3IwxGU6ncmtkA70iwtHExQ2hoiM75Vez+enJYdX38SaQTlrmtXwPKyq7FprZAqQpomWJsLEWf6esITY+t1e0pBaT6CAhdFLXjjCWqUzNEgPPPGA1M3H2e58Rd/8Rc8/PDDxHHM5uZmbhlTqVT6UoTVavUtbYGXUg6ZFc7iBfXdhGNJUJ7n5UaBD5KYRqU2MgHZ69ev89BDD/HhD3+YMAz5o/tfHrOViTtg/fLdYYIaUTfSyg29Wiy1+rCqeYbbV++zdM51Ic6T3ssm4L/0pW8SLK6wtNSh1WrCIQkvUopWFA8RlMD5e+3u7eKJ/iFjz/fwhJe2MQvahdpTtzt7HUoaTWyGSaQTSZYWDm4LnBQ9gUvxjdPTU1Yh7XRzSNK6mah64BMEIdbbx5jeV10pmUt/GWXS+5S+upYQHl2TkBhNac61t23anOb0+BdMEUE5dfN1rHhsvoOZAcYYVldX+9J81rr6aVHdodPp9CmXZ38/qBb1eSOo7yYcG4LKvpCbm5t5m+qDjJiyRolMN2tQdWLQpHDn7mxPqhnx3X6zX1xWK812gVhyIVdjJqqaZ7h9bYvn33USYwybm7O3Fg/q89XqD3O9mXXeiUO4Lzl0E0nUkX2kr6Si2WpijHGp0Wxht9DpOgFOKSXdbhdjDdtSorVGeIJuV2K0xRtqJhiPrL18EO14ujpUZ0z9KYOhvw5VxKTZp1HYk5p62iY+aEwIAuF5eH20YF09y1q0MWA1nojZSXweCuO0vtUTg50FHdNBW40vRkfO00RQkKmbv7UENRgZCSGoVqtUq1VOnTqV/7woSbS9vc2NGzdIkoRyuTzUAj9vtDVPDeq7DceGoKy1fPWrX6Ver3Py5EmeeOKJB5rOC4Igf9LJ0ojjOgKjdkSnOZs0Uka462/e6Vu097bbaG0wRtNud1BKpUOvIdOsLHdv7fC8PTVzBNUng1RboFxy53jz1ja3VTc9Zg4dQXUSiVYGGWv8ULho0FgWqgvESYzv+73oSYDv+XkbbIbN7W086yIGpQ337+9QqfRUzINMpmjMDFJbjiaobqzHzkP10K8eMQ7j6lAHtZcPYk9qHquCsTHGTiZGhyxyItU4NwhradgyDwmnq2d1QS0+TQ3mKcIDaoEd0xlrYjitioavL6GDvznFuRwdpm1Ln6RcnrXAb287RRZgqAW+VCpNva/j4gUFx4ighBC89NJLeJ7Ht7/97SMXjB2E7/tsbm6ysbHB8vLyxGht9xCRCilBtfY77N9vsPKQm4PY3Nih1WohZcLCQo3Fxf6h14OgtWHvfgetNffuHUxQWYF5nAzS9RvbRKsuxdZrM58dnUQClt3tBqUFkStNaKWJkzELf2FfUhukNQjPxQ2eD0FYZWm56kRhlSKKI7Ryc0TDFhxibARlcUO7i9Xx0WlsFXqKWaJRdShtFYk9mNz6tqOcXJEa2SI+RUqNBATsmxAhPDyPXMQcSx5t9VtvCPrb33vbm+iyO0WKD95+dfNZUVQuP3my5wydiS23Wi12d3e5detW38BxMVU4qovwuHhBwTEiKHBRjTHmgXpCWWvZ2tpie3sbrfVUtvI7h5g1EvT8j26/eYfa6gLXr1/ntT/7ZjrrUWPmXEyK7bttdnfbIy02iuh2u3S73Yn6fK1OjC5bKvVSejSzM5TUmm6cuLmgJOThswUDwwlSR8UGj7YaPpduRyJOLhCEAUFY+CpYpweoVM+CI9KSSMcuYkjTXcUn3k40maA6ZjqCGVWH6s6Y3gNQFtpa4x9gzz4aFnAPcIn16FqPBVEg16xeVby/0vk25847HG3tm31Oc8otrAORwrQpPtdu/m2M/+FDnNM7B57n5ZFTEVm01W63WV9fz1PzxWirVqsNEdT3qhcUHDOCyvAgPKGstezs7LC2tpZ3A505c+ZAcoLDRVAiXYCtMXz9i99gX2zz+OOPc3r1EW5XDj+3ArB9pzkxeorjmE6nkw7Zrk5MTUSxxLQdQSFmq0FZLFE3YqfZQgj3uamkfwvTqly0k+HoJ4rU6PSScBGw7/csOJKoQ9CVA3WaXuSw34o4UQ/GyhR1TcwIf8AhGKCVaJYLab5Z03sZtpM2p0uzS26Bi1Yz7OuQBe8AghXuP3lNbyDaklbSiJp42l2ETPk98AOMnV6lwtevvyUENU/36mExzcDxxsYGnU6HP//zP+fy5cvcueNS/IOdfeNwWKuN1157jV/8xV8E3LX5xCc+wY/92I8d7QUYgWNJUEftCZURU7lc5vnnn6dWq3HlypWp97E7Y4MEuEUxiiKklNy7Uefv/q9/G9/3+aN7b8y8rUFsbTTZHEFQmRNoGIb9TQkT0E0UtmVYfjglk6m++DYnwVKpRFCp4Em3iMlEo6QmCAudVeMMCws/7oyIoIy1xLGmUjn4a9BScd8MUpFrrDFE0hBFMUan3ke+MzkMgoDESKTVeNMwFC7NlxGUtnrm9F6GXRlxemwj2fjPTtB/rfZUyCPh4Y6hL9oqw0qwkiuYa6VIZIJMEkz6s5y4RvlFkbWbKxAPduka1SDxdmDUwPFrr73G+973PoQQ3Lp1i+3tbX7oh36IdrvNU089xb/7d/+uj+QyzGO18fzzz/PVr36VIAi4c+cO73//+/nRH/3RBz4XdqwIqigYG0XTFI4nY29vj8uXLxOGIe9973v7QvZZSHDv/gwRVNrmGscxYejUGDpbkXMz9WFnirrRQYg6kls3esrqUkra7Ta+76dDttN/ceNEYlWajpyCnxLpSDBTUfY8n/vb/XWUqCOpL6cENS7FV4AyhniMeG/UlQcSlB2QNxpENljthRUWF4M0RZiqcStFM+mg0b3ZI5E2F4wh+P2CTFVXH6wIPhqGfakxlonmhMNQDOru7evwSEaQWqbFCU7kCuZBEFAGkiBAaU2lXEFphVaKTpK4jktII60s4jJ45grGf7BzP+9UFYks4g/DkA9+8IN84AMf4LOf/Sxf/OIXMcZw/fr1sbp881htLCz05tiiKJpJ03AeHCuCyjBvim9/f5+1tTWEELz73e8eEq8EZqpz7d+fglRsf1RRqVQJAmfuprXh7rV7nH78NM39+c0YhRCsX91Gl0Pa7XSod3Fx5i+s0galLWiLljo1vx3NJkop2u0WQgiWFhfx/ezWtHST/uvoCMqlM6aROmpP+By6XcnK6uQ0bFvJscddRCdW1CpBmiJ0MkWlcon7poFv/VQCy6QRRH9zgZdq6nnCo5H0/Ji6U1hWjIK1CmMFbR2wGAw8KE04FcFwpKQRtIzPon+YdGEPbdPGWDMkb5Utup7vUfJLMMIvSimV+0Vtrf9ndro/2NcFV61Wj3TRfKcSlNa67wExiqK8K9jzvJx8RmEeq41Tp07x5S9/mZ/7uZ/jxo0b/O7v/u5boqpxrAiqGEEdJsXXbDa5fPky1lrOnz8/UUE4CIKpXHWttezfb056Qa6XF4YBy8sreL5HN7XRznD7O3fwK7PrBo6CMZaNG/epnV2iXju8vEtUIJa4LfEXBAy49WbmhEYbavUa4cAAcaxcC3ffdjsFwpkQQWXENUkctjuuDlVAe0z33tDrIsXpgVtCW0tkZX6sQnjDKUJrscam7e8Ki+XuboN6WRB73Vxjb/qmF4tJ03QNNYKgxmI4esqwp8O5Ccpg6JgOdb+/OcBZsIw+t2K0lWFpucVJc55WOne0ublJt9vF9/28A25xcZFarXboe/edSlDjvKDeCnzkIx/h0qVLfPvb3+ZnfuZn+OEf/uEHrrxzrAgqw6xdfK1Wi7W1NaSUnD9/fqqWzmlTgOP7+QAAIABJREFUfK3dNkqN/uLLtObjUmtLeIUvTDYHlWFj7S6Lj5wctZmpkc1OdbsRKrKsLM/XGRQlvfOP2wm1hUrOJc6csIOUSZ854SA6yfDnFHcV1th8XmlsDSrFpAhKKYNShjAcvxg11XT1l048THYdHXGQQaAQAjHQXCD9EO03sQaMUblLyXAr9yilew1p40FDhZxlunS2mOCYu6tKnCvNnxZvmuYQQR1weYYg2Gehcp/qwrs4fbqnUKFStZRWq8Xdu3dptVporUcKwR4UbX03EdS0HXzzWG0U8Z73vId6vc63vvUtPvShD81xNgfjWBHUrKaF7XabtbU14jjOlX2nxbQEtb81nN5Tac1HCOd/M6iXB+5cirI+G1fucurZc0OvmwbW9tx6FxZqJIlBddt9JHAYRHE/QdUfcmaI7Y7zm1qoVqnXV5m0Og2m99zxWuJIUVkIx3fxpZGVtpZYT/4coq4aS1DKGKID3p9BG0ssNZWCiWRLHS7l2pSGajVO1RfSY7M9tYd+JXORpwmFENhCk0NTBVPWoRRMMEJsGh9lBYGYr7utZVpDJG6xU6vaZ/D1N1Heu/p+lqWkihHFoBDsnTt3iKII3/f7SGvQduOdTFBFNZhZIqh5rDauXbvGuXPnCIKAGzdu8MYbb/DEE08c5amNxLEiqAwHOd52Oh2uXLlCp9PJiWnW/Pa0rrp7haaGjJgQwn1hJqQnBiOo7Tt7bN6aTWw2H7KNIqoLVVZXnMXH3l4HayxJJ6FcP3zasC+C6iTEcUKcONfc1ZXJ7ekZRhEUuDRfZSE8MMXXSRXUJ+4jkiwujT7PccO549COegRlrD1Qf28c9mLJqpH9AdJYJXOXIjTWYI3BiiR9jWvrb0iflQPazUfVngZfsa8DTgbzjWckNiGxCWVRuN5TDuoW4Zm/BPsjB3ZujBOCVUrlCg9F241s5khrnT8MvFUNAdNAqX6zy1m8oOax2vjTP/1TPvnJTxKGIZ7n8W//7b/tk3p6UDiWBDXuhut2u1y5coVWq8XTTz/NqVOnDn1zTh1B3W/0hFytdXnzA/TyYJigANbfvDPdwVlLN4rodrtUKhVWBmaZEukWs7gZHZqgtLHINHVpjEFL5QhvocxCdYL1QgHGGiI5+hpGnQTo346UEk94Tq4oXfLGyRMV0e2O/5xacrb26k6sOJkOT3V0PJvBYgGJVXSVx0J40IxQSlrpmmVshLUeGWtbC/vSpyac/UY2i2atST9zgZt7OngWaU+FcxMUuDRf2evdV9MP6vYg7H2EvY0Vh8saBEHAyspK3+KeyXVlda1Op8Pu7m5uclgcln27oqtREdRbYbXx0z/90/z0T//0IY54PhwrghpHNlEUcfXqVfb393nqqad47rnn5n5qmoagut0ur3/9DZrNphNynUH9eBRB3bm2yeIjk55qip2A451sZWKwWOJWBByuABsnEmsNSmnXFhuECDvb7dZN1NjlvdgoYa1ld3fXLRrWpWcsFizsa+lSlQPSO0UkscIYOzxgaw8TQfUEbdv68B2Vxio6yTQE1fcubNaQkcVQAlqmQhi687DWoIzOU4RY8P0I0tRdHp+NuFa7R9Ru3jRNTtG7T621Uw9cF+Hrv0B5hyOoURBC5DNHSilOnjzJ2bNnc5PDVquVKzyMspSfRU/vsBiMoL6XdfjgmBFUEdmg6/Xr19nZ2eGpp57iPe95z5HdYJNSfHEcc+XKFfb390EKd4PN+gQ5oGtnlKGx3R5DUCM6AcfMMrmpdA0W4ubhhjO11uzsNXKx3OyayrYkmMGDaVx6D0BJQ9xNiJKus0VYWe1bXKWUtDtd4qSXqsl+6Xn9TQYWNw+1MHBsXS1RM6gcAEhtkcoQBj6tA9TLx0FbR8xt6XOK6btNe+TUj5YK8vqR6yLUhTb+CGF7WVKTXacCEWXpwhifyHpUxWzXZBAd00FaSSjCfF+HUeXyzF+A/dH5GXMEMkk0GG1yeJCeXjHaOsqBX6VU30zS97IXFBwzgsoWyiRJiOOYr371qzz11FM8++yzR/7kM2p7SZJw7do1tre3c0L8+qe/c6gvmCuG9xgqSRRRY1gSJxuyLTrnToKUOt+q7CQYbfCmtEYvWm1Y4Q95TsUdSdUenL7MMKqDz8GilWZ3u8HJh5dp6ZabMTIFIrIQWzNkjthrMrCu2w0Awd5emyCw+AUFg+aM6b0M7VgRComZIm02Cto6UupIf4aIxWLGEBS4ZonVcPD32qlGiF7klO/L9rojbfZvC1txwNlSNFIQdhY0dZMTwYl0V4er8wi7i7DXseLJwx3EBCilJrZQH6Sn12q1uHXrlqspQ5/B4TxeUX8VQX0Pw1rL2toam5ublEol3v/+91Or1R74fpVSXL9+nc3NTd71rndx4cKFdGjT9jVJzAIh+mUZZKKQUYJKJEEpzFtugZmsqpOk/4k9bsVUlycPshatNrKW8Z317aHXqVhj9LSLth1JUFq79JTv+wRemSAIsFiajSZ+4BP4LrUaJ/GAYE+/4rZDTzBOKovSmjhOFQyEYNdEGMyQMOxB6EQKPzgcuVlrcmIzlinrUGBtwqQJ3D0ZDhCURUxqPxf96T7h3sKeLXOWqJcizH6fDhlP6xnVNE1OcCI7+MPyHL7+Cso7eoI6rNTROD29TqdDs9nMvaKklJRKpZm9ouatQX234VgRlBAunfbUU0/x+uuvP3DLDWst165dy6ezP/rRj/bdgN1WRBIfrujs2swLBJW2dHf2WlDxpzYoHEQcq77GuLgZjSUoS9YF2G+1YazNGy36jhlIOhqmcAZIlEYV2uiNMWnrr5efU9SVYGFlZQWtNVEU0ew2c0JpxDEam6s0DNc5erklmViq+XyMQBpFst+BAWFYCu3c4+aQWpHCrx4uvacGUnrT1aEM5gC33Ybqvw9c196MEZ6Apgkwnt9rN8/+slkXYS9fmM9rjfCMapt2bmJ4mCaJDL7+c1TwP4M4WvfaQdfaeTAq2hrnFZV1HS4uLubvKX6Hj5MXFBwzggI4ffo01tpDq0lMA2MMt2/fzuXyP/rRj45MrTW2JihIHATR31+dxBKtFLub2zzy7Lmxg68HIY+g0gU5bo5eaKO0C7BcLrOyutK3+MfjmhsEyGhK99k0erLGoFJ5l0GyjVN1caVVrt93YvUEwhMoYzBb9/FSNW0XuWVRVM8uI1NoMMYJx5bLAWBoyiRdXL1h1YfCHFK6wb45pE4iWTCW2R/ALcb2X59p6lAHkRNApH0i7VHxDcJTMENtq/8IBXs65FSQ7jMLmITAxy++8EDPqH21z4nwxKGbJNIzwzN/ifEvHvL9o6GUeqBiseO8orTWebR1//59rl27hlIqd+Ztt9skSZJLO30ve0HBVAYA31vIUhAPwhPKWsv6+jqvvvoqcRyzsrLCuXPnxtZ9ptLgO2ifxtButWk22wjPw9dQKpU5bHEgTlTfW+NWf6oqSRJ2d3fRWrOyssLCwsLQ4hIl4xc/2ZluYWx2I5SSGGMIU6fbQRhj2d7ao9vt5k+c2WBxW0pHGp5rOw/DgDAMCYIw7dazGKNRSqKURGtFo9FNG1uEU4/I0qiFPwLwhHDCpWFIEIaurV0IZxCoFYmWRB2dpyOnbTTPmiOK6EgfM2kDVo9tjhjEvgoBiSfmu+931BRRuQDhOX09P/Cd51YQ4Kf1TGMNW9F99vb2UErlppda6wPFfwfh6y8f/KIZkaWR32r4vs/i4iKPPvoozzzzDB/84Ae5ePEizz77LMvLyyiluHXrFr/xG7/Byy+/zPr6Op/61Kf4whe+4JquJuBzn/sczz77LOfPn+eTn/zk0O/jOObv/J2/w/nz5/nIRz7C9evXAXjllVd46aWXeOGFF3jppZf4wz/8wwdx6iNx7Agqw1F6QllruXv3Lq+++iqtVouLFy9y4cKFA6O0vXkIKn2K393bc4uACPA8j6hxeC8ol3boP14dK7R0Yp17e3vEcczy8jK1Wm182/7YtKVARXqi147WmkZjn2Y3wvcDN6w8uB9rc6VwYf2RzR+tEf5P4DaVkVYQpKQVhnieTxxrojhir7HPbreNUmooUioewxBp+T6+H2A9sDrIRwGy9KSUEq00Ro++BsoO3yvGQleO+5pa9JQyRuDmoSbWnabErgonk+Y4pHNYnu+uvwo1taUavucRhAFGazrtNnv7e+zv79NutYiiCCXlxHvGM2sIc+/Q5zMK7yQlCSEElUqFU6dOEYYhL7zwAv/wH/5DXnnllTyy+sxnPsPHPvYxrl69OnIbmdXGf/kv/4XXX3+dT33qU7z++ut9rylabfzKr/wKH//4xwE4deoUn/3sZ/nmN7/Jb//2b7+l81DHLsVXjKDi+JAeNyky99wrV66wtLQ0ZOt+0CzU/mFSfKndRiZEe2J1FaOdOjaAiiUqTgjKs+fks/ZyQc9Y0FrLzt1tSktl6ot1Av/gW2ZSBGW0QcWacMDiwmnztZFSUl2oYUU0IgZ055k93YaeN2RgmGEcQY2CwD3tK2Wp1+o0VEzQjnspKmux2chAIZ2X/dsdmiMrZRVYkAnU0hRR1qbt+VmnocmVCtwmBVYYLAYGajUA7cSnVhquF1krc829g2FoqAOisSmh8GjogJWpRWhHw2JpmAYBPuVSqe8BwOYPIZoojtHtNhYXYWQ+W34QOIkkAb7+E5T3E3OeWQ/vJIIah3q9jhCCn//5nz+wiWceq40PfOAD+Wuee+65PNrNVNQfJI4dQWUIw5BW67BeOz2Twkqlwvve976+2YQMBxLUvdl8oIp2GysrK+ztOaPDZNCOotGhPt6pbiziuHisFqVS8VPJ1Hpf1lriMeoP+X7aSU5QmdxSFEcsLCxQq9dpRfFQlieLQgZrUX3K5tn2lUaa2ZW3M+HYhoxyYdZ80fTTYn6RtIquup6ra0mrQYDWrq4lhE2tM0hniwTC84fqWrFJ8n9nvRvZktNOMmWIYgSnMVMZGVpcM4RFW0FTlVn054+itlRpboIC2Nf7aTdf/wIrhMhTqDmsU79XSpFIie5GqX2HwPP/kB31ErX66am64Q7CdwNBZZimw3Req40M/+k//Sc++MEPviXkBMeQoOa13Njf3+fy5cv4vj9kUjiIo4qgMlXz3MQv/eJkKSQZ9+/DEdTsnT1xIrHY/Ole+B6B56EmSAENIkoUE7Ixbj+dhPrJKlFKuJVyhdXUoddaS7uQIsybJIQgHJHuU9IMOezOKk9URLub0Biz8Lt+ijSCKvzcZsdpdZ+Ab9xRBCWL53tuHqswY1R8t8kbFgS5sIftvbAjBVGsCLxek4EVB6lUWHrk1MOurBwJQe3oEtZ25p6R7douCcl0JVNBmkb1+xZIk5pDhvI1btx4Pu+Gq9Vqfd1ws3blvZM0+GC49b3oBfVW4NKlS3z84x/n85///Fu2z2NHUBlmbZJoNpusra1hjOGZZ55haWlpqn1MJKgDalB9quYj6iyZmkQygqBmhrW0W12kVPi+hxAefvpliFvx1KKZ4+tPPXSaEd6uya3jvfQ8TFrP6SQyN6oD+tQoRu6z6LALNGdI7w1irxVhF2bLg7kUoYcxKp9vs9ailEe5arEWZOrIO2hOaAUoU7hmBWLq7UCQEFIJTBq9RVhrCq8ThYjLFv4MY1dWOHcEa5q0Hg0TsOzPH0W1vBYP8dDBLxwDz/PwSiXOlF/nxJkfBxGitfMZazabbG5ucuXKlT7rjYy4yuXyO46IxmEeL6h5rTZu377Nj/3Yj/E7v/M7PP3000dwNtPh2BLUtE0SnU6HtbU1oijiwoULM7V0TiIomSha+6OJZFrx2ExNQibDBDW9CrMlimK6nQ5JognDAIHIa1oARmpUrAgrB3dvdSfUn9zC7QjvkfopgtDPiQncAqu0ptnpYq1TdZiKFAsOu9baif5PB6HZjhALYmb1HWMtypiUONI5NeXj+xlR+KlIa88yQ2mFFhIjioOqmYBrARZacchSqYMlAqELZDQbYhPQNQH1Oc0HwaX5joKg2mK00+6sEHYfX7+KDv57fN81zxQfJIvWG41Gg/X1deI4JgiCvkjrrRjePwzmmYGax2pjb2+PH/mRH+GTn/wkf+2v/bUjPaeDcOwIalpPqCiKuHLlCs1mk/Pnz3Py5MmZn7QmueqOmoEy6VOf1noq8dhMTWIwglKJRMWSsDL5/UmaOgzDgKWlZe5v3R+7KMeteCqCGhlBWafS4EgTfD9AxRov8Ppe0+l22e90Xbv8DDWEYh2qdUDH1yRYC7HUlLUPvhi5/I+6PhaIdZIrhGf3iVakIrS99xbrWsY3KGMRtjfTlkkKQX82s5X4KJuk7SuD12Zy1DSIPVWhHrTHn9CU2JIlnix1pvCamgyDoWEarPjzD5z6+r+i/Y+CGL5Xx1lvSClpNpt98kTtdpvXX3997MDs24F5Iqh5rDZ+8zd/k7W1Nf7ZP/tnufL55z//+b5r+KBw7AgqQ5aKGUSSJFy9epXd3V2eeuop3vve9x46BRAEwVjB2GJ6zxpDu9NBJpJabcEN2U6xz0xNYjCCAhdFjSMopSStVr8+XxRNToslzQhOja+3Qc+wrwdbkCZybfBSuoU8aseUa6kiRGb9Ua3ilyp4yWwpyiTqqZE35ujMlKk2n0ksfnVUD+EwBRjj5p20MK5RYnCbMZRHCHFYQJr0WEX+n94/C6k+iyXRhlhaygGFdF62t/6h7eGj7f/dnqxyttzKd1HY/ZDiwyQoPHb10Vhw7Kgdlr3ludNtwjbw9RfQwf849XvCMOyTJzLG8LWvfY1z587RarX6BmYrlUpOWIuLi1O58x4VBglqFi8oOLzVxq/92q/xa7/2a4c44vlx7Ahq3M0kpeT69evcu3ePJ5988kgEZCel+Hbv7WONyVs2FxYWqNdqM0m+CCHSWZ1hoo0abRYf6r95XV6+hTV2qGgcD0RhbsnrTfgPDuyOQlToJjRao43G93zCMCNKi+85lfe9+w1MKDHWOr+dxUWCIGCztTfl2fdgrROirdRK8xFU2vlnE2AEqRQ/mayrUHge1hdgh5NuApCJoFzt/3wsIG3CxBHevKHC5E3/HVmmEnbTVCH0GiCKNajim0dJO0FTlUkIKHturCAXHba4Y5qBtO7J8pEQVNd26dgONTF/ei1Qn0f7F0EsHur9mczR4uIii4uLPPLII4BLEUZRlMsTbW5u0u128+HaB+0XddxkjuAYEtQglFLcvHmTO3fu8Pjjjw/p5c2DcQRljOHK61fY3dujWqm4utYhFc0H03sZio0SxqQzRkpRH5M6HCSood+3ogPrWt1Ypgu3KrSD9z/de76PsAIda/wgYKFUQqdELZVyKT5S/bai+OgBiLoSUxboGe0xMmhr0WlEbeLxxGHTdCW4z9cKiLUcSQUWSxK7GS8hUnt2BMrqXLF8+F2k7DMcr7VkiRNEBfLotQX2SMv2PVgMRlvuNT7bySqPVLogDI7oNEIYBGZ60sJ5REkrCA9rBV9425baolY6ivpPRKD+Myr8qUO9e1yLuRCCarVKtVrl9OnT+c8zd95msznSLyojr8MqmBf381cEdUxgjEFKyZe+9CUee+wxXn755SN/6vF9v4+grLVsbGxw/fp19u41XGv1HGQohBhqMc8QNTqYdOFPUpv1+mKdcY/C8ajmhkKngNUW2Uko1Ua3gEkp2d1rptJEYYFweyuQtaC1xFoIAp+Fco2gVOi+i2KCVF/PGCdFNKjh5nlerp/Xd75tSVQ95CIJJIW5KSudhbooFFcsqRFiOiScPcRk80uDyEjBGrDaw0u/adomadfebHUjgI4M0QaG3U9EH2kVY7lsrMqm0VYWDW0nJR6pxLh6lgXC3pEIR1hgEELnpOW2mpJ4wdbkbhxwthT3mhwOmXhomRaRiah4420upoWvv4L2P4z1Lsz83llnoEa58xb9onZ2dnIF80z5oahgPu1DmFKqj+S+172g4JgS1O3bt7lx4wZCCF588cWJs0zzIIugrLXcu3ePK1eucPLkSS5evMgbn70xFzkBrv14DEHJKGZ78z71lUVWVw6K0CxxNJCmGfH6qBkNEVTWzmutxeARBH2DPPk/tdYYm9WiXKda3E4ISr1cWitOAEdE/euDTYUaDEbrXtdfTlqCqCOJpxSiHTp7C6pIULgoyq+65Joxbr+e7+OHYb7+amumithkAl4A2kqkVem1LV7frDHiANKy0JYllsrTtNGnFClsLsaai17gTAzbsabs9xo73B8PZ0PiU4ij+iMtDEKY/Lg31QKPBjGa4QeKWX2j7ql7PF56fLoXH4BQ/p8kpV8FMTxEPwlHMaQ7ScE8a8i4f/8+nU4nf20xTThq/6PMCv8qgvoehLWWD3/4w0NaVEeNIAiIoojXXnuNWq3WJ4U0lw5fCoEYapAoKi6URUi1evCXU0o9VMfKEnPFdSVuxnDG/dtaS7vt9OpqtRrGCsxuzODi6qSJ0lpUEPZtMW4n1FYHCWrMmQoQwgev4OJUUMtOpCJuA6FXcMz1JvNyisToIUqwMZhyr84UFIiJ9CwjM13tJYnBq8ZoO661W8BQVDg63deMpyUoW3AI6SfEbFf7tsajQZReR5PqDqZirWLAeTgnraAYE4PQRBgaCFaDDpA43hqh+j6WtAqn3TRNOqbDgjcbqYyCsHuE8jPI8GdmSqE/KBWJooJ5UZ0h825rtVrcuXOHVquFMabPUn5xcREp5V+l+L7XIYTg8ccfzy03jlrRPEOj0eDNN98kjmM++MEP9s1WyETR2ht2v50VQmQ+UGKk4kLU6LB05sSB24nGRR7W9n2x41aExdLtFBo76nUslt1GlyI59UkT9aX8eojbvWufaE2iZpvNyRc6z0Mqha8FourlKUJrFRnNCm/Ax6lwiokZPn8Vafy6GDsknORpuvFwdSFDHBsCo2csM2bFnv43daSHc8HVLm03IoKzKakNEtMgtpIyj5Qzd9zJzsPuVhAMR1suRbihFlgKHwWrQUQIESOI8IiAOCdaY1PfKF2kOScbJdIU4abc5InSE0fSHeeZr+Prx2fq6nurZY4yhZhiy3hmAtpqtdjf32d9fZ39/X2azSZRFHHp0iW2t7enntn63Oc+xy//8i+jtebnf/7n+Uf/6B/1/T6OY/7BP/gHfO1rX+PkyZN8+tOf5oknnmB7e5uf+Imf4Ctf+Qo/+7M/y2/+5m8e6bkfhGNHUEAuqfMgPKHa7TaXL19GKcWFCxe4dOnS0E20tzmDBt8k2Ezg1RHJ4GI6raJEPKVpYtSM2N3aoVKr5h5Q2dNxN5aAwFqDUs6RNgjCiYtM0knyWk/rgDb3ybAuRRd7eIt+mvYr/DZNDzp1ikyBwS2yaqCXLtPCExb8VIi0z7rdgrI6b0kfjnl6tvO9RgOBlh7BCMHXWaGtR0dWqJfTbQkLuMjHWO1IWYCYwqigq33a2qcejDCX7CPynvNwrz5o8rk2ITy2jaQdBtSCEKhjqfWuq7WOtIgRIiUtP4L8M9GptqET2m3QYFNushqsOFsT3z9UE1GGQP1nrDiB8V+c6vXvBB2+TKqpVqvx8MMPA/CNb3yDJ554glu3brGxscGbb77J3//7f59qtcoLL7zAP/7H/zgXgy0iUzJ/5ZVXeOyxx7h48SIf+9jH+oRii0rmv/d7v8fHP/5xPv3pT1OpVPjn//yf861vfYtvfetbb9n5ZziWBJXhKD2hioO9Fy5c6DMhG8RR+EBprWnst7DGuPTTqJpRoz2VokQ0WH+CvpXXFKKzSlBlobrgnnoLc2SdboJSEotrgBBTqAJYC0lXUq6VaEbztIenJBPbkeebLaJAXttyChaGROnCyFFGXO5NJoGg2u/Eq9AkVvWR0DRtDir2j4SgABpJQD1P8wmwHloZhAgJ/Er62TlVC5s2O1hG+yzdT8rUg2nnzkbVB3vkf73d4Vx6SEEQEPgBfuAsSIRYwNqFvu5ARIwxHZRpUQ0tEAGOpHbZpWZqiK7s65rMtnmQ/NUgQvm7SHyM/8KBr30nENQoZDWo5557jn/6T/8pf/qnf8qf/MmfYK3l0qVLfTbzRcyjZF6r1fjrf/2vs7a29sDPbxSOJUFNqyYxDaSUXL16le3tbZ5++umRg72Di+buLCrmA7DG0G63kVIh8HMV7VEw2pC0I8r10Zbt6RZHtphn0ZGUEtK0oRCCuNVvAW+tpdFs0Y3jfBh3FkSthKAa0B5bfzoYMpNlMhaUhfDghUsIR2xAXmwTwsv6sF07eUdjAxcNCs/DYEisShsO+jv8RkZOBejYw9bnCgRyNCM/3VYq7GusM03su/Y+QvgICuoHIq0xpYRlMWwlZR6vdvDnOK6s1tcUUK7VqHgeWju/rjiOUaoN1o0YhGGQWmYEKO3TaftUKg+jRSm9kAohIiwRu0GVs9WH8MVOHmkppUhSkWFr7bD9xtj7TxPK/x3J38P4H5p4Pkdp936UGCTOrCtQCMGHPjT+nI5KyfztwDvvU3gLMY8nlFKKGzducPfuXd71rnfxzDPPjCQK3/eHbvjdw6T40px0sfZz/87BQ61RozORoKQ0fbp7blcWbVwqLAhCJ+aa/i9pxJBqTHa7XWcoh1+YeZoNcSvBLvkzNFv3Y7CTzsZ2lMrNEJQxxNoRc7GdPGMQAQgJfuCDtSRWIQdqVfnnLcRY0spmiqz2sNpDBPNHUcoKGhEsBArf8/DDab/GXh5J9o7U0NI1TpcTjI0wtouZ0qF3ENbCrTjhmYUqQeDci4u/1Fo7x+EkoRm3wFqCMECnIx+BHyC8EEuIpc6egYD/gSXvRYRdJ/DuEpTWKZkNPO6CNWPsNzyCwHfpwSDAz5XkDaH8P9BmHRX8CIjR101r/ZaqhE+L4oPuYeW8vttwrAnqMBGUMYbbt29z69Ytzp49e+Bgb9ZqXiSonTu70+/Q9gwKKwNDvUms8if+cejut1l+dHy6sVh/yqw2jLFpQ4F7Mi5uH6pEAAAgAElEQVRGBHErIoqiXOp/dXWVja0Ghx1+iVox3c7hH9+TQXKNDbbee8ocGqBNW967Jh2unRDSWA1aGqSvsNj8c7bZhrJ/F2zdB0nL/T8lPVmhXEo75tIUnMFMmSTsnYC1sB8FLK8O9lkeBh4bkcejleWcqC0qJStHWNpGWDvs0TUK96XkEV1icTBFJgR+4COlRErJ4mKdUlhK08e9aCtrrMlSeffN/02ldo5q+CzKXEBam3bAKzw28fwN/GCDCuv4dgNsjLEGpRRaKTpxjDaulT7wM9J6hUCvoUt/F+s9OnQO79QU3yhMk+acV8n87cSxJKjDeEJZa7lz5w7Xrl3j4Ycf5iMf+chUaYBRahJTEVQ6M9Fut3ODwsG5KRmrAxeNqDG5W7DbdQSltUYbg+97hKHvZn+MRRQGVq2xRO2IuBOxvJouaNZ5KPUKHLMtmFoZOq0Ywtlnwqy1ffNL4CIo0idN10XXI1htnC6gAuwBc2HZ+3RkYKBRqkhs2b8nkZYjK5CRoFoDT/j4uKf67B3GOkddM460bO+4hBC0VQlt1Iih3dnR1oYdqTlZCtJzCvBFHV8U5wMNxkZo2+2RF9HIJ/mr3Yj31foHUJ3+Yyu1WFnNf+f5PiXfp1Qa9ndSWtHptnh9/9cRe3+bxerZfFaoVqshxOMYew6Vp2ot2C0CsYEf3KFk16mwgbANd6+kpBVFEVp9E2sv0ZQfIhF/g1r9TC4I+04kqMEywSxeUPMomb/dOJYElWGaJonM1n1tbY2VlRUuXrw4k2TJIEEZY9i9OznFN86gsAijjevgOwBxsztkdNaDpdXqkkiJ73m51YbFplbaBm0MVpu8TuN5HiQ9ko8ShTbZk3xxyHTK6XhjsBGIQxBUPEqIV/fqUNm8jzU2n2cSno82LiLC9ghiLNHHAmoHxw7TkFaSuIFoP+i1amfeUL5I54wKw7QGjU3TWCZ16s0eFoyFRhywWj2aLtTb3SQnqNHw8MQCXt/Qq8HYxEVZRDlxtbRmU0rOlEpYa2i3O2itWKwv4k/xUJf5O4X0vmfBqS+wan+ObksMzQotLS1Rq9WcvmR4BmMfRpn3u8/eWjzRxLMb+OU7hKV1SnYdjy2wlrp+HaXeYKf1Xt64+SzduIaUMleaWVxcfEd4Rg2S5lulZA7wxBNP0Gg0SJKE3//93+fzn/98X4PFg8SxJKhpmyR2d3e5fPky1WqVF198kWp1UrPBaAwSVGOriRoz76NTTS8hBIuLk7/MQ8oPY2CtJW52qS73hwFSSlrNFt0oyRsgsjoTkJOR1RoQeIHvKMhaWttNbKpG04o1RutUO2/U3M24xd29Tirtmrdm1PU01o61dbeRq0O5p2add5VJa4iyulOefusdS4+0CoSVCMcGh4hUhkgLgdEh5bLrILS5h1Sq9OANzBml3Xm+F1IK3AUvpgYbEZyoHhxFT4NdqWlIzVI4S+Tg4YkKnqgUFhKLtQmbSnFCnaXduEp9pURYl0z70DIKyu6z6/0Wjz3yizz2mFscMzmhZrPJ7u4uN2/eJEkSKpVKHmktLi7ihytYVpD2PSS5RFOEsHcIvA2C0gZnKus8eur/wYgnuHzjBOHCQzSbTTY2NojjmDAM+9QejsJWfqbzn1OH77BK5gDXr1+f7WCPEMeSoDKME3NtNpu8+eabeJ53oK37rPvYGdHYUPSBck+BB1f54+70tbNov50TVGaGCBCWKgR+3E9M+TGZPOXne8WajgAJK6srrh14Y9s97euiWZ9HJkE0nrTcPI22FmI989KVNTiMgo0Mquran30/QHiCWKs+vb1RGKwZuSO1eNLHVjIx2fnoQEaChZp1M1bFY8ZFei5iMthU2SMjrSzF4+OR+cJrXWJRnKIcaqRJkDZ2f0wyW10rxdVOzPuXqnNGCwJjfFqtLm/4Xf7WU/8b5VIFZRpE+jaxvk2kbxHrdRKzPdOWldnnZus3OFP9eyyVPtAnJzSoON5sNmk2m9y9e5dut0sYhn2kVaksIMR5lHlqoK51D2u/yJnVrxOGiwhvCeM9TixP00odere3t3Nb+aLSwziJoqPAPF5Q3804lgSVfQEHv4iZe24cx1y4cOFIZEQGCWq7UH+y6RNgMqMPFEAyZQQFrg6VKZor7aSJwjBke7s1TEypAoSzyRh9eyTtBKOMU/KWZuBL2Rvm1CNIK1N0AEGSpeiUxSqDGKXjN4K6lDG9usMArLXYrkac8AiCEG0MsZK5UvmsEAi8RBAuuHM09NQQDMYNmM5ABkoKtLZDs0QCwBNY7c4hCFzbuLVOZUEXJIPyBhZPsNGWPHuiSskrk4Wh1oKyCdImSNMjrb6B4xHYk7qvFjUrMvUDKROnMBLEvN59lQ+U/gaBt0Tdey/1sJca0rZLrNdzwor0bRJ9d+L1NDZho/MfaKlv8nDlb+N7/ZmBouJ40VAv08BrNpvcuHGDdrs9pIFXKpVYu9Yhit7Do8F7McIDYxFmh0BcZ2WxzOpyGeE9AtTRxs+tNwbTjkUynFfFHOb3gvpuxbEkqEHEccyVK1doNBqHds8dh8E61/bGLlibt2hXq1VWV2fzgQIONBgsorm1T2Vvj4VajXqpnjcPdAtRmEnrNE4qKTwgG2OJmxHxyOGZcWKvTiHcaNcWbq2bX7Kkpx5pqHv5NgrvLNSKXGqvq4bJ2WYnlRaeTGKIQ31oYirCdC122UUwHlndqBcB2ZS0tDUpgU3uzEu6UB0IynX+YOBsSrIrIIQA3y9oOdB3LTcaHVZtRCV0LdXZn9BLazh+Pb8+Tqy2n7Q0/VHl1XbMauinDxHTImvo6VCtVqjVVsg+wzfbf04tWOKZ2ktD7/JFlYXgPAvB+fxnxkpivZETVqxvE5t1zIA9SSP5Gm15iZOVH2Sl9H14B8wWlEolTp482deZprXO7d+vXr3K3t4epVKJ5eVl7t27l9e1/OAhrD2NMcbp5RrAdrFWU6+FLNZXeeTMSTwvxFhBt9vtSztm80r9EdxsRofH0WoDjjlBSSmJooivfe1rPPXUU7znPe858mJoJhgLbmG5/p0b7O7uDrWMzwRjSaZQ7jZao7XB15rFhTpBOUxr9q4bLIqc9YVOIzw3nT/dIUSNiGZ52hx8WlPxe6WcWCn3dJq2TZu2xJZ7Eju5UGlfrcgSKd07B3oLdo70d7pj0UtH81laAzYBMaZpSiDwhehL21lcnclY40ZiC6QVR4JKzckEFf2lwiA88Po7kQtBb7LWpxuUObHgo5QmSWI6nTYmHWINs1mgICDwQgJCqr6LOqwFg+qlB01CZGJudyWPL0z31G+MzuumK8vLIxX6v77/R4SizJMLzx+4PU+EVIN3UQ3elf/MWkNi7hVShO5vbbvc6/4BO9F/Y6X8fayUPkrgTZ/28n2fUqnE1tYWlUqF7/u+7yMIgqnqWmGYXUObCy1r7fQZyyWfyqkTPHT6FJ7nZvziOM49ozKjwyAI+iK4Wq02tq71VwR1zHDt2jU2NjYIgoCXXnrpgQ3mZRHUvXv3WFtbY2t9Z2TL+CxIYtW/KGctdilyoVYhCEvOI7yz32axnH15Bd1uTJLIfBq/b1h1CnT3u3SWDpe6sNYis/Re2oItEhDpFzBTKB+01YiNRhu3sDsHW+uk6EQvNZiRlhdbZq9sjYfpWrzy9NsTOC0/X3i5lkNOWsZSNgJFTGwUfjBrxNKP9XbC2cU6lUoAuPs4m/fKhlhVp+vsTjy/L9LyvICKH1Ch150XG3hh8SU80WFXbrIr79FSuwMxoU3T0wm1Wj0d1B4NC7y29/8Smy7vrl+c+fyE8Cj7Zyj7Z4APpednUXa3QFo3udH6EmX/ERbDD1APX8AX45uarLW5UekzzzzTJxM0a10rI5gsKspU3N1wsov2A99ndWWFE6urjoSEcI1KKWndunUrrw0P1rVGzVIeBy8oOMYEVS6Xefnll/nGN76BHtWufETodrvcuXMHKSXPP/cC/zV6dW4fqKjbS+8JyPkpm/UQoqdo7mCJ9lssPrSCtZZut83WVgvhefgzElOG9l4Hu1jUQ5t+O4nOoqACtAVpEaVUusnz8rSWsYauVE4xwvYiJpG2aGft5MX2Bl8LSiLEeDZ3y3VRzOGgI4NvxVwRtgDXvm8M8Z7l3EMnKVfKJEYRm4TYSPe3ljPVtbSxrLcS3rXUe8gSwmkiBoFPkbSMcUOsKpsHMtopL4RO5y4InBTRqzs3+JlzP0iQNshIk7Cn7rMrN1nfu8bNnSt4C376FD/dNfnLxp+wr7Z4aen7Cbz56jJCCEJxgtA7wWL4vvznyjSJ9Tr7yZcQBATeIoFYoeI/hkiVIxqNBm+88QYnTpzg4sWLBzY2zFPXcvNaws0VOtXivvVmaXGR5aWlfJQk81fLLOWvXLni5KxSXTwhBEmS/FUN6nsZQgjOnj2bFqNHd/LNi1arxeXLl/NZihdeeIGNK3cPEn6YCt1OQZ4pfWLLbuJ+Ec3eTFJ3r00Udel2I6qVChDgeYfXIUwShRdrqIT0zz/19lxssM6QCbSORKSh1E/eyhgilc4tpbNW/Z2Bqe9R3/hVGpVFlrDuF9Xo0lpRWi9K/57mI7EarAQxx7pqrEWnDxCxDQhLJSfA64dU/N5RWuvsPDLCioxMSWt8k8N6K+HReolwwgOHK2d5+H6Jcrl3IjobjFWKdifGaMO+2OO39xN+6OTFfM5o0ZzkzpVtTtjzfPTZHyEsB+zLLXblPfbUPfe3vD/Gzt7heud1tpM7vLT8AzxcPhpjwiICb5HAezc13p3/zNiY2NzFaMHNG+s0Gh3e/Z7nWFo8PWFLB2NSXavZbE6e1woCip5ZOm36yYioXq9z5swZN+phLW+88QalUonr16/zT/7JP+H27du8+uqr/PEf/zEvvvgi3//9399nQ1/EYa02AP7lv/yX/Pt//+/xfZ9//a//NT/4gz841zWbFceSoIA8FD9qT6goilhbW6PdbnPhwgUWFha4dOkSAPdubh3NPtpZBOWK5cpolybqi8x6FGGMobm9zwmpWFlZxhiI4sML1mrt8u6iIxGV0Rp8IiOOfBTW/bc7ylo+PzENS2E+H5SY1Iah0AAx7M4qilzVG7y1oNsKXbZ9BoZeOhwbFgabTCHCyqKtkYKvHYNXmr2N2AJaKyfqGgQunWdht5VwennY3lwIKPshZT+ENPVmLUiriHVKWCl5mbRLUhvLjUbM+ZXZ7dJ9z8Mvlfq6zYyx3FDb/HlrjSd2TrC7u4uUktXVVR566KF8NuhE6QwnSmd677OGptphV95jV26yJ++xq+4hTS/qb6pd/mj7/+KxygWeX/zvWA4frCCpJ8q0diusra1x9uxZnj3/GKDRtouzJcn0CUUeZR0Wvu8PeTtNO69VKpX6SAvIoy1rLSdPnuTJJ5/klVde4Wd/9mf55V/+ZdrtNl//+tdZX18fSVDzWG28/vrr/N7v/R6XLl1iY2ODH/iBH+DNN998a72y3rI9vUNxVJ5QUkquXbvG1tYWTz/9NM899xxCiDydArB5/f7c+9FKkyQqb4BAuPx2L22YEZNw5KVV2lXn4xsnFtppd+c6BplGQKYrJ8yv9izGSY8oURnhFEmroOPQscRx7MpL6QuyLj5E//bG7LIXtQlApsoXgiEDw1GkxUjS6kVbxW6+aWAZtIv3+rh1qxFxcqk8Vf1JCCiJgJIX5DPNrp1cE6XpwUY3QdYDwmD++9nzBKVSyFflFZrdBh85+17OnTuXL7S3b9+m1WoBUKvVWFpayusxy+EplsNTPMF70+O0tPQee/J+j7TkJrejy9yOLnO28jRPL7yfM+UnjrxJKY5j3nzzTYwxvPjii7mjNQT4A8ufIwc3mO4wehxlVhxmXisjrnK5zO3bt2m325TLZbTWJEnCt7/9bZ544gkef/xxfviHf3jsvuex2viDP/gDfvInf5JyucyTTz7J+fPnee211/joRz861/WYBceeoOb1hDLGcPPmTdbX13n88cd5+eWX+yKZTM0cjiCCspbGXguZSDzfIyyFaOUaJoQTaQMGUn4F8urutagu12i1D++9ZC2oVKDVduWQRtg4SK2JU2LL59Dy34p0cYBAgQqFiwwyYjpsyc4CscVb8AcMDNOnVGuxepTrbpG0IDPsMxZWqSAqgq6WdLUa0gLMkKfzRtjFZ1DKsNuKObk4e9QD7uMOhU/oVVnENQRU9DL/y4WL3I/3uBPvcDfa5k68Q1PN5uBsjKXdbmOM5s264MnViKfCkJWVlb7ahzEmT2ndvXuXy5cv96W0ssV2sbTKYrDKueozQLpAm3behHGl8w2+3foyJ0pneKxygZPhI0zjKTYO1lo2Nja4efMm58+fH5v+KqJnbd+/nVH3+LT3/aR9HVTXunLlCru7u7nrwr/5N/+Gs2fP8lu/9Vu88MILY/2fipjHamN9fZ2XX365773r6+uHPufD4NgSVFHu6DCWG0Xx2DNnzvDyyy+PDH2LN/E8EVSmz9dpJm6ANhPb9Dy0NmitCqku15nnBT5FGujut9HazEVQiSw8nRsLkYLq5BkUqTWRnPxUL9Jmh1IMfkkgvAA8r5d2M7MNxGawXQML/Z9L3soO+Xrk6tdmAmm5v2Xb8NhqL32jrHFkpSSRVnRUQiQTLPTSeROwtR9xon50Wm/r3X3+5O5NPnbuvVyoP5b/vK0iNuMd7sQ73Im2uRvvsCebQ++3FqLYqefXFhYoleoIAf9t62vciXf4nx5+mZLX+7w9z2NpaYmlpaVcIdtaR27NZpOtrS2uXbuGlJJqtdpHWpVyjUcrT/No5el8e7Hpsivvca17ibJXJRRlqn6dur8y9TVqt9u88cYb1Ot1Ll68OJe306R99jXrHBFKpRKrq6vs7e0hpeTixYssLCywtrbGpz71KT7zmc8QhiGXL1/mF37hF/gX/+JfjHTR/V7BsSWoDEEQ5O2d0+Cw4rGtvTbtxuyptUF9vub2TkpOmRSOR+AJNwCbC6J66eCtI60sKujuNmk2uyMVqKeBMRap+gv1piPxxxCUtZZY6V5L+QGw1kBHEa4uFDoQC7NFg7WiKUjLRqOfgAfhGgK9kaRVtIrf31csLnpUqqX/v703D4+qsPe4P2e2TCaTDQiEJBAIWQg7SRBcqliv2tqW9rpi9WKrtmoXUNsqXlu1rVpRX62V1qVatbZqfWvfarmorVq1bhDABVmyEALZ98y+neX9Y3IOZ7KQyR7gfJ4nDySZZM5MZs7v/LbvNzr1ZjaTbEnAabERCAQIKQoJySlIZoGgJPYErsiAMkvhiEyXN8yU5NFbc/hnUyV5yVNYlHakN5RksZNnySIv6Yi9REAK0RLq0gJWnaeFw64mLBYLaalpmHoNXOz1HKQh2MZXpq+K+T290UsA6Uta6gJrd3c3dXV1hEIhEhIStKCVkpKC3W4nMyE35vdF5DBeqVtTgRcEExbBirlXv0iWZQ4ePEhHRwdFRUVjKgUUd5l3iJmWy+Vi//79zJgxg7KyMkwmE5999hkbNmzg3HPP5ZlnniEhIQFRFKmsrBw0MxyJ1UY8PzvWCEM8WY2GLuWkQN0R6erqoqmpKS51XpfLRWVlJQkJCeTn5+NwOAb9GYAPPviAzKRsnv3FX+M+PlmS8fm8SJLUs2diQRJlavY30XsAQhIlTGahx5it15tBLWUpUckcy+xMJMGM6hJr6jN0oP/Z2D94MBTpUS4/guCwYsmJHXeVe5ZPw5IcVzBUesZv1VKkkJOokz0a/GcHC1qmqRZMjtFp7CoKpKbaSEmJ9i4lKSpGK0syVpsVh8OBxdz3uk9SZAKSSFCK9GRcIuEeA0SL2URhTgrmURQfTTRbub74NLIdg5+kRVHUlFTyCvPx2yJa0GoOdtIW7u7znBYmzeL0qUvJtA9eZhoIRYn2HD0eD263G4/Ho/Vh9JmWOl6tR1YkZGR6rCLp6uqmsrKSmZkzmT179rgKuR6NeAOUJEnU1NTgcrkoLi4mKSmJUCjEvffey9tvv80jjzzCsmXLhnz/oihSWFjIm2++SXZ2NitWrOC5555j4cKF2m1++9vfsnv3bh599FFeeOEF/va3v/Hiiy+yZ88evvnNb7J9+3YaGxs566yzqKqqGq0hibii9gmfQcUzxefz+aiqqkKSJIqKikhJSRnSfQiCQH1lY1y3jerzBQiHo8656gKxoij4PEH1N6LIMqIUtSO3WC0Dvwl0vRRZMCF6Q1jTU3qClowoRU/oR9S0dUFLF7siEann5A9q5FIA/GGkcARFXVDs+YjrsaqBqWfvScMvQUp8JxhBELD0GnDoHbQIAPFdS8Rxf+D1Rpg+PRkFBZ83mn07EhORZBm/z9+TyQpRySGLBYvFitlsxmmx4bToxrt71NUDUoQk0UFqipXWYF99xOEQkCI8vP8Dri8+jczE/qXiFUWhpaWFgwcPMnv2bM0VeiowK/FIXyQii7SFu2kOdvb0tTqp9jdQ6atjriOLsrRC8pOyeyxD4kcQBOx2O3a7PSYTUPswbrebtrY2/H4/ZrNZC1jquLbFFH3vVlVVEgwGWbpkqeY4MBblt+EQz/13dXVRUVFBVlYWpaWlCILAzp07ueGGGzj//PN59913j7oIfTRGYrWxcOFCLr74YhYsWIDFYuG3v/3tuPtknbAZlOr3EgwG2bNnD6WlfbXC9Bp9BQUFw3aYLC8vZ/+rtdR8enjgGymxzrm932gALfVduLv9SKIEREeWh/IGDIVEcNix50zv+00FLWgpcmzQUhQIho9SppuZjJwYte7WxsKPhjrJJwyw+JpoxjRjeIMD/SEIkF0whTDRhd+AGCEoigPadQyGAqSkWEi0M6CKgurqqn5I6sWETsVBn2mZTQI3rzqVaQ4H9X4Xdb5u6vwuDvu6aQ54hh20Uqx2vluwkjnO9Jiv+3w+KioqsNvt5OfnD1nQVFIk2sMumoKdNIc6cUd8pFmdzHXMZI4jE6tpdK99RVHUhgfcbjc+n09z583IyCAnJydqrTHACVQfsEY64DBaiKKoraQsWLCAxMREAoEAd999N9u3b+exxx4bN9+lCSCuP8AJH6AkSaK8vDxmWkUURQ4ePEhbWxt5eXnMmDFjRC/oXbt28dr/8x8i/ennKbHOuQ7HESdS/d9GVhSq9zQgiVHjsqGWMBRZwR8II5hNOApnx/d4FBAliWBY1O00qaO3aP83pSdiznBqPyT3lNqi/8YGrai6+SCKDAIIsxxDll86GtNmOkmdGptGibJMQBQJitGgFYgMHrRUGSmbzcK8/GlRZYg4URQZUZSIiJHYoGW2YLFayE5O5X9POx17r4AXlkQaAm7qfGrg6qbR7xlUnVzFIpj55txlrJiao/VpOjs7KSwsHFU1AlmR6Qi76Qi7sZrMJJhsJJisTLElDzm7OhqBQID9+/djtVqZOXMmgUAAt9utLcWqe0Xqx3Czj7Gko6ODqqoqZs2aRVZWFoIg8MEHH3DTTTdx+eWXs379+hENdxwDGAHqaKgBCqI9olNOOQVZlqmrq6Ouro7Zs2eTk5MzKrXs/7zxPv/8zX/6+DyJPVpcZrM5Riiy998kEAjgcfnobg30664bD+GwSKQnC3LMy8ZkH/yKWRRlQhGxn4xInyUpYDVjzk3T9or6G8kVxR7nXZMQLQPKR88JhIwEhKTRe4MmJFrIzksfNDBLclQtPdAraEXHxqUeNYaoqO706U7S0oZuYqlHfW6iHxHmJybxXxkztFKWWs7q/TqMyBKNfreWZdX5umkMuKNyUAOQb0tlsd9CQU7uqL22B0NRFDxiIPq8CWbMPRcnVmFo2T+gvT/708/T30adIFT7WqIYtZjRlwhHwwJjOERLklWEQiGKi4ux2+34fD5+/vOfs2fPHh577DEKCwsn5NjGGaMHdTT0bw51ZLympoYZM2awatWqUb166azrjgk6kiTh83pRFCWmLNE7MIVCYfwBP/aEBATZEn9w6r0IqxBjDy/6g9iOEqBkWSEckbR9p77ol2aFqMV6REaxmHpkbhRtlFudhDObzVitJvSyD30yLX3Q8oowigEqFBAJBUTsjqNfTZtNAk6bDWfPCUyRFTw+L75wGCHRQbhHFzAiS3R0+ElOTsBsHv6JXhAErFZrz1V+Ig2AJ2MqBWlTNI03r9erLXuqQcvpdJLrTCdXV7oTZZkmNdPyd3PY102D301IjODzetkleKhNSeUsYSrTZBHHCPXw4n18KdbYzDUq9CpxZG25R5rqKJl1vPp5JpNJC0RZWVna/akLxp2dnRw6dEhTctBPEI61tXtbWxvV1dXMmTOHzMzohOU777zDLbfcwne+8x0eeuihce/xTHZO2AxK6SmtdXR0sGvXLrKzs5k3b96YqJo/ecefqNlxGKvV2lM7F0lyJmHryaj0fwNBEAhHIvh9PiwWS8+koMDB/U2arP9QCQTCSNIRwTpTsoOErOmo7rGKovSoHhwJFEPFnOHElK5mE9GxbFmSdFOFSkyGpX7EEhu0rLlJhGQ57qGLwUhKSSBzdvyjx2pP0JHoIMEe+7pQM615WVPIyHBy2O2i3e8fleMEuGLxUk7KOjLSK0lSTFagqjjos4Lejq6yLHPwUC37Gg9jy5xGt1mm3t9NvT8qc3XStNmcmpFLjiN1UvRk+jsXiaJITU0NHo+H+fPnj8jduvd9qUoO6nMaDAax2WwxE4T6kvtwCYfDVFRUoCgK8+fPx2az4Xa7+elPf8rhw4d5/PHHNe27EwijxHc0ZFnmww8/xGKx4PV6OeWUU8ak5KEoCndd/iBdLd1IkkRiogO7/chknooqi6TuZCUlJWlZnLvLT0tDV99fHgeRiEQ41Kv3ZTGRVDAbuUfdWuopuQ03AMKRcXO1z6LKK+mFa7W9Ilmd9IsNWtHpwSOv2ymzUknOcBAWJQIRkWA4WnILRsRhB63ZhVOxDqKnJ0ZEvD4vVkt0bPxovTCLycSPzj2FzFtTGqYAACAASURBVNRk/JEIh90u6twuDrvd1LldtA0zaJkEgYuKF3D6rNwBb6M33FN7MIAWqDo6OsjMzGTu3Lkxr21ZUWgNerXSYFiWmJrgoCBlGrlJ6SOy/hhN2traqKquYlbOLLKzs2MCxVgF1N5j736/H4vFEpNpORyOuM4ViqLQ2tpKTU0N8+bNY/r06SiKwhtvvMHPfvYz1q9fz5VXXjlpRuLHGSNADUZ3dzeJiYns2LGDxYsXj3r2pCgKn+/cy+9/9CcsViupuvF0/fOuliBEUcSRdCSzUqmvaSPgj99BV0USZYIDWMMn5mVhTox9vIpCT6CSkeSenaJ4Xx8CkJsW1Qa0mOOUqVF04pjqfR0JWnanjaz5GX1+l4KiBa1AOEJwCEErdWoi02YOMHYtK3h9PY32JCdmS3zlluy0FK4/exWWfsoz/kiEOrdbF7iGFrRW587hG4VFWE3xHUsgEGDfvn0Eg0GSk5MJBALa4IBaHuxv2k1RFFqDPtpDPhLNVuxmCwlmC2k2e4wR43gQCoWoqKgAoKioqM/7cqDX5FgFrUgkEhO0VFsN/SBG7+w1FAqxf/9+zGYzRUVFWK1Wurq6uOWWW+jq6uKRRx4hJyfnKPd63GMEqMEIh8MoisKnn37KvHnzRq18ANEpncrKSg7vaOKTV/dq+mSxgSl6QgmFgtrOU+83WcAfpr5m6BJJoihFx8oH+IvZpqdhy0jv/5s61KCllv76C1pqYDFnJmNOTSTO195A9xgTtNLnJmGymjCbzbq9IstRglaEQFgkEBEJ9RO0BJPA7IIpWKxm/Q8TCAYIBaO7Z7aEofdmzpw/lzXL5g9+Q44ErTqPqydwuWk9iprJTKeT/1m0hNzUgSfuFEWhvr6e+vp67WpdRdXLU0+wHo8nZtpNDVq9+67RAYcQZsGkuQabBAFLP4Mwo4GiKDQ0NFBXVxe3fp7+Z/WMdclS7FF46V1yTUpKQlEUXC4XBQUFzJgxA0VR+L//+z9++ctfctNNN3HZZZeNetZ05ZVXsmXLFqZPn87nn3/e5/uKorBhwwa2bt2Kw+Hg6aefpqSkZFSPYYgYAWow1AC1Z88esrOzR2Xk1uPxaJL0hYWFPP/Lv1Ozu1ZTI7ZYrVjMlqg1dyCAPSFB23lS0f9JGmvbh5Q9RXtrImLk6CPIpkQbjrzhyZYoPaVBUYqW8xR13Nxpw5w1uvIyKdOTmJKTgtij/CFGRERJ1IRwLT2LsP1lbQpRqSW1NBgtD0ZwptmZnh3NZiORCD5vdMQ/0ZE4ohPbZauWUDZneM+pPxKh3hPNtAYKWqUzZ/KVeQXMSIq9kHK5XFRUVJCenk5eXl5cjXZ12k0ftKKqJUkxQav3iLa6BC309C+1MYcRBgSv18v+/ftJTk5m3rx5oz5i3bucPhb4fD727t2rCcG+/vrrmjSRyWTitttu46yzziI9ffALw6Hy7rvv4nQ6WbduXb8BauvWrTz88MNs3bqVbdu2sWHDhj6iseOMMcU3GKPpCRUMBqmqqiIQCFBYWEhqairuTg/1FY2ahH5EFAn4/UQiEW16S+096Y0G1feP1x3A7wtpqg36ZUNda0fLNkRJjmrGxXEZIQfCyKLUIyg7dBRZxmISSEhMIOrmC7KokJxkJ9yzO9VbFmk4eDv8pM1M7tG9s6jmsCgomlxVKBTC54ugQE/QskYDl9WC3RL9UC891EzrjLmzqG1upEUKY0tLRRmFk9YL2z7HmWBj/syhG+E5rFYKp0ylcMqRZfCAGKHe7eaw+0jguvP9/7BgWgan5cwiPzWN2poa/H4/CxYsGFIFQF+iUlF9i9xuN62trZqbq16ZPCUlpd+gNdyym14/b/78+UNWaYmX3ruFo7m4q2avDQ0N2vi7ajKYmJjIFVdcQUZGBh988AGbN2/mmWeeITd34N7icDj99NOpra0d8Psvv/wy69atQxAEVq1aRXd3N01NTZpW4mTlhA5QKiPxhFKnjNrb28nPz2fatKj5miRJ7PuwMubFHw6FEASB9PR0TCZTjPV29P6FqE231YpJMNHe5EI16FMNKhRFQZaihn6yrCBL8uDKDQMgef2Y0vrvx/SLgmbjYTabY4YHonsuAg5JYUZmGihR36hgWCQYipbdgmFxyIMYsqTg7QyQkpEU83UBYeCgFREJhYL4fGJs0LJG7cylcIhPdlXx/Yu+wLRp0xBlmWaXl/pOF4c7XTR0uWns9iDK8S3CqkiKzB/e+5jLVi1h6azMwX9gEBItVgqmTKWgV9Cqc7n57HAtW8vLycuaSWFONhb7yJU39L5F+hHt/pTJ1aClBq7+9ooGq86oEj+ZmZmaMOpYc+QicHSyKL/fz759+zTldLPZTHNzMzfeeCNJSUm89dZb2jlh3bp1o3Kfw6E/242GhgYjQE1m1BfpcDyhZFmmvr6euro6Zs2axapVqxAEQTuBA+z8525kRcHv9WrlE/3V55H9lyiKohARRcRIhMb6TgK+sE6NPCruKggCZouAWa89p+sRyVL0//FkUaLHjzXOACVLUVtqs9mM+ShTbd42D8mZKSCA1WrGajWTnKRFEMKiRDAU6Qlc0SGHwQKsp9VL8rTBx31jghb2nrtUNDtzv68nezUJtElW3v+sltWlVpxOJznpKeSkp7BqXvRNLMoyzd0eDne6qO9yU9fpotnlHTRoRSSJZ97/hPOWFHBWcd6ol5OkYAhPbS2LkpL4+jnnYrVaCYoiTV4PJkEgwWLBZjKTaLWQaBm5gsJAyuRqptXR0RETtPQLxgMtw+qXVZcuXdqnxD3eDOdvpCgKhw8fprm5maKiItLS0pBlmT//+c/85je/4c4772TNmjWTYnz/WOaEDlAq6n5SPKijowcOHCAjI4OVK1diNps1CRyIvuAPfFrLoYqotbPD4cBms8Vh+SBgtVjobvMhhhWsNit6NXJZ7Al+OgsNwRTVy7P0mvJSp/HULEuSlT5BS/IFBi1vRG07JMwmU9SHahCCriBiSMSS0M9tBbBZzdisZrRCjgLhiBSdxgtFR8mPSCtFiYQk/N1BktKHfiJTlz9DoTAms4kpyVMQTAKSKPLe7nqmJpmwEr046T3pljMllZwpOu8nSaKx20t9l4u6Tjd1XS6au7191BsUFP7vs0r2NbVz6UmLmJYcm/0NB1V+q7u7u49gsd1iYW5abF8jLEn4IxFMQnS4AQHMqhDwCBEEgaSkJJKSkvrYabjdbrq6urRl2MTExJieVnd3NwcPHmTu3LmahNhk0caLF6/Xy759+0hPT2fFihWYTCYaGhrYsGEDmZmZvPvuu2PSZxoJk8E6Yzic0AFKn0HFU+Lr6uqisrKSpKQkSkpKSEhIiA4LqK62goAkybS0NPPKH7ZiMplIS4vfaE2MSLQ0dOH36gwFdWrkR3yK1Ek3GVmM7hcJApoauSBELc1N/QUtSY6dyvMFsDj7Sn0rPYFJDZrxD+YpeFvdpM2K04ZBAJvNjM1mJtWpPr6oMaKaYQVDIq4mD45U+5D0+RQl2lOJRCIkOZ1YdRmFpef/22u8XPvfq0iwmrWpLL2duT4jcDqdzJ6ayuypR4JWRJJo6vZS1+mirstFfaebJpcHWVGoaetk06vvcfK8WZy1II/UxKGX4RRFoa2tjQMHDjBr1izy8/Pjej3ZzGZsvYYlVMUO1RxSZTSCgyAIOBwOHA6HppKgLsO63W7a29vZs2cPiqKQkpKCz+ejra1NU3CIh4kOZLIsc+jQIdra2rR+mSzLPPXUUzz++ONs2rSJc889d1IG2zVr1rB582bWrl3Ltm3bSE1NnfTlPTjBA5TKYEMSPp+PyspKZFlm4cKFJCUlaYEJjji0tre3c+DAAUS3gqc+gM1qQ4xIKApYrOY+BnAQfdOFAhE8rgCuTl9ce0dHVBhMsUFLjno+SUo0W4qWBY+4wfYJWoqCw6SQMj2VUChCIBghFIog9WRqUbX0IT2VAHia3KRmpw9b7FUQIMFmIcFmIVUt1Smwcn4uU2Ym09DqoqHNRXOnd4CelkIwFCLgD5CYaCcpKYmBImxbl48/bt3JVWtOIjU1NcbkTr8IW1dXpxlHqplWamoqSUlJ/Qathi4PDV1uDne6ONDWyUdb6lmSM4NV82YxL2NwTUCI9jcqKiqw2WyUlpaOWD+u9yI0HLnY6S39NVpBKyEhgUAggMvlYunSpaSlpcUoONTX18cYF6qZlt1un1Qneo/Hw759+5g2bZrWL6utreWHP/whhYWFvPfeezEDJ+PNpZdeyttvv017ezs5OTn8/Oc/185p1157Leeddx5bt27VfOyeeuqpCTvWoXBCj5mrU2DqiWD58uUx3w+Hw1RXV2t2G1OmTEGW5Zg3tSAIuN1uqqqqSEhIIC8vj+d/8XeaDrRov0eRFUKhCGJYIhKRiIREwqEIkhgd0x6JgsPRUE0KVZ8mFLSApQUti5l5py9BMAnRnaxgELMlAVkWCIUiBIMRwmFpyHYPGUUzcGaM7hs2yZHAD773Rez2aPYTESWaOjw0tLqob4sGrcbWbjxeLxazhaQkR5wLwzAvZyqXnbucxISj9230kkOqeoM6EXdUcdeeoFXX6cITDJHmsDPV6WDutHRslt6ZrkxtbS1tbW0UFhaOe7lotAKUqp83derUPmoWve8vFAppI+9ut5tgMEhCQkLM8zpY0BoLDyhZlqmpqaGrq4vi4mKcTieSJPHEE0/wzDPP8OCDD7J69epJFUyPEYw9qMFQFc3D4TCffvopK1asAKInodraWpqbm5k7d66WCqsDEOoJPhgMUl1dTSgUoqCggJSUFMpf/YTX//DvuO47FIgQDIS1fyNH81waJdSgpfa1UGBq0UwS0pOw2RL6dS9VZCU62BCMlttCwQjhyNFLognJdrKWjv6m/JLFOfz31/suGGoXEx4fKVNn0uUXaWhzUd/qor3bF9ek4/T0JNadV8bU1KG5G/b2KlKDlnpiHUgeJySKtLp9mE0mbBYzVrMJv9vNoYM1ZGZmTipn2N4cLYipDr0j1c/rHbQCgQA2my0maCUmjmx37Wh0d3ezf/9+Zs6MuvQKgkBVVRXr16+npKSEO++8syc7NxgGRoAaDDVAKYrCRx99xKpVq2hoaODQoUNkZWWRm5uLIAg9wwbRRri6t1RbW0tnZyd5eXlMmzYt+uLdWcP/e98/kAdUAT86kijHBKxQIIwoDu93xYMiK4iSSOIUJ1lL5iKKEpKkjrvrjPUsZnq/nmRJjg419JQFg8EIETE2wM5cko09ZfQntC48v4yFC6Jj0LIs09DQQH19fUzjXU8wHKGx3aOVButbXXS4+pcbslnNfPnkIlYujNMzawDUoKVmWj6fT3OF1Wda6n0Eg0EqKyuJSBLz8gtwJCZG+4o9Qw7HyhW6qtg9a1Zf/bzRIBwOa8+pqpWnt4hXLwZGcr+SJFFdXY3X66W4uBiHw4Eoivz2t7/lr3/9K7/5zW849dRTR/FRnZAYAWowVEVzQLNVTk9P1zbZewcmVYqlvr5eMxpTr3Aryg/w/z24FXGQzGKoiBGJYCBMMBAh5A8TDIRHXBJUFEXLBi1mCyaziXmnL8bcM6WnKNHR7EiPR5EkRlXJrT3Lr6qFeW8kSe7JsiKEghFMiTamFE0f9ZNUot3GVd8+DZMpQmVlpVZCGopVgT8YobE9Gqwa2tw0tLro8gS072dlpHDOykIKZ00btePXa7q53W7NyhyiAWru3Ln9ntRVuabeRzGZgtZg+nljid4iXn1eVYFXNXD1Vxnoj87OTiorK8nOziYnJwdBENi7dy8bNmzgC1/4AnfccQf2Udg5MzAC1KAoikJ7ezuVlZV0d3dzyimnkJiYqA1AmExHNMfa2tqoqakhIyOD3NxcTYqlo7GTd178iL3vV4zbMUfCEqFA+EjgCkTiE3XtmeKSJRmzJdaVN6Mghym5/VjBaz8afU4ikSMW5iaTScuyrJb+/arOu3wVCamJNDZ209jUTVOTi0Bw6MK3emRJRhAinPNfc1i2bGGPJcnI8QXCNLQdybIa2twkJlhZuXAWS/Jn4ojD5HEoqCUkp9OJw+HA6/VqJ1d9ptVfRjAe0j3xMBL9vLFkoIsB/ci7vlcoiqKmBFNcXExiYiKRSIQHH3yQrVu38rvf/Y6ysrIJflTHFUaAGgxRFNmxYwd5eXns2bOHk046KeaNHwlGaG1uY//nFcghheSEVMwmM2JYpKvFRVNNCy21QxdyHW0URSEcEqNlQX+0PBgORmL+WLIU3dMymU09Bnuxrw+r3cbcUxcO6WSnyLKWZYkREUmWMfXsS6lyQ9Oz0rhq43maqZ+iKHR1+WlsigasxsZo0BqspxX9YVVcN4QjycGsnGlc/s1VOJ1jd0Xr8YdoaHXR1BENVs7EBLIyUpiSMvygGA6HtUXV+fPn9wmwkUhEO7GqJ1e1jDXU3stYjmaPtX7eaKMGLTVwqarkVqsVj8dDdnY22dnZ2O12Pv30UzZs2MCXv/xlbr311jFz4H3ttdfYsGEDkiRx9dVXs3HjxpjvHz58mCuuuILu7qhdzz333MN55503JscyzhgBKh6CwSAAO3fuxGKxkJaWRmpqKiaTiZqaGiRJoqCgIDq9I0q0Hm6nsbqZxuoWGqubaavvmJTPiiwrhIIR/N6oXbwYkVEk+owZ68laPJfkGSObGJNlKSbTkmWZsi/mcdKZ87WTa28tN1lW6Ojw0tDYTVNP4GpudiNKR3pa4VAYv99Pgiqu2/MwUpMTWbv2JDJnjK5I7UAoioLbF8IfCmOzWLBaTFjMJhITrIMGAn22kZeXx/Tp8Zc/++u9qOZ6R5tyG4tMS5IkDh48SGdn55jq5401kUiEffv2EQqFmDJlCm1tbVx33XXIsozb7ebaa6/lG9/4BgsXLhyTACVJEoWFhfzrX/8iJyeHFStW8Pzzz7NgwQLtNt/97ndZvnw51113HXv37uW88847qubeMYQhFjsYzc3NbNmyhZKSEhYuXEgwGKS+vl4LTHa7nSlTotbb6iLizLwZzMybQek50d8RCoRprmml8cCRoOVqc0/sA6OnJCeFMNsUcuZOx2KxIEkyoWCEoD/cUyKMIOqs4LsOt444QJlM5p7F2yM9iAMfd7JgeZhwuF17bh0OB6mpqVq5JSMj+rFsaVRqSJJk2to81Bxs4dNPq+jqNmGzpfYJsC5PgD889R6rz5jPypPmjsh+PR4EQSDVaSdVl7UpikI4Imkivuq/Zl0J1ePxsH//flJTU1mxYsWQsw2bzca0adM0XTeIDVpNTU3alNtgQUt/3OpjijfTUns0M2fOHDf9vLFAVYPRXyh0dXXhdDr5+te/zurVq/n000956KGHOPXUU/nOd74z6sewfft28vPzycvLA2Dt2rW8/PLLMQFKXWOBqGq9qpF4onBCZ1AtLS08+eST7Ny5k4qKCiRJwu/3c+2113LRRReRkZGhlQNcLpd21aqeWNUTQG98Lj+N1c00VDfT1BO0At7guDymqE5agHA4FJfEkihKR6YG/RFySgvAOnINt95My0zh2z/5ElabRRMgVZ9X1Z+od9+ltraWrq4uCgoKSE9PJxKRaGlxa6XBxqZu2tu92o5W5vRUVp9RRGFh30m+8UbdPZNEiZqa6Mh1b4misUAdzVY/1H0ifdDqz3dssEwrEokOpITDYebPnz/h+nnDJRwOs3//fgRBoKioCJvNRiAQ4K677mLHjh08+uijMQFiLPnrX//Ka6+9xhNPPAHAs88+y7Zt29i8ebN2m6amJs455xy6urrw+Xy88cYblJaWjsvxjTFGiS9e3nnnHTZs2MB5553HsmXL+OSTTygvL6e5uZm8vDxKS0spLS3V5I08Hg8ulwu32x3th+iUnQeyI+huddFY1RO0DrTQdKB1VCf+osuOYfwBv+YxNZyT9Kz5WXz9+q/QXNdJ0+FOGg910Hy4k9AAzrxDoXBxNv995Wn9OtWqpnoul4uWlhZcLhc2m42pU6dqFwT9LcCGQiJNza6eXlY0aFmtZkqW57J4UTaJiWPTOxgMRVFoaWnh4MGD5ObmHlVWZqyDqSo3pF+CtdvtfZZg+0NRFJqbm6mtrR1wjP9YQP841GEORVH48MMPuemmm7j88stZv379uPbR4glQDzzwAIqi8KMf/YgPP/yQq666is8///yYzVx1GAEqXmpra3E4HDEupBA9aVZVVbF9+3a2b9/Ozp07CQQCLFiwgNLSUsrKyli0aBGyLGsBy+12I0lSjBxOcnJynxeUJMm013X0ZFnNNFS30FbXjjKMEfJIJKLt2fR3Eh8qF9z4FYpPLtQ+VxSFzlY3jYc6aTrcQdOhDlrqu4a1o7WwLJc1607p9ySnmj06HA7mzZuH2Wzuo9qgTmKpQau/CTe/P0xzs4vmFjcJCRaSk+1kTHOSnj4+S5U+n4/9+/fjcDjIz8/vc8Gip7/331gHAL1yg/oRCoWw2+0xF1qyLLNv3z7sdjsFBQUDPo6J1sgbjGAwyL59+0hISNAeh9fr5ec//zn79u3jscceo6CgYNyP68MPP+SOO+7g9ddfB+BXv/oVALfccot2m4ULF/Laa69pVhl5eXl89NFHfc5VxyBGgBoLwuEwn332Gdu2bWP79u3s3r0bq9XK8uXLKSkpoaysjHnz5hEMBrWgpfaw9CfW/vYyIqEIzQfbtPJgY3Uz3S2uAY9FkiR8Pj+KIpOUlDRqV3+pGSlc++srsNoG/n2SKNHW7KLpUAdNPYGrrckV145W/sIs1qw7Bbsjmt1EIhEOHDiA1+ulsLDwqGUw/fiwWna1Wq19yq69n1uvN0ggEMFqNWOxmDGbBez2wQcbhoJ+eKCoqChG12+4jNc4uV7Y1eVy0dbWRjAYJCUlhalTp2qv3aH4Pk100NLvLRYUFDB16lQUReGdd97hlltu4ZprruHaa6+dsGxEFEUKCwt58803yc7OZsWKFTz33HMsXLhQu82Xv/xlLrnkEr71rW+xb98+zjrrLBoaGib8uR0FjAA1HiiKgsfjYefOnWzbto3y8nKqqqqYNm2aVhosKytj+vTpMSdWn88Xc2JNTU3ttzfgdwdiBjAaq5vxufxD6jMNh5O/XsZZl39hSD8TCYu01HfRdLiDxp7A1dnm6fe2UzKS+erlq8AWoq6ujjlz5pCZmTmsx6EOC6gXBPq+i/r89l4cVRSFSJ/BBqFfQd94UBXH9Queo4mapfR+v472/aj28VOnTmXOnDkxgxhut1uz0NBnWgMFrd4utmNxvAMRCATYt2+flsVaLBbcbjc//elPqaur47HHHmPOnDnjcixHY+vWrVx//fVIksSVV17Jrbfeym233UZZWRlr1qxh7969fOc739GEiu+9917OOeeciT7s0cAIUBOFWu/evn27FrRUXT81YJWUlGC322P6WcFgUHvzqyfW3oaGTU1N7P1kP+aQlYhbormmlaYDrURCI+8R9eaSjV+noDRvRL8j6A9Hy4KH1fJgJ+5uP2Ikgtfno7h0Fmu+eTpTp4/emHjvEpbL5dJOrPpMq79eYX8c7aQaCASoqKjAbDZTWFg4rgoKo1la0+vnFRcXD6gxp/d9Uj96O+z299yqPwtjnwnW1dXR2NhIUVER6enpKIrCv/71L2677TY2bNjAt7/97eOhh3OsYwSoyYQsy1RXV2ulQX0/Sy0NLlq0CEALWC6XS3PitdlsdHZ2kpaWxrx582KuWmVZpr2+k8YDLTRWRbOs1sPtw9YEVLEnJXD1pstIG8Udo1AoxGef7KG5rgu7KYXOFi8t9V3kFs5g6cnzyC0Ymyb8QCfWpKSkmF5h7zLpQO8PRVE4dOgQLS0tFBYWMmVKnP5XkxBVP2/27NlkZWUN+fnXO+yqVQL1udUPYhytFzca+Hw+9u3bR2pqKnl5eZjNZjo7O7nllltwuVw88sgjx4RJ3wmCEaAmO/p+Vnl5Obt378ZiscT0s0wmE//4xz84+eSTSUpK0haL1Te96knUp58VFmmpbdPKgo3VLXQ2dQ35GFMzUvifOy4ibfrIxqNlWdYssufNm6cJ7ELPlGOHl6bDnfjcQZJTE3GmJjIjJ/2ofbCRoh93Vz9kWY4ZcHE6nX00/jo6OqisrGTGjBnMmTMHk8k06QcF+iMUCrF//35MJtOoZ3/6oKV+iKKoXRCo+2/xDJAM9ryqr62Wlhbmz59PamoqiqKwZcsW7rzzTjZu3Mill15qZE2TCyNAHWvo+1n/+c9/eOGFF2hra2PZsmUsXbqU0tJSVqxYwfTp07WRbFWyRRXHVEtY/Q0KBLxBmmqOZFkN1c34uvtX9daTMi2Zb/70fKZlDy9L6OjooKqqiunTp5ObmxuXqKssy7g6fJhMAharGbPFjNkan+38SFDH3fWqDRB11nU4HHR2diIIQp9doN4n0/EoZw0XRVGor6/XhgemTZs2buU3/QWBx+PRKgR6NfKhDPuoRoJ6z6m2tjZ+8pOfoCgKmzdvZsaMGWP2mAyGjRGgjlUkSeKMM87gkksu4ZprrqGjo0MbdS8vL6epqSmmn7V8+XISExNjhjDUXRd90OrdzFYUBU+HV9vNaqhqpulAM+F+dp4sNgtfuvqLLF29IO6TWCAQoLKyEkEQKCwsHLEKtCRF1eVVZ1j9cMNYovZnmpubSUpKQhTFGOHR1NTUAQVd9YMNkyFYeb1erQymjvKrTEQWKMtyn0xLluU+mVbvoCXLMgcPHqSjo4Pi4mKSk5NRFIWXXnqJ++67j9tuu40LL7xwUjznBv1iBKhjGVEUB7yS7K+f5ff7++xnATGDAqIoahJDas+ldzajKArtDZ00Vbdoo+4ttW1aP2vu4tl88fLTmJk38FWpavjY3t6uORGPFWM9IaZOtU2ZMiXG0kMUxZiTqjqVOVgW2/uYx/LY9YxEP2+sJwd7I8tyn0xLX3o1mUzU19fHmDo2Nzdz44034nQ6+fWvfx0jCTXaZB9KQgAAGEtJREFUDCbwCvDiiy9yxx13IAgCS5cu5bnnnhuz4zlGMQLUiUQ4HGb37t0x+1kWi4Vly5Zp/ayCgoKYXRePx4OiKDGZQH+LvmJEpPVQe4x8U9r0FErPXUresjkxSuWtra3U1NRo49YTXfcfbvYSiUSorq7G7/czf/78uJxTe49kBwKBGJkhdZVgtI4xXvT6ebNmzRrR36S/YDUemZcq4FpTU4PH48Fms7Fr1y7eeecd0tPT+fDDD/nVr3415llTPAKvVVVVXHzxxbz11lukp6fT2tp6PCzWjjZGgDqR6b2ftWPHDs3cT93PUvtZPp9P62epag36TKA/2aSgL0TzwRa6W92kTE0Gi0Kbu5XkVCf5+fljZk8wXOI9iaqj/IcOHRrRbpaKekGgV2yId49Iz3D3w6qqqsZcP288FnW7urqoqKggKyuLWbNmIQgCBw4c4Oabb0YURbKysti3bx+yLPPoo4+OmV5dPOoPN910E4WFhVx99dVjcgzHCYaa+YmMIAikpKRw5plncuaZZwJH9OHU/aynnnqKxsbGPvtZDodD62c1NzdrmYB+qdielMCcRbOJRCLU1NTgdrvJnTWblJRUBEVAkuQxVxYfCvFYYagSRU6nk7KyslEZi7bb7djtdu0KWj/u3tnZSW1tbcy4u/oxUHk3nsCl150bqq3HcBjoGHqrpQ9026MhiiLV1dX4fD6WLl2qGYo+9dRTPP7449x3332cc8452u8NhUIjfDRHp6GhQZMdAsjJyWHbtm0xt6msrATg1FNPRZIk7rjjDr70pS+N6XEdr5xQASqe2vHxjCAIZGZmsmbNGtasWQPE9rP++c9/cvfdd8f0s0pLS1m+fDkQ7Wd1d3dz+PBhwuEwJpOJYDBIVlYWy5Yt6/eELolSz8kq+vkRw8TJgyiK1NTU4HK5YqSWxqJ0pdq2OBwOMjMztftRey6tra1UV1fH9FzUQQGz2RxzPPogoOL3+6moqMBut49akB0OvZ83NUgNJVCp05+zZs2iqKgIQRCora3lhz/8IUVFRbz//vskJyfH/Mx4LkoPhOrO+/bbb1NfX8/pp5/O7t27SUtLm+hDO+Y4YQKUJEl8//vfj6kdr1mzZtyk9Scr6g5MYWEh//M//wPE9rOefvppPvvss5j9LIvFwt/+9jduu+02srKy8Pl8fPzxxyiKgtPp1DItp9PZR7lcEiXCwXDMOLY1DrO/sUDfM5s1axYFBQUTchyCIOB0OnE6nZrfj37cvbGxMWbcXQ1aTqdT6yfJssyhQ4dobm7WFBTUx6jex0QT7zFEIhHNcXjZsmXY7XYkSeL3v/89zz77LA888ACrV6+ekMeUnZ1NXV2d9nl9fX2f5d+cnBxWrlyJ1Wpl7ty5FBYWUlVVxYoVK8b7cI95TpgeVDy1Y4P+UftZb775JnfffTfNzc2aNba+n5WZmamdVF0uV0w/Sy0N9tfPioRF1BRLzVqsCWN75e/3+9m/f7+mcD3Untl4T7ZB9CKrt7q7yWQiISEBt9tNRkYGBQUF/U5m9j7WybpYrKpa6Pt/lZWVbNiwgZKSEu666y4cDseEHV88Aq+vvfYazz//PM888wzt7e0sX76cTz75hKlTp07YcU9CjB6Unnhqxwb9o/azXn75ZTZu3Mj5558PENPPevrpp2lqamLOnDkx/aykpCRNb7C1tVWzbT+akCvQR1tQMAlYRmFJVz8CX1RUNOyyy0B9l7E86ZvNZtLS0rRjFkWRyspK3G43M2bMIBgMsn37dm3cXf2IxxtsojOtcDhMRUUFiqJQWlqKzWZDFEU2b97MSy+9xG9+8xtOPfXUCTk2PRaLhc2bN3PuuedqAq8LFy6MEXg999xz+ec//8mCBQswm83cd999RnAaJidMBhWPOZjByJBlmQMHDmij7jt27MDn88XsZy1ZsgSI3c8Kh8MxFvD9DQkoioIYFo9YvitKtJ/Vj/nhQLS3t1NdXT0q49YTjWpZ3p9+3mDj7gMZFPa3UzbWQVdfZp03b542TLJ3717Wr1/PGWecwe233z7iJW+DSYeRQemJp3ZsMDJMJhMFBQUUFBRw+eWXA7H9rGeeeYbPPvsMs9nM8uXLWb58OWVlZSxdulRTH9cPCej7LcnJyX3KfpIkR8uDEC0RClFZpD4j8cEgFRUVCIKg9TQmkpEsF6uPxWQyaZlGb2w2G9OmTYtZVtWPu9fX18c97t77eIdzzAOhagFaLBZtoCMcDvPggw/y6quv8rvf/Y6ysrJRuS+DY5MTJoOKp3ZsMPYoioLX643xz6qsrGTKlCl9+ln6/SyPx4PJZIrpZ/UnLySJkmaaKMsy9XV1tHW0aYZ1xyqqfl5DQwP5+fkjVkpQDQr1TtDxjLuPhgqGftdM1QIE+PTTT9mwYQPnnXce//u//zvpdukMRhVjUbc3/ZmDGUw8+v0sVW+wsbGR3NzcmH6W0+ns46Zrs9n6yAtBdLGzsrKSjIwMsrOyMZmOlAIFgVHpZ40XR9PPG00GU3fXj7sP9PN6+gtcgUCA/fv3azbyFouFUCjEpk2bePfdd3n00Ue1MrDBcY0RoCYbdXV1rFu3jpaWFgRB4Lvf/S4bNmygs7OTSy65hNraWubMmcOLL76ojQmfqPTuZ+3cuROfz0dxcXFMP0sQhD5uupIkYTKZmDt3LhkZGf0aE4oRSd/OmpT7WXr9vOLiYpxO54SIufbOZGHgcfeB0GeAev+s8vJybrzxRi666CJ+9KMfTdjelsG4YwSoyUZTUxNNTU2UlJTg8XgoLS3l73//O08//TRTpkxh48aN3HPPPXR1dbFp06aJPtxJRyQSidEb/OyzzzCZTCxfvpxly5ZRU1NDe3s7t9xyi2bx7Xa7kSQpxuMpOTm5zwlVURQkUYr5mtnSt581XqhLqnppn8nCQOPu+tKg3qPM7/ezb98+nM6oDJbZbMbv93P33Xezc+dOHn30UYqLiyf4URmMM0aAmux8/etf5wc/+AE/+MEPePvtt5k5cyZNTU2sXr2aioqKiT68SY/az3r++ef51a9+xdSpU5EkidTUVEpLSykpKdH6WYFAICYLEASB5ORkrTTYn+mjJMkoclTFXf2eyWwa02ARDoeprKwkEomMWD9vPHed+lN3t1gsCIJAMBhk7ty5zJw5E0EQ+OCDD7jppptYt24d69evH7OSpUq8CjIvvfQSF154IeXl5cZwxthjBKjJTG1tLaeffjqff/45s2fPpru7G4ieVNLT07XPDY5OIBDgsssu4xe/+AWLFi3SxpbV/azy8nIaGhr67GclJyfH9LNUuwy93mBCQkK/Qxi9Gcqo+0DoBwdGWz9PH6jGK2h5vV727NlDYmIiSUlJlJeXc9ddd2Gz2QgEAtx8882sWbNmzCdp41Efh6jx4Ve+8hXC4TCbN28elQDlcrloaWmhsLBwxL/rOMQYM5+seL1eLrjgAn7961/38eUZDwO+44nExET+9re/aZ8LgsCMGTP42te+xte+9jUgtp/1xhtvcM899+D1emP6WcuWLcNsNmtZVmNjI8FgUBvFVgPXQHqDegSTMKQdK1XVIjExcUz08/Svp/GwxTh06BBtbW0UFxeTkpKCoijU1dXhdDq59NJLKS4uZufOnVx99dWsW7eOSy+9dMyOZ/v27eTn55OXlwfA2rVrefnll/sEqJ/97GfcfPPN3HfffaNyvzt27OC5555j/vz5FBYWTlrljsmOEaDGmUgkwgUXXMBll12mKTLMmDGDpqYmrcRneMeMLv3tZ+n7WX/84x9j+lmqf9bixYuJRCK4XC46OjqoqanRLMrVgJWcnNwng+rTzxIETKa+Fx7qyby1tXVEqhaTBdV+PSMjg7KyMkwmEy6Xi5/97GfU19fzyiuvkJubC0TL2+NBPAoyu3btoq6ujq985SsjDlDt7e184xvfYNq0aezcuZO1a9cCk0ML8VjECFDjiKIoXHXVVRQXF3PjjTdqX1+zZg3PPPMMGzdu5Jlnnhm3N++JjNVqpaSkhJKSEq677rqY/azt27ezadMmKioqSE9P77Ofpdpl9BZxVZ2Kk5KS+g9aktrPgu7ubqqqqsjIyGDFihXHtKqFLMvU1NTQ1dXFggULcDqdKIrC66+/zu23387111/Pt771rUn5GGVZ5sYbb+Tpp58eld934MABzj77bG6//Xa+973vceDAAe1+JuPjn+wYPahx5L333uMLX/gCixcv1l6sd999NytXruTiiy/m8OHD5Obm8uKLL46pTbpBfAzWz1IHMVJSUvB6vVp5UB0Q6M/+Xe9vVFRU1Ef49Fg7iXV3d1NRUaHZrwuCQGdnJxs3bsTtdvPII49MqGLLYCLRLpeLefPm4XQ6AWhubmbKlCm88sorw+pD3X333ezevZvnn3+eQCBASUkJL730klZSNEp9GsaQhEH8SJJEWVkZ2dnZbNmyhYMHD7J27Vo6OjooLS3l2WefNTb7OZIt6PUGe/ezlixZgtlsjtEbDAaDCIJAKBQiMzOTOXPmDGj/3lsKaTKe0CRJorq6WnvsDocDRVHYsmULd955Jxs3buTSSy+d8IA7VAWZ1atXc//99w97SOLjjz/m8ccfZ/369RQXF7NkyRLsdjunnXYad91115i5Gh+DGEMSBvHz0EMPUVxcjNvtBuDmm2/mhhtuYO3atVx77bU8+eSTXHfddRN8lBOPyWQiPz+f/Px8LrvsMqBvP2v37t2a7l9paSnZ2dk8+uij3HjjjeTn5+P3+9m9e7cmLaQXye1tSghHgtZ4Djscjc7OTiorK8nOzqawsBBBEGhra+PHP/4xgiDwxhtvMGPGjAk7Pj3xqI+PJg6Hg8TERP7zn/8AcPbZZ1NSUsIXv/hFIzgNAyODMqC+vp4rrriCW2+9lQceeIB//OMfZGRk0NzcjMVi6VMmMTg6aj9r+/btPPzww7z33nsUFRVhsVi00mBZWRlZWVlaP8vlcuHxeFAURVNpUPtZ/S0V92Y8ApbqFBsIBCguLtbs11966SXuv/9+br/9di644IJJmfGNJ3/5y194/fXX+cc//sH999/PFVdcARjlvV4YGZRBfFx//fXce++9WsO/o6ODtLQ0TSg0JyeHhoaGiTzEYwp1CXjXrl0UFxfz3HPPkZiYSGtrK+Xl5Wzbto1nn32W+vp6cnNzKSsri+lnqdJChw4dijF9VDOtgfydxtJEsb29naqqKnJzc5k/fz6CINDc3MwNN9xASkoK//73v0csYHu8cMkll/C1r32Ne++9V3tOjOA0PIwAdYKzZcsWpk+fTmlpKW+//fZEH85xhVryUpkxYwZf/epX+epXvwrE9rPefPNNNm3ahNfrZf78+VqWtXTpUsxms7ZU3NzcrPk76ZeKbTZbv6VBleGeHCORCBUVFUiSRElJCQkJCciyzJ///Gc2b97MXXfdxVe/+lXj5NsLh8OBw+FAkqR+y7YG8WEEqBOc999/n1deeYWtW7dqnkEbNmygu7sbURSxWCyGd9YwGeykNFA/6/PPP2fbtm38+c9/5ic/+Qkmk0nrZ5WVlbFo0SJNWqi7u5vDhw8TDoc1qwxVb7C3VQYcuZKPx0FXNUXUK1vU19ezfv16cnJyePfdd4/53a2xZqxlnI53jB6Ugcbbb7/N/fffz5YtW7jooou44IILtCGJJUuW8L3vfW+iD/GEo/d+Vnl5ORUVFaSlpWkBS+1n9fZ3Uk0f1UwrHtVxiOoB7t+/H0EQKCoqwmazIcsyTz/9NL///e+59957Oeecc4yswGAkGGPmBkNDH6BqampYu3YtnZ2dLF++nD/96U/9jkUbjD+KotDW1hazn6XvZ5WUlFBaWkpqaiper1cbwtD3s9QPvemjoig0NzdTW1tLfn4+GRkZABw8eJAf/vCHFBcXc88995CcnDyRD9/g+MAIUAbHNt3d3Vx99dV8/vnnCILAH/7wB4qKigzvrH7Q97PKy8vZsWMHHo+nTz/LYrHg8Xi0TMvv95OQkIDD4aC7u5ukpCTmz5+P1WpFkiQef/xx/vSnP/Hggw9yxhlnjHnWNJjy+AMPPMATTzyBxWIhIyODP/zhD5p8ksExhRGgDI5trrjiCr7whS9w9dVXEw6HNQ8hwzsrPvT9rPLycj755BNMJhNLly7VglZBQQFPPvkk+fn5ZGZmEg6Huf3224lEInR0dLBo0SIefvjhcdlrikd5/N///jcrV67E4XDwyCOP8Pbbb/OXv/xlzI/NYNQxApTBsYvL5dJMCPVX7UVFRYZ31jDR97PKy8v597//zUcffURBQQErV65k5cqVLF26lJdffpmtW7dy1lln4XK52LlzJ1arlbfeemtMM6jBZIl68/HHH/ODH/yA999/f8yOyWDMMPagDI5dDh48SEZGBt/+9rf59NNPKS0t5aGHHqKlpYWZM2cCkJmZSUtLywQf6bGDup+1evVqRFHkhRde4OWXX6aoqEjrZ23atIni4mLefPNN7Ha79rOSJI15eS8e5XE9Tz75JF/+8pfH9JgMJhYjQBlMSkRRZNeuXTz88MOsXLmSDRs2cM8998TcZrLq1B0LnHTSSbz33nua/I66n/XLX/6y39tPtnHpP/3pT+zYsYN33nlnog/FYAw5tqSTDU4YcnJyyMnJYeXKlQBceOGF7Nq1S/POAgzvrBGgKlJMJrKzs6mrq9M+H2j/7o033uCuu+7ilVdeMSZLj3OMAGUwKcnMzGTWrFlaf+nNN99kwYIFmncWYHhnHWesWLGCqqoqDh48SDgc5oUXXugj5vrxxx9zzTXX8MorrxgXJycAxpCEwaTlk08+0Sb48vLyeOqpp5Bl2fDOOo7ZunUr119/vaY8fuutt8Yoj//Xf/0Xu3fv1vqQs2fP5pVXXpngozYYBsYUn8HYUF5ezlVXXcX27duRJImTTjqJv/zlLyxatGiiD21cePDBB3niiScQBIHFixfz1FNP0dTUZPhnGRjEjxGgDMaOn/70pwSDQQKBADk5OQOOAh9vNDQ0cNppp7F3714SExO5+OKLOe+889i6dSvnn3++Jg21dOlSwz/LwGBg4gpQRg/KYFjcdttt/Otf/2LHjh3cdNNNE30444ooigQCAURRxO/3M3PmTN566y0uvPBCILpg/Pe//32Cj9LA4NjHCFAGw6KjowOv14vH4yEYDE704Ywb2dnZ/PjHP2b27NnMnDmT1NRUSktLDf8sA4MxwAhQBsPimmuu4Ze//CWXXXYZN99880QfzrjR1dXFyy+/zMGDB2lsbMTn8/Haa69N9GEZGByXGIu6BkPmj3/8I1arlW9+85tIksQpp5zCW2+9xRe/+MWJPrQx54033mDu3Lma0vf555/P+++/b/hnGRiMAUYGZTBk1q1bx0svvQREFQa2bdt2QgQniI41f/TRR/j9fhRF0fazzjzzTP76178CJ85+1muvvUZRURH5+fl9VD4AQqEQl1xyCfn5+axcuZLa2trxP0iDYxojQBkYDIGVK1dy4YUXUlJSwuLFi5Flme9+97ts2rSJBx54gPz8fDo6Orjqqqsm+lDHFEmS+P73v8+rr77K3r17ef7559m7d2/MbZ588knS09Oprq7mhhtuOKFKwQajgzFmbmBgMGTiUR4/99xzueOOOzj55JMRRZHMzEza2toM/UQDMMbMDQxODK688kqmT58esyjd2dnJ2WefTUFBAWeffTZdXV1A1HJj/fr15Ofns2TJEnbt2jWs++xPebz35KL+NhaLhdTUVDo6OoZ1fwYnJkaAMjA4xvnWt77VZ5Lwnnvu4ayzzqKqqoqzzjpL6xG9+uqrVFVVUVVVxeOPP24sExtMaoZa4jMwMJiECIIwB9iiKMqins8rgNWKojQJgjATeFtRlCJBEB7r+f/zvW83xPs7GbhDUZRzez6/BUBRlF/pbvN6z20+FATBAjQDGYpx0jGIEyODMjA4PpmhCzrNgOrZng3U6W5X3/O1oVIOFAiCMFcQBBuwFuit2voKcEXP/y8E3jKCk8FQMPagDAyOcxRFUQRBGNXAoCiKKAjCD4DXATPwB0VR9giC8Atgh6IorwBPAs8KglANdBINYgYGcWMEKAOD45MWQRBm6kp8rT1fbwBm6W6X0/O1IaMoylZga6+v3ab7fxC4aDi/28AAjBKfgcHxir68dgXwsu7r64QoqwDXUPtPBgbjhTEkYWBwjCMIwvPAamAa0ALcDvwdeBGYDRwCLlYUpVOILiFtBr4E+IFvK4qyYyKO28BgMIwAZWBgYGAwKTFKfAYGBgYGkxIjQBkYGBgYTEqMAGVgYGBgMCkxApSBgYGBwaTk/wd1sUcynvMIGwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ "#%% barycenter interpolation\n", "\n", "n_alpha = 11\n", From 827e840447f47c8656d90202db774d23ae96fd30 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 21 Sep 2018 09:53:11 +0200 Subject: [PATCH 09/26] add badge pepy --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index dded58231..8491dc529 100644 --- a/README.md +++ b/README.md @@ -4,6 +4,7 @@ [![Anaconda Cloud](https://anaconda.org/conda-forge/pot/badges/version.svg)](https://anaconda.org/conda-forge/pot) [![Build Status](https://travis-ci.org/rflamary/POT.svg?branch=master)](https://travis-ci.org/rflamary/POT) [![Documentation Status](https://readthedocs.org/projects/pot/badge/?version=latest)](http://pot.readthedocs.io/en/latest/?badge=latest) +[![Downloads](http://pepy.tech/badge/pot)](http://pepy.tech/project/pot) [![Anaconda downloads](https://anaconda.org/conda-forge/pot/badges/downloads.svg)](https://anaconda.org/conda-forge/pot) [![License](https://anaconda.org/conda-forge/pot/badges/license.svg)](https://github.com/rflamary/POT/blob/master/LICENSE) From 462f8ff7df283a922866e32dc6b3eb604f35ae3d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 21 Sep 2018 09:54:27 +0200 Subject: [PATCH 10/26] typo readme --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 8491dc529..c3d647412 100644 --- a/README.md +++ b/README.md @@ -80,7 +80,7 @@ Note that for easier access the module is name ot instead of pot. Some sub-modules require additional dependences which are discussed below -* **ot.dr** (Wasserstein dimensionality rediuction) depends on autograd and pymanopt that can be installed with: +* **ot.dr** (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with: ``` pip install pymanopt autograd ``` From 697bd55a152d6318e292cffdac2ec18ac4528d30 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 21 Sep 2018 10:08:26 +0200 Subject: [PATCH 11/26] https badge --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index c3d647412..d2f0fea46 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ [![Anaconda Cloud](https://anaconda.org/conda-forge/pot/badges/version.svg)](https://anaconda.org/conda-forge/pot) [![Build Status](https://travis-ci.org/rflamary/POT.svg?branch=master)](https://travis-ci.org/rflamary/POT) [![Documentation Status](https://readthedocs.org/projects/pot/badge/?version=latest)](http://pot.readthedocs.io/en/latest/?badge=latest) -[![Downloads](http://pepy.tech/badge/pot)](http://pepy.tech/project/pot) +[![Downloads](https://pepy.tech/badge/pot)](https://pepy.tech/project/pot) [![Anaconda downloads](https://anaconda.org/conda-forge/pot/badges/downloads.svg)](https://anaconda.org/conda-forge/pot) [![License](https://anaconda.org/conda-forge/pot/badges/license.svg)](https://github.com/rflamary/POT/blob/master/LICENSE) From ae1ede4ed31973213b5945721b7b9fe8e4992a1c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Mon, 24 Sep 2018 11:00:14 +0200 Subject: [PATCH 12/26] update doc+notebooks for convolutional --- RELEASES.md | 11 +- docs/cache_nbrun | 2 +- .../auto_examples/auto_examples_jupyter.zip | Bin 119618 -> 123577 bytes .../auto_examples/auto_examples_python.zip | Bin 79365 -> 81978 bytes ..._glr_plot_convolutional_barycenter_001.png | Bin 0 -> 319138 bytes ...lr_plot_convolutional_barycenter_thumb.png | Bin 0 -> 54369 bytes docs/source/auto_examples/index.rst | 20 ++ .../plot_convolutional_barycenter.ipynb | 90 +++++++++ .../plot_convolutional_barycenter.py | 92 +++++++++ .../plot_convolutional_barycenter.rst | 151 +++++++++++++++ notebooks/plot_convolutional_barycenter.ipynb | 176 ++++++++++++++++++ 11 files changed, 536 insertions(+), 6 deletions(-) create mode 100644 docs/source/auto_examples/images/sphx_glr_plot_convolutional_barycenter_001.png create mode 100644 docs/source/auto_examples/images/thumb/sphx_glr_plot_convolutional_barycenter_thumb.png create mode 100644 docs/source/auto_examples/plot_convolutional_barycenter.ipynb create mode 100644 docs/source/auto_examples/plot_convolutional_barycenter.py create mode 100644 docs/source/auto_examples/plot_convolutional_barycenter.rst create mode 100644 notebooks/plot_convolutional_barycenter.ipynb diff --git a/RELEASES.md b/RELEASES.md index 05c2edbb5..68abcb3b7 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -6,11 +6,6 @@ *This is a beta release and is still a work in progress* -#### TODO - -[] Remove deprecated OTDA Classes (PR #48) -[] Speedup Sinkhorn with einsum + bench (PR #58) -[] Stochastic ot (PR #62) #### Features @@ -25,6 +20,12 @@ * Stochastic OT in the dual and semi-dual (PR #52 and PR #62) * Free support barycenters (PR #56) * Speed-up Sinkhorn function (PR #57 and PR #58) +* Add convolutional Wassersein barycenters for 2D images (PR #64) +* Add Greedy Sinkhorn variant (Greenkhorn) (PR #66) + +#### Deprecation + +Deprecated OTDA Classes were removed for version 0.5 (PR #48), it has been a year and the deprecation message. #### Closed issues diff --git a/docs/cache_nbrun b/docs/cache_nbrun index 0745a21e4..575adc8bb 100644 --- a/docs/cache_nbrun +++ b/docs/cache_nbrun @@ -1 +1 @@ -{"plot_otda_mapping_colors_images.ipynb": "4f0587a00a3c082799a75a0ed36e9ce1", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_otda_color_images.ipynb": "d047d635f4987c81072383241590e21f", "plot_stochastic.ipynb": "e2c520150378ae4635f74509f687fa01", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_1D_smooth.ipynb": "3a059103652225a0c78ea53895cf79e5", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_barycenter_1D.ipynb": "5f6fb8aebd8e2e91ebc77c923cb112b3", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_free_support_barycenter.ipynb": "246dd2feff4b233a4f1a553c5a202fdc", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"} \ No newline at end of file +{"plot_otda_mapping_colors_images.ipynb": "4f0587a00a3c082799a75a0ed36e9ce1", "plot_optim_OTreg.ipynb": "481801bb0d133ef350a65179cf8f739a", "plot_barycenter_1D.ipynb": "5f6fb8aebd8e2e91ebc77c923cb112b3", "plot_stochastic.ipynb": "e2c520150378ae4635f74509f687fa01", "plot_WDA.ipynb": "27f8de4c6d7db46497076523673eedfb", "plot_otda_linear_mapping.ipynb": "a472c767abe82020e0a58125a528785c", "plot_OT_1D_smooth.ipynb": "3a059103652225a0c78ea53895cf79e5", "plot_OT_L1_vs_L2.ipynb": "5d565b8aaf03be4309eba731127851dc", "plot_otda_color_images.ipynb": "d047d635f4987c81072383241590e21f", "plot_otda_classes.ipynb": "39087b6e98217851575f2271c22853a4", "plot_otda_d2.ipynb": "e6feae588103f2a8fab942e5f4eff483", "plot_otda_mapping.ipynb": "2f1ebbdc0f855d9e2b7adf9edec24d25", "plot_gromov.ipynb": "24f2aea489714d34779521f46d5e2c47", "plot_compute_emd.ipynb": "f5cd71cad882ec157dc8222721e9820c", "plot_OT_1D.ipynb": "b5348bdc561c07ec168a1622e5af4b93", "plot_gromov_barycenter.ipynb": "953e5047b886ec69ec621ec52f5e21d1", "plot_free_support_barycenter.ipynb": "246dd2feff4b233a4f1a553c5a202fdc", "plot_convolutional_barycenter.ipynb": "a72bb3716a1baaffd81ae267a673f9b6", "plot_otda_semi_supervised.ipynb": "f6dfb02ba2bbd939408ffcd22a3b007c", "plot_OT_2D_samples.ipynb": "07dbc14859fa019a966caa79fa0825bd", "plot_barycenter_lp_vs_entropic.ipynb": "51833e8c76aaedeba9599ac7a30eb357"} \ No newline at end of file diff --git a/docs/source/auto_examples/auto_examples_jupyter.zip b/docs/source/auto_examples/auto_examples_jupyter.zip index c6a7e903ddf52d6421f7b95394a593ad7bb987d2..304bb06a0a489d3811c988f55097c2191ee78370 100644 GIT binary patch delta 2095 zcmcIlUx*t;7~eh7mVyD1YiqS-G;rDV(!E>~;V2wj>a%|yJbTdSF}pjP>~(i$nVrpD zw6gl7_`1r1Pqk=$5jiMQq~e314?=0Jq9FCrSLs{z!9U+jF4-j4Kr0wFn=jwr-+bS1 zX1>03;EQh#?3OP+&{$u&ym0Znp@fgWYg$UU^+#?>;Y#l*{nC32cV1q3Ze#bz>%WyW zO@7OorbPi0n+~Hr79_%F6bISj!pY0%&!c+j*>N?>HY#h+`$3Szf@48Ymu(}_C1}#? z431;MV?lh1PGjD82o;34sh3bk=10s!FTU^++GhM*oPGG&SJ{QRL)ou$YuPdLc>d9O z{f+FC8qG>y?xx-{T1Cs~B#Hvd4>`fEQL(Hg7Yn?^iR*9{$5uo;74z(=DuSo}3e>63 z4ssLc-2Q;ZjDQr%bP48Se@Jsi2t)|RM0a0Ao3Jv5@U)WR}Bm*dzbKEytU~W@tZ~7rl zJ0u3%Gg4EANwb(B%!!)0#}bYl#wm;%ei?Ut3Y>_+hy~gPmLQuTUyeRv0a#pQ_mS-f zK823Te1#22(WX7wmJtkNxr%D9!WSMBAob)>3oEFl!_X+3G-2Gct4P_aX`{58*<0(~ z?9-nQX6+wK4K@82ynQ$oz6gj>xfiO(ur$f= z3gC7^s9rf8BqXlLMRU?g0?hr_u-Xa{<~Ss3dw>O8YgVn+gaI>-e3^!0+93wDQ#lV9 zhk2?^5qzY>*0{rzUHZVLi4$9HZ%D9buc9&0M^6`j(IO;VgtiO{$OK{s5P1Q^!bp7+ z*jD6$JvrgoA9-%w)v-ugM%%>ibVaPF1m_MMCW$k}k7;tCRN{e;2qVc8LmmoZ$Akp{ zZx$s|km^Mh@RN)g_iK#&puvM|XoO|x+LtL+5lGq}$dI<3jv{;yCbJ5YQjFPB;@(h( zN!4i;!|4b+v5K4!N2^Xa)>r8VK6uBEjSBNTNt9tM3GPzBpy_acs`0byHU4|Oso_p8 zZ`gkYb8LO}|DoO#5Vcr)*dNt7KOA(odH>a8GS$2?axffLg5{g*`eSZUXS@;{aqcB%AAERfAWO>Xm<4K{FU10`k7<$e$L;$uCFQK+I9UM zC2ZW#-&a@n?Hl^v`Xl?U?);yd`r(Hs;N<9g{doTSP5s2&%C~vx2YsP5ugz;eJ*a8d JZs~B>{|jG^f@J^z delta 127 zcmdmal>N{$_6^F5n9B-eH>)kG(O|w-D7$&-DHA>BETG7pAJa9NGYe$5mnktWn=(E1 z5u?cVuw#tj5+L={H{4@%0I8q;`5t2jNd5G>`;1e;>ct)~{$ree;65YE^vp+$QcObI Zr?)<0RO1t25MgL#Wnfr-mXU#h0RZ*|FTVf) diff --git a/docs/source/auto_examples/auto_examples_python.zip b/docs/source/auto_examples/auto_examples_python.zip index 28ff08e9aaf050976937f732068f9cf9f82a5b33..3be8a761e005e2963ba6bdaf6517c44133327ef1 100644 GIT binary patch delta 2453 zcmb_eO>7%Q6!ypsB$LJjN|ewvWooOkw{ac+tV?2)CT)mB{ zoW$X<^ia5@LTH67B(9($AyAq^BraSLh(k^la6kx7{8gxjA^{O^#=mh=Q4lNtynWyI zz4!Lbo87(g^PW#$>FPW8w0Fo<(CfW(VSGK@8{g~w9Sl0SdB6+EdQyJB zS9pGyIyNATk@GJ+B%qbT=l2QEX}vHcjI~!+eZrW2bL2t6dGX!7J;GyrxY{o~Tc66^ z!jt^$<9)*T^_zu30nOdM(j&_F{?9K((v9_Q6cDnFuZED@GXWLNY+kz=d9TOg;a>vv zo0`GqvxdHCXl14vI@RVg)T(3^oheqttl+@m!`Qui`>6-;$#xcTZw?-G(|?V)(dmA7 z_O<>uKJZ;sHLYwji!y~2jU~d03fV4tj@q_j*-TM&a-x|A=gWGQCnrXpoSS`?EE(1% zJA(awKgI!)F0-OxrQ9cw-+kxXVfXrD!>)I$*n5gHN=!>JspW314!Kh+UG9&MKJH+Q z^D#0>V&o_>wTN1>6q*YKBayKjD8?)$m$eMrj+lBOD9xq91U~VLI3K^eCRfg0+QCok z&Ubi{qCzdULm}_3-~whCtk@~QX%NgoY5a2FXN>4(#4eXY`IuCz7m98<Pnp@R^w z1;KpaMc#;J0ijr!L~9>O!i#+U06SZ&E(Ay&=OACKmawMcFvoazIx()6-0#kucjsU4 zc7wn8`Uur?WKp%tR8v=A;10Ux+xxr$jNP@P!w!Z?V=B{>Q1D(x-i8a~qaKuSwgl;e zC$zF+2jPM(rBK$WrLIu1BVf2`NrCoY0Du^cM58j!8x~P{2#e|kC8TGZ`Z7oYKK`FHfW`ze7DIjE}X2)@puI3$Bj!9S@F(eDZtgS??Jkf5oWW!w% zwp*BFOVpgqmRjB9G*}V3tlFWVk_=66KzXkyA~((92L$rArHSx1I{xG+at zS^R%b)=|Y>dwN#>x2bJqd$0h>Qn(v2!##9$$Z0fxdp8Xh$-p)&Q9T0Vx$7e{o(rYJ zd=rNo(=6RvWqd#KCQ2AyE?l#4KYzM!7=Cop#~<(2kD_RTKi;dqMbR;iRgc8bDFM9{ zL&t^ZdJLt6aVv&S3uq#a#)XH)(WEeL#L=`c?!?hljgtU_2Yfk!W`yU91Uf4`LvlUx z^D=ryK-XlD^D=&t(UXEBC+l$*ljyj-+dBq-PvXao%Nak~<&C5IM*{6X1QpD@^);LA l^Lae{`$$bxSDp!@s^drdtGAM<+c)4D@Kn1zo~tPY_}|g`+@Syf delta 401 zcmdnhz}otTg*U*PnMH&F1g;dyZse8WW(Lxmb-0aqn6CjDiQ*S!z#^t5Yq-H8PwdS^ z!3^2ZC?T*^Rr)D5=Bq%(?s@4FV8+I_9zL)dhpDoHU^NNLcsRi#`RjWGz#{+ln{a?d zOiyeR1~cB>&JqVpMSpJP1T!B0ISaOQ`(_SCWw5sGHzgP+bAl|{9;UMi;P1gf*ibSY)O(qZOEO&6?32ETv$>XaO>4dbACrEtoOehS346 z=AI3sJw%NykO49<$(GR$Py|HJMW=c|;&gsCY%qPMi!r;luz_84K5g7ge`aFm_ diff --git a/docs/source/auto_examples/images/sphx_glr_plot_convolutional_barycenter_001.png b/docs/source/auto_examples/images/sphx_glr_plot_convolutional_barycenter_001.png new file mode 100644 index 0000000000000000000000000000000000000000..14a72a36adb7e799bce0ad6f7e98ec59f72b69e9 GIT binary patch literal 319138 zcmeEu5kmkrwyjF2%iA@#5~qHCRhq9E!WUOQ4kC4na}~5FmJPE`5LZ zKKK3!_rse!GnvfHhs-&9ue0~sYbQ=iLlGZ`8V3mp313-B?gJ7M>fXN%3*-5WdePk9 z=MOYb8D(9p=T{JxP3-e`Y&Rt%Pb4Hl%YPeknN+F6^GOjec|$K9*H2!)mL9f9E|y+y z&aPh04puLHY&|?3TtB~j%l-W3dTH-MxV@^Dhe~sb)7qINeGDr4!a9&rh?VrE7 zgf95OFeSg_JzjcpiFwafda`FRZX!Z&IZtkCgGD4C$BMGdb2vS{CJeq{ieOkL#uCTg zxW`Ik5lbovGi(KgT@pv&QkqJ`QCb!tUT(sT%~90IQE@+nGXkhjtywdJ+|#{x za@{a!oq(Q9zTfC!LYV|&qs(#jZ&zVw%NGyPGKEqG6+kqTA3(wh#FD>Od+J;2>7ff- zYa-c3F^%RUMtv(K5Im#^!V}5982;RFFT6wzYnRX2>*giyK5JC8z8I|?+)3@AkEy^C zTI=FDd$FKcH^%Do%^5>e6F{}Ep%|c99mWRnkU+!pU#%i^P!ohzoC~LUq98p#ETnkE zdYqp-&(OQAd(W*CcCu8sN|l~7ZAcl#&7&&S=k9M0(X6qSrZ$iXl;DJL$t?xZ&YZ^X zRcit#+WEm}r|Gce1q|nN-|S3l3Psq?p1JgJvCW#XGgGpDE0@@! zTHeGx>k{B>G?{1OuLd@zTs!UvNcywN?^`_=&}H^ka7Ty-qJ7IC9z#g1xv{>P!_X0v zcYjH89b_t6eezd3#sGYL5)VPoHRV2u)1*a3lHC8=>ej`-*jY#zHnDl?#9)Sslq=p{!l=*Xxwb>dxLvr1v=|?4bx&xfL4S;qnN??o)pSYz&>>jrd`}RJ_ z`fc37t(ryeaW8Lfo{dTJhzua1i}IjtDcYa0m=^n+r0+XgJ#M|4{iMqaC~L%UP7)^4 z+N$u{s$W%L%*19Loj3-?W>6Teb$AWwl!MvOsH0_?pD{Hp*_O@8(hTHk=Hq;^veRfK zOtxXeYXGba7PV*~lzOi88(4t@oyBn2gep5Hd)CVpOma!>X0MOnZv=!%}k%vMWe^%sa=8NHeNwNwr+v8C)X;F zQ`;CY4W1;G*^KA`OG=VVq(WlYLYTH**YB$Uz85?7b2#VVDE`+ugGPdGIakPbCV)mp zs)QE7Bw+t<@3&^0wGHaP@tSNYO?q#?ZMFe!)F8E0cQKy{_bDV4q?~V<()(WdX=7#e zCBs38*rdtIlZ$oy-1gRC#a0PHZn{Pb{~BOtu4q4Io{0SD(|wb^Avb<9fTFGWz%6io zYu^9(;zzCI$T&c>%ei@|(v@LrUbE_?f>mFr-N;~jkX1s`V+Jw^HCcmUuC0sS&%_8J zh1ngu)KQ&vSy}Vpg*5Si?+&R#u1F?N_8EL5i=0ma=1+;u&l{M72F8U;gV^7PYY_ZQ z2X9wzJjnJf=VY0GxX6`L);kagwv1ZJo znK*S9Tdh8D-=s;hH?dhyJpC4Dv^_D|`W%YTvP8vSt>z zW+b+@A)I~bknIu>1O62LS)vQz#+@j>r^4=)BeN&~asDAUyWB8Xtrw$yl`QE``Z1GO z5~FQtOV|sG_~d;O+J{&+=%8re)nxVHeu~`sgUbs!82E^~%9Jj%deOiM-I}yR!@6E+ zWPW}iL-~4hX32TDOnc1Dra@@N9=#UnYmy>I!Ua<#HStB+w1V9zcN&m!W5phSHSt{> zhA0)+u}csiT8<0sbQO<2;<6E22#(+OXdid_ z^rp|A+g$NE;|L3=NPDkPW)7!9B+wY%emUi!;|=jNVHUi`1eaJbE#eX?!7d*IC2EYDHI6 z@YS5>b*`^?giz?YuQ=Sc8@CUjVSe{V>SFjB(u=sfrpvofq2fx6l){;c%WIe9Q;7R~KwMrtXLCgyHA zA|zB|)5gWUr`fRf%`Mn2{8$l%E=4&HL?RV2EMwjL*05UC83O<*Rwfzc%1vfPS-*`< z!WV`~2u2JVC!$0EdE4$+nIf-fu+pUAZeBJYmfUlv#^t8jqV!7Z_^A~~tak*m1PU|TJ&D(6N`W69}Td-gb zA)Z`>3eM;XwSN z*^qZDeM92hJST-x9EUU(``wOc9?Y`VY=u75_+Gw8Y4z^b?mq!rpRz`bMMF9lN#7@1 zzLhLFeZAORV0M`RF;f;P+T z%tDbuucRJ?PNHf<1f`62pMuqL|X&4$~bRe-A8ps zlwL{FzLHi>!KYd^fiXu5R-NiHN_eOsQ8Wf38ENO&xhkCBLHRIIE(7`npXDMWSyAN8 zGM%>OIpJgemK>lquOXV5M~rIEr!{;}0HCb&EQ*)F74RxkP$N;gTa*4sT@WqDIruEw z)%n?M(unOlo0Ft9t<{rT^P8gusYfWiaMR_Z2dA}Twnhz7w@{p|*|4OEeOhq$bT50_ zzAx0qo{zu+q-e^AV(XUMm_W1N)u6H`1&0wfN~5qJlbA@9(KT}Uqf2UAw>X?dby9}qc!+;dM4BK_28NEiSV6+EfWjG-#QMSqSzeFqA~TBFJ~SfVU{00p#quV065Y@P2u`8fwBJY07C^p7!6C$2i7G z5_>MXI(f64pz6V~lrt}QReJrNP5Q{TzaaIczZyXV4+f@)YZt;=waBk4Nnz1@uR)pt zgD~*Wvm%;u$gv|zj?P;o2E3P22q4Y(mix2%wWT?_bM$-0)-7A2_Qx(d-$~4%jn3Q= z#M7UclSjlx@XPI>-|wUljn^=~?K`PUs{38d5Ru2fu6H(FS7boKdtVc)#Oq5jnyxL2 z5TxFda52B9yW`FF(91@`$C%K|oa+jBz#GX+9rI+K$NR-isoScJu*?nfZ{7i%~m6Fh>76WR`-i7JnHhK4;9O{$#m^m+6w$Y0|CZ1cOtS z%_`vGzYiKBsSD_Msu3Cn;Woj)3)U`bV)Ks#<1Q@S+#)zh9QX)E;R)d{v0DhhJn@TV zunz<$+T=33l)Uj+9VONmyl*MMxrx#Oc`f+w>4T)Vqpe@3y z##OD)ek)65=c9zdB*ce-tz)g#y2r~!@#7*I2O5TPd{K(bp(Orm`dxs!+)-(-gW&Uz5^9&x`VaPwg7$01Xlv#H&Pl*}Awz1j zE4xI22N^}1)AXzRB3?$ioor2wt}D}Q)q=8S0xQt`mAc~>po3sdwhI?%^3B5Y@J!wX z+{;bj4T2q$+)oSfFPiP<8md-&Ih*C*THcpZo+h2$De7B zooSD&(oZjJBsRNzg)InoMA=7Xr?38=E`6T$3RJV()E_@|*JM0B6Uo6>R4r1SoBlw< zG9Bx6lN3W%OnO}V2K;b=4L&^#zUO&D^h!S+=XLdv zwIT3wgU11z%dJRHD1FGtcrT8=nInbhtb4G|157?$XKuZd+~N}t>1xaMW?V!;7iIjL`cZr=sVMF< znnLcycKujXJquh5rvZ7CF@1TqiEhgEjw7QRQ>LuZ!9{^Y3NC*Cp)1dtIUJXrrFnuu zH7Z5C#l%1^MXm72hRF=g{-)#bahl_rzEh0=pv zlS~}7+$+iAS4sf`9n?m*E`+PAZ%6)8G6^p7zhpIq(M6;*;tIFgN4ij&sSdHR#9ChX zT>bLB-KNGWUD)DEI0w|g{KS`kd8Lex6k%OV3v?{!>gOla>qve|)UBBunOGx(w4DpT zrI(#D{7afB*ioe3kK}kUy+>`F10$@~f_n}PtxCFKTATqNRf1)+)=$r0I-tR5dd~3u zP{Vppg`Q|12PbdQ#9I#P{E*uByDx>|5|3LvAy}c0o3b?j0$Tm#GBhJ8T%$$_<-kqN52OQda4*?~$KbrLV# z5+Pql?naIk!je`b=(dgm_QkT~s@VS9+6~}UkL^Sd4{p}2-!g&jjarP2`rKVrtpp6BQX}gL^=#B+GMsvwJzIKfOCAov|W*fXo##-AJmEF5D6`_ zmXqXtCI1&etb|wDe9Z58Fh+?S-?unw8SaWgz3*huk~>N1_zX}B=1?8Pp-donb&U3J zZE8SZO{!#`P$LE=>c*SR2NbitpRJA)ku~Q_Ui6jyTh5klfmlmisL36q>+Uv=6&Z5A zqm=kXs1;}Q_8B*S_Xl5mb3T6>CIl~U^7QUoKo}kvo+htR`z_!&6R}%Tm$nu$u6L8Y zXd92kz36!-4Mh~qvBs_vl74m(Qnznh2YDX)5M~a+^pxqr>%B16)8Wty)>FlvZOzTl z+x5I?K(tm7&?uTuQHQd`1kmEb;`dA-v4CRfOwR%=2KY?<1*jBq z#ELPGLw;@S zI~NACYh$4^D8`ib52ODBa-Xlm-O%~LFP8#ROx*JPoCM2^<+D5KPd@u*vzy7i>5@OxuVef+?j-`DXao@5j>Z+UK6dSGSPlY2WTM|SlU&PU+X=It)Eh=_%)$xNS$ zbz^zvM=_nGpEWH7tD-s}Gnx-s6Y^CK7-p-;McD3y%T>R)i4NwoLfRk!Vt)7cm~d1i z@X2H-+0!*9*k{m*zu?sT>5%XV?eT&{@%p^?ZuUeZ?;7oMFV;l2rXV@|epBMUnIVuT zWS@awZ=a!Q@!tPTV&mzZo8@|G!w1hpIxT=FfCI7TeYj zqd(tp`iLE5sI79Y)#cxwK^De;NMyc9t7?!oX!lFu^Zoz}<`Nm2HU0fp{!$NX%vBSc z0Bb&wLFV#voB?YjR%VWhWT2no)_^>|cmR4EJ-^FOBrW{+k^mvT#I{2RFGhaG{deXk zo0SGSXuMjiQAR|HAAPFk9p`IwA^Iuir5$J8D&;}I=n4E9BiZ(2`%QC4*A}Wrte$P$P!dT5NgkK{oFw@_e#B1FkHP|>36Ai+ z&k-u2P|pPYkR^tyAg{kT&fG|b-*mKEU&Eg`k^1s(kMh1~hE7=X#HW5Sl@fQ1Ovyw$ zdYbv(4Mg$~%i&n^?Ojxpqaij&Q^xb&rf7^sNJd2+98w8L`r9`}FX-jtf)};yppG@| zkvxlaSB9>hH2UT=y#fzPWRmVz?~2&e-;Os)U0!#WV>Z!QyDxIm!h{oMQKyrIUeaYS zg^_J?efgmLOXy}_mK<6RXjZWMuyIF;3`O`7D@lMVg)>z)Kpk%dizpL~wG9^Zn3eg) zl<_BahjQ+&*3z58Xjl0j&7B9V zSk&`fgjyh{-;BwNOaiNAJ6a|v(Ih;6e`y##SyFHC=tF@#y`MR3vU4u6iPl`h?6^X%j$+yvhG0dPS%JA>N{WHp^v(-oL zobn;=MYTTTvAHYBas*ehG2%?$X?^R`f)~E+?P9MoE)E_o3iq~wssJt zz3&qW;Y8Ye(0sDHUg5bly*J6bZ;05V(9C5Z-HRmhz#ir-^?J7~8;n0nvLb$iOMr#J zXg@@>)g9wgE}S}Xv*{8Fei0Ae^-*!JD@US^%0K?GR-UlYgF_1K91!bnfi}K_!&T|N zn<#L4{G`YN1_T|h@)3*6@Q%@Zm(5J#tIHYTwSOkO4hrLfC)~R~M^c_{55472z*e zcVxNR&sj|X=}Da4L@lcspQaHtzaA3{6S8S=&x669Mu@9hiSBPj0vW|lUh3Et+H^kFsFHYLCu-kGw~TGKIEM+F%j-7y%90*lSSUjllgSJb2MC8+9?y^)YB{B%*ZV zUiSLdU}K~*8F1pCcfpdJ8>6&=NADT}k1_q>js1VL0H>jkCxPk0uHORd)bKFjK@h|? zj}LX|79vzMWYVtdRv};f)-tJr)2w(<(cE$-vYwQ9DS_shrgmK7nlTX_r0kehOmp>DTNG-wS z;ZDP%VH~7cOaV;Pm5bd0YfyVc@SMj{%H0UAhyd1DJZ7FG{7pVtm+F9NyiQ5-3*~&( zw$ADKh|dxI+7#0ZwGEQqLc$CvpcVqVc7lP|zRi@yM*RCyujE24K<&=JxxHd_s#2Yz zX-SAS4YE!W6Pp8P1H8Dm^8-!^@xJI{*c48z=)*=_?39)PHDYnh=j1wyFn3c7e1

Al0G%H zFV6Svny7|~2kJL{?wWrs)<84avbI9ITC(ka!njk+Dd2I{Bp=^}C?a?9E~X(gfK_Lp zXpCg=&Ia(LBF~HcI`>S<#%%|7hJ4h>!5lcpw!~cFy{f$VonSyfNr&66JZYN~sID5` zdiE;4TX41>BXQ8v^FS60S#7+qS9ugs zsROwR^mM5tjGtb``nOMU>nlz3q^`;mx=e$UUz0m|z#L3ZVA0LvUrIC9SvQ~4=*2>R zlG={H0z#9;B+~2+6pm~`333if6mcz$a_v5`2BzkyKLb$SjS8R8YX|yeCVV7Nr$ckG z6W<#%={e*lpLpNGSlEi3#pq2aydmoBL4jNzHAT*bC;3Yht4H~1dHF=JkXedbn+|7+ zF5k;&<5ZwgL9ZEDr64f+NT@Xx%g0ZDM!Q|JdW>DJ*g>orfR+e?m~J^1FfWcavPwM8 z5O&i%9l)XSJ0D1oEC)I>-i6%KKJK(Wn00NkNx&;W1HKo~L}yCq=G7@5~VutJjSdCjngtaq|;3H0^Jnf%18&t3Ju?=^^pJ z<7X-))>L7nMvXK@Qq9URY=Z->m}k!4{1yDHy{K$UgJE$iz9_tOV~d)k{Zd`V2^~&q zT;rsTcAYlavcdl4;mZcc9kqWUH$){V%8{&AS12>)@1Qm3qUUQi{o$mBbtO8er2Ps3DIV!R^}e-yWGPT*d+3|wNw2R)un(yl2mS& z7o~+EC&=A|#rDffCt(U12}*gCUz$J)FLjc*UnTnfRCygFJ{ZlEUa&yO3~PWqd3q>Kv`9we&ibFO~Awj9+>dg& zo!9wy+@qPr-NZFr?USe9jDgn;ekp_kGBJyiOSiFY1kU zeXMXDpa@17KjdzcB#)^VMi zu|#HpWGj-+GAvDO4X0p9L)-)x<#ld>0$$RpvtE(Rv_=_N<%ds8gALH{RL18j{2l9W zo)?fJ=n)ihZs)3fy;cSB4QbGEg5P3UzS3xEk=1WAg;if z>iMaaObCq(Eg7DQ8QP2sWrgrFg==>XlFt^J9JbFu*K+dGGJc;`|D2?N{+?@D2T`j7 zBCtH=UNSMorsM_bms82&{p6EmUZ}-A^&3|g-`f7VPJE!w*ZhHqJ9_0w9POHN%gU+u zhY*TG(K+9gHS?5dkG~U<3a$%yQl2k3{)7!3r#WH2_(c$sjC~i>Q~q6+r)*7XU-Ic_ll9ymO2AKdO6CtVeJNM19__bX`g^(+@Rv}5 zux*J<6T1&PxA|m++R{~d62EL_5t4z?QjZo-&9?)C9H6LA_m5+>_kqHXKcy0RZYOHj z?@mL{a_vs^LU(C=d+w%YXnRASc6(%If<*P6wF@o zg&p4XE7_3N>WJ+-;R4kvQJ}ojL@2siQy=E(=tUPM8u2TE$Cl$T{JN#HJ z(~#1RP*QT8a=I%aN?&RsJD?XNY9qFRiB^t)vXlU|)`Ko_=g5P-%lqh9?E+b#rn5J=TQkzqYQ$NG(10-~6eP)EC|G9UkB3jq<^xZ;<*)6?9(tnEpvDc9W#>f^b; z#eTdp34PN&^+pHQqZmhcFW&QzV-d#F+uX+*x>lWKPUC_7KQL;o>3*4?^%_l=9+fS< z`5>yMJzo2D6G!32FR(1JARo57AB#IU$mOpHVSRKPKu~(du zDFEgdzPUr$M`|Kt$NxKpYP4MbWU&h406rpjBCl73ULF2~nbu(sv@_FQOYtZ+6d%j;FP zN?gLD4?TD3jb?Z#>CG_@$`}&Ssxfm7ne83e@Ed*;G{JCwD~Cr(YiNNTq{6Dld4){r9retuklc!Y8+ZKtM+O;$W2*G zmEpD;vDD@TYn0x&4eKv{`25h;O%b-@^F{%W+iEl~uAX{JA^Ihior3Jm2o{S1@C6l1 z=+81b?Z+>X?NBWQTfy<~OqiC{k6I^UkRBr!OE|qMT1>3xM$^se8$2OwSIkc%MHS|r zA4|Dqu$}TETgOE>vkrsg;LLL=$;xpTT5Rpm*QGUFofq9-rwys2^z7Vh_>|(qFvU4K9(RI0LMfts5eWPig- zS_rI3hqeVw%`5$hZ%Y!Tac)B1oc*5gE}C(UEcKM7;8-%IrPM|6Bt#?sE=`fEV8|sl za2dO?c)(kN_3v65UpY`@&jsMTjG2=P6d39@6B051Aj^k+)I={9X!&BMMz`u~vwXIl zcCi&#D*vJ~Cnylc*B0gpeU_s+LF?SbU}jqFbC}N;Oh; zJV(G!Ot%2>ceiWIir|{Opw-&#EU7K``}U2Sa?(9aynkWPh#z0%^|{fIDLUdO1KuD1 ztkpP|vs|c*>&%s!0LjvHJo+yVcVxbU?e~jQSbT>=@DWNy#^J!In_~sNhzQ5Za08xz zI2<~x@~4$)znv7^psMCrpcm$YV( zDoNJJDcqLR7zIx1Xswae&~yB`l}`bCx>B8h=l9pkNW9? zU9fMGmeBTz^HAz9!bqa6l;2W&xEj|@>UwR9_Nj)6EXKpmTw}d47mwan!Cc#2zR0B! zgYBNetpv{+CnE+oLBD6kmt^2lI1734*_~w2AMhU6%<8(pi~WgHc7=TXKPsw<@6~JE zUtLJdar~7GUR)%Kx?iSVX1pXSp}!!q!ngJ9{JP56+TwBN968N`Fr`N=n!`2fZSheI z)KGfg2`*V2@&wPA<9_|{>RAIvo-?9d>gH5_dd;zUsuyM!Ia7jf$iJ~3D9j+dfG!^F zn$UV*{Up?V!fW8t%Q5+g({mSkXM5lJ1hRNTtm*pj4c@i&wL|i__W^k7!noagcT_ug z#QeKYHcBy?$m7U#Zuh{S$7!+wvX(`q_qignLzUq|d-CMd*+M{Bx=_&DN=MeZG#Z+Q ze8<;ijL|Ew4m0@cKXfx7#|^oz%k4_)8OdDd!dPje`4;GfQlA=Y?nJjAS7~?Y_+PIO zd>-3HlF;Br-8_l)qQ}``Rg+;cUP-h}s*JyZF6hUp(vDqw3iC4VF1c=;pA-k)e~m(- zPd|PArooHK^+hwI%Y)5>x4kjOx49HUe7W{IQ`mb~89Z+C{fXOyI4#Xp-2^w~aN(jX ztZ(H|aXG)QU7L&wd-*k7pH{Glu@$)`%DqK3Ui=jI6qVE(is0V9pEJ%TAV&z&KT|fd zU`Q2W$r#Xo!!$MSH(}jON%E?Jm3e#SHl;}P;3XF{i21|L3b_fN$&7CU)`rlP^&fa; zS_tvifjLa}DBf4uLEK-;C}UQ#5S@CfChk46R`?KTg-D;uWU^*45TfF-jaho;&7@l! z;Av)$s7!ows>Cgtq*q#R?qf)Z3}f811vd9tSh*K%(;^+`5?&V|#BpgQFq|jp&EWO< zx_r_>@Xowt3B=a`FJ`Q;7rP;6$*r5^V!aft2F{&6W&gnRbEL?mO)xy_AtLeUuR}xG z3Pl^)?tZ%i>tzyVz=5qc$K4vs9|@3}W4zx7hew=H*8-{8;_QlZ+=|=9Jo`V=m^xIUq#fkrBKARKhB;RkFgTE0~2~& zO=uJ?Z-UC_ayVTn-bGe?akL<=y=bSJ%>A%z^_HX_nUt_2QD|fI7bUZrM(Yx5ib`j1 zOObS}`ut(s`;Sc|#&DCYMYlZi7MT&`7|mlLb--= z>};h>&$CA-F7oIvb8`JSc%DNZ3<7p?JK35UIxGJ-*p)vWwFXwR>R;o22AJ{T9LbL4 zAc{_3Gnoyu9Dmiv;yA=gf3Y=@ zw}vjPUCOcxa88YfEC?*F@67>3TOP`4<2XQc8kh;t1p?ni0^bGlQkn#BxEr`rmuup6 z__KBkOwCZb-Q_~4k0&qEYJ#@&wYHif?p&~?Q_l6HsVQfIS0?Zq0rd(jwZDYBCRvKg z7gBe{1zKG@R~^~17uz-e9M!Qz(Ev3a`7!o&1wD`RZ$iEGu_0-A&y*n-UduQs_Ouv) z=$q}OfTL4O7U^DajoQ;_Gihhy{&mkE%FD8PiNUPi8?mV;ObgFhCz&hh=i+g@&x*>T zr_}@cezWkE&9^az1MBxC=O4sXh5`cAUw3uh#GUtwjZLmG&oJgzw8Me4GNxTngSEZa&%9w_+36VdqwEk7N`~gmoC{3$<|c(%tRySX z$4H{on_N0)Mn1z=p?`l4%rQio7PPL>=t90{_fPcVf9x=?RSkg>ykEv_iYhF=buP#`H2s1ZuQ-e62m9y&t?`5znltD2ZD~t zqqC9+JKi05w+7?S0w(T1X9SZL=(0s86>iYf`eR+57b(5bMI}Y@%IUW%;Hy&mTtE@O zrO93%xUJHAk+s=AOD~1k3KTk96$0^RJZTdi<)s0S6hVPq;Ehl9ZK#pYonszHv21xQ z%_vu~7vok5c9JIId)neZAsem~jN7J3k@}qcb+GatdkE6pZ)K5~S>|%x>bhC6Zoh)< zCC?CfOK#X)jVqaqo=vOB6-2Lw7?ZI=H&TW3rQDEDdZ|S>uec?`5(f_0ktYM1Pr_tw zHBBvLR$)2q$t!W*o*RvyILGyDmpIJ_a%Nl1P3piD}gitvfx65HH88R=3W zAH9pN8eJn~r`aF+dV}29y1;v1F=t4`QOeP?o7wG%b^)~YOLP1FS@-)a%6YsAJ5L%8 zaGACv?C>m@BmN!_OZz?Z3!=uES_;=o<=%o6UvB_^@2$)witV|x1>l99#g6njHNI2$ zy}g3PbovuGqQo*DpYAD*cC+S}z1)-2f!lr@gJ_<8e^ywz>q&`y-r~2tc8Y{FOXc-k zU!gRlQMrhqRHrbuoG)KXKKc~j(EY^h6a)i29VFcgir|GDlm}jC7=TAy{ccXxYjJ-3 zk0;3q1H{+M(vK;|i{^Jp7HJ_Pl)T@>JL%Q_h~Xe`03z@YtE$2n84J#08!nzf2*3FF zO#9ZdaZ`JDKEcCjhS|L+%5VOK(xPdjjbmn8#Us469dWU+ z_&6I;D^lb#=}<7?qR-K6_`-UWjZ5$~&%=VevrC7veQ?|6rUb<~Km*&uyySsIrL6su7`I44uhDv_472SQ!y(Du z3s4U~j%v}Yy3=z<2Qa5!n-?nw1ns*F00@F0&L?fHr){n7!pnHVMkd+SnAv$I&VtJM ztNjC=*^XfxQ>zclE$W;Im9JJ20&CsTDG6*jBtN3spVR-?+#L7JYS#w5@*nx)`8=^N z)A$TVHr0l&f_o**O62a9gz)pJT~}jMi4u@mj`GYPdSj`CkQKaYZPgx~gEy2(pQrm* zKI@7}v+rl-#*bEu#?0gU^GNyijEHSqcRzd6U*78&*HD}%Fl%=j$^%k?G;5@(n2Y4` zg{1$SH8U-b`GWj5w_v*8kGTXktok446Za#dS&|U%wWp%=iUB68LUGr~SufjFxMtpX zLxv;TtYO(?^+u03fzgT5jt7I)=l5U9d5+4iF88|QYn+RS^M6_OaJ4GGY5T;`fpsn! zL(K{(0j>l%JNK<%;MMG=jJJT|-YYYvTsc%5Vrt2(n~@ioP)vyt!aT8p(*o1g|O7Cy-&l5;)=|m`4IWK zNmZ8GBX&Rjo$Uu=Rql(XSKmL3@fPa+VSF+mfqLduY=J#C^yfg`Wm&m%i({K8ErOeK zD<7(0RhmcDAWY&t_ItDV5#&Jey>?q;lT=gVm}aJRU~Iqq1vf=f13SpEp{`D0P5|7LsFa00wHHvJY7+1p2A~?{kYjh-*57j%F@kDsEdhF#Xt!J484);b zICHgRArJbnp>#KOpej)GX@~S;oyB23G?=;?`H&r?J1u!}9loRg#?W^y%4+>gJndN3 z0i|_Ad?$soA9tg+j{MaW(9zhd_KCkL=bl~B#aKjoXP=sQQf zGF=X)MQ>_F+=yA*nCI-Ee*O~o0vr%@&968b%NW(gBC^kL+Jhiu|Hn-^DaL#FpV|wN z96Ma!=}}V9(=d;xV)y)IK=fzIeBAz#jxFUDb)({big}1t(hmHt(U3K^36k^O0Kfxc zxGTSG1lXnbjae?XyDbx;sA(Bi7eWt}=5c>rhw7l-+uddiHW6d6;Hydh29d{5-ZP9jyt zR()L+jxazw`T~nYzQCS3APH13G_C=$cW~=DsB58)NN@vMLjBAsN`rCSEf54Suw|#W zd^RGBe$Xe3j_ZqO`S4Oxcg{?#3bSKWKK|52R_)DR01M@+mM``)w~R#O&%5=KB-U!VUd8i|St~HZl%QC03*|Zq>T&f_mykTcUAL zZA+IUx=ZQ2hVD_s?sJRa&g1O!oINkxRjo@G^ueDKSdPjE{@@(zPifGv`mB?B&;+m^!Ik^q`t2H zPs*>{p(s_Cw%*x`duF4SN7evWnjK=9pe?!Qe;oLq{{@L$gN(jlRa_M_+1bgl(3y7I`9p`nLP52OIkJ(4i+-;cf+W}|AX51jAOpkj& zuqH#&gh!T%a3y|UEQgueU93A3QF_=#P90&xIfdXA`c}(AKiH)Ns8CqfJdr+dCfbg= zQ@WZhLoYe3Z2x`M5WIo}8hE2`8{}ABe}wlZIn&(hZh-yD<}MDhPmdQ_fmCcdvzpDS;>y5OiX;i|vmZ<6nn@g z3}f}L+it&nn^wY2lT1F@0rRAY7HfmO`9|x^s|!y;3K!=r>+;vzT|d+oOwQ7p8CO81 zys&EACE>il6BJ@%!CxwiFU-YTpTg!UMUSG#nek^lDin=8T2!SRi-Dm!;rmfZ5{O$Nb%% zZ@<@xlMLP^0@rP=HS}*QqEp5R4)`}(iQQaI->~<+B5P<~bmNwG%4_ALh`L%7 zj^{@^(|9e#^Hd__^t0({QuPeBh=yZNc@kTOu|P|!C8DOWb_6kf*n98qiHh>T45LR(T3B^Yj&W(OuW!owwmuVp82<>sl~j(EnOzmRM*RKygo1$CdKhC? zbQ6pVO`hoY`M21=!Rg?+ZbCy7zlURyb%MornQQ(xWpj?Zidbdo2$j3m z?5}d>)YS|?6j5ltr>h-k$xqHW01bIw-&Xvyoh6Q|=#E{uj`IkW^If?Fv*y4RvAer% zfR<|FT_y~j)S7bXjm1pSDz_kTa|q=z=$RQwGq zzbtJ^2S*!bWtw7YhjaoO6qMmZLxrLwE^qYSHJBukQZW=Q*f$tbR_W839xJ{{21RKb z`jr2^^KNKiTx2{M^OW>!W7KmYTzKvNxi!pJj}2F4G3fKy5rJe}|7N8h4?35XE*}%a>9}q~!g~UjuL6szIVPtev{og_xj@g zvz0Q`|A9u0yePLkiS};9(sSEha99HSqHb5Sr+mH&3*$=s=7(%2p)Sf%#*upcIrG)9 zbH*JyS5HGv*Yn8VQE3!w0empXLLk*HYh9+l08i1xJ}sG?W2S&nD-%-swWmlnHByVd zHQ(M$&u<{lX)EbQ|yu|$R$lLW*Jg<)ZqxNVH<+_3a!LVMW$Qx|0zyZM!k zM+R?0uCsnz#bXV6<>%;Lzerg8Q0Eh@a{K9eSiAh4<w94v{v#G^L@P*%Pebo=g zgu~wv!P8}*Xi{aEJ;@a3;+Rvyj~x@i+6b}v5KVf3n_oahv- zK|(ER`o{DVug5uHL^?h8cVY#H(swaDaQ3!#sx4&`u^g*rE!C!g%-uz!$J^4lN0EP= z5%`Y2R<|RBDq;)^+>Ef*iaK1lOqrdp#?`AlCLFtO{|Lh-cp|^ zn&SWb2)EyQUlN72`zkB*wk6O=wQ5>NaSw>9rPGt$dZ(I01XvS7WvL*}iK(tXUPv6<|8;w^-ozz$ zuLh&t?6R@19daW*(9-Xzw_xpq1BQrScvA$<^=^~W)ZGHA9~wa4J8%ck$*}L_cN)mj%RW1{BUAz{bTEk zig`Q(>_!b@_Hou{KBR>xY}wo^6{n@=X#ihhIuo;{!+UcJ0q_~7Ja#U_EQ9Qh zD-LSzun{2-I{&f^rUFi zHx4?qG278h?}=3?KU+X7uOwVIa}LL7dbGm8=25ygncclNe5B^&(eRdUV>=m{9reuF zGh6ZW`-NYy%wFo9HM|r_%)CGmc-0T|trxhdJc?2j_s$3iHN6eR@Xj70$*3oKL>~xN zs_mTs%in&T`(f4qGs`&7)K88c#xPa)DW(EpJO^k6s$pAcaWk*+wX*%kF@U2B+pYVXHEC7auZ0CB9-+ z7foZnBNLoO2%F8uS~zcKQC5#M(+u)==Dx8nQM}R`l4{nnnuWC`1~DHERojWLgk@87 z8I$d7-0^yfHVv!RKAW&Bcr(8|vTBCyujcewi$nYei{;60%z=Rv0Ctm?Q`oF@N7MH7 z6AE8%a>eTGU#x!cTvMq9DHgYo|Lj=*JLUczNLwxs+$n1J9aZUTWLx%xylJIUXep$9CM(mazhSjpon=*%0~rjr zfphq*xZc05@qf9@6iSFI&iS<76a^Pcpq}kCG>jAO2iv!&OW{m=9;pHWT2BAqJ;eXn z)1>ua-`}O)Dx7iG6g&=cAiO!gFTDvlZH_j|OR(r%mpluMyz+`_X+#K7?WPl)jhUIE z(!^=#giy-4v8Uhc)4Z7wwe*4eE@PgaO)eJhb-%~Sl<6=M5+vKQpex9xrHSVMPnhgm z6!RnTxgPfO>_7dw&W0u**&@=5v(S&z9LRw(zJ3BsM2fZ@LtTAe;%90_tzovf%oD$7 zG}jTcT~(+VMM-bb)V2IoZcftx1~_5RU@E3K&VTn^@Os`fwQ5i6n8|BrJ{i$cV_0We zlj+-s=$L#Qkyd{%;a?u_tB{RjM2NjLwaAUG8;zPcsPH?q@e@Iu2S<6&C1=^qu?Ww| zj;%iGyXbVBZsaU-?%y|Yp@O|1hSveR#Cl~z-*Dnnjf~^Wlo8OT&8OytFqH}4+Z?Fb zQ@c=)dtQA@;|V9zCB&Kxt^f-K&8Pg#(+tbg%*i7OQ@-jA=mIBARMXJSuW|iyy29#_Pai zaZE046b*j5aMvA&U3UH#Gd++AQ-mijoYuZjC4YaiZ2dYY#deQ(VLIA=lv%LK>h*zg z`wlYbI^O8}^mO@TQ+?ACrYL-N9&2U>N{B#-8EfAAF|00a<_)|eOm*{~{@^8ZZ!yo> z%KOVTyi+>`UTlzJyHCb2>O%;pTIE6SQ-mf9T{w(7Shcy9biOd34O%U2XNhV?lc`E} zmJ$iQU!h@YJ81^`aZydzBsX;QZe@J~CFVTqhcx9g_Tg0VT&2p0_1u=@&s96yM-Byc(z5`%q)4E{zK`ydtKD~*0PZZ1PhVrN zs?IWf5^3TwnV#M6XzkX~ViD$&`QhV4#KH#8yvv{Iy8Q!pK0lO)nIcul1g6t`41_t| zc5l!x+kbuiE(kX-sOPrt>;5P|)K#Gx)V94Z6RHdP@pD0~J?i`d6;IVwJrJ0YDBH*n z2Q2=$ zU*5Ati}FqYC5V%hq3O#obj@|M6N=ez)C>2VnBh%G?$C`aVlr zM93kCrCa-cZ}LGd0L}c~)MNG{=%#sQ=_V`SpuKQ>ID0%^r10~*qR){zPq6(H0j&6u zq<9$QBv>3zD!3?t6113NR`2&HIo!E_vlhK}ljvuEy$7yM4pqupHH7yH&>19Tdn9## z&3isPEMteRZ;=YQZ3#HrX`hk3X`7LKBup9Yw~o$@o^Abd3Aw%runKuNj;?ouAG$t_ zu=L#ByQ2N|wTeb>e?2hB1y3REa(>Z(tj%A^+?|rwgiK>y9;YwHsi1@0CeXyr)h>dj zjLdo!6&ow$L%r-qLxw1m8mgcj0@tG=n{!gP1dQtpMjNi67B13IrlT|ol#}%Ur<=%t zr`hE@Vx`&#k?WdY#Qka}yj?^wRHvA53CL2y#pd}ygsh_#`8UQ2%0JMdiu|W)S&RXb z8NTnEUA+tq`8N&Y?2IO>monMvSx*}i?@9v<>t-*a%#heUP?8-$0e57EY*NgC9#OY_ zpbOh`=wyI@ZqTd4g_0-6kgt3tSnuu6>c5L$j6M2#C8vB2&A2HdQRj7S)QhRlVJ_zE z``=S(h>BPm+AnnzHdWE-OjJE|J!;t+ce{~F?zgW^A}+{z#VRfyN1 zHLaK##^eDwe`5iAhL~|bO<>yw@IU5dme({7#GTh6x5U90>G#aRKC=wJsuauq+0sC} z(1G-w4^p}PXtcj+!&uF#hP!jgVVJQdXiH;x)2X>A>!jG#wO$%hU|!#~Qw9@?@d%}h z*!Ve{C|N_8jTvw$(>~h$LUNnTLk3WX#k#NL*1`WZ@za`fuQ&|+msKV(=9gRAwLF8; zfS~!5YW7K8xv&50p3!FgoS66h3)^J!jf&Q`B3Ur2cm?&3#nhe$LCl9KJLUE_=kNN@ zO;N=tI#tCwhY)|mI;WkCns=xS=|mapiJtN$rD(~4|#vGD0AV# zwIBnV=nbIVRXphRb2g3i{wUV0$<17&hUJ!{LYt+`c_(+mx3Y^8K8Ir-A-eqU?~@sG zoeK&ZrjVG&zgvWjo9rxlGU7rRU>}`|HBWFFj1?OM z73zA+SN&Q`n}1uXFU@JlNa5c#;AfXSF?Dk;aYees^4hMB-;bo9-A=b)pJJa$ ztqI*~=w-A*A!+P|F#T38IR_*nXZ$uXLWY%D-mqyr1W#V{&5l*EP+`8##^Upx^?Lg1=i%qwS%(IG#t2QrW0hs8 zF#X^hN#dr)sI&Z0TEwh#q5|f|(JwzaqBt0CM8p^B#bfF zZ3Jgyw`nsJ*NPf2UNk-jNOO}`he`f0l8}lyckXmWM8z-N{KQHBT0$1=Rk({qQ(WDb zk1k2-^#ip2upVHlkZ$1!3S`hE@95~$mE|pSfqYeMw4S`k;wX6X$(#0i??>LA>q=W` zm4HuvW@@zmDs23ArUt!!6X#viZrn~LzB^#bHVYl|%d_J(DDv-RFd;2;JmWhVw`~KF_4HMoO4!0OinZS^3^l2E^=4q{ z-;H>4GJ^sWtwkBwme#vNUZg=2A=`n4kIo|Kwi)WBM7B6(ScZZmM{iH_PUtmI?t!DA z)zQ`RTqC}sj&)Sr#Y3VxwJl~Ax;ztJ)lS!e)J$Asp_cD-I_nqoB_!F?M)Z~1OHs)S z^6+Gs5g!`XnGXZac_*l@b+Ak-ZW(#)fQ?}Hq+X}v3#L}xXZf|;F#XUgcSKr`CG$CR z)}ZH#%}CY4PgUdlb{Y9)(oI%q~C$XcFlKtbHw@eL7}75{~Jw0{AM zcT-ig$B(dI5m#!QKM|2uoBJuz$CHz5WO6q}eWkbwgB;+|MBNYXRbxGi4eMh3OD*f7 z5r-RoSEaO4oJ22{aQ|u_w{VM6YPE6S$^`8@Fb3<}lubxxICr=r z0iOijS=oyRhg5U*0@`h-| zgQ%R@+WLP2;aK5f%^sX#`;*~Ueo9jgNIN|Lgox{WG`%#g-M>x~1u4FXETPy{MmC9v zFAKdAiDNVB(>`X|C+WXngfKb&EK4z=(fa+T{Ur}H@YRwREK4~vGJ^{+Rb@AUK^fy% zC4A!cXY!~l>rS4knS*yD>iJz76_{Jf%F0r@o?`(dZ(W=Z@=90w{O-{ZE$`!wHLbwrnGnqd;_(3OgA8;*taoMJuo9w>&)Bo< zP@lOP{_(TfcKl8;E#i<0@p&&6RRP$j^54$M|DTzB_q3s9AAf6=`^k zu^RY*$T*>o%NE(RV%u6#CkBt-h0{T~QH}4VYxCLR`LIk(VhZwT0i;^nO6mhBV;i`y zSdJ`x*sj4C@vuYaiqslJ0hdoH>-eY^1S|f2c{a9iiIr`Cntb_wx(0ib zed?}yVimVzO(qc9AcLoU+QhCXrw-w^`OUI;++ zokRRBCSa*u5(ZQ&(l52_)mHW)2XKWDct=0b^8SgHX{TT-BCP=bchJ=A4kcW><`nH5?;J+UR1jyo`2BOvAcWBuWxLt0aZ9a7vRO9)9JXeWy6W;y3F`Rv z+}=BR8r|+N?X?*vxkTos%GvaSlh5d%$A2=H<0G0gr2Wh61O6{i&wqRs_riIyG(Z)~ z`Y)np5%aG$)@CWr-pO^FW?nG0$!PY4<|v9D^W!Du?xHsPAYBo1T!EyKdARQe#>bq# z%f`B2`VDOP+h(kG*{?rHGA=nMhLNPp&%dLY1*m_KUrnV{j5mfi!zNLouBbjYs?4&N zD2pu04JaDGNoCL0q{b3va4T4+ni=@<4C}$K0?bx zyEQQ)G^7XrpaizT%JV7XUmrmSC1a0NsgpoU(r$uD%bn7E`M)JG5ML={$V$6iSjGu< zF~!VNaBTve<*pyfT+0nS+tVmP!8}oFz|W0t`qHD+GOA)su81%1fG!|WxRz(W7F$C< zrC}{;x;LK+*Q<6;+_1X$!`$9}8fQQ@_IQ*Gct92QW-PSCTZ+m!e5E3{jYV79&#CnB zW`D{F+z#>`UAsudbWbZ*A9m%?aZ?vZwjIzI zb+X1$?`I+2(-Uu3`jO6@ApB?D2$jT^M_29Z9wUd|o5WJd(FJ7Q&`+@E1R6m-F}mZn z=>YVTRGiu5sVbKeZE|8fDS4>~mV zudf@Oh@$FG-sX?CqV)VxX1w7iv5&{Wc_$@64%9IY8#qAp_Ff!}WBpubU;cdTVA|+1 zd^9ElE5qDMhy3q6b+KapNjYC`a45I_dO>Cb(VVtNbeT)xDlDqX;3K;|H^LnDFKc!4bx)pq=HM>8X1+<7)VxBZ zl(P@Kh7GqTLk!m|d02J?48Fw4t{0W+fV~+es>ANvL^m#%ecR@Kzy#QuQR?yzIN$AA zUpaYBV=?x&D=A#R=*G55fsx9^-;w3m4Nf_DIU31zv@!>JkHft~$SboOcMAg$1oXtByi_;i#w-UX<%ZZX@X)sL zFgFUQZh2Z!wSFt}$o_2d>6~Bbr_6r&-)fKs#n(($7Iwi(JOdccc3I8UULP$V5+aik zl<<*_qaV;jhPjXjDHZ{bm8fUZq_r7hMEq^V9 zu8v5drJi~wQ7JQlq<@>9j)g#uEw5w$U+bgTZdbs8u&2Rr-JMG+ASv^?-TGnOSj|*8dw=>1w;{oywg{&Ie)#Q!tDFBJyR(A7yRXXCR5q zHYX?Q{?M;rf~TjCY1MF?SfJ%FZ%K^Y$Y__iMKn~Z+jj?Jn!A6+kiHcmP>@ZXkZ`xa zriZnKG~>dX-tf{NbtmRm_8cws7Ak&%^5nod=M5|64YNyIuM}W-l!(o9Ae=Yqq4gNY zu(IX10#biu+>P+3Hz$?969K(UUsRU+6c9`e);2$B6Uv&flC5L{6m!{soT%IA zs_hvw-cV&fsB0}NBf*cTPwptSrVAL1rn{{e4UD}{P`ACP;55V-Ay1UPm%eTGX~&*@ zw{v+xX-;om{hv$y|ND(U?#cWIx+iN8;0{VeT6M709$Fvx;cO0TvhXb>Q^nCwh)sV& z8+|h5VGeZOCgIB zq6vJX22KW!2hiBgJVs(Wdhe`%Z|@GcZ2Jwy^>VjUFIgBq&$%%NZ>bASDdtgQf|Ol$ zg87AO*x#l8e*X$l#=BT=zWZsY@(xnt4YZU?Sh?(j`h_3)yf5!g=-*RrMP1b{tmh07 zB$XReYB}JTJCx7MCXdT-0?n|#FZ{=sw7-df62NVQvd2?8B;`MiRk15&VW}~TV zRVR!p_IawXB+;}-8_BFIE!98`@<6nB;th9DFttk?_Z0YUAz#>Uu7Azls?m9+N;8ot z7~W+<5e#`|P($Js3frf7>!{rLZL^Fcr-=ZLH^Dw&_UHoCqt%2i#sovD-9Lp*stDt2 zf4mxa9E33@v-Xvih1V}%pnsNCCTOw2u<-=t^L?`Cs^m|&t`BT@`)!at zW|>vGUad)be0#qV+I>f%Jx+E?&y8zEh=N?D$3~l?PR8^NqbR}9Oo20hyt`0;H$-w2 zE)nj@mgGX;(ujMn{3bgRgNubBWW}q?8>HMU;Q!iXZ6;U5@mWw{C9N6c<}FqhaF!8J zu1@xKlFuChW%&KF%-tSLsQYf3eof^xIPG#J6ygtj$Ut^uz zeax{S?9XY8FP{An!JKsrL-58G8re+KSJJPsX1f5as+giZ^CAXGSI8Dl!LJhNLb|RD zg0)Al{638&QxY)xkNSoB(a+=Lx?`<>Upi3{6g_dQt~|Ta3joXWHX3u*4?D>l5_H<}OMX zM)-@fq7qmQTTBKRsQ(BXEDW$6MjbywIQgp~ASXWLpL)V4>pj00MPyr^RqQYaYb6fS zkHv>hn6T_>3P}BE6>hGAb!^v;FDHf_pQ3a~k)zuW{=EU36n&i!@E^E!6%+x!6-N z%q*r03q^tP@1?Y~lV^j!P<~wNl9m>uoPp!;W2)hB+jeF{s&r>X?l)mkbFZyKUJ+j_ zXvPVFG^?iHg)hL^OKQ5^$;~b8+pcGbq>q*^FaW{3t|4El18^n;(<6)gC_)H&Z z>Zs!F7+F)w6~D|ji8-PCX~R{9{gMTqO72c*K%uR}J1Crt88ELSx2kSa`{i!I(y0(i z_m(z-h{6Zq-Nm?gN;ngCrgOQK_AG#r>9w-6+ni6cTOB@Jyf}w&ItfgaQq!G`U4(sc z2M?M&Vt*ER1SFbR zKvM~s(z4wy?7MIYqQ{GogCV*=l5hkcX4HTfKf%V@3!f30tQT_d)u%eeI@44;5SvZY zHzV%|0z|v7>LIHcz|-a;Om~Q0Mmpu5-ez8@|3N*0+-<5L79emJea9+$!}|aWI~n32 zL5)7FULbFB{DlF?9GUhZejdrf|Ajn$?#ee6X9V*lqV}58n)l(R_@})e#UXjNeT zpKr5TvIenFn=E>|>U8SV1~4ugSaYsMuL6MV*C@6-_*mRL&2DTmWH}MStFR`oC8bb> z(_8|Z-neIeM2GYd?`AgcqgTxo;)QAZt-!!|Kz!mc-Z-;FCDyJS)*zaWFX{s}TPM~Q z)eSvJJjd~M4kdh2m@J1O{J8dFGj|dOmw3Y7#qIUfND|0Z*@nSAVrnB_|FnZ_0C+E+!@x=@bMLG4Yjgdox$+pC{N7isbH znB~|a4#xZP`3t4Jzt`?Aj*U8vGQH^cKky47{9xNwOddw4?RjLizXvTz5gOE7u|U^C#QI`z5MUUh-#zd>bh~wY3Z6P$JdGl zAXG!JYHpkQ%hp=7kUMRAPDh#o)U zO{M1cqYG%L^uucb?xM^%yiGGtGO#+ulWq0Fa;1EMkA90(yYm;Rbtu_3bIrXx*ekz* zeq)&U7w7>-doA(MHzg<&q|mA=f(|xDryvO>%$ocfAE)A+47ijpQn~GVU(40LxdC0GM zv%ruChBlWxNQG=^Fb}N!MWW>H7(#O}Dteh*-{_7>EnhzkL@`)|e#`OhuHCZvUvQm{ zE!1O7r7la6H^k>l$NXgUqhHTm0FdUMr|Gdc(RON}MDhF73nOx3AZB5B>4f_Sr^`fA zX2&ig(zz#m^5Rq2jeFu*M+h5RPTYY7k6ZC|dl*(0Z`fa&?Tii*QSECTkXc-FCwWz^ zPzPx`OaPNK^k45{UGxq+?O(%2qa?(^Ti`B+ceK1rBHo)JIxWjxnzF~au>xwpBr%G^ zb=TXKKzA8;f)1UROjds7*>$yYd z!E=Rccemh2q$Eq@NRKUqdVD*G5-v&=sj(6mQtdt>wKe;WKzx&Y*6CwJ1~RbPURUq> z@BReM$2EjN_<_y}y)QKX=%}%cwCd{JZFc9ar8mlY_A{kV;TPybH~MPr@*j@1fxlg-@JkbAL2(D;o+XmWWA!GIyVgP!T&znB&y3aPD*@bd+N%E~=} zj5}XzSx_1_&e+Svx{}r_NAwINMDWi>9X{TiXFL&x|Mh&Oxe@Y+Im?a}4Gs02ac}0f z^L@{V)AiAcUrbtV-NK(1*dpYOri3lUoIDyGX>j#J3zPHXmDz>jCz8O{3S~XDfJd8S zj71gN6YnZ4Lc(U$Xo0jUYe|k&6V3Jaj4x&u!FDEBYvhSUrG3wO>9P)44_4+S#5SWH zxlHoJH>0bATF2B@r1|JKNo7y3-H0^0rK@tuR?Mz@BC=r}a{5hTg>B2bF9@7Eh0}%W zf;g1aNhG$qWjYCn{mW^V=LZIsF1haS{X9SH1Po_}#H$68QA)KH29jMWN8~JO)Elt2M-_3Y0Koob;;lPdf zR4KG$lZQ1RUjNcVQny$zgLy){`)cgBCtoCtK|Zni5;sQXeo10j9{8(U0(~sP?r5nN zP-6SuN37Te$C>rV7wS)GCL@gWYgUy{r*Z=1CJz4K z`m*5bBN+MNf;)@Xa`Y+S`u(fJI!j)&Oee-+!^jdDe&O`zMiV(LBwhfgZ2$^3UIqQ} z1-il(&rT~o$K60Y?!2#vFm;2s^cD8!QHjVlAL%lSsST(OSf~!FGMzWcr|=nU&US2N zp}Umj@Uu>c8!*@on*QWiCc^&=n2^Blz=cMROj+oFM-c2X%~5!TNIlp~)2g!%!*cRTZH7MuU>o{W_W~&_YQF?%Q+SfiP;#-fuE3uQ%gB$I~ zRM+jd*zJcW&S90&F_L?Dvk68rN^G&FEK0`6aIPS&vLcip0zJ@Kz^3Fc3Lo6o>|cV$ z3F~Evmj*Ai$n6t+t zV60D4LQ}~9Cf1Jqtf_7lZm^`t0?KzvB&YZ+MZi2p^-*R&D#%uIcCD%p{{mf+Dj}=T z%S+2kmd9oZ!B-YQt7&2czv$I24I6nwpg?kXHLPiZ@m()k~CfE}B9-l~%v z{GQE-=%FLM&98Q-H+`4PSpFcsZ-h{VO_G~M$uM0WY4nGiAVoXeF zU2}k0!V85In8Kc2|B-cz383x-wGTw+@kBCXVQ+QM4J#>JI7Z!>RK`JaG{5U8ARq}4 z$vUkrFi7geiU@T`(Z(^$JH2Gs>yJK#lo0A=Fq7pzI*v}PbYhd5(kk&ZEA z`)n%8{=5hlkiN1j;Y+i1zgFuud^KfErDgj(5W{(#1V(gpKjj57MTugKP>%p_xj@(x zyNpK;9!Pv$koK>Fs(OTrk(uhOArNn`@-IFkcsNTra`Y`_oq)i$axy_F=rP4ADB1v*Y0G-k!m&tX4XzXo`5{3$v@I-s&EV+!)0W zkx$)@w&NoGSS^S9b7h!qq7CBJ9<$O>CzN@Wa=~e!g4%{{*ESg71f<0G5nDol<*t$* z#shtR3doA#xgRXhq%UAbN;AdD_-X^PpNK^1(p%<(UKV4&gIFD4IQ*wI_B^_tWr}>( z^9v}8awnrjl@UrvNW37mLL9nV4_5M=GFSY~NZ7;T!QDf2{uo%3PaSV6jw@ExvX5y*WFsu0vkpk@TDti$dq{Fntm%9BfCz}f*;S#-A z;_ogq(&awLU6;=yIpxkOaNvTFeFDJYc#S{K(%I!*(;NTn<=X$7c#1S{>e<-xW&E|C zZuttMQxwO_qQL%!JtlL@ChqeZPx!|{PGYy8n*v4`y+ZOEffhBVuc|n96b)!A3(6u? z{@_4&b5dxze^uC)GZSrJ;1LFr*<&mQDcvL|y{`9e1=;Oh9;A9xkOuy`ZL)X?nZ}q* zAy>Pvfl*qtg~kj0rVUFXCrq{SoyYQLmmp5<{!9&q&{gtKC@p68zmjKRDD^v4F{3g7Pm+Gbwjc2Lm>^Y&so%~Q#3?GkT0R=DkCx#GCJc-YpSj9|4b z*a}Qx9F@B&Wa%?*TcRGrpvLX~EM%a-#-kzi zW`DwX!eqFFl3s8JB|7rAin(cPB-s6@fe4uu5qu`p%Rqh#JY@xhQUcX{p6UC5Br>r1?q zVwVj@$(H9ILo3f4n>YW}*jEbjghi-Z<>OHQ9Kxx#S!(tfl_}D$0wAO@ynw{HR^uW3 zy9Y{dV^#@cVRBmdn7o7TTn-ox_0QXJ;0;vw*V{Bn@t;@^D~q8nCgN#)V>Kh6TQ(3) zTPW|mSBi+lR_a$^W2>j8Pt+A>Ta};Dn=1am+oa4_IPf#M{pLX6+-U^b^8=HBK7r;i z{N3P_l0e~$1(mI&fZ+R>_cZ=1K>?Q}%jdMRCjsaIxx400WuZ6MMY)MPGRQ4DK$mgg zMI#bRFaSWZ!1ah-D*lUI^unP6IPX_IV1U>cQ(xBT*xj1QP3ozK`ty#ey`2~#QtMhR z%$JP7oyA?I`21WYW_LuAsSD&<0vy1P^+Pd)JR_RH@@3hLj&4nUgArX8sMx=%wCFEj zFv62qSxH{2^`#u>bB}~2Y?NKQryEPe*LS`myim<$vZDa8(AbipM>ZA_cM$dg!zxL5 z&p-&5pU_baXj3AQWA46SfzK#LtwPj&^>>*b`aQA5%N{F`frcir<*YhsV2Pbo(%(i-;O-PH#5}r)`zg&PAn3>;&MChdA$(GnYP-QYE zOzXQ&9tf|wQ-V}YwLc%M!VWPAelB8+3+rPeT2&n2!~|K^mpL_R ztR^|=|A(hjk*e_Q-~3yd$lnaxybiG11N(&LExTz_Fyn3x=yz)ea=OIp`Tw#!Uup^;SFqy*!jf9e9zazVJ9Yf`FaAK$n(`#_4 zjH=I?^??!;U6&LLvDZ{E$FuD0!fM%~j_)xc+`qz1iK+X@qmld7iRIHujcq{chd4Qy z@`ZIg#)qp-9y)||AS{IF)9n1@{&ul0tz12|@8UD@Lvz<4%8F^=VPeR6C%0R$(N)$- zX~(tm<$<_tEGP57+_o~?ahLyfJh*djKuJ(;@E@{OLYVCj6ZZudyvNUMO^1;Uv99lL zeDYHuym|16bd)CpGjNdsu?U%z(8!k*M=q|04OZ0hR2;y?TerHl^Bfp1q`LkWFu15Y_E7YoTOZmHtQmR6j}=S}TIR^T|tiqEM76 zuW^P$u9cR$^U=T+a5b&zQC(CAsp$lZOqZXVSd7(H8^EEASkc#95ZFE>l_*dwm_-%) zzF4BYn~X%j&utjWPz%@$R|r6khf^Q-T$bagu;asdNuc$lWkJGCfVFw!apKO>M`A&W z-3fD%sijEuuaj-vw8+*MGyEUa;Qn!{FP!b&VGeF(y=Rj;RoE;a>m2#hs>1X{Hq$hg zIy>Gh2NQ)-1rOt6(9U$813rj?OLm@+c2ZzLVO$wX-sV`hqTKs-T5CG}I}fSEWYpN} zhVl3LQMun%|4l9^waD|g{E3(J8lsRVIU|}l%CgXI-Q5?7aV1deK1!pJp#dD$E(g%a zp2*$#oc{KEd9t9Xo-n)HdE|5?G+E|5 zw+FR$uQ(PA8Wtd*|F(g~A9L3u%cQZZ;`=_wahF0V3c2gKS(+E$2*Zs7))7I~M zfUKlhQk}~JEoR{_ro#IzZNX_(UBmRl#eM3gA~UOHUX-gYOlkZW{%bU$^qpTR2dYS1 zEw8T$G}zs^O!2z!ihHrXcnQ7gp=SV@(6IuN!&Kc~1YDu!Or&a@^k|I6gR})RB7CN6 zmDt};TRthcA18RRKal^F_Nl6N*EbxRFMyU~kVGoU?#$CJ?wIr01jvWCVIKz6_y2~x zEBlwzdsPkK25)C+ zBwZaTxQ)sTG?6whb-8F`s@EbkM{Adt>dQVseNH3STr(-2PZ3wsjE{Q(R54`YRUFe_ zCCS!sb+%2I%S4b~C6{OqvzvF~{l$5=BAKRa3-|!#Cvl?LgGZe_;g^toz_~yUbgoQa zCK$$r+zf@}!aJwN$pq$~{AcD3ILxTI0R$grYa@$E4$^;|x4!<5JGAfD?)qMDDcthh z=IA@R*c&r6_XMFXGI=p> zmxuSH8Es~CjH3M!dVfGg&O{Wm7SmAHGD|PQhXvB}Z;lMAEFSRQH6^XjK5-^x>U*$| z)N}qY$B)hEWJyr6F3EN(<=D@mKB6SJOjk*gKr$*4cn%LL9l)FNlOBkLg#)#$`%{rJ z;`$t%LTyHYBpbMn)8&fifi+XKn3`%}s9Wii|UWIg&^+S$XDaG&u_o>x&3 z0t|I?eBPsRHM=ra-E@zdC28jojPaCpf0WYV=1}u?OT3NX zLAUr2@vyec4i=nV6xUGwf4KXqu(sOgTeP?qD=x*oxLa{8-r!J*LxAA!6sHt-D-@@= zyR|fEp}3X=4G>&UzVG*!bARqmZgP|T>^$$DJ+fx4nQ+h1(;o!gbQ{m*+M5#?bynu2 zrd=!g;2X2bMJX7Id7vjM_z-<^u;2sCEcxZjV)X&p_%nf-b z9^N7<2;U+K2JQOSFCkym??fo zjvj|N6sXU=7C|fqNFYnXP1LlZLA##jq5$j^aVv96#+rm*EOd%WC&Gy+@rjmEE64a3 zjU~Gn7ez%OwW;=$lvJ7umOPQNKTRTqeR`y)+*4V;?FAdQJ(NAOey}9*&-Upl`$j2@ zWN(2LaKd>9i!wF;{r3xo3PJjXf}G&QE3_T=E!H0LB|KSbll`4ydQ+qolANz3Hn`vp z{Mkns@+@~=@`rs3YtbG1#CR=ny9;rLaXAahq$*OPd7~fJTVu<`t-c>^PZK_T^3+;v zH&y|+^`fS5Vc!DX7p}%uT8|f6gQSDj9169`6WXDPiby?Yl`T`;*D1XgdbU?7cG5=F z08pw-%dUH|JLZqMN?as&WP3gEEptI|emwpjw#CKv{aF_buvMSMI|6&y-rxiV=LLeF z)YtDxZ*C;$#tzMa0oJ9Er?8XeT0~U^oL)c(o0xzRkkB6rr#I zT8+56uxe2p1QSulb6CgPG#b4I8#x$NIc2w6sGD9djySdSn_`7~5Y5)13DRMlHxPdD zMxy|rQHH}MW~8)*>d|_ieiLl1M-5)r0Un-Y?l4FO*XrstI5t0=yX>1kwpb+6`A?pIPGo~v3?h>w7TM?3l zeQtb#%Zsw+0>qz|HqT}6K8~6iNe=mWc&c!HvLzDoly>o9LX|aYr$KyJLgrla=1(r| z$WGhU&Y=Iy8e&YzKU%rWQ?O1J&;vqGVJUiutOW?8=?5T-B1sv`ocKTpX?~>(i8^9w zpgV2lDcFc51>*0$+o`^D3@a_g&k(oV4ifFaET_+S&I=3)EujE#`QrYqN$;P$j$Vgz zhu1Bl1oVcuvDGM!SxFuFI9q3Y;z|G6 zcpi(ct_9op)GcX*VlzO_10Dvye*e^=Eu&WdshGgO6ZrmqJ5oPCpE0iTv9x3%NdAHv zPCeemgL;S~+keA2y@m$)cCu7|ik>WqvGKf~xrwoc*cu!H>EjmLN5YHsM(3*A5rREh z2R_s$Z;iBF=~NRh1h-WWYa!VC|JTP1g%smojTpM!Pk={c4Jwz-CV0SO!INGO+Q$ z{k<-ib6e2s$;_9z-a*3H`F0?CGJj;p^x`xiM-4m#`;`Pf31vVynBe){ z5&`l!-;esNG?^pHBtl!-3vi}-$R>2*k5EyU%6<5G+FDErr6MjOF^Z<8#k+<@F1ez-=e7DFgHo27dQO z5C52utM;!<(mvy$G(y?NQ`SzPINOF&#oXgv$6nS%MnmzfjM1G^S|e9lx+B4fB$zIs z?|!VaB>}gYkJ>{rJsKO7Do*bKeDVtA-KLd5nf9fkt!6J8laKDP_9PQvwX7M^HMS_5 zGU6eyI+m48b^;dg;^M(JZxcE+^U;+G)XC#1;2|=>g_yo<^=*dD8#(ua@nwYyd5pceP^uev9RDx%BQKmGtYi! zI?+J?#a!W@NHmT3il-j8{^Z_6W&|-h3|^x3Zv)S}WYbuDK`cFq2$#sR$vAAS!&O%y zng7|-dh^3H{)Lq^251y|_M;7Cf*r5+#=el3Qw-TPv`om@y5CaEwPsIxAo91iE_~Hu zk2SeixAXj-#N!vIMYb{XbjSx=Y;9_-F*b%RyFck~9ZcRSYi^rVV&ow_`IPdJ8niWzsJ{aN>TXW?_|b2T^Sz+f`kYA zbDCRr$^4)YuSY5>*j5K9An?f#z$btXDi7S!u%LIXlP~n#3dr^GgZyYKoRmPu{jE5D zNQu-wzvG-~onRI6^>i5Z{w5w4fF8VSiP*n7(MML$4d?8txVHy%Kih1?CHL&Vlk|Ww z@_@-mk^l27id?_X{^szW91^ji4MuvMa$=#C%z))YpxyBl;<^Uk4cAQuMNcpM62oDo zNcgK09mlqh_OTqZ4yz+n3=Q_y2~5g}I>I2wl+C1}%Edr1AM^%)7eSuU>DOhDSAcv(u+vSRFTO1MathPr-ZFeZ;+M zuVG}ILzNUN9afzf5*22`l)XUXz$nt$cZvsa=g@8vAF<3)J z6IgJ$_mPHv#QfO(O@^y4wnu+XS}?6v|DQ5f!6Q*;CrAmzU>3b%JhXUyrZ`atbB7w` zXcz3Z&6igpv&V2&3R_EE2*rek`QQ1*C_{PKZm*{g6*{ARgkQn8s03T*q}S&UsiZK( zymB#yR$qzpW$P-~bo)#N*fgvJ)8-e0#bBF~&H7A8=VQzfCH(Zt=f+QvH+vtxPMLkI z<)%e;+NS`i9vrY-oX7s;f{C&#pa!Sf$d(@#`cg$* z$mCL7I(t?ptY+;;idbit_q2JO4QSx<&(i>1l`b~{u{q+VxK(%*Lak%A?)R5Tbk-VZ zCei10EtyBRdBB5W_JV!lY%`Iv@9Y!7R%zh_>%X0gH43rhsFR;XHR-GOGFP=XPd?q4 z*EI9YH9hwF|HaTa!RJR5-~_1ee9g`o);PaE4=qyr%J`wfJQ7|Vo*SdGVS=q;6FeBg zUbDPgAzz()e)#mUnE;k@s6}Wk3dIW8Nto-Hfs%m)uFII+7KZj}YoNO|nXS9}{aFrE zNv$nB29!wY2%xNDJt-c=z`T(O|SW@!Kna7rXmT%Fh_k*mdcbqtSMS5XfBF z@(v}_Jn%mZCO?x%x&M}v3hfY*6~aIYgom6a-ds%uQT)TzKN}@A^Zsw$t`(*+YDrj( zz-8h7UV~XNZ&CwWN*McLe>$>M79M>cnRP;OR3wh!Nm;T6S{Eb0O7|0mFii=X=-u%* z@ffHt+mAlG%_>NL{19qqPdoumnx3-;J*iuRTcbo0d{548}r>1S2YFV`>B9pBbZS0!{WN zo!J@kYqc%Fg#qKgTaw5i96%H{>6%r{*an4jZDJEYV&jnuIk8UXPchg)$6GV?NvWbK z&QCoE6Mj@177qCqK--1cAo$Bc3MRR+E8$XeEUzsMqwKvt<{gx|Cx@XUJ;0xjMM9^Z z4y&;sNMT~+o5{Vzu={f(R3z!UX!6b5DR!VasQX_&^|5}3!rSD;Zr|PKefL-&qKrxx zGDcbVg~HtmB+^!f=b+>Juh@vGBD=xsZUnA`dE>)S4OzCwKcGR?v5!3*?suJY&W_g) zzq7~pR>TFRUoDi%STp+;5*%$arW|r7V8R&HGj>15#NB`P*To>uXKtgd)Og3{TH8W; zxX}*H^R&2?aF!sA+Ho&zKEfWp?0oThM?}e&o+ft)y?sIW5<9VejzfD47)%t4j~&&~ zv{`jOkG<825;W>D89A&5sA(Q~=j7hiDC+pykapTAQBLnC{;VbjbO9i0hb7yJc3s%TmL$5bIpC~ zxpDRasUJghs3K$wvX6xTxIJP_yybrf^v?+NuWJS_ii9Bd{`De2MMBJ&@b0!!G*bN6 zCGaGUhE@gy#}iCc(MmwJ-xjhM=l`5|!)IC4ZCM19y;d0OD%??0^vy2$e0C$JGW2^+ z)i%;4lm&Jh{Q6!-Kh!C{e!X4OCoY;S4SIHJjG@K=7#bKs%@H5|;-ne1{l!h_D{};P zP^BLdh@kUZJouF?c^VB5ci|t;D#smX+oGv&KgTX#3R*in12MFA^K= z5uF()n!LXEPBW3gVeCbyp)QN$pQ24KYJCJl#SUXyab6+!K=O3PyEpsZaQ1d&vz!$1kV#`*E{u(QH6}6ivpHj?K|A7 z^0Z*L-lyZ6UV=UZ68I;m9Yz`E_ewxU89Ss zHdaDcgr1OO1f1Kk<@TDH>3|L*gZU{!R$F$n-iIlP3uX+iCQ~9{fv-`TPBQ=u8|nlG z*|yQyUlRMZ3K;8+{^Yg37+B!r(4Xfgw;{x2w)*173%6;U zQLi~X1wXk@mh8N_ScO73NOnUj8X3TNj?Jd(~`ER zK{Z2u7{jQ?b*=9FQ|j(-x_Vt4yqvSe+o3FlR-Ss6$;q}ab&E9AMA$LP`_(3+Z1y|( zM>^F`KBwl^pexsoyT6bu!U^|eR~T;(B}7r8$ZA%}5W*^BMa1B!(slupJ;bA)OuLT9 z)b((5V@7W#o{_6(zRbhN_ZL^{+6J!qCget-DCN%M_+cdW2#%oO0`ri}u<;LnxpC9T zb*9@l4}JGGrli|mS8HA=vtVf4v@!^Xkb`^LQ?B)mX83Br` zNIMW>9Y5|yBlV*xlDgmeHzxq@h6<@Xbt3Ws`TWRcp0|_}{GjgmuQTy($2%sw3ih># zLkz{Z_=yP#eU2zS^t@)9`fo14S>f&7)PP>{T1>!|x=O&z{=W@uXr1oH@1v^oxM6OL z@t}{;wpFWvrFea+N(T4VHuPfiaR_?=0KO`vt*|;L@3Ut8wtmyFeZ#u&oZ z0_wr`SL(~3m>D+oHFJuus@c`aA%ZB$68DLezj zeB_^7g`7RhML8yRq<=s8{JOP#x;3VWEjcF9a-s;x^J)>XwvxwS8`z|dXrXQa+2_mJ zaOW(SGz#(ncBTO_3!=u#K-UB&)-~eFp<6~!-GKyD&L*XxuWm7wJ_26g#Dn||*&ysE zSjZ?{-aya(-kF8JFx9iS5(`{EWnUFgOO~Y`)66+NUKjnYp%vsOVYp_K})>gtG+w)z>^^n#E=e{e|214!@mJ% z&0USA{Kohykd2-^*beF+iE8$I%5WXX$AAC2sf~JD!TwxWZ76sltx(^x?*4NvPx4VUNqxQC^J-`$Nc%->K~J5+3t_uAAxgECk0 z4C(NLDtCsPByf>zdMd+9nmFlvwtST_^1XhqqT5ZI%6cledPct23avxAn5{LKKUZr; ziKY_$mQ?>Wh*siD3?)H3L`@aNlUs+g^OxY5e1p%oV8z4yH!ncejSJZyag5C5`Kz9t=%NIU4Gci0n2VW2nlR7eZqK@b&v~9^ z4p224;k2w@BxE>=J%H_H)1Bpn&4)V;OBsFlOq#ryWz5;+k(L}xt2FEnX8+I;PCfU0 z+j`OAn)O4;Dq$hlhkb}q5R5IHk~ddATQPlCq`q@FFvZ%Dy0%IvzRthcSeNdj&UKx# zFK}ASCIxx66rS)WKF9N9Bah5geP?W`GZ!rZ^}dzIzn71Y?3J#lwg>ySe9~>{v)33> z`GFY@(A(g-k+?Xdb5?&4V)R6Z%P99QZ$qbf5HdEF*CuoD}@fL0YK>Pc71K9rc!^ zn|b^jCmcSlQ(bXaIt=16*?2%L?)E#^5NDd*Yt`Wi*25(9&!6n}Ofznw6G9|=TFE}~ zjCmdF@^K{kuj`0W1Qc!T>O}X_`?um;Ik}5k-p(0kEu_S|q8a=~i2PH~q)iEN5~Dg% zS*MV}{@R}GJMzc_9gz#f28uxGYI{T*&J2W9`4G%8urRm+zj9PLiEmvLESG79#TP!KgXqZB$Nh$5e&TAdHwPtr{e)r8)>6I zg`7uIP;XBjpbd}v=2oEgjPx)0AF)TP@F&I@f1@xINT&AUN8*1%>C?hgAl>?Nv5Y!F z6}G+697zgJlvvNx%+xccx$j0vzu!#9fASQXdgzCbQnTOih~Qge`PEoRvl5z*eAjgZ zUcebmfC04K96A=&1>x~O_)#yGBgsP+>9XGeQ4RK_+}4UG{H9LQ%PH}3jC!u*m)g*3 z+W2vuai-T9wJKN#Ck(+$GD73QaXCBsvE7=1sEH9Gk}9+ur6L!D`ZWWDPkJX999e<~ z_17gj1A&B3!EJeL9^@p;< z#g=6IUgtuk6KOvDQLJO{e`H#REeLI#e#_dkX1T$NK|RcmnAz(}!3;EDov^i6FzQ6t z`>F5FB9NNyez<-!`RVNWjbg;^mB%IB+d53^o&w zW?>%GYI3}YiK3sYQ|N5kVU>*Wc~f= z`qcjE3EY>row`Y1P(Eba5&ScQ(c&TV4mo5aw+}7k?vZ!IgtqT`yRQja_aF6Dm(rv* zK6|rN7-%6%l3&8^!|c9L~;Q@ z!!Wxz4~COPZ@KYP4_)|@jNM22Hde4ggxoo?7f6KQzyzAjAYrFCFMFGjO~ywth|y)>>EmK zyR*;FM?LRrK9~j2Ues6-cxe%A$oR%aum+Dcri=bz!D5pcUk%kn;`|iZm}re2OV3Ei ziHq_HGqT}BI0{NJJtLojM=Ed#9g_rYi_xeEh)llvb|5a5nvvjnaSf7J)pMQG?z`Bv zu-xUHfAZ9OG6#9S3o2VPFf*udB!HPaNx|UwNQ#(W>Sf`v85CGz{zk@89h`5lT1863 zvKGE!4mjfSlk4NW(2kCsP}bnFx+05D26n8G5`hj>%{;@q9?@{XnY+}MQB(S5Kbs@j z$q%+0uH2j3Y3&2vP%uIx1`O=IBSdT!}gR7wSM*8SUgkR++7D7 z94VZdGoYE#69#@^8|kD(U*o__n^4PCovUI_{>9^sBaRU3l_w{Q<5S zU!C`I3XHNY^3yM)BcHUT`3H`E`4j-lOqUxShOhCZx$3}n_1%m_DRA7esR@fmNs=bE zh<9M{HkOb{elAUX6rh+(bU=_64!(M+z`W-$h1JXq5t`4M=s2z}5ySnO^0j(kd*aWQ z|Iw+lpsz5csm}`x8*I6ay{Ec)cwj**KI1?aDjZ}sD8|N3ed~qqRq=fI02o}?byuHP z&+R@p4a0HpFDGn9HU-Psk@oa}myt4N*%E|)gYN)@uGNThJ2?GYU6%rfD8#VRM70uh z&{IorAlEE^BfWQ;3l<(@y4f3OlcqW)2zhSX$$ZWaA$mUJeIVwe`v%O*m3hvDG+v%6 z^btI-(>;s#KJ{3P%qd*o_8HN)W5`dVqYRK!a+1C@9`S$^*N~jd8py#CMlDHRC^&-L zK0TbIURYA<4*6wVe}nd~7|rYvPJbOSSczB$MAZERqgBtW6{qSmX&X7C7Our(|BI_hmsu#KVfkDrKa?kUMxdY={YQSXiOXlZm zdD7$jJor84+;4-J>Y45R;-O3Xvp_*#X-dg`yvzI(Tz@^!P$Tqhz@_Q&N)ciCRLlat zo@2gZQ5Y|Q_HRmGt~eFd;$9n1r8~c9G>g8w-1M?cvXmvF^l*elIQE4yhUc^f-S2jr zutO}s2V!aP3bU9BsTSSpgAPZM3vPZlCy#kd#sLx5-pi%X!sol|O}D4U!qJdtx<_(Y zbe>&h{Uh7ce#nFJS(D7U+59g>dfzF+a2`TTX^#06*SiX{N{1-5X(8To`>;imh`Jrk zq4)8YsNv=EW??2~>C*GBU{!J6-<((FY(31E5$jy#77;t~7A%`7OAQcvhzx3qJbi`I zE-qEyNpvy!iu|d920kSk#(p~D`B;LFRH}J8(LWN)rxcmBDIZQiW6iRkP*PxLz54}~ zB$m(*)wc=!ytenP?P{S}H)2WOk+-L!i_$f)^0-!7%s9})@^W>%vx&lUU96vBRDVvc z8omne;j*oXw4s`8Qum!1VmhqrgjX+R&Bx4Lx+YV5 z+3B(&%T5v#VP@bI;%$I4*z&_q9USjpFd?>LvHznut88%tv3Sfan63Qup=zk_KKX%O z{9gHN&n#QTF7?co%qx5kWHsIJXo~2|5~0ha^2TN7J~NZ_R?nKLlB-j zUG1Q~5Ppx+hV9_`OQP2NFrVh4GPPwg_RD**z4B+?pT_NZsJJ!pAeW)UU%~O!b#u_p zD(XZ-n;+ z?4*dwZHu#Iku(oLt7Y#NrJ#?b-0M}IZb8N+0=Wn}EB{_zG2L{piTpHi+f+?ErKFA) zG)dZAJCZI`&1mL=eryoHX-WE#>+Sy9j#v6x+w1&En|iPLVEg((@i!IX=Alt0dX9=V zwtomgW?16YkjLp-=VJ%G+Q*-Z`h+LMV!XeXbMrirM)sEZwa0JCaTe?YSKvg?%gI4_ z5s#2l^5=`fQW4>vpB6ayV#ufU&-;aAQ;$%eZGXZauYE;hTd>f=dAYo+9XQd`e>0hD zv_68fi>{Z8L|zz~jel6QJi`6DUIJ4%QP!-j)8$$CtEXI?TchOhpNJhaB2Qk8HUm$!w7MORiiTo_l3)w5cEAdU`y zN|{lkkQ%oDe}4JEF&$OonxySZbrNIBAYd?lfY9 zTX{vC2J5i9x+J^O@;uMh7F6=c!_&VJ19QQJdDpEBM zeb-%QB2TB<|6q-M`lT!Dk!2!<_X^MFbR#miLm?Q!KUsGI)}6vE6MIsP=m{~=P{L&Y z{Te`3AOVHRp1zYilhMRyu7GNiC0GnRLh3u{ghKyBwt1qVK|Je)4Y~2YWvmD2@{}qj zKpZGm-{?@`Ik^~22gDcu$u=X63h@5DlcsPY6J&c9*x;MvIYrR=3$;!RTD?B!qKy1b zfDX;AtOQk%?F)UOC%5u9d`H$-(e>3ogqK+k+_)Q;C2k9l=KPg)-xJ%iV=b-bGsOVSNH^bKFp12hfD=+AXs~+ zI5KCbB?UOrn2|*|2xF97rnW3PhwJu8ebsIF>5SDW)PBNLa6vg|+1Q>E@b0Bth1xQ; zW6fqu#d_b@(m~U8A+(?hS);Br7b{U4WEW(oVyeO6-9U;M;uqpc^Lqyz*G0jzRHoOI z5&Ru0MtJ;nE(?yaXRWe%n`zc73r;PGV9q?lknpR`Ahw;4w|g49T}k7&Thm*7 z08@fi68hKHT4;|B%8%gsE)gb3d2>t(JQ>@@?bOVoXRz?rE`;~#7c0iYfyFJI`3BwN zffz9G6Wwig;b6#}fJ`{Ag}Q{$Kuj3nKPEU6iZjAqSz_ACy}+g{3@M62(|@gH!ZCmO;vSW{9Rbme5pkE!>RyTSv@SS&|2Nn#*Sh ze^KgkcCJh;|HiiUP1PODJC76m z)AERswBDgP@V4sQVIGqZPb%EeP97{HEJ?#1d=$`!E^~GX8{mB;UDXD+ASdyjt;swk zZ&}>M^b%~qxfjd(%Vkfe|Bb-C(|@>0#-4%vrTK(DP9)LxKwBnLy0gH9Q-*=R!bT7I zD-G6dq7+V>`Mjj@EAk$nmKN~kjF<)W>nA!|_-IluTo4$Fj{h5wudr@>bwvlp zE(1RQ-qYO5>6LdQ2hO5T{5=*?YO&XnY+_wAWF?TCW1=#NIg01y4tO{2sb^FWT~wK> z!q(K;(^lVManb9=PS$U@w6a|S*`iI1HvatKLmDEfVX1kn88PtG&c+iXAH1+~pI||* zIXWj+tzZ0Mh)&aCR<7HSGy2X+P%D3Q9-RwSkuLuwh;cav;ZUedlW7W)$O;ppspT*j z|7r(t$lnO>cDHahwj|@Iu?PM|jJ`S_+6c3F+zCMoxt)44%9P2=hlCtmKMOxdZCsKv zK*9;I8K5X(o29Z;dvzp5#N6vDirP_S0@=qUql7Q>%FX9pi_GVxnafrQvP=N(Nw$mV zT=@gvZ)%DlE-^)JSj3^Tt||`bP5WNp+iYftBxm-jKUCeQ%-)0GAVP?umOb962+Ms6 zTb#4uyG9TN!V2`j$`&JmnHf&l8VOmJY>EcozQJXiUNP=Jmbrg_5k%L(Mf;OjKrWdR z<0Xtd?RBmR)|FIhk%Aj=WNQ?4X%RlN>Bpk6xKKB^Y~lfK9dlrE_LK+H5nQ2c$Na9cAfdMWiPo>awdf>7l@*R~ zqB2irsfv>xzG2qSR!AC~v8ImYGfO1X9^;9j)Jxi%E5Llo`$3`!jQsJkJF?A!UOoIe z0-@wqQ(dfl@iqI4a=#;6i^I1UjEn$wW5wd#h~E?vj661Wz&xq1%$5guWY1)1`778T zzk`H~C20f;lHcYPTQRHPf$1pGoUfGeP9wr!=8FaOuNjXxO?!XC{><#gdZmJ;;fs>JIuEUvq|CL_zA$RvB<6@XO2`9 zp#>xyXcS=7A0;pe+lNqjtnZ??J(CAg)ToF9`SEu0%Je9eR5Qc4(Xx*{nkkLU z`WqLG1Hi zyp#V`RF?kSN!8x_&)cQbCQ$=ys~<+r=BYH)`?r}s(rr?w!gKCTs(afQ3T*i&?k&aW z{*WkoLUBh~&@QT272*3uO|$c)<)1vK{JQc`xejh)WYwdWOWdQ%Pz^NgKGzYGFzUbK zar!A)O2u%bChhLfvx;iI4DMI$Dhx47LnGxFv=Le zHORyvJc)eeSu9?gQxaJf-45?nZ$H}^5}(C%)11A9efj=DTdj1CGUBZLK#+xw{}z*+ zm@?ShV+^Ad2o+RPZ}lF(65iu)@P0w)!E@v6>)mjpCv&!P#u|K#-#1Hmv2oVb`%>oK z=g~01jK%^zoB-=T&a1yiv2(ujH|ezDoNF&rwSsW9Lc|P(r}5qzF|g}TjUlnB#RH%P zmp?y>yzPEW?W!`*SjLb^8(&pN}SxmAsvGc_ZX8z+jUof4N` zaHWnakT2phmM%S23Vo>eYHaKMH2KG+^y^k_B%xRFtK>dUE<>kih zn#Ew7B$XOkKEg~8z{hDNk>23inv@GaE&H~4q0<1ySb5w@-rUc(J@nsZlXGwe_q$J< zbI1xxf49@3oP11V<=NiF{rZ)e>Ltka7a0u8eX(kKH87kD!>k4IjFYk-%lkl^mFn@7Uh*x69`ab@mzm!6 zZ;c%C$9?fF`Z;XZ{PsMcl%FzUfa1HHjmK`RIqBYaJbrSIr;+|#5RK($t<2OsCCRVN z!b^v-%#Q6To7PF2_8~ZI@92YCy9V^BY+4>_DDqM~2kiPSg`R3dPVditKEvqx+d`=R z<~~2b?rA|v&WfkLh*#yb(jAHye1XwRx^dH3*njEuT(*gaR?J;M#ZvBiz0 zn_qSD!S4fUkW1PETf)1cvA0P-oFkl3D1Qf6X&RIVUYahdFd?G$R9t<~%FBms?MK2F z3Rd(Rm%pnCx|LA|C=u0jGUZgg_`}o26DdVG5K0#UO~t|LyYx%0H&>5O8jD+O?fg*_ zjxlD~s6XxJuJX1L2Rq`^+sHR^KB9<@AR%eaQtmME8T4g#Qh&C;`-2{cDkgp?F>@C7I*n}s` zPHrgor4!EWUBh3N>j#%X0LTD#irVQ{=+&ezs`&wl3iW4Yi|q%vbu|NCcJ6EMscVpt zE(~p;g5sq!@6DdpcQp~ZUl>))o@ z4nqF>*favs+fa72Nd{{yWOWr_m@@|peRy{vpxAUni_^Gt+96Sk6IZEpZkOq}nP*Xo zWjTiVZ97Hd+wU7o%9GN4;J!>^`I<5LRxFAU?{9qGlo;xL0)Plkr=~=}g<)o`K%DcO zey;PeE<1XZKX12_WEoyCl>cm3!+Qv9#6WkiND@9xn6(kLzN2w44N;|6~m8Z&Y}4?GE`S_y=T-RvHi zjvsO(35NV_(V2u>X@Ejd#}}=GG<~UaQGO)~de5wmJMq!>nI>Qo**>Bd)dVDb?Pw4H z)%n&?AP{M2!~q+SZ6@x3RCWX7WBv|Sf90%pXE-V3HmWQPmWg#=9fhUxLe zIe(e*>>Vlo?f)PHB4}DC>3)TH^=Z+U(d}?(`+dK&z2?{5D z<_oyDp71ftl7uil96XkJ9y#!G1l1j$jNeV~P&oF*Fo_;%>6Jc>94j3VQuPuFMLqe* zXrO0abi^&`J9zY6pdud>pa9O*;{2nrpr@9dqL>#rygQ!6O2;n-2;`AYm4b|*KELLb zuVG=GwkNIg|E`JTEB=-%C^DXmpV^c(2ZaO)9j{!MLE5Ctv~cLc5?sp57-+uQG1{B7 zzLQ0hh{SgrD$#qzLpIy!HEtheZIS;jTW5O5J{LXz7a9l4%|{0H4ZZ7HQTZm+Vlz;o zWNJxiyy)LY#?N2k1USp|NA+l78m;Nz1NrE>fW$-T?M?#US(A2(t+WxZ@4vECh2K+W zV(EO!tNNs@UjCu`f%?Xz&yVZ62|WA)iTh4~|F}zhipF1IN6iihMXeK0JapA`R<7o! zRPcWF>Cfm}8>@N2R*IGm`)tCfUy|BMg=&-W+|i*+7>HAFcNkM)jQB9*mEb%>TP@_3 z*NyNH_o0X8J5}+YFbFctT=pjq@=?KDA2!kJ3`Rx=nb1D~a#}^)qmn;m%;#c;dMm;A%GaEdLU3YU-q+e92kTYfHQaXWutdZF_ zY;2cZxWLQMQN^8c_QKKKS1h1g6un!NNL7ZLwu0Hx1Gx!j_YzNVY1kV$IkgnghcR;C zeU(8~YLyWF3+-{5YW0%LD1w>zug&|)k0CB+)|51=?+qvccI8-c!2tql*hKz5f4W+m zMZZz8qZ1*evFQqD=WU25=Z@I2>X=8i$1aVOa17VbJEr`~a^|g3YQagG`3w;E?&L~P zP%{o>WNaoRV*E_@1JK-3Ey^>X2 zl_QOzal{98s>+WA^1%eZE$Ijs$#pMw<EdLIEH;N4U?O^JK9Am!o zgEC>jQZQ9t&gO?anXDgI{5j!axIhh!uFucqlM2aJak?!9E*z5=5`xJ3F&~w^Z$X&8 z(g5AXJ7ek`ZA+@ZMALDx;?EXxpLU=$o7WF3&p6fzBiZtB%2XyBl1{DCL)=cV<>b!9 zpE-E3K>LYi5`yw`Wr>PEAczf;Cl^Z1&k$rcsAJa|+sGh16BU7U^fHHkh#_iI?`Ka= zYa%c{XG$$<_vk!#Z{2ylvWviPE?+G6jKWh#C+#Ale(rFJB{>>a>Qat_OH;;F(~gOK zA6h%q!SKd9MhePu3fXr*+q6bX3EK0kMdi`*_iC1+h@Weg z30dTnbmZC)m6nbfPJdYw$l-QImZGnhaI?_?PoD z*xS!)pYtXZku&)U+NWz4aZISBzilhB<^2N8G@L z3`Q3v-wIk~hK?{yN6HGQ`PNqz_}IjPyz=EXoNyyXtQvf`#Q`;=`23CGIXy>5jf>by zbM9GLgy|dwlV1q#_%(Me-qtX&9F&x423fj^DLSC7iX(0|6#q>;ED1*}JcIh%){wX( zVy&Sc!+5+LV3YV03fmXAaVseGIyg;IA{zmdocR^+RC8DSdOd~z+FYN`KY79nDO3#P zH;{c@AKAS`ZB0=ezY|M>p#mC{h~dSt0PGUW5%>xrUMC_shzfo0Q{DT`@5in0q?~Pf zm{%wz6yns~fNRQrH(eR}G7#lZIUsgrO1q&F6bO_aDzY*n1z>Ue{XdEJn$p z0UhLLGwf%j`Alv{$;}^?xorgtvJ7Gr1bT%BX+ePaUrq6PU*3H)#3}&ah2`_b-PhVX z&hPQ-fsBS2!35)?#S+`zUd3M^o&Cx7)Rp%u0HBIGx4g zlwZDLr=8bGxsYLJe-WKF(&k|Who0s;EU>Nv>ph6J0FB~Qq-#{F(WBjJV=q${ZFJWD zX!zS@GGvvIpiu>T;%Xk&4WR?Si$k+(_YaKowlUuG6iUWJ9`)V?Yyr+Dil6mWW$0*V zOR@$Vwde2X8WhFD@Z1NAq|pI(!r8ImuPKu3&ZHV(QDI+yUw3a0BNw0>zY0}Z@-HDS zaa<{|q!b!_h0?lDg3>e;+vbm!nt`}Ib_sC|&v7SAOI_PpXon#6ohd$oWV5FfPm@9m z{RtEOGo|b&spB3C;_cjj@)f0k`ccaA4$ra#((pJE8V;2Mw9Xu%%SJ*QJCY9@VX_pC zbMK57%L=&oJ)6m>1STk~cz&jiFYIwzN^o}tSzhaQikYkl5o)hH%=}dWM z;LE+)MRhb&4vt+?$EWYy@7dM;zTd7<;WHq+PZnzl_vhxo6(oFV6~CrUQ50sZEo?|p z`Y9Ve9ck_>Ia54Wi&Ys9P~CL&^+u)wzOGnUZz?gQD(1sK@$m6|6n zJ;}ecF&uaQK~ba3D%(!_#T-A*oQPP#FHU?opH8XZX=SH7b3|eM)Hj-G(XClpc zI6|8=x!T(9$S!YI{hG88ykYIqbT7dGy_ta!2ov@VAkWQiWGyyD$Yb#0qrfcT(uQAq z4q#%HKj?C(acT%e4)Sbs3cte7Bcjk1s=f@QbacD+a>+w1-V)lSzyUz)N7rj2HbgjB zpR{ijXLJBa90~6l|Ls(I{hQzKlVU&jlaNTLkadX_mOXl>NhCE~V@SkEj7Tz&p)&kj zt>ZnG6G}*#~?U}z4)|#*g(-gVe7sFsMqu>QC84DQx~{{D%h1mRO5Iu2gi@x0@Da z`ct}#B_!w6TQ7T)U@zFT7>pa2hS!F{>*t**RMV41B*Kk+Q{D#>GEt$bi^DXbB&CeU z@$$l1IQTq6wLM3|fp<%0k)y|f=U#4w$3s3sPJ0r73VCkyRzaudNCC3JAI$azB{D{j z<@#vMa^TYpyhuv4G$mA`z86Dp`X<;l{_Sv>dH3kR1z0#dW_$C^A}n8vamI7-!Y_n5 z8QQ>?(PbbuORg-v_sEy7Fbi3;$hGH26GSwRkcLOB49HTNO&=cY&?}PGU|V0ZW%(-w zn1DA{L;H!Y=4o&MO#axppF=a!x~k2jfW>idVuk!_kh8 zo8cGjQ?FIdMC$IBCI6g(spl5Q&w4y6!xISb*;ImW;{pg{0!%M-%W;aj{~)P>vZ^N< zX$7%eeRdfe z4$g7~sR!?F+p6%AGmfNeV6PqtWEH<)<7yxPO4FOS-IU|u7<-Z|7&ER7oLv@?v)w0} zE?Dqd<9v2AcT-WR>KZ33Fo})tm6>=7B5V4^R10zUlu=6wVjgXxbda~V`xVb~Or=lk zvBc9UIjU6{uDJNUa_+<73I#9#3rEG%^CA)2Dl&3Drj7u|2lJZj0SWcG-gam54%H`#pXqzz zc&QIaz7B!SVH!d6&F>J&5G`!3H6j8jqs)hVG~0Rxwh}Pi@8FwarArRSg3>->00Ko< zy%0(o8wksPeo3lfD=~0kdWsWzw=+#On*8fTD%q`SeesV;3+?fwL^L)Z*{5ED+X627 zEB2w#VaPf<7c(C8d@|JZyuHOzCiftg=TATz#ubv?T&GC*%FZ;oE^h*qDN9>LFehGV z3RXUI3Tkka?xicRynsWnH!-lGnd0>nxHjkGxRt=h?@94o@F1TwrX5F z8R*B>a>s=8ZS9c)7i`e)ElIJ=RWVo|^ZO|!o30fDe{Vi@XovCF0R*|%*vB&~6motV zC=24r<7$<3#HAn1ep08~C437<7lY z9|jhRshha+?*^gHEvEwEWI&uhwlt&5$(zA0;MRAAP8tf2+k_i_>1MFon~roqp#y;j zUp^H?DHVv6JoC2w{-iiPYB=YiS-o+h*B(CO@j)Eq5$YbOuD zbaUcsv$6jb{_Q;%W$sMsptE4e8T}qN5@q!Of&CD^pf%uB&LR+;P;i6Ix#Nh|i4wzx z^!_`%11=Kk70P2T$I6-~$p9+9H4q6|`jo#`Heo~QX*PA)uf#Z=o<3*ejnmr%QfSDh zSaWy1cL0=%FdP>Km@VSD`#x_V&WB@? zT9is#uJ(!aK*5K))$UocD&3K@nYX1sOe?BWnSF0*&t;#|WJ+pQR2W4Atcp_?hrY6TY9=Q33f4{#SJBpEuXQK;7zPg5K%bL5j$Ep95BWC9Di08N!E^DSUu#< zk2^JJk2o>ojKz1FQW?*1iO_1EwO45@NU@++fZxmhgtP@3`#L^4wQp`8 zz0rW*ZL-xmabbYsLOp0)AE_}3D&dHm@NYKe_2A7cZn6cVioUe=IZ~M@73%b z2`}=V1-}Ue==^yG1qw5v_o@AEKzexIax@m?)*p;2?HW<6P`UATECM-l{Xxbq!QDYV zC?jP_SkOSjG=OANryI&V0^6%Uq~KPh(7t%4X0#-K@7n!3eB+SBhr*EY6Que5ix{9E zs)h+x-d2llA8{ozkNqU4RwesYG!Hir7Jd!4Sg)Zmx7I87&dagIl$zz*c2V4O%7J)b z7qOeidW&Vf94%;Scr>&sA)51qyob{g`PIoSET6he0SvpMGG|B&supRe6qf|PwO|Lp zlH6OUpw*mrC{TjWcWVsqwLLfjmNu^QCcin;3bx{n9@*mwIo1T{?v1#9PEh=WlzkrJelLU&MU!M*W&Z>I2| zpMqLaMuS}5R>~efrock41f52<(3=vQn5k=W3okAXgAGT-{Bz>zxQ%w|adjag(*+#Q z9VOEotu$b#`~){P#g0Xj%|QRxdM2pP4Tpmve5bu=EVp%erYiZ@#g@kSQ$=luw|@i} z-U)oa96`6?k*2{jO-ouAQ!07x%P+}HQp)8+bzXn_J}s<}pQ*U}*SXF2(tGEM=29b> z%J6!r5PFT42bD7}DBLVUcc^XYskhj^ zc%ZlJvuuctO)05b5%-N^&99FPLXuZklri+@8a#rS z$XSEb$Ts?a)`Wcz&5yTEj&187q!IH3m`d=J#(3o=g$adgJ9{3rx-UhR>n%iZ4?XeR z-oSX8T`shT!DEV!9LS4yeI?~;5v(2w7ieRiBupA~!zro1vI19i8cIh)@hW=W!QEEp zGamdMNznXxKmPQE!}?UuT$?G>w_btn9b(>T>~iHPICC#31LzgJ4iz3OL+c}dpa^%Y z9q`X{#E|bpO`%r*m&eN&fW>`7{3L`;% zMkM|MK7WsLMxCjeg1^gFK2_}pZ)_-lA+`fw*z}IVjw*DBt`$8|o_v+rrJ3yzkCl{T zkT;Q5a|`)9sR}SH17v}Q>3mu7q&ul-al>9(essn26Rzk7Mkm}Ye=Tmv&FPOvjXoqt zK21^%40w*I(6UGv4S%@u&n#+ClA4%ofVf^O&-^$!p5ut99i5LqlPjr@8`)nRUt$Ak zsE=s33WoWfwbdXlHio+u^8R>*-^~`npv!v5`(A9Jw@5uC%6EhNuUQ`DLPb6_kP3M{?x*48p{;+dQY568+sl=>t5mrmVg>|%=43=19&^(&S zFA7|WPxu1)N=J)L0;!+_-cheZ{&f)RdVqZ2WA&#+ZAS2xi}<%dN1b>^7w+$>-EYE64M#vDZx0M>L%I9 zR{0`V?5sYNX$EIB2fzgx_s>h?o*iWhxjVpMj@L&H0(iL!lOnfigZXW#;~}*%UxZkr znwpX&k4hC9xM`kZN_}c98HyQ+O~yQzt^!;rH6lT8Fpf%08LD(Y5hEAYH!Bt6wT2UqY6S5#ANOujz zSp~wl|2|audeP_e(e2Ha;kXXQTa6v>$bSE~F~RNpi})Ro zKEv;^{ilF#$!z<{4t~) z;IuPic-MY#mms*wv`ozxf}al4Ka{XQ90e>X8lFlaX4Z;x7LmHyuI@}K4Hvq02NIwO z;yWYODDvMrKUm~SGDp#18w+QFVuCN}Zr(Q985xws9u@V^)8Bf`O-aX|)+DlSJjN8k z#kot!rYKXD=5s@aFLp(rcnwQh=>rNgMTJCIe*|uMrCr5}NfrOS!Nb=InvbH&Mn)iY zqYI|ep_%T+ljl6_o@lPaBesaDdS#-zBXC;}%`FW@OW0s_bc*%*ZY4tH@7q=#)i|u> z$X4*PC#%~VvaDRq;%4dTv{cr@j{gqM?wgEERAjqsj9C7|+H$jw9!VeVDIDGxalTBZ zVJYOo^1i1|<5_*qc06X7N>(=F#$uDNJoOYK1#g<`%QlGbd(W!?6+ri)rf)#u|F{4* z3g{+%e>tm8O`j`F5q?Ty7xlzXwMK30=*RzX>wspoN)#<#>$X_L;i4y(k@&{o5gr-+ zxoZy1xyATrb>JV5M||*Pm>C`S$ZJj?s&FHrK!3{Q@?(_jchS!YFyF#<9|kPYUTLwT z1vGxu7En%2?l@_XPHfEpsk6ede|Q{WON8oX=I?Ay6@#qZL{zyp&+*bMa}-ty7RkVM z<5U34!*=gQ^H>9zWxuDijs+R#sKHBNvC&X$2z`>|`V)>Usq5C6QE|O6b^k$R{?4I< zix;5!)!SW}sn1Xv^KsZ&;%Q4j1Da&9*9*jxWH+C!=G@4_V;&fFwXE|~*Q~13W@@!b zWkbf7`;R5U#|Bp#-5s3Ikhm_!W(C&w^XufAZ#gMiItj;I z*VW0+2EwcgJ_c9YqZ+cmSw*3yX)sUM{L|+bx({TI<$|IkNaaE0aKu`%t9sHtv$7s^ zGsvx+b-Hz<8NlxBXVj|J?-YmKL=2myFU`N7A7YbF8%0`_t<8yZBnQ(I6vR18f;cmc zm}*&$OH?~`&8sW4Qp-yNFt&B;}(gN(w?d!yUPF=1nmqGYSHL2{BzU3%Rm~6 zC}wxF)vYnJ|D{fHLtnbr+t}0L6a8YfZEM49@pv;&2)Q)C_mRJLzN38ux6IvjiKMJ0D(h{E?fL#8*)34X)B$N2Q z8pOH6o`21SXe`+fvLd3G`PcxNsMB`HcRYVG7!yax&R^%PlR-KAhpg>~Fe~^qqAx5@ zp4V>&S9}?p?^+%gd|C5GtzvVMKIZlzHXr!EK8vWMez^wEc+~pYxiMv^d(4$&V`G%y zdMK`X1%{w&RU@4`1a_o}OM(@h@3hA@RJx6ozS96T!$JhuRj_+|@kwy!{5)S3HLkS!l^h9cuV3NAMwMv@UFM zuz5&lR^R~73%Q?8W&(SsRQHqOr-Mz{?^0smMFUC1Dx()aKQ{7f)wyqPgEtzA;FU3Y zuSp2jKQn{OFqKPvEBotVurp%=Qr!&iyu2ZuDeU{F`sS4pN0=6gq38Nc3MZht>D(dd z7)vV2^>u3>%>g1xwZQxFJ%%2y?Yna#3{G>-7o-4B_ywaEg|=aIU0afE#9rpX7IgUS ztsR2e9g>fNUd^q)pPuj{%Nb9PI8p7oDzuq~hXrb&IxwL{=dDJ3pLoC zCqM$~7$%Z`$wwoTS?$!uUY(`!^=I=tKG<;4J6j2{ZQ}F}Sa!qA5uOz)P>-tzcMMcJ zk$YbNYwKm^(P?U+lRthMHDgAqG3pX)KN%U;mnT7|#W}~B1iSl=H;>q$dz#Jr$^6H7O$)8{&-obY;ak|my?!{vj{}5j zt6G|bYj398a0k2C+GJpoVp!@Q7s1S(g6M2>Au!4O{FgBH!M? z*bzJ|{KCyRHdq-UN}4S;pva$hSE`aF!$o#7$Am2su zA{*!HCo}ELXlU(rbQN1EzM|_?*-=C$a(M6B{n9X zoR->Cbc#U(c2ukoqVLsEsj@i_^3qTm3Z(Ze*K)qPYX<>}oHUhsq@ygUVeV}1ge%`Z z4R`Xh9~iAf`b)-uFOj)>ng6WR`(|FTYCpI>beo%6|1BihilWdikRh$Uz%;xQVuhUH zdC@We4_cL_=IM_A8Wzn`g!R&CcLCvhmj2|3uMC$8G_3WA_!Yz%(r>-!MW6x*^ww%e zDI{19Hu;c$x66HP8Ld%RucIgL7|-<-=INr zG4{$dN{5lf3(j-09p33J&oSNMc-e!YxdNyTU8pW{-&ZS-C}_Rs)brXT=I?5aTVK)$ zNF$>&C~NqPxjSwd$;YnN`6IJj z5RVO;HmHf5B~|p9nE&ZAIV!Z;(QqhD(7H-5XO4{QkS&@r&O<(}@Z zJ>O%JnLn-eS8ga=NEttJWl-8k(?sf=HNu@at$a2{Q_^{(@UY={y;hd@WYudK^+eynI>?cKN{ewGxc|jF z{4`qydXtfUNR;@Rj>j1mL_cy9czJ8)VZ4jGeDHm;IUh@$P9`>GYNA8yq0EE7CX$f# zgi|WCH0mWcm`dUkEdI-FTOcN?ae^tXP^QAcA?b{jh@g19LR;Pk9Qg^n%(G^t0fuY< zvly!OSx|fUzGbrzuJ{2C(WR>VO&NMu0JMA88%O^h1OEj+9+EPC5+SUj-%I)B2CyrV zc_1UR&liqWHYB3>%E;FyG)XN?cN|t;^%_CN%}YiYj9UfB+(tF$Mk}~v3_;hRmlymB zv*d<1JfyVIk_E9ISLZ^llswFuc95|sQSkSQ&M6jFKL z>Hl*-fKVE+A%RfO-8!b?Y-eisdFBPFCoUlI^gXu+E_)JmSAAY`o56h717gNeO}nMK z7&7lN-81!GETi~Ar|1f6L}h>0=Qgw6OMKwxsOVdO18k-7SQ?_CpE4dr&3bxaUKc84 z7qOOc+rWpkyEEw`-;V!hEXNWSbrH-lM=jC z&A`i+xP436#1g-4zx2!Dp$(M)2LheJI??TyF&X<0}+VkPrq-ynOg7FdeFZ`Iun-Qsrjjk z^8Q`wdpmnv>LPT41a*ahALfuL(W-|Ds;Q*r`r4juH4sM=hZBqtR_H7yC6{im8kntpO1XC#0KT?o zv9%6?Od)qc6~8amK^vCulc`MHgSO3PQg&jJZdfivzFN{D+f< z!A~ScQZgXuBPxnYj7hU@u&94?Qvun#qm6ecI@{8KwDqfWm^Z4e}*`=dI5go}W zWuR&5;NZh7(9`oH_wNBc=#b)l?tIpxGy03<4x=^A>9oCHU0rQI*iVVP&rp7(!gTyf=L&P`?9^H>Y4QJ$~YXgm!6%R}1bU zbLe>I%*URD(GgcPIJMOp8np$IWnj8SWsI^?C*Zxcvp>s&wo=Moa$opMaWY$$#O#B_ zW~9`UM9M0PZox%53)mD?2Sr;s%ByN62{sXohy6Pp*Lp%m`Es~ncBbcAjRxs2#Beym zcN@9g15nO^2f!;bdiQN9@b6b&wXOu08+cg=44#HP7awf9e~?{ySX*JBf+29U|Gnit zEx#8hkLRSf{McD;UNcm6kpnc!ZJ~S;(V%Q$Guo4+^P6%vZBqJ=h<)!ac9D9?@Idx7EaFqOy<+c2h$qjh?sqrnEl_TUWAODIfw23h)ri2JK0?s zFu*46-1ECCp_NQ-jTup>USn3b*x$O}0KXu%@Vjj|$9qw*RQ=J2eG%JjdPrg_Q0L z+Dq4=R(Y+wE6c(*@pMiZ;uJXK{@9KjKIbJat5ovNxzP5iQ(F9T3}1?EC*Zo=yI&MZ zIbw{b z+KpBkIy}DbS=y=!=VBmqw8=gZwkoAnEaB2qW^Y8fB=c+abSjdimiR7)mn~d9m%MByP@jBn5l`xJ_YnW zVCt_+_zxLKCCkI2#2XnJ9TL3EDeg5`Dm?=S$8Vmfmty@Y@`et^fk7;;K(q`5=HoWa z{^@g9kWgGQ>%~P{1&PeBFLTtFm1EiV4HxHd-S2(2-Y)3784j{V_xFSFK1rbI3-eVW zL^k`i@Uw21-t@Z4beC$poW=b%ru?@oKKJI}^5pE^@Jc`PZ-iVaM|y|iwr8~90Vem# zoq|_Ijc2uYAr8e6;T)^D?D<11R0{uWHqmM`FxzL^KYrY|&Lq46a7p}&`Taal> zp15^xdZk?0_M94s5Aa2D)BY`lQcw6r59W)a=4G66t6dX~2hD0Bc;MyBNS!9Lm=-+h zJG_mm*1N2P)Sa=_oUN|vIFz+f%-h&e*=WzK{610wr;{Zlm|1{vodO$a4sKUhpMPdR zt$12G3|cyU#s1c)s&*8LCPIra!$5)i$8OYi6R5q}lq#64$GxFJD>hMgMiWxPCH^=u z?6!Qv=n?DUL6j;>fYqZ?#+F_HfVM2*)G7pt^z;i`ecL9-IGczC5rEAfHirEjYs z!x2p=!`0?hd|3L($nuZzc#6Aj<#0jW+lngj7%A}Nj3Z^tIaWh#u*f}1QqDx4fW?2my@9HO=7-sCJ4>SZbovKdX|@sR0L~j_7_{|H4~O-Hgd0%0_Fl+GQK$ z$c7r*1P`nJsvh^V&W}X4(SV_?6~`O=rb(I!nzYXktE==uNs5j&>`R-h>U?+YjjyvX zfMJ@<9!&^>={z$T^)am8>8>q&S$*ihC|gxmXAGKeMVg$?4mOqcd;5=ks8dYej&Sox3G9UAA4s8wy&Y8EYdGi_uXXP z3j?1}CcDip*-FRv_S*RXJqwKv3wP(-FiLjY>2<{ZU2{n>#M0pfWr_)nRzkT`F z39Z)<*H4rw`p;>E4d5&p1JLE?#%xdlQmZRtbjBWcs#Q8HSdrJky^2&RTYn6Ic!P-* zjr1aTPu0d>jFW*nv$6WD$Gpk3+gebM4ImkzTcEABR{o2UVnHs)vnY!=WCO*95&_p# zT9D_yzqpf)j112hqP^kRhRyRK9B}x35XkMbj?zkV0+^9hkV4odbTY2S=HVXZF zgaYpq2oA5DN1N`w`G<0}<>A(TRO!B!I~GgCGsBNF8MzPjTD#z$uB}ilaxj{XJ(YQJ znY^#iTe&{|48eP_9ACQ2PV@5rYrV9pUUzcO#ny2&Gnahiqy^aQas84$(+a#B`P%mC zm}-+JQE2~8yBeRE6wMbsHvanV;IGH;Vdb%_T&|ui-0gJ515gfCRSU*r_rkNq_#94v z^RBGhL@Gi;CP-5kuTk2QQkeTljG5Opwpqcooo zkO$q1dC}rXB+>6ymC@|mXq{-iDu4c5ku8L_($Q$U z=cY@9uR|`P2WSrh^90+0Tz&ka;z^_ttXk2`cjHKZX%w3s9SA=y(m+@+&WFOnY?f53 z9J{V2UlTptf`iiHnZFoNhG+)`Z^+>Ytn%q4@JeHBVB1u+ubf_h+|=u^Kfj>W>VI=* znR$A1tb>1#Ns1+{KI>NmbhbN{6($P_;fcupzW9(X<1e~PwJ2+fIT)}n_c~=tN!s0R z=;8;n!CE-rRF<0EFxf51u>kG>O&)Stx(C7VrsU4-#6rdZJia>TfheD-$T6Q)n%Dk` zBOSXVDnKBixk+vtc*-MXL!dgR(*?<;p(hPAx+Ls&^g+XjGkckIdzA7-oHPI2iNe6^^(WBF6R{$FAXsNUDJAQfq>9wG4ptXLTdQ2Z5kr>og}qCtMxu(g+kU zdI7qUgRsg?Lch7bV_2)b&8*R75-X;$Q~@{J@Qgfg_Xj-4hBG;Dk&9?08<)8cqhivg zi4)!aZzRJ-G1*LOp*}S-C7t2!Zw337RB8+cga~dpbTqa$lseELNiA4h!x@00O#~`RxyDbUwg9U1VyMsNH>5*H&4HDxzwM9RyFsiG4=bTWOfcR zHsV37*|8G8hPVpwJ~JGHD5i1`=)+Ba5HgL2-7d$`iu%zzZhf+gJ=UF(5_H4Nq-{t zMU$huO=}1;M42(A)uCDiA!yo|REFZSLCCLvGuv&oWwor6Y3!}ZF&*3gm>=}*rvXVp zHIq+sb`|uKBL@g;ezQBW2q-ZPVKt|fwXN=0?bJMG`5Ily9u~>9o1;QYx&I(r`#V=S zfqiU`FR}ekS36wW+g2czl3{I69^AoW<#hz($0`-`8(6aq&9j@hLDc_25BV`)5@3r;2_b;M-BaC85~EcGM2@w7!g@ z)Zjw?AA4@^Myi=*i%vwbyq+?Wc+8fBY-`;gz$>AS^hsY}K1#JHeXE!N*W|h2kVOUR z>|w@)MJ?h)AO?T>-108e3yQgmRX^o22^(hSTt&(@{7ygKB((qQ_J+Ha-TcH`av?TM z0AJ1sZm?SU(TNi986%n5%$5wRnuiPpu`MG@8aGnfnd{HmmT*L}P{NPSsS$fa#Utf2 z6jn0Y0h|VlGpAw435|r6Gf%-Px;fahimdhpUAEl2pNC$UMDY*HwT;BoRRU%PtU$X1%ZLCB}aGIYo( zTy9izV%Bn8vX+h%LQjocwI$CkH6*mX+VVQ|)6Di0oBYwG#Mfzv`(*9hU`bcA4q?l+ zIY1V9YT>&nJkvH9{Ce((7rL3FGPSX5B(vbAf#4C8X^iH=zNV-{jAvuwAG(AEewUIi zr4SP)j~Znmhhtk@XeaWCyb*$`ni7`ScSjZ?+$7anct$TEq_)j1q!-o{2^k3mh^oq&jN-KQ2HBV|GM| zNJe^{9@}*{*m2n%0rC+*l{D02Iky&@!QT9fJRk7{VG#j3B3JC;s`|mW)x&;`rk8|l znoxKBjqUGL+3TyPPWZi(*SPRj6Vy{{SM1Y{_w@5C#pJM`g@IZ;>v$aPj;T;n4i#fs zyI`K5HW0IVtt<_25@4ihBduzk)s5M7AoC>K2^-`}&2aTor_J1DFWXquJeZ3If z^@l$Nn)j`>PmdKb@WB&LLf*Z9Y>(|Jvl}4U(^)8(SJsr@XI4V#^kAsE=0yULgfzvwB$pq`+Mbl&VGkfDqzK^DMUU<|Zzzyllik zUjTRcDg<5-q#)%{BUU8GsNfMBBx;>gWU7pJ5xn$RN$*ODACy;V>rwcZdn*1a z;MYB^_3~ohj>|8=2cb=O!kTRWtvC(`x%sa@iUl7`S|HE=m@1XE0uQ4XJ$yG4UXBZb z8p_^fPd3RcDs?7wzaVd8R|L?c9!$g3Y>y!R??W?D{~aG?x;)6x5U;A0MMvpmt1eqM zF&(GwB4$o;Oc9%~+~`L>n1|>5t639WH7820NPX|vXa>xar2L<8rj@Ux<#uN6HdHRjE3)LgC$Xep^F56J@ zbSW9F=dXmRV)>TH$yvlF3zpGa<@X-UsLI33UT#h%iA;t? zNvE4>A$WWTza+p*zGmI@S-u&ZbRn_nJHb-&>Uy*h=jq8zmpJN1H03`ZtiONM+-_dwP4J@Np=e99Vm)P_)3?HG(^(6votFukcc}yJ$j4c0iCOiNj-QA2hrMG z`|sQ}-H&LW(=*@cM`shx{vbH#tnF9A?0g4;tT+BO_^z1KuSc(uNMP=m8H5nSnPIJQ zKMgdmGFDh+!=KawbF^W75m$x`pn&|?ImW&?`(Uv%o;VQ*le{k%7sxK>er6u zMui)5<5j5+4sX%Wa;6RnS~uaB<(A#Sx3u)!l+77T`D<;;=9R0*xAF*bc;17?zwark zJDHz$kdGT5e0)B|c7r=ma@d<4a&KC_E9dNdwNc?~y*Ix|>Qyj3l4x`leS8;hhdo#| zzNOApeB051Y>-5>Qd8}XRrzTeRiQEX0saTDf0+Awfm@C9cD&h6M5B?D%B5tEU9ck} zxZ|g(^&D|eF>VHU!$R`ybLuM{+ zLHgKf?ObNgmY2<7oJSlUuJzzMHk5kb-1N4j`{g#ez~43BN;erdAS5cEUA6*{+|cE> z*;7KJZm|;@199}hoFC<{ztjd6Efa-5__f>Qk>vxUS?5BY-Q9Tj^Ts3JiEa4_1lsbl z+-db55~}f)>U?$xy2XI&d3n>M%aIBBA0;U9wczjsBXCbMnzgh*YKQcE6B>{o4#R9pcelJ1j2C-@csYF zN?SOR*^))CbnVF}je}+5?6rwuP1DULTzMyh&3xr7n5{(+py4=I@Af0`VVlv*QBzd_ ziXQtHnM;_SbU{|H}fD(=posoyIb^8FkFtU`kP>t;=%oPiv)oVK|bqt zT=UzE{IMvN|K<;bDf;|00*~uDgv$*m4`=UuXC|Aop=m=R>CP%YD%>^+0;CRjqS@0v z&l`T0(ez0G9xW(b9_Hv+Q_-U)sDA0#Hl^j#OsZ-%121PWSeYDD4rNn0tzjmu(ndHE zQ+*`+I&?-BV?7G>2bt^irA)KTf3rG9t>GdgZ&7)PBe4Bz*wvB{l6eMD&8XN~$_9D^ zMX0^ZJEEHY4Mq;Cjimg&4C249ba%-wR&%||O%GbwbG179e(i%W1DCU5n>Zz`wM(uS z;?8VpmFcTGv5DYeB1`2ZyzF0f#66jLr~L)Z3YIwM$PG4llhZ?f!Ky^t7`^fdCO8khb{{gU(Du z>A^}uO-g^{#Ujo>>j%Kl82|1jd_$z*vyeSyG0y^?1$;Ah(-nl{MxY>9`6XG|Ip5!ut*}bAsUh^nMnD@=uF!9!sz1 z4t$ScrkEz}YjM?m35?c`aU=LBKCjYzmU@?vG+wqcHdDB>c22AEvlsZeS+p3)8{%>~ zeDU<%NU__;2wuzAoY>3YGg-?>6OT8BOiWQY5XzfANjE#J%lNhPNieqq zIdKN-YEMFByT+Bi34%3inS>~|Z7LGT8(RT2vO|az=ioU8Kb_~zaowy}(pmqZKb&Oq zHm!l6eRj^wI>khRvr09y6Ad2-dVn`z*YoNOEl)dg4)N1yVmzSCXVy5u}J+`k}zo5+_6y3P1FJwU3o41Y%RO6BXg z(wQCjRkV56c>9}MhPIGVtLxeBkUd`CxH$&1*pn)Jo}nwV_$>H$?URUX++@##YFo3^ z8~6#NB2Sw8@5q8GdUS#AyAG`Fg{8ILvm04Tm;@1v;@s?|>d+Xc8Ycz!2<9nwAKm^F ze&-EP#pzQZMz1@Mbc*>L%|-K2juK=Old=2JQ%G@hIFx(krR0V6!87OO*{!C|fllk4 zTLBZwNBd&hwjKgfp9b8+{hk072jQjztnH|1-itDFwXH7*h;E7HiEP!C|HP2T=v^Sk z7ZgwACV5jNO+Z0LKdU@DL~DVgvarj%Bkmt6Eg>3ClUOElpF)9QY$x(Ae3HFRXNNs7 zrU{Qf^#B{Ta8JE9=(Lye&Vu0ZhtRXD_a%4W2J z+9zm=I?E%1?S^fyTaS7oP*5>}B5P~S>JiSLkdLzp8m{Ue`M&YHq#{5kbF%qi{uMUK z>Jwjb`Ziskf=av~QmddSi$iQ)E$`#m)T#QCKjTi{&eis0j@BvKtg_KkrAs`tHdf<} z9T|M0LW5PsK}-?X{@534Beo>T3^%6NK`|%9dOwV0%V^?&&p`bak{q&Edk~l5GqIP0VE#Jak@sHR6?!~wap*M z9HDr<$%#N~e%%t6z_yTKGN;90Geyyb?T{Tf7sikMV_)H$@)vTKg*a*65*pNBh}oZ4 zu((X96^$qTA8C`|%AU4i&Y)|0S7|)PIi$2vLW$gF4c{*!71oGH2`{j_YhyoTGQC?aOJS*` z|KC~G%k)HS8I6IYUU7^1mLoD5_d-1Q(smCDaIt#!freOND&$ipZql-SoP1x946YG( z+Wj!Ojz@tCWAzt&i)Klck9p_gv;8~^RSdDmh^FDh*OZ}eOqm-W;I+3?->=OK&PyZ` zI+bYun-p8|hWdHeo>K+ieQ`4CgG5t91!64a^F*VSbMQVVywSejcAOi zK4edRRt!uBpTDjmE&S#h6z}wlnGJIBJx9*LGM6%!(?^pGC8?q$@wdp$hpz`Oe`^QF zm_-!NS!BLr?N6vHs+JJ6130SX`^ z)1~T%`)7zO`j4!p=slz@*O}>MnT>q@ydcSac0#t0<#k%C`h!<_V^C`DnaUS-@_&-f zq8@crDOf2{NI;CU6P2LYZdltje&14^-~`aY07TzZT}Dx=@6G9!6StiqPs z(%hI!xbYz(`>z(z&wdp66e)SxX+HDqTns9342D6?43PAc?T&xV%@9^`7;!J7Dkc99xAnAwz ztAlD>#dKKPQj{^kS0e={bY!gW%=%|2}C!?%foX}1n!)WJcO%p28Q7i3;9W%42wZc0-D-AsPBSkm0WCQ1xg z_Gw;2_@6kt!&W^(x-S7~okd38V~`ZT?D%WDDcz%-j-NifQQXERRUR(v4y#H}ia%#M zhwS+TaaCt#CgNM68u)Nb6{+|grrS)*P|57~Z`3x9U+XGa{zH$aJC!pT~z?JqbLg;R!=uo_%I zg;XUQ>@@k9W<}=1+Oxy?`!-UW`v)@7hp_|o&eFB#9o-V;_~u^@^FlyDs zJ8*aX!nS`E`Mh9n7RAy(Lo)mAiZwY0g4M-j*08tR$z>)?M4^KflT;W68DaTtJy%~BX>e62@9XVuCDrTl37 zcusUJZjIw16Q3ChV6J%9@po>#XvWb}@Nwa37U2wLsdqBIl843(gsn>5qmNI=(2?D1 z6t|(dr^u%DyAYUPZ}tpD<2rv3eotk!6J#^lh9xNhXApR?eMDtRz}wk){(9jbNMJRU z0@VYiQ4ROOC)^(3AX@Xf-tj6Ac6zrLD6{9SkwLCvo*~l(+{z|=e|G6>V?lboT&4DU z(USEGc`n z(K+vX=^D&b*?X;MTlvYjsT-#}BtxCm;-ww$rt*mcv}HeAx+w)A+J;Tz*xO0__X$nFCZ7& zTz7>JP%fjf^A6#|?=?h*+NkC-s|8l}1{q>I;4fZFWxqQARYoc*eS7=s=$%@w(%-iyHEn^xX$SFW(gv%d5| zxtTa8&&ZEZN4~q89!=oy)GAiSJDN<*OXb}FO^;Z*lEcmbMd+^N%765X`yEIv!WK-;Hk zcV(<#7y7_*FAo0dbS@YFz(fATrZgB9)+*qfYI}ccOLbMe)yqmHA=6D=Qzw|Jkyb~m z>+7@e!!p6vI8pYv*#(8Xj2Jnz zYtibLb+Aw((J{gVNdVwiqu3*aGN9u$(=tF)Vh*`$-f`hlL zh6h74+abV>;)Umt0C}n`g3rD_c_2P^RLtv3Bh+geFI>%792>y~CN$UY5m=}9P{yEsJWg}O9b98K&$Z1iFXeRWKx`eAop^l!v)j47=vogJ z*KMyT=H0C*`eNx1b~_e+CR|>XPO%xO24b-!=!z$S{h;@2@A?x@Z=^xPoq?UMO*@A= z6SoEk(wS)dbgJ3|?*oqfxbZEMSC^8G?%l{4Tqlj-5v;(zTvI<3sR(kX<#Kr%-;)ij zl}Xqn`TQb<+X}A;o5K?lb|pd6n0Y9c^619ZbT|*22u$qTD{dS4COw34^s?M<$nP)> z_utKxRD~Nb@&~dSE=Cyo@=rwOD!pIixjrA|DOkC`sr5qhpe?^rkN!gSA;{}vZ5N)_ zgNheXMHo&IHg58Hh}+OZ`DSu8JbHHdisdRM?vzwWa^p!-z#nG%(-@`y`^4Vpg+4?~ z2++m>_6F zI-gFiIneOHNI=lZT-6upS_Tt}_#ms2wm0s3srzA?+?IxV)t4A+4)sF4_Z*|~fx_^( zUxA{tQf0*pUkQt!R$^6ZXT|s13Iz)q^+G3Id}GG_Uq;#>^PZ7oLSsyq$R|yI(m$jUKVA{p;_OF~+L+JOaOF zQ0`AD0Q)J?<5UbvtjE`_1T|81)g#hP>TYkV!8;WC9dOEU+q`EDa^rqWjUPegrx)ydQ{Ik zTjidoQ5JX`cE3pEFUt;eYcBl#qxmt`3}}vMe^9vM(!QNI{S&vtLRF3f74aw zw5QF9avX$v%LP=vy2cYA`|)dvK11itda|?{K?U?0DT7dri;?fl^fxsziEhZ&hJ{SN%4UUUglWvr~#*M zsizgM&a4>1VT$ogdX3#3?@TRLu)NuO$^_N1lW$6=ZiJMZ1Svl){Naqo+ZEF1pwz5s z^^4;Gl;Mep9d~mRKX4`n>5S=---@HB*C1O6ZlJI86N>gT=W8Kf?2n7r*xgA9`;>(}hb2a?jIJvlc7+}fAq4s9)*U);eeZ-4xLdL3$Hz=nWCXl9*#_IWT0bqbG6qJDVkDxp;oCqTxvJAM@f)8 zf}b#*GDLY56&tU{Xy)?HeW9OmF(ykjz#6B4P34qVi@#cGl%ubT_e4UXidZ{lX+XW} z+iMX=))PbQ{&`@IQqPr8P5XOS>gW0rI?I`WpUl^pP^p@lSBQB+cdNOtLwM}BvcbZ! zHkz~y%&hY${fBpQF!1XL8cysctc^&jk0WM~_CJ(MU&dNW9xQMUEcV#eu=i%p%UP5w zSmNIGEN^`rN%q)My7-^63Z9~H2pNEV@BuKsjOR=Wmo)+LD4m;r(*ENxeB)D&%SQ1G zV4nZ`fKxq>Of;-O_wL%MckivG^L9BGkw2M0I#`m5bH2IrAs6wwb|61Rv>T8}-xpE1H#a+GnGWGX$>SH=dcO2Lc? zORtCy(l`0bXs@jaq3-BshR1epM4k`C9X0>f$je;*u=zA2Yfpot6}7)K|t&M5+#Yvj+3uiH4s zh>ID7>URMDz#pzo7B;)tZEjPh|Ca@Du3{@bDoH)mRu6Zsu=qEWrB=5OJAB1&GttJ} zoO;U1u3Cdn&&M`ZIQ@HG%-Uqkfol<+M$W*_48coConqnQA7QH|YP)Jt4g@Dx1|2p# zPkccSV;g^(_7}HScWrY?L|56Ivba33*CHOycmAD-L_c&$VB%L^ycm}P6HqpdHx2)T zM`#P~$da%DUxM61QjUxo^)EhIgifqv=zLEF)-H|r1pUDR_CEMvaB0nIf)1cIuLN0K z`ry8(O%cM^hPAW(L*Qqb>CXhRVL#BpZQJx+bEznqWwY_`9~xMx-}p3B+OXgr?<~DV za5bKK=_I@-bNA}uCl~eiSs18e_Y-1Tw4AJ%^OJ3hM+VokI&}-en`T2^B?7pdnsA}^ z<1|osPv<*R9E+2})%(AbKn>^PbmD(mGmmE%Q{unyC7IP@1a)Q`UM4Fyj_g(NqfBeA%#n1cvp4&-;ZETL^_$Yvqz>TZ2 zk$2XTa*~U07vplzz~&{xO%J#uAOpZ1b?>mhRsT7S;+JveW-r^L*RX3E6Tm2Og`BwEE{=ma09j z`(2Ndw|C_R)TGjZ_txT0p5H~q=Bb_T;kzg0yM_nhlrQ=+hB##4h^P>C6<9Q5JZ_1L z?neA}y(_1d0`h+R*?VIr#GctE{}J%~_oy5hK5$;HD;?$Hwdv*i)6a-tvL<%a2c8~( z!)2|xGNIdYG2hQzBSAa5EbESdi=Pwd<25-QA&`nUlcT&MjoIH1SBJ7xJ#&{2{IXZn9nd@@&0(TM2~oE5wj>4pE# z(ddD%NA+J_o{7>yy;N`#&YP9$0w=W87*NlnX2kV%F<*TrmdJYal%ydQmB?svJ=n4R_X3TE&idF;=@{I-mCudT=N1n zhJ{n+@|T}14B9RsmfjLqaD?knPt4~1=ILvxpcAp{yHqseH`M1%C5hOgd|muNdx=0uEvw2a_80Rl?klfDv9uoWd-9s)bAAEetZD#Oh$((s z@+N``g>c5J`cvOiUSd?r1`Goz!#l_)Wt)8bCeUwQE39d%U8ukOMu{vj2iN50?1wX2_vRvJW0je*oc2*CX?RkLSdop6>A`h5*rU3QH-Gde9>cOUy%|5Xc;60S={(wzljtjbI1 z;)M(;Qir|``dgl+QJQ0AqL(QwJ#~g0voF4{(KgtQ^${tfF%4+VOen9D*5fmh@H22k zUFX9Y?F)o5Ak@n}xB<|tNA>B&2zR9B)xu31EK;o_&8{sp3Ct}VIy#@oj%h4nL7P>wgqwPx*NIfHpntv~#(aXfnsd)Z`B}wyQ+#gqAB^ zW#meC1dDUX)$^l?(5~vtX3Ko}x&vA4o<1Z3WeV6=ojB#Ah+#rhm{K>-F4(f{!)#tO zUih{W-ysRb{pTG!8T7fT`8oR0uA8(|HmOPB87}0K2Kgmj_?$<;!g(5*(WVQ^bLO6| zn>_o&{+MS&6#ICAkg8y*r;W{R(QR(ipwyWF`dGOFP?T2#r4kk*_}sn7yMT9`#sGgf z-%I~!j^?&MXvb;ol&U#~+2&285B!!zix`ta@WxZ+E$Q`RLVzarn&1z;===Zo`tQ$U z2_>9d%O7}^-N2_T)BcAyz?v#N6wHI)MFp)t4*=~~#yl>*&t3|B62+in!e0RXT#!F- zeORBD@3DM?NqGojyq89F+bi=4J){h9G4<{jN?ciak_C#;tO0FdA1c=rEKHuZ^h>eM zH_OOxG{sV0$I^b`S`6z1U`Soi6w!O__)M{Im&H}6Uk`1vALelaB?98_h zURz?g_x2ZG-o99?0neS+9_107*_e^Ba*3`uA2c-btz7y;WccC7y-;jJ;Q0rtpBP{o zly(x%JQHkTzhE>;h5b%_3LPoDAaDH-JDrk?snJ;6RjyWTn4Ox9-6O^sWG49-9AF23@6mMU8y)EHW%%2Psop-u07I_@CA^Uk+og^He(sB(%&UGUW+ zY`iBk&W23zE;~w=7BI8mG4+OE$hlkgbMda~J^4;C{1(6vkIE@B?HQL#SLV2wIIz{8 zOdH4m^(N`UnZ5?2XdBMM-aTV#GwT}rfmkh{WemuT5W_al?>`m|kR$?m`1AxmHU#nS zS!3w3-Hp`yUkT?bSUWnSJ>GLOUT$nMN)hAQKSOQJES{N6u0y;`CG5e&NiT_m(0Z!d zHZNm;EZ2w1{`HXY(E}dt0VvO%|>8D06kG?0%#2T ziAd^kroH4w=zmK~oDlVe`)oQ)dVUhvyH>V#b)a5nv;TyaKLGTWWM9j9sQ8;HXxowA zD15Ro&7!`^zoqBNOfLV(my@PnpB4pRac<{xY~uv}^6>ZU=<)FZ0aZ5Yh!; z84n}pwIQ4jG~COPV#m8`>NhZehVX86I5+gC(Tau$#(ZtkeU;Grlv%7AWf$1~q!~;( zJtA%Wp{(Hrih(2x;ajQu287V{{%ZC|dNuj6$Beys`NGz&$_%UQ*syT_0vBNFOTy6% zx~^kp?ztzls}vhOMi6U1ZcWAr1XKTBy~;}-IwIIiF3uAc!<9(_oy7Gz;fp58HK5VA z)vYGVT5v|X-KYp;NQK>VbCi)0T8X_PbKe`2|6>mUeHSi~mtd)~C7frB{Sy1NM-(_N zK6AuIL+gDlg)Xyhc#P~Ctt6+syUS6=G(=f~3p*4B-UWD;&BrL6W$L^z)<+U&`QRQC z_hECfo>>>+<`TTDKdpMXzFZ=EZJKi@d}hOV`hzP98`XSNQHb7kyXk;zLI`_Y3Cuc& zlXWzAEhwZ1)}c0W;;_uA{D>+8W%$zO|e*_&Kg>HU1>E%!Siv7VdYjLr)mQ z?`S+pX+lwePDDsgyT1x4wL^w#Zp^nQUz*RwRi(tx>#o-A%q6yJD&URq{`-0~7oPJT zu?sw7M)lzc{uDGnSZ+&rcgZsQmoFG2!GfZuHdMZCS|i&m3!6-oJj^fljK|B7s2+cD z-(#^-_?3qKd5U$h-78k*#UOWrKQ)llrHKoxu^J-TX_$ZSmRt3btMD9Dg6&hk-Z?BJ z<~kT|ukpF_#fa>jXf}@R%t-OoZot*Z)r~vrh`x6zdU0H4jRCl>WL_^W^SF#JxkpE3 z$b~uOPz9#Q#g1RJCSIu>zz@BLYpmJ@oEq#Y3TR(5q;zeay9&QQA6w%S z87n?Ki6QGXtkU75Yy4AfOZYH{r~6~kX69F(fUIvB&6=rw=WhvbYE(9Bv^N*1)yqDf zJ(1z~Pc9vw$}WcfPxi`w`RyJN(t9!$iOOaf;N;8vp_%e&H{yaTTw}P&qyR?01Mrq{ zUI2>+k+e+T3^sEQ6T)SBdChEPwWAmr?UJ5_{k_?dYJ4~i?yc^<&XD*(G)-VxLsuX2 zVU%r3EQ#G=y~QG6F$t$9qC~EwZEa}|jr_$PhMg(?*z<^=;h-|vGMpQ&)oc;&q8;J3 zBgxaQ6-9hO^&^AzK~?{Je;!K!>*~VLj~G^s?ZOMOm6aR0)fq+fS=cX3dKkNrQLZ=IJLi)@GBn_! zaD6$?x1crdlP=9l2FEUg*FrJCnDYCCvr7j*y8X(X&rDz~O_-oBWs4GDgzuPCY3end z8*hDv)YLDwu1Vel^X;cf-%AW(V{|xsnW6Rk!gl>wyg({mKCrpCSuz;usIuzb@VOP+ zQ_z?-yS=vtLo7|K&)J@e8>^@O7Ni=f|75~>XkAY>PNcgzKqgLxY9ic>23~^yG{V-T zJmC+4%U&yi`+@Fwksn4N4xaaKCy|*f9${23<<0@SG6MfyL4U;Q4()xm)VLJ6V!Ds;hR0w=(82;cJ8t8oP= zt{jm(>^TSAF(_NR`H}HgVDh4)-wXgb@>Ad(!hPY&Kk)q4YuYol3LqXPRrn0ky|xez zBXyzr-o+7>Mub;bihs$Mi90>ewkN-WyBjQn%*@p6>hLmIZx`u5?zK1PM=V;;h_!Jq z=0jGb##dJzG6UTH7McNlZ3yjMcoX%0d1~Y{!=)`h*plx3I!aX}OGD)yZmRC{kjX}e z*V;~!sK&@JN38`N`Ttox@kkO|3kps0S~Cs{O|&TJ5gS3Ch}2a3617CtQ34uUs8i+U z994iAZ$9B29gN6bYkCmweLwYbEw^x(+k&!&;Szpz2<~ETGCXnVK^5-?<@si*19-7v zi(KsHlb7OUY*$w#u!)CRD>9!4TOl?z%*oN-w5tn{Hpzo_Lkotu`ll^ zvW6d|#vxz~mZ!Y5s7l>?1Y7jLN-R>>9b9UZs~*^> zgR2&?jF^*QZI3q%#GR zAHtQ#mjg&Mnm!IH#-5>`i~C&xCc8FZ2;9bgZr(*I8zs4GA@m`~SnLtb85wD2&0ZOy z@ueJ^%4|JQtBMigGW^`uWyr+;JAFexroB+`Wqho5KAUrd?I&BH3{HU}tiYNY$vu(E^HCr8mSq>x0+{`9vT zuVO05fl*4*V7Ydu{JFy%Kj9~-(qo`uQ`rK4dUwiC-d_2Ojs;`Xe z$mIrecDIxzcfoU?K}n?HBDeZqfUPI|5-|p2^AJ{chdMkJ z2H#41kvQ+m-`#g@nQzwhJ;T7BJ$d&cWF>?@sXeD=FNWp@46#r3bsE_v?wjTINwKGgizGa5*02waUCPZ)TI^j4|5ir$2y@W2WMrm4ViR+GXnH(W-#@(W#ZNy5 zS#hM(ocJDt*B4v#-Y_PM!Y=8ND%)WINLo2XZ;SmDqdR7-0z{iX2 z0Q0(>+YTJ#E=oiESA}yIfs0O}2+RCWs6SA08~QptphU}B(4!#=CBjKN2{B6Ddh0+7 zWhw;TX8ro@B>ZL;$IjtSiZ=wO)T4H<6IIn@g=Z=>tky2eh$_(7$x?mBlW5X!D+nQr zG7i!rmt{~~h+2H!L}r-l(`Xsf#d{}nR(L}g@K7eZXS}`=hrG*OH%+I(E>24}DASWe z7SMy_L-~a1z`xxzPyRqlK2(ln^elG&2wzL>UCPdyJx_g??;E3lmu#~1nKuKcisfa{ zrZ-O@j;RPJ?6u*;Zq}0cfLp}*>sKs`dnW7PM2=NIhsELsJf$xcdqH?UZR^@--0h2_wr`y)oq65kIZ5 zZC5(ldP~=E>__5kZU`xqc$1yH_A(K@%JQ(t=arxr;-T|z#>UGdM2gDG;Po=_pLbyT zIO*_N&__N45>FVCQxzNL!xW$!%o4meyRP%#1VTu!LgY$Te;4D@<}P@VacTzZs|Q)f zNK>!j!ae+mm(hnV5jU*Dogv4I%00B-^W;iC#_LSaykYL#>i5xg_g9gMc@Nr~vh@^q za`x(@Q_rfxnWf|WPNp&pI#k}N!~G|NKYx2MkBy*W!AAyX0ki^1(D;Nf2TN)~2*}y( z(iTHxe<1N>k!V%_3|Oj}*u=!M0@%j&;Xh%c_`=_UMlGN8XkBM%ZUI@vkb+M|WFter zqF{yl%cpWbS4~d*`yDi>+sg|QwzPy~p1vh%eqZl5<^yO&<}I9O!r0_x6C7;nI`Rj4 z|A%pBpj3m->bsHb2O=@iuxu)7v7MR`J0!VdK=fEcizFNg{<(9+LOu_WtqK;kwu7@$ z4Vu66K(C#@Wz6}DR2olOzu`#9F-GWs3iW23Q`(J}`3L**7isT=sBfjnJagIhb%W`H z?SEl(eQuTIVy4&Q$}1uOZIU9H?_*l##;Z2`thr7goi)I-T(Ke>2_ot#$A5xazk&rp zQC&Q;3>ezs1th+2c>Q#4_Y~8uoy$oD5{QGyGBmdlN%usn{M>ai-C^13&)T|c_T#>J zX^6N)ZU`VcYeYq8Rrt+y-1JnKOp?STwroj(zL6hH!SKUt3mdC3cKPEYVb(GRz#V34 zEr#d#`yogR-RFUV9s_;XDTf2nVmojyk}6S)Exu=mkY#YC?XdD^;?l3FhP|a0`$knE zxU-#n|2{9C+TsP*=Br|shnV;zs`q^NvdBhdhs!h+f`FH|U+=I8fh` z!5WfzJlGAELC%J$sKzI3=R$)?F0c=DBH8d+Sz7p>3aBhZi@yz&ulnAiJs-h%QR%)=n>7yTItQ@mt$wfo zAQ`AU&cv6ck5%FqfISSL14<1a_t4 z)rTCc&;l-qQl|3+Opp?=%%4WlA`N^i9c!UV3%oSMMvm!L99-iK{HXh0TWaF+ zOC6fUASGuEO zG)zuaUK$!Fo4a1dl5qIu7NG{WCGp`-VtY&L)MW=~>wRtoNzGNy)D}O{K1C84AA71KcE2UNANCHZ&a@9UjRd zWbLD`+FhnoC#2YRIl@O9HxFkQ5-Gy52jl`yI^AgP3XI>U{Mdxq5iFNa=1e!~JZJ5z zqVje5(s6C~a>sP6uonz^8P%ajy70gU+Y z@inaey8c$CfGFY`^TEM1>n_yo(Ps8f832(ri6pGy!ij+%hmDM8Y|)iw7~#lz9M+oO zbKT7r)vcJ2DfbicW;HZg5i6;M6w@P$_nDxWc>4MgLMP-U3W|J3;%q-|5=b{7^nA}m znZMh6^4}99zVOB+3GsDPNswojStfj;muV45&s=T}H|{lzV!f=F;h{f&bG(2VfUvN< z%DIgFEzWTzed^cEgTrP;it?J+Y>nAkhOs4quZL7Kt3bxdUPu@1rZ!O9fA8O{R!X!9 z#wl`La+$Iy=`&>|(~4`?vt;7btXkejvQKX;l@%LLx*|eu2MzC!TW}_~=Wo>;dYsjq z32oPixlJs?-324QPb7KX>`qP_8hj z1#nV~dj{VlVY2`<$y57PX%&omZ~aV+L+aEZ5u{ zxZsjoyEh9{eqygyC=d+I7iw)S;96x*@?!aJPy4R#`&6L!OF9Go-tl;`1)5H~DKR9x zxU+?VGVEjgb$JWhlZ8Yn^Clg4LakUS9(<-$Dqridgix19%uYe@VG# zn8nmR6OrWuFv73p{JcLf@6n_5+C}-UK7q zGota%%Vmn6nJ0e{OJi#`g4U&p2CQwZ=S2`e&M(`ipQqz;o>T zVJ&b0!VT&&z+N6u-;YGy!bs;RgK!nf4?v^E>IC&3Os(-98ESfCe-^Of{7IW!8C(Yn zOP~)+psrB?g@m4!9nbx4|Hiw!`ukIDxKH3n)bAO_5Vd{c%7J}Nygj8Pt0butGoMAo z(nnIYB?(#laLjKCpyv89v2OR`pPEn)i&r;|tU+<19A6x>{X-x1Z4Q<>T$)2dgFK|> zywx37nX`@EN6U!#X?UF5TvNFCKx6owPVnWe=ebW}Vjmpo%J$iJ?>;qu$xWCb;|%$V zuA-#3sL46+5lc9HGjaP!@$b&-?@FeL{|Qvg{kD^7_XuGF{33sJ67~||jpmn{<)*6C zYx?#Uc5-Q)4G93fY+tocfuH@CmK}rCLJ3B&R&?+t{WO7u(||0SnSYkav&cNN^jZ+& z>=({N`7!nLBbWZ)N zrrNANYe`GkuZ@w9;NsR3M_TY`+0<~Y(d(btuE!AtRdx&s1%TwP*T|;NwIhxD(!Ds8s? zV}G0?pI{+nykik!9@r;vjZ1GJx{b>dGRjN?ZE*IotB*tKs&;e`7G-3m6fHl_KCO~x z*XoxY1rg=meD|5$wVN(;hvY2-Eor58jBKb}h2tv>FF1Xk>!8%!=E@JI;9{o_STV~v z2JQ)?=GHG+Uzi~CI*GI790Jk9&{G#xyJs2j2+3nt>oEqL|2k%1{yxilS`>tvO(XVn zXd#fP5c{zUntX$TegF9F7M9}z*1pLYaNael5mQ#)NuArITcHL8-POlj_yXBn9ta~qJw2{-qJn%U)M6o>7&Fn^L4)qn~A8|&!4!Rk03)ROf zVhHhIzv7a7V(D28btj(2tJ2A3{xtDJMeX>#Yi$vJl0U?G0zC8$GToW(ft>Fv_$7M( zah^s=si@x!B$bb?kjrtl!CRDJ8O1#;Rf_5A$*N_kZ_z=aF%KLY3MncdF15ibjjF;# zy1qO$(~9DT0Folqegvw2OFJ1}lYW}Nc{@125adRZ*Sx8=dJ^G#jFDCxT{xgPfZwt< z?qp{loPAUWf}dU@P?kLSdDzmWSkpqV*3*x<=2bh3pzUOe15=FGzcS9l0g({F;Z-!=ksr-vXV0M#fxp z;7*y;UATmUd4kBai!oZ(aIRzrDn@$>=Nh97Qw#Rnt_u=U|AxjYSkTTqc(3qi!4qf+ zC!f*4g#0p;T*71s7Q@7MyM3Xko&a<}oc4x!&-c-Ejh(RHvW)o)%o=cB(eBHww1id= zIUnX(Q{uC7a`F}9V?<6$trTUag1EG$bm;s^r!Sq=%urDj?8P5uODXnK!fZtOkW@V%$jP(%H--=#Z&|B79t4(6+vw_2o~5Lm23Y*|S-Cmn}*N z%X7KVaPJRvSVgPPQBcTDX`@hQW9%@?&F zMmDGnxC3*kmSQMP`|AWf1M$ZeE>#hwWK}i%%BrYFHwMsmT22tiIwaFavObUo=IeVM z?RVi#M%;M?axDeccrCowJPLUf-un zAFWM)Pb#Ch3oIQ=0`Rhu^CJ&lvc*R#)Q~ArYwolGz>y9c@lQCS z$g0WM3mPdt&zq%g6r=Scpsa!q?3e9RTk<-m79U9>hTg)kzdf|H0B5fMe{}f&eRB6j z$zg&M+mB@er}hpv)n%0a)yzV3)ysL3>BD#vtsY^6dSDW+j1EIb<7hfgmz84O zHwM1l)lB+n)Bc{%;nIpNhV$p(mKNQeuE7IuVS@t}ugt@&XRnE2kKNw-udO8ebwsmR zX%5||caP~)3_S=87nN@tO+pM+UzONiepIQv;j)=#6L`xbzo$J?Imb)MX&QAb^~QRf zqd$c?pfZgs_~B7pXj-Ra`Ng%94$7r}Rp>A&y8lO%=%ql0sJ5R(0y~N`a)Xz#lZ*Q@4KJz&Xu;lFRp*DD zn<*)qg@>(z(Ke_LZgm}I)PBGoQMR2xUS9}R8Sxctx4e_Oez!R>xK01DqCy)RfyYPf zOulP=$BsIF#z4R1k(FOWiO%Es?4W$R<6AW0o7L5(0=H~m%LnmJKkin2IWHFdZDo7( za?sJTwFkI;Q!D+h3`5%e!l}P1NuK8<>pO31+=nWj6+s!XYN@(bI7G4mk)lN0u?_2$F{{zO1JbKPHN=x&&gFFP+CpbKT% zURl14lg{Y~+PfTe1|ga==ZK80reTCmTgJYaGeiE;IOR`1@JaaA1YhMq-{T@|zZZLP zayRC`_UL8rIJS-$fC$2jk!1ENPOr=}BxVdc*9xQ(qcFaXYB8Au4BMu^BS*j-Z&mpn zh2y{lMDWx;$yAlUb(Afvu(D33-=Z!DE?H@OFL1JK>3#}Er#AL96ZhNZ$hA?}dpSuIq-YKd zLw(H7r?gVCenV>w2^>lfKFv~pOK;`Sjthm2(p}Bxc^tI)U35&x&BIq-w0WakhK_=2 z{mfRV{rl5qoo9dK!eMquNkH=OYsF5!ez5PNv_+?HYJWXLMSi zH{gvQ?$Nn3DIOr@R!RB6USZ=V0GGt+_BnGql9?4_1~d@jJdURuimf2b+qeE2ulL%Sze4Nsn}&#u9+9e`rQqw-91}%IIKMp0 zB7VXz92h0cxCVbC$z5 z=Uzpa5qG1uY^gy7xsMsWxUQP?BIN|^NTJU zu+;eJ!4mCgv!BqOW?Dmkl5Zm1|BD_9w`sE)DORbooqBfD9i=ujyx(dsVe;Ns;J9U{ zfJ|Otg7Fy*pw8KbACyY#U*7dDE`bKWB-A*mzb`&*nXl7_&mX(J&wl)4Ml2 z_mZkU+)CViaS{I?Rc{s02G<3PCIr{wPI33**3eR%7I$~I;2NN~7I#uyiWG;UE$;4C zEV#Rr!}s5F9_~xtlkBzDUNf_2Ajkr8D{|lP-q6;i#?Ba!Z~xn?f5VnAHq6D7uD8|L zUpw7*9Jn8Uv~>XCYH`>uPZ`GQFeEmW1nlW*Rfai|>awN3 zVY@vV(Prenxmu5%-bta@UIs-a=P68?CNuEm+p?-Sdgkv-(SC9Cr{A- z?q-Pgv$+M9X2K^(0uprO57tKr)v?FIzY{@eMv&1@K1dhKkvar&#OB;oX13L7104~M zSCViK&N*gGxv(K#PaVCTXR!F1duEqKDEL8bHq`xKDGr)bdF$+lSoks{^!qh~-ciw& zO_`x9u?+{hbDZovS(7@0r#b%|xH$TpYSN2%^AoQNbvNLZ=+_#lpT zNN5F~nbY%tddGJsC(Wg{uaGx&Jv?0zZe2RN!hbj0q!}O_7?hQy*JxJG&KaYDQyXzY zjSWoM1U%nsq<^|*gge-u?x5AR^70l8UDn8i5jS%7s8I04F* zdYr(^F{x?`VQn#LanE>3TH z(`Vc*6;{xPpUiH`vmg{ob*@yg=@q!%D5?+*)?(zo z*w22y71UgrAAP~*9+%tN6~33a|Ak{p)%(JxOcgbbGcJB{Dm#WGG9RL_F5`&5o>m@< z?Q1B81DwT{Kq@%k2>S-Dy z>=iZXOw!|-)z*zM8({)9@h zY|5~6DI=*W+G02hB!+u9Ft=E7_)EOoo2Fh}MsriY@Nj=bE7xSb%}a&t4Jx{9nTd)0BUueicd5wM-AykvFTC zEzQ$k=oon6I%c@Mw~paK_C!p>0V4D3t5_Wf>2Sno25Qb3gN3_MVumuroo~COi9G8F z2eU)ixmmx~%f#0!7a>%h)8=HIA+#=em}TKVWHEV^wJw^C)-L0lKmJ#6RG4#~bVgD* zZM&JxOw1@%pxxs~PKU?#PV$4Tq5cf*E3dRUTV7<2CCZ{38TQ#kY1y7PMT5B1oIb7P zP3wpffGX2apN3Rldr_xozYgMKkxte)UiiGCDp#eM)<0qJAeq}>Zi$(LlE|7(zVT@n zjJU3q7wA96>lqCn+^Y9tPtpNiy+HuxyHSW&s|Q~ZMvrZ&oyO0jf34s0L@9-jw{K?O zq&z;!evpv}L`)xs>)wdTEjM-HK~?dySC)0w#!ikkmOIJEl}RxNZ!|R_!~Er>&vr9j zl&|)ryip)%NpA!XX~ZYut#5dzIW`7a?1^#(ghK0}UD5dl1$g=mzb`J`Kw-rKYl|^2zt?RjrY};lob)gMBxrA#4z@qxqy`)twyZ@B>}9LDmJquH7#ln8@!Z4q zvN2W2=P7hfG88gC6rOJQx7=Jlg#^j~_n36zsbW4~=;dAth~apxzqh!_?z&eH(JWvr zN>J*rWfuI}W{{Fv5`U-j-$?Tscx!o!QqFflkj#*tX4@(7{^%d=~$+3h6=n1 zueO-jIn;y=LhW8d+94JuG5KcYgJpq3*#GK}axr~U3CUM2IL7JTrMh9eQGyA~q`>mj z-Uf_L@|77xp+0T9{fRV3+}VH|{4aZ;8v)K7E{PEGVFB=ns4Y5Q)#zghS@r4%s-Qfk%m}hwPIk-m;eBu>&DHdTEOhBw-x8<@w95@ zY<<=D)tQ$}6Ys+tp+bRUKucW-uJu2Y4{JS8%qa%2)8f^faaEI27PY_GNW;Yq;+O^P z0Cr;)kce{$dL*fY240-1PH9@lC$lMfgIiJf%?$$oI%#hG_L&Up73&L#Ur9||0%)?g zzC#t5abU^t)$HG!28lqI4x#_#jK|R2a%g1 zZkfNQ;|(qtnsyRrtt+IQ&L*FqEs!Vqn2;&)3O3yFtD2s&0I!%TD&mAy8_tc#0|Q=b zkPh(b_q)S?+*<+9Zr7bek-XDVOgI@tH!|g|_IKp+!3?l^dESoMgSCtjDuEZhcKu)F z*m(y5;X}z706&Uh`PQUy@r@9KHQ!-?x|#1V^n_U%K2H%jPEny?pOVeq6d&K#WWYI& zf#o}<695Qar58M=nKi-2oN{+@?`-eU9$0zhbk4n1pT)?s8MCzAOv3@MF^q5Qks^c; zke8SY(_C0Gh>Wq~0N?aKjM~d|6914`p|@^{x;M zZ@(9hQ^{lj)jXW$eP&N&-;WW;;s8ed-KxpGy3a)E~;Nn$jhjNR?wi6&5z!f_TLO76AMrx>l`Z@ z1`p@g2?p~ZOGI3tr?z@7|1((Hh&7uFhS&lB2L85u4I0bUEtqw zb+sbOr(w36UyU`%F#aYUZ4ubS+Z!Brs7dub9Y0y@VU(*;f0xlHl&i-Zk!7Dq26=lB zCT_)aoF$E5q06?1x~EJ)IVU5}>?Ln_;e`mDHs$6*wvsu1L50n4ed{+@MwhhdivGF4 zyPx>okReW&w1qQXYh9)?-odwOp;dEmj}+3&yxr4^e4w!jcKl*BqOsh<^ADRoLsSl@Z_`vEE&!jo_`tyst~y+U-E$MFgVFp}6n30m7~? zyU*hjuH}zRlA`&GLNx${^ftkLh=fm0iAmvN8s4MZNc^}FP6)o0?`Bg1E&3uHsIoFK zd9=i-0GwEI3R8+-a-#QBpYHIK$4}Q=xdSJi{^9}FO{+DBJpnC#;_GR66Z9`5_Li9x zH73OC#ofjOiLT}1Y4~A!$bpu#o2-K?fw4d*v#w=RmrOAtr@s`GPVfQkcM)W6|NPGp zIln?T+~u5+^%TPz)4M%LmEVu!FL4&cJ!JdI89;1~u18wDd~ZzSV^=^Q(*Q{<7aoHV zgJ^7Z@<-N~)J?%d8)AdYD3!zJ8tWyaDIZKGTTYtfNxWm3%+BpUQpE$DU5PI7oIOTf zkHt?V5+GRlBWZL8B<|?v0T{IH0>pFzxO(RfbbX{a6j(@RW5WN+-ik3JDmPm&2pcv3 zz)Off2(t$ZX{Srd$8hB4;zbK*u)jlAjjq_v7tdHKRd50n=}G_IoynvCWc3dAXxvE4 z77+u^>@fqds9rKL*LI+<>{gn#oN(0Yoq{HojxQj4u&a zh3FR2yHYOvIM5-UtbY(wP|@`z{HOhV!?pJ3X3>TWMmez-Dldvx@#MzS>-(t>w)Pq- z=PSIrsn)VT{w#Vuk@2lDhTJk3dk{rqXeY{1$gSAD%3T}goW~@+Ti<>FqmrQlBZ`sV zX5ks~Xlg~hp^CP7YJiqi_BzDp=r@wLZ)+3?*%YMR+3f6J+&3cORTm(+B+HFGdRm|h z$__FG6_u!0KWFdcwH~18H?_8o3nwh=@yJ?Bio9s%iqAggG9vE*;Vfk$iJ1i`6Dg|B z(FI>|K}891Xx|ffv3(W!Cs0l+xM<@HsH-pNj zs@FWu%`$|ntMmG{d9)NcvobGTy7(3m$FOpFeI3uW5=lW_)j^_Cd%v@z$*%k;iC!B_ zH+$=6ay&v~zBi_FB#U5n5rCLpND|i$u~R|s@U~0lerr2>ve<=TdT%IrH}qm<-YokU zd9w@E7Gp@WiO-3KD z(gd~6JKX0eS{=Ps%>Lkp4ZZW{a;$Rkz(&LgolOZox$jYuTAy_8Bl1Z9qr;IcrlV|< z8d`^VMMMD}?AQDhm_B-`@LvUN!bHPO>CO`8`UqmS@J(u?I^9N4-}2+}q0ixph>AQ> z#jTISAsTK1m!`KVTWyI>A2N)nZJkrT(jw6%&aL}B7vsDR5j2jhkZnS0oCUG+FI!`+ zi4hbV+>b1DDyF4mnl*U901I%S7;GF~Fza1LD{b6q;P6U26|Z$fRu*+N1LR*P3|bl# zXbd(Nr>?DLOU|P+=9_ZJky*Pm(ge}II@D|HLlvH9en%Bak;d<9-WD5@54kVjoe3ok zGDvV~G#veXsk<$*b6gQ?G+mDWe_DXL-pXGLqYIzcATNUV4CgU3^y4_}h>IMf3vz8e zSnq53bbaupYL&r2r@6l!r1su_-rw>n-pEV21$rV#(HSS*x*Z*Kl^zJd%wBVo8~{G( z=9c=DHP_W}KeRr4b|#3T9Slo`4nwv%i= z+>d9}{lXQv_`I+2DmNty?h!Nzoa{co&O+6eAywIE${X!}W`!w#u}o;V88skx&3j0= z?_E2_``-G6t;chaE@x>@73Hc0w)3`vkD4C zCiZxWVBbEGB3@+vEN%(HBGqUAh-NPt*C2!Y=Qe%Sqluc&*bi~z7TSnNM71cM5O~^r z8g%LVqp0mxfp~aM0Ek+bM@=n$p)fY1-!kfe-}}rvgmJ5fb@o&0wG*?>4 zGBCObS+G8%pNa#&A2m2CPXC?N;t&c1O#ONg+FD1?4@+ew@9qJX2F8lxi7)xTPnwXdI8;c)lL*#-@wRC-O>_p~zpfdz6w>HSNK`gqgIf9y0M>Z^4h z>bs00HDxDYfFhQfmr|IeRk0U|GKjm`2CS68?+rl$K5^lq2|$W z{Vun1)#AqBb#LQ{`CxI=teES@ zsl6u;`uK6;LXRwm_Bg9&lXE_T{k^i)-r}Dmb+4CS? z^`o9VX|VK_SJFR6xG$hwUHoBrK-Fmqg1?5hU&{!P4G@&@!uAj@cOL4?yR0lCI*o1d zl?1^k^H{QKVETSaaqi}(NED-xu39Pm)UU&ME+)`_VkizS3>(?%_2E|@>$_{Glcq{s zNg=?2*iSfdiTKh)lz>!i7mn?;aY!HBuFI$?Vm<}%aGaV2{f@L(WXcf zEQy^jHOsQ0IA?rgKD|u3-d5k+nofP^mB*(kLO4aze*#2I2;}!S?a>Mt$)9dF$0v&j6;@A&RnKdQ zEW+9KSfYhbDXZG{hVAAI_f-!q>8{BEh)0i=7TmY0F-Y|8-7NEU`$qZFj|1C>UgJ*I z<1Z&g8B0h9bT_rjRbt`*W}S)JjX2J)#b0ecrwjM0>EZlrgqD+`=wYl7;jB+3H?WJ# z8p(HY5Ut4fRuZhpOL2l(W~7x?q!+l#tT4O(5{YTv3?_hzyiz9`j!FGh!D!d3{7^J% zBR!{QQ}yR@!Ms%khjoml1z+#HhNh_#4()Zb<6~NgOe9HHBiB!$U4f-^e>R5orVB@L zDOl+W1+tEgk+^l z5<44~7G>tV9``E7f{(Q#tvrdK%no_y>F>HPwTwSuJa)32x>`nSA&?3Mp5W_W2nG}z ztQlWhHYU{f9cna|^;XaO+cB|)JGxOSxt5H7=epk1N@b5nb_s)ua1^@wLl-XJp)eD& zhjyP*Ow8xKP;x!^Kt?b<$Ik-~lH&X)lWLd%+nX-vxbxa)nY6j^;57b?@&{Bb7+ha8 zucCogpv3~Sbtn%aJmdP~rg&(n2RPZsL&7LCj#AE6XrVQJ$^IPBk zx7d$Aj{tj}FpkJ6#n9ROPoMjaiBv9r81L>vxQJCw^A+25)1mvb72NoRV~`s-fW;k; zz5uXR?ho%^I!B$cIJX0;ckbPkn~RO(!WlMg~$CYq>#l|GH0 z1Wq*0*fSf-tm{$zWr!=y|2&lln~G?){=hy4r#t+hCz|w>EU4W|nvx%~kSRa)KEoJQ zf47xwF>wnB6FgYNbd-Tf6cd9~UljWHwW@#XyHT)@AOQrC-N{HkWi9`@_db(>p*hLj z#J9YCR$RO!5pnKdryq0I*}EA5JbPmcl|&>(m3=CtVdkrazYmTQ_?0iwtQE~EIYU4( zx4|6xo>*)Y$YsYs^sMP@0S)*?NTeVAe5Z+Et5g{5sKBtRe zWPA`V!Jgb;(%n+nyzH7ABK~s!{~f=e07>?^u5oM{K;e@>qH*`F+%7( zN<59FF6h{5^g*09kn2jN**ZEdumb&@YgvzWer1!n2?)Sb6*0NxF^n0Oxp^>veLVLM zL7Z8z+8vC3CFtrHRMrMcZcX+CIL%JBdkQ2^VQ>7q?M!R`a(T|-@MFvs_YdIxa$ z9xh!Ou~GF}jm)P{J03c2TP3y7QQ-own@;^!fjQfTH7h<(|KBkRf3Xrc&FsrUgwmAi z(xAzdD90TZKLOGhT*8z!>`pAQEJIqPD2-Lx9NFdP(^pYIT;*xI!Z`^QpX;Y-WpbaK&9QQyDpWbj zZS}oOyv5_lUdRU2Vsa?;30#L%} zBS7^dxtzy~#iZm!+6XiOTXt?aR*nT8Jb>rvND>Ap;DOUR|fxE{-&(z#$fFT67B2`yVk5yJ6Y*pTMSHY`}YMvLeO7H*mO1ZbgB@7!D9NHL> z)Po3;+EIu66Cc!wVn7NuhfIPn6g_a6<@sZRDSP0sM1oUTw?4TtE7?iEG}=`j;yz_k zbH94VCmY$=hUESqrWhLruss^)w>a~`jHhnhK!A!}Dqhi!oN&lKn&Jn8^^$+D$;36O zaI(nCAJ4w@3EZC^I!gA=eTKc{NMDy{0O_HwU`!EnR}+y`{c2V924b{slElF}PX@wlQ$GnJO3l&!Ic1 zvb~Yz>(m1h0C=f3bu|u;^sSF8>-+as`^oS7pf=O+FWsEr{Go1YT|rlA+|Ky)&lkhn zHj;e3G54wGK6Kyc%eo1m9aR>9y>?UX_VD2EuihG03%27Fj#F{5v7}-&JVH3nckj3* zYx9)^dHJZ|0`{iL+StT&{uD8Ogm(!6Q zvn4$-mNAsttxTC$97+Hcq`#xOWzS{MeDtfb6ZWYlVxfZwQ!EN^3+(=pIQMIxQ*nzy zpo3U4X8r+agSU0YK>RKT|6&^?(7TYzQ2%eV^6fS1MD@IV?z^J5EzD)*G9$Nz4hgJwEK*w1_VXT_yOdMym9%o(x++eIa|M%jaNbJS)K2YS5H8 z(W-FP;$Jt%RBut@cm~ZC`5t~^KW%iLeYT>gc!0PSK402(L8S~zquH=lYRsVDEXI~< zbg!_=>w7yX^UwwU=>@-GAPWKdCJ%_~a(dNxNUy&IWh}h*4SAb=*|DT3vT~Q`U!C9& zo1T#fYl&-|W&p5hU=DQ+1;RtibIsf7|8|$9*SDhQw5&B(Z8aEpJOTc(g46wFc?%=CZMBVeXmC*-Z{ve<&914&toT9&&t8w*m|mH%^hWnX=fYu>a6QiF#AYZyiOTpDnb( zTsf25(w@Su3*5jPT(@*QO#6V7%I^EGJ+%}et_{LmO2(I{emj8K%1 zK=a_w_p*;5e+nd+BR0VBiLGq5Cr!Vjv#@s7OxOpzY?AGk2ybkCusP04g_f}V#iQe7 zQQc2Rce@V$Dlocm8dJBvEKTG;a)c`4DKOcr%FK4asQ55d(ps&vJBK{cwCGSw<^QfR zCKFZcB$AtPydkG=WXv0Bo>!q5Or}^EK2_D(Nw`wmufTj~-_ay~C|l}cU^9>En*pI~ z!KZ6OBPn8G={D6^mNTQ<+``KcFF8LZ2!6;J#YUL8rDe*~|2#i)Zl;&AQ0sSEpX zdQtntvrL&^d82#jSbs1|k#ve4;xVYRVz9|_cyoB`l-I;w40VP5O!F@CVDsJ?5T3yC z0q81ie?~V%XFC`~PkAC1tfHngd;vYN$r4Aa&0wTD2bDV%pDX1?gt-P%NYWzuqr zZmg7(1uEdrO^Jpdbi+^&k~~cI^k;N?HzJS}Bp_dIgVio_j0}|~tWz$&>;CGPwfouC zw&COM%s5J7Z9y!dX3T}LtZIjo+LtL^r1p_1g1X`2AIUlxiFwDTtFj*;@`b zde6~Wk3kPdEQ-eqK)*_Uhlabv?V~ zGuk#vlzzT;=y^(Eg{1@hA-Fr?Kv@Gf&IRsAiipzF5u_>fx-;D9_nB8dY8X3u*1z+R zXr2%_vqswZVBaBoisd1{t1icMHl*H}%&yT`JA#O|&c_$3zI1jPy^l zY>sTE5o4qCw}VW_nXteQoB%ZAcYU!Ep3v*J%l~V_6#nCyBGlgD!d_2C7k3bJul8?V zD~GW}nSfG3elEUSTUPQnODOOyh(Cv=0tyn;eKf+Z$4Bp{q1KOp-UEt;fL|T;z;?~5 zK|XmHW!+UMwg0$4zR*WRb=xu0?C|9JFl%!zi|?jt)oZ2`w^iSfz6k7iWqP?J=(e6; zve=ZLPp=$6nWn=Z^s?B&DwMW0#t~IAZuvrAf=#DT?#AuYMXZA(!)7@o%ho4#YV=OZOh@Bh13f%YAn?5*AQ(`?|&eGnMY?X zX>)}Mop6hEk{<5GN!$Rj4Sd(B0Nq`L#_o4EqRB!Au4tt2hK<+9PZk_rI%Qa?cRQJE zb5nd0+vk}W(JV-9hIPntg~$|u57_Fie_4_~UYfqkTzAku>NxR0gl9_9P_F{q(2%vS zk3MG)?;y`*hd1ISM$-#|Zygrp0a+bA!ykT|;O*h&Md%k$P=wgtWU%mpQkn5(pN^9= z6VG2!tKY_vw(nTd36MLt+-8p5J|tSLXGXoH_imFYZQyU>L7<5VXjbEU`LdhJ^LLxFZgk=es`s zR&^3(P)f_PKj9>8ACtRq(@N#aMbX-c+IFMn8#Yq$IEv|rGcB!vA!n~G~K{bzLLHJVRe8^?7k=fJPD4!>Ox>jtQ;KA4z#i|;T@922N z&=M)&XV8lo*pJ6RJ8No=)f`@|RnDKqjn6vK1Nh)XpGI%S z1d0AGe9?Dl$T6M(%41=m;BVV8%=A>*m|fw?7NbOX{SD(BLwTQvBn_>=`V@uQCn|dM znc0FYdkU0wgXpdeG4FU5wKMBDB)Iz75Wt|T<*K4%XRhgCD1)jgWeK-kAEIzMs?m!L zq^<^57>N@793s9*^)Bg>%CIM|=V@36lgH0Dl&(K+vK$NJZ0e(rg}V@POCpd!cQp!Y zt{JeGs%%Yw!z|uX}jst z`&|B+Qq`a2nRTi6c<(=_zwQ@E@_zpP)Z0RhL!QqC8P{@yM`s=1mIz^E#MuW_AqAg7 zp&~{hWKzZ!fN=TbLP1fK1 zb{3Ak-1Of~gOPenSh<4Zl-oOA_=i^}f&>?7UNsUITTmVw7m3Ap@8Ma%74itg29)2k z#xYP2Drz$#@z$+T^``)|by)T^Z}MOL?bKy+Y{=g=?^3X#9<1G?WPXLfS|@YRUUCm^ zQ0v2HOe2GfSxj_`tGMc~Y86?mhl*Bih$2|iZ=sU6pASs+(3zoq)}K2n((qMq@eXV; zBAgryiJq>Ap$PCc;NA$Tcl;oVzK+pGCWaxTi=S|%I9QM6AgKa@=0Zb7jPoF?Yv?vJ zSS#wr@!4-Q>ogzDTSYMBO~fqw8sI2ylwxXG<~{EE`A?kbL+n?`fT5WE0p=`P$}}wT z8!#m&o}tsr;2L<*^*mVi!$R>n1QPC2sTi_xA#!YjIa6l0V#yJ#@~d85h|_y~@@O&H8q|TE`u4Gtiv( z;rGI`?CGc^k!Pv3so#QK3#BlTv$0CYCtZlq2aRF&Fb1EI?<}OC9^=oG#RI1eT6X`= zDjgKrQc(=srhnxi>0($nRxdZq7<9;4_9u$H;z<8uNCWl#QN|R?bd%PCAa$z-c1a@Y z5HqHTHqVYVLEK-$jax2k&X-8tg6_A1;fUmgD7wyWb!KkxnPBNki@d9WMhBWNm_y@= z`m$kRZb)y=y9J7c+fi!Jke@Ma`fgQM?LOJb^#v8^?)&Yq4gB2H2f4-$G;Frk!|sPJ zD`yIbL4|@M(nM#r8=_7)b9j6pW|?C-Sd>4lVSrD8T(LnDR-J>mrp=4pb4@4g`3bYW z6(VORSQrPmyv$Ht%1iq?oT#3lyd-U?T6n~7vjf-jPB6CvEX26H8hlWCtarc?;5C1+ zMUVb}ACFB(#;?4o!sJyJVKJ|A)WNW>a~x??qz;XxKftXlv&sIzi(yJTvK^63fpf*J zQi-F(S)Dg4bL3F|`XsNq5SF7V9m9B?QjnU@-PVViyl^WMn7oU9RAN5ldy-*M)z|-V zd|imyMU_(J_dfj*15a8Vs;^XaS+<#vM&4Y9zazm}qOOwMDS=7Dup)cc<&5nvCr^1z zT8;erQk&;CYU(E|q9xJz4dLSj;+~Bf0uio@?y1$e4oZ5w5nGoa;1vcv zoMvVW>SO$C<%NW#qHD=d)<&n;^=fubH4qE<+27U;Hj-SS7cw<4r5whle6Z&xj@TpO;A0kNZ;u5ss{E?rjuWXKVgr--Cy{aws#d|GdvV^-(jtpe?D`+Y`X^ZM}If@sy-**;DXK(Pd9+s^1PU(EX3Wh9-8!)^e* zPYz>7RfwUzKJzNpm||kLQ#6Bg6Q{9wm3K{NzC8I{$Ch$df28<_rP6r*a;x|Cplkoz z$LNLK0C4DE=~xn*XocU-g_LeOv=TWH;%WRV44-nUHKg9z53@j@c}`?*TmEEH0-lNM zS%kcjKC|ynLT-f4O)vSUgWqZCIwS0Xm8%#Va!}qO?N~y|fvrdvE$VH%`7C*P)uiu0 zk?(((hbY>Gq!7a36w3aHPqtEAqOE^4UM}9{|wdMCZR`f=K&q zZyKNxRa(my-p*|o8GB3lDBv_#zs=rWVI+N1dm9y}dc1qV(O(?Y`Mnt>T}oAFRkS|+ zK@_dXJnD+Qf(-UIUvvl(xNdHf*QDDEcUmgWe|1*PT+Vc}Xd{$X8pmWn6}h3k>pIOI z0ga#$r0npSptnDD*`kyfQfFFt&SsE+(g|x^AN1sTLM%T!lr(av9I~cKHEdTN1s@vI z>}OC+eAF}dh1W|-gM$jGKodS{KzSnYaS?f-LLJl^alfk3t&0c-8;=Y`Ho{ft9r`Cs zc(V+aC<`i3b;l$Gym%MEl4PVUYuwr`{IKIf5~Z^pQCHjr;xH0jS90K`Io%khhnk_ig`Fv?X6)QedO+DXjC){1MMizWaV+d0VYx{~?E+Ac~FMe43h=kg^=p zTeT58qdZ^1RfC@6yS98pmLpEvm;Wvf2rVk5!x;&E8~p;t1i^OCW3TiB{^Q>geDPG* z8iuc&8`jf{7WT``)^+2t-LSWV>o-R#6R1!RvNQc)lV#N@GOpJiTvp0BGSsDiWz_29 zhW~Xxb8l_r$!eIW;^`QGh=pw<6Fh|g+>~jY!LmLtG!FpREGVi`Go6U{pUU`Lly`z>gOl$X#r&z%7eWL9L-2Uc2Yfi74Oe7BE zj1{&o%t$}gw>P*`qWFEY8PJEQQLVdP-M`ThBvj#QnA8Y;z?x57NN(+{LR@#93$~>e zstkW=RTddFJolM$KLRv?BVr`Fp(aZc^C4~qrRln6_j-m+9HC)z9IAl`Z;~|Y0i6XWO&FF%IhT+1gYn zCEY#OKTI4+q_oT2{Z6;YO2Yv|)&kcnGKHcFSyLup37D?Wfkv zT=~;?zG~yS-1Dgo6bAu2|HjhFB&*}ZOD@yElZmA#Pc~>v{vQs;;9wCl-=IFByS%3W zr0f^W26(}0#V5EH5Cu`@PRI+!8*QjP`%DpnJeH+wIo0J;y(_^|qdBLyB1IgZDBMU# zVuir3=`}X@efR;4aE34weXXSKUdG|uVKMP`E^oLM9CEo5MLdxSDHF}xE!=oA@463X z*ldERA5+`xmn^3JT2+2%{PsR+oU*auznd=6$LK~2nI8#K#E>%C?*|BV@jBw3Z-Uz>=?k$!nxlba$YyNlR@FQhV@S5E4`m;Ny?g;A^tOA%+5@&k zu77=wt-yMVFi|+qT|p>AxO<_^h_DSftC#ZAW)3~!_0DEO{)FjDMq>N;mY9$5IdkzB za$zti_}$Sr&vZZI)QZM|;Kcp{uqLX}47{Ba!lr>#(C*2M`4wQ_)tuvX+}@@| z9Kl`Y`MS}vG3JpbO!@xDEE1h9Uj0nbd_Q#przx-*MfTiw%BLjAR)ERrNvJ(=6*5rCc~vkiAwd1>bER0n341$lFo?fu4T=A<^HW8t9s=(rIcI0 zRPoVfuLJ*Z$Nlk+{(>s|9iAn-vgRnDSZWbVRS5Pp9zQbj$u0rg9x1pr(^uQRKv0Jg zeYe<5;HR3blOXzgho(@wQ@i(5s@EKW_4~cJ$^g2{W^)g(dHE1}Z5sHm)TlJ|v-xcv zBbI2kP@=EN;6l^~8=DZ%=d-$gZSn*ObemY}=Ujf{dcxg7wVnG!G-6GBRJDR#_hGBX{?e1iW*R~D^R|so%>&5PvLi|L} z-Ahxcl3|F>_jJ%IOxH{%qA)t=Dh`)W;rINzPa_*`_+fRI`{dmxd82Ub|A<|iZb4b_B(%vA>M&!=zXA(v@-UBmp;eIsBxw}uP@ z)}O&{2)?%RN-MylQ_AM0qovbn{vz}7q>dSH`B7m&HkRGJ35_xzX>n=MABXr752l$l zx^O9283#7~PMKM1n24~A@1;1P)gqFW3mj5F06{_C9HW_uI$GX@B}Z+pax!A|?SS~x zY?uQ$Smf>a!qsRSKQ1?tD7!hCumoZ-r}<)J1Khggw5NSv2}5=&s-Rc!>y*O6>+CP# z$=)920FJO1A99>I5A(Pcw#ej!x=S>n0{cpSSp#9+`s^MAr&7~iRpPoRYEs8NNc?Wy z(&z?~%F=t*wyY_CyX^4jUd6%s>5uU@5u=;ljP74rZx28pw#*QuN1Fil5`w%6u3|T* zr#7z)3c#~Yl)mmy3%XGuepq3w41(;>O+E{Dt*T2LJPKRIRxC1k($6Qn17Rn4yt|~G zB*0i`Ha7eBN|x=l;@(5X3XR(^G)y#R-&fNSNFC%^*k!c6uvsCx6Ou3Rtz=>8hQB>k z0>k=L02vzK;oOmTfDI@XFTy8kzm`t(xzY{7U~7dh>E`YxdQ7c&0=RpKRbRv_7^8Xc zDVFRSiVeb9Eu7;Hk-8AW%lGEh?GJV;-)BB&M$ern>0}843|gNGb#%+W**;FQ{LNUr zT*nj&G`;a_9BE;}udAFD;86Y9t{(m@_CIJU7;@Hq9-PSNZG?7r6luOda4ilFz=<*Q z>M+|7p0yc6$`h`v)wGpF1aMXK8}X#`iIv!RH8LnR?Ee9S;6sHtu%~wMiJkUZrAKYU zcNl37x<99{T0(&jy?`sG6CCkyD2tcUYN0_}pcExjzAw?stiOV*>ppYN0f zRyD@Xknb%k+rZcDUeOOMH_vqn8e6wjE!21A8&8_77_8S0@UNte;4%=8k}`87!w~*9Mgsvp+5|s>LR1!(hsEX zx*{o5Gj5D{pLrCwNtV?iVmk9_p+?;}Qavdk3J6y(jZ4vEFP_=eM&kuZ7b@4z0P0YRU=fBaCNqJbYYt?qG;b?ABT-`^PcTi~DUmk)h1UUhR@RvaEhry>{a5g19>!4_q= zQd`#KDWO|*PXi5l7l>l`6w?}E?C(^LZeyVTwD9H&6=??D0aq9jo;vSNQ;p` zZOT%8oX48h$LY~;T^u)_dhATtvW265c-Rp>YW(dd+rswk{BOw2*u;T7c zDNx6K&>Z_A`ox8{2UsF!;7xZBH-7#KM3F_JL4AetDcQ5& zyG~p??(-wWAVHrO+cX!jV*6qJwFKP6Kb#b6DCHd)70~j0dt`T4P zy7QORWZ-m2bZ-j(5C=ILQ8Vssq4W)HN$lN$uBpR%7Y=sd=Jm2oH@wGL-PGEZ{i!5E zw*jzvUqailc=D=#M~FWW)pC)zlMX2_*4YuVuNEhZA+K<1vR$@ff4ZR&F^bwW-INsw zjh%co2(SEPesh(m@Kt7}Zmfh}O=}m*jC6z0N|AI&pRiSMl(PWI0kYlZ&?vcWs<7MJ zl-fwmi5GJLnK(yrz4Txgpj@Mn3G(Fyw<$t6%RgRS8;&qzDRVdc5m!Q9NV6^TFAJb98QOz#9N(41fQ1NkSiHAU=~Fkyv}0;R}%y%}vs z%g&;BuhMC^1N+O?FH0AaNBVqmIM@W@EupRs#gv|UPUQvgOpRYk(7TkgbK*0HeWgup zfj!BE1GIQA_*$IX{CJRZp;X-ew1@bK0T`wre@`KFbvUnz**Yj`i-NVDo9WFC1Ys+p zL9w(NU+)b8X^uy^(;y8I+N?1%yN+T|Q?q@dygxd0_4#5~M9V}JIx09Xq#vWtT=r?# zn6guB@ueLF%$xqW2ZHLM%9q z^Pyu9`u67AlsKTI?2RqaD$Rz+&7D>51IHj9vYL-xtO`K1APjY1cNP{gE>irN=9M6o zK2+$jYOM6CR|@h-Yk6-zAHrw}V?%;s7}^){+ORLs@fc2~UlLOf%h}+g`bKV`0K`#T zegiwT+!@F4>f11SI4UBzzYJ1LN&U1 zWTl#dgL-IYl;8ffrQQuZjb@1-`uAeBz4d(gB?9^ThHVYA z2qcwF$kD*Zo#LlXi)a`am;FRpmlp2DG4ST?C%)Eap}S@9SkQ-q!cPiJ;zj=dCi;87 z8aqh0l9S35W-0N-E45TM0lbzzfIAb=g=0z+_*_C2pTyapZG{wBz8AIh;+@_X(d44$ zc^sM{!5vs3vV15Llkjk%u#0m2UoP;d^~toQXJHoU(vo6VE%NHZo?QIRuG1syFG z>Z*$S#7HXNQnc`M^fANk+rRo(&cT3rIVAQlBao5^R{w;~el$`m&~hWq%)|s?^(Sh{ zyY&fznqwjGXKpDt1la0FC)9q^w`7#p{q3X8N}^9mx5lr~>qoOp*R2c1UX@)p_B8^00SB&gS$o=;E{MB!jo@J`Z zp!e?`#t?Phx0=ezx&L^b+6`?tt4%qrT~VapKnVqTQ-=yuhv-&zPcB4k3V_ux2vzyk zuE-3}$G=BNbZyTc+z-*|lE7GY!oIb(sv4-B^_lOKI(vYjrjI5HNRlBKPO<)${x#Isf){tIK(B5=4GOx}<0$ zz#78qa16g_&R=pVkAib-8r|pP6}w)u$}ZHi_T;Td91S)9Px%7NF=SDOIh0qL;k2$K z`m+_v!73H~hUuD07}FdP*4yG{>NM}%PM8uU{nZyc0#V4tvD$I%vS9QPQhtl9T=zBV zw*pj8(fZG1`3{ER>S^X=JFQf})&?E1$1YUuAo%$W^;kN|51@w{pSMoyHA9Xtj^*j& zY?F>*(ut?L^Ol-W_bKX)@)a04`~_GLp%bV@(|6U_2vI?iVtlWFmx=Jwy;&aONv z{|%cfOsA*QSMB?W-Z%3X*E!9wBey5=pD|!r2MSHUs$OPKOS4C|lyb{P=w&1i zBfDC^R$b8y)ydE`tnWl03x#BJh|rLuTZ8QDLI8bn9wTD@x;sHMu}asF=Z_( zj<*hp1+*x{J`1(2y;}G}{nlL}fq?zzJ?V*;+9F5QTT6oy+lD|8t-O_5{at0zVj#z@tm~V>y`nbTfN3s6u3o9x zgCu!SH)hTDu7?)(LbOu(viT1wPm68CS-%ykUI(hA#xdWUr6gRvx+^m<_mk4*ybGW) z-#BL&F6k<}>B$HQk|Y2>cQOY^&m7-)^t-^#iK|0ATL@}{E}xim>-x4tEb^?H&o-?p z*+>26P&2Bj+49cBjR35KwawT^8(qkW$p{``nsBpDM}yN8%kXl)k4IIsJ|hv@LWMij zeJ!+9&F3A&ZpHYloB6xg4YzlW7r!$c0(-0aHGs2qj5gRDXzoJ5r$6W%-Madz(-`&| z+kb*R`_R=!@Ht&Us(+B|^e(TnY(q87kms8XHm6rM^=bq~@1OS~Cihx8L_A*Q9B(y# za%>5s=e4aeSG1s`?FV+XiP;pR!kvR&?tlsw);4z$sQX*Ny{RsGDrp%f<{+DCj<+-I zW~y5LWOzq|boby0hDj{8ZmIPhztj6zfpaOW38mF8@}8sSmNtA^S88J0abS3(!#Cv( zX-@ebQ&y7j2Vd>m{KX4A{eBO1Uu}$wqe@`CQ{Qi(myI0NaCDf>i5EVHusT$rdQ zePd0%KI$DJITe^`Lg(zVCpQgEQM|ErtAWwr6iF7%NCEuaWJdFX(>V^AgK>KrX{Nd- zwU4I?e8%kDJ|(^S_dwV~F8GeVXF#?Oil%fO@NdobZV}QZa+r855%hM5ZBGs90JTbc z;m{X`C59O$dx5MO4q+ZJGggTHcX~Jwr4`v@3V62v&o7uYP0SQ`T130rx;^UH)EvZw{3b+g4jBFMn(&ciOG~xab>4 z6)-dIziEVfPS1Lys_WZK!LtR?cs*<;OTYc5{?$AhjkJ4;1efcm=^AP;BKVY51bR)R zbj9Q1WZ>rdzuFt{qwn}qW_IW!_iVo8otv1R|JCU*_=XpP zf2V8FAziDKL~iwv8Nr;9KJ zE$&2I73J;Q_qacl7`Bp&iwnue%0Bw*djvbeX&R5y@j7EVfhlNpykOi6fpYjg>b`8) zv%JAfb6y%Z{iF!=&6Gm_`d+6|Y#;dI!J}_`zT447;QkZ$!(za(jA&WcX(^=?nOLQ6V3cROIU{4Mo3s+d;EG6zP00=2Fugln0L*r9PKNM=);e-;Wk(p(BkJB+9a{ z_aUTFYpf~R-K%IUz2xylX&%k$>pPGyDI0O~pY4jwRh+T6#ojg@?sxJ4~SiIm##p|jj|6=HL#~!E&?pB*T?et3(r~_s|o_CGSzIwzf zz-0G6_jt(XmaIN>Q(H}rCQM=n`@|ZL8pJc2O;BMv!`r>qPtBLQA-RJ&E*AOmg1~1EXayKV!bt6P@{Uua%WxY3TW9HEC^KqnL7mSh{Q$rApE0VUS)X z9C9So()D`~osOd;5dtoh;Ind^zzIM~k}Fgf2?)0SsJvFY`|Hmdm3MY)CkQ=ZSPrecq@@2+xs0 zP!l~c#og9DuqMF4PTOT`HdNgA=}vre`SSi)F<800zfbtD_H?3nzHJ%Q&Ce4y;ZdJF zM8pwD*vlqlG}-hd@;!YX40PTNn!x4U_4*@KJ9bwuy!-fH_DUlGWD8gyy%TQNB{pXW z&-2)uo`@@cLK^k;t;Ek&%*d|cS6mMp!HDC2P}UOKCl|CIKA-n!e;SOVL^iiJT-Luf6T|En|KZsX5B>Q{Mu(Z;glHSq|~m|3l8$(roxRiQ9Kl5tKM%WnI`EH(1? zPw_YV7+9$;#EqzV`Wipy=P@C67~CrdAk1S)r-R8qCtglzW;Wm-FYn|!>`Cd3NcDH| zjmE%edl93Y?q`P9EQkg%S#DIAshb&>z+U!XZXV*JjLehlC>hAn7O$eWWeMbV61Djz z12b$}WRd)D>-n$X3 zeeBl5hki_KpSoU_b3lbZ;`7ff2h=?wjflm{kX_M$eQas{ER+fjNz(*TG$kBWfvXWUf-{mq< zYf8AJ787)L)(8O0Yh%lFN80F*=WSxR7aF{M!OrySCMdr{->oyf;KXvBbEr{atuaV` zVhhn0cqiY!f|BRC-}U(c)g;)@9;ZF@R%T%9`R@Z?AyNnGJ`)wk{#>s{`!4;ktr(tD zuQ=_)a`1T1n$1lpm*iSS;k$S1=>sps(yXU-%#keqngZ-$vgHt%n!G=hGOVnl1OII- z(jF>6{bE4o5c$o&h0e#dMjiN6beIH;d~Bm*{yoYB0+t4FM=u%kBt!3rL+uC+H^-_6 zr%|#KA{<=skW!egr$0=~RP?&Ri6c#=Cj_i{NLut<%{a|rp|Cszf3bTvG!LT)zOvwP z9-ZzJ?Ieu9@Nz_cDFPRM=4qkqhYuhH;7z33@_%b?^f&%g@esgRbZLcgJ6v%LC$HL>LGX$S*a9r)sR7SEpO0rnyC#&xQ#FDIy&Z?hZ$Sv5 z0lbIhW-<9Aq|$LXty4p3%S&I_B-rpbxU#cRVCfQRO%MR?*grfvvB+{0P@h~4e0cLP zhj!{#H^t%ssrkmw_=SW590Fuq8S;W+PHSOtoW8A6B`|FKgpFoYG|m$R01n=5(3bh+ zOwK&SC#oj_oCUbHOtr~{*Gbds&q^*<&FRV$A0qZ%O$3Xq`+o$}n<2lk$?2GH#+1in zUh&GooEX{W1KL?MUXfsVSAj##wy4k=$qQTUT|zDmCWax_9xggLdP~U-VD!G3WK%%rHNfT95Z%?wHo? zc3;gIV&&z(Isa<^hh@N*$a3*uxD!=y@Yn#Z%F|J+nu+Ji;0X=LVdK`&a}6@uLj&k& z^bbjF^bwv3qna`zU2=V&B@gJa@^KBf{D)rNx`QR(IULGh zc)-Hs6^1rn#?yCqZ>P$(=H`@w83L@r83#;p9h3>3T%8*N7|FA+(-u_EKi=3B5#&+HtZ;H~!JM*kT-mJS%Cw8et z6?w7Sy~Z<9T`K3)zL*;V6SbL3^Xd@2{)lBG86o)>&zM_J%v*jUemS;^2d_Z?4$zL4 zsA?kzx}@eYL+Zpa><5U#v03{ovajg!(&*XZ37+KoNGtmgLvaob^b1M8@U|ejs0{yD z^wgxft9h2kB*%S*4B4*f;|b!lGh_SfbOru+LlhrER~C*(RMCtjeu}K9Os+lOi-?}c zF(P__LSW&%BOK9f$%{W=A1%OTnbMTh%xV=mSsdq0SyFY8{nSnGjrs3~PZs_N$xtW4 zSM^uW2@wLm>`E3#8kq_WAe2~Q_0NO0t_kD*qCGJZ$0^B?f22(1-2kpfwO6(l{SdEq z30xS!q&@Gr94?R)cxn0R)W`33v*1`TJ3&4LEmV3V7InYBn2%wDScumHx}&~5Ga65R z36t3N=P`sq@@C%GYIwh&7Zp{bDw0K(q+WjBUcJzp^VL7uHvRd6BO{)y%PtodX(I2bvYr)9Q=+DBvt+I1n?-M=ZXHR~-uf(cw0HRE3 zB)>O&Z|T}`n%5wB*gUXC8;gtY;n1U>tG*V*B}z5??KTwuHQB2vO&q&P`&{#YvY;8A z^6*4%!kc~Kvvb9s5c&A2sn!Fx+ce?FML8*$IqEM0EO092;VDg z7Rv`?|U9O$;1uzRZ)Sgrm7m` zpSmVVYjeoJlvK3%!v&nOfrN{5|Ah@nNmH_tZ z(nHsKmq}|$VAfdOFT&Gmd)_OLqxI<}t!LVUV3s+Lg0SWm$#DWUyQ#um$f#mVMEZ&p zst<7N=&`nIFfvkB5cLQm7}AW}8lGWo%IR7`(DuFyX{_i2mElR)=z-2!Z7<@$`J*ZRMPShjqsUrK{!aEf%k z$edDKvf{!L+{ADCPI4+AeA%6P8HGsPvryH8YGq);o#ich;EjW>J`vwa(0e-1wF>#t zwC~aD5u0`SVJ!J8j*}=8#j(jj3Jl?&>1GsPhr>O9aJp=Xmvxq{V0cub&|EHXqw#vG zN$*gDt7L2lg|h<$zFn)aMwgd6vJj&vSr?4{0rak=W{L*B^=ZW`qFV$*8n_iBM37@= z3}C>gVEib$>r<*bojHsp%h~Kw$q=@{Irot|JnaD9 zA)jrUT0DRZ8g^LsZ|eCowzaUQkuW7S|1e3K<7X*FKX(6JaB@7iviMvTR~|i}Ytj>A zJ&mwZ5#dm?AZqGDMhNq4TxF;lEjM>si_YNwSd{pC6k?q>3AUvJdu@9Mh?ch2ecA0I zgq{~T26v^B)X%?Qs-_TcFE%zy)*+}J4{zoEQx?iUBxFSL9HqV!J#o3$-nQgJ{I3Iu z$XwUw>`RS!v$sa5?T&Nz8$rQ1itwa#CG;tBO*^`(gh(``e4PFklOf-KhVPl^QfDcI zEM0=gB)YO3A#(qnC-$$Gv!|DkHvDLN{U-C4mn`fD}2RvwdQTDuid4M{$mayr;N$m5eMJJYe855BH(zznw2o3}MK|5r*r;7=^G5 z?-?F6xH-QYM+!nnSk_um;y%c-Vxa(xM=^>1Cg-Rip%k-rG2eG*?g^+&dRY^5=x}UM z=DvEbA%-je0dM6erAv6nNvi>tv{AZ~-L9F61%)duMqGq9s28Qi2mnB(u`|LKUpIc` z1$BbAx^m;M*>o&YZPe(xR{2y`b~%H+xJYU+r__udGKl6)MRr<=jszdPCX)H)yHS(g z(SK&aXEJPo{46EmA~FUF0%mI~UPzLJuk+1Y*Dw7Ne0M7W1aQfSqQLbXNnf3&9?svT zaIaeB)22u-D0Uosa#lf;vOmYWkhk+a6h$ueDMk4_^UIh$_X)j?0JAJrRM{^TXj6tD zTOO)fPJ!<_T+93UWz9N7cS}33Hy(`)$2@+WVyDTvL-w+J@1*(RKeD z-|1JSSjJg?+FUBt{lYID)ogrFz}oBIYvL(FoiZpu2({J`S%DPf0hlQm{1@OhrH>Py z0Su}|U#`Wp5S1PcgPsS(E*hK}{*uom>ngwJ7h`D1t`BLuk{YL{gx;|``5>~)_P;Fa z$TeeL8vb+^-~tKLPujWc{tQh7#chA`PCkFna}Nehb&R*XIRB9WIel!9z`q9&t-)M6q}OVXreOq=&D$5VhV$AhYtL3Tyf?)5G%+U#hIfN)_W zKxS|-FZcSrJJF7lJh`VVY^ud|v+vL)k}fzs9-xN8@4WnT3xj&0`9q7Tn@t&lWA(Xh zD~GG8le3iQu=uG~N8oLWq^6&i25kUe&PNw(8z}{jov9%vdCaP3F>QhiK`Wyy2{`d~ zIm?#c*X|j>*;rutB!?viQu3(kJ?ak(@+0%*K8~JQWlNMZVbPKf7$qerddLetZ^1mU zFpmVbqqU{Rtc3p&NLvGV@|g)yTc;84gz63Z)K9j%oOk(^3C3I?a!Zcf^?8{C(c!ky z=&i=5Ek01x)YJS7!*rzGcsyMOEBH4&Eb(|5jv=(2N z7J6o+ijCHR?63q44&O=+{yi7$;8(OWe+9G%$Z!>9^QY1Bg0rGz$Oft9YZhov!Y%|r z+h<)ClmA`n#KiK?u(7J+%I1rt(BOI6C9xq@x0>lBG-pAIh-kGt!Od~*yF9?qqtnu? z1JLPOpOuB9=-h%7=N!vs_4^xjKo?>SE2=7bR%Ld-60}{}oiaAxsf=UcoI?g$zVqSQ z-Obv;#msSXuBEo&X##hDk^g03e*gUg;A`Ch1G2*xF%jtO5~uqCjnXmO1Tp}^;+Efa z6Ey*XyhhEIWL-reYzO%*FoFAvHI{!GbBuS*4lbo_xoIPDC2F-);9K&cwlRO~`}{j- ziLt4aA~r_=Qhl8LfptbqRKHs%5f>VXpY%pKj^Mkzw_nR(YbiN`{3N_R`ug``CJO?> zATC0zop5qDOx;nHcBLO6tasobmD;^0Z#;4%Iwz-g73&g%x_F1vf#RKqy~PufmRuMi zwiV2|h=1_?1pSWUG&1kGcX4ed_JqD;#Xv|%`;mS-iYg*E95x<>H@q-I|D&&I2uSx=aD#T-iy8hswySa+x z9)f60cRfBP;c3(k;Wjm?`dV`7i>`=H(i+qI)gEGuX?KofoM_TY)>MX)d+%1oRI_mW z;b~3b3<=PZ=!|*w?dJD&0>f=#gG`blU)HcxOV>1|CmLKR7MiC&h-eQl3xy%N*Qnjh zu$nr4qe`&7o6c~yhrbPEm7_-KpcmN^4P0nJjn-0`U%JkEb!QSxVqqV``?ElcqfkMq zJwuUm$sTPFu1JAQ7*+dY5p%-rc1z9*%-zo34nD=_e2Wui#OeA2@k{2eEMqfgvWn)( zEcO z0g|Wzl1;=m4$ig%ZK73GC|RfGGkrqqHhB803QeT%g>eBez_O&JlfR-A%$`{I?e61$g(@~j z`>U}^iK*$>((9HQt+n}lI{N+7WhM*m?=-4x7pI&A#O8xi>N1IIn=HO77pgd+( z8erL;!40GDv~{wX(y2gXX!esw0&NR|P@AB~ZTv1WJ3t%i zXEQbu?DSSIv_zEM^LEwh|96^c;AL_5J(?>1?tfZDaJ69^n59Urq@|zMxTB1$94(*R zjBL&IuMlY;SNYbNA1ibzx=2Ih#Mp%3Tg6y;eRBNWhZOY*l2derp@qjAO;S{nDUfyu zy_Kya$Zv-x1OJS27+qUn!-049#4+9guM<<8FGpSF!GR}49d}s52MO6^QfjSoPEYrB z2w#EWd**))PI|k**k1x+9KRQtr<5!mj8r8a5b$$3WOTM3xlF36O1LA;W&R3R?ose? zP)e9(+t|UW0o$%p3ALl-m_!~R^MSGn(;reDt3PU~oVZ+-ZZ_=psb-J3QIm=CnzHD) zveaHmgW-C`54|uD_KQ7y>Pj+`cpIVpvnjplr`B%y)QDnAn4j9*OvpO-y_K%2>e&da zA*?+;`mTh_3Eo$36|D+U9h9to!s$=5sG)#?lqcQ=vLKYc0tGb7__MZxiN0UjVPeOL zSCP}Nrwt)bm5=DZjna=Rl<0c$(E_<_JdQn}PKA_Ol3%iF`<67nP+jvTolM0{hh2?7 z?B>t95lP9e3!1wac@c%O=^BhMn-sgy=l6iK2ZDsr91?)X&XNap`$JpD(2dM1z}zwGOdC3s_P=vmeK zHR|gtZ&fqb7?}>DxD@X(0uYCM{upi?^nF!-^#}WV?^frDPdpH;CsBIzPvLEU&0VVa zyfyl6%n&*#9CM->!^)ak{*Q72Rd}fg3BYz!n?EuQdjjGmud#6fd6=awJ=`RGpk5vo z(!(Dn*DECynWp&e3-4w#W-Y-D%N0%DNA~BarM|@bU7U-QYtG9iJQxUqiR{gBRmqJo zfIInKhmXN?tkgE?k$m9grl;Vga^#F@y~+odVg-w4<(xs>;4-iR=|GFe@%YN1!&zPZ z^Q@?RzvbFzqx86l^JHU7U14pGPfPIr=S&TyXe1DKR@sz5#^FH|o@iaMc}uy&Alr|= z07;erX|3C1>ZY!_8AUHBKwwXFz_0QJ=Lj4$bb~9pKYGlwJAF8?cKwaCf!m*Jl`%!= zem>@($5^ZOBD;f>wnw?ADBtwym4)3Hq1+X@q9PDAy%ZQL(imjyG+-(UhK4$-$z zhryno;vZ}#BYIJw*bWxppj!C);M&JOUEeSj@r31^WZT#b*o`s;gI~N#PyKnEJJmxL zPG%JInKJeSPzlvbwOJdxOu6ptE)Dg1MZg9q6TF%0zcg1mr zOeXP77(y_j3sDa1>#mSckqJRE4^V5T2F?!`Wf3>g{Irl9OHTVY!E5^GDqwN@F zmXH7S-X780|uZ=bZUyG)#JSjcGHH)`Rf(1>XuA)`y zL)~r+=-N>}QT_3+qz7BUEQe;(hP9Bl?pTPEBu| z`v?5bJ_%3z&vu?PFHy8bkRft`Ucjpf7IGA9#rQT}MBa-o{fE)=veH94e*6I;sRClb z;Sd(P7~dE|R+w}(NS;F<&%CqmKqiT(c8$E~qKdQ|f%@O1t)?s8$be|s=(Wx`7?_!+ z(r}=oy^rEaks6C0j9_kYKraOyV9MVNdoDZsSYRc9{f8Hntx<%?tGSxD9|P-=Mqad z!8>RoKr)_bM2e&{r+5fX%r6kuR&9WVeHj><%C9!|$rys0l@VTj*J!(qktbDUFQ*k^ zq^T=dW<0h&L4XjvoW39y;j%qKS`o&lg%!|Y&DV%w#WHLG@T0jEv0+70RWOTejJ z3`Qzr>N)~8-L|H%xVhP{8lyjK8RyR{@WxGDl*o>mx&dyihDt=0X- zz|M@g1XK%|rbR5I5%5^=PkieN<|2QMf(Qw&Q1oihoO7xC)nWO_wjZubN8vZBYi1D~rmM*lt%&{WY>| z39Vmy?}(Qsq^>>t`TIx01wF_!D)&7Tnv8OIn(%7{v5c$?F4Y0Nr9ov4l75ePNqbdMWmoM)-Tb}tOsN{ZR1YJWs8D@0dXWj+yg5J)OC>FFa&2o5wAis}TDC1`zsJhkGmfc3mq5*9Lb~*D+Fp@y<;_k-7ysXNJ$gi(JJI3mqM_$cb{s$| zUe+6s$CWhL6c*()9f#;u^ovK@B*k~p1tVcW30UVr*QD_zHguJn5X)pp(iP}h38|wKz#oG!^KkE{C+oiK8 zHQE^Z2Tsfm>Gy(8$Bd(;Kz3^wd`lE}@U11tRz4$c-OB0_OQvc#?#D>owO>>0DzA32 z1mHdS-&rrV3D47VVy+2I#`kE${1Rp40?rPPWgPOWt_jJ>zW%U+Zm1sEr?NF|BGh1# zrJvhLJ2fe4xJoIoV$~{TgtD!Y>}JvB2T57crjS%RpsK>-Bk~EiUG?@@ zn*j!Ue0SPWTNMSzzT4SY$)lh9?cYF^6y~tCWDi@HK8HZ603x-?cNw(_ka>7xObXawQ2fNdoHkHrvp*9y;cPgUQAp(E=f&x1UQo^WuH3&Sr$uVdhZ3!N zudB~%=EB?2$OiYv$*>VV6ZH)=LpgyBDoEbj9jH&G>vII z1i)EsLt7{sMpX~sZ^29g5^_>LEr{xoxC3eBu~Vf7a6MFE3cZ^Pm&%L6k@y2f?C&Bh zg&gJb`=)4`R?-wOo**x>xjLC>D!#Wt!dJ!G^JNNI`OO+PzYzKom& z!VGN!;={oj|5j3kdB~Zs1nuP(chk2W z??U;S`2@Ewj?Tsw$AY)ZT!ZEAmhui~{&FcS&=OkzZ!f?!PCK*7(s)sj>m%B;c#xbL z{HPT3ub<7&8NYuR_AX}*&8-n}EX0)@HnFAir^w&Ea%M}j5Smly8A)!}6fpVIRlQxv zCnh7}JVD=r@4C}7PN4Bqq14g_N0bi@S%ScYX6~oGf+yMAc};(r^I8Z8zfZ)AfKM|CJ1v?&DB_I{R0NRvL8X%81}6d&MMa9$`URXxPK zPXjqn6*h7+fku4&P(ibVEPFQOM$G;Lw}QdXO`(ULl#QaKfLu$|eQ}YD9uk=SwlST%MtnrkN zTJ7#g1!Zv}cG4bb29DxhX!^+dg4KJKB?UUB4_u2Hbxmrh#ftwVhVLG>elpYSNp}8Z za}+hR|HcO5X9?41e8BRfGbo4de#EiUAlx1iMb-U{I$yH%$p6t8c;#jBENW8UAe0(V zBbb@)dpwLt@=JmF1E#I45@5Y3sYp&r(GYSopp0EIbh`jeWD&XBJJ*rTxGwrWJ)`F0 zQlf3jp1co}ac1o&OzZ`ccM1~+^zEW`Q-l@ab#f@~b{DEtfgnf+l`<{GV@p*tCVl_L z;zpg$>-~Nke=+SC`jU3oiKtAMAtE&#jHl4jlwinM4v#(%kjs~r&6j>YR{Z-Y2X>4H z0p55qUzq{d(ZP`h32jnNX`Y&KdHLctX|C=VhiPXs9NVPS8A;hiL<$Ic z5wg88t1j1pKHBTzG21cUB)?OTz$B4Kk6(cki<-TP;C6$Hm)q;9rZ)nVo?S90IbMHK z#T}EFj})C|9j!lNhmH$-|0Xmt()*Pm*qldTm*QKdch9@fY`ey`jI3A+s3Ugb-Sp%1 zp?K@|_R6<7)x#91MrzMuCje z*Hs@1otPxtt37zn7A@=B>?ZU_L}cl^$Sxna7(Rp_Hes_)1sT7Ye?E7$PrPJ?Aftzc zKb3@#^4ACCdpASjp&Yrq;v9!@A{~NMAOrmGQ&+Od&JSiUWPUx(4N}(6>41-`EZDhJ zw~}ZIbhjtsX>C9rCLHru&Z)0YM(PEs688Qw%8pZH#^+3P|FMci1#vDIpb6UNROMvF zjfV29#_w>cb2J^D=;E|jVR@QFbvf&8vyE7~_m%XV-^TY;;4W3kR%f2=GR|Jfna8V`D?NNLeL#u5~hmbWI}~K8pk75Qqn&>XC=*|@mCtIy_KErULkT* z-?UFak0Qgw%*(ZPRK8G1TgAfcu={yf#i*o1z%ix>%W6rg8t9U!!c6lClS!s9XMzGX z)|xY>h{!Ld&C*>sM+e>a?}evdCacK+;aB%;WbKN^8>%;Y_D`~139DYC&GF1?mhv_B zVR^x(M}Y%ROIg_^r$A*w)zcKg(i^yNuWWs9iPOX06CpEMN{vRpXZdvvD!r`<8d~=k z#7?t@4Yp<$fqo$yM^+k}yX9aQ+#)Z?A4n0D9glY8NiPwq7Z&>H$e-%I`AM3mS)k?n zckx1l1ntBdt(6ecUb3N--G=%~ojFhS8D_J@io;;G8pmK7+exK^wPfbY*gI$sZcjuB zl~+T+=6wIKR2YX*Uc>g7?T={~)Q&l+i{>cgy_!SSlheoj zZdWQr=RwO)I!-rTpL=KVYrA`DcCKdEEx2!)nUrzi;~Eo~4T( zcdL_6L%UcQaI*Hr^R@XsgRV}=8d~Dfjmhz6#PMrA_P_UvlIRH0U??YeACFAxTfxP- zT726du3DeYU>{DD{57jIi0o=TTCHv3AL*zmUnXKbRs>Wf1SVbFsMtqBt-?weODfpsl2@1yhi{^f z1-Od!F^fJlUQ={FfA49!S>W~MSY~T327mH2LTJ=+q8t8Zzr4X4y0WpN<3~DMGhC;$^oLAgSY&2Zg91+m}HC3Iu3qt6S=(9;MG@Vqep|258bTj}nl{;#k2&vwaC z0xkc~u>rKizYO`m1|9?v1hoHi$N~^63;F*!ZUO(_gZ^KAN6?-dH0(~9jN3Jnv!S=@ z3LNsfiTWJFZS=dLX;`m0UkNak#PLi!$5X(_-Ec5k(p+OP0IpaRu%x>1I2JpnI{GvF zkI$V3>QA2m{DV+RC?)Weo7LXc9j!skw}85UHCCr#;NtJu$jqcB?c~~)u*6uwn%Mb6 zSA%PFV72bezx;J9xR^PHY%xxTf5P4RqbaXE??-fN8v&B=w8KDE)Z|lGT5V~Zh;4XY zGUlSr?j$k*1OQ6*05;-6TD}~O7#cS7-JK+PbUAa_XrTTKkXv^AjbQXQTxJ(I69FdH zwvKoTI{Q+6#KDpF&1!W+i_4BP6V16!sRC$dx0%a3CQBROMT_61)kfBMb7k%d>J-WG zip#TW&Hbc|HCjr6kqab?go_ZN&O!3nk!v`Kyi`wf{%D>?(?iy$hvu}powe>3e~a3G zOWC&>SWgB0ij`kaCF}CXCpL~~CMMp41KhP2zeUIyGTj{hU1JSd|C||&`mns+^CI^w z=hT+3VWb17*J;X|wK=)F1^2-RjD2nRFKpVc;EusWQb``n@M>aX526>|=@Vs;OLcQ= zz04QW+H;pTHSwU7n`zk+)ApzGVBC z(2j{kn9J7{v%~8{JXf!rqWheCw?%XhOzJ$p6-v|E(8Ktzd&|4EtgbAUfSBiDYXC__)lPESkfYGu*H! zK$__bL(JNC6$wq2I#aeGd2Er0IX2^TJ~OiEQXc18c8amcWV_*V=4=%nAriqy89}N= zPR#0xdf9V2JdRGxeD)?$!;2h?2g4e#ugLe6dR zQB{?q*+ek!rHsaJ!`BrG%x!0fmMM>q%O z{xZNYe{K5FA2$y6`geoa9gjfz$Sj~-DI2{4wFHT!sXpri;m`+y9|n7YIj@K~$}ei7 zXFuXd1jT3~?M0>1H*^gtYQqVmu}5xFyX?8^EHS9XW2mXe>+Plyk}3jdij9k`h(z*J zzxAxY750-ZkK4d1i2d2qhHL^;CVzec@XynKgHnX){r17Jd^S2CZQmqi5jU$HG!6Un z04WrS7k^t@f?7IIpgr;apRkZ$4v!gKVzhq)R>(p=ZYvhUia5Oi27OJ#L*P^h!c`O4 z_{G6m_2DC@f*d%uJlom5*|$Kt`3S#$sKKYRd&x1ga{$0?iGy8}dTDk8+EHno38ZiT zUSvf^T!GSniUU*aH?8(VSnlCqz~WPATc%$5M^PlhDk-sxEPPmEi7)BFNZuhtxV(i3 zSfOHZX{1ekc4XcOM^mm|0<r+}}KxH4sE1A4) z-sX=s`zI@>Lpqsv>-P`W9==!Sq1tWvI|H`bTn)BAG(O-FCwzN*AX~jd_uu{E(REMF zfJs12Nh-P|Q+=W*9FmEDen@#XnsVkBeftaLsa|&N)Ayve&ME;0V z*;G3Z^$35GCQ|4rkTw@hG#M6QBADQrQR-I-OhBsS8K$UBpw>R3o=o(0dufnIw`hld zjWV#eNRhClilxZJcZ*NXOH);#b0ZI9fAKOK%%lTQ$-HVUsE%Bk*!Ey+oBYAYT>cToz8Cj(>c_J$(a0y)~ z(yTk-3hGzkvej4%4&%v7QrfPc&491`;?aGl1Z`xiAT@hw+|ykelD zWh6E4-_pZg;h~$SUJ{D2$>mSDVq5m%N~gw}-&DnC1>G`|lD6dd6Zmny40(6@o+&ML zmD4MOwXM|9qH_D5Za%`qiKu&xxN8LijTs3UfC9tfYaMZU`S#3g_~|SszZ#0!Y)Y)E zv&5lpuIb&nFkA-pS&(9DLuLE-UC}JF7*yuP;v37ZAo5P9*yo5WX_ZyH(eRz0IbuTz z&m-f{@s<}6z)fh8vazlw@d@x)&AgJvm~p>J`5jP8eOvtZS4lt@vV<~0gPqZY#;$8P zj~NH;OD2s|{SdLl=-~^!2mShEo$?I4)pJiOR2C_cNhCv(*nq4CG$e|2OOw|4s-)Nl zL^<`yz#YXFm$LY9R$`s{5A82WC!e=9ePo{@4Di3l)x}FC5H#B#6z~ z3mCc+7c;bpvp?1QSul2|Pvka@k>Os?74MyY_(tgF=-*A|sa4T3F|pB;cCkRQA+BLk zUnYCOrK&@T^5or1gg4)pGuccyCpim-)uvk#?5i&p{a(alPB{Ui0} zBdj79(hC)gKe&x#OPBCWlY71SfW7)#MpTX9oZ3ay+d*TSH9o0+G;>L>sF;}TwZdv@ z2zcSI_^>X4pCmGxrl$!@Cu!cOLuK4yosp=N2hxM8sgIu8)sW-Y6s=waUr}KdjnTw{ z^As29FXqx~>qy$d!eVIX+7?&_6ng=_J4=+DsLLHp}m zSTWhac6aRI!JZLb${q4x$ssv&)jQF_hVIj3r%%|AiMU)f|MR2yN_Gl#s) z>$Anm-d`*9i#(&FfAl1K;~Zv^jMw@evvN}Cmf$r#Kno>8?U>R|Hb@xJ&swtCk4O12$hCeRVu(()=78p(*pcfqAO4 zbiT6@>65+T-zXZ@r^bJ>KBXR3KXhp6tRsyyzIV;C_L~Fv`0Ql z6kPzh5(U%7YAWT>B9g-+(ztX5|DetowQ*8^IF*~@2E3eFTU};c;yzW-P1baf67Mc$ z(#?7Ik$`1=ct0cZcG~jq^x^4Va?4YkVhJrzy6~3{4ttqfQ`aCLQj7ZSwaUr_!$}V-ZEK&d3kd-zcP1BAxC`2YM!VvT1NaPUsDvZ7BBQKnB?Cbp1pb6dHP3Z*K`gI zQ+^8&!OzEoBJ=YIOXV3e9dnq&5A0mb&Ms`5zO4NVfTKWvb?(_+-9{XYz@`g}_~@c! zJfk`0oGu4TuVyaKZNFv4rmBg#CRN~(mS#5*ZY`cP3r2cvj?ws=p_Q6tXceizSq=uA z5=>1|=WTE2Ux$umD5!+9CY;3`)^G?N^mXm}rn+AnBT5y3OO!Vs5eTLHdrtfp8c);7 zNi<4a%NdF5Q)sUpp~$A$7y9tiSMF!9M-#IITD-|GfKIhVNm7O7gY8vHVPGyzu1$EJ zda~xDfEHaaOWtX+VMkb#a&C%{nIiv$DcT8K9q8)!sqJQu{%9F%6?vjas(a}s7mF1Io8NyqWd zMMc8%L&@L0S>{8|>4vDEY1g$#vvPHoj&KqKs9D+^5IFunB5PMR+eWVB`( zqCoJ=bcQ-CzXr8|#x*4>z|3Z+O+K|XvLO8gnmr{5u}qzcoUPk3c;OXk<;qPSSalJR za41kTb4a>PFN&zWk)Ql!hGl>qDQZoXDxo#`$(8J#aAJzyz7t-HFveTJuWlN_(umZ> zQh?Fo>!2lyFOjXHU(;d~XLYss?Rql3-XrM? zwnew+;Ck74u8%U>{MGF5$z=Ake^buP?0vrYUO-4~ej%3S@bE_6aNot1%x&sy2Ezu= zRkK&sDyi!E!`5)5B&BRH1LC4dDJWABD`+XOsJY@!wd9&CiqJ5XArEzKqp(drE5p!V zB~k->sCv9=WkMz@O~_TRk{Xh?mo%n0oR$M->=ixQA%lE6GTJrk?Js@Cm(D2J=AG+c zl%{{s9Pvvj`;|$6DZ4(__AgSf>dJ~RcBQoiWLn*&UM3Zuh-N)D2`zcp2TH-qTAg~* zVo1%=PS3givU9rcUO*M^FWRP_c~Ku zgKY$J_HOz9>LX<6Gg5MFJF{E#m_`oM6SU`tb)2-Q3cMB2{JhU*7DbXOGRvIvw`|5= z*{V;YsKjS*VM(~R;4+QkpWgqpKnBI5gJ;YtK?u# z9Io0wFIRqVbWca*j-UZs!m=1;=9K+Km2!9>gXhV$K!prL8@tH^&5chBJI!X2Yq)j~ z`_H0F7hff$t6218mAjC-0`(6%3k_{Vg<*s~QC!T~ED9vp;6XAN(L3KLw+7Wowj?(H zR{*U-Uyq3QK54+H$ioj6v8308L;OCBGK?N6>me2y4~Jav-0gDVSv2LEleH#S`c7S1 zv-k^I?L_)5g&lFBM7(@0nZtRm)~19Q5c59nxvH#x4s|NbEJk)_ext12qv0Q$D5qBM zxokl_+DwoochQm`6QWhfb#*zPTjjvv1J0rsrcpkBlS~LWyRC~~%D(MWRhdQik~ZdR zkr4^$65*r+Q+%{)eR7b?rsJ2IOD#Sm-yhA}t3%igg6q$`N57=AB{@o@$xX6tITVvf z(@bSG(VUV*!@%h9BR4LQ_y)Y!lgIZhkrs|VhyJs2;~b%7v113szS?_GIR4IDO2iI<^QyDZwbzK6ZkGeyDMO&&9YDU@ViTyOLn9vV7j?6|$L&>)$`V6m7lH{~v-% zN0uV)L2T*zZMnm^eBLkNC85cT(l@!ps#Bz0&JX{j`xJSno@yv&$br%5 zO0(3rDCa_7bamVn2^n>WvUJaMsFLHrYRrWu5r@w}NnRC(&KUsGHWDj{HGGWsxk*r) zHoZMsa=+XqjWu$MqzKhCEp2mu7C3eM6oV6G(0ohj2pZ(Wk=PB<`yv}RMzkxs$t8fh z)3hT7{=uI^42Vv8pY2dp^HLlO4Xy96R+cgkh?*yr^Q??cB8e6)#XaRK#syqCr3(bDZG{$oo%=`+FXj$7Z@NUdo1 zJ6M-?hqEf}myqkD;@M*=Qa-XMfE_lneLpX_aV|gZ@#Mk~xR*B{WWr7L&g2<)O14(t zdtw?hJVn14nS~%yr0xS7h%V!v6}0h3L;oxz(L*r+<6axqc1~dS;xuVU)LXUwB=UA~ z%kQl6rBaI%tz-^$HN#fP;->A0h=#T`a>gKDIV+XXW7njmQX%AcUeMg^t^f^)6Vdd= zIn*IM;s?+t$n#~_rUX9PJ5YAcznr+?N&3*!ycA9OjH=8u8cKjEjPJ`u`+y9$3(BM65L3}oB@|ksZ6*g zI7b?61gH;pl$1!YN9$Mxy+gr?tLL*DYO`cfF)q zG{D}t=*Tv$4AT>6NA{mlkX5gcBxBV*HEed;c|#mz*d%*iS`x;k@4($}6RHPmoq3|v z{qo^kC)(6at@4^!;^QD{8uyC@_&yRdzH=tZYYuvHXK;Od#f^J^3Ee#B+Sq|^y5hDN z3sd`rRZMVDPEN|B3uOLZ-8*5y^TjqMdp-Mj;)IJw|5yhV zq6@;Zr(i;Nimay3>!EXs{5lBtlk_=kMNm?*TXW!|K}+9aUAp295sA6`r5E(u03RYm z(6xVJMLGCF8;fBtwY$&*;AGi>CTQQlavCVNJlp$%LJ)WmLwNFdN&OPmiaoIRP+V=s zOks(LPb{MUz@8#fn4F;A6?^=GjcJU+{&RZEz5O3mpOM5~N1CM?`^sL1y6%*NEIFA@ z)T)nW>O0kL@gRJ8;&4H+|d;b1r-N zIWJRKJC-P_*fIeUOPbZ_RB;{vTi?;_r!D9vf}9ySkDoUBEscC6o2U8pvW!)T8Q$>n z3y0B8x<(DpLrvJ8E{@_wer1*0(`ciMu z{dk5!zv8XeJheY4Ux~|+9sA+2C=kPROl(*L+xXXir6u6*SuZtUS;Y4=Z`$)b8VV=(F~o-#rrhA}o(yNljZO0V}s-zGY1XN5VFY zCcf<{^RJmlLFBT|_U~0}DS^uIorV91KsCXr+@ftq&DhUE*vu4wEYl=8~I=c`3L{) zmcc?ixx_Xi_WoO?;w|L822+AQqB;Kb>j6B_+Vye5zNdyf)9)FYNmpfyp^)A4p>01% zWWEI?sFn%AcKY)?U;6_+Vqihu`fI7de9|luJvCrRB!Np+^oxWCP--e8&tb$Y*O11h zJPs#kYerC=bQv-q786Pcee@XUP`-I}Kh*i^hHFSVQBwH_TVB>yv|t{GG>;5i=clqM zzQ(V&GY7qt(=l4WpH5~+E#-j%(dD84A9o%6DkuRZf?@d0$LgCQ7H7ag8u_ZsO6a{q z#{1R6(%JG~ccln>&GnE}>9mNFnV*OiD-QGzvT0TU95$0$wlvw7@3di%UgY*;?1Iho z!TBc-wS4y)V!Gj40{zdQWEGOKy@y7~F z1e%m$gWG5lH#M>)_O#K8W{ztT>k9qleNTJ1pT0xQa)3D66jBfErM}4C1UU+ingh(7 zqO9g(_;)Ap_T5qZZ;4A#gF52qF#r!*;&!Zeq=g37DXj~bse0%Vb1B&-gv@w!qs14Y z6UUK3i$;o69#HCF1$}vI@K&v;OnvoVq*LTnA1kZcjBHN4>5I{pSA2U$ows=nN1K6{ zk`LiaZ{EJ1;R_bEUxS2M@=hdPI+cHC?7jq>{=-=p6yIKNXX8qW#aM9g#&>U@dLcT* z`#Kw3y}ImyEn#H`X5Ol3oBDp)Lh&)DEzuygF147ZdQ$+W&5FO#Fr7cqU{+H{UJd(^ zl#@BjbW$`Zuf9JrFfb`v!y|S7caEHN@mG>7?x@GPc=>prh9#hEM_5FjGtpBEnCxMG z^qWaFRhOSWdcO5U+JVgCxz+m>A=6IHU2)f=n=aUK7uyo;QrZ;$v^%pt6b3_&<)0Nz z>e9;iCE~)ChEQ!Aax8WUdSngdmauG^na!%-U=tzRST4{;Y*afSNbJj!i`{Z<{<*G0)j}OEExDJn@q*Sb7Y(@25pBU?&}+ z0Jqcx7;R0cE|@SOE}JU@=HnFGL^NGru~I47h8yYyUMA zBdLYM-_y%ukr{KmeH_SqFZ}fQ)Murl$EcJBd|u+nZ^gKmRG;q8G<76c4H-f+C{g8I zbpw)a**W)>8Q*~!D&);;#5K=Ply23~QI+xV* z8j}YwCAw{V~%OeO7VeSjUq^G{%SYq*{oy`h7 z5+M~R>o#7#ws&BQ*x3upZ(ie{i_h`4;T4NYiV|R)q!1CC#l>_|T#=;yPg%G5VI*|O zHEHZcgVucZD_hTkoc?fpu`3hT>*kkl=8a3Z0cS>uoipemrGsWjieczO=F85HY4gD~ z1xC+(84c?5an#a8!F}W=c*}~SZl+}?q~I<(szO{i11Uwh1{*V5Vd;|Dar>;w11PBc zG=987c1GYXnc48p;`6r1Jw+|cpWD{T*c#N~QWvdb<~x3kjf;N#n`#%vqHvzpS@2sb z$=;)XZg;7s#~?Hte{qIe$}(D7hG|b>@mfN9e)?IVmfz7#HD8R*>!0K%`7Cl6a&twn z^fhddwX2~mjWflCL~!%jUEKvGEcw|Kn%cV7HzT|0;Jda9y4O#uPghTWP*W=pZa23; zdq(kBKsn+gz)kXQ@y*Cj8@WPse|(IqYIF6BxsnGTb061bsIO@0A3JMe%a_@HCuFbMQY}tfPs-W*#~Ui5L6OHCl~i)FOsqEW zWrTJSVvJWf+J5Nuqx$&7G_Y-A0G!n?ckin5?}qH}4%z8}NB=15r&5aP-&u9N-H|vO z>SC9f-My~@Tfevg52+0A=T@o^_IQJNib;VLX3S07D_TC5d0eJ2a^|z3LYX9M9Q? zkrr?&cd8MA(nR*s0hB&PL5p9e2GvNLU(~ZULNts&z zK7P3V59J`sz*manCYs9kwD}g5JOO?aPx?Vc=HgzN{MoJve(vAx$Y}ng@5UBVF_RQE zXew~2;L3eB*7WtmT0-YhrPbmdHtma@OI9(~R;a}N#fGESvQK^(SG06Ox8NDKeQJL%MdE(!^4I5ICpOk~s%4&5+2?fgd3vb(BM)Aap~QI+ zO(gb%VuYyfkqe>v5#qtijU1AYmu-4)0&{}Te5oRGzv-BJ=wufruvVq>v=8L6(D#yG zw5%fk0j8%>JyL2DxZNf=hlG6nVeQ$wDWGrI(YpviO`?+Hs*~P^R@pDWe@AQ>rmUi? z7JpyYc8R(GUay${JVa&bk8=G%;g#o(TOfqMmS1PWz=K!Px%1aY2{JZ0MXoIFcj>AA z^Fyl9Zn9$~?HiuaM8QK1Ae-0;{xsEroK+g@@$0+xk9gX2=Txwp)w&M=qY%!=bob5AlGXI|j5yxZ8TXLQg0>n3cISYwMssgwq4Gu^m@GGaBW z=fIPnC$Ac8^&>PYa9`U9xe-b$wlTj?5nv;pxpIy_YnGB2lmlsqA=KnkJ}79Hy|#wc z*`93)^$k<|m}QoxfkpJHp;}l*M?MM>#_PB`L)W(|CzeZcA@4K&t|oTCrEa`0!r6~^ zj^du*#VO9j#d>w`UThmGdYdsW&J{cwKQHOY++|gRn<@iTvW*74p?W|2w~4J!So!yD zb={I!rag-ilcPJU5CHR~dO{-@v$Y#4J7g>{rrKHJ7zs5}{i! zY8c653~o)rm)? z2gUGpeiK!8G>XVi+V;IW+P-fl)QS;J3BzzT($ydK@v@hdNaGhWt^q5b{${$tJm9RX zUu~W1#MyU8+neetYxCjSl-$?4paeas-Es9s)Wo}gWesNT`X+*44L#=Cg>80V-t&RP zQTi9Hfh0E(5KbOv$6XG>W~2Q-rsP$eGxOY&@(i-cfLg^iwxnbC^GsPG#~7QX1;#`MJcE>n360zLDw|(T zI5+5;dhP?Bu*cx3d6o&F%71xliLVa-Bd#y55Cyb!sNbqfi1ooPO$cbr$G;HD z3XTZhHq=H-eC?S^$+Tl`XHi(7KSPK0^jFfT)PaxGM{P zpW{Y=<`U)qzGZ&+ru&5gz{qCyx@LAcp4dD$A&KSeh%wu36@+cTS0r>D6FGSDt!n+F z8XQD;`u5FVUl{1KbFTXWNCOuB=aI4)-PyQ6oUGZJ=0hThA}K#JT2u zF#UlGl#(1B?Y~Rrt6B2&g7s(R-M^?InEbv|750=U)`ibTzD3-2Q9&I@nxP@dJnj_k za$yAgNb^8ZdssqPr+dBiTQ5&H#4A=;u3*Nx3GK;YZ(tgBaWXfQfu=!FpXYwb_vhoI z=Y69pXp+S3<}Npz1x{=S<}TvOOdkE49C)x1A!zwAsZpdp?8>`of!Jn(L^wP9R(;Xu zVOR`D)8;os7n?rPS7Q=r{{>(lm=1EL(zy0%;*H3Tvfzx1tj%H{a_Fx2yx01{y$Dg4 zLJJu^{T6DbGd}ekG)XIFAD^zeBV(7=7Skv_f48t!GcN_+G86@O$sLo?k~s02X<|N* zkvLHavO_S4{sB|jZPR=i5K|i(htEFs5{^PW8TPH4xrf(b%!REc%K;2~O$+Q^h=#tuxqdXLanNj1s?bm-awQl@ugDqU zbyJD1p|wTbv9gLnxJ^x{=?q#>Liu*ib4_qBx98G>SBLg;lnjM zR@aWmic$0{3{r&*_ba()B<=^C*RsKyIBELH!ayO<2qci`lTN}z5_eyLhK!CDN0`rNUn zRBhK-{XT)FcrDwVoTP-M=YqF~^NAUGNjL=mhD!qz@mS0YSeFiGA69uSrqmzeJ&hV} zFguzv0>*`meOGg{Rr)0;Y-iOHK3Ez>wEBJH9!1Yowt!;SyNPIEAwIcWVJ&a7OV@OA zO}&ePUm{=CBSk|Akm{%UpmJaRyLWmsKdLkK*9UcBMGLu#s#HqO!t+D`Mq&u39?g+r zEf%++xpAn~oc1g_+PD#+Wk$i$P)%ZU(Tw zcSH-O>!3+fbd*3)6a}P^;Lpr+ZVNmCX1hg7(0bEYK_8`biJLU0p<)T4M+N*fk)r{N zE7?!=6P}`;qy5=yKu&I9A|Av6@9nOuLi{%WuQm6oR_>Zoi~B1r4uM$9qq7d)Y>8_@ zU*mbt<5}h^5JQ6qBCGs?s`6YKk6|-U^~~F0lFVr2P((_b#;T7vLv zwgTALPoJdPen2O#3G!?<%bCc^=q3h|4ka3^hw;wp*TiWOnx+sn&O;ly5l|HJ~0*;O!u zMC;4xduaXrJE|pZaIjqiPkMS*yvE*%Vqadao(HP+b$#ST8yYZ-?fzzVW&6PZI|mjt zMk)ca-Q6kWPOuLxf={(#APj*b#nj6exwR*-n|`15&Pu&`oh99*ITA*QQvS^Jv+;z= zq0kd8ZrMM|(n8-vKg}PCh>*-2R$vcK1|%iAl+3d+qcYv@oE!0P+8-gC%m=aYMoH&5U`^RZ&s}Dc2-4+TO-n9D82mkBfl8xjdX>DaS>7^ zzw~pwO{uqorrN7DC(9twJ}_lA5nmcG=F=t#bP<8UdJFJWWwse4I3^L(U_&#v`Kz*j zthTssMjhdW5crHcW_7y+UZ>>sfEcYP#T}pe@Nql=;s>OCEignxECS+`# z0BdF3<6C3zdVdAxL#m8?S#&)zs&%M?qrKvocu1vm$R7s9}>MF)zI8FO!9!eORe!=(=^8$uY2Sm^5BxgHfGpGK2@7dhDgYmetoHG$mDl5 z!-?E3Gn*8*3S(oC-)nHp)bf?eK5o8lfnWa^SS{}%@{Wsn9=TohcvqTWM7MCl-wv3@ zeGN*&kk6GwW>WFBBiewjVlX|M7eU#b z{mFRBb$)(U_=wBX7{Ng$D|o0SJR>`B4Z}EOtf07UV?x~Rj#+RQasaQ^AuW1d#;H1j zXEOo8mN=nyxjjN0FR@NEd-S>^4Ch`l91Kz>wx;=&5KaMTiv{0`0}w?gtqj{8LSK^( zZ{`b+8WQ}R?}i$WS1x-Q?JLH=SB-ieQE`v(ei~w^H(>t=>Y%k}Df&=vFC+?42sXA6 zWqi`jPfSpaIr;)vC;oISj$-UZm#XK?o;fz?0e5k>@2gHJmB{5j99SbZJ(y%RBd9aHmeA<2&Wh^4*9nVmHl5%~HwNc7(sCmxBxI2XB zmoh*#o$&1Opnpqy>qSb&fyKXhhJA(Ydm{9tt!1JwDUQT_d!z~JoD(FMGE?~0C!aHk zn?BX4#n$UpE5&<|b;d64cB=-qRsAxm}kFU)`Hd zH0zvu!Rw4laeU4og&E#vO#-^!cb4KvJ9TKU7Zw49p3AOZZrd_n?(&(#zHs|`4Rt}t z9qZ!a4aQsJ&nF-QJSzF#GxHHV_5-6bM$;(F6sP7#O!t8b)#PgPS-AY4>#c_%`If!Z zliVcLc0cY1qaup@dn7S@k+B%VW<4^$Bn)WTg)6PG&@`9L zGqhlN)FVxEg${aJTRdkvRBAiEAP|tLdT1}0U@c0~5KpY{CIA~u@M$t4>l7_c;cs+o*f*Y}CKVv2zs^<*eW56DR*HevzE#K{ z=nJiWdQ9C$R-O7P>OC}f$P?wr%R}C?+y3!ztxA|jjas4ohy1&2Oz=b)G$)jkplVIm zyMqPc>rPOs>s9O8e+)$kat!jBGswmsxa|m=XS^L{?a_Ndt+MQvQ0aYwbASjFK+nuC z@ci90m|xr0px5)aROpW2s>IRs=_EF6)cI9QJsRJy|J4F8Au{sfhlnRXQC#%t!}}7a z1}vb%49Z^tu(FL)@p(rq*iU}t9LmpUWXsxw^}j%3+cI%(p6rkj4`hdv(sYZ2*^)|% zAX^Q^xPmm}#Z}A6WgSo5g39t`rSXxWDuM#c!(+uE_ zlqMkOFs1ENw+lvR{VN6p%8Ef8f#Mg5|Dq6U89^HCkJj)%+g(BW*Q&=NZ?8Lvz|zCo?_BXH zAoS+6GV(9WVw(>#i_lT_=t1Ze6B0`%=>lV>b#G%x=JT}@Dn;Ys>az6xo$q1E8eA;V zICIR%@?NT{K;t*lw_yo3MgRIiS$|Hjys6+s&rlzVmZYPN<341p!@AmzJP6g-6{`X!L(!1ZGV>s^V&n2WqGuS% zC80UM>f99Yjaj{@^P8>d@@{D0W5%hVtMSkh8?=b-;Ci3vi@6)$l+vJS6>N@sx!JT% zod8nE>61>aqI!bc=9e+Ndfn8;qD~2(R--C@CS87$YLDNFmiR`?v7_o5t}N`J;|sr| zakcKt6(gQr*3p2sgJx83lUVgRi3Zs%bO8@sF0ybBiGROY1@aRfZ1SL~r)&4p^P5&1J%lz8xIMt& zlZXyN5ISmOLWW!8Jtpvea(*v&I|?XfpKk_rDRuJX+ij?g>InrZgR}?}dtA+zBNpH( z`PX*PLM2kVG*9Q_h_>E4Ba1Gat22*$7V}n70|_PPm|IF|$&uJZewDxz%VYQ-l$Y_{ zmMv7zI*O~!z=X21UtmvFcQ0Esq5T9neCOYG!qpQqpB%cH;5M3}+~jdU3A$c!SrcOv zmZ|0c)Gh-!8vr+Ln^sRUT1g=bfYLLDkU@rAs1)`T9}dGu(!@&uTNi zvnr@$hhjmHiB?~th;J{v&JtSaZRqvMvm7(%P!Ql##roBfmLCg?GjYCPKB5vr5bJ(9 z@Lhn0*iGlvJ!@#Giy~YnsB~$I+qe24XGh$Dw|}Sjt?f`p4xYXChdGLUdFtUgTVp@z zvFd6pbt9^5!Oz5}Uo1iZy;KxMo-w#QkO9dWq9;q&M-(Z5IQX{Awc!H{&w?V91I7@= zq0+#)GiS7GfYw8Mmkv(s^?)C_ED^Hu`ZwaF8?sh#REkHC(l@@LY~svaNQlJM>gMJ8 zwB}hTVZFCxJQa{8q0r8J5(@Uo+g{ksMt@eAT#ms2gy1?W#`4YZnnlJ^N$iTwZdUAv zoCN8;Xp)tn-4=a~k>GAS8J>Kb>9#>HbtWCLN~DA{Ic&dQzxPVghWy{nr)@(E$pAIW z<91W!P2R6;O;c|u_E>{6FErs>QvZn|=qPKfCNyP@Kenm=9!y^{^1TwsYm4p9Gz7BD z+HSw}@uXPP;IiWx#?5KybQ<7xI~Lzy4%#_)JvWA?H7S43v0XJh`q8fy9|N|cp$)x_ z6`fLks-hwJjBtoQFOKk8>^xEU<-eP8GP`c~4V=KKHr95?8W_QRdc=>M!0sILhhl4x z%>TrRvU1h47|b|O)q?tsibM23m96d+IpG=ZUzg&{czAU5M^noHQ!=aHsH9n3o$Tdx zV{_d9jTfavUkvGhEoXDYkfzFnV&Xi)5j2<+cS_4^6*Q%lYJ zKR^_H#<1+w1w>Jj9IAPLr!vzR0B`i(yC`mHg(}tjBYISv3E^bn@HcpgTdVpj#j?+# zGK@$NoelnurvluB!Nb?}qf%VuFYxZ?cxmUH<;cQm#NUP>*~>GA#-k)n57B&Z3Y8Q- zxG=IwNq+IS3xJ|Sz%x6k>U-=py<)=7I714%^OKd*zn#?68?w`{&hsc)I&p37fIoz( zkIc@q{_43Yb;2GyNRly=U8;Ua)Boxb6ije>=(y|j;#cnQ=r#GpHcwg?SqsxwoG@FS zkEx0L55f;C=#~-^BWK;kg!F-!Mi-hGmb_EWZ|4%zigV)!6HXGO(>%Bo5l@wwxXMR? z;PEM1t5iwiD?sPy+h;nCx`hWf(%438cgWU<^L0FhvpXi_L-MlmQT(MgrX4*+YwtGM za^wH|fO-|F5T?>!nkD-S7ZwTV=v?0PnozCw;z=G9OXvi5yf-b9tBlB2QNy@ZL0*vEiA+IE8!?QPmehY z*u;5jJC&2t_%efvPv5RuySDjm2)(>h;F8szt%-celK+uS)L(b3Xk<0<_EA}O zwh4AkB8}70_&Fh0tjy_GiNirU2P1-FaDh_KhwH~*iF}v`aJvQEZ_skOV!wy1QYwS8M42&AR#aEKe}2oKTOC>qF{w#f90 zDer!JiO|pB0E}W0xs{UIa>xT1y3+bq!V$IALi@=o$+`dBJ!C)d+M;yd?fBp2-I4D0 zJ*#4yiQDziE|PdD#Q4F77;yS=t>lq9zcGhW2l|HvrpCq}mL6q+aqkI!ETve!?t8p{ zh9u$4{M3C$ap@9p-+U5Wum!~bPWNM}OCVYc@%>I%@l-YBEid_TFjy}^@Xf8le`#lQ z*b0{0M4MBeF2gSLthJLa7B<8+&#N<>ljTaN&}2_;Iek##v!yhfn{{;|7R=7XbKJq! zSW=}yVzgpdxzF#pSp&Y+Ady=!*J|ntrsov%kKoY`iv2*Fr7Ar}#MdmhPLI&S^$=&^ z)@5tx^{Ul~8?Lk3PPn~ z?epBjBA-d|?S`(yUA6Z-@|C#;u-gw?8wE`Pf}2w4;H}utA~Io zAs8t}h?7W}NfgFcW`E2GkZ7Wu1gsYws^vekbM3%7qh&z%I?+0F@qQw@qJX!5Gq<{K zdv<7_;Q_-!n@uZVK^(c+ZfoljWeL4=kd&$R=fR?T@!fgKDY1^F^7owj?6QM>XOSh( zHF|Til=k8|a4P$JLZvV5D<47_p1baZegHMI2r;fla5@ilIcW<JP;}NZ|Pm_x;s82^IcT4Ygl9qA*@*K(^`Fp~B{_uD-zv9C)w9>@v zdj>f;xWeOe24kDVeWp&nTZ?y8@>u;aB$G@bGq%%#_Tbh{Zo-ruNa`weE!$~5)4jw0 z4vqJz-~&Q^?jrjxlE8x#Nspu>Kz(a>h#52O?reC-C4}y?=7Xwp26F1ZAYkUX)Yc~v ztmpV>GW2|EXL$pd63=`%<6@ODV)8$F-(j|tS&w&KqomOSAXSotT3c5@<8^XlwxLNq z$ACiip*$SYv_*6UFxuD65!9A+V58sAi^TCj4uW%Bp-zb0$6eZFco6jA2KxM#_A zh`&o%Sz2S{HN|?ITvWz$0kll=ELINM3_lW3ngt`lm%Ui3@$=%geW0~rb2O05ftNv% z#mMQlaRLo*$+@G-%`x!SpAdX^%Zr395=9cXp1s%SBjAgg9N1nf-f22{xz<$n)M+2W zy*Lc5m#oW6e!&=r8wL9y5nuoOuE+wHZss*Tvlq~-yL_=>hs+T73w(0yjKZ{Xv;TO2pdtHV8REn|}>s)(ES z=FJtLRNsQNByV^2<)*Ji)}JYchYK%;KTLJd5DoQaa$FtWMpCr-y(h*Qe4}^K>;BHr znV>ZlcB%3-xC9!lp+0f$u`fLLO>z(78QV8~%02OoYTPtYg14`$;z1kMP466)P35cg z|F3eYgTn__=<}G;P3}>_BQRssF7&-Vrced@0l-w-(JzkDniJY+P(&tgCcfV+HBU3} zj>&J2EIe9UUF~R2w=wWTz{;FPwd)V#Nz|8~(VRHpizv ziN&EQ>8!k!_$*s}uvOFH`9$j|hIO=Xth8t^oX>*H%qG9|FH2^(O6?w2b(tv0W3G6B9}_if|&99y&v15dXYmTz4zd3yucs`39E`jScnGAfJ=emwno&w!7FK*;r)2@CD{e$d_gM1j5a9Tlt3JdppOs!jr#q=FwL? zOw#@e2u4+v!!{7cc@f6jMx9f)p)RDT!Ya{am}rm4p8n8=T{Z>iju) zi`G=Zux2&Gt~vDExse6&fIaGYf_wX*BB&(7czpZj?Sbec{P^6!Ihge>qF5WlC-5D$Y78VYfLAKEQSvVUdXnYlf%0Tz zt=nA`wB47A6hBQ06mXhy`M=Hka0`|JjOO}KEMF?}4--ysvv4mY;o{c6do!qe*5#kB z>myFwY{B_0?ZJ9a^MBZ`SAVWwTFrfxvD9|!l-8Ss&o7kHn00Iv06COjK#Y5CqYl1# zlt0wFX2)r)CNHVSl_zPUXL3dns=4(SN50mnVj3s~=&Cb1C_a_HJr(BNyp97P`m~S! ztReRAZVLAj)@f{3h^4mDn(qb?ujGqKzazoRlqF$O#xm+lg^X!b3gx{Qmr3yicsb59$@-D~tFy2Lw&JKTS)}>HE0wZm*6G*GB6*pA z2lI}MjD^z<8b(=MZnm^#NUrwo3dJ*L{%lx!PSt9?8@E8nQB1+LtCN=F+-$_nApWXT zg45IjJ{oN1nN>G1NgdP3^7!KB8c23wnEXw(%xc1FM%UCl=U@9(hWUn`P{onlS`v77 zSG#rXiefxb|7 zsKVL{VC;ftb*)+2_NFzOOQQ*2? zqXE)|5}+CRhuupBswf=$ZwYeD*WwIgc~Nvad*6>|xb=p<^ihAv!z{}GKQvusT$J(B z-KAp*K~hpmx{+oPrAv@bNu^tsrPd`S7U>41M7p~q7nYQ6L0F`_fN7tY)i;(cw`vv9(Jx7fuyi7;n z7!kXp0L@Qb2KD#+0f5#osZS=b5@-gkBpkgH^wD zK>M>jtkguAS2+4H`ByNuK(WTbd^hjVH{Yo91us1W-+A{szY1Qcd#mB-U__?M+u{(< z=IqGH1bbY6Sp583D&Fd2pB{TmPoYWPiQkcb^o14*anqT}*dSzW)h+s6K=<7jKW_{5 z&RiKqjYps2$zL|S&uej_J0$!uN9+w;Tu1%{99uWO|HPYBzVG=ZWI)rrKY10b162RG6h_PxH%^?(cZ&Kv!r&aux=d6fG95I{vI>pZ% zfaTM(o}868`Yw$ZeU|V1r#f5`*mW_~{-Yrc*gQ2^g$ZugQl;!XKCps!b=X(BuSz6I zo9YmjLkbys`Bdhv!miX^y*xic_2{Dt8-y+LSPjt+fpwA#AaAW#IR_w`fmF&pQw5r%|!BAOQE6^ghxI9bO z6$JmXNxW4eydgBR?xAUH&sq}@fG^G;dNm@tQuTuW@6qzLi&znhc6L0r8gK#tpJAHa zycTW%NR}xG0=byPpXLy`GlJQiEnp{KfX=}QT$akTuA!usiSl@?G|7w>if{M z{HmWPvq?AcJJ1try}$RF(IWpuy~?%FP{{Js=Pnew>+a}y>W}VoHy^L^Mz_x&&L^Xc zKcBF{JS>N^4M5FQVCm!su<*wNCnv(>hHTfBmMPcU0km4OY5OLg=Q0;AKr%AoDAnkc zX*%X6*&#u5o?z_B7=hpiF6=SM8`x`l73S~OvK5LN0COd?oW`f5dFACK{_UgIe0QT| z`l5*L8y2s!9}L+^{#TOBU{e$oj~OCo1@h}&3v&&6BvoI4JJHY{j>r-lrc;R4D9}HF z+501WF;49lMbA4WgtcuU&WF90!898>T6kT3Ne4Qs=UTmHP!X<2Lxz7>9|T4jrpcm4 zWWe6JQO++diYc;AMbf$}p^k!)>puEK;08(f35oz_EW}LeJF+TW?ca>^Pj+(R)1i+8 zcHRf)vT16#V&xNHZPuKGiTJW(mBj{O$bL-F%L8QSVmg5E#TYu4<|kDo6rZokeB zXqxstf77?CKttjjpU(=wTg*v`Fj7uudp3_z!ZOo`vSNs4SWPiHId1y*5(`XEO=8Sk zwM%f_NwBdZsQSE2GO+*UzoA#>tafhqqt&bEwZqZY)q}}|^x+m+9il_XQI8*CFkjlf zpNBbIjpk8f3isl791Bnhsm)mmysw`#CTg{gXbKX0C^|U)uro^Yqk^@63UI_Jl?Njw z^|pF$?eM1%94viTn5c6&*ns7WAqI|)#Bca+s+3aY{HV0%@7xJ(T@JfjxNn%u^jh?Mw}5ifT`sE7l_V^*JyLpGH$tk_)nC@ zex%DAtr}tS(nj9cUeM*3+x+sGW|U zI5aVKW{Q}$DT!$||4nkkI6LP_F3V@mK3kiSq)tdgv0_$!F9~pK7O?p*aG|DEb!}kg z3#-P#$)!6dRvR$?VQ-2(d`>MN*sza2c)v==|#U=Na%MK+E&fcz_I)$u0*Kl zskXVYV07k)jTbU#X>azt`hJYs`YgjraWMo>i>53I@>PdGU#W3&bBJRF<7WpyKMJKy zJ3F}_$DXHOlkZ|LbwF){L*+4iHQM{*RmupdtT93GG$f`Y_bE$Ei{Y?iTu^9Kl# zaWtlkN#7f~4&G~<-xpOeTzi~epXi-gC^9@?xHYIl_TkGs2*G$!NlZ`V_X;uAs)jxQ zGu}5rWKdcG`plGr{L7>amSj*E>3iOpQ!?L|Vfyg?v}sWR`*j7Jtpql=d!dOv@BI3p zyy*fsj&SN7?~Swk&%`xoXJ6n5ev$&7BY5P3n?@Y&iB~z&NiX_1g#6brum43Zh+iMj zayJ6kx!IOTbao)8XuabFyHeoD|0L-NvL-OpVhZo_8)N3ki7u0u1aG`v)c<`ISF!HD z$MpSLa91K2Yb3sj<0e19iSSu;wJPa623N88ar@ub{p4|Sto5oSTy^S4DqMtQ?}s?h#8Uw^OJf5ncG+mD&R67hm54t8bED*%^A_*=EuU9isdXEc`pbEMi3Nc@cZ z{!|n(QSK{sarsnBb~jlgNhM+N2S*WKdJ%ITny^?!>j`!a6#1$_7{+Pu2Sc?l5xp6Sk2|tZ3A(nGQ<+~sCMkdGcsN!XH;yDolG?o} zv++*9Ig~~6T_KDf>?3~6dYZ-RxnMfIHlTWrXxuo6E1x^ZAL}ra23`xd^PKaE5RGiX zJ-?dSHC19Q=?u1GPkcd%pK%eJ;${LI2MvV@F%$7=wLp#r`Wl6Ts>}|8$UpcEU~24q z4$^Wp6AC}IkAl5Vp34vm+8tQA09gz6MAEnyHha!7Z)r9>lQ62XnL8bmfO5~$ldRp^ zX3h^H%B*vM5ak8_WK2=EUO@@b){lks};rlD5;6Pb^ z@tlw9sG2<5_f*w9(nDPtTUUgoLQkGY{_1z@b?EnVI<-QCI+Dxs8sb)xpiBf_%rFZ# zd=2)SjNBB{s4mrf{V(@DMqTYYb7pExSHqYdCNu9~zu>yCN%@bZ@$XWGd{w>eoxqQ$Sh4SI)&!Z*8NFC}YE5*R*2_)lTjOA9p zcD-^jLM*?f0I;QDS=Pt~DLgm5o1uKm?JFF&@=5^W5~s1Ivle6oO5(fJen;NUPRj5^ zaoiOa<5k9~`s#eb2=&?0i3>=Il6ZFT<|+Ff4I4M?AG_EEIG^g7L`@Be>3>q(Fg>Kk?sao=O_VNOdFg%5riH4puNEx`U5 zAimb55}o$OqUIkeS~Vsq$M}4`~h|&J2$6h zufCG1sfqrSBDs{n^+y2@2&;G*31zbBk*jI=7tDW;`WGf}gtw#%i`ysd&-H}<0pd;P z4d}7BUhajN@vo30TVDX)jziyRkI8pKN%llrXRe^hY+y%3GHUpyAA{LLhTl>rMoRc! zwX{NBv}0iG&K$r}6~(p$(hN)WLYjN*E#$H8Qym=bO9zg~(sWDQ-c_yUAg~`=`F(>d zJS-f7sZX6&r>31=j%QQl56LQ-aEzeDg887?9YuG|j#8EHYfdg|W9MZyrGxAd-Wvy6 z9)xxizjv%f+ysA7>$Xevn6?aUyzUAy)&J}L)yjcBqzISy8O~2FlKR`ej}L|VLB;tI zNeoR>HhHUY4bT}NF8i%n&94+C41i*7XY%%*JZxb54OI#ZLb@5gBR38)~@Bl@)oC_zhc;g z_T?g9xYrW=&h@l^mNDN`%_=zyG}NJ&1TQdHUzZhmzFzLoV!v}4&#uXrrxV`l!|?er z{}2xmq(AtbD`>Rs|GxarCCB~ZKXu8ePt>guLf>(01YI@75EPqQLwbE}o~i!Cs8-?N zqPF=Qb}TWJqOfn$>b#X$w`DfA)LtLZzGP9|m)MX|Up&chP5mwJv;6M1e~o*%-Nm8E z9D)_{a*a1hK1FA)E89&TDBm$LxKr}HaD5uX!zD-`f*;||tVV6hvp4En{k#7A&^l;C z5W!5#i0oZ>)5_0qARI#xOxH3R)!$00oMSeyGt=x-fgS=?fB3#<`tydet(+zwb0Btj zx4ca+D064%O6n<4qKp%kpZGk1bK_g>=T8iLSI+?htI`!5zCpAewB-IyR62uyIXw<(pnj}*@#voI@eiu{d1JTXEvI{(_=bNO5f23tiKNg)o zdT{udAD&ouEi6PMNHDfeLQQLz){d)=mkolO%jEa6w0>?pH~t5y+r5!CLV%1LZC_*+)@@VtUecN&GIeraC=Yf`5-O#we0Q_Yo`_Vt3&6 zm!H}8PcvxCevv)(e^FNP^xX!mlec`I-`y2;2!UXayp2`6Q0Va}7;=vXoAJrjTA8eP z57{riaP2r>dih3alQ`mae5nQ%0w!yTdrju+6FAzD0VD>rv|@T`ej4e9Dxh!ws;phj zr;rcyAG2G~>vKmd79Ep>B58lBX!2Uoj7bQSjtS%QVR1N|Q2Y$sdcX(Y4T#^ATh@Kb z+C?r1gBiJkWkKxTl;8JX`QL_n?FIH-e0glD6=Qk9flnhCi{(eboCN2F7KYv268}iCQ}dk( z+~kYq?Xh=QM4pRao?Zf_7r5#clkSA1}4-I31Whj)0qcKN3A5veEW-tR6o-kU83tu z1`8d>GAj`KaM$&^EaHhQxTD*uGtg*SLgAyqR6^r$dUn3TA>}hX5Vqtywfc2)V zEYSc@66ifOokqn(N+!->7k;hS0v3&g#~i|)YmYK(oUJ*Po1ySomrL;et!HisYC(N(a+#l4Zj|`ofKXPJ(%)a)bcCvL(k=$r zTq<`k71nTuhNS(>K^qDdZ2?7r>CmlxV`a+Z_T21JRk!7KO<9+`pBph7L1G+)!K!!D zF)*z?PVSdZImUWFX)Dz#+o^dSUZ_x5mGy~)4t9jVW7ajrEYF)U-hh$zhfRlalKD?) zbDsHL{TZEY9t*;DYd?~bqu*<;2Rjyt$-#XYn4~~b7jMxfer96@1xz{pDl$psx@jMB zR~im7rS>UG*(HbwisY^7e(?SgCyS_oht^S!Ncsu`{0d(>nAB|H{Qye_Phq2_dNew) zkD%AYRoJL239&G>dprS58T+t_>ra(EnTYhK&b1>%*8TQ z#*E_8YdcYEUS~UP;#>@e#S%YamFj(#%~h3Z27;*c;Yq8nU(Nhct2;6($^13_w)j^q z)B?7Z6g%E4^Y##(6rELUZ3+WBpCg<&W63v}DG~BY)EZPTJx0srn=?hWUn?8Ez#3)} z*4KR!^9v8CJd#-_k)koIt5WADw?0aZu;GnxKUpPYU*sDfQ`Y zB`?ubdc;SlRZ8fBA!k}JaPY{*7X88elbRFE)x7?~{{U(d_nX#LaA;tG!BlKE-eneq zx@zB@EAetqnhrC5Pgz`u1Pt70!@Tm8rvqs*%u|9Pc#o!VQ9!}%a9S^5onV$Uzd_h% z9+NiFzx8!!Sliw`0nVNBE%Dfj9${_lA!%fE>`9AhJMOIK=XWpY5*5b^w|{|OzMrOv zB8Z!bR*8b*jy};;T=yOmCrVT<16*6aFNHBGcCrOCNZ-YtgeE;4-aC#yc>tFB@wa0t zucYUAcQvtF@=Xy>7kUveb`>g4Dn`yPdVSvvn9ne!1&%p4UwWu9 z<0v^VZLrWq!T|BPFLbK5>P(F=+yF-N*)*OO+X#b^d7;!LASnwcw>VuS zpTSQADc+<2VG|E+H>m)KR?Uh7H&0N?EZI04rT2mWcexaG)Mytm287 zYR5@Oye8RduxvA%zRL`QIn8-x{~ZkIJhpsOYBTxe9n-u`WF^)=Rc_xswV383fssxV z-8;TH@<$(}3#FiEBAQ~Wwx_;TIBJi#(2!sEZr8M1qlB3FFKks_qqGL9YM7Z_PN@OYw=9ZSmp)UEl`2^=LJ_Jk)9k*mT!>-b|2oga3(V6rddFnTsTp+hJ3Z^{YnDw)zy zzZ`_&k}bg`2UwOYhkbX&_9^W1H2I>N9*^|fSVz9frR}%CKERonIVGpXc}bL`$paxy z5RA1~!eoE$R!#Te_nUR6e<8*VW;F$r0h5Q6so!6T5InINE6@fvXnOzcyj~pMTX?Ek z0?NwYgKNrYl8gTYH@_02@;2sK-|zbixu~fSE3pxJ#utqGqbATB z^-kY_oByDm&c2$Zhs{r~nnd0?5-k~~XAgJz0Q^k&QP#@o9c9K2kq=G1Itcj<(lAqH zMN@Nss^__Hh{|`XcH3Z{iv$DR1ei3*PY?>7mUy{Ze3rGeH7`@k`h=7d_=t#fLP1vM zd2jn%9Z`BUVL5clIUp)bQ*{O`B&(YyewyvK2N(A#B0wcdM4pHUoWjiE!z-RLu5wQ)cD91^WRIRK^a4d+!yX|*~Eiu`K7AYSlkH}0{O-646Gdk zQvaCuhV8ZmxKuPqdg;RxS!tK1k#}bfsywGZ$O!XjGHF_4X)E&jL})V=;UAwDCK-7( zhzmtw0_4O*FQ0_UcVJAw`Z3N}nC@CIJab7#Y?qqEda_9p)&H!&jK=I6w@T;H{72nE zOv}##>4~0ytV}PXIlvDJ3RdCSFcZSY4M#R|;;K^YKNPZ0hElsw0TmhZ*1>@5-h{mK zIjL5T)$?Ta)@3RSpeU7URs zht|;OrRV+Bf(dNCQ0qZd9Eu7$YtH3Y891 z9#_o_zng&R4f%Twnr;{Dh0x%;ZL}(7*3L*3&Z9N#vsF{h_p$}TE&B=n3G&S|?ZIBI z+wFf|w9Hd`6y2xNFH^y5SbmSOrT%^Yy|-@bax?Ia+YDyH$Q(Q7i6rxr=#SK1db6gh z;@rMZomPJRI0)EhQJ7vs+pb+S*p}nwV(es$isHxrxcpq*Vf>0serC7-$Bej>(4jO< z3{}aIBz0?SnBghXijKZ-{8x;^@iJ2|!y+Jcla6{U6Zg9~@e1gNoN@hfR9wUu=6REklTSrDJqh&Oa~0Y=URIEZw`=aT*Uw+N(BTz;!lPa`HU=AL>D2TpW#Yu> zMpM@o-W7{JwZcI=0g5)Tv?w4&+XBg;=`yT;BmgAiu|v+( zW4dsD6_M{FKAJsy9(sS`&g=bv?KSiu#8s``s_2Ic7;u8T&%7IKEyMl1VLwA?qm!#= zlV7y~nPBOAG{b`evN#k40fn`V6Y>hU&7DKj`pcwaKe;1(!Lj38K<7YMdB| zKqH7DPc&6Y(j|r2(uW-)O9~%VFy|JFC9HhQG6{)p-6v=i4niWkQsW5)IimAbpL5u> za!k{`SoJ5&#k8v4m`RYoGUcyN-K9vl@7>+3@Ha=;Vks|;fA$UxFe%|n!jW0c-kxp~ z3!WY*o2PZt?_cQ6l@PCAR@M4s6d}ZJb2(qC| zgF3VMapNpa1W93Z<4KX$K0<7IUX=w7)%MnCN;$Ig_Hwl+7Y7(k-0u&Vr7bYE4FeBqIPw}MuT_PLot-PO zTtMxO9HN+BXtJHQM27y|!YmUr>@Ek7EkH=Tfq`ll_s=BL$@paCBVfkW~Bgg?F1wocYW*xi9i0bM~vI3n!*JX?a0d-KcL~7u>{(egF)Dp;OzpnaSc{!yQr5N2qn8`7OK&K&8I|C3G^RL% zJuQ|Ad4X+y5PzqCP{LFxh<)=8>lzQ!r< z1yXf!aU2R#2dQ5*>GurG6fV5HG5F<>WI}1@ij(It`stqj)lRds&cZUmpYx;+oDo;x zCIUy#WTm4&wc%g^V}0+0EdSv3LLE$vD*Dnw+LGZD(Pqz>4ahvYYbf`~nup0HeaolG zm#1bpcT@^tS;YR9W^mTVwu_gE{<0?cx~$W*y~yNKcJv<yAXNwzokZWcz{&;6*Z#hjWiF~&w^;});TR1s^0 zg3M0GKG{3x1|!(O32m6@zru7QgHgbe?MKNPyLi#z)y13Z=j7hm!8q72w5XO$D+c+a zHaaf8&fY|_NBt%hK-g$|(}G6uPcy@nIkc&c;=wmjYzcgfELK00bd9^fs;fhH(@)E> zcXh1%4=n3?c7K@uadyA7KYt8~{)dP5)dQ07AX&;=X@2ohh7`iR-$MleFAKpfY*T}1 zL)Y@AE-$q)B4va7vxlF1X*P`}WxM(^t|Yz|E&MC};}~9Z7%#MV0?M^WkkM)%^@5w@ zCI|0-qsrBCWkJYGxARB2v90RfzJJz_Ts>W+ipl%KP|j1B!<53i)$0|g7V^0cr}{b9 zhs^WGQ6Df_A?yZOeT6(pa0crkjJ-gR z*v-nMmYpp^EkRdbk(V{-Yav0+MS^X=lc>HJl@Kk=sf;Lz70%4luXLqQHUllL+~a&-51 zV(Vx~7j*lL8R*W`YJ@Yb8e@#!El{IoAbr*YMhTs+whCoF@_JWE8Rl{ zrPM!w#B%)fHE>I@XHAF6Pf~vK!M&VCO6v?MX&bsbiRTMh`z8)zI5K$t(AR$Vag_X( zj+gONSf9gvR@xQ zewKcR6C?Jp-&z-}g=2;?uFmu&1i9CuHuh7Sl1*E?eOpBRR$5fQ>;<1OkRHg)1e#0T zLi`;t%R-G+Sk0Wa?F8LQR0=GU0u4Embj}sqDz!#d`}2<~kgI5$qd<3GEuL#>Xk%!f zCA(1A+sdt~U9{u+@e6I-`xB!x6LS6*{9Mf?i3{nMn3mz75t>|k>&ArM9h)O-D~J^A zB%!S3r}R3s_kU=mX;)!CK|SdpB|B^90*MbvJ9Ohe79~ZixET>&vT~bY(1@Bz*NtJs zMXzEk^UGdv*q!@l>mt_XUhdC7Q+ME5EphgIvp_Lc-}GfsQRTCz1an1d?k^9&E3-8z z7;Bm)QvkKU(BJRbc_%;I89;ro&g+kYm((J%IPi<{HSh7q&p>rreuYlN*X<|;5l9{T zhb@smQ^v5~9D+AbdOI__Bpy0GRqjYOyoF{oMSl}OyB-KHuh5U6*`8fj<@wmovJ*`+ z1&dXV8h$Z^d6`qbHT+Ea^`>JVIkrQxeEExLx}>4?rfDs3=$&d)3)b$fF(*~BqA5mc z&1u%oWRm{jw62z^{TnE^-Kg5<*Z?XVja9gDlW(-S^&!FX4<5mn%+Fs;IftD}kWO#je&+ug=Tg`Y^tfnWG5Y|buH%X#q61nv>G^9%L-jg`>i%I(&0@mihQdQbDmN*{XQA76mUy3fzC&CHgT*t4)v+UP z5|SO@V~)Od$Dd{e<2s0y8aSFFli3soElch3*f=s#7!m+>Cd(h>7#|-XT02Ole#6Iu z89U_K7t~5W_wJ}gG%=Ut_+>HAYVvl`yU#Z{JBdV}CGM>F2kT?a!ZEB8Id1wZH--F_ z_saY`=ODM4nDOf`wgq`(YwW|7~xIDv6Vw16L>2#ww7v(z>fG~oT; zfrQVvs3zj7LZkBe_ZvQl16U;b>yZaH^gb!K_=29S)hjRSLw$u~Fyt&d%-yxC8Ee}k zpjAnrQ0N>>8;Xc{#+Gm>;6}`(l7(NIg%k6rRMV-jYM<-+WvtfmazS7#t<1|1#+-}u zx&gqvx;lH;b9rx8g&kHOd@ULmIP^(5t%~`4G2i1k2Ab-P2zQxL*_tiDDs`?D$xAPXaqHJ+fmI38&7m5j2Umrb zcfu;kW$q2QBMZq6ePrTPGNVP2BUJG+L0LTaqF+@%FD>BaRewB8kbej~!rBV5Jp7x= zF*GvcJTiC;=IxvavB&SV3{O44ny}s$&0bEi4Z#mSarDO=Gh?c$B()auW080cwzI4u zw82UNJPw2T;GX}Q14A_SFuVa2YV$&yGGKN%N3@O)&GYZfVNx7K!4w06eVuHDA=ldE zc`nXEYqUg<3FEhV9|O8~z16UlA84OqY^w3(y{ZF_;LVZ z{er#(?E<)%+L?G@*=6b1cXq{`h701U0zXb5_sSY?;R#yRZAqH(Dgf%TE|CwnqB>-o zPSWPBT~BMZR}W_ccK_z`;r|JpS$1PN1ePXzrcX7t11=ZN+)Tz0_@mpR(X)+IvLYIOxt;RywnPi^X zZC|o4Zx{YsPX1uW*=e`4DmkYZ4yUHy1o(j`RsvFL&YP_T`Td+QREBOpA{HHZ|4xLd3EgGX82{=XCLU_FYukrJZYwvfX=+On(Js;W18@|TDBfHu)~%!DS~$qSo<+gm+Kvus@2xO}2SfhjD!+~4l`uQ$XGtEM?6 z@_u^MK*Q~RkFa_&s`nt{Pp>M*b$R`Izt@mN_X|BUv?q_^a~Q9aw;L*$l<5;y#;u1* z_S>hOE!zjZxgCTx>lKX0Ht@k^0n^FzC*zyVp25^!cB2opD)dK^hU)dKF*X_f_Wl)* z!)Lii@1z_vp;33N)|IU8xv!9!xhLWe%HDrK`F0kp|J3YO753RO7bt8=8Mur}5WjNy z5@n}Ne-lJpcX^qRF{OYUNHPuf5UF|_vsTg<`9o!ib?KIcwr!LKznoL)YiUZ=8k}6E zqq);Q*%K{V{q9||Hd4pg9Z)f0F$wydeIvA3BhO>G}fzx&u%`0#()j7et!#l(S@N$I0 zgk&Ky)Rm0bJIrVArzw|>LoAt0Q0`L9)*>VJ;qP;g0%?k+Hv$Upf7ej)mRq5CBw-~t zv2T)ejClCV9+leCQ-Cb_{8_ni3tZWm&MO1piG>EWzgRu%0e5%nSkOLYu6dP{kOalg z1O6|?XWI^9Z|5Zxm z6>F3n=6prcd;f6pbnj)qC4v`cfBQr|iKRNJF*7>Jf_a=7agM1|dD1*$kP=xmUUy88 zD*cTX-i%%vjI9cI7XrCn5ovgem|GWe=b(T?=#Kq)e4|$Ls}-WdSF7+RV9vSOIj(`| zhMqdXF&5Ky$#U57@dUnmeUN+t4HTl~?|Ww!cnW_< zH#&>>PZQFO@5Tr1Y3C(A82PgVY2|-Mbt|a*j0Yfs)Vyn<8H3vW34NVSb5t)^SBmd+ zlc-in%#@~e#e+{G8<#&g<+8&q+>lMz_L6zoxV}Gma7!i1M3)bL5@sy9tKl=WNo!#} zusZPUr|zeyE}>b_WdGOv!=aD4=N_&6*6+jAC6OKhMomwY(dk}gPxrV&`x_gT7&yGE zmDz2pO-fIC(lN0{+Q@m$Ut??t^PJYrocE2}(+pdfH4Kk}8B;H|16p)0xh-XcS!yd5 z&h;0A{KQJ{bFICzi8hhzyRWVIF;CYr85jgQ?7`)~4_DJU%@$2x7?< zW6y%RV`VZXHOakN3*2il?riVRya>MD7XpGIb0dKkoXYm{0*>8BlaamHt3uo5UVD!3VSqJD5y|oV z{Ke0P694WgICS;xX&%tuwi#_QM7+rX0h@v}a9njeN27X&lw{xsQ>nu8=H&a*WHj?VW~$!`r{4o75f}0!qZs*kV%DrZ~~Sf%@%Z% z)-Fw~u*O~a5meLeOH{R&k1lSU+4RYS`He8gwc9?dE^qfYrS&{iYe-qq^0$nX@HIYl zsLg;aD3d?TbT@S`CfvvCTM>^a@C?J8vHAF-g5u-|1BzcihNbkwWwsKAnu! zciOMfSk{6Jpwd=l-ji9-2vjTHCpXyhV9*`6+@cbpu3S;2kW-9%kMi^9`g_3$*a2-r z6-~i1u_lO6YNiE~k7a+Tj`ebNo~kMj^Q~56p<+R6cIV9z-|4N?&pJQhfC%t2xqr3^ zt2j7-;9h2QX^>Y~BB1#s6%IEL=#J~dflSaIv|Y%UYPa<^xTnn<*DCo?wEUkdD7bfrH` zBNd7m%=ixKnzlcmapQAvzJEt+{v_4AuS*;=#kdmqm!*nTj|i$?X=J0^pEJF8&+bkE zO*Hg$#LIoA>-S4o8zE`NRkvWtTSYRtu%)`v(6`Rfx7^15bMI4~WdP#s0|l6`gTGDx z8fR=>q=-UjjZfJCdvb;Q(qG0wqk64twSTL)Z7Nk=K0$D%`YBGEkV0Me_2tR8AA=TN zZ4c1W>mU<4iEQZcd9n-|-FV@pi;Lo6pUJ`;aN3L7}mE0VkuoX*{Hinf{k9wG{4brAGn(MdSZJpOV>0K zh$H?m(kMo3;Bmfu*&@5YYbnV3@I??g4~%boNENxK71b;*o3B(QF3#-q|F8Dv0W&YP z=Lz)Q)BO_4?soss#(R0Qd-y-aRPuZ}kaTbORr!-q%eS?S`0c?*plVtHbDC>BH}kaS zx_|)%Xa_FplVMTWB}LjX!@yT3R&D#&CFYZ%dL(^JsldUKLBR!ImhHXp(pP{8pcQ04 z5!l=pb%r(32Gh7JQiGPH4zKMGn`6A#{rGxAs}toQYJTa9xpArH7Rbt3V+?!tx64BB z;il!h#)b0{mP^I9TbAlut?koU>6osH*(d$* zr|dmU6dcw>39fIdRkxFSa-m-hF|n8&3*xvb-6KoHD4BKK$FvF-XgwfA6l0A zcfV>I10~mgsKwML_SjHn(JvWox9d5$ziw}@L$t$>*QeKKq#Ej0{T&y*XCITf7CEO_ zs(et^3*@mC=M&#YqL3)AH7h~bN&hnXfZ{(bKF-V+i+Ik(mXpT^KMGo*zn7J|y>af7 zV&g5FKD|3D-%(2skuXJ#t z&rz+fv-q9`Cdz`G_>-)6Av?5^1o-E@a`3iP)8l;|?E@?BUW)uWI#+k+DMEM5P4*XU zr&1?ta48EZqnp)cq0;VJ)`GKl{L8av8Ar_h;In3y)veW=Sd4EK%A||5+`@dh+@D<2 zP%L0G+1MAVZ|++~Ts(F7is>IaTq+N>H!A|@joFosUJ9^tdF}H~G1ln;c5r`N6lAR| z2CyY9h{m@|cJuIJ%?!8M$DKWC+pu`M=I&VQaqbfk8+^KKuU`?fGit6P=gmjH_N)_N z*5yD{QjD(6j27}d#iMf0rY4z49iqKW#kfz$l+|$@9IM=m&fNLHE44%5Qa5=@}dT}=Rqq=EweTT6m^0;7^W`!#oa7O~lNiD6p zX!J$o6ffT%)O0_-@BNkG;YmQ(jnvt<5r9n7M{?aw0=M0PS;F5-!T%U`ns94NE}R7l zbKVbMtZmy+Y4kOGeQHqZ$8usibtP6R2|xV{V8j$;Yn#^RK~JUwdM!l@vBn-~9;rQ? zpqNQ9*P|zJ&e#JlU6Kp~Jst?o=9y>7wD0lo-tj2L@iJ7d`};xL`E;X?wsEDd3H-Ya7PM@6m2R$S#GYW<``C`hDQ1505nIbFrah zteLpXl(MP0q&b=td5cN~2`cwWU3Z-9n2?hf$}3TAo{I*o(Sf3WQ-_9VTw$wDc7$p z5$DtE$uSB^4|yxq9vp);{xYE~=*{Vf^>I^@hXQ*zPa-E9#q_+BvN+o)d| zwub%y^V|YrV~}Hi`d=*!-jk-Bt2x|9!o)Qt_z~tmI&$9a9^SXF-Uaks?F!`B1190d z^%CnUzf`|0W3J0EwPS2#sccbFcVMT|$K;Vm>+66lQ(!2NU%1hVQ1X!F5-DD_LNAXR zCabkb-}s;I7+7tGp`OHa*Ibgb?#>SaL-<@Sb?}R@hzR*K!$<@`0QE_tSIfq!)mJ z4FZL0Ipa{Ij#VF5*6d0AR;#@mi9^cdGijI|t9~3k`n3@E9fPPLT-HcEaU1p$_5`%-*oiYVvOlSZVzUv zaY^jcbKSlD_tNrRY3ITK(^7RL^IlE^>jIF zmXHXx5YU9&W^jWI&V^t?>7Bp1o2-?&=VsG-J@imcFUQ|f+FX-pARqBRTU53qN`Kvdni@w}Vm~LV3lf>C zv~B-DYh-1rHgw=Th7EYK$iPR$i1z?)}*ZrGgVW-QAfyIXQ6Jvjzd_At%uy0Pl zt7Q-T!4^w%p>NEIHzOfb6^cT z-20VVG@x(6ISMkx9dR)KzavT3M2*Bf3$y8{`UC?UwSR%w6a zk~V09k|OtI&%0~V8tC~PA!XL^n&M+d7ZQfs3c8JSvL1w6Vth_)#@wmmur6T;Q1fZU zow#cGIr_k^dzYNF=%*>W5Azh;a!7dfy^MAyTZEi}u4BLujJ7N$~(UzSz zYE!|KVfD#!LVB$X1-z4js+gBnQO#Nqv3~FUzvYGUmTy(W@2_dc;V* zU6bEQCXe;(Vl-~F91D96M~2Izm_i^*lYGpUDaA@^te`sa803LTCbk0j2WG^(LsntO z{j`mF+LYv9y(p}*kfvAt(L)l{la0WvLg(pW|KOer+yjD|9c=asQ^ntsYzH?;tXkKK zBN$R9XHvJvHTGlphK=5bOv+?XyG-UaAcwQRuSYCq!#ujQ@XEVZn<#rI)!Ov5#wbXKZR2!8-bO^X~zGN@`96fs_hwkv+cq-321@aA_Au(2eHyM{dkx*``#-kcDk#n;+TxwT z-CYyh-5rwP?he6W&8|eHd;iv2 zkC7=CskAMH>S#5+5tVuc)<_)`Wm<}=s?6Ml9wxdyTIIi_S7HABXXhcld(DY?_hwZSIMDcfK{MHMet7_BIAjZ^(Z9{V_*s)yqRUlUAk<93p z`>&P_2LR7-4K1-VV?x^)jF{^PY8s?utVD3rsRVb!F%^9@xd?w?lrzs_S&d!awSoX) z%t=s?4G-J#RpR&Gv-(=kM&*oy=ao!2dJ?0tk%J}Qg-Gz+)Zc)5LBtdf)0qp2iiEv6-9Lzw4t!Qu~G ziz8eUB=FQSw5&vefQ(|d4qtb3%;n}oT+e)9MRQOrI?N8A!v z5PEsrxJ#iw8glu}`TOrl(evrB%neF`+<*8$MvUUzDaI1BSJv!L^OHQLsb zDuVI$X%pU`jz}EkHWM@jmc0wkL;RtGaW3DwY&-2fJmOL#X-3**7(X3w!dQ=f;-~9) zhh)^L=lAkyIst9e+9~O)|9D5i?;1Xlw!fXO*oWKM9c;;wEn>`Ck%DxL(GU=}89>*$ zpFINW+Ca&4%`)j$|MqO4^L3=Ad^_7nIljEV(9pa{$8A=X{Ssg?HGDT|6(VFa2|ls5 zz&vxB>3^>1Na(h&tHca_cNmTY}vrsQnKGO<4_hWP(YeylCn22`3g#SB5) z25T8f&$teqj_>Jfkd+?&)ebwoOxMU0<`?l}8W2NC86KU^h1If;^fx6O94d6JPH>ud zCO5A({$FyOL}EU)cI>V9bnlODAhOrN$SVY~I>DIeD8P?Jcss3fM|V1!cRqTaTy-AO zfmL+p7hX?+H$-&9Yjb+RzVP{ps*mgMytAZR@dW|el^bvz9O|eaP+E{ZoZb5Q_j4A- zyU5y=_`=5&ixgN*Vn+IDp?UD2tu)Vkp9-5V=u?jLiOylPQU_j1rrPn>tns&hCs#^T z&c3B03`evfY|hsZCP3sS5o@(-id)xHdSk13RCfXKoi z|9Q?eInshncVsmjaM1EXnNyjRQKMVe;(j6_tF`QlZjUut8AvN}NH`fQgw+W|aq; zci}frqaUVt$VCKpQ)mTwNfc2Nl$`Qws_&*#RVjUAp`f@_gc0Gh}}y27jnuRM`_z6q((NUH@LG z$b5Gv;k_unCH3E($vvOTiJJL{^UohbEO_ch6~Ge$j|Q3$M4bxem!CAdL&un0@N+>t z?ZSgP1pAG(APBNAo{@T;06ju4W7SrjrMZe2oj*?>@Di(qqY&%A#|2~hMiz}5SP?x> z$6jDS4d5_ImVpOmq#e&5Cw_r2iB7_w)KMy~YqeQJ!-;Uc z{Z})N{UG}p zC4mF(!}YU(aO+j-w&{}73`%YxJX91rB-p5g=r4)QG`xjCM8r4ol#%Fg{<9LXMgod2 z2IQCgP|sbBjZU)J9IkBoahRd ze;z8wjmF8s=h2Eh91_DAw8~5TQ2&I zS&vHHCO5J9As!;G;Cc+p{@TK6o{z>pm*^E<=9DOf$#i|B7w$l9r(5K8Ytn>_Cc<$pjGIMOcYchA+ z$Vf@Q52g{rDg=F+SXvmg8Y{Z6Zv?cCFyEUI&o>gN!%=*u$hJ**_^5v%33X^kP{ZK zwl^gTLnCqVb&(WfNP;x->YILN)(N}y{YCsq2|q;oM4J{jUN?EVw07rTd98>$%W8cp ztg(H>JrDNe1f{)Dn;<bGSnBWfhIfc3FyuxWGI+vtG!k04_q%Y_cXF?g6$-o*6YR5id!E6U!OiK(cIPZ|m?k$xC6XIY z(7vT|(Fb`S*O0!aWbI%n9jc($h`!fadlCPyCN;0##SfuMRe-$@zNXm9|3zI z>hd4&FyJ2y&1XkGZUEv5<@A-6Y+XqyvMC2-AIH8@v|1#D$>Vw1ip@Xzm2NcZoFdLrV2veo^C&!6K5c zI&SD~^L}dR%T)@IJ4e39Eza8~`PAo3+Z+A!sQ^wO{T#mT#tTL<%a%l$(q*bLf0u~D zY62brFpyXI%r8p_bKJ^n&wnthfOJ2`;HTx4$|39Cbay1@iKjiDHagMS-3}njd2|ve zmL>x>sOIG+s*Du!*A_=(M7KETzx}QR9{AEPflsByNk1vjn5?cC&3{*9I+#BH3H@<2 z#rr2G9#xlhv2P?A73Gp&6q?I;K7@)Ct&}hEe_=&Zf#vGH1$Q}GJ#q?`S+$5Zj>LaGWGjG5kWLiwLvRadvpS4<|cRSXYQVxrBOX#UZ18gt^6nS-}l9^Zk zl0(Qh&fe#XmQ=n$omYDSPKu~rd-WEl89VvYm$+1=Q|S|;CS3|AA6jiT2FaSi8-Q>CdZ zDwSB4-F_e>rkh-qsBeBpnp;Y=LR4?3z~J3yS#K6twkL}Tq~|}&La&jC(P3=_j)^LW zrfNRW%=6cJW>jfidr(5MrG(+#&%~9vJ_+x9xCAP``^#C+(Sr_G#4ES&v~`#XJ!Xvy zja5Jz&c)W%(wt1z4IIlgD*Cj!V-WO`L-aojEi1o~2{Gc1vJ4Zo#U8HE2b`lNdU4Ek z;n!0D54xeXvT|KVWF#)@bru_fR_7<+vSr2xPELlg+#gbdsU|BQKEB1uAK%kf7we+w z(lgtR4At?nLG=tlZ=t%(usq%GS>dy#5ebCLQ=e+!4w0oFh&I;XKAeC%_L@w+s)XPs z8X0EhLCeD+QG0erg>13H9UDbuTTeENmNQY7v;&3PD~Eqx+YVbebz7{>advb+fva< zIQL*@fY&`l#(1YBu~Y*3``VuDx5jH|S=nn?+-jzC7-+DI1t{Q8lipii*L5oFD6UC0 zaCZwS{+w8KWMp}~%(M0ebeK|(?$-D_akl0fPlzK(N%j`IM2(+%gHA`cW1YKAw{pc7 z;o<>swX(SS@x$+sc1W4TQL^+>1YZ&sG@|7cD-Xv;ungl8MS`!SpI+Wllx{OBMrRg< z@Nu9USw}j0m+bmr%LCE!Z<~E#Ni4`(K#$@4CV)xp9>&1E7_~pdi%J^Vy8@>HIkVvA zqI6b6n|$w~1AaPs(1y(cy`wveyIT6&};$Ob=htcBI^FJQU ziWml93*)!tVkEsb4yhv~^nM+Gx1DVpW5kf(?P24u^t%gre`PYxQ5t?mc#AdIOQIOJ zFxs5R1ZA080S=s;A|(Rv@ui2})pYSa$O&n`2e~;mGkoW6D}qK%!v4K8(t)4UlW53w z#kw4}|5+_TmO`Vy$|zUSSm&Ev!S*|lP=*Tul9pAxtTGW5zrv2LOv|YteK>=fjhjnd zkCMf-T1XE)@Y?6rYGTK3(*{3*>O*K)vHaiQbli1N7gFL5;r^ONi1wr<=0cF%`MoWS zpBz%rTUyBv5z+>3MRmk`jrM$-H?vl}PF)`ZMGES#;r?eYye=q8a=`)4(28 z$eI$}wKjQHAr51xqXkzT4V$Q4*>S!}yiAnC7I64IDO!o*DoIJhNt3=C!qk}qPd{r9 zS>EnGs1Sc%Npket-JIbGW|2lZ{?-(NyZJpz=CH1H(wT=Y~z95FIqE^V@C{YF)- zRnuu|`h6H2+%~D3q?l^JjPNtvj9y>KE!t{{56TaYU^V!W&3G>1(P>9W3EXE0zf4V# zqO`tW;9iGox?H?DwXL3CIylb7oXZw88mJFW8~v`bzIs8vH*o69i^Han*Vs=OQYZ~6 z3HY--T2N!Fm$v#+PfUJqD!t~3D51b+{DVk`eK33uo{G(NsP!my{apCHVm6AbI zh47&nGy`4WI~Q7NIi%g%zXx?#&yWABTvORhwT`;iC0TOOu=R_1n_DeTm>v&5q*yNS3s-nHUn ztr~ty;X#txJCNf?Nc_d*HSNu6`#MMl3DZO&d{hYs`R1#;13(^aJ#g?E4O+QxdgvC><@1zr*H}lO;Qk=>jb^ZRe24Y^~&;=2S(u)u~TAL z`Gnt&?+Py?#dl3V=lf;)5f(tAGofMP)wUb#jvE&F{2!Pn6Mu=&_xq*&w~7QBK_kf@ zv#7JcOMQhY$)04hm4UUZtSuVQujQ>lPFo7Iy1k3fP7C_I!VV$RIF|P!cI{C}zm_&E z-?}#jj;-c1^wm7BVMyFqN7%o5qD+|GI@cwB@Sp2uDSTx8;bH(V7pICQn+jm4tl7Tw z=-Bg08^_XDd^M^rZ1}3;NKM{{X(;p}aMR^e`_NMH;yx5+YdukfDZBOUQ4pA~QC)kb z-W><)7yD^&jS&gqv#A`4=wYLeVWiR;GrooR`eq8+*?zbR=y*0J_o490tS`{->R62D zbBW@<_eQ)W02UQ@7>+U+RPcmI)EsMZr4g#*;m^yNI+5fu6M{FxMX9T6C}X;`6s00V zaL4F}A1Oyy6Y>iZCFn~6cuxypdmWQ*emJCAkp$RR z7*jl#HyXH~$@OL2EyghKkOd-@5PM6Op;rhV|Gm2Gl-yve;0L$2#b-f*Sv*|)`n|iA z4V&BD*y_A}@gCBT%*J8v3A{QsuNc^ofi@}arQ&|(n!~S{7tXPyO6c*7T zWDa6-v?k9usaPJ=gZMTmvz-n9^TVnrQ#gr2rMPeDXcj2_XYGfvJO3z7Wb)bCIDzz< z#?2Nf0H?u?A%ym)!k=fx-;QJR3om#fs_&jX=Df3prvpZuDpRAFFXcF`PLKDo3gZ%v zra!^iMtss^l7g4t!Wh5uWAhEC9Zm;X*1+vx%BQT<5<)w@&{LbF6jX=s)kl=$E0^dz z`H~q-3UnIUpUHvrNiQY(3q>SM`M*Ed62q92fDJrew?|Xaw`%9W=|Un6&1qcYoKI#z zkKFjirnX;RnV|;6+irM+hrc5l0edt2qTU}WFgQNjkA z)2&TP^8?+v{H2tJK964R)4FK&lNtlGRV0kzUwY-~sG6~|9`mpbhBY#XE^mUZPVP#P&Vwp7gIBjT-YW*@ja(|`jf*q>vv27*vHzf}eL7Ca*QOb9)i{CVHChOxT2O!d zkUuM8F34cWQzn61$RMUmHmb>Bi;t|G4e83FS{Z2qHv$Vs%Iqe$nDLNv$k9v`x1Vg^ z5zb>SVXgy8=|l>qyVbulrAYH1*^7Y#zhsJWAI`z)6)XHk+E1tAl~3uIGD3#=O=8<= z=9_DWLJ@JSOWTSctR39mM0ekkIxvt%<#}MAxt8SRM^=3tWijes{U^mrcm@1mJ~VCd zH1I!^+q{>E?3@d%N9sa_<{%xd5OFgLfB)UD!@XMz5`7OMdA=ADHF5sXCa%-l zllU>jacQ23*n5@RoPUh3Oj|cDnvs$IK(q!^=w&savAP{kz&8=l@EW_@xgad6II)7_Us%xjDnjGe*Zq(&Sj>hW!79tZK zW-*R`xN!psx(IWA8z_rNM?R4PmW^$n+3^dYmbu6a!iMTtB+Z}P^Y;V#D)~iQf@;kzl`njD@4=ki zb|gbpe_G(agKL>S<#MWetda%fu4TS9MmuFR*C9+5fo~6!qvl71b0OKAx#J8b6B;1a zCL!++?@a6w8)8E|6OaBJu})r{h@@l%S+6cBE}L4N^kZi3oXqIF_CdnZY_ukrTeKi} zXwj3{Ih?3eA(x$er-^TQeUt$5cFp{KD}EoEpG2hs)JG2wINt5`9{YNP*qanH+{asV zu__+BeYr;M*=#Q&nBG|^g|Gai?O0Zdq70BVRUKk#?#G{3c;{eMj+^D3ZG@Of9JqGD zqQ2p&do$*5i=JvFyTglXYlMELx0E67r)2Lixz#K(WRdm{%35#sR4kOEfBYZJ&-6jD zBP>c)T-d{{F|k26n6q1|h2*L)GT|#*TpPo^NyU)HLdzAYob(NU?90+V@a*=23TNG- z#`m!hxpG;7^AP{oOA>0cMOwf`3ipw7VWWzB!}3i6$ZkXIY5=!7tP2ni&8ud&pzuaq zW}GRZhrf&pvvV8(O%i~VEc^@A&TT)ahR3{hKg{0%lk9DLeJDJ-K%Mne3l@o#z|Rc4 zGG_YImihUR0sGQXOIK|vTyk(+z5bR5mv^1JF{4uSsTN0vJce&|i@3EYM+h1US`kvh zIAxiqMjlm8w?Nxcw84hR)Ct^e)Rl`%N275)>9&X0C1J5xS8)o4;+e`ud%V(>H)y$x zG%Hp4G$b4U!^27=x#kmN#YY>CPrW}0DFG-1^sy2}g$PN;L$^Uh9Sa$N`^xD~m9TvF z+=-)kvZ{tbChonFrZVaF-(s!5)^Dks@@(ODbC`cVnRRbC4Stj*9LL=MsW>vsAzM13M zI74kL{7%%*! zPb8xch9*$UN0d7puE(D+dO8n?TA7?p8%N>{!ya5Ff8i+?*)o3W?fV(u@AVU!6O${o zu#A!6pZTjB>$-7G#KRI9f1(Dgun{D5oj_f3IcM2!M*ody!h3wu>lbCSS?C=;lN_P1 zD=Mx6B>#b`-(QKs6afyz4H)E%dUE34(Ml`_V znD%!-&Dyd(_oOoR>tD&E#9??^=CZO@+xj<2dz~IVHLroNnwWUQWuJ`A9@D$=cC#rJ zaK=C3z)xSNNWq9P^az<2?}-9#?!Z{h&cGCY^BpTp0HX_G5g*ZC4iByI&MasFRe#of z($h+G4R3A-{LLTe8EH2~h2Pn|st3*btCZwJ$9CQ0nq1E#;2LSR@PnMC&7-CrlH0Vf zihdhuJrdLN7(YXvW@bHiDGzMlHGQAIqjGyc@Gnp0YJ{pXT7O}5$w&CFL*_R9bzU-n zc3`udIi(QNkmb_>x(J}z5Ifr%_F5y z3h7{c30ejpW7RMVU@T4kU-mu)1sZMngCOyZr-@=`HQ^+z%w z(}|P|D5Bqql_H{V|C=KB=9jni)KoXIbMx*ifydmBK8uQC){;6HFmjW0wLlHzIWDI3 zu-2={kEOYN@?}TcubOFdR@3IEq9doSI;oGY!t^%Y>u-gQT^Jc#XFOVJ6Kb zGZdB4w08%UO&p_T`ta@*g4-N@ z)<1ot=(3O27iDsLxG3=pGD~sJC)YkkwVn()Q|cB*^vF%=&07 zYC9Hba_|ruSEX6jl_JbNP4!S5y#)*3@@E_!Pj3TG#MQ=sd?hd~*XI3=Ddju$Bd&PY z_sG?sDdt9a0X{dVhmhj>k7E}5uP}+bcz~1Jhhf|zv>@04znkF;sLoAXXCS) zy}#e?u)I(8>8@7gCShGYh3jpxLtQSx*%#|gR7VTo<-!%?>N!eiL!n$HKGl{yYao*p z{&%w)HWIwLW?}D4%We>hce)q{sLz^KZa&k#Y`IauZR1UX<*1pQmL#XFT8mLb*)uNi zGzcp(b`+(1R573dnw3v`d@Bo?qoA=ZzQPE6Mb5=KjyRPHiWX|D-;vVaC73IZcnGEy zwdegA@$Bzvz<1kFqM)b9xAuGZ-+i^!87E;Ll7maU#uvHDrL7yi2yKSbF_dOg!nwLV zH~=FzrP5gLN}%JG=jn|{Bj~)!q0HMwK`goxrRR95TZm@9Y%E~Yo_O|S^xguSs>JA$ z@cvK(EqntumF=k4vbUQ3Tc6wfH5Q`vhR=tI2W8VtaBuXLgT(;*Am&tm>1$G~?fLqo z?v4XQ7w&fhk%{dC#ZCRR5`&Ubu=>fwz`u2S6-@RPoL?jZXud)5vWR|IodL`%n*!qG zZ+iwGR*!&FT^onW68c|Tm4Q`ZgBr?nXGvdV*a=z9_RECEhY(v+?+Znj3YPLu72ZkK zIs>0+6*?$#p8Wmaf||ejZ3I41K6+n1!}MwIpJ}-~uI~L`J&?z;7|1unm59+EJU$}~ z9(II066nmDcdKJyfl>8kdgzJ7R1jUrZ-Pz0eXSZZNH`&Dg&EiSxBue>&aA0c4Lp=n zrgz1dIGG%1CSuSSZ)LL+JdAS-&}RM&owgk!>hzp+gHKhG@jdd|zH^3qPL5m&%>z&I zm&ad^hS#~F^;vmt&C{tR^-e#Y4ZI%4=R<~85eYmx_A^7XExLuLTb{v}-Yakm>=u@~ z-vDtC_bZBtH@TI!dq0ryJn3hQ)*rr67$+9NCH6|!N;cUGEi-s_`Xas{6^ZX4oZ5r4#c z1rbXk-)CCpZaQ3gE4IfB{?wu)GC^ak{mBe#zRL%Am06L&M*4pU`xJsev*!$^$8I`N zEs=jkd;>dvC}HM2;7tbG4(5jfY6I9<+Zzf)4LrCMycKqK zdUN|n>_Y!~O2B*!rslTdZcs5!KvTu~s&Wq5Fj}vo>di`ld2yam`rGdsCx4PGg8VAo zs6{je_qTpJJo>6kZTDS9wMryY-w~^yxYdnDuS`$Y6?q~8aqCPWQswjEkdB|@5y|9w z#TjLVNsT#z9rc0at+-vnI;FwbDL2A#R1Bg=yv~v>@Kant|w;J<5tnt*y3WLPZSOfU33`jx0 zknN?o1eZG*U5Niw*8Er?DMQT_;X$w6Xy5*t*)N`9`e%1)Fr44=cx@x(8EqdjojP|a z^$?pYkV{}7aKf#EtAv*NYsv=7_<4#nQ*;)2%u$4r_HUrd6Hr%|O;CJ5^G4s&HMN#& zzwppIUHrwEJR(pbpD%v}D^+xvxS!G_xRuq=n-d^%s8-WIlsmdM6GN4tuY_UKUw*_V zC&rHYOE@+|Am^9)BqF3DRvK!}o@yc6?ueGi0)LmuTKeGq@Bc9epP2f$Zn{a36ywdKrc4dsnxJO07Xa z$06(sd-LVdV@{dg>@bNhMB>!w$KVT95eL*RTIbm~4dk>5^RSSKqBwYSK8*UEB?G@V z-v8X#{yebqpr2zW4tO9o9&TEiReLjsO;c`Js4!o-P4WV`uD$n*VMj1m>h`rh*g{LR zgN$J&U#^M3E!H~5xDM)$d=Eq}c_obH2!gHEtikQc6)RtQH7(w>4O#^16_u4H5dR)6 zcO2W5p&`~j8!8-4r+fa*&-1Z2KgXiSkY%Bzq`<+(6VI+r(b}MNWmoWS!-FrTxr{|i zxLT3&k5x}wpR7PY6Q10q$M9l{L(K6l`#EUxwSzzKdutFifX2s>`cWS@7J;Oj$`5Bv zT=sR1DwzI+U&kiw4H@e54#VP|w8fk_Q%>M}p*XM8h^Nb|Bty;hLTMn3%=gll>EKmlr>A9%26kPqeYSQzt2un1O#3tH%wJKk;}JE;!QYOc#9RgaYib{%zk};e@w-_ zUx4~K64yR_c~)#vT8?r2`*32~zhrUZ(i(yvLRBw27_B4W(u3M6Y@Ue9tZuel(R-yE zP6fKTAPzQc&fnXyvo)8G%NiYpq*a&U&+0B`b1rIR!&s%W>h}hZkyM zCn&INMBJb4o3RK~;n8~(Q(BGNw6U1SF(-A`N<@&*d2K1LG%tM2|3GSW3UPu*OZ6WZ zdv}p2Hu?g;7Jpq}>xjWq$H?2D>0G_v6u#mW(>7^axK9q>pfMIlkdF@=o6IAO8-&v+ zg^VWZC8H^S3+K=ps?cFgO-6hT5l(!%yc2Pn9*xwk`=+3QrlO_o8mMSYfvSnJmpRF` zFEVJlM(ZM@U3Y7{@2Qvr&8p2Hipy!3*1tUdEtf5NToV4RhJh^l(d=qdgE#DMoyO~ zb4vy?LC1Qh(Zd9oLN5dNLyeqkL@U~!j*y&_R}&(K!Spn7Nfn@NavcXn5L_x7SJU&J zrNt|23Q^?UF6GJ65>w8*&DuujN2=U^MJ7J!g0$yHYr1;{*^;+6JDVmDI3d5 ze&Q1a>>jT5c0rHYO^r{CkNFf`AoKR4IIKWDoNzL*N@LJlk(b3lwsIpD=QTnh#y~An zyfm`9vl=Lnz`+Vmsgg@;;}4s~Ee$4+mATC<9?0)f#ni53J^SRZqATb1dD^9=WyPcF zW~vmV!L-l3$)s)89oB)}SloJ!g0gJ8>M=FOB z{!=WV@0Eqo|5}sZuUvhe5P`cah^TpPx*Z%|M^*pg7puy7ct;}9R}zGi8B<<_C}%0T zD^B!W68qUVI4jQI5I)0hyFYBNb^;^5uR*&CIi36IX{RHk%BoO{<%Tr{tx(fVHJDQ8 zKp>kZ#ZrF%6Cg=*RcnOvT@}vEFe%^>Q`X{ePtcpb^_PF7`YIF zin9mp!QFW9W(h)-0LLP8w0;O!UGm}0*FiL((iibNh1^Lr*xU-S z2BUv~n@ZH2z=*tGEWtP^&CVYhwsm4pL%4|tpNv!g4nZo|huovVmRoYR_F!70XDIr# zcJ~_?MX0D9{vbto(|4TD#2hn`^Sd%4&F5)QE`9(f@{xAJR?Ne8Za|=KlBs(q?@8S^ ze1oDH6#~Hr!HM_jnf7dlQQ_?@mq~s;RpPL>XQzg^{krg(hkF#g+yj^fDd3+*@omF! z%R~9Myg}cf|E_yxAvSLFvTt}3MdrNm%^QZ)N}Ef`0M{1pFPzytjUIm*oiU~&6lvs= zOUS2nu>@G|m+l%IU3>dtECVxFM2C#(aM5Q@w%#Nu)CPYCeBm=6?YiTD`vuZ7ciw;f zzF;^KlFpiC=@;3{b4hYNZL96@~`~w zx^Ly?VD&$C-@a7btzw=brz;UPJ-~Fuiy8V_ksSWJFgGQ;8a4Hb)hGEii4p&b-rfPo zQzu(k0Ba2_um44eTRPevVgG%6eQFjo7%5gZ?P5{#SFMKB5=%y3blB0D!k^xEsDKHJ zHS3}QhT-X|o%_JcFV2(selZMSTkAn%aUNo!FGbB`Y{N;-*O>_Y8|NeDU!TN|_gR<7 zSK4h^89B2l8U?A29r3%2!DV#%OEr)Upm(HYm3%t6PH~xXt95MmRw$BdrKF%=TRM2Y zdwFVFd5i%6z8P>_2$QQ}vPr3sV#6AjwHVuY3QJpJ{F6Ny43naTt#YSzb9{c*DYIl> zVw)i1s#9q8s*uv^@hI?aFWS$A@qvOJR}^9Qjeh2Ok-#adt;ZuvSel1T4o)nGY<~L_nb?tN!jlUeRMz4r5@` zLjmB`xjek3=^f=hYkjTs^H6bXnRjbo2&L~ITuu1>;@4WAAx%s*m-UC%ypnLAmO7@Yi{WnLwkE7C zH<0aVhLForpcS@gL0{0@LKu0c<{3h5?)sM#Enu$2RCufm7q5=

ci#gV^;w_dq_ z`ghnEuUk%sDC+}HoCFQ7d!cQ*=3O45zD`&bII9x2>{YpD1UT!J0djl4cCh^KcZ_n5 zl088|OvqN*bv1jQG+(#98arfCuV%L|#=f~aaHBZ*{(8*h+Fv91?wko5d}#l#l@v~C zv?L>ydbLftyTR2DVfJY^-KTjLL2NhSt%PExDCu(5JB9U3Q5Bx)E9Jh;G!&wN?zDjp z(Flr-Nm9P1kHpt{QX*3>iLmas@NDOuzL88`p%`8qS_)o~rqoflzrP2S~Y~`R*hMCML0nf#QOlvl>)hPnbAUCZ!@?$?+a> zbK#NuA#?P(06yH4!mKg1wSzF)(AOD~9D~gNudWqRR1(IuqM}qsTuLeGjPyVi0 zBe7|3m0O|M_Sv4UCNuH-7t%keZG?RB|HK|VDz@vHIh2Cz+BFVL1 zc$0u_z!}MU_DaYg+hucqU%;}v3L2#p+ESkOrB|v<@%rA?9svBZChW46s+Sv~up;xB z)LoQHS${MUZgd$wJ0^fofTjPVYlb9dJ>lf(xRLu8hQ`6lXR& z{+_5_ioV7QQU?~aFwORTmwO*2)cT-| z#Tg|k+;nIBcJa4%Nt7G~ln?s;|9o9waguA!X3hO0o{3N1$Ts9+yZd&Hdmo!5Z7m4i zGB#XWY}zYuT~^KPAKAWrqQ;DKjNzP8S{gLyZhURBil-P|EO+>;KS-}!EPt8#=ZF6F zEyHTith4Z!GO#Dzf*9R9Rrj1?N>(yM5)BIo@&AyprI)Se(-nH5X#uuJ)QuFx|W&Aa1`Hd{ig1QiR< zw^)pR(=YDHRZ4X~&?0UOSV7a}EVl?Ubr;j+$Ev6L{z)!^w(K|8>2d++oQb*VIoAaH z=?*D+?73v0>#FkGd$?-wbz}L?(5b%eU!L@=4|P2I3QJ>qY1w58k{=i&90Q^{5^g6= zb$8de53<8zSu|lUXTMtPdF?jcNw718|Y+;JE@j)p4QOj`Sn zRCqSHVaGl7ia02ZCOw%{>}SZG@aLPiK1`)@7#?)3PGtZ~2rR9bFt9P&_#~1*ZWBXZB zonu7H(7>;>18-7wYk%j2GAhUw(9!=VHv#?@stP@!c|K??~#$^k2EE|?1`FKVI z%Ar4{I=b}*yzOG9-~)QIL+^v33%}@Wxt|D6dn15==)0?U``N!dYn2G0%TL$6;z>JF zx~s6~Xc$cq0i@H(D5Hm5Z1pfU>x1yJw!`PJqA}No=UqXm)~CO63vqcXi$NSPxS83H zSVv(GY`~KGMKX_PCMoLR_-i01It;)o#kfV6ElmD2!DY`E{?CrQ*X#RE|1(rTs|!6ygh_bvRRFwOZ1}iEEnVO=Cf05>e3@N9ke*uBSj;cn6Kq$iTyW z>K0k^cFV>kgGXR^5>lWZb-q!4l%PQLM z0#(8PiMfhCufsfELXD_Yy9A{wg!jwET0O;|sWN#qg?Ye#^o`KyX^9kqb4_Wf2OXar z#T&s-74^0%Ydk{CR1r2q$Nd#GqCT?8J0v}0Utd4Jq4U&Zc--nK5ooVSUAxO9C{lZI zs>bd@{a|o%eDRlv$^I~YqC3wU-qIEn~#{= z`n^`Tw<^NKo4zy7inffdW9;js#2*J`dNQUje*ALkG|p%98n|s*?~J4f-W_MwP8X7~ zl>34z_kXx~x~t5ceZ!)=LG->lLLSSbykRy9{0t~rf%aUuThXn%8!CSrMwQU@KC_%I zZ5j|mX7@ywC$`232DesbTlO*cVWplaZyK*8$5@>568v|v*Aoe=DW%Fe*ezL4< zP7&UixZWMFK&3FOS)USVU#o|-6fsU-JJte8l*c!Lb_8@x>LHO z1`;Di*R${S-1l$ypRj$-`_wCru@Jp$y=u*NG_H=m7g;;glE51lGHWGBtG021f3fkF z^6A5@Yu3ohpFyq>!jI5j5YSL#$t$H-`_WyYRKYv)oAm(CDD-2e-utWG`~nMCZ05&Y z&Y|EIi#^Nd<^OW;$iV01po*59tje7Jz0qFlOm;znBRB_qO_|~AETb};*dU@ zl%zR_Xf!TZbtCS}U~&9CJa`sKwyb&^STpd!lt6C!C8Ro1lxJcERC4Q2OI;vGdLby5 z1j9V8TmJS+mOkK~UmXDEACx}0w7XiT$Z6V2=^+?}sgm+-hz5I^QOO#0=$__4U|s7Y1@m_#`25J0{fS?bsoeB%pc~b^)PMsndezvkAaVz zul=r{{n(?Gb=;lQ7>9K%e-BZt-oohCi^mv_<3%Gl9tcE8E_09B1{peZ)Q}o*CX1(t zQDE&y{-X2@-FJwGnMKy0B9~cy#C5XS6aG}55H9>lPgRlAf3U#)>?j-rrt);d162`hlV@SH@5XRYU1-&72cMc>U9SKGaKe`A#7Z=vj zOrYH$xGTBAEu+7H!x((0)2>Euqw9gLG$QiEq-jdfzkelK^bjVa<;tS{^T3y+L5{Z3 zNOR?FQl)MXQhRE*xQV(z>zR}!%15qJN$wQ?TDVK)62?MLv!+=jqz98Lrv;x2sh*dv zB<@&es$X8;>(L59>UYBInNjq=?+tpUWx-s)e<9#{V*PlngFHtcD3(papYOrRkr2qV z91llFT!ToZ9X1PUfp2XiUx0 zFLLB+bMoRgkHQZV7s?Q>{%xgHP}k}1Sqfv|xuKSoI= z!YnScAA*zhufzAKUUsAEO!nBv$5X;@P6=ln z*=6}JY^M8d?vzPn3v2{=9Uc<{tl#a>8g>msaTX9D&+E8}Nz~=bz)Zgu5p=CRy zX_O`|QujY5(Nkx#iYMs=6XB^l8dGK`kXBo0r*7KY{x>%VSaLD6hZ^vV$pxjNYfHll z`p%Z>bfAS7Gp3jmgm5{rv&P*_XjD&j}+joc@9jEUld81P%$6Xe8zxu?AFBQyQczH&(-|E?< z#AdCD$)}+)gJdqD%9DAHKh6=9J8k<}q8CU3`PvNNn%&g4Ifwk|hD^yoVgL7t3atb= zKmE219!3BgqE790aiu$;$e0pbTtiI7)uj&}H}S8W7p-X(gT<}QJE1~~$c140ctV=& zUJ=X*$;%zm&R;_b%FvqA9wMfk{Mf{|dT;*Zt_cZ3yQVB_rw{|zgsz^xhIyafANiAO z^Ou!&!-0QN1@+M`_>wUhASF-3IckYvg)PHLh?E^APzGTZoIlN+FshoHHbsa72a6%3 zO?^5>;tgFw^sbc34j&c>tO~msWh69K?qenHbRnw^GY#Y-TB7{6sN&>(?rT|v$V1Fe zq`p^(kaqJZpRC3@adgjbju1u$S^~Gf3+(S+(sPkZU~~PJ867|Dk|?e3HBZ6qv7_yf zd?PHP()S4?%py_#HX8VSKtIOx5d_Sf4GEUKvbExM<`^r|mcF2UGCQA4t@Tj?g;2`4 zXeRyUE)QqfWZSeDV)*jO+3`sA6&B#OfS@}m&}>=fK2n&WX@ga`UD(^NJTwTRoZkrn zUG605Y*Bcwg#Ye-?(bHkh}@ayVFbOkQhc<~_tbUb(A=5w{_-~Zop5M@@PSLUyIB*5 z2<;N$r8HU^TET?YEhCDt#{m4d!yS^$mZC5bVb1IhY#cW3ygttC&Gm;OXHKM9Wsm?3 zO}m`px1kuf@q9B}hd`nIh?}d=TwLsju6*p!>Yz=f4aOH`*3?+)gnK?_lhv&_dnbxY z;y-$aV)D87rXMLWNf<~3O&Jpty5ntA+s3;>ppB^8mPh|J4``x7zZ<9eh(3jPk~<)q z;VH{vr>Y?Ieq?Joac3hkibnd%R)1i`2<}e%{b#6xPt`hwU59jHETNC%(HPTo2`uTa zR#|1p-cs!_Z5*|CSaUXn5bk6q1kO`&fX`%_%(u6DP!9qgNZt*B0WK3(2dsrN`d}h9 zcfqk?J#n^)Bq&eE6+DMerIup5k~b2|TK-Lf5i^-1)_>gK#0Pm zX4CT0)RsIpr5^cE&>e0wa?hUbf@z0T8WAB0IGWm2;RrYy<=}4=@%(#e$h&BKall6; zVLYT8rhMaP(#7lMVal;q551g$3Ic1&m2prV5%V^;J;WCakgZ9c6>%=dBvhJ*0olL(;v>E_gTYRnH7ADJNTL6Q>v z9!zMy&Ln_s)iv3DS2yr#QHj&bAg+QEe_M&{R*tGE2oj~h58`Qt-Y7>+f( zTdUw?o-{U5xnu3J$jX38=dFk&qFB*joUhnfw?pxdDV`8n;rxCMp=Q?c9*bKlCNy*F3M?TNr9{^r(yS|2O)ge zrxY05BLjaLAmemQU&2aG^NmKbJ^Ii51p1q^raiFaC?vPDk^R3xNj0hY%m4 zO+Dm)B_DtRaDssTO2^W_7GxQO8Eb7yC^8Fr?0pCE69n!Z!vnfDEQ|9lv9iGYew?9w z`^_As{{M0TyqKjn1l-OjJE*-3h>OQNtl9Xo2dLupC|tC}>~=rr-jHEBvUWL_v9f8W z2BqLbr}f}P>y|b+I$^RLjW&<;FfaUQl%KbAhOsiZ`P!BXGlrkNdSW?RBt6tLmk%r8 zm;UOq_EFY-H-o=Xng!k{(iP3sw?Z91Ao1=D^*(0IP+6)c zt{0&Ygn%2X)+-j8+YC+EmtetH^oE^Se#>TW0mDcK^ee98QRPFWlh1781f$V&70CfC z`jTu|!Nj_wW3h~6)y=$I?`StFL~6tuDFcya*tNC(PPQc%6=r){h9xu122(!jGVd zn@xJKK`9a1CWJJTwD$_-44&LfOe&qtU2QEp z>aNFFEL|VH(AHvh@Z+6Fd~u5vQ=UGoSf%3u)BBOak(Cg3xyd{5o+58`IG^~dIkg4t z-f(Rey`8@!km%VFXO2<+XhB)tokjQuux($~&&w2Ook z9FV!%3&jT~B5%Wqt$Pk6*wm2Ua~9m6HN9E#3Dmk-5KuiDMZ(`sFF7YQ>u9$lDJM|m z_;bR!v%8@d2b0}Ih(Bw)>iYR7{}RnqiZ>HeA|6_uSz-so3S<@*P#Ns94Y%;j@1;Qx60B$gti$_g$^Yd&jcQ8BzE5@S zEW?l19jy>O48^{8^qIT*PG3JSzM8WS*aXP`x#GkVDyW%Yy1&^>3EO%jc(sW?L+Fljs@gER8!pa|7k7mtA z-ppnpMe#ftCtS3)N(=FxazlzkD%OLY;Ke;Ow3VKnZ?a0Yc2m67d#*|!dqJHA3Au*g z4|^VNAs#>VkunqnOS)Nt0t-W6Zk^MXsd%l!Qn$~m;Py1{e~~)Li$>62pJq*Rrrh#7 z$$RqXMpu}7Zh2?ioluH>xmLBXJiGq>wN=xHwwmCAuOliVLRy=R6+n&QHSJ4UZfaR_ zE~aS3)2!P9g3Q4*hNAIPRlaj-mgyUgPV3%IJH1wmx(q}Dc?cfJs&8b_agzmwM1gWy zFb~2A)G*HNkAE@Ze>diW%4a%0Ue}6$oc77%CcO@+ZRPmJyet$&M%0ns-OD!23K`+ z0<>=h{LzfO!SRX-oG{tYYaJo;nP0jE8#%+<>wN2%&LjR5Se?-!8hXezk>R%rIE5C=*?9cDw=~sc?fMyZDO*b~aW8$afM|uqj z1fL{^d40Ot=f!qHsvn4j8RwrDQJp58Rxy(qemB>;3b$`P+)lo81nkNqhlz?70=xkZ zQT$&7xel$FP)`_VmU+sfzHZ2N+b$vVtdRXl7f&w!WChwf9)8MFp8BqeFx2+B?&#qc zlblJcx)Sa(Ya2C5l83#Gr*^eMmLVqH?Uiz8{Ik*NO9V6(2tVm?N4uV|to3+}7A3O1 z5k~jeS@O7Mq?}61D#WIBCupW~@HqDPsqa3JcH>5X{nv@%x?x@M#WQ+Clw~vsFm8@5 zOTR|*`EBDrGE9pcQVoyBqSG{z z>t^*XM6qBS%6H*js5x=5$!{{12N`h{GH%j@@o@9vG_B*vj2LFJyGWY@2z7qGS(+!N zHTf&I%EpmmZ^^B^{(T?yF|yiZ%XL#+mt8`~|NHIoIIiJ3NJ!7KW_zJ4cqg4FOAQo_ z$4=5N?W9oO49smO%HZ4 z@B$tR+X}`hdjT4Hgt%l@1proSUoA1OIQbLT0$2Or#JnXaOK$x){go9VGO^O1m4bZy z=X`>&I-9c@F}tLG?e(|PUHbqu_?Vi|wC}zaEN8lIw>=st5RUf&X z9B!9&Pj}z&md22c_wwmvH520U>q?&9%GFt==m4nf5>cf_H-v`F>V1NHVX9tEBCj=I z@96O#nH++Gn9sk2`v`ue#<1WRs#o&5QAvr2m|tC^eG@1RAUO`k2R^T~?FB}XJmV31 z%a+}^KDI)~PCk*U*l-P^jfS8wUN|Lpn0`3P0zp-iAGThrwv89DDQDkZ)0oVToTU9| z=-1P9aGP`3+&aw7`m`q1LF&^SZmNxC?dvFbUSHWVBH<{2|5rpQ!D#Flc}Dp?QE=7S zvL{e>qna9;wcBd7#ar;sA7`LZ%Fy>SYeT^-h{<}(6T72lv>kSEJWcK?f2>>o)4`aE z@5p14c(-O!)Fqfr-{PR#AyKkSO65U@BS4Azc&uS9{-zoq!`O%arNSu)3$@z9dwqAc zr{pv$$oB5B4S9l0Cd{PqmoBE4)GHIqzs&*Nk0d%^6@4;hdzIh$%(XwB4rt>_k_fjD zATG5*j~f)m=L=$FNee=tSM5IBP6JC9ot5A)4hCa97D z3m2AmP76^yi~r5;SnUh(f{H^UZ!wn{+))J)r#Shzr&rFLO-E@I$a*N~!-0n&*@01| zHF~wxK(+0sNBnc%Sr}M5s<@l-=`+WXM={|;y!2W9Ib5{i;Y|{1K1?k9EIE)U9a)^QATMt1e{H@|zd_aXK#`3tE}zrSgw85kuDnu+&pLcE}-S4c&Is%B5-<` zdE1Ca&ZSu~S@{bnijTHSU*q$$gxw!6350x7Pr!ygI}pN}qxD8%L;4UzOn{xJjsz92Xj#kJ_3!LRP>dPi8c9mtm_R_kY z`)JYc9@9U*b7A>?u!t?r98-=4J`qX$L&QxPTLqpJpN`|Zi!fSD zXGFPr@&FO%sRkg1RMFN^ zpZ_P;hB_sw_gpsp?sWG~fDQB!F$9H!56krWM;W5aBLce;fD?Jz4T*!U5_Cth?%>B5 z+Cqigdgk=*(nDWxHa7IGC=}@%xC`lpSmQw@@Rr4&rVp>$fz*fpn^o__NR=&XuU;?7 zJpQ(yRb~b?EPWZ_akiT#Z{OY=Gg8(9K zXBcg$#-S5#NeiH`#hz?)i>sa*Tprldw0>=5!ikhsc?b*Xhbxq{9G42Z-Q$^rE)~8_ zTX@ph-k)q&aEkW<6k?8Z{7FDZxp(n$nZAS+zr_r%7sVzUw$wPohyb5CVH^SPlxoddF~0o^1oT^xyO~Bl*O#A9yhLtxZM?ip z9(RK2(;E{{td){VD<)vn6WYE0bn}a4tmdEQ|4`AsqcyR((gj}n#HPu`T z)GY6+L2@|GvKVZatI8_<8Dxf0L!r3wMRxkWkYob@tJW=KGB=u4A;I?GCE%0YE%)i| zM1`uEO`Uz82wAkiCSPjZV%Vi~ILJfQzN0%319|4Vi7@^XHp^~$7X8%{t66%7&Nv^a z7HIzKz-RD#sN6{K{r|LKey0IoYaPsmdkVWW;qjU!L)K4rJ&Rm*Pl*`+hEMcM<}$w> zj!>#*ssJX9#~92x$r`0h&YnYi*jd@0pwzZ13`17BT$~AJp8TT@u7@^kKMaaOmRa%#D`iHl{v7ubF=yn$@69MJ%8-#UD?I;`+Xr$8-BX23bk!DT2T)Ee& zAgqjU%YEC#M|XG6K-$J7WL0=~m|q}2c?8F4Z+>qSI0h#9O4*{7fyf?;l5$bfyr_dF z&3r&NzZh$N(J{>cy(uEp7={y8*}~r?JUzKOeohyo(3B-V<}X2+v)(gBQ|ptx5%ZW1 zv{AvqNQ!YWtWum?wLySpsTP7{*xYMxZqJBfeZm&cOs?K&M!VZJwj$nUXxF-Wy0@yd z-{j`(WD&bgz6hPU1_<2+@0>1*aFpWEniw}Tp2bABQi>gDte6#T+fVs*pgal7cUF^S z2w3EeHaVJLUdq{j`n2L674|-v5EaTYr*cusE#r}dCapR5Qr>RUB6LDC{j&KN#i>vD z_8G$xyO6@3v2|XCUcG>6zATi%wROpAX?#`Q?M2;49>gMKQhXNHT4G3LQ9`GQ9xppB zV8O}Y-DAZYXVh4C_{G3$Hx8TM)>nARV0{A$3G~@QuyX7S925*4zxX=T*$QnQ-s+M> zm}2b11frE&P5?Ew+DBH^@gQH|m}~O+F#g3b>$X3JUkuWW>}r1aT60LkkefX6*ziLz zJjY1tqAnb5Jw=E-8NdDp_&ggu$fXT~3cD7D*wPRSt*BTADOG!uU1U%Jqoadk4`7E9V0{_}rO#KNdH6T%?%l1M*JVa$IZchc6=6V?@1Xf_QXG zeZ7uft+>BO0Aaq#u|JCDs5FWq&k76Ia%%JL^F`{FgRl!nhBms8{`#s?o}I?yN8ta+ zU*oo;sWQ}G$h@N4FRlNijQj13N8aLcQ%eKxVF$zn9x)Q$?P!X%g4#YUrcAn;%n?eBxzv-KXhCv8z2Xr zakNLisE`Jq$G?ENeQ6eVh?Qn=0?Lh2{cJiJEfZi2~WG}HmV6~b5YrG;7l zy;k{p;?!U-#nK>1%;_(xow+^g+-Z%3v9j}fdzw&Qi$4Ibv&YkAWt*w8=#oM00ehE| z`|$~F4hz0Wif2WyxfsXCRZZYrerxFORp=MvVk9%=PH6zp3xg=1L8B|Xs=9=h8yT+W z@hFjisaX29R;vPj8W%6(*_c-wLf-C4!d^DVA0$v#B-{4FV+ui}7E%h;5K2I)FvyeI zU4l`J8=brCGqeoss@&TuT;cdw)w}L1yGa$+D4H6owjR6>&n}52jwfLo!9zHGny=Ep z)A-(UXMQZGnE|)k8&agDU*8fNc$4H-yH!eS3kZ2Wl0vUZ-PzkN2<(LjwMn>-^MVWc&~r$u9_{6Kbv0CL#M)LpusX zB-wfhv%G-MORR7N1&#)uLk!Pbbc`3nkL4Q6m(t+5c|^E;Pv81jU@nANr8MKX#^ARh zF)P}eN77Yl+i87)+Z)#e!a>#d!^i={;$z^O=Lb^JRwsa*Ath+KZz9LWEq|3T7H%CD z-xE3~aXV|hn>e;pyz_0^8F~2+l}O(XAz}-8eOk=1vHJ!FmoTfwbQVBlWB$HD?FbNQ zlH|EnqnVBKa(LWphIq8Gx%2Z}zw@5bkF6rcB0~QP9gxks9!<5Tj=q&1C8;)$FIf^* zHZbR7AG*rAl3;mGL+N4W0q5phQq|y9&BNt%qqb z=@PP^c&nY}+WSUL-al+Fh9rh{Hv6aqAoD0h1LJ~wKpZ$rh>nPH;l==LK*#fK z;KXdE)RW6-f8d25hj?i*F#BVc{_f}4gOOGVSk`bRpm$)~SgHf3nnqtL;15!g|@dna!CGyc{ z!H3zMx#GhBx-FB*l4v2Oyo*Z=_M11}8yQm}odDCbH0m=IO@JHleb4w}`j6ExbD zt7~;bc#{^+z%2V611VoUFI<|-D!?ZJZ%OMs{xOW(ao|r}w*#Q-3?KqXJz2Z{`(^eR_9!h?ublu!|TO=qD_(@4^ zyM`P3rJJo!Y-5(szHrt%&GCjn$TkiTzs?d*w6NGqTlqXp7rp7Lz0~y2KwDtIbkVzS zR!VDhuCF6vu$v-@m#>*ibKSQg$xazdw?*RLkY$tOR@us*u-zz-R)!mTZq*T#eES|o z*s_ew{7V@G{S&v*2svhFe@dp4mTh|@;e~m193F5IoU@#`QJ#=y;tce?#Vw=h9REl? zuV|-&AMBih>OP4=E|ozXGjP==?K|uHAhCkfyY?7i1;4;c9ttg}lPgqf?j-i*ffhi5 zIb&r&eiKXbx_C16A?rXGRZcWg8Qdph)99OAMo1@6mwmV@Un<{@mp3!X8l9LhM{v%+*EdGW9H;{RruL~2G_7d4kF8Zd z3nua9#OBBDV$BRB2u$zVn@)v2=i6ipKX>8^h31RrYi%d#A|>oKuC6x-Pvu_ke0zLp zdp)X*mGrIJ0kFIjkq)^hog0%DPh-s}52h0|L`wn>@k4bvGdvf;B*{bg?|c%!&Hpti zaP+R--)^40H5ngNIav|=nDAZ&ZNDv5ynwFMUyDx&AXGpwg$aVd%SR}m=ZkZK-$526 z^YDe~eSLK~B?PnW__%#O@+D$Cdtg*MF>T8yX=Pk^*c&N%bvgn5p&GCm&ztGf zR|nG``9yuD#+TVUXt~yLFag@|wSTYd@P*YLC*5$B`6x-EmUB)-aQ|zz``^gDfy+A{ zHaz5iHIG4ld`3nR@~M6gLxjRf?nQ{wV@jC=AMuH{cfS;c{u8lC$wh4KSBle=Jg_5d z9RRn&DazJQ?a3#19ReuN9kR)7uE@gjR9SFd54POp5fMXq_zpB^V~W6tOMG++5#(Jn zxR{CwC}kzLtN~xCd{ro0h->#zNpf|!Bbcwnm^y73d|T-Irv{tcb*EyZcnH}sx@~F> zQ>E8#mjYnTEAMue`y(8W!oQiW5PB2$Vt5m_#JlMWX(qzVVT)p>Sg06eU4atjPQ!Z@ zpjU9u^hu`kV~F~M@z8hZ5-|_Wgtbuv^sm~}A0?H5YJQsF=moYU$F0Qf`s2{@ADV0( z7T~LdfQ89>A2~7``AdgSgOs&hAsZnk)qvgH2vl||DiKKr&^h53T!0YN3z~Bf{pK(J zlx?^X##Bae!wnSv#p#?Svwb%wKs0kVwGD8NN&U;Q_ki75h;3WEI6qyzDoUaH_juZ5 z3G-9rmb0PFxG>fgfcJN1*SbU0ALTD+0xrdZ?!qc6GXN$xnm8Kqm%Deb3)bupH(OIl z0Y6OY24%`kU z3%M|wKjO!1>a$e)iZ55+aTo^1S%7NE%999J`RGvKytCL6_8a&u#+BmTay)f$V4XH`gsOlB6`xdWn_CzuY&->ivv1g4yPrxvd_Fkj@risI6go$`-qm^ zIf2eJ&jq+k2@J0_>Jx#N8DwGRH1ct_DR)Z$uCJ$$%R0h*TWkoZvdX%D znuVJEd#+RpqO;)dPJ00EsLst-5Ah`AW9TP8a#xzT4*X}?T;h&~$Rf4<6TyL0uR=PS zT3x`Ra<8x}-_G+QHjIPVzz{o@r#t^v3>!j1@*ll&I<9cDK$|_Ftlh-ZiWoIb&f{Tiu!K zd4kXHPc76fnzE1tca<39gkGD1neZdxh1G=$n1e)<6xaV3AIbwg(|E5UvYo|I8PSB4 zylR}$fseSMKGPxKtI!uX<}&)iOb9takmi!--=Sk`ALnNVSJ9%IZ9 z4EZV7WKeArebVO9+~o5!F9W!p2MY!qILHl~9lM;NF|5Q?D}Dsq;1YF7?=5wsNiwABy*R(kSmjt#OX7Apn1!H$@ugvED(|Xtx z8|R{$)N&ggQNu_4sxb0f|?t+iWt zrCiR<=ToW(s0(}BdL?DLZ?152CbqF;0q$7YBWyzy&G7M8!5mvDCtZD|7L9}^DFO;r zq-;Z&(SLT*1Wm|~_SRrLEf+&;YJ{x7$(7G6zeqD$IueJHqzJIPK zOTHD9xHGX~8jrvEeufZdC5*thR*s*_kxXCB%-Hkk@+0Nt4^PnTi<-6*b^`$r#;Cc) z4TKd=tzj+*$9ZK__F!u7-n3y?*yVtnFth?1<^ z!0w+uu%W2I{p6m2{(H4tjKjcU2f%N^xaG87WYy*RsIAdon zGqU{L?IV<6bj=KZG?t`4-*=*9t#wy?r`GJY_-rl_TV4DRz3A|qT(4bjPbn~WWR0<^ zICCLCHt6HxAIE|Kw8;^Hk`M;6Q~M$;^7k(6901OqxgCbK(_|u>*)i~HYI$iSD*az)70}k9m-b;_$6}Z7(Yey>FBJhgZ&gL>QuCy5s7HXy2*B%PBiD{_FT|1S z?wi-e2pR*=t=@JVDcYMkxbdNC467!vFrjWIn=?%_*e=j@v-QXGZ9OYZtr4&97@mR) zrLnAgHH{ES2U>weZ!?lHLEh^z{=z3+EGLIAOelbk&2i^74dv6`7A?RNNG@)k)FDQbD91 zJ*pPqRov7}{o`VUaHqB_P zL6t{q#O3uo`@~q9?~sR6c@tH4e$|kzjI3K?{ri)oW%*;!D}I87Lc#aoLGKPEqbR?m z@Ke)?*F9GYevSkv(Yn}R9&?8u$PGc?no`^!959wUeN4L}FsP638CIxFtPP~i8;EJn zNyH{xP=eIBGJ})lmAg6E?6FZE)qf?)l<+^Zss0csub+))iqrL+zXotK9Y1 zY8XM%l)kNIeYlf|CEJJeKB0526a> zraAW8P}SNHpJ&+q7}1dS>wdTMv#h=NH;Nj)=}j~P%is6u18Ul_t%L^IqeEaiMC7R1 z+AqES4Jw*;g;5wkIBQC98IvKT^hF2^ymA2|>VBr#omXo!kB_N8ZyU(ysrVo`HI^q*uhBuAl}Wp*$!g|NfZ6MR*M=OuCIF8eP0i?9-{@MXs(?)lH?3UW>gFmG zEya1)Eg#XN#%XLH#%J+<^=QBo-sEpTZK*fCK0i`kK(%MOx0r3Xn{V}E%DPPoO4@v2 z`I5RuP*&lS7gRXfxAEbTTs6xQQ%-9e>r?;!heuO(Y)vOPP%=Pk!qg~3U9wudBUf&h zNOM@@iH``Hxzo9H`b73X$bTlyLZ0|LA8wU$HP?IpDlY#-lh6khQ#-Ye5z0z(&~`ex zH=VozK+N2qp%d}{FC{Wup8V|#jQ_P)9b5qrYgAFX@?aqx0Azi?OmWF*-$H}^ezE-F_a4{fbXCoxM%J$$1mh2 zSDy%1ymVV(&Z^jpO0-;O&LNL z)FxDItmOPmRRnNZR`DRWXD=(V$29i)N11-yl*E^-*N~Ov#;!v;@7AfIh1hnz3;lUT z5Qoy}uE(hUQdK?OIPc*VB@d&AVu5AvgvwvSqg+HO7&Vcs!9doqaf~p8-+FJ|xUqHH zmFH%FI!~>9@{#I+`&DRm{itkYYH&z+tpn~tG$FnNl|GiY8cMTN7b4d}9W*&XAFn=X zC%3Xz(LNAYKlo08l9V+etVIzo0&86Q!W$ldorQjlJzFm${4L2EgPPAw-uk5Qw#HH; zx{I0E`xE_#B$C%-74aUxd9C(9E9>7i`1IS6q-#Tyy6iZ27#XljKmMkgc(WcgeB%{B ztHIsDA_Pco(K`t?JzR=beM#9>ArzI45}oR!~-W0bfVm^{ne&pgy_<<=~rY{f?HTArF;4p=xhwy}iTxZ1(BD zEd=K=u|oI?!{Ca3?|W_7L?81r2ERZShco9x@*d#a>G+Rc#%{=*YjRxD zNUrkU;2Q?-UgNNJMA~4h;Ey&~8Yg{m-9>5GG};(PNw-}~nHMcuC!?m!)Z|x$BXJ%U zy{SKW#N8cby}Fi=sW6F7L^TNE?icRaVw;QLdBWyFx}i8{$1h>H3Z^|Ogva=SbDl3y zg06oVtoBf7Zg`7_U1E?gRS4|m2=EX)%w^t0S=>PaPday;3;)yW@^=1!g$zvB15{4iEs$S{oCHJmF3H#JOt z@}bjs;U+5+oMjKqAGz%vGHW=e zIa1Yki&&yHt$==qNE;SHajuL>aB-EK2QR&TrWf4yd9CG!Sno<;CXBY7WJrsuz5P~e zBFQE{*k1$`G3pr#+=dT})6sGPDFL;^*?|@SS zdD@a;OUGZAShqc#rC1x)KU^tDp;{ox6fh}?0NFMbW-C5=0nG4cI0H~#(}gcZ&(%xa z>L;H}STvEPo_myg`EFnG{hI#NK%D^!m-!NlkHVTE*cQ#zkPP_AC-I!hgg*j}jLZpcle1!_4yZ;0?$}TvXA zytjvWhQuYIcfm)6us}<`-z0?NUwqf~FoZ`L*S#mU$_|zh&RjeK6MUb$8jHEUzkM;asu+ zaktdBO{J0`CCpBI86#bu@hd`TI|&TsK$8IFM}2YY{ePO&#XmwgHA4ed zEf?GXjmlv@NOs6P|&$)$qP)T zD03TNnoah^7h^2>kF`}HFI5A*#yNy-t%fI548ic?HTET8mN0T4RncN) zh-tFZXDnTfpk5)lSb`gUOFfkXzyK;;sjR1fdU)P&8=iiu?Y@u8TJIDKO|RbaRW`(!E8nCWI=81s zFv&Kc<0=q)?2iqvFb3&I^@1EVpx_S-DCdnB?0qcQA>#KY79V!9rRp^36viktx za8W$V-*o=Gl13;(njoc6JxHFiWR0rgP%Gugu%pZiHc`X`G?AZdEVJ9UR&6^gHg^G~ z{2=!{byAV(`k0(A9IVeSCH&4qB0&J3`D1sY?#%T_qP4p~*VP0@@&avi0Bo91xPqp0 zIK@}m5F`RAG?6+eda}I`P_hC2^lr0u!`}qF zXiA2)RBPA@$VtwPF+VzgD8(8o6o_dXCcYZrUi$GMYR#g)W-=s4sUpo^(agthC-oq7 z!GFFu8?jKKyVx&5^9iJ3Rr=<|KuqacOp6zNIDrkUG}V>V;il9cWXNgiBY%_+qA!gT zTBhvU`fJ~Ow?DA)s4g?5KJ_P`MkWqZ>-$_$B6I9F6Gqb=aLwl1eTg5V21e*}{_ftQ zyvI)&Y5yjH4L!_TzFgho+dO<-cUyxQ3IPQUSa!dTYkZ%|v@RP0B2t)>Upn>I>8$k? zvTFqj3%|AA`89YO4n#-HF(02Tl7Y3>^U`{le~Al6CMwGbwQ~XLX(}u8RtI0ylAGV|+0}{Lk}Lj89P|}dl@y>}DMXCsPiJ&8Iit7ZBF%gEwmR1F z#uuF|(7`dOxG45b&^9%@2urbIM-`uJwKZ>u4g&w?O-p7&<-dE*ZyS078)O(R`IIm2 z4Fb3?n#lb?*l~W|)f6+eB|a<~ifw?D_|Z$Rc1BL1=7_`*Q-J2r3i)KvCZDNKtfLz| z7EB$Io8)6^P)dq0-)CrY0@#jNV+s?+mBP>g6 zyOaExJD0T-Ja`BpO;eFdB$-QaII<}k3))Q6jw>LJ%@Ek_5Htpo%Mk*&dWQM94w-1 z$DlCz!ZRP+gZH9Q0RpG@&4&MLdU4-qi}rpFG{l!ci5<_czv^I6D*AasLrix>qZi4{ z{HFe)w9eys8o91y;cK2P1Xry3yUdGt8KJGy?4n%$(0TUB8|OsD2X4p4uEcI;`HllU z+d9RKTK(mwu27oL;`PXx+r7f8zmC0X4N+4PyR23x_13O_Oi*>F|Bt-4{Hn7Fz6H@h zaCdhnxVs-*LU0HYg6qLu65KslaCdjtaBvRp?(Q<@{mtC9?)^GzzD@rD{jAkpPj%Ja zyQ&aW*XL~qU#6oU4)9kI{@zD@*B7?I=EAQ&Z?!|U5*|v@i-6D7)(lHiVZ=X8%e(*w?C9)kt z88%cxOET$n_8w!it#1;M^f78`%QJl~g;AR)Q;!2>w!KOeE``@qz?FUj{i#3Jinv-7 z@D@byC-V;}h*Zu9=9yYvXb8i}3aMA^_@uW=#W$;UG=v3(JE&kQb-Fd`$wGo*XI|X)Q3Or1ge4nq^B`o`B$ujAaS=`<30 zvZCC#jlveV&|AVKH1IC`1aIzb?miRZ`1SrEt95+&r*bQu#Pb3H7vpyncW*-2q@Wl2 z=qsE}-W0I7-iw>j4OFe_xnU3Q<$$C-euy@h-$n@)q=?{d3BVT@6o}k4WNmUC+T7&~ z%3zqQ6J6t>*!Xo z1Y-1Ak}2%M!!?TF4Q9k#=n#1K7t~5|v@AFyBi>DN3P;0OZr7bfI;^W`)L&yOwBP!y z{^ikR`6x1r0?v|<5vJHdE`Q%$9`gY|sEf7>65bRrEP!|i(jj}Jw5N(gtaKrnPLc55 z1(EJ!B{4JyVw}T+N}X&@qlq9L~1wQB=Z%lOSiL`9-*XMtPzmEyNL9Qa9MO(@tcACpc!vCf7{d>tUub%z>qb6PYGz zvCO{B58}ZZ5Eg2DN7*${WtdKnNWpcrK{c>?!*Tw5#MaPUv}~#YHeEVbsPr$UL^P5s zi`g@0Vqk0n$1F8;c5~55{8_3GW~eqi)*8H(?H#{rIgG>$>yAp-Ow1y#+GDT zOkADK>*SCCk7=+J%5ElFBjVQ=G$*ZHu)zM<3MH+#IR8R}4pE3#Tj8!x|NQ?p>CW*uT_ z%^Irj=cunCgZFzVuo9)ju$cVS`)0ET@xE&seM`yKJK|#Hde)(;Rq%ngUI@AL`-z#| zgbifKTtQ%g68WshI=#m%(M#A|5gCKBtz`s_>m}~tQ|h-|7?qEE>iK> zT4HZpr7yANwaJK%h^RWNt_rk0l^c7K2MyxUzptmk`EDy;{{E_D2Bk@)Q1^+$g6b&d zm=U(5;>-h*)B`WP9>ouzEz9Opb*R7G1QHELG8H{Nh@C{g%I2M$VZDsu5H)!7_lc2+%Er#2>MJhC z=jVYxTQ*;50$M%4ehxH;vMl{mzKU0TGHPe1B?a)L=8>El44--s-+{FCmwGb!fRq?^ z6aqYLwtmZt3ZP6#Kt12K#Zw%Gox9?7k&`V^kQ%zFB?GeR3;Ho7sDg|(2hjv{lAL=p zke!|8T;sCj!_UEI{d34|DpwUTWsB8`;+jP!Sj<}6VNlAXK)goY$#3+3-3c0km+27V z-qIBk)=`Yj{IPytjlD;W?Z^GH4-b~UeoV5Pc((#3`|igYxpcHwL%TJ>!(>ierq>1E z66rBX@VSGIe!48L2gt@1_)D%eTe&*~iMgU`yM2S*`^2NhXtSB1jA{?=meO41(Iv9$ zF9A+2*6J3U$HYyr+iqY{c$u&4EYnZIMv#QR{Vh$NJ?|1TqCHw5F?S+}Bh9Uc|E#f) zFu+!?l=JbIFgO0X=H+xi5C#+_63B4>pyYjRSw>|@1%b}|Ig5W z2f`F1FkzK>purOPerIKmS5iZN3l zT#oD^v0y?^*OLv<;&U$-7QC3;A=j(Xr z!^VUfsLTr6wrHQpgro?u)!|3)y!e6;A0;kjjUOIK@SAwf;`F3;=0XS>PkCi_=AR!9 z>D&}9a(YL|quH5`1QY9^c&tU?7;gfVN4z+zWY#jh_iXMC+AQL6pwOH4 z$euiVYTu@PKQ6*QYsy|Ynf@PZd*UjWr+?u8T>7SvX#M|K?g0u@^mPCGT8D(_&|figoufin9^EKBAimATJL3lnNwOC^jkIUE3>P1bQ{HM4Z9F+FbzA0-5&!x)wA5t%y z%}38+x1URF6Yh1R%?-T|rv7sGG;V5>E{v{KE)p6|$>fWPJ}JL4nSIw;aujn#$R^88 z8ZIiDR!%eSS@HD9T`0X-#_(3&)2t&+V@+*h?3|s>YIhz4fQc854YDx)t8^ds_YWU$ ze)%>VYtPcv;{s%0!9ew4qm4+`X@TRM6Huzv!B1iL!b^w0=W;J1Ni!=eKO*IR=>83chjRUgN_sM=C#ZUtG3QfowQ(P4r`_Iv)r#>4`(+&A zLC$6~pNAu5rZODrxe>Dy9crpe*R0Kq5`40U`-cQ9pSx5@x}dnZ$h)!piQZ^fm=s%# zwt;J!P4FxT8&^V=(M;9VX^DDGlBs1NOkb&GC`5m3QL~Q~Z&gxu1fG&-m_Qr|fZS|W z?=dQ9efyLYYI9UbSl~B$WWRurxx-W6PiS*_$w+7umHBwlUR&z4CeAj z=GkH`^x#nB_mC}`Gw!v+#rXXYraI6S*@$WUyGjl*f7+#vBVB<+jD~ zQc6Yon#6)A^nz(Mp)_qFZB5SMp;$J>c@;ia8(9>A6L&&xFKc zXab3g@mw08f{>nX4+2J7xRm&x2v`?-xHt?eLb+IMF9i}dYw6CgI*9FJZR@n0?f>~o zcOavP)O6FMq)tP(A)^#|dJCo}k&y5}U-$)#!-C*yudW2_!cgo@xr6F?y^I!6yCoruBTsl-*-`_vvK=8|ib@_! zoNSakM4a}NW{P_A+sK?kBs(Nvfdd8QXFKFqQWW85kb1e zm3cXfmjnzCkRFoW$D@R5)f`AeD>e;h+0`tWLbEqo8!tY&nMcyAsvIooW@bU)KK_@W ze-in968Y0)tSdY6zs!YZWyz&1Bg0wMQ*^e$FSdx4_u<=&fSkoy>OmJRp~gD2Tc&k& z?HTzHSkQMGOoRGRPWKld9%oZh4efREeVS8b9o`qGiMK`t1h-81c!y!6 zHbMGwn?P*J)9XxgVMK{$rW>0EJ{wdNfZ+@Gfa)CdZGKdASwiX$7gl-Qn)wswAu{A9 z=@Xs+FBT11>ev1&M?4-339!vIy=r#X2PABExyG|RsA&rtA#`NKXUS~TrK!<9^uRHa zq;26H%z220Jjj05bKLG-n^9=&P+e0~gS%K**-||&VUHbhK5eu<>xXVjT=taTBR^Bl z$S}D`lf`i}so>uG1R9fwLYm&bLz)Qe*T+qYwRYqKocT`ElDn(v{q~7tcjGctPFMNw$N>Rs8`^ zwS17>rf+!g`y?3$z7Io;Kl`m;o@@H~5@Hr5{Ak8H-A3Zh)B3c<t0%L>!X>Kd#^~M?o=m57izonFHazdnq59=g#g1c<;@DWmQL`VvH^T_5G`ehHw9dZl-~l@E ziC49>#oK>0Ur-dB?T(OH*uB=!2(#jm(I~ojS5-Btji-4c0Qy!Yf;*qPSaB>RN`0bzm+f|$h$-gj*%L+YkISXK$-C?K^xbph~$x~E6S7t{t z(V{tMqp=5+Wg-iFG$6co$-KHLKb`?--Yg>|0vm#y6YAe`D6~IKK*JGy0%~> zCdPkt#(5dzZjxgyvQ9mUz=3A18u+?GjIYLUgHwfQTDDHWT@TSpybpeh*PW!=YOEfn z$HH6th%K3E0t#Fbgy^XRo&!BkbUV3kY&+H`*qFD`lMc)Wg4)mWtbD7QGJuX#L$A65 z8tm^51)mR38bi5{y{_d7e7pxgS%^dlP}5fC#!3Ly^uAzs%?k-v;;=lA@U~|C^zJr~ zO+prBQ6W{^l*3sKS z{?*ne#g1PJ#z?4H*(yBq4Q!R!UiTHqYl_<2WnqFMmNkOE2Z^*7y=T}03pgVCNl4JM zhTi3Ai*tV-jgf_>DNel(5yA=PLaPOIV%^RJ$-#W~d0H+nF|41A%opDeKfNKRhmb;4 zM}Hn3yjgDSfkda^m-B)i5A^CcTYQWoHPl9!Xhc00aZQ-xQYI1DV#St7&N z)=UKqpr~b$w252jn0rB}#L;BTH&Whse zjwjmd(>9_l$9MDzXhd7EKy#9oO$PNTBtRimi5#@JYk`Z^cTM`_HMG`bvqpyPN=-=C zR4TPon{IvxBuU;J*)ft3D-&{nCa*0eE>5zRq%{X1_*hd@!fKa>=|D@T6rQUeJ5^e} z;hHisF;E;6EN#)6+fr^UZ6AgqNl)Mxo;L7j;{7h3-)gHj^WLZUL93B{QRtSmprBCS zg-kU4=RofXDvLC90PvIf0A>mkjqw`+7bQz#_~6x3QU#*+o2zvl#$Bxft#3-HO^ms% zd=Bd9!lD2MP;uhE%3EJC6vIlWK&g2lSF!GpTY~RXBjtXZ+VZ6p(8EZ?Pe8yR&F5`c zpxJ~4Nfa%R+GAx2GRq3KuE(3^$emU%BeT4M-S8P9H|1UAcgTUrwmXQ^XMY74+hQ*{ zHTo^WXCp@J9295)bJiL9AU!2>ijn81N22X;;%N=Hw%suRSXRwGRhECTHdH1|-JG(4 z6WRUYuOUiFNUJ}`3m$olj-4jMB4tNYLR3gi7$f-8a~3bZ}T_K#+tZ`OTOU{ zv1BKK|0!CeEiah(C{2WVqOVAuu|nFS&v{gSzX80=_{PCkY`AT7N<`3;xAN_O`FXgqOwNr zp`P6r=iK%kA@CTQ^IIa+B&~D@oVG-IE;2`QR9KoGfNd(sBTvc8MgU5F*WejBY}xZ# z3nb1nB%Oq(4Jb?@%@s#3O{uKzwF#tT6k3t$rbEKaZD5oD(|1o zs5!$iDK_~j;gQg0E|4%0%4?hYRf4b3rs|1JK~PKFoZ>+8-=5%o$LwKXD#4W}`r}!~ zYNlch^J6hp-3k!$B~# zdzU)$HGSTZv!mY)MO2tAER0mhCh22S*LHG>qdxAFFtdFogki*eV*~?@?yeloq0m@g zes24Ihu{b~pLPfcJXON9pa%YXl<)2bYs)mryQHOxdL8A|>`G*#M$BHb*O4 zQ&qeEJdd+N{M)-262*URxjdFMD<=~hBx)7arw1pnarN)1lNYAG)R;jW9^y74k4C|4 z1doII>=>%F5u0cT-dxUx;;L>f!x@`s{m_5|{WGc>Ab0+$X3X8){7A?;xj}ZW%kiv;%AT(`XXeetPy| zPwL!zB?&K#auLM)7r;Tcj{hIY!T8rQ_ryN4tqXv2TTZ2hgB$bcgPNS#-2rF72K|Cp z;~=z6hG{14CnMp$P8k}4lX^@t@>21a&N;v2@#-Is|j;Gv>C>Z!9UMVd0g{Wv#3EFC%C@k;;rnV#ED6a3ahS3>jwc^%QEOalskwycK}S@RMdZc>=WQ zTbg_U-&n=V!%20tJ+q1oRpmXvih-Hp>U2b(3oBOVCLgRd=~j4RNgfZRJmkC~+ccr) zb5HbIS7*g=hqi*o*Q(f-9@lu{o_ z9)H{XtIN$QM}DTRIqj-W&Ib)T=RR!1UV7@|4(kfifmik0bs|H5oKJyWK4*^|au_95 zXb6EB?EzyU)6b|fjuz=DLH+7)3%dLl$E{A;VPzP17PUV42a`&Rw7Bmbf)(puc{(ke zb@(IO-l0pPy&vX?I(X)Vfu$$SloT{gRQLFjWmGY6^voF&FMfFNkq%R1x2=#MJx-OvPiZ0gC?A2DpUTQwD(|UG#nQ z?WX&H8W6RDu{P15o8o8HQA&aNf{@Sg1-O&k59Gm8lJJaw)U4q)O2RQqHB-f{&NT8L z>SXBnN|_GxR7imY+Flf;H>Wo*67E~96l9W}rZ_pApmkcI!aPL1a9&%a1E8?fdX4&fQ-P}r_4O|4MK(oG zHv0 z#jn%~3VaCChZkKx001tFw-KF^1w@-jSHo3)uI-|XyqUK6_NXvzJ{y~eI(Hm-U4#U- zS!HXxHl|vPKjm3<=``U0Pfh5*th}Mx*e`N+yi9Flh^>6bt_UtAG_KN22rVE_yeq0;k0{Cc-3Bxa;z)^W z>`^PH?`AX=O>p+~ksFhH*=fX}AbveI+j`!V)`973GugmDZ6EH^Oewl;k4HfqbtX*w zKshJ2*E6#oT^@MpqdCMDV{M=kz$zI~p@*^!N5lbAM7P+++khAiZQ9Qk9fa=fB!+29!KrA{BB%+LpTj8(m?wHT;XSTVlWpFfm4X|YML=YGN- zEH6XyYR!>g+wm#jb&o8?VmeZ|Y_z7QaLLt=sN=!%v8o3@EQV_qKi)o` zRsmf!kD7X_DRFv8E!^J}TU~(zc3uiEs~P)ts2vWoO1usNLQ;vhS|6QtZ|bN*z9|^A zq&P%h$7{QE&v_{4{<9ULJnf=1eveWAKVa|nT|I9`cwNIjQ)-LMIg>K^c)~$loL$*D z^0-^_@4t6ObhDQIP)n%~K5l3?!T4noA7^!%4%v#E*WEpSGrwv=V=}2fwOJW6(ytPt zi@zt*1{tvww#c18bwe%82V^shT|0EEnaEhr8B?DyBZSceL%z>wF~3ttzgNAKX>>zl zCT@$)h(S0R&X=^T>?7AH59>-21)nKbhh`jvZNyo|8H%9Tk-h<3eV(nU+2CCsB29!@Z=X3W-E#XW&LS9qOgIXXNzZ3E5XS>b+NRYS@R@5)@Q-=jo$?;)mO6 z)mBVqY7L(lBmExpRV{n#1|cS2NP%KH6t)|GtSxDsF;p`}i(}e5oB11$g`url>=W!< z;~(NGGR8d!fS_bnT_Akzp0XK&aZ6P2*jHQAg(Mm#6rqoiifgs%r`MV(?;d)fYz0nI zQwiPTTvNp30Eq*K%A@lS|x?S=0bm`S$174#6)J z81AB}!+Eke>Vl!-xR7x0R!L<^3*R3KeTGp+Ce;o};u}v2tbkbA9c)IKj&06zs}S-9 zb<@Olli+EG|4fqAfw&a7q5?_X^1<*_|JR}6{tQosupBQWcIyl`F-P^4TD z!z++BL&7{{UQDbHKga%JFpZwh9sXH{y*_J=v0f^j&<&!0xtd`BjRez!fIv4 z^O^9#6b+V5*X?Z*3v(Q>??p<3uyV2nnaM;CuO* zCD{!u-~QF2Y_Xe`B~|@_|1w=LSNzR}ksDOcK`LpE*o6{^vE8xVF3ekc*?o*Hipo^_ zI=sx(M_eABS^)=eh4ayWa4I$81uL^K^TBj>u@u z@?)h$nmd4i?5 zr%VrPd7x;r5@*+uFZyFiT<-85FFwE*KxG&`%`c_OJmNNPKh$l?19>+Lz^Smxxb{}( zool?fBIQd9cpS^TGJTN|jGY{MZBA^3Do|6r5Ap(F?5}M_j&0%PD(nkQ3=wvt0ps$| zLOQU-1rq5|Pk@%TuvtlfV4*@ePfoo)REC6a%1KbRSf!RL5wgzQ&z@!}EMtadGHmw1 zp;F&qhAh;!@ye`x`fIOTbJ=_q9;C_m41Y6~tgNhYj@N_exeAZ*$!tE3@;MRp3MwXPKShuSkTDr_7%Zc zeJ%zokQs=d37wws9En9LygPh6(0`4P94^jv++pyF<^IJC^!<*ouIKS*>rP(QJ_65B z7Ep8&4$Yk>y3hnZKjc{x0XJ+DxX>P~H`6)IB&nT#o8)xBhA~pLsh;2n<&Rb#jmdDf zGBss!=AHM`$H;}}Xf|at(^b0KP2={7s6odpw)YY2NHQ$o+Fric}t{!y2pB_^Eeau*v!V zfpD+hm9DXEoR7s#uf_3563*R`SI;}DK8BYWsQ6|T1V6eY7g z&TKN`Eu+&(wH>9M@|7O)pJu$d(~3HT<|}^tK58%`K;c&W2RjIswNNzWm!f17^xW|F zloh3(L$wP@B2g(XLyGyW4<%od(IYZR-Du6yLigXvtqh_0UbooF6r(nQ@rM~c<_NuS zC*?8A5)n+q4x44tg(k6_?oo98@+A31AGeCLX0@1Dk zllqJU$^-Xds(hUB7w}4zd3b@KU|3Ko@dMHl*r1q(pSfw! zCZB6W7;z0B7DwB052`%lmRw~2Sby{5(LcwA)M>No#2NLo0!(P@r&6BXHdAP_@E?xX zczmiC!nD6PpSTi3UEo0$=2ish78N?}>u$d6QCt7uK?@3@Ts%s&CxMn#ks8&o@olk^ ze1d1nUAX3}6}OcwAt9+4S5}Jup@c82&dv9oZZ-%3Cl)88Pj2eK z1N~|me@1bbDF_qlqTKq?Y%m;UWe!0j)IfqggMfv|n=pfXw!5R`5}|KG4;##fuJ6MY z4P_}OF}G%Tg+7z{QGs&3;a56Pb|MKUZlkwvG|!8^Y$EIJ1ajR~LY7-BsslPdnTC#8 zRH~GzzCL2)m-iD<0(-fi{)JQAi!S?D=x1#k# zL_}Jw)u5?=bPXwgQNqyD8{IPnOyQv>1#=PJz^cWoHmGGtOM#SU22R7Cad}Diu@4m$ zS*-%#DV8DghTj8eMsg-=_BDvM8=O?@RGP%5tbl-|uY7Mhys8Tb6!8|sb(H7{hs0%%CG`1(h5pFes49RU+SR*0-DM4KU*Gw#v^Ie`rFqd76*OOyfUT)6#kltwXrN;+s=jQG zQ@e=pWEUp=DQLB2cswZ@M^bD6KwN8sv6RkHa?F@|7v1gxm(##F@nQVI$D}{16S<@5 zUy>luq*kZ1|M%c_Ki1VQi3(`i9Olo~nXwt_tI+>I#Yo9e(2aCD=O^;nGf5IqVTA(1 zl|pB|p~hTg`9yho{%DQ-%y~&b*RDcA8+Z}C^IaoIz1_^jTAus00&-uLAmif_;#6#p z4R}WERrij|TdoQ7p-B4fg`za)0crAkmV?E+j~IW?wi2I^Lz8iPU~y4)WYGGARPzKO zE0l#>T1Ly~e)BiB!nBV~OO07$>ixZ5Z?e21dVru{eDOkPs+`sm?|8?WeibDcsRIqE zF(AH+uLx58bOX^aSwIIYU-FMPq_(ao#}( z&>4{8wDomAv}2#8^bqRs0zXnK^Vn{4uC>;u3KdW*U#J{Y;+CTLby}Hsgznp&hDKE2 z`@@E)*aqfx#*d1+U*{vOXfa{{+D|dMS2ZdThKi~PHrPL50^ur!qXWu&fyOpd^@982 z$U0*V%LGIY7SX-23?K8PtB_$USlHRkArQd+K!4ySI;?f|UZ48#r3roPDQ@9iZsaNK zT=1`a8QrmX`7CcyyoLIFB|X+e)?_@)e3=jeKZHt>LlSguQ#Gqjhel}JlQVw}OZ!OQ zQPa8ziW=^fHp47%hf$Tw1>K{a5IO3RfE0U*=eKu`FL$XSY7_xo8p~rMuK$|}HzqT7 z_K`E@sL%VBMb;$`WcslXQ)J{y&X8DbXTXDi`8#MPLYHkl$GckZekU=6 zU@$WtAj^`p&O{BRnIen^aB2RfQJ@&Ti>=G2gi%>lEvh!Vfi3Z@Crq^;EB`cof~Axs z`$JEnIWLMUUaumQPm8?+Qt(yJ-x{S)dn8+kfp3opwx?F-J2r@hPMl^-&|nGu620rw zFd9M4S%8ys<#D_rwSVUnJIB0hG5LkgIreu{;`pNB(5QZ9y%eaSG6|Uz`(7hpn?L%g zm*to|d>l_7b~Z3Xu1gl`5XYr-u)9$D=wo%fAVxmv6uRmDR$;uHCr4cK=99Rk{U8lrHoe*4Ut=9^S0x@ zNMFBCF5IB^-h;;trlLbnh#+{~yWTHZ{H(Xc4P)}(@dc52RlR``rYw1lh%sZBnJz7! zkwDsn_Xa_qbz#3HEJ)EBL>-5|Zl(Y~svPvb{vU}s87XAhG7qH3UBkQ9AFXi~)Ni}& z-7d8DMkk$$XSuRH);kzbspdD-w+04toah;s79Zf4?oBHqahwIWjm3hS73R7HqDCmo z^1CoxsJ=~L+BbGqGGB*L2Wf_@0Drj@`-o|*8gCqVAI`ndK<7uP$P{xw$dW-R68?pE zR05%jeNr23gJVKM!ghO?EUH%iD3?f_k{d7(GtMdZ=kDNrjT+TPBJVEBV_z_>l?F{J z4hiV3=E+>5QT|{7QMGDctY|rrjvPH`YOMb;Y%&Fk{TMq%KDXBbVqY#UPHtNDdkd7^=E&Pe0{bc)* zI&orm}r|1UFgF?AG|Da{*>j)N^3=qQCofIGsB$((HWosRJ-rRii!*04;cNxtbq6XC!d zD|8sMn9?}lR%BMAQG23EEcp;%IBR~_7o)3EIglXooIa$oTAxQup*wo!CZMbB5#b;w z1*>Gu?Ed8bR!*Ycn1xpOMyIDBLoG+Cek8Ly44Uy}BwQk**>e=MiF>-Kq&m+-i`}W> zR`_7vw83=|zy+=`zIl_y-wKi0C@DHvI(I=zSegn5yd&$`Au_-TP3l~p`1<68(1(U! zhzel9lX}4415OCbotU4WbdNcaqWkw4Wlh_;=nv0Pk*ODXi7}#bdyUY12E?V~v9bjc zk^Abf+|%y-Q=WjLcn(4z{CmmIx2#NPHgH1W?gVld%e+8V1_77kO-#wGm$^l{IJP>6 z3TBorK0jF$JGpu*&0T77nmBJzs0IDvbXJi4WyNE7KU+7}#a6`=@lT~v$nMP%M9HBr z$+B|Nh|?dSeYI(>65+I5u#HV&LI*{q6==A=Q`j7bv_| z{1P!HC69`y6PbG(>v4P^?Vk7P*4ocyfUX#NeHE;R|RAg-jY`6 zu(>{zWTN~qsEGN~AQ2Knt%*W(8w&d1vBIgt@zRLQmIA6-tlLRe5YgD!Z7wChNS^m}-Bavv#8MsANTrpxDkr(ABjtS={YIh#bK4?cuVE z+BAF5-A{aB@9jBw#q$2+Q<_{&X9dV~@>8)A((|lot&DXp9^UX93yW#ph|x3BV$)lY zP@}^?f*Cj77**mIa$$|B6|r;U`h~I|-`|v1^58fgM^fulOi;iWp5tOzo6 z&%k6i_lYHBJjh6rx{N4>uz%EeE{{9nkdMY+N^G~B+w^hYXm-Ua#rW! z1lyu2aU>V?=bltLk=!1GTk~su-FFSj{dO$LDjAd0!XvDq>8aaUhW5WN4@Gl~(B>~p zAHe7n@0I?F@p;Xx*D)A4W)by{{4c%)7~Vge);R0c8hmUJ2{eBut0 zdp#4%nkC*S_%@j0%xe7Se;kMDHgt^q?B%B}hQ)VD%4#c1s6!)gOa$H0%#@tqI2a7r zNE%0!u*8*2gbV@uMD)pU&0*_;HnT(ka1lw-DJPFj{dVE@8kwQY+W5OrzObOUKPL`ir`&Qu^!SW9 z>D}kR2eAx3>)pFL8RrHm>cfmU@Fu(a27Wuv$dh~31daQvH}LLZ1;&x|``%=nNj|x3 zO?WPo8+X;8th1#1Oh0Ap>;48e$^*IMRuvonO2$m?&zfVca51i}gDn@=dfO<1W+({? zhzotoA-=_SY>Iso`WnnqL%`yM5cKT2_=L8mkFZlyy>W{Iy2>lcAE%U*AyF7%xnRQ0 zaLv_WfrD7D+Ya2V_Ht!}^O<#WU|{zPi%cJ|=ev)v{Y&LE&jfSH&c3ya&@ny~Po7!^ z(RutrRMt4L8O^#l_3YaVQK?^a8rYkT*vezFg>>_g|IoMQ zRVY<&!Nm=+b+ccuhF;FBIZw&}$vxRES-8=+fx*B&KfK1)mgWE*R?2G_SN4T;{#HfA z9S_v%m3XCp&BusKAoXI+3IyTZfn`+4RnU4LLW=E(8`(q5T@N91D0#KkbtF|g*69_j z4pzwitAe;8yAqK0S*G%9hcI}woR3GccfH@LaM#n-)br~M#tB`q`QBPc@nt)BSz#Nc&~UTXCe>rIH9DR9E4`-Bc%O^ z6m;aimyGkB3t8)#d*fQVG{>t`hYI8P9*d^`)BF&Rv#->Z>$qMp#o_a3jL?6i9|HV1 zX0i~;it(7;F2R&Lmp{7sSBDQpYp-4~_AU6mGUr9TgvO93nyUzygAhOvHyc5~IEBUk zSXa+#UrTY7lrlQGLH?h9$%;a7^$j^12R5(hmRD{N! z>ojBRySjuQe&I=t3sI3IEej)qb=c|1XT;H#Rt2k{6&z{*>Hn*-b(y;o09QaA!zl0iDB{r{IPMFK9VjUmMl`QVv=^?8pA#a#h7p-W zL;m`m8_5~DAW zpik4gii0vMah~|hidS(~5a@0@FH`ISGv_`4qB{EL z-zn?UmOypy9Jy*CWV({k&-#Dy^p;UkJzm@J&>|__9nvMp(A`LPw{&+6f(p{zA>ExL z42U#1G(&^b&?q%DFTek@?)TeS=i^y>oxQKv*G4rX^eS4a7F$S?`ik!hJdH2v5Om@k zO+G7%>E+v2=NCGSnfNFxv&=zmkZ8dSZ&)bkII71@=~%w-6Q@zWTQqxmD#0uM#!iO} z;8Q`*OQUP`qVF1VXd~$s^!hG=<68I@OBPu?=qW_cKH@w5YUJEC?Z3|;10@j;nC@wt z8C6VIm|Mt`q71A=r?g4ZfNjp3%%(Oq@>328eQ2WnxBL5F|7pV1=H6F=n3=i~CWW$k z1ipvv8~^m?iwuaVPd3c9$pv3Bo^YGmfdFH+8GH>~qG|?LYs)o> zYzF?=u~rJ+P-%Yc8>AR`&%OLf0sm&>mv>GS434XG8_+;`f(dM(Zv2Xn{Pa+N|9CR* zLw~^U<*I?MG0I@8g7~0{b)($VnB;SKXnxp!`boOE&g<`L$`X*oEWF@uMM&>ugSn2({><0Ps=Yqy^54*)c?PYrcX z4-^CiC~WZFwg1U*M+EE*ZG3@j2aUALXeY34|NTs~i%W?o9vN{t8 z+d-JLNQ(?Y&^iT21^2?lk6ztHcyT9+5(t;Kg~#ZwmUZ^ZK#zQv*3q)SiJBX#nXjpP z44$E>&A`!=)U#(XTrJj-0bTr(H07OwJgftb!@M}*Zi#G|#j|lpT?%iC&+Uq6 z@zdwY%Ea+)n0X{$_|rY4{Iu7PYN$L0h%{r#rz4q2WC0jIUDEVr~($EF@tZqBH! zZryaqUwO>_9v9$0#r^Jlj97a*UofewcR}e_=Xpo!R3g4ZTMOm5sU8= zYxjr9z^`A2d$Ehdsu5kNn35LG8ILcbIEH)ENE9{5@NG6!3e46yN8z(8Gy3*A-qk~Q zn3ljhtX5~H=I#;Ai@SFlk{MMmYWGQiiWQ3Wbq@Hif_WtlTU z*GC;nsa)YojS)#xwU;<@_c5}Bq3Q@KD2-U3CpywU{f;QxXt<^*>sHKl?z4`SV_Nvw zq!`OZe5}ku(0aiT)l3zVcov^yK5^LP;~XB7vQY5%|5P^WLU*~T1{ml_(0V1hXgI58 zrYg5FK41>d^0*pL)){q58@2*$5(_PMXJ@N!LVY!)RYqacSK;SRJJR)zAw&sETa}HW zZse>Y8tS;OCZrBkM0-?{hYgs8D{#zyL`uk!_ZVmcL7&12AUy??q74!v!{_(`wzJmc`7Z2jc$ugtj!|0%f=_U_5cUAGJXoZryB&u_QX z;%du6eO&t=M^0KEZm8#F!#)ZyUTdr=HI<*c^{j7muICB^A`ex?S0aS*I?L8TP&VSh zk>C=Fe^bLm=A0-Mq^wxS?Y^&Ih#Y(xzbU_VA$W2AM1=5%iHEUE&w7Untq- zj%h{V_;zV@)CU`$va1BL!dcXw__`9~14Dk`VA(1fe;mX9jJ!$M1$fOy`$Ia?CQg20 z>U%>V9Z||)%Be$1g)TU4m$UtgpC(Ne+~PsK5|GNmC&jprI4bHWob>&fC#VT0!J_(H8@R%XDV9{7Bv^5QrgPtbsY#y=~VnsL8ymirmy**~J*0zIeN;?mu$IKtoY zc!RF42PkfVfJlCurg`GTd~DfyP-VYEyi)V;C4TL4b>xqQZ};co#xtTgX83sWNX6^1i zhwwbAhpH^;yDqT42A3$9J2wZMXE^Aaq1uCjTt=QZvMdL_tN51a-zWtAFoF zryO>23f`86HHEBpIc{um`sD_ije9`pn7u2m*Jvxu1;gd)4e zl(FsKzg)vA`_*3XhI_*idv02iCiRk$pZ(jNFu_?HL0zqqP}y90j`>PFoKp9?UME;u z$3=1eLAC0nI4Oat$Gl?g=LR;?Z~C>KmR-KTw#EYD@a3S_Aml>m!W%y<3&I@{9=CzS zPtaBJL4!w8Ni~OOivBxA$SPy;6Bq7ONy1b3j{7rp$av}lbN@5I^~4Q%Dv_Nd_a^AS zj*&U6WC)Te;rU4_9Y|~Zt$v~sT~pNg=yVyHt=x*Yg0K$C7t@ zK|Iv0y%@7Veeju(JXhRhcU~RI9f>Isc&%;(gx1u5T7iPiJDg|;MH|RNRab_s* zueUZ)yze0n7XI2$Mm*l@dsvQulywRKS+zePDhR9gYy53v)m}_s%8?~9j6akPNJU%9 z`xsz!(_8!ZCu}yph0}-1r zY|l}#!%WyqbIN6m_+{w49dV!l_MWDXzRx1Ekqi7fdX~%jq6rJF6I7Vx0W5I2R<8=} zac~uBBosiwMaivZyDB+xe{IiRz?f_acTaux6OdYqKrvd4cRwQHXJ_ z@}Mkc&)R|^UMCpB{NNWqhkZ)o(SvTv?Sltc;j-ND8xUWBPEdF035(#_T#WpJykINk}8EhPa|M78gk{Wj9gucxlrH`2Y7fjw*Ic)6)D z!owo|K?oQCh6`wr6b6ls!8X^HU#73i?6gD679c=$%TioJdo5BVP(*dg%mw{HQw&lKb%{C+8)07j7D1J@AKxJ$&m z)I1jUS#(S9k#-Mu^qKC%aJQ zby3V`|EYBEMUiz_R(rYeti^`>M9%+Xvn%Ahk5$xJ37MChw>ebCt#Ll&C3IJcG%s5% z0-17?hU<^{7i752wS!Md`*`%YV5pBi#vUSpd6P61IzK?O5Bq*UkKwo1=8=^xPSU6BlWA^mZacdR57v)emKN=ltCj_NSO^k~bYsD~c;@PNI6kn=mG{ zIf}~ceO!k^PkVk&b`dEj@4xDLJ_(0WEu+-`xD}GU-iX(rtfyWy(Nlqpy+6Db0j5@b zPN&hI%0C!pL#iyXQGE>i9h15NV;u2J*{(@k(kj}n({$!B8qBz}J*elx@sT?~HHM#v zNDA+&K;)?tfdW6>*}Hs{akG_tbk)bL-2`SL3f?I@{dm`WDWjC#C*oVc)X3^Mdwwe- z`x7vxb>EMqZN#AHyKgbJBOFwhoWBsDmP#Xj7)#+GGyhL!iPC|f>KODHc6K4t{$%y1 znLs0+q6~W^dtGY~k4}kTZpn)QO`NIQg?!Sa-%Deou~AXLFaG9C*L${?`wZh0MfC0dNRWXuZflxfU5=!RbNEX< z2it!8qdM}Y=^8Co>_j}ez|F>&)7UONwFAp(MlbGb#eux1N2{g)<0_;5L(?lsi2dV( zIsQ{!WLWdHYKbYMmXvt)X;S6$Kop`!7Wpj*+;Or|o^C(q3sYjF(M{TKIKz5!`QMBo z@2gN28_axA7eiW1ReZ9$$Ta0aAWa;4>a&} zhU4{Vi9KYwLEF}4)~8OnjZ~CoXVT$nZo58K6;Zz~I+GF+_1p#4g!Ic^0va}dMmE|F zjwoKNX#jiRG-}U1)guD0-RLG_t_%6&E)ly)B(gL~&7?3;2NMlIOvWFrRYo_?MO*Q3 zNP_&;H*H~#dkIi&1|#y9hr&LqaCM8WFTA1mRwE;Y1eT~MW?3HWhahe+mh)NQDKqt> z0hAHxH8Yq1`ZsJF1nP$PpJ)uJX(?07;_kY>hm|wHl@*Gp3C-zK&VxG^`tZJi^?x3^ zoR~H~zvTQL`E7U3Fi~_SrJS7J+UFy}2eS{>%t&{@3-bg# zbTK2*aoDX7DK1JA%`oEuzucWT902Wn{#jFeAWzGD9pPHZs&iK($a}JAg`JLZEbUyf zG7PUEu_9ZP1<*Hs{C8N*j#=A@-^2h%T6OE%%j=Ip6w{{#r6<%1!9Tw0!gX)lv4E|G zlRhSy#8&j%LVRCj4G&mO8Wi9IUx4qqK4!vlC;cb60%do~fA5pDBANqY%CU=W=5j^6 zm+8`_X^}3pPHvT&^OhLV+a(rQa?77IzHk(YG4$K7aC<)%y*3~yy<_BOIS4VFJith2 zBJki=zS0KUt9fIG>yyp#cR^y+)eHFk6$u2L8@iFEy-U0q*hk=LCOn!W%}`+JFx>Ql zYHk~1F{Hu=!hJs`)$iu7&lwLIO>~PXhdRs$sRYSmrP360)F0zWbtI^5uj;BLJ?#8( zu%1TZ<@FB;%JImfF4!9@q74=Fo7u6`pV>?kVCcM_+hO0c@mp;wC9%}BbiR)hY0AK= zX6rkx8Rh~}kwtpl=ArKm_5hDgRv;`J21>c(SR)&f=K5^Pe>3hr)8;u6$N;Ldll)Ct zO<9#c%Nu+zJIMuW50=8NB`@juSn~qnCLt=3^3n{LwNLMZ1$gTevh)6!uU?7+s0|=- z2V0WKmMTVe3G7Lb=CekPmJZM1G-r7Uu=MaK)t%YaI=qz>Rmp9W zyWbq%tEF8S#{SNB6?$h1MHH>~7H8fkCy$hcmLx{7^c+<{<|z{@Wh_{$#4b}Ha^ zQ3|&GQoeU?sjj|}tIbGii6k`^J>BSdWD8oJMhG@+CiPGGeVG<`i7Y2r7=nI9Blecg zjBh^_=PpvdSL5LgeVzCQeaujBpO#Hk{&gNcTxyYHR8$zmsPMAz&pw0Dhb8q!AQ)E9G*S? zMs%_1$X^}!@>`uN;rzk7h4wK6c4SL^*cPT5y1RWzpGqm_Qjb9)@ekq^nc!X zKJ_rtdhTG6KfE8(?cz5h<6<$uneTQc$4tbxl1)v z-*-#U>F$?i!oBAofA6O+`0G4})50m@(a#7+`D>lL3Mci4s<|TAnf_yjK<8i)6B|EE zhMmg$Z!!6e@_+b%I#Ra-FQ0|&mKpFknhJ!adIuCxB|xX2yE6FFY-b%5pl{95>>f~Q zf}I&WAPNKcl%N6>l*`2?xVSLELMK&Y6UxbX7nZ$I$)sRW2-d2 zx0Qi>RGqr2P!1ArjQ_oydcH9jVvb~>me;P~j^YOrf+T<@EPeu%_Kw*+M25Yj{&xhKSov@5;K?nI96jK!!%mGkK{RqECHMG0MUXzj>Zz= zkFfShgKy%EW(9Z>?@{L-6eE3bCO86|B2v*8D144KUYsfUPa)fX*8sjHAlEwj1<+66 z>~U}G@hu(2EQ`)=rW6OOTb44ql%hLU^uO0cV~umrU;U?J!fEYZ7_2co$ns2F?bL6z zq09bRMfyUb21X(Rzg3llzed6E|AJF~wF550p|*QhV3uw!)S1ce&2tgVyYtgM)CT+{ zz9+$G)jgQG1;O*Ss!L&Z#TJOvCyQGgEsQ9s4qtV&%CCKGSA2pejji8dm4f=cwacxV zeO&_epv$cVYQo|eUj5~6z4w7Z1y)_eh3e$%3mf=s_s6bU-=qB%f#ISlZ&3QCjVL15 zw?+d+8oXVD`DEU;pm9_#(gf zAs`<*|Cf@&GmJ!?N)lV*3Jw~-Z#B2L+?zAUNAxL_9&ep<7{q%~UeRUVFiRrUfF$r1 z4NagKUY{^xpB$%YBk#;nd?Y<%OkB@6#=5e9C+D|$46Vx#{)-;}Uxl1|;>20}I+Q7O z)}+TK0`)_p=N@^x;wQ}bli1GDC) zGw3dDMlQDyj*WxGOvn>g+u<5Z?_Pbx9q`zD2)rS{f*>Ga?x-VI7X{3j3r66IHuOUf zvR>o{?0bB&?UD~={W1dlNOR!KwLwqktg{VV)bHAmQg{x-%2NRJf&)~&Dw>liZZvVk zi8Kw`ewbnLuASpaAt_?OohW7X?)4Ym6iRZJ92Xicoqu+Br{B7#_#287fb%B25CxL& zxOM9qY+@L4JeeU}kH*seTt&=r$Bg|ZJyN^Q+EbuFoE!lfqm+(;w)NOwCv$d} zQqVOq5eaGSI&my-sNjm! zutJT*COMY}T79j{Dx|ea@BIo)u>r^60huuj%Q-Arnzk0vh}(lAn1ab+xyB&+^&_>V zX2WfWd!77w6;t!8(pdx5PsE!Pm-wCu5I@(E9o1>tEkq~xIB>;8WdaJ_q^lDWO`<6k z#nIe7UHCVuM!;~3G$YBVFl>VdMJw{|vcrOQrKQGH#iT2V123cRhhJ{DZK)2``3_5s zy9i-dzs3ncwG5D$4*b=Zr*8J`(%(-wUuh2lUheJSRrWwDB30&dST9>24)z*H2RT~* zJv+F5w=(0W8dUn4k)=Wf2lsy5ypCGN6+Xziw`Evs$l$7Ca~ko@Z;OIbBIuET&fU-h zZA@V5vTgmyjw`N1EOUc4eq@>@%`WNM*m+|9B$suEFJ=ewxIk-vF6^J`%`(-n5T3g_ zvVvJmL5jSfI{G#J+Pq!ZfwE|>?oF)u%9y&Cw76k1(Tdjw=rV1sUKkU;#eYP6i0_&b=<>Hl@Rx38m&{0LO+`^ zrdH1EGfbNfkdY%^Po*M%0q%P7X#0z7qQ8=D%9!a_ndqoTbFIkfEV>J*Sf@>oH5AU} z^PEY6!kHop1B#VTa9jm>Ir(pev`U?CBsmTPRoV_Ylo?Mq>B`X94Cv~Sz(Tq!1Gtu% zwBZJ?8aI#*Ve7Ng*njie9np$5X7uZx!_uRYu1HwScyjF*cD<2j;^`R;KXkL&Bo}k! z^Tm}l<0#vSolC;rq=7<93MFB^o5?kyR$Q2azTyunTj-z&bsgUB$!p~ZhSt@0W|%Hs z^iCp$=SNFFPqJ;@JE8$XBr&=RP@3RaqOO@aZdDuW{QIGoYJurJXJ^4{V@^zgXC_&r zXCHx~DHPs=DJX9zua0^Kdieew;-O-yYQtQpt;-kmg3K;E=h1!GfaXH6WM)PS!gf)% z#N(?u-lM`-e2hSf;W8K0c|~cJoK~!EeUA{xKuzR2~lTLACMBYbR@0@4cmC?fyqh5ipa@lD*ap3Q|X1EsuUw}OT zpXFQIk9VgWLJH*#Y@0nM4S+ zr@HK)x3;cTHKjCVeKbCN4+Vlww|Y2WbosJ9?NO`PSRsjUuh-bN5VDgW(nl@bzBaH; z6Hu3*BZd=Jt2xyCaDZ@pnp_x#xCjHOM>7VQ*qFjzbJ%5K{*_aV?c3}2lncaB$~SKT z&`fadPR}B!8|UpAAV2OGsvlISO(CW9_d9eOrc~ZDmLO&KW0&b&R%we90u%e>$3)Wz}EYvw7qY=T4FJ^X>EJfP*Lp7@d$c|4{ ze+&jl#9ZRw6T2@G&(k{G-PaRiYHV#j7^vUJJ^J~Ll6#*B$_!a@zO0hY$pJ2f#!vKG zND#Ev^r?AhfCXealtjoH>g#oSzIRJZ4?jeq3|2Ae|D{GFMp1e{%2W zi9R+wcTjvy*YLG$00G4@wKoh{x+~+-THf|a2YphJbaKWl#d=&-%i3KnpUkhWH;{19 zGGPXq#IKi<9t^NtfSmp+aspMbxE+6Afi)+$KO@~` zvwDS6dkZqC#48)<5Mt|EW~jTm6BDMCsL?A6b^eoCthzUi3^Itj_W`m8+wO zH_3dqnF?rUYY?vS!+IG1O?Sz420cCMS6}t4@@S90gB)~nhpZZ);q)s%mJFs{+XKUb z<~2}JN>%;ThSGl(1_D zl$PAA2nxxM@Xa9fJKlnT%UdD?5(lvLZGA5?HE@A=lP={qVkXyv^o%Pol!!|K6d(A3 zFxG4YnUB@$NpC{!N# z?abf6lH|tmw`o2=73HDeUp@B#Y)Q3;yPsn1D6RHqrx>jMfZ=NH9v>exP0>?^l^EPt zz>lBxlTJZa3W#(mpivG;8+NWPchj0k3+$r2?q11aCQqu-xgZdLasWYv2K-bgQkJ3L zO&ptuYLwGf6;2xVhXG`C^gsJa;4aE#50!qG3&Uu%J;% z0NDTy85OdZ%cRclXaAUfRjC#O>yPM~tfa4P%%yHWKh5Q)&$0?(G3f-Uqf|bY6LKVL ze~CdKO>SKWDz40lqM{$Hn?y+^!k6eL`iofg^X5)$q*a(fYTF~I96wET;=3$Q*||_qc z$TaSDze>>1&P~+PyG+frC-OX%yGgUH)sdTDH<;RSW8)W)6Uz53*Ws(T5m z2LGE=GlxGGFGrre+#?J)6K^PV4dC2kyw z>pefxdb8xch?kjcJ#Fd${^tl28-`7)Dt(VPAevX5geC?nrPIxAM=k!Iv*SwIUQa#g zW__QfElSIQ#7pnm`d_y_>KPEOMoQUWtGNZ2!u<5hyJ$}d*D{jD(_E1 z)@vx%v8EKCTM*Qb{*Ft*&*m4@hk0{xh1m084ivW5BGV2CSa@0=yHpIC4H5yV_c|W% zP!ra+MRRLo#L=DPSI*CZQ&uw)@J``0AqPO78hYwipyhlUKN3P%Q>M*(haDFc>mwR1 zLd%e&$*V&a*W>yHe}t#wLr7HZ!08Q(pKTpw&S%hwRqL%49p`L zcwgfeu2^#@7Wi~SOzLiOpsgMg$NRMF`ax5L0Kgl3>LKRj@!|YBGL@tf5B;%b=)WrX zwcT^Ib#9IV7JLh{G*J(0xuZg#L@UJ#W|!iS1Ai>&@>Lf+MnBy{;@O())p=hl5yd{pd=9py~jWMvKa z<8l+C(Xg~2uPR!+hb%~>4~nM&tqE{0{Q5vfT-@+0;W9b=OJtR1M}ZqpXYHx@@o5z2Y4Ac{TA=TGifL?73s9 zuE0;%7x@~y4w;M}SMco_p++HjP&XIfA1X$3SUR(j-v4<4qQapA#k~b6kfuB{H-Lu( zmtkglU)M5EW>A#-Ru79Y%>MjwpiXRIV>+}$t#TaGw=WG5*A*7x8R%uky*8v`esrh) zH7&OHYfL%7my{~P_bgfq50^ebqM@1}-*eukoMT_s4&O=mIa_DXIx%4~%v-SWS=L$`Mdu z57E*+KJult=H3-levGSX_Iv3JU;aTxmXR#29q<20VP?W3D;`BnsPaqhEi1S zfu5oZ6HEZWqP=Jo%Yqx}D#1O34^Ef;AeLwyq=a|AE3_8pXLV`%YAaIGFTYawXD&U< zvfG}7w&NFNNFlC*r`#0KhBuLZ{1Vek1qBNJVabKpx38;h=#32d3ro z7|HDyv`P78x-*qY)BWcL(qUx`V+c8HMJux(kFRSuYRg8Nc|e!WF@+`svV}PHVYb6* zgn!qYuZNYEA(?_xx>9S%Bm7~m;-~(57`rB-zR65pXW2|J8;!*|_~;+Ign$CB0z8_H zNu=SDU$@7NZ}o+~L<>@Vd>j|r^!}OwK8x_#M4D6dBosaiE)THk(sjv&$5?8vr2T{jPaD9_oA_hU~-&71*dm*J(#O&-au&C}S zB#_g2j*!sR%L@Df>yy3iL|FuQ&Gsl1b`{3{K!^7`VG1{>e4P`+==1XVP+6+9=d5)a zgJfZt6NdZH+m&90D8s#a|1lin!)op8+6*Qca;#Pw(xb@ltge=N@@T)}!3?^;n($>z zHfoJ61?!iO`^;G3?X6uYO+4>&ZMCDy%gv~onXTwL1XJi?K;hb-sh5(rwbRMSyM35g zmq&Pp1-6E%((GGYn(ucn5af|wVyf0~su8{CfhRyky6JM&x|nVtt7JxKB$1GsKVPoQ*Yip;9vdJCu$t9TYlQYIHV|P!0M3jt zN~$LSJi@x?i?qLDtYR8@-OdTYT|#92ruWVlsxpgVd`6e`>ppONI8|*MpktDg@Z5TW z8F2nusTUQpfwihwc&p;c6%00_4ej=^G(+)aLWh6sKzw$V(tD*BxhMe)jW6#^T{t={G}q^GT}o1?CU9}V?;hNZ~uo+`MBq$gkU!u&x|0`^~nbf ziY!&ykAPeXTPtowklA?IZg?1AbTnaZ&j8^6Z&v|4Kh+2Y>~ghY_U`M@pkh z#G&O~pc!L#Me5n@M9+NwXaDc~o6%!NW~)o;$#|KQRe=rm6Tul&QYa&3@#*L?2vj(L z!ec$sOAEN~1tN@`W@gE=9snwY<#`x)#V_T=Hs$heF>vq@xDDE7{!7=zM2++WyjCJK zA^pTVSvR`LtgVA`o2TVOBOBhbEVdpChrQtxlvM7e{L^JM6XX=*x%d(1Z%o(UOQPu>JkMkr|H58zw^%=!t zAW=V;+FQz_XedRnpT*H5AIbEYs)|JqE_8puMlI)#NS((|D|g;y!qA z#dZ{b&IHSW3&jWda41Ez(+*UShf-YQ+dC*I`7E~CHI%h6HWA+TabgSIM##UY8+ClS z#Xd^F%+%j_)$y;HNzOT0+e}j#yF_*G@8R0RV3}@5xxFwCTn*?SyYm1bQ}+b!hC^aS zKFV&uDNh1p5^l&N-zCR3h47h0i(od}jGxuyXK6{Q zj~3L419_6PVo$=t4}l&5Ii^-qx$PA%jpl#EMpKN5^9Vwsp%IkwV}>?R9mOY`H-4h; z-F=v?jpB7>cyHX~cCMmxDYWG+2s;jI(Dj zT8C~B1%SL$9DqM0z?3IbFYX}w$eld$e$OjrsE{e@oxn@XP}!Q1o>nP(o^uj}R9uQQ zU7k@7gMycP+vQiz`%N)-BoWQBENw(CA-NY{WP#3!be)OG;J#`+51XVIaEz8PV{^>U zEE4{xqmDcK{i#*ZJicbEQs+~Q(@t_sG#Kt9wFuiXDk2nF4L7;V9T!5@T+M0X7UMg) z{u*+N$Fqpnm`(bCKGf@p6TJr5{JK#?b9DDHbs2`_;uILHuqHxxZab$DZT92mU8s-w z)w*>K!v~##>~V#4eMR_ZvL=>cPOzRzEpBDFwP9U`*Oxinb?a-A0{4WYGp?2cK-VUo zk&h4EWAWVMH-at2qdA_?rxsa@S%qd3LHz~))rVM;$kwPRRsOFXHJ$KNnwy95|4>Tt z0L>KlBu|LjK*IRiNT^xg#|;Wq7=>#7M@IFu;V$33)3eXtiNA2}9xjA#h0SeD`taSf z>v}vrQvD4o*H?jiqwNpkt7s4i9HOozad@C=-j$9If{{2^S}dzD6%@8kjEg~DvuayH@|SWjX>L(>OcoGF(}NO5K3=t zq;ng7Aa2qZhyjszGDm7@Tp?~m`50g6lPz0O+DR0zD#R`YQxgJ>;j*_W#Cc*(2%7vr ztWaF;pn5{l`=o}`DJ&da)2$f$$T9dBBxn>V>kF=UWf+6ehYd6m^C4+7^ucACf_6t)?gnFLV@QK(G;l z$exB@FB=Q?nSr{HWf&XH3DokGn{a^|uR@yGaN!G;HW>nPkVn5;bO}AQ@_R!!AL7k& zC*hh*^gmNWNiY z&5nB|-&V0=H8|3{D90zJ)->`0Cb+di@mCzRyB_H|Z`6zuz^uIx1^b-UERe~V2UFVA zN@pIi!Kv>k59d;X0eUcI(6TB>@+`Pf9PujEW1{ZrOfx+DvJia_>{64y{ByjrZ-B`@ z0Vs1_ZN%}u79g;Fs(iW>d(%MiA$ZwNdJ2-bKd zWyM+777Yms<#Zk}2J`BsDk;wh72sFGiYNDY2YDyF*B-RQl*Q(!f;C)syDMyF0+GLP z3!|Q~NizYcHOpp2y%5O{k3E=$CWP-{5V*ncD}WjDF?hW1RcRum_dwb;b_LR;n*#vM z+VTZrxpUz{iH2R=YmR#|%0v5tdIerUw|7nFs1a(W=Ul;3k_c; z)JE{P;F1?kt|HKd?CV?s%4?5dS1IZnMC27BjqYmGv{%9s+OZizf$a0UK=L+29EP6$ z|K$8$&p6QStF$9TJ(Aa2s=jFBZ1ANW@(71cx7}13v9XfNQ#yl2XTVIlAvEvZMS2yr zZt_6KhqV_qO^!2#oJdN%Qp4HTEi4$z1(&!fuc|DC%wKQR6Sd!%M~(#vyGQ_Ji(MQ; ziErwhoV}YkGxO~zk605%IG#nwPg~y_nyvi)7{eKR_m!=MFMK(;wHZtV#=9E3m+QNg zJo@JD+_wP-J?B+ENCEEr*`y5_pd3g(j;ihTReTmlUM&+bkv>k@*C8-h3~ENfNi z)hs|=S$CLH{>5K5cgBCtKAo;qtRF3_J<*}G2*W-6s+#w)+Dw9NKw%ODQWhk5z5G&% zgulNQJJ<8=#4t$ps8X#}|Gnw>bcG0tjO**lX!mv=LodCr@^otupX87_Te?7j<&$2U z29k+yIluIm=P#a^AxAJu0F;&he;vgOr=QZk8D%>dk;8_e3A#0k@OJ#_hx;Ohoe_2h z7wRCYcff$obunV27i@CWEEJk3`)Z)*bNv%hrCJ$rRghbI2fA-RGzMvHj77ocOz(Gy zg0O8AkhrW*HRIPpKT+UEH}wtvP0QD>2$cUB05M{DK%Kh{eA`?v9Sg>`+0X&%U1xZ@ zP#8m(0tEFr#u#RR?50n*n~>nkx+*9qZ-g`9q0Y_UOG8mtr)VT|lRDmYLaQk7J}&&B zun8lS8rB!Vu8h%%@`EO<8x+wHx-|Y>hZ*0zBlh6lMLM6?SN3sm;JZNeZO4`1mrZ?D zTH%u9#m)TfozoekcjlB6O>t(I}ae6Ej`QcB+Lb}R3`lh!G*^)b*WcFCA3f6%izAcs03 zm9a=dbV8sd-9>x9J2DoRULABafvF>hGUJ|3Y!Pcwws}+AY51)PWr*i9y4rE`8C4)! zbT|N@mdYp})e&M|i<#X{I37CZ!qn0rxSxEq%lZ=TX=XLu>&*oQTy~TU->TK08k>OpB&(R@29(DOjioK&>!vk z3MLB(6m!IBeX)ZE9$&Cb_-rTY#GsMck6KxAQnl|m>({5jj2*2P1&y0n0-?^O!*E0C z+ZwV@o@VqwRfA2g+TdC5Ae0&9;vf8#FLd!zGrm&AUG*H`q7i+-7XbYV=xKHWI-s_N zs@4To*%ZF!P(F6&=2~A!YK*F)@Uru4saR3<-d_OwxQf_xh9~`mjVBz2GGgBysX*^u z3>Z&m&VA3pI5(4Q|1sI_tWMr#k4PU22a%_OZQ85{gaGr5*TFhE5QL=oTh+sG&|{1& z-d0d{5Z(}?ZzCbnBj)=XgZBz;A%;%Xb&5W?$_gzYf!H&Ib1TSk}3F}+J@>FC+ zv}ObJDK0Y?5RxRQtd9GkMtojG)T+zV+D)_#T;K9ZpdoSnIr(NP=ImqtGLrYB@rM60 zQ+0=$iM-N>dLT47b@=tfyf21XGqc00?64J1H87JIfDoHL>7#p$H@Xb;d&QA|W>ch{ zwnLCoxV$3|{m3*ZHEd{(bbPjUCRt2&TifaL^Qi2IqV#C_;>+~A70O6vzJC|%zk*`} z?LnuUxaHH}KLS0wRf@rCi&;3X1bOHJ<&Dfx6slazQkq-bfPx^Q*>Xj4T`+AeHw z9fySPO~d$sp0wli{qAz;Lb={?w_07ZPdw+?_VRLdoep|mT^ZT_=%50b_wT%~>3|?l z_tPx(Y+Vw2R~ht?#aEzHNiMD>Yogmm)^IM-k z#B^H|kJw!b^z0Z_(vpMG9c2GptD3K$^N^py%>GWkXdHxmO789)A1X9|0$D%Y`PniW zfzek1LI}!?+;urCupsY3pOHkxwlU6GwC9P@`QAU`7{?3B{NQ$>E#&2iZuEl;qbsGj zARFV%d78PU9cIZob{DAOUqZieT_+_1LO zl88XQ=<)QyGTgZTjTlfw<~RwRl7o#^2dYatkYuGQwh`x|Si6K!?kr|pNYtsMwdT`mMz@54R1RN%?RW?ab7HCYBe_hdyb<3FV3ybB%stJS3vJ+9c|!lu zt&Kq66}b$;+t83iZ+xfO3;}tw$!4*Dk@`ISe9ZGW6AI?!Q&Wgzfv}!MRU1I;I44*b z94;vwvMuC1iILbLA5@}PD<(ln(sRJiYdNiGbEX&(bU{rE$dP2czD6i4*Qd%j9jkxE z36_{lFk2ZF005rS7Mw(nyL66k4SwKCz9{kG<5Qe6RvlM1NXu2oo&d^C@t|6h65<8$ zDyxtiVd{Hph)q52kpuc~)k?P`>;3kq=oT;!S6j-dfrMLbdSLdBfVK`+l1ax%D{9;k zoQ(x}*Q$=7KKarx*L!s6w^$4^evdoZC7F#?h>hdPPR(ex+r2IsJb^BPN2>oFApfo+ zcDo55nf!d2htmB0=Qyq^SxH4N=Vu6$Td?B9t)x2#q_^(oDWB|e){)u&k@?+dYB^2; z@*a3SEbdXVi3_XNIO9%u6QUJ8jU%f?KGFEj-huf{fz0-A`iR4CqG+Bs8GZ})z z9Xi?21YcB^k=&|(vHA5{eO%~nz(^D=GLf(#JE+~=R%y=TVEk~kx$J8OvKRCh#i%C4 zR%ym965|GmF;$D=Chu;voeD?s3G>8#tBpl=4LvGd#uE`rq*VT458d6GbuldRq|XrH zG+CHkf>|Q%KZ>IDOSADG zI(_Bk?xf4l8&Ks5R`7DOS)6Kr8}g%8FC~C$vyXf@BO@Zj$?g; zb**ci=Pz$RF9Y--z7OkXOC14xN@llW;_guu5dq|}lRNvS7xjXo6Ye4tRAULFHGt%l zT(|7{jfNHF>?^WC{3QVWRzUQ9H|SR4o{y+gAoLGk5B4-_mI&<5P>zief;5?H9aZ3! zR@HZ!ET82D?nakv{*KF<*h-*=P%(v+tn7=w#@n<;f^Onc)f_?=mo0LTi$~0UI3Z8c zp4UNf8fc0>>kO`SlU8o}IvuUAJiwsK;A)W9MsJ<@r==^KbH8V1W=;LWTddR8R#oO; zS;JU#i5Hv@!r*U=Q>2a)O-MTdCk-3Z%7(KZ54=8=>8`e3^n*^U-A$qQIknq>NPnZW zORFMJeL88A#g%)O(7D>(&R;%zgX_&Iv)B$t;*^rBo0<}>5MomfP#r zhLd3$-+QLiO-l3;y^|GO(w`goFBi6;6u7@XPhteQO~7np1;GZafLFbBqva`=g?kXu zMhq!Pjb;dSH{siLVW(%u9^1E8f3c5)_BZY^XP>lsT60B5NXkrkQ=*?_yu4*gKa(0? zS#n*^u$%6Ci3&*NaTs+$8*a6l@mPzJCg%LQViz-ry)MU6$5xlo%Z@VLhp&GtilR{X z>K!cRArK`E7Q7GtdcPgnjV#qk>=I+xAi!j#pit?jVSnhL9^{S}qkY=?>2CrKQEOPI zx74c;D*T0rNgU~sL@-O;2zJqV=!{~11w)Gj`qA>13cQv;Gw zMMnI9$MDNtn;o09xeZ8#kF)F!M~y&|$42pB%wm~3gXZOMtA6ZO^t)&~I?cWQ*_HA& zv40d$LE1gaf4oYQh=%Aadf?C0Z{s;CtSp*DIW9F7oNT_4$!pSRl4xa}A4n3(A+%Ar zkMQ~faRU7f+;=^eWbq8+ttrh@r__KqA; zZa}5G)lA=WtmBwH9fERn2exfDeQf>}4{e5kUXK5F**lPcQIk;^WN&ouM`KrVs<^ic z0YXBRa6opi0PmjtmyfO0w8Xnj#||4j`#THl9z#O=QG=$$lpXt_ndaGRZzXcz!T;Wz zUOa{Wn2Qeeui2Nki4M1wRQREuYH$u|<=Rf%>wu#kN*F;1$ysR2h zQal;~6J!CX?cK99=$Rf+-556eTYp2j5vXze{>#UNXtzr&As;@)PV@Nr=$~KO7&Y*S z`l1^|1N-PFGnPLFb`4s%gg-ZbR@`OL4}G(R@XX)W$GxjdjEw6it9X$bZDm07a|w)t z&NFX7Vrk7r~^ZH}z*o0&PU$5W{K7m%zOP7}$H0iBA zPy9Y{5I1{v8i&F%`O)8MS4A_2;Wp&5s@-_f0Xg)1(?w_Xh`gkPqhvcdQrH;cqKhcbs*=XQQZh@x^e10VbL|KtJ? ztnlk$c)a|-6gc^Jxm7-T4v3G{XM;4DX0)KJr&TP*A&KHDubbA?yq=NWpoNF-qRI)< zxOCULNO_bJr3C#IM^%G6dDTXp0kS(z&&}TFMS6Royp&JQfPdd!NC&7`F-+Llo z_XKGRNe7~%f}?SPgd24aHO*^&8Ttm4l_A7v>%}WU8N5ZE_O~%tTPFB)&T*|N%E`0n z@_UsEw0K{z2jvC>^g4j<7?Ryn$8lvt$Y>2O<3(_1vz2C6KQqO(zc0;!an{V4Ej@@+ zfHT(!_B1^4DuGad5L(}q=ReZ(8k3a2vTV2o#^=Rp3vdHmXC}Q!!Wmc@r;FoQri#7H zA%_8HuGo1>_g;Om*I=ZE=F z?KujRNp^B#d_|Nz5@Vl|v{AP|r`w0jtX14Dr#V$It(Z|_%pKzxn}<^PUScoo=q6+B zUtx~|)pF~NvlemE&QvBqjYZ>^_pWDaJc-Tr5w6a&`+h{4z6%*ev34Ld2d|}=$=8*PiSfOw(S}YrJ3r3p@ElwbDCb*&$x;0^%<30NOnU@>OHlxCxS1R*y!;g9li6o{Tcm@ z<6{BNlR~GD$@lo7hxSKk%+~z^0?B-w;W-`fV{Y;5DT$-{)jcHC?(F=7?hVq7JmM{- zVbY)%GJH3#!1m=RIz(B3B{9wts5^hb7rvl|TlQm@9WiLhCpHhLyJO5iUt#P>^?7qDLUwRt1P~)>c(OMk zEQH0BfM^&2Wun&cg%WKED_|!uBa@LVY9e53e=E|jUGNK>uLmS|e+t!eSD=c&tcHDX z*#d9zHY1BF;i5aYHfB{>yE^0$Qz9!`K!xdcU2B+q3$EK}NjrTU)usZDZtQ1FPGZQ} zRz)V8iKiTqVaSeK?~RZh&d9a`&d6M{hO_=cS$ue|gj_5XN~5>!erpW&(s$`2#Iw#M z(v#JeXGr5ywA%Mk;YiR%=O*Cp}6>eiYSq~U-^KRan)a*}7C!YFv49P7vMpzCEj3w7;#h*NZ})c6}8 zB)lO+LGH+oRg?EEo~qamOKW``LJ!H3S6az)F2Fs!#h`9BU1s9X-Jg`Puk|p9TxvmM z3^;7A-xE;Wa0cvmXMkQ3UdWr;6hh!1)L;_6DiZw47{L@#MancV&Z^%)xg9F7j12qy zyK$j7dB8XAm+?15y^5{j^fGey{VJjt*J6l<)t=~3c)$LNWf^%0l{3cDFM_tY9lO_+ zL36q-%%-z>H9kh%d*X>%>TbK{TZixcs!82lW#K7_T+$1zz~j4X0$L%Pf?6nQA+y_K zU@S(7(9Tpy-^sD7wMiIbe8Gb#b0sVACb7peVrUPw%uoKiAz-bI=ng;X8IR^kHn=wq z&~mu}s5L^7i~L9oZb3>+j^ZDS&MlnSlX|$^GGx!TwVOVfZbuh0cQ8H#Mt<~KLoEil zE6Sq*1ijDCCi&nE&6OYOrOl*_DI=dc7YHbqVv8zRU4ZfM2angauz>^Nn$h%Yp>Ft4 zyv4x+NjblgpXO>EOV!pHBAV0ZKcF(l<}?4_F1yk9x~)H_d@?{mrq?yZ2r`NMdrC_b zB1#qi=BF`o*Tor3vwyQBJZLic;?a}I=1jn;%>BTiif|*NMSh|Ma{3%duevA^{bpq$ z+aTl;p7u3ngSsaBH>smZseQ5i7Fic>qd9b|mqoH^cF}Y%q zV##mX0@4bk-3d>b#%MshioJ0c^cciByH7kJ%bu6>&e_YO9&#?5TFMdqHq(UoUtVDssh&`N8g%36x$Z zCu3`o-wD~sU6|r9If41=M0G;knKq9qT*Yq_0s2mMGo1}-8iO-JSw_Fd_WtrCZhazW zhiMPvk>vnT3(~YjxJy?(ly<+|AFn1!<3&X7cW0_}HyXlG6?pB%QCB7aU;xU~gIoHf zxw){J^3C@wH>{7BmA2*Xs+c? zB~*$%&ps}y)f*u$?1ZU{W3b((x`L@jtH82kmgTuA($4X9p4bJen$QyNaPq7xhxMkE zq=Y|GtGRD+-4T(V><c>4>mp zfA4+kvY{M{{~n-`J2go6O2VcXYRF&(bmnc``PU`Y!A^82w9_AmsKsmyI3|4;K?mPB z($JeoQ`>{bMCdw+FD~v1m|QnN?uod9PL^6w>cucW#6aL1FvG-_F~3v^U!esh(4+?2 zP&Emu0uQ5Ar?b5QAI@aA)dgHk%m%tPkF* zJ5(mhOpn7oiPrMQm70X_2uvi5<>z__3j*g`1#qqDbXAE z3v+5^qFG;Im&ncT>qQ^mNOq$Uetz$rypTNN+r!2#$1zy6e)k^B%`6%lo}^NFEg#(L zw-{(qSmTYdL>+E$cm$v~_bp#+!c8?DG z^&9(7FJJ!OCawScT8~PiBnT+DpN6B@?hP~F;R{=T&Py(g_4$hE0)f2-sqF1N`r>+v zpk}H3_?T*dU1xdmjXU+BxXX~?#8tL9klha>TAZ~8?i!)owtoe)s*`E#Y&)p$sOA}I zYy1&APeb~Nt&PtmXQ|_AdE3QBkX_5|Z<{awd6cebz*Hjsfh8gD`ohmY`D-QU!rr9e zp;`fT(mWv332}cR*@>huPFNS)=4<_zkzh z@>i*yA+4~SpYwQdY%{`sfNc|z>c);wlXp7h29bIHcxv@v|xl;&*zgGDs~*=veivwDoD{ww&EBmnZhoiqBW3m>Bt`P2%3n9d@$5 z3S;NB_VCjT!!@QF^MJNdG6KB&&Wwz1PD&{`l@eMBLY&G+jBECwF&`LxQFR-7i1$wK zy?)i1Tm^DQEiR5$i&p1m#;%+f4ko;eYz5-&KP5ay=BT>AOkZnyP+CeFYYpQyX3)vw(qI{tq2kmuW`9d}H@T+%$w zpVvj_R%bgc#y#GcH~mdErwbu2TRd;NQR3Yn-|70kPFzBk0Avt&_!up+U3`0gB>DOI zw2g)=aqb&mkIykEKuk6(4v+a3+1rRxh1S9R5*I-So!J`-F=KJvX3bE{_OJ0MGI#vqgk zxvC*=V>*l;)WuamC|k`SkhxDZEh2R9h@q&G}+@JYnDjmfm_S#cpFVSgnXzTZPRS zJHBnhHDbo;-(Rf{Lso023m*zOtmZMFd#B-0zUy+<#OE)z26jWQhOzo=AcM~c^O9H> zG!>Qf6B4mW8KvEKT3I@i|5fDl73-!NA>VX~j23~fY9A$IMELj>_2Q~1SqlrM_ONkt zAgzaPRC+@^la_11zW(V?m(MruE zzbW+p=wcP_H?=ijo&Q}g#YW35SJHJI1-LGyTPl;kWEj+pU|3i-LG1E?e9AkF@FTvLRS=~OrawL z2LC+elK<*crp#|sP)O217{ti+3AK`xV-xW{GxNSx>+UZev$=N^CF>R!Zi3;ZG6jG# z8-2QSOJ^@QlC;c{3fHGk%U)m!$~(9lYSgBROQuUt)gVPri95UCjQzp%Sm_n8 zY5|%|{+jFmLkBEOWIR000?baQ%ZV&DJ!WeOq?B)%2>#wF(J zsI-2&blH)e_FUWzp=Ga5{UeUKCQ-ejViuog-}Czx37^38sDV7a#C-H^l z`LDJe&rb~{FkywUj^g?0uFMM?wCsi9WJQwdu9siYW6Pg+>k66&*dHgx?uX2$_p?6z z>d)`f&-vlS=1UsZGdL2!;7W}YLr$<5fPaAhWszIBd*e83{pBUTh=NV$YDvq*Nr}>H zHmohpeR;C5g3MiBPdb6b3p2K6B_tyjUEO=mDtZ5Up@&qH>UT>tz-s(L0Ei3thU3&^j5&QACdTQ)!0e!bmw}<@P*Wopk|62=w=_#f& z%-AdFn)jb%{B2@#Dw5H-y%O4Sr|a=X*hy5d5a@jE8@2v6!1lPt?KJQzmK(jPhk~Rb zNmwki^#RXTgv)w@FSB~n-njXu72>}9oqPJKg-%+Q7<1k^(5Os$gDmZ1D%BkJw6w6X zURRA~SoJ5>pOqPJpwXggCQ}or?H1oZkpD}#+?;y%<1QRZdeO-+qbegZ5}NU9cn>1c zX2qrPa##{{U-D_ifbXd!yKh;#Ly4#cJxo(h7l|9n+N@WwJ4r8N%PLDCnCXzvK7=g> z=T=jda0K(oF#s`NAw(7rmVb;dZ9g1Q4osa#|J-{C+IQ`v@xZs}a^64te1lv} z=597^V?r6j7yib@*d7AorD5cjIIHqjLcm!o?fSm1TONrj$n&7~4a|0X51d-$Xa*kb zucgtSOtEKY#JUG_;218_W6LH6gOTdyJT+KoOR^@X{iNzF?I#eP|F+0olI$W{IuZ4~)Pe}``pV{bnh4fQA9 zbxuGmF+!As-F! zFxq@;A0uw`4y90*jn>?Xus@yjI*nISrSDe9r0SinD!@I)*il{+*rp_rG?y}RH#;65 zSj`zpZ+g|>Dt|Q7{gQt1k%pqj)2)i<`r6Yf^w-;ZC7HS(9vgltG|@$xNtq!Hg2HhP zs&`lMF6Jg-R|*(h0NnzcbP-Ae7W@J_jM`-U$_A~t93IoeNn=xb517?}Fu#Sj&FOI+ z&S~uhESzf1knO5<`=KTnoE{z9rP<)T0BqtJm~5qUCMLQPWZ@b+1p^h1MK$rIy^s`& z4pIqp^|D{yud32GH{muEWUSLSYh<7n`eDJ8xnuC(=&cyWjH2+&wXkA^q7{A$K$A$4 zTwgWy6~E2X>8g1df5+crNCn3fEtq_PaUHHCwK%73+%J`$#Mh?&kwOcdB;}~dTXC2= z6z9aS{^4>y6;dw*!%6(|p`6(*+>Xme$wyg%*B=<__|Wn@FVn53%#m_la4sT$=4%=F zTQ#3o7ti4z?7IlSzrA5<)AG17oB{@Iw#5+>G-zRBzFYB|_k!>WSzTnHhke;%JD-#m zMv`$?^r36B+`Hhb%E62*`fRyGJ%lSYqnKM>R{-EXNxVy#v|DP{$qF{)uGnp1*+i@-s)F z0?&{~fOL5Zn+Cp&v;s=uf(Ae-wUa9NGR|`8;Z8xmSRHiFUY9QTH&ol|nlU{e2JF$( zzKR;9II1~kuE-^vB->l7gN}D`jF?4W1dU^qn7WGHX$aSchPsr}7%8srf5&F9Z`Odz z?9bG(rur7yzuBx!7qNJ-nF^a=xI!XFR9y-NR&%G($1l{%tQQ)OtY%U{tNFq*vj-9w z&*_}upMl|65=T^Kd#ZZtZPCI$43(!J)ASoB-KyWF`~AXO(3c|EXTV}uZYppMcTzff zDjPcdg33`FL>^KL{KC2UCp%O2D!j|ES~L~qN2RPuftdbzwrlB-iP;w;&|;aZO;xa$ zLz=a6tI)H`M1}$1#)s)A%;QEy+7Vs z<&i<83fg)FNtJ#2vIo9&KRx(pUMe_u%X4)iovn;Kqi}TciT;`Lf2hH5#Jhv&G|jS4 zCZteye@V>oxj~6#zY)5`N~7Sb-#ME!Hk?=&!Ff;+L4Vx+Qzu!o!SU1sJY!M%Yw3zU z3okwpC~xJxnDz#LWOb1NkUfWYNto{P3EXa@MQqiU+wZvSX7qzkp-Uc34nRgwxF-z3 zozve0_0T6xRe8SjDAUErjwE}1&5+eegpt08KIY3mVkkMG^N0{E# z&$YYBpD{Z!D(9DNVpdqM-l~-rEuh|A3Tk<7Us@dt=QEtAPT~>wv}P9*B~K9)`~2SC z;+mqmQew9)8JVwtW3yH1SS=5ToaJI-0@1OQEb#64TWfBN?D$uEoYlvLaPPiFbZ6cB z$TfE;B`Fym)O_Q zSwsTRcQ3^jX_QZJkyt&?SddXn;o0vbVvqOZLY2hhu^;G*tOzh7!7l&KSg~$_hL{iy z$_PwqJ#0Zc>CZomOa9o+E9JS*-sqg37L(S=lH_P)awH05IK;rV$`u;vHz^gFGeSO+ z!0Lxf{CfomVEp`8V9{si$XpI6rTU{Kt7rRfM=ARQpbfpk&Xy7G*1mdYAtW}oR)p@M zL@En&iN#PQARnwEa%PR`{&VW`3S;aPvk%{b161l*h@#=xH>lyYnoefy=E3>!F=kVd zCVK&T`(tzUfWAj7HsND?XMJ?@;{k;G$6{u`>g(iC4muw{Zu#S52=i3qiXl37-Ziq* zNf2z+SUC(rZ!ydko5H$i^y)`&Hs$G`y(k4gJPJ{x~ppj`+#S)7$7vcMelnL!6*0?g>R*b+QB|4+mufl)u*+ z=~2sayrAzT_zwL+>w?$`k_;m`tXKxEA8?gt1TiGh`X!=*jz;sDHG>Vnk2>D~Av;bw)(OW-` z9{++pK+~3)Y<6*?2aX_T?25Z{rR{j@ufAq90sOWB?LP+!YYnXx^0a9ESrxz9B5%m_ zA@^SlPWnSs&^*dHg#EFkIsiPV*dsU^>WGg_q{ z5v5L7EdP5%h~9CEI^eeoG8o~T{<^*5W;S`)7v1OjzUT3u&+k9I2ZWogV1xOk$<|^hF zs(v2}M5*<84iA$3AKN6fxUv`DdMg^Cr5_AlN5Bka@H(AAQSODFC^O^=hC3@5shdmwErJ=$`WYA$Tg#RWq)_pd0U=+rL_=ZZdC&$Pwx z2Cp=xL-%U0~C@V$;uMO!hgv&n*Ps4%_PY-a7+CYUq4^m45AaNdVF zB^!W+Hkxj_$!PQxt%yB-2St2T{W6E&e)uhxFE!H+tWELDsB=-GGj)ldMpndDF^ZL6 zE@l$gi>F4c#sOK^oeP{(xD?Y5yIg8IDWq;UW}nlZrt#$oMTfxQUid5Lga)taW9;#H=yxuX8#e&&~o>S?#^(Wm|DmOn>$RV*x`K^_3i{H;u zTF57goyCY>OB}>KqO?M zfRSXdZIHt`hd%`e04g_6#4Co*b8^Gcpv`39m=tBsD5d@|NSVrQHkh19b1)mC16X^l zduGF@K7YE{`IXzpXKiinBL8D9m$k3afR?6L=NDh~)X*?s`oM)xjk;SN&lKbB68MJ% zOY90&+QG_fr1QoDyRObi=w+h}hx4&M(^l5l>2EUV5+;$l-N^vRAf<|>F6rt+tvn6R zl(Pj|gZ#T!f{A+;%-jp?)uTFNck7U1{*MT zhMOixa-FYl(a|tyOokTr(m}Z{qAL9v;>vedw!f)W37$n&?o4Fk#9!lbHVlmQ?hKEJ zF6#u~w7ns>SMnBlBNvo|Z_Qy6?+d#Z{}Rro9?-uB*;~0Pj-KdRQ>pQKG332L>tj#{ z=hS|gbWAiPJzJFZfBK(t9beH$QYD4Rc&JmlD`GVRJ8UAF$CNPxp@i zO`f78qPKEMCB?6S!ZD#RC>=MnBjA0MQ+Y+Z z3KfRjVxAXr7a!ofaKGSe5w?g!KM&mPgc7O?)2_ZNY>5#qV&vsW5HoQ#rQM+N0x4nFDkTgqg7$;<`&9$E^W=WiZ5~GoiH5? z#v#+1wMv%5llhZW*!k<1xpjk>=e(knP@V}ARKr@w=+_8Hq#9)|1n1Qt4H;IYs4+?@ zvM7@yWsM(Zk_@Hgobp==g{MC(-%*nNJkI~HS4Xj=$Mzjn(q;UtqKr4hvH-@4Th?GA!#77Pby{z!CxJ6M+OjN;`6eq>pI`)U zi`Qe@22B#jR(b=VHQc^ucrTIvI}cJj9H8mNG(7y$Lkqk8GgK6yh(oL7w_HLK)U22C zFA{-Bc|3LF@%BQd>n6WcfuD7MPLvH_)x625O3v716k-GSpB%gB^G^0!Y*Wo~&z33F z*t3GCT$U4TvrZ%=Ux$Bp+o3A-g8esy2H-3q-S~xysmM6oQ>jr03u)WG_o!-nHY^;} z-%%mZHQ0~KI^x8}KNqm&x|9Xd*t?bK5D^8KBbV+=;Gp_o8#8SbhsP#PTGc7hAT0dwMBP`fT z0V9SQ$(zE?rOVacnMmV|pi7xI8jQomIcU`2tZz8cph?r2(g7_!^^tjnH%7-^&6YA? z<^gPL+8_xr1+cBVDX5-yyqBuI&%iYn)Cx(N`jvXw*VtL5U-w zW06K;w(o?EvMW8&>X~$&uLetQ=>vRtpQGu7rWq)%trsF2FB{iY5o-$~4hXTf;GQGR zM*ZqcQY6;9=F_sl{!7{e+w|oBH?!Y~biC5W9Eg()to9*5s~+Ap0^8&nrzvP(`MG1* zSkI_d46q;)G>Dy1@_3*qa{;bn3#K5meCnBExps(LfYThZx28D1sX%Z*-ZSg2z9VBT zr6RqH7}6f{L6(ymO~hXLMuVl=NHnk~Qy+P)R(`#(H_a32LhoaqvfT_g{jb)M-PuR> z$*rLXD#fv!5d)>90fgBq@&1e1Oamh${)i}HRO;{Nv}ENOu4BwEr;g=#uc({a>)$z6 z-!`?YysH1W-!$>#2-1e+o$7hGK|;Y0qM#uMoM7VaXRDtBM!|ppZGAIL-TPzp*tqIj zoiq{KT}H>w!ugC{20hf{@`((2cYnQArilA~wQiX2R^d=`CIDt8vS6sxj*D)_4{Gjk zOJmj%aWCEbDmB`uq^NJ0y%_EhBbZIs5hvL0_#_Mn?L0{r3*;v^i0Km}9f_dL-h1QY zx4Bb3m!FBbbFDfo_88e?7#5sCve#ZM?~s7<*B^>ZMq?%7H?^Hp*d5MG}tXBSS@9C(oz)K=AoH-bD#)Oj)k#%?$g< z=dp+Tyc68%?k$ZZK{P1Rsbz>SK|Jykj`Dp(dAhQlV*Sh6{gyzJiLnvkzd}2Idyh+< ze+le`zj9L}&uug)pJ`Bhhs5@_xKkrzh71BSF&8?`CkRiBYxl!Jim!e9yL3>GZ2(3? z20nh0m#mOsu4IeX2k+Peu}Zzf{f2y<9df%;H%z}x=Ikm*T(HNV&y^}lv|Zu6nLfQA zi)fX_Mh# z@>+}auJCvKTTQ9J_apBiIU{>Le*~qd!@B*1{tY$4zBMK%KqQjtG`5FtICiqA2~R4nRvP@V+Mhh3#a&xA(t z!SEreQ=iP>jh?C)M&Mzq7K#a;+nIhn^aXNa{I_1GV>~_D;V|5z2r2PKf7q{h;~_*} z-pzWk`}R{iYPNvA1{7P4I7BYuqpgSw*WzfvMp}D~h{Q``6o3Bbp2C`nuflp^3@bc5 z>jiNCCyU^gGzVDu`I!<)buSDmM6KiUWpWvNHWj~C zhU^J0NZfHs#c5#5|E=kLVtaF(hWTb>FLipi=(sGgge8H%SS=I|kSVJR1U=_IZ9Jb^ zu19~*CuvexqnJ+Y9G{o&z#IsQ(=booA{5OmiQ8uTz7#KM=lvqh9yBF4$U~ zZ-_`OTAl;sR;aRW^JH`S)^8TwzJ7M2MO!DBzM0P)9tO|}^RhmWLW2%mlH*qGeb6Q? zG}Jh7S1$FcckKb4ogAO=*%!n0*L-T0ue}<>we-!J<}l~xsHS&y zxyZ0yUy_BD0eAeSn{}{{aW-WXF*BEU#|u~vmdl>LRIr+lOpTvtEUYzBJ-X)iEQwUf zxB`-=>t3^o!*C1FY(GmANM7;DiKckuAWL>0AR@KX-ph8=YI3LeAXoP-r$>3-_{#O9suO=Mea><(D6PV9ge09K)V=`kF!m3HHd zV{JBGmqX-FsbT4DFw^Nx-b;ndVHWh!+Yx&VT&0caw6T7z-!DzNv_@MVmXHcM$dw3s?^XDp)FU;7KS)R zpYflB*Ov1Nm)rK$D3i@!sUwo#+g%TJ+XTol$Q;pME5xdB^X2^2xdqX)Hx)e1IrptD zMD`Yry$x?$+QoVhfp;|QXZ@k;;$uh2V{&aG{F&4Yj*`Z|iF_}((n>(oqHl#Q&f)O7 zjVfMznf!5EKU88%6g5sLA^niiM^uR?nBElEI&R^@&M}A@&$kS>mq5a+nuUOq(G-ht zQTOi$bwdu8Qfdt4tGv#6Dw`U~q(vA3pJ{)_Kl}! zI3E1>L%s(()Wk&|n4JhHw`8@j+{^H^#02bt3i_og^i9itJ@4cF?pW_-TABHo6AfVR>zD$!cQpzG&Jq_+rW4zG$d zDOUEc^~;NL>dv;H)7L_Bnt&`bHh{cDnOVHdCsr$<()k5mz2=B?W-`fWhMLy+i0vlYln{)5oDg~oT3!@lYh?jD+5#eC1oy`#Lm@QM^Dpi zlUxw>>`o!z9r5XdN%<@w0R)l9+TwCj(FK`ZwE&?Jb7z<><)^A4oYciQY)Uz|en5SfZS5*(}|IW2qX8zQ!}C6V!u&C)a_ zs014SxW|A-x2+9DO|SpTeoDNO)}0DMD!oAnSxNp$|WoIAi$Sbqg6kmod7s z)bx!O7kRUc{wRcfRM$!em%PVa%!P43kri#NPjPcWXZ7FyQfrgqc$SJ|L}B~9&!E&W z{M*Q{W~6-H)oioZ71w|j?^W6KZntIN;~bMu;gTwo;IB8?4?xE{0Ce(iGz*U5)&z3G(*tW)6_~!B6J)!>Fbz%#lg&PHs%ZeC89XPL&YuKbe*v z5Y~`ukJsMYLeSaF77rdTo|q^`&n*hmTC?0c0NwYg9*kF>YDd+8JG`v8=q9nvm=jyQ zuNPjcy;p~`V)iw#7z>bJ<)_zctV29s8R%ykFo^4Hsuf8>e}?}gjQL<2Uy@QHD5U+e zhrb}V){yPP>0#}PyAp;gLAlOI>TfJ0uXtVO$lx=TuIK*QJ(Mgy0izJ?CWp!xggY0! zS}9EVE{H#mt`Jvncn<{ai>NusVdNbCA|f zAl{$;bWa%nfyZW)=*lCqS{@{VmR-ZLHbll}si*kRFhgLLyfbPU3N4$EB$eC^qdAnB z$4`%vZv3r{bX@cn>FC?Cl?iqx#~1|tg3Cql8YxLnXDe_EVnqjeZh0g4a)p0!$hc)& ztgfT@H_d-q=%(HdRW*ghdxTVRc+}f2$d?Fy3UQD!(RT{=VaE^QDOm5%op|V=7z-kQ3%`l`Z}j=9$j{=+ zoKw(;53)X*H`5t+#9D%f{zfzUt#R)06Wxu@36WOIdW}g{RwO7y=eEX+sirQ)=-;`qTwX1 zX%wnG#u5{crH>_A_V_NQ8_Nfu9=Y`@QJpk8fXgyoeEgF8v!ztB96h?J>u7y$?Xk__ z6(7I>82Mz>&L+{^)4{vz)||U3wz&+i2`;M6X7t4NO}Y^3AC}j53GYg01UBV6-+u{P zEE9iG9=i~)#td;PJZEB(ZsPPiVDPiPOw;TcOCc?Mo3m}Gt^n1d1gKHKiX7w?qnD@T;!Iwq0Mp`Nr^+)%Y|zOM6BD|^J0 z5Jy(9p^;C2u^uIEN9pk5DJ~&V-d;g)3J)>cUWRA`ENbuxCFL~53+c3-lfYNAPU@I9 zc?Js_QK=e=;>bsoc|3^*4aEIR=5`rKMCSrQX-Hk1z#wC!t|?&LX)#DPZW*1U`d7(& z?BC5A@t$p6`mYibYDEYgY78V4(v2(l4lYSMv)Y>A1fVD%(D{e+{)TO}a4vQf4QyM) z{Bn1pnU)_P)9pI-FkD#-x-DL?cU>YS8WmC_TKA}%B^@{-$l5a&m>f!jyPs)STBmvE z55Ke0k?iqj=k2r7Mi1oFLP6I;o(%B`NSVWL_%zaY%Do|0c3w&)_&Awf*v%qXxRr-W zclc{-KRc%Jpx4zT*ZIGz%CJD>0`W^_h#PzBVnnylY1;k4^RjZbdwJrslM5rS8k{-r zwJB$SXC=|zY! zR=Ite_hjfgp}n=xRzanl!Rjgm`*Er3B`mwRZZW~;YD1IU0Le1mz(u!A{r8U|-B8FZ z%8;D4DEb%hs0R;)dT;Q%ws=PmIpp!Q;VGbf64Ls%+nuWMBo4lCwVK;aSVAumSEu^< zwL>CzH4k?wVSw1n=$9Qhb5UZ{$Rf_TcI1d#Rs?Q*e*lq?6$3b*#d@5@bRA3Ma>*+$ z3#4Ec(H>x|lBU2?T3tT!1LA>t41lGtG5df1@*&S0<R2Ko#SBXy%txNqjh-yi+a5n|W&2*Wr1>HBk|Oo&=DuHg4pa97H?rrpp91UgPtV=x03UYl-IW{ zg8_u~O=UXd2!Nw7W#ui#QKwH&A3m_R!`nUeiP=;{G2knhFFa%llHs)4u=VcX1P5J@ z0B-t7ZqQCzoqExBGY!zlR0psaeiaQGkAjZvT$hcgo6yMLSa#asGChPKw0CxEi03!@ zO4HUk9o+qiAjHM`gB<(A?C2&VIg_j&ex+9Ik!GtBS54=GUm|c7cds5iHm3{DnQKfZ zhLt`|wv4cmPFr*mKyW3ne<>}kdMNZOJ3RSoWXz0sbO0FlUntXhY7m&MUf;Hwbi|DxI#CG zO_GCDuqLuV^j)or?c3ia6086IPEnncKcf)C3`j@2bUPA))7|86wLx~9C)lYPm7uCl zW}tt<_zbxQy3A~NBDv{$CQ9F(CC}e)o%_FQhZ6wELlmjSRL2HR;6B#Q+(3k zs_NN8HNQgN^DaXpkAPRilopZX?MrMbtt!+lyn2)0I`P!Vg8=jBcHn^TY8?D+xtWqV zVWNlS%nro}_eo*JVo%*)4}+(Tk+4+i{J+3p{{${0es%m+A=IPr-v*#hmYQBm((C|Z-M%sK{do=S(z2GLtWntraKZ> zP3uo*C6TLf{G$Rg6rc%&Si<|2IJ?hs&AwQ<94E`o*=}2zGLA}qm}Aj+UL?fxF=<^3 zeimtB257Q(^q&A}fzb^KQ{)(u!CF1{d?_07a9cf=D_`}o5_Km_3DrwaSU-pRxOQDj zPf3_aYhs1Zh&0f@+e^`V^2Dg3^wDECMe0;fY89adr;O}aLznJEw>o}3{?4@HS45X& z6}aDa6HH`30w_<3R@G&w?lx2%WcDy5SZll5u5eFom#y!s!oEtQV){`^Clf$fMt1mz6O#;nH1n+Vg7J^3=sOhHa>EE`)h3fPy!t! zbn17Z60eFLabtA_=C{<_#c52W=iirhz7Oui-cRIkgwta@3Zodv-wBD7|LL4WWUJ*U z7Zc{AF;sY6TV@q(&5xbz#+j=R7_3D$5H%Jnz41}Ij4rwzXX&_oArsj!cu}L63%*ti z$1xLe%%CdsC;xw105iu3F?6Kx^Y%FK5a&VjT@(0yU^Uwif0Fc?0@^e_TLLt-;8-f1 zhz(&i?5solT^@dCmTg8&#hbFl@{-GM7v+g=;f_w8K1nBxGyA+h`~?-9-DW!r0;)dR zp%E`@iC!xo=0r+``Og#j`ter%$r|aGBS2TLd}cT8lzYg_(6i&0(e4)}sGHIM=X2X_ z=z;Wt&N`~f+L%x2Ugv%YLRXY$NPWM<=n_S?C{eGpXxrc9@HxgFeOOOo0{5s3H-S~& zXehs1{K!E{ZsdHayOFE3al+is!+cnZ|NT@w@Z4l}lJH#5Zf{uq?`FFE>tK-$JFb}e&oiV56mvxS`FTu%! zVAM#|p5ZfHku52mI#Sme(*-`+69g@lA8gLx4HHy2Tlyu{0W(XjL;czhWDmTAwz7g} z?E>`tAu^K>^ta6P3VwFb&!gD_wv=m9H zld1Bf)TQst=dC^V5u9Si5GD~Nq-hOTXX)3kixVk~9Pek;zw3tHQXF)g&7okbd7xrD znY*a_ue{_g4VszwSBL<4p>|{~RMNw#(<{l5)@I@T)7${5czFWX5xaoxszCkZ8y#Ke zx|IM`m9hT6G|7~ugq92(2Ht*pRqvY4<@11R0`yS_zn}BlQ?k(2MhDA2MVhk(`WWq- zT&R$$O=iPu^g~MB_--HPAnVIty*lWt+mfSUC$PIkMf-L`f#78xLi{wTghx6U;vCNx zRTvNtO-|oxUC=upTZG;|ERg2<_gcUylRj!PaGY8dL}Iu^!1+6GdvqcRiXiK&^|aC2 z9T$rVofCP1hdJ{r&4I@Yq28{e$=t7Y2>S$4-@7xPJ7v%uZwpr;2Zr}d#=Z#qceT66 zTuu(ry}QnXo1G7-RKo(!Hawg=;ZLu$a0h{p+d=1I@e0^}R{6$`&zxv0T1Q#cy|w*u zXfi1umE!@fz~hIlm}pw$+a|Udlg-Wv7tMfdJ^$v@TY@b`C8T7scEbl9QsVme%3p^6 zR#x~PtT!PNw8Ftp?IMbLFasx`zG166b?0l}z2?0AB!LQ8-UtWZ92~{6PuJC#Iq0gg zxIB>)hiknQ=iV4yCbx7mLKQwzaL_Nl!PAr*2!4s^Q}y~2;8^!UBDk;W91f?);F$@8 zF<4AwtrGB4<7UVF<4aKBIVmSJ-zvo|s)#vBTb0V3O=KVBvw~G2+SeGO*du|~A`iD| z`FL-J+LGES!}=S1%+cf%mK5us+8s3)KbQ|#uKA##hi1dB*X z%!3}AgtG#sTx`)2YXUh}!R4R{tr|ouvS6(WnZmKJ{zG-S&A#s(CaKR0J>a&_Ztv`A z&pSU#h6jGbzA?(6Jgtru`7zlfDQm0xyNkHDaXa?JC;m9?PYT!kC&bfx?WYajb;JL4 zZ!HYWc~{lnbvMr>PMv4ki%4_C(hzW_%BTdhN~m)o z!G%zO^OGC$7?JBL(E>0LAr(wP%BT7L^ewBBOVr_Q;dR4yYi$UrZqMFF`Vq5SQ>8BZR!#JSzIgcy30|-?Y9w^n8$ujM!}EtWdNI`?9F`1LRIVXznAVY z^fD&K0d-ZM$s+dot;qZ}ynax?IY*3p-)Cdupk<%jFgXpo!G;`zMYzmWVO@cO^i;$y z!(NYDsv~I8&V_jiosj;i}BW6OgplyoXt}&4XQHQ zxTidhGvdde)6W2+AnJmv&|ofyv+Z6uyiIk9R=&h7j_Z)XPR$dL#m-k?eZfdEl#Ii& zqFfwhtvieKt`p8F7vItjt}_45$aY_l`V|Sql`AN?hSk-Vb!2CihAp zw?Y@~xB2w)-V*^u6e~)XqzRg+NPuG3Lx4_J9F#*`djR8l72f+)9TAK6m@FFJs73?@ zIOA=ZT#_vUhU_WkFd8dNlJv1~3u4sOc-(=EX`nP)T5zc!u;pJ~{%L0;{-=%BT_Kz3 ze~&&DLonTA+!#J&`0Qqy6is{~*VcSWWOl|>CFzevyQX_r%RLdzxw>T1m|+|a@k8i> zQZ%VArfUFOH8s!1O{VqBC2Im&g45#`Uu^HmrmY|9 zvWgr|y-C9TDZL)&&3EYsD`~F}SWcUr)zJS7^f}y7zWV@=eLh8Py>Th8=3<5@s@gWP z^M&m?eT1o(JaAT!BBn; zy;(TudKfZJEQ(m6uBIhmTnp!awD zSf|smsJYvazTlm#8q%HmWwZ{c{KTn>$O_eXqv?;lH~b>8JEHuAKsqPj+R%5hmN<8V zLAt}%9_8eVzl{CKJjtpb+|*_FZj>%l)9z)RGvzR2*4CqnaMs5#f6YAwov~~ILNi8b z@(n7@83xW5qzQ(7R#5*KRR>uid;d3cf?VF%B{|n2iCZe_N>%1MP7f6jcJKzg>v47` zd*th9FBq+SOtymZ*GA{2CujA^FbcKZqC^{@%z)^P4KhZX9`)UGn>w})5EH>jMGOEk z6wb|d3+TCf55XCaTy~>H$%_SS`kRJWn>l9x#;zKWj_KqNVLdxJ;A6qaT5}W;9VT6{ zuKiW5@{eyWCvB0b^(Wq_rE{B7FWyahLOayd)5eANsiEnB1=?&wo9+asHwe(uoDZLN z=HAl3yxes1+vO-kp^#-TIpbEU-C85@hdw?g$mfK~2x&3qDFj}14aMRcs&nvM!xY%>KBuySPxxy z?0AKHw!&V_U&q{B^s+~Hn zQwuk18=xO(i5d-%0Of)x2vDtJd%dgXKb$gp-y#H5FIonpY_I<2JL;*>9cAwIG3hDb zT+z0ob0550#6Qd_|Bka^l8BeHJE0+PbJ7Yhhzp0`J*Pm;s)4|cTtj%YF9ozBaJI!9Oh!ZZ zE9@oEUR;=-+SAud)t_Mul380GtX?Q>}r83 zxxuFQ%9|cMcq?)VAFwDo$>}6zvJh{UeT+TkhWwh)2-!JAYb&CG?rWB_7M+lNFHoWG zsxdKWWJ@359Yw9x957sCo*b>pGg~8PO$m#fyKz>@#k(*T#R;e?W8&HoGv(Q*_XrrjiH}{dD+1*P%u5vtjeu0D?8xdMz z)?kEOHbUpR9U*M~R~t#lri#s66S_?I$%$)Hx=&cjxXC+7qVE9_te^OHe-P8Z*ce$r zy-65=iKjR_tWqOcQQ!ohudI!wj{02Jb+RO0Yde9jE44>YeXCI90bR4nR`&jpPjjrdjpsb=nF2;g^m!MHe7`zx%OH>qBJ{$R&%%+zUZB0^c+ z*xZrU8rl7gMKq~J1X;F-uqUQ#erFxAST77t{1-aPaq6gwuHDi#Jo^_f!+NbzLKzK= z0=l74=l1x^$1fe-&+apJVI zEsuZOe3(O(S!Cmk4^x1t89ACn=gQ7PAM{OSFXzj1R0{A4Z8wPca#Qp%Px)p=1`D1K z+_`K;=LkN{Tos&b3SP1;Q3?jvpRX^j{wHHYo8V}2&E*H520O58h_%^u0oWhLT-u_B zMsP)q(EY~9-aMi`mpQW+Nf)_yEDErkpBs&TX^)o4e+tBMFWs;%U`i>{&e0znha;_rLxEe`r{DaHgu)9b&WeYiT_(ev<>ajP)&v(~lYq;ofPp z&?m~Q_9-S)fFE1b5LGKC7O)CR+NpaSv?~i~HvLsOm<>Mq6&Ibn>u6cZ3SefSk6j1# zend0uP;2#x%Eqy^9kYlK2%{cqvn*hHU3w_1B=5S#51R^T`}n?Y?b&oz{@u@J6#@(Re*zEucm?ZlwBe3e)9@MyxK&NP}~Z(O=8=1_)ub=+5}wClqep(YWn zKZQ?Iaw~gOMMyFIp|7iBzBeQua=AO5Y=wD{aTAIZZ%2} z`Gq@-K@dSJE^LvRxovoDK+ts?3X1YYkA#x(Bjl#09W?(jcXDw&diR*AfN=&~8V|nZ zP$0h*YAju;zhD_8wskCVUxJ1bMA&5vu&566YZ%2OAoL%oMR9zXT>;TLrU;!&-#x!R zo%+7~-_G3u^XA16HNVEE6}pdzMXeYT6(t4Go?pfb?ZtaDXmz)Ak>Y=~;RL7GJljPhN@!ha<-PN`Xe7L?mMap8UnxI&T+dofr;I85&ifJ!%8>W+ep=jd`PB#_;=d*|Kimr>qis^8+gzV6Wq+X(+SB?Vy?9Lc|9w!jQqIP|Zo2SlzJ z>`@~}QrZSzBM2f@>C2csJ}lcHG~DKM7JL^g31&aA%iRUhi6yfCZM<@YYi$b7c&)Uc zMRNVAjZZgnY`;C&S`hdFpz%&wb%So-VmNnb$glDI3L`ZGxR9o5W?79(gbRgPgyw>g z3);;G9S@~B5g~Pxq?4yoGU}Us`S3UC5nN`&OSmTCCt=v=ccp0rXKA}xTR2?V(5SG~%T&&6D_9NmUTa?Le7pcLc`l>Z9{BVo!96BF zO#=TeYNWcaG%OffN@Qd>#>DXmk+1C2F}KyEvuET}_VS8;34mV`e(n}{>#PM26JXvK zV{IL5vxu&*`YCq7>3T79k53y0W-r6ME9cQL&VTH2y8hxdUW}x&izZwUqmX?GB^r7 zqTc~>ibS=bbIGqWTYzSiU^O9AnOH*g0`PvR$HiigM}WP{p?W(lwceQ1lAk8I=S z-AS)}$g7)&i^2-p^w8|VR90<}iZ0i*za>aLyD_)L5i$joX%LOivP@F1 zKf?r2ET{~6P?&z^4sGHCk}Rk9 zNtD>)%S7e^7{_DBrAhX4%>f|mo5^$~`5%2o7mOuav3=XFy@=zp+Wi3Q0uJrdm#p^u zsrEC(B4AhUmA<@5Mdh0I-VNm&;!;5#vYc_vTz#XxjH~psj`Cc6@eKTC#xFNXO5*#z z>w{xx#V&hUo=gd%grNMK2dhn<97;>b@A?h=%qMqN?sxY+p?P|8+sY4^4Nx%Rex-7M z7eQ~cy8xLC9W*Hs*krP+`wnh+05$-D8D`s>B&*q(45DK27-k>(x5h`1CWPAC@`Bm8^{S+X&Qq9e>$D&~bv# z2AqQirBosxEGh_F>1%N&`*@k$#e3k`Qb6iQ7`(`ee*bwTB#wyQN8N_KTg35Vyj zz>yplnH=JsF5Z{}7tBiT1b-3l!jAgPiuuvHcG6J%)o>f*$4e!DvIQ5^CabFaOGgez z+B`yWO_oOZWmzbSm;HR*oi6?TZI_W(w+>Ah0gFyqCpBY0q>Xqn`O=FbTHJOx@J8t1 zPS@|oO>VzR_M?=2YzmUOpcE zzPyUcHVPl`{JO-NgYj~a6j%lXAwnAcu|8`gEYnXaxjt=`vbi`=i)2FlDt0aM!{3>` zwQ4v@Go|TwJ8wP>`)v8%{x@7+c~j9k8G7zGZ}e)!PqnIMpr+tjR#V2oiJ(&vZbx*y0Ur{Hd}{HoKcXL9V;hVvBbaTT!UzzVx8B9RU^xr zY7X2<2g~147%bTGUcV2?dGUt|*zY7A2?p@U(j#%_e)<-yppId?Axd(4qbL~cW@34W zWy$uYPuZmqU-6CF-5Jd6uWrm5b|08p*evQTnIx;~KlXh{asOwh$DhPje5w!npg|JB z1?`LYUotrhQT?@=wwnbEq3;2XT=E;YH z@oT7jYIBXwHNpQJ*)K zeC%~HS?xc#R5WQ3!%I6l6XNG0M`w{1;S_kS!_TCblJ)>y-*n%9f9|SXup-xVsklMSIs&z@`k>+Jj(N;xaK#cqxNK9P zZ+pO(bT9AK6>*5IY<4tzr|fE|7`SdTZRvP-fDc(Z$C>{H`O!Pb6aO;1niEO^jR@%G zv+~ORI+PzqIP5s=Gc`xtWhq;iI&UCHlK2%E+y0{Tmh-0mni(l>RqNrNK@e+r!&Uwj ztp@aNm_VYkZuhneWX5<>z{uhQYFV)4P%4II`ts7Aw_nx)CoCqpQck*r5C6l2CIBjk ztpv7?U*JPe7&{=YiM*8Pb0DWBkR&4+=+5&OzAbCZeo&)%MXPZJ`oh?j{_>5i{Qk$- z?W#f5IvH8;W7mgWLTvYViNo&<%WH*KWo&2t^ooWJe!eHfT_eBW{zhx?7$izZ(z`!}%$sUctXbqecQVNkl`KAkH9iT1THrZiMO*xh@75YY{1$6(Zd9 zjQBaG@Gb_%baPbmOwX3^1?2sEIL1B~C604-*{E#bLzrZ(Eu2cFo4p<^0I@O~{745* zPSe&%bV4}&{RlyB!2{2P(~HT`;(ym4O;xD=+QPE~n59$r5LVpqXoJzjU?lL+WFrG! z1^=ct#upZhca~a|Fa-ryn#NzGVHCa;34$R{yINU9Jvm@0Lp*KYftdHGF*y7XWi4#6 zxbsYvne$|CmZTvX!hvWxA;Z$pKQ*zV9Ghs%e&*HPPXDmr9W99*#T$gnlXZsck|m4C z%0aOh)QG3A+ADr_&(uWpmm#gC-QtT^lR4Pzr?MWggiWU2kCU|=y#S<{@nnm@1mWj* z6h;WYM$Ftp^UWfMGOi~Z@!u)?$4)&?s^wF@=eG>oUn8r8^wzRV*nCoxe>D%ya~=`W ziA?&TdnhD{)~t*n4QX8ip|li^U2kWAL!$5-$pk;UkB>=^r~K|YVZPCwX5!VZRhjah zvUrOJ6K_4;Fj$b!bvK4m-eJWFH8p(gG3if_?pqA-W`_jhCo_0mZEsyeDa>dRlA5t< zAy1l|z7a|_uzmaCe?{14er;dJlP053rzneefTT7y$Q)o0;7!)!&594YY}t+Il+c$O zOlE5OirV+r_|S{(-j=4XwU!qbaK~@Die`GV6m{)&m-fvS0S@vf7oE>9RI(fKPkX}E zip=%Urcb@&`dX|3D7>i4=!ofqrC@l&QgaBGH#l6%hI!=Qr|EAmpK(QToVqSHBg}Qn z1XTVd{XZ?hlfqpH)+qHl@NgoJy!WSj>)|>5r@t|&uHgf*OmH`j4KVc*JwQ7bXxnv zxW{os4NP{AZt3}j^_uvo0siFMo+l5dcY_nvz1d4V>tEBZjaPkt2ME`Omz?;gNc5-) zV)fhZurmzc{Td9~MaF7%h=w8ZOMrlKjcYU}XRK_%BTl-`8VvRV!8CPQI_L6?InMagTFVpqvRs5J-!fs*kR_OA=vZ6LUP{mHF`aGMj%EKay^nI z8u+3xw{MoUN{*A(r{EXcoMGD1clvT#aP9-0|BtpQmy>`?K$+sTs`CI`XsCB$4rp1- zfkImuuBCpXEpP=t*p6s}deYJNQ#nFOrvoh#;|7ftT*VDMI2)Fmk|i4W$Fq6dAn7`p z6ue3GSv3diGJGb}{)f~XzwiIPWxXtMQ++&qX~Z1(qf48;ljT|Efq@Bf?Ki!m^+k#= z%*V>*`t^h%KZ6ou_is3|4gT4`*hyXAY*uDlk-U{8(AyOuU$#F;Ruu(Om0@qMzFk{NT6^EPpVXN_bls7Irv*LGFuD+JB*p^y*6gXSf)I- zV#bIrH=Di<`!ja+w0LXj47$;Fw?S{w@BDcBlIm_>w6gGvgzK)R4;ei3fR^^O6e}0K zwKf>Q{T`2H5H7R((!2eQcM@JXTUO}6-ceAa(VDp{Z>whCDbOs|XHtz)P4iGFMWqdt zOTzInxMgvL@WI750;V*J`ELQK>)c3>n(;SI>_iu>#)$cWUqlCYtNfj{xRXOJ-&pKP zUC=$bduW|ucm;NuClAL)tZ}M#Vc>r^!I?|q!WDTvU31_v1S>3xpWrN#Kz15I7lz7L1yoZ3K_yYU>Hz98#tPP5}9KuB|=P2v&T<8N0_fH zEF`Gf$mz8vtd?kj1ufS_GGMu)wBG&@Jo)L;_qsDGW_ZDxz_OQvjb41qH1oOiin!7y z-ixX~8(KSuE%H~W@NHj;dxAd605Qxy4_?08?+B!N{1TF^Pm|mzQs_iz!Hw*EgfG)B z@`GR=36SLJ|8uGSm{uCu_Y2~oi|{ArFK`*Efkg-vdB!n_a*X=Q1+NPugdU~3(u6m8 z?CSRKaXcFdT_eR7Q@=)v50}pdDJT3Qz%8-xTr+d|BD*^2wD$da}bR+JE(I zd8&oL5mB!}ka0~B?cG=AOM1g2elSV}YpipdIU3zoW@NiQy{y@DtC^fqy94xAXA!2% zxpW&W2G@B6N&y$}e+T0PpD=zciq>8JSn80TQIK`%esE91B?*lO5XPVQkNXAAo{(F*H<1b{+U5k z7C!h)VdjDe=cgXUx@_<14VduVK%{p-rK@rC+oVE$_OYCxB3)c^GsE$PCc^V83k=v=r^o0 z26kH&0#*_C2~(%dHLZ8}=kvTYLwZ0ZzLHgR^=H#PBVL*K(VsXMadkC>}FzH+hPL4^>t(t@U}&14XR{0cwuG*+irSKtjcw z&^6$!PhI{W)XaLIfyR>C^V#|_kYS&*DSEw;Yh9~IRQ<=+%Lxg)^%_HhA-7+lbax6| zf5%Sa>SkQG$^i1updtoYH^k91^G5>zpN)y7jKZE-^9sfKcpj8Y$zG6pEQ5|)p`LGs z&wsgJ;Om>081oiwWFv=SIrsW(pVoLZZo~QbD&<{aj-&(7I2rf%)q|BPn!E$={TLcJ)+#Sfh# z&6oK&6!J&?l^-e8?JDy-`Esc++=0$$^C9p!n4OWo0UVo_w=2`jfe4oSZjWbGH9(NM znvZ?qZE{dBm|ZdZ_5BMnULkIhOi6Y#QLkDfkehG!Pu(O5d)QcK+MMAf2!DqaoD>a2gv6U%0T1fxyC}X}X|6u;i z>AKA4zqIvmsG!3RwSCpSfuCYV+LF`*?;alj6T#=(Rp)REB_~zKRytH5%!W#3DF9>S z2B59ugOzpZFzhuM1aohhFnVUg!+6IpQWdt}WD%bRzg2wd`+#&1DwVzvBwn7%z&vBM zoUmdwYLhO)|D#f*y*5-QN##AeWl!2mRv-K_Vd8mZhtT~-;wXSBi+|h~lH4dr*k_#z zJ=wEj!pN$ur;OWq0jJ)q+~!NoVqV13-(@cZK)AO#E%Z~O+{Txhf_$lvI?bjf_c6EZ zBzAPBxBP2kL_6_6?~&P`&+qsE0d1GvP15Ge*RHUYe{}~oxbX4ful_*_-TB_#^|tn# z@8V(SoC!91b+Z{%!@0fUuvd7yUA6a{dsiBACY({5{2l}-2E?1yN7C~8Nt1~Xl8meM zG+4;1^|ujZt0+({&f)z`d)z0n;~CVWAQh$aDEVNg_y;iehPl6H7psXRrFc4y;t+1Q zUdzTQ+xM4uXtyVTM!*3+mT0cC?pQHv8xojA8^3w z)nP|%uTMl#X*<}3oJDQy^Mm-nodvc+fctFufo`b?3$!gPs4V#FlTXjH>PK==@_mwr zv%V%B?S0i3Y(C5c4`w!Z-F|Fv@b{kB{tdzuAWWwinpbc8G`)y212LfcVh>q3SC&i%r0RZo@T8{ZY`2xrmpT}DT34*=Z z?McJD=y?2B$;y6J5K2wW*J|=$V$oISSi&itGeirWwqpp+|FJC}8LOaaRKFnm?maH$ z#2VUCOUSV3#HWzs;C4yJf%@C)6Y&FXf{xT|RR9fMJh2j@2ruVpn<5cghRL+rTu`hh z*})4po+fHma8d2OwtOa_j+=b1yClwxEHb+`@cQ-P5t95ii@V_Ka2b~RMZ5}j*;SvM zLS0d`cxkfpqFH#FC6*H1d8RCE1=uj3HXs&}sibLalu3#ZauQA`)i@ez+=7t&N9S96 zk2g89J!aRQ3+%ab+)~Sk85wifGHXUY>qD#kk%l%6vr22i#mECvbuk79v)SbOIdS>A z<>TIQu6lO!uoQWbH&C{4aFJr|B@AwA!36z&MqzGfb8v{q1iyoOz1)!G0lFqMBLZA< z1oVhut;&?{dD$-p0WlPX$b^C5YGRB(`H^XwdpKH-|fp4xP* zgB!TX%kRDM(E@t^x_?HY*B_+pUS`toSB0B8Wl#-eNlnzkxuORE=EiFGBEtj!g_4L) z^Z@cWiTve_jgqEs>B^;a|LAktqBe9H*=kA)9gL4sJakolO(H8uT<1=4kLK+&_Qti% zX^a;cG)npdJ|3!h-~1J#`xqo=eLlV}5ZxMvcTqtb3daWOZ~I`!3}YAKJ@y6hs2|#_ z03|rG!yK4Bh)n?MnaLG*jmf+A^ou+G+DK3lfR7J-E%0QYL!nJaONO_?(JXrPe>1 zT+0$?R@L1MWOp9w$zOss{>vDOHG+?;=N;#b;MFw_B%=p2z5aNe+2=-5EAGD$jprVg z5ci#KjhI`v_&rB*99-5?c z;})?5C7q6C8@_zrZu4s!I5*_AO)yX#c0Mo$co$CF0H>B~eX|dD{$xuifvy8}6qi86 zVSa1JC$pQ2B?kYi7T!f|AyOSTbQ*`+qY1mCJXtVF+EV`(y9E)l+C?T>cIz7yf>-N+ zs0U+}he6YkcN%4xxILIZmnPu7Y>|%%Q?*P6nC1fdd#PIpTDsj-1&BR14uv$)Y+A9EbRq_!U?<~0Uc*)(L!iqe>T9C$cm=U^ytC9YWV|? zS#ds^TvFDq;*`mI0mSlH-fGy@dkJWQ3e0KA%A(&#~y>!Wv9JTYL zI$(1&e7O)SU2SZ_WEkYKYuTX2NRA$!5r-a{7hnOvBZvhiZMoT zxKPT*wcd#rc^Kq;WRlF^$P31Z`gXRRWITPAA@$1@CFQG;-AF(H_q0-1AfPSa@L3lX zUZ)E+37L)}`c$D!pmr3V-DiT9vc&Jmmfo>X3SbIBEF47*=&+P*TUKr8uO!^L=-!7exsyC5j6-Msc&f#twj4QUm{n(|+p9lAire=pPhix6 zjB%PA+#UeF5c|tM=OOd8;fCJ=$jgb1EPmFXm@mabL-IxllfnS{WpW*}OC~0Cx0VMxP*R(c0WX_A?8y}B2 z&?%OH3B)iKM@UJtsrv)T$@~S^fg!Z(Z=HNGBX5Q7ufRtfc-Gdf)l8Yj+DpUc4|YDi zU9&pPLZeE#Y4$8eUzk9g?d6$rz4E$8?+bF8*FPdyy>7b zodSt5)Z&}FI9@UNtcy&yxwItnow01d-H|z()yf`cgo_76?0#zG%Pj73PQ7545@Zd3 z7c4~P)v!zRbC!o|G}{L^_$|NYX$H3GpC7LubH`G@IR?gCBn4Sn#_}eqPK$b@wuD5m zNLFwO{YkdISuxBfs^t7VMTB5&+9rT^KH}@Xi7E)m>S@DzfjIkpHs>OBbEPW?VkU&f z^(w3GVD%Tulnx&P6cvMs%FQw2EET^N2srfk?sdU^lEK(Ok9}paHBWRHi78@N*T+f@ zF-Vu|p&_s<+FI4G*%#$VDFw`d6Z0We&*m<;6Fx{J_(l@TaDLuQbdJ1di*V&!V4>HT z&IenZtse=FWfiI8SznI`1Q-ZCm^JotWv}KU1^nHD|Ds=9)7ZIPVEyZ2GpTKFtR{$714pKN4dmw3Xyw zs$qWr=*+0U!c^6^ErWM`qh08+cq;-u$SqRkM9D<5#lFDtUg%{b)n1s?sl2YU8s?;y7a|=IavPvT%eE`Nx;+q1t6($h#}s^3==I%Li4!+K~P~F zeV_X-(~)ca`1M1`s!3Mu0WxA36@id<*jVd2o>21FS(q{c_B03OU`$o(4Z4pM`_}#* zGl-0z5R*FOJp8n%E0uFp#B0aNb@UpYtL($ZRP%y0r<&l37CQ0B;CqJ!usc8#L|e-ILw1ZcC*fB5t*N6wN!2x_dK zRU;9{hm3{(a_A99?8X6smL@uFhHepi6Ejii>OdPp{*P|S&6~#|J~H&bMJ&e z$P`I1i*m^>5J^xba3GGUikcMDGD$(f9a)>{3DoP~qO? zWYkgzlp2*g`~)REleWeRF;O@V(W%AqiVOYcN!PK$iO;!;ujIQxv~O_fqO0$}0tRx} zQ>?ZQobNp4KMNU$D_EH8`3$DbQt`btpLvPG%i?(8c+bq>l7ti5*gxsBYT%3OF=&?r zrL-E40BZc0YHyuywYOU}|0(U0% z-AmQ=f%styco##e7j+->n?u|RfJLbQNahH9?}^7Ue>$yl9&}3cmmPFSWuANM658FQ zWmw-2a#9p|^trjnzQDvUjTFztXPC_##)}ald)RsUI{PELc-T-Pa6XY1)4ce>A{IP_pP-^Q$m$dpY-u4VBpm0-IS2{Jc~xp(ZU0Ta0>fPEeFtX%@8 z9epyo^n@QKPQqbMvGvV`ErG(0rsqt6!sg`lbBQxUokt>H_#><&no}B6J^Hg1l!n3F z)e67FdqIv({Rko85V@BYeH{7~AyvtZX-~u?h=H zsKMvZ#rXT0vL6y2IKB6^=h->@zKI$M0=HQ#J!bJMtHB^^74f+mh6KG@##eRa~6K>0Lve8GYVmZXH?x74N+DIw=_gafMJH0CH<7xdC6&gjDifK_iF{=NZw1`zj`B2jU z($whzCK-7FpbXD)?m@@S=n-WO%$6t;`96ipcmjtutNbr)4SRoW2W?H8W*#$)_&@Bu zRZtvU&@GC)yAxc4ySqzpcY?cn2n6@RoxqUb?oN-pq|gv({}&-w3UN9N^OaK+kD%IG7k zbYLw}C|Y%BDz@v=4w&E@_cgyk$>y9yx|qul*9(h z5L}vZBq&vv&tCN(`gouCgqH^;tx#b>s2~hbb|S;=dJUAX!r%Q4A^Bb!F}S8jLrnD8 zp)T96k$Jvlr9;5MUG&8(=-Lu2XE`}+invdNT9lQCHU4?i`bU%)*DBKm*(E+)v_9(_wnT_Fs~Ho!VaKZj>~MT++O{A5AfOYSe=%ZMp@}P87op3^R=bO+i5N(;WA11U@q4 zGqfCUFZs>DNUe1#@Azbe)Xx%nB;Mw;D?hvMi{^fvb)DK6qBtrdGdWLWDi20Trg)zO z<+W{by-4@^i(56!X;Wp>?0IL=i;&Ejsnm{A}wcBM}9~J!CT6 zaRKQf6O6f$27Q&l4OiRfqeYE)&xFu(t+}2Gjg}x#IkP8-=dIUTjV;)E9R_Zv(I;GF zgwt`Im>`0l9=uzNV1C$QL;iLwkg2d|4E*o(5RmQg2>=|gbry{PR?x}|3L8VpCG)Yd z3PV(PfdwKhVbGUCUmBdrTvtZcyZ2y{C%g~ab_8&_$Jp9W3*roY>H5?EsN4Xruv3fE z7zw`e5JG*u`-+^a4o|J=3fqTf4|$kQje5FHfqNZ?eMER$g*QQEb9#9?HG zr4jvS98nK6F}4)TE2(!x?J`=cHrhkCpDFxiq6ocXLc|Y2|8MGeZ?liP4sOT;*IKib zH8IiMXX&W3qv7vxuc1r0fF+le$0Rf{v-bf2rHN!PZ9kJ-b=er(T5>I=A9moxnLg3@ zYCalPgdpS?Rdb}yE(s>`|EsIh`QKcCzZJDL{9`{?W@qBvu`~567Ge7aN_EbAKWl6V zEhN+b7!V-j_3fZK{gG$s`QH2Y?<%Vs*hZH~j=PQOf%?O_6FkFjP?z{;ui{}mEd{5X zZ;{tmZA6t~3dc61g&h?H54yrDmlHz#{Yzh>A4k*_0BV|vKZX=x$|R4-9_lJdWK5d| zX_*AW65ZO3kDHkS!G#}P$yK+nWLIec51NNH6wBkJ>4Ac_X8tP$+g4}(w8^+W5#mjn zWW-)HDTIQycYgjW_0G`3kFK$-ra^+MPh5Z#aCyRvaut+)@Zp_t&zezD)jVEa;ufwf zL_=BS7$=|Jlv#8nK?}mo#W92c9l%vS-NiRkocAu7w|2N7<%E7b*%)uOp05~>=}Vu7 zlFO(@K51z?0JU-HMfEJEB>x?G3$n@S^A`?dlb*cK7w6 zLkfXq&Nj2YY|M!e&;4;pwX1$1`i&>Bh*7``)9aDwP3eE4JXbTCFAb!AJNuFwrCvUF z8WTHM_Xzo6pg(&f5aCko{`HdKl?b-PHv{e(qe1WA?KyC>aWMB2dvSKZyh)Fszf9$f ztUFdul0R3Wo8TA{U-t*QI7AOhI9Y~%8mKF*!1dL}q{5y{FAViK6>-}|72PJo^|P0UQY{!>pM>_xz%xaAhF z_I>Va>|waXB%MF&D2-5`U{bYq*BP`U^Rf*W9z5CzfG||WQ(7jX{*?3XrNI|D%PXC|OVM+D2r}jUvaV>9WU|>@tzoIYpW7cOa_e1c zX?=_$1@mh#-eX7KNV5+hlA#cpHX3-}k-XP{^SEulUXtFzK4Vn?lfi4AkMd9oO%)>> zqt1jkc#L_?Alj>rHu13qJG9jrgEI%3$Cb=! z%sRz#90g<6e8g2Ytr9icfQvFKo+q1A)dX@G?CwZK-)|veih;pL^Hsz`KTP9Dm=xae zF3|Rp!GGz+Ll$x22SY@BgH85L6Q7)x5s}K&rqoP z3fwe91;1`?33CKo27I>vEPbO?iFo1_auNU!@;o7b+>wi-^EakX>ZMOAbnF{ff->24 znKSs4Ae;HVgD3L6lqngrAEH^DxfN642^aDE#Fbm8Cb^MrWLA3j$u?oHpxRaRbWXuOH`S`SKwNa*Z?@U?_MFqy#l40;Wn zt(KRrugQ5WxfG&iE%nT(_RmS7{RiJ?DS&7ZUBhfRTQ7ISM^ZOG zI)JqkJkZnGm6@$$(v2R#hXw^h-A^0}M<@v=t64XRq(qehP#N>$!287-MfdL-lPau5 z+9GDh%*PK?@m(_VD<_d92ORv6ED*^cO%a8jNrEU8PN6Cs8X*gs6O}`mT_^o{)8uV$ z-Sg6)-ONVk(MwOqcZ;3+^g!2D)PL(A_!%tNf!E+P;v(pp-SXSqnFy-{XOw-kE_yoRwdt?D}2UTrz7?!GuIAF3smByfQ!ObC0KEsZEe}N95u^#;ZRjlIG;T zhzI&A-g?y|5EW~}+*Cajqy~P<&j)TV+q+x*##S4PMC!=z!PFz|`uKtzFht%z|05ky zqI%(zn_{?%!X7nlDHn%>4t?D1-EuueU}I?b=5`&Xz_BPsM`&r>aUQ4w^Eglb5+*=B zUFsE2_9%lwW%^mPz;C4IR0|+(ppiXFm`d%)yE?p&+(3JLq)GZS4mBLL5r=b?fVX1s z_^>{ml?ui%0YQxV1VzZqEYu}Tm+mBQ(Jo;?ZLeM*+g|V({h>2-phn?{T_-cIcEuOPcJ$M0!#p7Y<0$PJWddj;2ieo_c* z)MoN=akJ>h)yg5_5Okm)!B$7BsJb}(ln*$CzAZ-*l12S4HBG9T+TXs=)^j7H29R!e zoFB*mF;#e}rsT_dz}4rUgLy{7zqTS3ApJ(RlcBPyp0VRix!uU_pM@82^<+^g!LKR} z%iCiNp_hj!*yUO}?xRsN9Ez+Yc_DBjPwgpgGB)7y63XLYE0cUf_gRy$ zx|o>#Cz2FQV)7f28AG>W(uniDbiQC5HBMQWAd`R~u$qp}Nb4+#WhSZg9Axhv(7UaV zk_gmpo>KfknJY%40G0Gr0P;Yk1?0(sczWJJQu*-MU=+sW?RO*LvLphdZ1{O%axX=o~hWKY)FH14ySIk5_ zazL!*c}v8P{9MwrNuE)`^XR-I2Z)Yn!v#y8#Q#a2Hh;ulS4{q| z0l~<$;I0z?Q#PH4TFMJVQXtO1tekG?ugTFE03b_XK+w@`CC<$Q7=Dje6rdZ@8UM)D zkv<7(Xlk9oOUPsBT)9NU2+%~IX(K>r83q^mOG8Au+5PR=YTfy&K7$G|fi>Pg@x$mz za}dM92wqg?t{Ef#+ugs;t4PAd1c6Z2h)%hhk^+B2)C7v#F8WQ^%$INkEjn z4u-32Q?LKxOEg)R-^(8Q0}$gpEorrj76TNN!Hv$<{S~G4^1s%WfoM5&I9;IbL0gjB z`SG4~dz20@nw=KoE)y|=YRj6eg3H%obC+nW^GTJ9EsSYj-NmB9i0_R6eC2gPc&LZN zG*h2!nxpE;6lKL&5|>=Mb9J3p(mh6a#Mkh)O=TY;eiAW2XLiF2@$ zD(w+E%a1lva69qFmXA?5-v;Ec$`r^;GV<{mbCu5WXr~7t<#|w%XL6U6!>W_Sz51u- z%PwX_iwooVk-;U;kx?$&yV--R;pKI)V%#~73M+qx$4xbMVc<_p4I7v&H;++U)HSy;m)k6?Ah%nw96A`2d=%nx8Pf|;ZmZe;RaBxY2Plr3;V zkpmRCSghOe)rG!Z(|=arO3hri&7uJ^ZF$bvoiz!imTbsbF*HwY>$2^^Fo3A!Zq{{G zq*qPir2#IQz(|@Cr5JhYzfkf4vEgM4B%W4o$0CQrRtw3g(dW)53N@`tDdg-zciHnG zUmKhi%U8P*zP3jJY_EL99L zo31)?ofR9-!+ZzHnxz>WXlQ5iArgY>1A`VEa_!+Stb%BT}Kz+^5~Zgq4`o8*aYK%xO2bwWDIP! z9P*SOd_zoEk>An+6RCM?Ann3}Z z3V`c&BUJ556-`yeUzi1dsp>|%cXmbawqKPxEihjGY&akh#!b`YV8&3;b!7b3?l>1* zP?8=S{nYU2R@|3`tyUqc{0av}s9Ae*tJv;d^BJ)FJzTSLCPeRbEz%iG!#tVG_p9 zDFM%c?G(6oz5PvcWEPHyJk@|mGBf_qx&1#;Suq`$*buSPk7zccJE|gOxb9o%fARD+Ce&Ok zlGCr+Sw9$>yBXMPrbI2Y;K<#p8@T)}b$U|L{!lTi#xE3on)`!u4U=5i%s!EfcMzSD zw%|-9=lw;Dq9w&EBlOU;6w8B;EeyyLPrv3#|0f_~cy7}F09`O7O#TSA!$7H2p=HS5 z8;$Hr6A^@{2$diey z*&>@CD~0Sahzmf zt&zoK@>scLsB&HvpOG_tBj!7G?7JUW_^aC2YpAxRY8WN$==wqlrQFB=>Ndj`Mlizi zBas4Xnm^@93ro%R*ppQ~JibU|>U|x(KA!7mDRrvpgoe`XOmnQPv-9>rsh(XXpuRV3 z&AISDGSqZ%qx&lxTV!T`e%#s6wZ&h1*3L@Lm)2ZlBTw5am|J+~+haWXqT*_VcQ5CkB}qb+WYP%SZ7b*~ zt%K2I@)&DEXBtpQv1;7QeqE}4tkHX>7w@rr6B=7uu~!FE_w+Ulcv&z>c(F}#3u5*< zi*#&alIc5J0ditO^awSlZc)oQc1)FE$7{jEdtQ71$4< z_>%mPA|b-x=9bh$QURiWUMu3R_n|7rl$n1P)In3#C`zVQOHsgpa^S{oJ4e&B=2EQR zov;6dnWqJpkDA^TNvr2MUfmR(HX6eisCWQu!YNscDp3%^r7w+}bSHcb}Y zz-pGX+8GrbO#JC&#mU6g5TC}7U>vG^gt#V`dvoabjnqVe3twSY;7EE5)&>z5&YfD& zqGa?{jGJkLdci3xTWb2q9%o=MFH?(8pW%0FgEc33@Xu{kUguuWZ>;oBtCJFnU|r31#5uv!f|#Uzu`{N(s9>! z)FFGZ)*%gKJO=EgZwA0Lh3s8!ND%Vh_P?V3xBWzXW8(M+EV7(ZHK`I}46!Iad-DuPE;e?U^jewrt+{)9UNm(c#jRKX}N z+Ofq7(CtRbl1qJ@ogC^keT-B|+O!IJ=njXAaMhsLq(IC8_Hn8X+yn5QhLY1OoBP(< zt5nLymFPVoPLt?|k1_$6zxAxcz!+n|-8xeX3Z7C8+5?0ndocn)Rp0YzfCOaBUPm^d ztt8%CHc<(nU7BOvSe_brKTp9#8-_vUzgYD)Ey&;n#wfNDh-yjk^mk!dbZ4OzUD}c; z?}VlebKx-rMHs*~FUOUC)@}Ief%cbG+Kd*)SOKIh<4Gi`SK+l1jl#i9jbc<6iAUb4 z7(3NnW2E93w3HOhA^PutufMXCI0+^V{yUP=iW)+Pa&o{-YW zC}Ymh%nWxd%w1A<3Zq*iP+P@@l147^yqq{y{2G_kS!&xBV zc3_^-b?cm5**=V|!O!`}F+Hwb<9iB~hV2bl!;R7_1PnC6@d{z9v^jb!L&x@_=xZ<2 zqUTfUuh@~%QVSdZA^q?;bZkQ%%O|O3d9fYQ4&tm6Hs@NPPShbAeSneoLQpG0Vj+_; z#$%&3;1Kq+h9=McHoAFFZL2F7J9^45q{*{>ssb)O4`_EmJ5SD+@v#nfRHGKnn;1cs zZ0=u5%2m9yIHFV^K5hrMYy&(;a#9=^F=&p@t|q`FCiKBt734)tofB~6rTAnkj-UKH z7wx*`3TI=bSgq=`W85CYb#qfvJ&wsN<@@Q6ru{4p&oAxBqJWK>VbK~2k39LO-B2eX z2W1j#W3S&e?Sdvtxuf$rRD^(r(sEPwzGLtUN>p_NrYy%<9+{KVB}L|qIQEC40i?58 zBd3x+8I4LY zY#TQC!$fKE07qel+HJw-noOVO7*NOP4r|Lb!1YzJ4;b$in>-#ypIa>F-|6ku^A%0> zO+UA5m&Xh~(dk%kGof&RFw8f$5eo%UzS zL+hj>?RhFq#;?_FXOR0`Al7qN<6!<@SGP>$k|lEKGd#dvMpNVUeFj)EI~?r8UDMtV zf7ZmjU#-Y1q3@4JbMr%+sjouHYySbt$rnRafU)x521z3AiDkU>g*mq8BVH(qHA(fh zh>2(BsVUGMDS{(~*{*Cjg&Em@%W8H&u$j1CAk(@j{RAT%RF$2mPb)vOEJ=qfBn*VA zV&T8zsI~;;B}HpA_f9V7B(b41;xO*WAMl`to+38oXjulay_3%7sX(tlPyVedp3oS; z!1}}Fr5!gs8myaUNz6MbstUY|A&Pof_KRqrG1wVC`omaNzC5f}>>i-5%3f*yAFg7~ zqE&u|j|3t|l+pb9TbLq-8dD`Ns+#NvGn%URu7cwQ1zCumq5-qKcy`|HtTmViZDd!CQBRaW&QWgw)En+y6`yDs+VOD%IhY?z`$P$Qr z>%*6F)Bgi%0l}637eh^-{!M`vN8jJawB3?8ONG^;$ueF(L7QZsC}*>nP`Z^r9I@gp z@`~}HKX2_*!xdb5g`zIdS^#&*kSuVZNkH5w(w?kg5)%rwf71Fs8o+uZ_Eh9TMe~8M z{e{046Y3E+pG07%ph4EN}U705?~ zvN1g}loBf^jl&CBC8qV9ZeAr56~7UfrEFNS7EXx{u!`*%v8!0vR#{Om5{T7TZJJTk zKE>2=3XRRRNx}cW7ei!oPQm~E6+T0f(liV6|GB_Wkl?87|6BsF5T923f397$BFHuQ zzZQ4s|Nle(r-_RHKeZ85;HvN!_Z$6=xy|s{#>i*nB)G>4^kJeofGOg&&|owX^wc=k z?GcsCkGp&~_{W2qM_)(ZGrE5}GS%QG$y1ro zijycWBkVnqsKvu8rE^*a1vdmI)DYGx*NDS}5)JrKCX&4V8t!kZsJ1GmSXt;hJD@ zSa>7{NFvO6oZzUXS}g3Kpe1s$Af~Mf$iLHBCjsKxun1yei>;(muJqG0B>m_zwF>J& zo}~xT=CzK$9stN^ZBP8LmZDP>Wk#42GbS|RMb+^k_QmqC19Lp^5@XuEIusgu-bLFJPlDkh6TfrRr};3L-3lDTtWfvui`X!fuk$6v z@U0aSs3}Q~r8*;2W6iw^!RX>@U_Q6~0*w&uoqAa7Ld-$=-*w&P+xcseRNEC4&2F{@ z@?6sOyYI6&fa!T2gMqqgiR<(mKQIyT@pm5!G<0X+kSzl3uOo6&5#Y+RZ>FYBmPgZx zW2VsOcu=oKHQf0(kYEpnIDAr<$U4DP3gj}-S1IZZTch|+%T{y|3uXA`9(i3T?}J1Uok~K_pE*a z0g?$#7@n{rs+}fM1$`ZH$NOoKs%VI(DHF&hBAbroJh&Wk<$jzz z@sM#gH53hw`u=amPr>TQPsMr&At{bq*=Ly^@euMS36hSyIat_$Sw?z!`eK+ORB252 z1R#s-R__voz6qU=dMxMgr`{8>@6);DFJtJwu9+-e-_~7@;b<^q(uzlF=Ibkmx3uNi zU4xv(X7YJZU1WE#QPP2Tw1$crjSykI z7c`3={V%*p<4hol?4X?s?_t8QOJ)5U!r5}Dn0}sPWGg}r>oLk>x9U@ z!RU1v;lrM$nAD{`*-6+Gq>MqKcq}u4ufXi$P4!nUDdzRdUvP4!LWSt^MLyAOtdgDG zH)YD{_ULp5&3Qo&%^G8B`IN-C+c{#c+8`V42HAvsIjb2!qumL*PgTDN(V0G~xDOd| z!)TV%JW03O?2!AWvKozng`K8*u)8{&IlBfzT?Tj|LS30884s6a5@hiT{Wcg)i)oB>H%vjrt`ys@tfkncnd*gs zdK##u*v2&rB32JR^f&%?zf4UW-i~6bLXK!AIayDS-2JQJ4;-tVbyr@n*bH$-zn*FUoL24L8SyWv7oJkiLC(Gjo zYA&&WgZjuCl`6HG4KL=oZNy!Wsl>?8DEp#Av(#G%~`G%bhJM0o|4=gIpX_-EnbKeP2Q%Fdq=&yP^ z9*XBL3IUl&FSCJFWY~8)nukw3Y@=i@Me{h*?Y}}JH9{AJus!=2^N~B!dbxpGj70)z zLFQp`s6U9XdVS8r#07YCC+b(6cj zome(Ako~F0MR6H33p%-oO*=x^4`L~yx>#oJ{i%12ofg?uiq#zXa)0p`kAAw zxeqk-V4<~B-7=HKk8nF|?rP)aV&i7v;uazYJT{)&Hn!q)y&EA=bYMNl?#oei0bFul z5WWUF_tG52QVO9M0D_LAS;>SNN=hLvsSrez5u;olSRP;+`%bLNoUaM@X+7Y4&Rw`iIQ3}H9A+^eS z(1U<&VAHZQYpEqqwb+AB;0ci9keHXbaiDK9tCdp8{cH3=->dQ-*PwkP~)Fs z{PcxpH#OQRtyB(rei1Y6n%Rjs745m26%)IEuHDN{`bOaQUM}2t&EG}5^+Fj;*z+%U zGgSQX0r6@u{nqam7FE-^3uB)7!WQ*^KqIZ#-Ng7)?fbR-_kVg(lhK| zLtB1RMy>;!I(Z1gGq+e)A%jGS`(vdezL$}yJJOf#$09fxSW7#j69zo|$snCO2=9DqpqB&pSq4^c#Bb`~1@N`?qUkvbUYfjcoMM zBG9e+PWDmZAMTRcw{pr4&aOvt%-xNoi=C7W_);bwgt&}6`v2}&ZMgrYzR+1MnGm7d zvOnu91Q`@;i4V&629SSj{WklPD*pJsM+rLbTPhr){P(Bvi3Y0o>hm{}Z}(BXu-~4q zS^Rc)ZreO!zZb-=#r+qmy1-2JwhW5DTzUGvw~9-+E)%$IR98>v_X)F#KU2NUBi3vO zZazV6UN1kdwKn4WlI40#^`}nIGE6#82T{+9q0tY#f~!>{Gs(W%GIqcJ3KT)f+9qfH(zzvR{8>W=97GZPCDzwjKrS7B3Z;X*Yc`z4HQ}sGB_K9NPb) zasqsiqAAX2p{=9wnydR8IQ1VWHYRN3Lor8EzGWP+=u@Rrl$s)~y#Kn3dnGp5!Hv?H z_Uw>Ss3_o}*f@s4=!8%)jU!^E%lyMKv|Lmn z^`3Dhjg+%O{}=t*vyjF9W@OWznVsKaZ(rZSdmq1LV6MSWlW)E!sHLo8uLR#5Z6-0u zoB4y1-tfDQ$T4>&Gi{#0QB!;BT{~okmE->c){v7#5*fYNwo%P`zi)lpAt?y{a1d`Cd1{F zdz+8yjsJFEx$EOrxlaZaG?Nv44ci;r+iZ80D}KG%+2e5XFIMtGP-b6CrXowb8jyC^ zmx4|vlth{jx=#oF{B+C}wdAQ5zz8RLlps`yq#?2NjK>@626lyX(6!@9Aja}fWMkH$ zt(cFU?Ej0Rr0jMT71JYT)Jc>S;ERxxk8T(O3_Z}Zupd7f1hwSrm<_jrv zjDp+wpes3sfiR5Kzd|j#L+FQLUsbWM^Dfzn4>qF7-0wUf<(~zzVMecf$vL97cDhas zcdQd@MKMBJE1WX?m14~l&5$`Y%vI<`MxjuPanML&p;tjWPQcNqeVfwE$pD*qFC?Ul zxRo_7{4^r(Qu#}##+z!+e2jO^#d8*UsCs5tO_Ab*mdQ2>3)hnZH|`%ioI3V2<2NLG zvv|&FxdFq3g;=Bj{>S6P7AFS6&B5(u2CX0ojXNg?L7m|4hF1d+q3Jpz)Z2*o6M4{m ztJoK@|Dfuvs=)B*%N_eaYO#OHq+(rfa@)J%p{GmYjp$da%6%-~g5)1BTYd_Y3BbLB zJ{~UjY@%a|5A*Zc73gTG{bi$^T~uVZn$&2kFvpi=bWd`4jT%=-J-&lzozQ9F2B>UaiCU~^bv3UJ6_ zSxNz6{!&lMtC1*)p3d2Fnd|eKUIRm7P>sk6*n+aImqaLlOR~`NI14=S@*1diztDWIOWG=}ItSYocua}-09TVYZIIM<-*=W;ug;+3}dB?Tp6h}j#| zJP^X6JIX_5U=(@^@5MBgJ4>e-(yE-YFO$520P=8W>-hBr1zK}HNWa#y0*ZG{K=|J> zm7*2J(jrk}@EO|fb$lTr<#yiqo|(d)1(L-%=vPzNBFU;9k>j*Mcu%Xetrphj286^I zZ98n~u!1Q>`2|i7vT}>BkB!lr@NX}+1)z^B<^RloKR_e+y0LAN-1b84wuk>I@_s4} z;SJ7Re4Hr%qc-H}@v89r3*5iU_YvHueg+Cj&#?Aq{8r5WwORS7PyA+n$WuWD%#JQq zUH&ZF_r?Ku;?Jjr{Zk+JzItIHnPG}d;{fh@>=`ilx6)F<2rkr_ub3zdhHim%&l*xd ztlyk9kD8iV_wCgtO{4;@<|cmu8EL}y=PrIJk38#w@|^1~#p>nw;R(Mc!+{rCJ#=jP zD)|}y=Jt*)q#5`6>HuN(n6kOTK95H{gMEi{lZuY+Ggt`yEWChXB~j#PVz}D#Z+(}j zUQ*JCEMj)nI3t}b8zdWo%Y=hHL9~e6u}A_Y5wJycNPHttap{LgA+2V*rb`1Nlr z0wg7(dvW>CGBrC--T0f@PxB+{FR>aP(1L`KufCc@|M%dvNXU_WJLE6y??3wB2_lvatz6JZYAw7%7f{5$;F-V|gsQc+$39X~ zb$lLa@NHp2@{p`GVg0;N#zCg@Xhwe`I1YG~Df6grx0V%P-m8l*jHS`=zT8 zMvE*o$f>{^^(ZFGf4<#1)Zjy-O`f33bRI@?V%@1Ed)!p*4%rMto{PWGvT)L~O|G41 zH(lfP%1S#Xj6+N-1jo1cfz)POWSmP565HdCkxUeV-88P5t-Q1+vOlpKr9GT{Ssf9R z^V75Q##2*i6xyt$RkFheR0tU}8#h z%RZC#LMUz5n6B4@aZ9^Q-{F&5nJqdA?eD6zm{7RQ)C(-}NY409L}3%ZiR1 zji#4Z_rzPMmgl?;1P=)EYrDB&Tq*2g0Fi*dMec|qhdT8a`bEK{m7cvPx(XXiAi@3E zi@T|TUE|0F^1LXn*y6$=q{HgnbW)RyMp!H#+{QE$OXiBn_J8r3#x*i6{%E_LF|C}& zz9~Vju|?cK?akLVn?MgE|1~Z{u>kOlC&hbu+-ZZZdfhf87~I27$X zpf@SHV_R~oblOk!1B}*VsQ!%DcbX=oP#K8|_y<_8#>w_sQ^Ezn$om)v>SHU9G=?(G zjN0)ZsiWmieSeL@qY;r|w`dgqp%nJ|M7d7S|5q}5!K;uVtqo}41bA&zNnrQ?ES&P2p+<3YPK;V1Kf2I*RCHU_^%Cc+WDE#Bpu0(4 z+Kee0*ZWclpuWpR_!XpYaa|`|g7u-G%!KDM>o#8PcQpfOm05j2V)ts)(vQnHBDyY<1k-z5L$R=nW!aI1D#NX*+M0M&raj@hqZBVI_t%rH=!8Xe=iyy`fRDIEM#nEf^KJd6|&Kb^u%74g z@tWVCz-Hb`7q&?fHJtSFB`%sS*@cY;K#@YL#==jQV)7p9sA~5MavO;d$@$8CgiY zJ^-toytQ3uT;E5mwG|c+D~aX7{K6m99RpPVUi(?^Q)?_93Y593gd>j)y=6HpB)i72 zfTm|@d&0*NACPGm@EqUDzy8j*fIuFqZGxr{faD12-oYjK7#5FcMt!7(eTM{q8cL?* zY|sp+do4{M6AzvDmT)9GkV|>ULKc#pSNt2Id$m4}_;gelLNO(Fi_`7is_R($ z33&QALD&;%_C9g@^z*;`V_QSuYM_og+W#_pmP|e^-#v4Uz*_Q+l{q7K0#wkaV%k>> zSOuNc@j$NMdJlk%K?S)~TH;;g^EOMLm42D{G&zaT8=g@wuq0{z%X>hTE=5%JfYaBy zErE3fjl1jxyzcpcG%JG}7GjlIE9#TIvafU}{D_H*GXU`K9i^Grb(-}Wq>cK__f@n0T(L|1eYemj`ql-yXi;r_?PME?9 z6jF4p6gdYQ1QNjxxh#KK5+!N7np#V4K{`)})u2IXz`ZJ*s2%|!wp)#4pAsCDUDNOc zLX)n=rk$5q@gqsXQu}?$5_76{I?tMuE!PXV{NA*o9&*(;FfiyXNMeK``qjGNxzC6s za-6f+%&~+7+D|7j)maP2TM7A-QR%H7nF62prx6XW>TUcYUK4KKdeYw!>^%)hANQAU z(%XNe@8sx?eEDbZJ73z>cNn%FU9TU$-8?c&_9{cP2eLy10+eo6{x_oB{!+T`kLDuS z6lRjtCmJ$y(3Io0{!%>;$%8@pM9#6a*VcTg)aD!~GItSpOcH|dzhi*D`QMu{oGabU z(QOij?;&hvrjOPcrqy3wY#B1E7Ut_@gJJYQs%D&3nb|2rio@*hNXWLMExXjFvSN;S z@_g+Q_=C+_vMo#&oMW^KX0ODasWZxTTl47{TZ9!&e zSKoP9I2FrueAeTwmrjBcXSpR?4S({YcvjB5MuX)9T(>n{y=-I3qOdGfems^E84Aj! zs9{I8)Mc!R)25yxQ#tm>LJy%S~P4Gr}9cl0a>jhU4d9*8L)g6F&W~ z=4gpp!%kihaQ+hG>RVCaF|^XJ;h(O-dH|RA!N1R_MWyh)#2l8Ihjpwu1`8c{)@52x zrXrC|WDk+ylv~!bMI64+dYiF{<_zzc%j#?xjl*~FRQWJbF3{tQAop~UM`Vq3Kr4#T zDY75ksK7yZ+aT~bKJ@0Gf%0{^jDli@$|bMdK^a%7kHLDS(>GB|L7jc&!=F*uRI4_D zf({f6iRs9=skcO-MbLhqbUZL2foa5TdvqSHw2WUas4zJ+;~28}9LnZbVTBE29PdUo-SGo9`CJzI58r&zs-J>2#iwF5 zjk{;QHl~8)oH==0&&RpWGy><01G1%G7*){?>HL26(BFa+-gW{@mvoV6TiKILdPOx zgo4#4%N#dXnuFX;(%%0e*(NV%@1L_Gz=ua{3rm!I0}TphP_u09UQ_#c=`@gb&F@4;kKv1EqLiuA3A;PKKmM^rjq3$@sB+5~pR<9r zlz~)#_Z}0ePgA!9Q5;0*uRYV2tVq8&D9qZ+V@ri53RPz3c^(I*I{LB(D$y8vQy}Jp zBrDyQ?OAgnH5+}}1IfgqsAxZg*uiS!KG&cN{GgjXGqH1%^0x4&Cs5%)t=Y;@Cq=j4 zYNw_<+<#oB<*;;Azr&R!wV=-4d-iwog13jLt6}9^5?S%^FG|&^ zDQ+z-?(SaPT@u{g-HK~)cMUGZ{p9`r9J?$fLk&zNr{QbGMP4!JR+QrJ zP6Qkn@VV$#tRkh2_1Q@VYscr^Jd`bYf#5R9$a;;*IPN+?y7zSUDdsQ$*FkPfNJiuY zezO}uCXn*}(TA{l1BvXKViY*MMlQFSmVH%IlNS<^rY#Qnz0w*S0ZQ8*y7Yg|l6z^N zn*FRQzm}0YC;E#6jVr#Qzc_pQ@g@o9t|1*s<|8cq4(j2-7tzeCC#73b{@};mPJ2vf zN+zXA!pSh_{|x~JCuR_WSZdd<#*8_a>UFYe4wJqxZo@o#i;io@PWtY50Bm)>fImt8ZZ>!Yn z7NQi&T3J>HSx3sXM1lxQDuytUH*lv8e&iJFD2T-bX-Eba{>q+)k7emq1GY*pn3ro{ zer{+QsomB~E#FOo8pGl5PqVzs&XuLcGv~s+A(QHg;AC(@2pLH}w{Ah84*!3>0FPP2 z6Ems>qN?+ij+DP?^eS?WmMaQbo*YT5c}Xgw5($s_JgR>14O@0lHV%=TYevFAL=*^X zXc}=Iq#U2mnjlgCFdBxJ^i%Hx!xxCVK+)74wG3N^QXUuPQ`Eq!Dxzbi1$}wD^l`$f zVVPm84BtqY|Vbvcplb6N?O=MZ}JR-y?*Sl?J+?NrB?s{R2AH;+J%F zpby)4pWn+Vx9DguQW=!h%3YrfnP3wVPzRdUPw*04-v3rpYG}fyW(aH3=Wviyxz26e zBD)iKoLW_#)r-I4(n{kR;(%7do4h>jyzLbb#5q;uGz3q7xrueMa93W*o=@Y_CsgIX z&cVAQ)mYx>6k_xz@+UM9aBnc`AKuwZ!GZ*hf47qP&%U9%DG~Ivn!wmLC7B6)o#NOj zqFn5cp#VnSdG-E2fgDfV*uWDO=0atqI^+%5WNNjPSUk~eY0%XG87twRtT)8D%<=Sjt{}*xt&=#w*+mpky7tJwD zk{ML-P4P3F6%9R#5eQO6l3F=aUE$UKd}#ShZ^1l2 z{_pGA;QAd!*)QL(MRnz=6wwT?(epo&lq72<-#3JZqP5)FGEd^$6O=rDet5)VrnCzo z8twBOeIskZ+NM+hdg##}(mC>*Id}J1l&6O#%^X-sZX8Va3gVa4YCxZj7{2Wo8zxXI z1HwLwjV#xd(hxkQKUUIx(d$?vLa+`cilS%vvxzJ~8T_!ENw?vheHVZqBwLCYKlVZ= zzWbp?$CDj3W$2;yZqXHUK`4Z@qjzrh=;~;CXZgPiR%yokR>g+Nb&mCkh~U3LI+m@s z?Yt(k5P+25#!lu{;-K;|T0pU7vEKI$k0k5SCs-4T^|gQX->V|-iZSaShqg`uFO2d6 zg%6xkJ^p+vqfe>iq>}Ru^DwQ12*LQP5AXy7j)f?kybgS-`FKVE% zOerV(B?u>mvO;~|4JB++i*GP|0j8%`L0{f!Yk<1)QE(@xA@Y*JZa;}b^V<@2m$aiG z7G&2X)=(}UG{>E(qj-eX;Az!R+7zJba5EEyX;eC;OpgI-|Ah#{to`=QCM>W8yV8j=BV``Ks3>pt1pybn&0;jA4m! zLKRSnD7Vn!N0#LnUFcZ@#xbV=BKK+HJNJ_WT|twFABf_eY(gVPy+@5Vm>e>PTVQ>z zu@R||fG-2MOE|fx##fD?-+a-q-#fZ)`(x>1`2QhtBL^IN8q#RIxepX)C5)F($|7MK zC>MjiSA&;Lo&4J{dlE_>{yuEJ=AV8@`D>ywLOGg20(B9J@>nX!@w@qGQUae$S@XdH zo}8%ki~rZZj@W64;pJM=?sUZQ*a|+y{)nBi*{gv|NKQ(|d$h?wqhyJij+le5Vz}zj z1js+7znEVVXJpufhbns~hpmUkVucw!YzWjSy?1AkPGNt;%Hn32iO+8eraRN;)LIO! z3_H;48$q_nfR@;Sc(B(I7x6wNO(~rji^%1|tP5Xz^LoUV*{xB#)Ah^ZDil0_sY(XP z;)Yp;e$ZCHv1Cu>e+44~p-c;*cZQiu87jQ1n0Efv@ty|Ze^2k29oBE$9=f;i#V4!C zotkT$77cF&^Z;xrl9Nw(;&+)8f$x0YlRgbIs+vbCKtE$US%$Vdp4+GmFe;7zNCOIO z2CtB^hH`#8ya2-YKAou3iL5M-e{|f`ig%V9sayLhOeqvKaJ$%uY^@71OgM73WBJ%r zYfL?KPo@t0$j)keOZ96@UGy$2Zw8*f!2$0rQ|t~u*$%jRJsICeY}``41~%#a%}c>E z8OQ!(%W}q)TCPA`YZX?2C%2TA+9WMG*)ZauYLmqmnX4Ro-R!RwIXu;eXvek&qB$6d z4^op3uBQ@LRQy77yz03`Ph1uuE*maoTgxKKD|6^4D7rCqj@6g!9r_djHwOJydwN144Yhfe>AQkK3Ygi<4Fbn)n?=t>LL!X>x(4&&x);^i%HP z{Iqw_dm+*LtLetd-2xsJS8W~2rc7NxFlVFO%EHit`myYQ)_Ub^dZc$$Pz-T566XO7GZq3TVviKW_b+?v1lA zbD~j2v!*$yBeRx^E9E6N7?lyN1Vqz(cM#>5W{#pzTCNyQxGLl_BLU}w1cxvAZX^hW z@V7(9(B64!*yC{-CRE1^HS5*#{A}Ny7(7lO!nOCPME-O#&{z18Qz?%s01}fnm-^(_ zQlNJYu^3~!sj`U-=9hE|uP`?wM{%Klv(X|+~fibq>sV4o3kEbi@NTRq7YN)LZ(@G=FiPpk|=dA7* z1zP06I4=Gr3zoZj(&K~qUTzNj``NZ6Z;P+BNPF~OHUCHz_%1C1s6qRaJW%cs(aPRDs&aKtyvc};?!ddtL>>|C<9c839e zWY#8OZCCIi>s#IKdgo-7>>_&^l(%?%qWP$guRfYX4Ouhs3L2Ameew zIdguyv72%+q9_zE{a=XgR;-HCX~mu#VUNY%vo6$!iyyLi{?I|=Qz_}Ku{`4Q>u?)D ziBs;_yQ}#+D8`IPEA(X;0=B-HFakX3YC_Nk%aB@Dnp&+JcQQ6F#c_)z?Mzr;7WmQk#g1|Gu@iuO7%If$om&yca`eS$Nb zWjG06IMpcXW8!pxY%A3fbI%0M^G7q^2jAT%(qZ@H7Ro?b0xu$cL*=qq zY?vv9G-o#!(c9LfnxEElwFcSoOJi!pX^ATTR{4h*ml{8zQ*d#!qwLQ0SrUp;KbN+> zt#IBDrF}dBriCss$bDYb`O{J`^Z>JFCOG&J&hMhgOs3_V{!EOz zaC32NqdFZ32~E0VeiJtG#SgZgO~yn)QJnNFPbPo-E*hHYd5+zoJdG*()d&|5r9;gU z6|2MguX(#+!>xkh$+u2YFXFpf)?M zzkvG?+omN+6(rV3JmWIQ6ra_}|Lh&#AzSj4*y}Kb!;BI;AmzbU{&(!7TuKFY0}+-o zsXX(E{%UVoQ3ox|YS-r3R@8xxKPdKpU8GUeKoZP5ylj3x^mV)H?I3HcKc1y==SJO* z;?0slhYRzcK0v2uG@cPeca}V4W2rXxOP}t{_#dA75U%tY*SLxk`{k#+Ut|r4-yBBO zEU9Ruk?Yc!>4wuK`vwu2v7Pd`nbY|dr^ATGqyDZ=TK_irP)@8-U@A3&_aI~*Is70n zGLEgpum{(aB*CBo34x#5p4VoVy!H>Tc^Dc^rT^FdD|T68kKPX?G_H`QY@G_*taG*m z-whZ)A==y-r8AU_Zy{-lWI`ZC?F~)D`WGZaR3$?YZ5%Lo`)SyHMHQ{ToXaeMr`THF z_e{F%np6(ZA+6%s6@21s0#miHoxZ>#3X#Q<2I}O}_%=S%g-ni<`k`8a;koCo6tLDm z1U&dUvSqgypAX(nUn`y1)!WbPz5A0oDDZU>o~Bwn2|7T<1a_dk&R;eu{g$qnly*c3 zgivSE9UY3m1s?c*hzo6rOpl4NoJl43j!%aB7MJ;S4a&igK%JaK&931shI12)-kiB7 zDbDjBD}cUp!_jfn#MHo^C6>uK7v z&(io`o;LiGS;c^HOy(e=k|oOe^C!29PqsldGx*C58g5%lgj=F-D(!m{FH+A7qR#?w zn=m*RIY0k=#T8An)6_G^{~9sGHO9TiOHA6NZHaqmEtQ}C`z$^`hWHPgQi_~lczHA4 zx_nX^F2Iy~wowwYGGEy4z}`ro`z0(<_sheWWHg!_<3s(x>bFF*IIE;CT{^H9t@O8| z-kG8y_vmzSNTILrLi2gxCCF-n@&&8Y`J;G|`WY-_~znqR7?qr#BEFo?$Jx>_Uw ze|Ob_1;Y5oG2lQ}{{lxz`^eexHB6$q@ajiQc{NxwC`Y6cP_6!;UyUGFMkZ%#UGukA zv9CzZde=%@XS}}&Pse!jNFr9pniEQ~&b$ptI@9jqNFrx^->C!yIJAnrOklOb_`+tj zqreHMcvcBfAIEV)2oVYg_1nZLiPDPT=1F{4^KHt5jZUJBH=8$C<3e!FayB+JMmOs6 zs$`Z_tW;Irpq+02nc~~J4C)trKe~ND>n9MFF)>=~Pz(DneJQcwxA&n_-GitI2r<*2 z`v3l=FxF8FXFy^N-;8q2o8mR8Q=>vHIBz6N<6o$7|=RcTTx zDZ3eE%q*Jcp$g0*5bjvMfSD-=Z}}P+R!`4(pA`S1tWkCN(^D zEjYKi4ceU$6^9I(q>6$bA<$nQOqs9F1TDhywvS8OztaE(-75Ldr43p z2#y)`CHL?W_3h`b zS*sSI%n=~G%gG;vT(a?*5-P^b=CFvuAVRaF)=@H;w8jHKDUq9Zm>Zn-`A&D+@?Gx{ zV~iwRf;~NVen@f+4}YW^bH;Y0Hc*yrN&8pr77PsT7|bMkzY#(Car%#_Cd?m;pzJ=@(XRZ~n z0HT2gmtvsDck=US<$JA5(MXXM)R#1n+^sYQknKJ1*MBOLni5hA#g_5P`SrIh0i1(5 z^iVvMp@3hU_Kk-a1rAzLta(nGyl%WFk{kx&01r+}u{}wK>(li>RBk!TPau#akY^^t z@v~3_`hk2d$dTcA$>GT_`NmeLV=(;HKBX>7;t@)~GvH#iA z7D<+SNkVB_VMNhWK<0FWPCNx^Ym-cFg$F<>w=xJ#e9u~8E;;=I8#?mTS>%}>JHvzi$uc%v8)?x?i<&lq<6G0VX3K<2=3g2)4v#s0W{-N`;t~sBnek4 zozUPkFoSF$HHqMM86 zekbrN4lS?RyMOo1-_i5S$TYs)VQwV@*z>>%AXwV zNeGM=p~@ReCQfb0THEB;$rzCN9uSLOt^#>L1c=%M5vMZL{^RrIx1u_ir)8K1Mz&2Q6l}Z;90O8_DV{K z#YGR)Fg+YX?LUQ2C@eX83(a+;~R1fzz{hZan=$}PiFUD=He&9;3HgfSiatwVa*H>F2Nfd>efLh+1u za;0O(Th?lLu5w#YUDO53`32u-%yMkxULRKmeK`<>U?g=(_Qo=e4&g zax+d%L8BJ-Uo~E?rcRPiD7Bk^YbN_KvL*Dm2UAWbSYz}OsQ0c&cBV-GK#;U>C(W~- zT3i`&xg?ENK5p_6%Hk^@zZ-DGr+lG zQrDJ|UG=AVgH%0)QN~*mYeN@|X@Cr;&#wd4F{pO}B%NU}z(CPRo~Mrff$ogf6an{U z6W;n`U=EpAMTq1Y3XuY~%MOM_bzp$Km1o7A)(u{oo}k0xjdf52by4PIWzjLR5(>Z@ zMmu|2TKe-m9X$fciSh4{UD)AJH0|x@H5`0WvJDFU|D2=(@2>VgKh(4%P`sEtKTtkU zJRc5Hbdz#$*i3kw)2>?0dVxsUY4=pT_`~rdjgk2?^4RxI$#RmUnu!uUi~l+1sVDQX zVq=qO$Ym}Po#&zUSy}iZiAiEANKPH8gV##c=~wdS#qgwToy}F~J>^E3JfgFUyf@9< z*&`DRPLE&Om4PU3T6jv*6P}dJ%O|S8t)X_COem=|Pzrtx3VuP0h=vUnNslF1d zk~W@q8=JPZI8#>}g{ET7KguQ4oVD#QByFC_L zRsx}R(oa2Ifu&^M<4fmQXtU`7CG^Dc7GO`y&288jId*rZd8{EhV0Yefm)U&o^R)7` zBJhU4;Wr5U_kOdE(%{YxnG8qzt^>~S=KI9pT2Tm2a6*88HWpDeN+RBU{Q1lIWwhaA zQklVm{)8{w#=rO#yM?a^07LxIqXELWe*v)zbZaRaJN&Q_OCF7yc`;grH)`Q+6PW9( zk!;sJ5cmM8Ca`DRLQf)ucJ*J~3L^@VB)xf0>*w3 z(xD`t1$5%+iQiO*WwYV4!S-I6CI~{WLcI2s!4IW>f*dFe!du2KdGC4Oz9nmwk0SV^ zW_Kwt#ygrlKL#s(Kn?&JbyEnm!PaiRwL-U6 ze3?7#@ZXI1zJ8-4Z1_qVJ5>~fP?qp7J=T$1X+q!YZ=Lfj>Dsa49eCL5>U4${`>!OL zx6OtWzl}5ar<}aSyP26=G;w!l_H;)8p$_tt3ylihw5)YkyaVB|M2D~B^Zw&K_Z(@`gYT?DfSbzpP!@iJe2pf81ik!l*RroaBx4k{PJu++LYGK@UBnAoF zgqXA^uN3U)qsR!10C!&y!FbM{*KN-!Pe&r)J2MT_Tm|nBRB%Io5siOD$|0_iWF$G3 zh7`WeIgi^(eADY7^e>-43LT*@R~xi%{TW@Dc?IMc@VwB_oW(MbgWnUz8+Vrbv|ftP zV==LlHAu4OT**+&H?<-J}My?3f`$41z4Ug4y*;QBFN6QRU4dQ@MJ%+NTx{Jrg?a{y*&D;6=ZOgD1suuk`QLhy6U)cRq++I0vF$b1~Bt3~bX ztgb2`As?zzaD+!?u$LTS2Ct=q)*;`o6Ls|4?25oY`ee}Ds*K2K57?}Q3PuP2G}Xxa zBf3PF&vCM|PKaSXn`tA3fmS4vSOPd7Of9?p@Fy+8G`+7ut#K`ZK0OUsON0N#xQbJyZ&u0cJl_~-SS6sE{4oF~B z>V|`5KJ_XyuESzJO*)3*sg}wg(U{A8!*U~pMjd}7inE-!KXSmu%J&eZsiqg{Y+;1-iVOeo*&Rg7ngm1-0q7hnI3<_!k~P^en`z69Z3 zOI7ZgN7n)HQ0-F*c@5B*^1bccMK@`98q1MeHJo~<#_87Hi+M~U+5xXY$x4M|n828d z@BTrgD8_h^Q_Q$IJc3By+ij=MlXR+7j(OLmx&^UVk?@!gBSDmevT;v~=%Ghm`|fbx z;6hmElLXsYG`{CUfeUq?lswSY%`eKVY^Pi_A28q6b1mg*pb?J+JhkljDeY>Fp(sW> z=UkqAiP~~-4hzT^zUZZ!Akko4oUNuSazi_m%;ykabgb7^(s>aOyk=O}16C)(#to7y zX71$s-v7>%7JO9v{feOnKgHvuvD+gH>SI9>`_>lv%onny;X#%@P-Z+@9G*jAI%5E2 zNMLS*;1{@KzwGAX(I~62BQ@WV&&{T5(G`rvZv}Qt)d?wSNY#n}%Yv%~G>0qzW}OE|Jr8bm09$OQz-DD;8aLXJqYg;iW6iVooJJm~(8dGTecQJ=lHdC)e)z$Pz!D-< zhXbfmOMY73`XlOge7u^p6kO;ymh_Mqkf9R;W>~w&fR@?6eDcT(uzd%|bchzuzGG|H*Z&3X!ZIU} zIS;V~FGya-0bS4~8r!EUvgNK^JsE0T)q46J@8~5zVZj()1D%R2sG8#m_;%0DBaFsA zYvMoyu@ua#M}<$tRASMx%wd}=tm`IxdHTz(*%KSx=8{>n#M1uws#|URf#SL4o`yUl z@E6wy0UdSd(Taf=sljzQ&ljN$+~EJKCf6AA=lA- zUCtN0syAA<`!E>?=K+VQ+J|Qa-8!gK{D|{l?(dx72uHnFuR2v!)AbPjUfM2&!9Uw@ z8NBt+1_f?$9b?zab)m1`1$|~o45HofSwuC8k8%HoHU~%%W)<=8JRrYr;zVllkgFhV zX3;Moa^~2vPq-z7$AO}={ea0d9+LEx=0yIlAd2PhGd}C@2Rz`T4d?G zcHFzDdb1=&M12K#dh&X_tve1R5LUF!ffJlnDrV9XUtvxF zL9FhZ-#_=L&YsWzHP36vGFMNrtabt*9GHF2yV-)8O}5coHgf@3SOS$qsE>Z|tYUKh zD-)4+`(p>C3pc|d9GhVZYO5X|iAVIdyw}9-mkY4GjL!^DQM^zVs^(NF6H7k(3wV5~ zCr`n7{ujgqy&nOIcr&{$`KaRXMyCN02~M^KqhTKxclO_!>|~RvKj>WX%j5Og*iXT_ zR3+KsQcNQeUj_+J$5B5|`%k#u@ON zBj64QCUoG>A_~#BtP!be7H()3sA=ZrQsKj5J`)ns6X8EF(Wi<(S!J`5+OJ8)^SAHY zMh2p2_vl810XhteMrL0BMO}2mzj;;;tfsj)c>NB*#G?b>hQNTY%@Q|}opy$|z3;wb_t>RaW% zW;ret@u@F-fBzVzp)L8eQr55usWX1=Q-0%oy*U>R3VA#DdQ1WF^WM&^dNO%lTL5CY zW|E)3Y{3s=B8XFR8X=)lbK2mge>n*A**YA(AC<}ctLe3Vy4dWWmmZ;h1$5-M;hvKj z08m$@Kw7RBTg(La^6DxltnFk~7?HpW<#+zms_@mkXAj=HJ4dh+<~CN|n}4+!W?jiZ z&J6X>KUczVaTQW5ibHi-($6S6n0NTYgTrVtxz`?WXQBKjHdL7feiL1Ypgtx)Izo1~ zKuk45_B1cqHuUg)AMN2-5!{J4TvbISv(}G93yinMAl?7!ohcf)sp5YJUpCW zX4Mt<2l1*IfYjI9FHWKPg9JZ2n^5?^u|mC_53aRvZ}X#P$mGKxa8x^S#8LKjoaRc- zA;DsPbVXJu1?n!a9kiYs1QNnGe{Adfv=kyq!^RmvGH|I&lb-^8JazUzkcJ5}E+DOE z=#R=y7x*Rr$Vv=9z21I@i1oezFS1}WSVF#IpXJd*VFb zHp7K~;<`C=-ptOrorEIs%N7$~fjC^l_gT~Oq&%d;=zl@vM+Gu~_aT^9htEbjeMVKueAW8qyQyFj2 zuS$k*e(Ev6X4EN}?|~zn*VOCx=jrxM-_v`RYDY|WJS7Z68$$?e45f{AfV%`a9TcvCJTgN86DG3a zxYdL7;d|WI4R!K}`oU@=PksvxOR*)8K*Mzk7bxyorgPKKr4edKQoN)o48E^O7VvcmN&!B7cr{uJB(Apgy7Y$Hy`GpAi-_j@ z?@ZK^1OwP} zz#Y!x;@>G>`-BTrt^}crWhC?O3NxxOkhuX0bgYf9KO{jJf0EcQ%U#<{nR|d6gjbJC z*?156`9IS}Y^2>?f+DW69e)@oDpElc()#Q3xC7lXO&Zl9+7?23b3WxU zv(p=g55N`Kxj|cPtfP+Ax~GBfF)bRy(9XJ^d#RhW&exgsl<-!IpGK96^o5G>1#}F! zfrTom5H<$bBp*USY{iUfkwB|Aw-68ATr+obcN2Ir=4A*(=`}73oSLF?<81%8h z(2D$D9Z`Pec1}xp(K4YAtapB;^u7P+vr7u3G`v4?TqIf3672^%D8cl*Y?CYCoaAI! zA}%$5Tqw%T3=E7n{C)2|4N#24n)u3asO}0{POI_j)*}~=N-N;Oar2;Q!lg>N@(>ZO zHu@>*05|o4eKtL$KgU=y7PluKgbO&QJ&^QM6|rY4u%nna{T+V?J)=EJ#&$VZ$u~oG zbp=lg$jPN79cv;3pCSGTBE$SE1*g6^enpERX9W4M~2!)_%kGEzOH7=qu*yf=VECwe!!o z207`UOP#zk-7`J8_^?Dr8ceF&^5{Z?dE{+tYpT70LcG1O%Q(&DE#f&&`u;l|RIy z#_{3x#Zy<~KP{-4MCNQHPQW+ep&}xU&U=FK-^EqKM}2@?(b99NzBB$b`59+N`Un4G zX6#+q;XCc3TZ4fXy%5aZcz8|;$S|O)V~OK-=dtt10~0~>i8ROZ8``h?BR*-!p$E(N zgF-4KSQc46C=!KO9?vh90ywQAlH#9_Exkl>CE3*QU@b!}=ZL zIb5cf+c+)hw{DWndC!aKDj#|nrg+yq`RO3YnCbul`2^mWoT7vCZy=Tr+`&_d8^q2T3Y9tmp6Ca$G1rG1FLF&7s>8~GfD z(24ZVP9gMPAd8N$Y{wgrN5mcWbPKSNts`SnX5?wC#Y}`xPPuR5QSnu=p>LtR!H>&7 z+i}l}T3kladk^VSFXsdQJ;eN*=uNBbofm8MMNB7wU-Z7l*YdW+xO`UPPGj!_kxwGw z9)|JL3&aufPy{2)S4oJ&3YqJmVAM~b!fb0iAo=%A~H?}q3})LoT~=^Q#C`BvIUO(e`y@?lZQ zAI|Zl>m%_@>cnu`qrG_|2`FhzM#lC7oER*fj(F7i$}c}AXZ9shZ`=2<=;^g z+b~fH9t(l_oi9$mp&)DhM`$Np#k03EZ?Sm zY>eW|y{aeD`$0qdHw@j+?j1k=yDMyelfwQEQgj7uyj&P_Qu>&>#U0UA5s()7D|ZsY zUQ?bme2+d>=20`G7-xd~1M~Nfujc>K9hD$*Yx^;Ei?3*6R6F)*L?Ns^`>ksL#k>|6 zw@s@_bphxvaeq%taG*Klqc$wet&)H|+?jdTcS!#8>$(4Q=La#Lt=8uaI+mXU6*VD@ zes`i`mAuw3+ImK6_0RD~^}ld6-iwvp{MiM}3G%UW0wW*@2%;=-#DOW8C75YE^QI?%;vJ$;`3- zS^E^510F7p_l|2T$!#)4HFpIj3%&z)DK}Y4bXb0_z`IEX89UOsOF?i))tOfunr@jy zfOqDCLK$*!DDTR7bycDP*^s+JNpn=67J6h--%t>*60WB*f)VriQZGw!N~ZwuxEZkb zm%wMpO}B$aOhvSigM&-^*t6@^;H9NQ_TfiqO4-Ns@5A^0p#-P6+s~1uw%j5S6V@pK zxe%6lQjs^Gug@8+^l*SLArRWQE8*Rn0{d?m4m1bc*S3`Af1(C{)?q-d^Q3>wvW!Wq zh@U&PM=#~)dP0AI5!BVk-9!XS4pGpy%LVxf%RQ%_1v&Iu*Kb6Hml1!xhf zVcBJ}kPL=m=#It@yix3duc*!Sk=bhVk~Gko*XR40t4I}E`@5ysv*_` z+~J3V)bl3H`|go_Al_{Uu**)w2yrNhrB#xNbklKe z`C4~x4Mmn5x`qsAQSw=Io>p*FLB)eVh-9NCnMgORLgPo7^P&a0i!OOUlnOSwbUfO? zfh45Y{u@{EK!9^Qg-Ag=0t&-P(C=NZg6xU!AMd;u+U`zFH>8S`tT|?KC653U{ z@-%gF%<+~#Bda+zGra4TPMBFyYvVJ)bA9)`<&l%$&3e{KEP6R38cF%m^@_eKv*GQ$ zj*NgA?Y6oH#@f6Qy~lU!*XPG_hAv>k^o-456o7>gmec&!wo=H(>t^0PwCYW2bL7uO zj^&<~PSw>k?!B+?w&B)z)r-b+*||5M(`|>WzV($RH!)uR)2sy8odLR{PqnuK{=1j< zw?J-4=RXv{TeFy^eWHlrQskelY#dR$6p8DY5xH1iqv$>w17gCJ%aqDZcUpaTOQQuD`m zw+%1&Hnmu+MBU@)0QX(*BDIgqV_#oM_eze>g5nUkzo~QI3lK4Ls-n>rROgU4>O@q; z_1O@jKK>$Dd5%&Sp9DMq<%B$?9ziNG+HaP7j_2o62gs*ELgnX0Hzzfs&oAla3)=X< z3{ov7zNFL0VKn|Q%A_) zHW8A^q&kW9slr>z>zP9|G^_QF;hCeEvdUvKnRe|~#qSZP$N;J$p4Fe|LIWjaKqhp- zU_S}o@iqTx_ZxOu1b9$*{s}Rd0~D;KJ_w!xe?nFw=LXCg0({K)GNN%U3tb9Gt)xdD zEcv(${}jWE?2;9@lWDHekipSv>9XS6NHXGvHGW?NGoOs%HJTC>35Hb+{Mct3P$CdH z24C5!($T;++t`FJB<~x%e4=)EDl^-rr*G&*<6mo^OToniu61kDF(HX-(4BY|VBLYw zUkb_20l{CsG2S&$P`K?%uKkf!((%eHVnQ%eSm-p8Cl6WCWJbzI$)`oqm(Y#DsNifM z(5>h>jO&Gr{oqEUBNt;^$>AmkSD8*VPkQX$A|@VXa^oKXT4Ri+YuUiRt0?I)(+5N~ zD<${DB0&irl^N=u6tj+DQ%or|R`qBZ*6NcDXv}Bw1WP!=9WQjv&3EFgVHwH|_qiz| zq_#c_tuj2D5eBzbt6rrY?EN58V%XEp?&p@b%Zm%-s(f{Gh-_mg3(Guqt0nS{)Ay_g z(bngl`S~%+2Zz#q=RA>A?r0oaI#ed3JCCwIQ1niP_vp#)&AQ0$DQ#-X`VCd=$il%U z=I|7Jvv~MUyo(oO_xTV8u@h3aJ6C>q{;cNVOI5;Pz{UN3wVE4wS5nA(tG>}8#+Rj* zZyw7RhkVOVNI+~g=UAE&$)Pf;Ss|B6iY4#JuCnG<=d4BjGiJl?i{KpESKL}W7gO=M z6)@7ma|uSrf%}99T92DyVM_>gRa3uC)a<{|xfNXT6xG5S)eU2sqpbmbxXihyGZ`tv z{%31qfZ?u)ow~*DoK+boTUn@T_T#y%jX6J#|rur?sZR@uXCgg}Lh%Qhji3c-2K2shQlXcuX<``m7!Wd+MRq|S3J(FFr~IXu0;42QGZeF?d+y*=T|O5JRrho@)wC}HL1cEZG%P(5Xh114PRS$>hN_Y>oV z?|S2(1>cve%CZA92cEm%7>|_&>5dT*xDn`W1St&2DK3I=Fo>Pzl&bg+kfroh9r9(v z&cS_u7qn201K^OY(iIEp72DZ)N7J{V+g|sQb-F^pIPyeo7BMg%Az$IdWUE;5p1)wA zyH7)6HpTn1TB_2g!kusDlpbTAV^&m$V8?3qv6)$E4&=T7lJLZR3irq5X(0e}iq#a( zw}83Gk=Si4s$y77eP_D^O^CS|k|N@O@15kd4T$&YPIP^J{9)X6b2!SGvQH61J|32N zWB+qJNmkI8IaM{zxpTPFnVi0uHsIRG`2Z&ho#keIHQJ3K3}% zMRgV)7+C%JaA}wk+r?C;8gQzWx>>^Fa@Ac!D&qP}lz#l|u?IPm%oJx%m|zYRCmvOn zkCdE2;HORV1UlJ9E(Byn9#xS3%)`?_MGjBJMX(M}VLfo(+@eKb05IBmewn31e?%`( z>EFX}-X3wD^w#qdSElRnKx>G@mmT*eo6YB?OCwBI@}IEIXg;8p!}?VQYy%S9xj6Xq zo}#5W;!f0_`26*n-s{3xdFPAo&HK%rbM2Ypn2+pj*07>}Mf(% z?7C=C912B>I~0c&cbDSs?(P;S5ZsEpyStU*UYt@0?ykY5NN{f6?~ZfEI6sn+=Wlkh z_FQXC89cWcJtbc$3QEHpyZR3FW6qN4DY%1K?C zriO3?CnjGTFX?%VNJ&kZSxbmMvj{lAr|yE}&A-74EUs)u|4#c-&A%k^-x?@--*9|@ z6jRLIrFB+<=>ynMbw=E77>^%JBkbtS9qx9~;?Hn=2Yy}*XUnS1J8QZ4zh)z!)Qi&&Ls7IR@~G<^@dsWN&Pc5V#+O0PG`St1iNR}p=xu1H^5}9ljJH9{={1laH3Wz+HoxR=W^WLA&dm@ zZr+rKJ5$M~=fuZeLt5U)2^y9A^TCIBpNguPNzX*wY%3+Ut}ya~_dMS|0Cr-lH05Lj zsM>|Us847yy-atPc3FJW>qee;bKDVkT7IK2?t?n=fn6s;dH=N%%Q+t2hnlK_5L)*o zM$_GusEbON%3H!0s#U-2z@m|;Zv@+(Y<`=CD1@X>rqwX}@Hv*<*q=;4+fO@4{z^>) zWXWUFWYrEsTit1H2RlSdb>q@83deaJbalw5bF|#4^F?BMc6ahT?d4{SrljGaunz8H zQfsf!gMFHh3@fV86lHo`{N?zRNd?DVq&|E5)g!kbj@T%wGM)Vnl z?lN$#GXgMZy0;15RWP}UEV?PL7z(u1o`& zTZv8t3`$!_w0$pXW5Q-5H1`Dj{aMv}Q%fn>CjCVB9}5|8{w}U`k-e=%OR5VCAoAoQ z#s<4&d&E{{bT_gHTt;k1$B7eA9eKnz3BFy+0V=YsKK<#4uR4#zCS;6Kqh_B)jl($M zXFSqZASB~N)l~gr_x@FsHMf+t`q?PmSy8u4$h>d=h0Tro?ufB&gPGns_G_7kr!)u; zQA?9AP)U8-iso4CJGjEL*c2?Ilvav$byfRaWJ0_`f*@=}E;esKQBcw8CliyJknGn$KM+K|Ob=D}$UL*9in?ev= zmlG6|@ZafRo|W&JyfhVzw!J?k?8XD=MJG4l6~(9aK@ZE$lOtTpDFzj=!G#*aTwV@d zBa*{Qpf88dw1?au^rf`G&|cpW2L7#b=DOg&e`Pe!aPLiqJhF74=`guLOp-@nA zHY$=rQ%N*3x%a5+?@yBfkCvMT?a8XQ+=Pe}I_rswRMhbfjBy{;DS#bZBHnGOzIwDT zDA|N048`e{63c#ucH3XpYbmL;O?gD$BYZBYP-TQ1%HSx~$ebt^*E@+LcbHXT=wr~l zombhks6VH|q$=x(e!JTjb5j(F?J1La*R1j1%1l`9-VMr0M5_02hx zZyS?sttMJKlqYxWbJrZNX4gPFy+hG=})5xSuV?NNOgD#l;{44od{x*ahh#mN}IknU9zUR{58%d8-qGZ|` z+7@ugxbA<01j@gvtWsh6Qr2m6*WE-u0y`4Ub&{w~hBs~-nX1mu*s`Jb+oR*hlYQz< zC|?aLu+G@T2kTxyv8E18d0Koq&m@oqn7IbvUx_Rj*x2|{DBzGf3VAIS>99lmyi@mB z{uP`~Cywzc4&&O=N}UlLKr4z_ityTFdd}d)CUMqT9kKg&IU@c}?!4of>(LCO*pp z_dF(Ro)6!~_fk-6GZg6|;0 z0iOc@&7gT-j^+$2Y9dIzVNgA;l=K{Y;o0oXu2U~>^;Cybd8|eik)>>p| zt5~1re>}FW@HsYPROm;^Rj@lT)8)yRTN!~RGGMJzvhveVvF4qb7YhKq5Gz0;jxi84 zw;r7Qb!kg!%If{p{}NCN6H*fUCAZc>&TjWzMY8X!I7ECS#ni_A4$`|>~-WdQNzAb zl}m7?wg;OlaMWefOfik=%eFMF(%4;j10%9UO*;kh7QaF+bhX9#F&P>94L78uK*xLC zBL023=Ay9K#Q_i|%=>`nb_&Z^F+DWW1%Udr&vREg<56AmADa54WJGiC8g5)BI;Rtc zPe(r5sa#9{4>iM}HcS7Fd8pim}`1+)Nt(>=_Ro=q%$b zTDjvE6gP=8zq1wqvEO&<3P!r#UmNP&!gx_qk!t&&$v65rb*$+(ds0xys_Ju(R``~L ze1-k0T%?>k-~zT`?>}ADsLo)POtA?k|o0~GA%dg89r@l#kZ{D6tet5=jDxZC_J+{c_e-CHP4QT#LN#}<9_ zb=lb2b)2X|4J)<@tzwFSC-*@-;eERLIF$PD--G@Ns zO!;~rFEl~4B?jXE!svI^gW2E%{hoJ~M!Lv>a1;Uk=iUqOZM8mP$jDPD<(*ciN$O>f z;B;{m*n;`b36H=nf9xOp2VDt4m*3<}tmrX9YTN@GTw3+yIi+Mz&iMkAg{Z;30nd^_ zsmuqQM5xS*xYFZhO>UXZ7%9r;=C}elZ&hcpp>ELjgY(0o0!(R!)hRb+MGv63_b2)q zdHm(`=b@VQvGa&b)@nf!Mb}@rr=Tb(auRj1tQW6%+Df%n+<)PlFOc~lTy-S&wGE|@ z)u82Qx2MGbk3)#ZAnM#s1W5@eK1MyORAbBAfG?#X^AL18t5J@;ymbfm<)Apa13tgp z*cp8C&r*^ci;R(kCp`Vh*;Lfl==t!wBm)Mf4>GOceZ@*XQt@^b=Rm%L zj!NKMym|AbFCH2df|=(S5}%v&X{?j=y?%CSPFS(%N0jXJaruE0`XBHW2gVS z>LvYTUSAti`rX_4V1P4S`awFx5`Ertk)Ft7u2!+c%(hZ zSD?PmskZd^@bmFY&&Pf=D#?KZe)*xu3PK8`d(J+Hy12sxW75*^(i)v%&Dh+jCFo3| znq6nwN-BPwczaJg8WnHD2G1x88q7ERp>sf1uQ_^tEz!QNB}APr`PQ{NvUF-e8w^`0 z3qYps@&pR@1*8imiSiPlU_A;gHq3cF{ftZ%OnHw-O23ix7hiqeP5C`y5~p->b*XqO zEQ<tiJJ0{Vbw`ztn>Sf#4=E}_p_n4>pAv*R(P6xI zuNAxxuWgb`9)j+6W@1u2F?XteJB*Y0HNgE{_)!at@))Ek3&T-+O@nj2rc0?gigD%` z9M`7C`8$6jRgkB#i&@Ea0rp+un=Lr;A}Sp_&h_=<7cvZmM%e4s;ZBPX0{HR9Zhv4P z^Z=m!(clD=BDFa0%g6t4_-RNt-*GGnO!Z!J@if$@5oE&9)iPl0D#W8Hm$t7JkQWdZ;jB!9*jT!^I zc|e_|0E_%Vz_sLTi6jNokYdl@?qV254`1CVAZb%ZBq%pbAx<-2tU+Pn+qUl^l@7?r z>h0KE#mnZVea^<#4{hF~_suG}su&>VL(2F~yhe7`3beW{3<@TtL_HmD%<@`-+w?tC zoCG2#!O2pk9Cew5E%}euT&)spMhmv_xOOhsrYb`4x=BC|1->F_bCYkN4AU;ohxIh0 zmp9~sq05&=6Bx`sQIKG39(VO=%7r%qDw3fflx7AK>*@V6i@Syc{~1B#?UpCt(I{aX z@^-*VmSejU6iL|sx(^**K^t-BRr_zx={S)RrFBdhq5l%)1kR~97-&5iST<`+L(dcw zh=-i#@w3RuY?1G?P69|96{SpI@_S$sAMq7FOVjO*dRotVm*FOoPs{&){HaS%BnQcC zA=kh$TF;ZQ;fh5E-Oa;I^BZT7r%NU?ENtj70hK^@tGJf3_o6JQ91Ar5GoY!S)~TnN z)nQ*X`RiXK%lbZbqe=5Rd8bv>a=UlnI_%(FnG}}%T^2$+bEEpj>`h|}&`e%{f&@(o zySh~imK{ZoZhDc013wk`SGDL=mb6y1pf0eh5=^x0Q}@P#`yfvXwlqB8u}UOXy%m{V z9=A|Mbhc=VpD!Eyo|St8mN*K6^~bfO}C zKxJXh@*1_mAV+GYcc42u-ZD$@?Y+pk)@tzP>D|xQ@LnO~-RoWBVc#6QegOgYI+p12 zhGSd=V;cP5CcQ@oP2xp;z!le56g^ezo7vC-x>Wj3&?zPq{{&^Zd5_xUkEpyYB40PQ zb>n3^g2!%y_QJiD$pc?dHz6wu-gmFO7BngWHR!NOlH_U|h4#!i;+VXJzjV7lVqB@7 z@$tok)AZCU^)1%V%LLcFMr1qNK3@>57}@B_WGN-mAgb?D`!idK6?U@MX$Q_HO5oPj zbrVQ2KP@wQ2w>eh?@zC|`hDx{ig3fo^E}eeTZQ3?3j;9Cm!uT4e5>wqg_h=|Xl41s zfc5nb_g)=;*Vmp~!><7i($^$A1qR9L-I0~7Bo^X{zoN6|VlBvirhlE}s|F{1g`JmA z&^Lt5t(|iDXG>p%Wqxs}Km9J7cnB+>6pA6RD44)i)uuKR$2}`aqXEPD$wOKiRvIM5 z5B3g_@S%_90D2UYA~+DssaHI8n3W44z= z>mN+B{%*`g_Xo(PKR!j*?NDa~rzvz^^?=xYuw!#I4$fWw?jX5I)2^SdMO`P!1B~X* zv^lQy@fDVH`|Y&RvgABms&Mg*!o9}bgND>N)vISW z(kvL7mRi!uGp^CK=~5SWUEJGq7klTY(A&zvA{Kl^4;Gt``dIB9H!n|fV9592+#p@&h5AfKbWQ}V?i+U2*2ifbE+P7=`<-U}0mYCWn44vsTl@Q>Wgw25(5M+bNW zM59yL5JzpMVAUrw1 z#Lf7t7a3Nq>B~HA|LHW?>Ld1W$pD8Cf(GXt-IGiUzG}9h&?kTx%2a*AEkD)q*B0UG z_ULm5rCBtpuQcxL0?WClIWodGB|KLe0?9W>wyR=eEg{YxKxG;uJ1vH3JK|rlaQ{3g zaikp_^%ZRjV?&N{YwdS+t$hrk;n1cQ{JQG}R#p`LOFg$8FA}BV_u?~pLI)5{JS&$OCdnIs zkwZHhx?QjFMW83SQr+O0zEZeW%GR@X?Zi!4?x?# za<*e3y1IdR-DZK(L5K6gmN0f~Wk$XO%C8FC-!+j*PXmL=@lwj#S*xWQ=2oLrqw>`= zM6eA-Sz8xEvoliw-+@Y&#l{JCT3Q7o(>7T2-g*koo>B)WanWH~*kX>;0>^3FI~A>6N;755 zSz44!yX{Dhq(^BXwwTH{pU0>qQQF>oD^NkG<<9#`hUX!P z7sZ;JdqaHt;@P9XDTGE2P7x^zugj*<|caOyVZdc2+ z4_C8b=j?BLsU1GpW>ers3zUs?*4nNF`gP_pDI&LAC4CsTK8n0Y))Z6 zP$u8yK8P`P6E%Lnn;PwDb0$ANyzKGBX?TAE?-fiywz{}wb{J$JSKRw2?sk679{Ye8*wc1^O1?8JlJ6*ttZ zbrdU2ux7ZzUMBkEUYnbro`#mpNR~c*jQhA79qRlr=ioRzf7>&0aPJ_}Wzjy73zhz;x&qgjIx*hkGkF3p@OAuNl|2Op+vy(7+0we+irV z07{3Q{MsI+;c`)k#iVP;DVKra+TXM4lWKS2FYN~N1g7=vqdau12nvwcT#5lEC2!Vb zcjdS0v}(?sva=}kf!9uz+%Wg{@<@_HKuVp&s7b3*h9}UMUE%8#Q!Xe!6wtoN;N80lhJ#qVdo_Y1G;;D zEf0}(n&)6=Ro)1q9;nIpMI-0y3$Lr;3R`1Uj^qCCK__67+50)k+2?oMf1-N^v6DgJ zHpg9^z$0WyAl?QyOZdZ|fKMt;Q&8Cg;ZqnQdq1x)#0<&oP)V?!$MvCljiMf z^2O_~A3#B5C%`bp>6B|(q^t^!jJmpy1f8r^kE8ahcjr;3c$gTB9NAxs$(!UU6&S)Q zHkr{zOi#`||4IO>J)_YI>Q8lUKs0+!g48z3Sac_Y$tm@rm|S~I{(S8nUKzatnb&v3 z5N9Hy27=EPKcXirdz5{*5`2v6p8nRtE%g^!CQ4VGGrVFT7~HwB)32j(QOp2z8TPlo-@`TcFGLdZoljR%if1PTXZwZ){AC~dWr%u8;j-@TDI9NuOr`A-h3`+9*<-stYb;5sFhU8 z#e^Zgm@2&&*A7I9!n{uy#~h>)r`vL)yl>l(9fylP+B7XP?o_OYRb=OWnZTpxD__xP zmnDuLuuH7}N$@c?eYx~^p_mcAj%L&KjTB~kH+z)3Fa+yidDzKs^HF2jRt5i?4%|=0 zvS#@oi`q~CM_wU~F}FNh%}Gp0+^=U%*-Rjg96}6F$rm)!qu0QwV-jtn;`Bs?*OO2h z5qwJ#B*lyS{Q1^@?YJhx1ks-+>J!8xr69JGgI^~$SEG~px3l3FyjQ*;zC)e7qS&_rk#bxw$qg4bB_xLOvAsZXUx;Nd|qAs67c>>@XR6NM-_>xOhF zp!1QB_@zf@Bb2olOxFw)CJL)df7tbP9(cDE4!E>g;s}FXV*lUyf#3^#tqCZ6b~)bm zai+Eb1wQT@--xG?ZLVi3zF#i@UWemF)q7kt2WrunQ%3ZQ0jNfMY$QG&JYOZ7<2>2a z#M{!J4xU0(uZ%mZUbEHJq)ZBR7p3J$3*oBN{|^@+cZi@W$vHoD>0-ej!IYJLN2(x8 zA>(od#B{OZ>l9(E!dr7=H&V5bn9M#bEZC8O3e3e)#sGcO5?_&fkY z>BOG-^7+CmB_6iws9VGYlyuvD6H9r`&u@dRQ_%$vuy%bhqz%tqH4Y!`9L6i#M9b2W z4Nwev`>wP3xSg-`T3PpD>J;Zs7rpCnpjuANPq$XlESkkEl2lL~5TB~SFK_rz86^RG z0icY1oHQ=yeF%e?hF^8GgBdk2EbLT?%CdM99U>$^@|)X94%F64?C9Le$GyncGP6Bj z*@yKf3ro$i3_p_@F_T*amNjv)|C4+(Mcj_EWlC>5~d& zu=g!pC+NUujT&sLgFxgtBzI>*@iuK8Q~~OvYa}Is4+mOui+{L4oaV}*r|;+0ZR%0R9~CJ}D-j{!s!r^!4nFdifN8cquu8iS!3(8alr3( z7)caI%2urhb{yHuW4TE#86@eOVD|*A(JrAxnajQx4(MRN#27|ijQ2-L-)5(-)TsvHKjI$ z^7s0|1%gt)MZ!#sakx(J)6Jng%_1T#;@gN-ce^< zRTKmezu(PeTuoQx_wPrI{>AK|W!eiWiGX;Y{KLIK=!{6_I4*W*)#eaE=IIV`BbWBg zO!@}KRa}>$I-^@;5&)|kkaHyL?L!GOm%_F5yjzvJ$swBxpy!YE>6PFZS+}j8LE{rM zs0l{a=GHQ~p~VRk_w#u-H%&pA1j3ay#`Dot zuUvE@R*^4!U^7KZ(GkLB&;TL)9FZ=gnPn}`r8TWuMc@}%sjV6vK~cJ4KxsI#ANJ?6 zrIeWOa*6ilzU%$q-SyK#|H;137j(u<;A_D%naq2W=(mrT9Vp0Xt8$1xVN{9=+n5$| z3;rifbhU08p3Ff7k3i+6_S`(F1F}_#{!}H{ARZ-*3lKci;y^d1szpj($jHD?F}ysWt%@3yL&?I9SWZ;^T6L#8`D_LR?s(ZgXz{^;Q+l0oJH zY3M*QBX@L97p|tZPYsxv(@V4+y_lbs1Hajz;o%*z~yx)1=y zc-8z5C0VudPTz>qLITv;kbclYRSB4%L+#>KM7SY!>WMSv;>bJNRcZQ97N1j~T=eU& z?}o!l_EnV{lN|JLElI?mzW3II^d{`dC3=ssQDwEZ!_xJ$&AR#ij`EQ z5liKd#4gq!*_q7n3uSyy6DcAZ8_gAbkC=rnCp?8gC2wd<{!IS^t)=_{vPA4c`}WnQUc^c)u*^Xh z2Tm3wz*hxp_bVFXr$g~sp9ubvy&eM3xP?Jp%3e0PN8YZUSMI=HP{H6K`}L+>%TSNa zD4*{=!hJWCZkb=Kqq4J%sOhCvR*b-7qfES$9k*vrguk* zN?Dw-@TdoVGrnSS6VE51a{%e;qaLaKJd64Ryex{S6E`&^7>ccAlG$E2w&F0^=#y}u zs*TKX?f7`MDXGRH&F(wG2YZINc3DPhjc?4f*&(HWRW-iw^CRPTv{!I>>GSK%WFQ83 zQ_3)jok-@(lCjGA)XZ>oPi4_^okAzwAp!rwY=$i{ndY;{q!Q*f3 ze)@JvC2l@TkI8X2!Tkm_`ldA0t>`p`3KYl~tKqK)U@*w>2comvB0S(yqFoM8QIc?# z;{(R5@VV6zOrjH@#BB%?`+mpoypI6IAB7)Tv;N}wprl|4TWCWH_Wo6OW$+66?W3kky zgt&q?+XBZ=Lw);W9+B<)C?&u*uM{4dvn{x;9POP6xdT7G9~rh6Z8_3Hhr_e7iUxQn zokh4Z$aPvYCrpgTMZ7HAWm8O@xUWCldYF6?g0a2k5Bt(Y5Uc6-kINe)GH4OGA)1j!+)Y#0kRU-^j!j zvZt-Ea{XR`3(>ZUIR1syvo&dSb%Q~08uAR%;ifq1t}OfrO1j~Jl#wTRDvD|oCXmEZ zClR-yQj?9T<9rZkxb!4vKz0-pxKMnnV`ZUsS!9imq!zSom|_j}%R-&D2<0uJ&r7ZLI* z!qNF!Z4ErBTu@4}em0J%|4H0Df(pnx?(}OcD`hmr#n&B$%AJl<1e?h7{4t}^P;N4oW%)j{fQ#1Tp{bOJ%M@Egq6v(3!%l^f=m{!u%ud%x8j#Rfl8xM`Nw*+zbDh*m|9ex zX)MN>7mC{S@jZ{aDS(tG_1%pb90;+yjsHTZ5U>;DlRPBqxc+jv0Ml-4*SX10ZP&}# z$&qjBl}=jt{DzmSVG7KMJ5kjR;*;_Dh_8K``Y+J&T%lX<$n|;9=Xgpvp(mUyj z)h(*4`I16{XPxA+f6K%CKZGDO49gi)M1qY6CpDufa4cuzFB}8OOJda6zuBtX|gnVBgRf_#6VPp6zPIp zArQPp8JiZqMcvPp<(~m$91@k5-=ywxM^3#Hxz1T{fLCa;z^SdMAnIiI&(VN6-wW40 ztb6K}DQ^=2V~wqwo}UXNZe-%4C40EJgsx6d83zeg+<%S|vH!tmsO9kccE--2N;heO z@$zuj);pod>!=Iy*rQxfA|JroV;8z=@GjXaiH=VkXAnNrZ_uNMD!cNcxsO0*O-Y%} z*g4YXtCgvTn^}n`#$9I*=WKuu`i^;OlYa<_OHNvjkpuul3iZ5H&$N8dwRBIL`50kCMr%OvitoVII}g66qn_ zDo*pnX@)H_C1Rk^rthJ3jVwTQWNcdYS+hPajp;gg0WkZq1jR`semki~O4(SokF#6Z zH{UNLopgK)VW#R&aqQGWFg@j#;r4&Q)XUdQbL~<4c*mD_$Cmv?(8#lQi*KwBg-!0{ z@v!PhG1UPDR<3clo>`oces`BbnB~*pqb_xt-5O0}1{{l8MCdG6ci0%L4$Up*lmnM1 z58w5}lfw=8=ngGgI`-KaG0@uWb&e`!_LWWm=Dv|9GXF|@c)RlvnBH={xT^wl1)#EM z+)Fc2Z-d#%7IC;>F=0L!!f&izIYiJR6m``?F!7Vbbina5DBh_(tiZF!z;&b-HxANivNdYnX>NS18Bq>`yo(hu3 z1XNO)6aae|k_GbdF6i$0U7qT3&Vb_2Vpr^fp@)4k50Ie1gvGUyEz+ug0@dJD?%$lq z_~}UtL|hc z8700|ezYX!wG-xv8>(d{+W;_k7AOF`W{ZwuKx7+H)A;XKcbWQkS!fG(=Mr$$jQXZ! znwHA-y8#Py=KOJdKv+M?P}%QKh4}kPrq04i0rV>hzN}dm@MF4zpavn2g@a zZ>+QHK5XId^}a%|4+3fVUW?@1{kYB!rEb=_YbJU2cs!m*a!Lq!s~)h8X=zXoJQ8&X z?c^U-z~;*KGh0kcpOMWs=5BSi*)YujROKWYIK;tRs}akE4lsZX=?C9Tw!^gy)RgWM zDK?sRVDdDi3s(1!6b)E%nlUp=&R)yBUlyp___e`T=pe@gUKJ_T{g1c^MfA8Zl^ocj z_!kOeiH#U3Cj@8v`HXSN=!ZjL$u`>a2IJ?L^RkY@LkRC{YqWY2t=;R{CBFq<`eOdv zx|Ci*yghNuAD(j~dxUUc36l-`L@_9S@I4RxyPhO77LAMU2F z-+qHh_%ZUPaeyl&cobfJN6O2wR9lYzgQSF_UgwxX4XU|&N&ZDz{>bp#$ zsH&tR>6IB_h!m#huc$)Kw&QsMGA(8xM=U(2W{qOq6EJU1iTqQFt^-R8$Un42Suz@$ zUGsRz@m51J60He#hzsXHE$2l1&}w_5+o66O6tE{~TExlM*Oc0^*r5&5JbP4noqD8_ zvRbAcifT{VmUi2GmXrv?QXLp%3(>^#AhI_bRiZqRoXxQ<w2IZCMk#*9yG6lVv zsuG)0qD!Lc<}q8DC-Rf=>nG%h&GN1lW)_e$<~rlGW^dQ`6ydFw7J^NqVo>>$K2s)s zx4Pc||eBWPJXUgPw6=`SJH*sZ9vPezv2fwt7 z|BO`A{_9WdFn(bw??DZ(=0v5o_|>;WJC)PU$Ze};D(ZwU#{R4Pzt|ssy|w`#l&^fp zYDxmpg#H?vZB?+K@{0v)`kLUJ4AYB%`d8UFjgYPWZ8C81MsH)O|COQw+u=P6mM%fZ zPNYULjeGW)&bEd!t_glOsyBff|JjhBPRIRTnMB%p8|b>)df9K=?N{k0hPmSGyVmi3 za(eg48zfQPp>50m=Br4iq!WxK{_4I7ZWbp(-?P*_FAa*39Ps&Vi+M^W0G^41jw?~5 zY)E6#W5^z5r^(jew>G;*WYhB@{_hZX7OjPiIl#us#>&cVG57Q(~1VFb>FOh!Ngsyo5Ip#FFj?|o8ECgojF>+Ck=zIX7W=#+(r<1hTf zVg*|N(e0##p0UD&oZ<5ugb_F+Mlmh9u+s(QwN)Fz7E!Op{u$ZA2-9y%avnzf^6N!?fzystCvC*k712s5%Kgh>2xvEBj)Y-R@ms4RGC z!b=0rH3+NYymirWHR^Omz-xOX9K;IlR+QG|^?&ERY5{qOBIAW}t`?RXEoqW_QctzX zy50uQUt{~Kq2Q{}${k7elYq5>EzV(|@87P*>xa8^*!MWo-4RKtIH_w6p4twnK;7&Yh{Zo+Jqz*L>bil%GQw zxTA5&PLJ_GOO4wdA)AmHO%C)ZsHnddFO>iMVtD0vru*=CCAb4_y2MKeUspN^5c@p> zJ_EUpjez6enqoas&TvoJ3{0;3M;v}SrV=d`DBj->v{25v;Wnsv_xvQL$=*Ea;+KUL z@;8Hj-=!A~vJrio!nh26dDO?4(>%(6_)-2#%=v2a@&|Jp9c(SLC@fcxj_UCXzmA3_ zH+yFQ8e*>c{tQsr-Al+F22AxtyZGPnZ)Z)dAC?FmepTLG*9OoacH&5gXoS$rf0F9V ziE(Bw^rtuZy-?mZGC6eKB4t8yhCUv3*B=*g;*aD?7&}!MajjCGxkf742|KPl$3DnQ z-o_Jvoh2-^x~en$=#8MQB{$!4PoaS%jFRWdH==v{8gwu#`MG)G}+ID;Qq=} zjo@rb<3Pr!MZfT_^`7mm`kzHZkXA6cwQAdDgAknQj2rzmKp-EzdgR@|3VoMT9>)!1JU|@^XVTn4oy?&wZ)> zs!P+Fr0_((Q2pvSf(fcM%LQ>9 zwIEt+oBc%UX*r4=HciC=hYoKe{?O|_b?T zp3wJ?s;Bx3SDb{=>GDub_4@0gzSPdA_zH@T={-0;U0rtY*@AFC%z`*jd#+3BYUMop z+^9u}ad`863{grF`xU2XozyqVP5!##G)nVx`4bz&LjIB}sd3`*c%|}q9f$ICgi>-1 zSEmisaySpArrR=Q^wf93Dx44bWKKDz1{3;egJQpSTQK*v$45U4ZACp!mX^y=h9;B(zaAbAEl&o%Pq9tf6>Hj zFCiHDcy#44wsDN}hCfY{^w9ffoG>fVFlo7^!a7&iQtR+X-BC@2e7zn_ z%E%xGJowLljfC1>9!>B3VneNVd?jd-^81u|^Im|*q9djnpGcWxhQnJ30{#8`=1jix zA~GV9ZyIkm%1mvq1-d>Y@R9<|o*qa*yF2GnAEDha4yuQ{)?wT|MerO6_p1EvWx%bR z-%bzaUPA8!+}oAcJH@s^LEof|&r3Um*@ZuO1ps45oo+LeL_9K#UWxdXrglqGpVqW4 zs0F)6tDa|3m$%EuRnJ3*HRl(&2!G?L^F}qWzLu%Cb*%2fHG8qXW(Pxss_Am%>892# z!zC9_5;&I28#mynT~vpsUm)Jl;!Y&jw?b0ebjIo%YLwR5Wk6!B;_H^bQeO8@siRar zKIj_Bu-1pgBIeCDg_vahQ7I4$HtwD*wd^aD(@1oasW$%0RAW`WwuOM&AZB2J9~n8~ zUm1bE+{ck(ZS1<_Wex16@r_k^GaXD@rtltnF|Ce&2z9hS#76);&iDjPN2eSUUp~cO z-^lhSWlrK(iL{}bOVF8-i6G}%Fj-IgCwHB7GM5l8LT~j{eu{z{4^#Ks8EXw}4%h-T znyNjAHE@*Qd@ z@$SePK5Qsuz`w5o>i2$z?_IM;$}$9E-WbX>j4qcRcS~{Z;)r<*j)&h3A%7f9zC=uV zGowBbZ!^4fixIS9)wg(L{gq~%sDTx18B(TiH28A%9p1ifS_?@Zb6UUn(g@#(X$kGK z60~Td;A}25>`apVN>yvN4iTo1!*@8fSR@Jh&>BDyi&fUH(jP=QKIqV%07K+L6)x8N zk6@RfRyb*#X}+>|b8Do(sGCtQ-^sWQp`y29GLLkCcXpy~edm#`=%@mj!6YE@4mna7 z?%&tWF?p;~S#*x25365&ozd8xImMm#Mnhfu-d9at2yO2WAQ}OAGWWs+?1W?nx}n#n zXHONHA2Dcsef0zTeTvi24DpC=4XS48pz0p_Lp*YUxy|I!wd0TXK+YRJcX&Bn%iH%fy?nozSyp*bQy*|M@3h(EB>yVB;pv zu(4`zS%5c{O1O;zywZ0TRm*kxFGP4*=^Oa8RXdYgpi_f~Sck;W!K-h>v~le(;b)3i zlFwj)Q2I6dU#9Yz3?oVLGv+j7!*5g66gc41sc-i}j`uC!@6X36YP72`w5`pjH$2A~ z$XdRt^KG&j75;3`p_y&LwvCmj`FP*l)EV&=Xu$Z@A=FB=uzrJ61LOa40lKdo#*0nR zN+{5ZhwEpkf>NlcUI-9|NOpYbw99VU4M*EB0 zyv}b48Mt;db=CuvmvPdUCdNs~ z;m++mZ;@&aQ86}$-rzEgw*Bkgmpp}sRY?8z8z;cAxy@vx+uJ8Kf@7ZS?`TuM0yPukhzI`du zdl8V(6{SfP5_*#^C?LIq^b&dtRY0T(Dn%r85R^{ny`yvxLJciKsG)>jU%vD1op=9* zH*+(|nb~uGICHZ1UTd$<`mE1d!8;SwhpxEY>;{dun+5LN`0w?EO#gPJtkAa7>f{&i zhCj-&qTV7-KlinQ@3`4H*?o{5&jGl?lAzBee9&@Jtm%t0pVftOUNZmr>Zl$6!wD}_ zWh%ip+_kQ6$!v)+jNY(<`-yqR0=Cy|g$j^IpkA@~!z2{>&g}W8XQX~B*^&oSZIuZS z!4a5<7boOr{RcR$Up8wi?az7Rtsl=-GWUBY=Zesa0)oQ@v9Dt4BGM~?N_EXz+m7)7 z0hcJmvTY-9Zudocd$(or#4Mo&l`Ini&x)t5Jvjms1PDr z0ZI(*>7?~66BmSGf)gcgjDGzti2ahKNXgU}F*hnpwVHIqB|EMj>yRa~wf%fQlzPNd zN!E(-a2~V!a0hAs?$(Z?U!1M~R5qOYeC|hE)a`G)m(JcXnvn)+P*UV^JcyKXqxt(L zpY#=$_;)nq5gYbR71mTO*u2OM{EvIp2Q`--)|3dYI_#r5fv%;;?gYkr7@`{uSY-d?MwW{S>h=-&97KGmhQ1ltQLm!{H2*TEWrX)i4_ z9$a2&(~(k(eMg7lkPlRy;y0wIz`>)Pu`6OROs0N$(ROVg80W)TW^)q+d@`2+%?hO5 z`Aui>+6ey{QAIfcSMT&|US4k7KKVgBRQ zH~X_z548k_c4bmnsO?p6rE+g*kcM*dVw{Qs1nZ_v50|!gKZ3AFTh{^8gdciMsDI?= zP^itMlP`NPdH7*p(9PwnRUe}~2Gs?-zw&3_oE$94T70$~8IJkmWBfwxe!o?xD3)H2 zUhVPoz0m>U`ZX_PhDuG8Cso$VsH4s2t)2J}`a8H-L2ruKeRFMm_C>AHkR*mmvL-Nb zNpyE@qli9}1o97wj3y&nH1%BLhmJXD3yl}Q-Fn@tQ%sstVK(bZ+>=>^G*~9xG3EVw z*40zLPQP!CleoFOuu2B3-2Gz$LT=qh394EniGa&SUBKQMcBX8r0yaoOt3nwN1kxkc z97%~5h*<}0LIVh90Cgk{gVqN}3`8l7Et1xckjP51;56K-Z{qc?FIQSPbQ|uxy^8#H zRwmxM(6e~=__~4F9fgzQ)mN(eI2pHW3KTrNjP7KOwH`eqsY@Hqo9&Raw@k<(^LxDE zvMR$Cc6ux%W#oX##e7a5fCC@2D>he9O^8-^E<#g{}_AJ&g8XaP*&@~0GK>gPj~u5^HyY9uz6?t z13d-=6SDv7LAm>@z5WS6h9VU=hcc({Q2FM?Ug`nO%g^jPVF|Rfb})fETuhLi_HgOl zk~Glv!z|H9+p{*k4uK~Gv9>`f^r)X@Ax*o5)GW;UsiyCM9J!G>-!D`m(a%UhpL1pk z91R01#6Nf(t}hWp?ad5SBrP#F>-RFz^#_3ku3(YjIJTSZT#cz2!=gr2ofk$n zJ*K2yDHfC&=OrA+i`$7RJI5Tf(!5u$w}MDjHm_cp8m+^2N?Y`Q*7s#Chv4QenAxIW z_d648D9B1{;&>QJG)Ja0)G66Zc29ul22<4*4GuvTD~Ccacf*Lm!5D(KJ7X5gPZT3{ zJf!j!Y2U1Aa2~GQod&Gxhi`j@tZNCaCf|37o*J=AlcfTQxqW(nNP<18b}M_lfGCn} zZ-0PEeY-Z5t1ZGI)Ue*zZ2s+gFGCnR`Bis6eBYHvNR+P^`BN!7Z6DHxJmC8Tq5++N%?kwaj>4CN# zg!-Ocp{&v2#($sEp~@&JQyG#kLJTdp+*s3*BADa&1*-$*v?Ty1DE0lz?FEU`Wk9TA z@dGxw&KM!+Qr{S-+?bYpQ?yVBinis?be>sT?ce;xUCL80iPs+MYZx;%|2Dy9Ijkkl z_jV{8c-?l#vh2V1WI52|gHY(&;L#NOedP6^-Pz!-_}a{_#lclV;NA$~cTJ1ifKSx3 zTvNDxG;YOj0y0t1ntod2>~X*Y)r-t}lg<%SDV(ssC@Sw!2k?x)TkZJps6z*syfX`? z1FhNvCP;&RS2MCTX2_DGw)^JN-wVV|BLh1~f~2P;&i z0Va83XFSkrc;rQ7HR2K4g2~iO*fX1rrt0z^*#H-gkh(u5UeA?e@3D1#M4xk#;Y(o6 zSn0D{0dyhFSCfMzuOO9u1hG4}c~ZDxc;!2|-OJR%+fP^Z2f>*$r1HmI40rz$vM$ir znQVIH&d2h0!Cwp%;DP_2I}WGW_4ki=v0-Oyd@5eW+X(>PLEF8+UB>-I`^AOPO7#8l ztbAO%{Pnx5?hrc#!=tLv@WbxG!wbYS4@@@;r4ijW<*xtQywh$bawvi`8txTdWvl%R6z=E2$?8J}W$e zTa(?!BZ;b2&!z0lp9lXgI49K-nzkqeA>Gj}P7IF4(&2;-R;|}Vm*aZ_K@9Cp^L0N4 z0Oq^sx(lgBdbPDQlA5=>9`VV=0b%T3Y;q3hq_+WVn*1Rv_y@~Q{ESSbXJ@9rZ1;;z zR|OP&UmECo_z=MfKDteM*0Pt6qoo{&+n9whRTfCAL2JL{N4}Xe1w^0a}k zM27PaZ=(e zqDWFrMwCh(OM(PK3I#7(+_r-WnI78+2*XITMYi~&+6QbUnFJt78`cvP%%KMlf=8~B z`aHVq3x>P2FGAYYsWP>ZF7IRC0$2og`b`sD=UQ5xIpxQ6{njo zwG($9(b{r`%b`6Fsk{9Iob)uu+m80ubumCT)sX2!cSV-4ps248k)hzHOG*D-`s)YL zqF$dw$->0lF09h~#>0im#TzMo7&T~7{Zix!p|=TH1aW%j{;YUurUO$srdo9^EYE+c zRdRBE$-)PPouVQZQQ3&2484S&2jAWdvnzjk?hN z{^rM%o4bOGFNGqKN_lh^b<9Mc(a=1uI9?$T+`Z$N;$1a+>=mZ^=YzJbBQEuKem(Y^ zA*tG?8M0PE@8>^Ahh*C)=JDnIvV)6$^nErazR=K9ZukwzoR!q)P$*nQ?|^Nwz(-p2 zCcNW|B6~YrEsp64Gs#&KA%WgskX0;}!VxvoE++W3gT-9!+{5$iOm1OO8P@d9V7$Mk zj+T&+*88@ZvO7;#JCGCFR!S+pWh0~eJH;_Tf7$Qp7sAf7*YAA zJMU!8bX@h~w%Y$I-IMY^HTAL&=qp7nwfW9Prn9dVbRV*^SVCuqM!$_~Lf{qcA!nDm z#;&o7U^f=_VB>Gy){TItUuPdB_WKB#_ml~>2bU)Qb%|Rxc9L33CZON?mo8TJ(BYK4 zghBice$Cc>AbT-;6gMuHEOd(rCuuuwUknZW+jCD4yf`Qq&)#uBFR_3;O1A)utKKY+ zQg0)f4^sCjtXdB=cqfOKE()X<|^SUu0%%b%lIjYiqk;S*z--sc%&4sbXGLO|e?S1+kApc;r+t)MUJZ4ymHw==MBj z<#fD>`k%s3bu3Lx&^~znwM~*Ro~GB^X{mRvZ+5+ltkQ<~77VXD9|}S`oXicIbV-xm zx(=8pxkMy4DKKZ4;C!S&Dp~)Yn~^&4TrA}loTbfZ!?!8XGnOD7E><$)J!$WmpsKN1 zN&zO|!{Zm*qB%R$B`3}OFUN&6__eN>r-PbSrgXnpQR#Q_RBre5(}X#@fyado|Mb&T z?5BMyDf-w`DVRsB}e8d!bT1Sv{Z3*oh7#OumT>P3{a-Bh3sQC9MjnNPhC z)`#2jH!O#v;YMO=^{fNBd4GTA3IB zc=E69)o2TKD_bvnXotw?y?Ztj<8ls^nLY002E%GguPO*(YpqxFvTQEDd}RlB5x8+L zGnjLExS6I}<~x$($}O63G(#|@ORJ3>!D>NHg&CfwXf!s|wVV&w&Km<65oErOioh6< zRYkUTE;G_)%BS`En@j{ zH#U{_YtIjV$25PJ{z}Jg0)NEX`mHCp)K?de)T?!83D+>{#kOhMlKkB{4gB|ME;#^f zFO0*KahI6QLX>LqZnh^RxT{Ih0k8xx*a^+EpTFiH41hTT{lP4Z(bR$OAovFtF}Z`! z!jM2Jlw!v%cgShN;@8Y5N}M^_rM*k(ur<`t@3Vm#bN#`GSQuw9MeilpAAH}Q zy!JW=f~}T*Eq_UIGY`H`F6*otI}a)O9ETx0xOKicR?F>+a%2qiMI04SZ{t{ti7;mc zR4{HUm0LaQG4kE?*L9rKu}i>F;FVu7YYA%7%GJndcddRw?%~6q$fN%fuLf8DSFhYf zvdgc8M&Yy7T-Ft%8>x5E(Y{s6fw|EK_?aN1m|{d6h8dR0h=P#<++#*fVk!*n%4X)u zXYS^GXlm6>-t)DysOfNQ{L6qgvE81}%vOWVZwHqIMRyW@(7?0#_uUY0LH)&0fdOfSq49L3?pm6u zoug#lk;zFVhO0e*;oOEPFHs5nJnv>DlbW54$hbNft=}~nD*vvTD$CV0O7hZAcsK{O zF7sk~c$lA|em8!Fhw({#q=xRxM-8dB^b~k;Df-3+Ay; zEp)4|rH`}Ykq&j0d9F!6+zW)Q1YF$4+CaGmb2+?FCwhjo0dv>fZUGpodFF!WQ{zIi zA8tViB2yp=eTOjVukbeUb&YH`tZ`^?#h9!c)RDvnFNX?&dtTEXYRSHv#BfZUrbtJC zQ;(WQA;2Q*&$urcjOj%QKGt>+VZ+m`>1&P`PnVqPg(^JX|0VG?c_)lnCUPC&S4+RG z-O?+fO?cx#Q;uFB^P3gWvC*Y4enE>>4DcwaS)?#NBOKmXC20BZi2P*rDT(^ZKVeav zYu@)YNw*x88ZzvJYgdd>^=sdGrkpgy*`9A_*}L{4gRw0UqUU#rf$(BD4*B9MW`=*f?!el;PcX z1>71JTIW;EZ<lvRuSaD}#F=g`@0S|_h{FKBByXIx>>6zc#4CiurOuNUh^GULEqUL3*OlZ*#~huKUDvg7Mw@AzGA9Hk@{Gq8#-}YY>GBAqXy-! zu1aZVS*E7w{9kx$mpe>4Vh=HI=G@3D1t_ygL`qwh=sy4@ z!XCd@pYHbS2~jU^zM-EHnqa!9ht6Mt&U}Rxp&5nTKCZ2;F?U2i+qhbQs@w#VvJc8F z!Urihm!xDwswQO4&b*=M(GVz|BjrXIn8_!Qb!iuPM*#h1w6`2Kf<23VzOUn|i ze(!R7!K{Q6e(?blxE8~YEzY*;T5in2wY(e4<{XQ>koor*+$~E59qhbEQmtoGu?d01!f8~>o7!y%5=*=?9pCt2%jrqzJD3O(iHM!Ks>+jN*y&Mg9}%_&Ry;wmw) zau|gN^=my%`G&!yJ**D?6R$Avuyz0)`R{2Y^FnD>ljoGBqNKsf2Amn14|1{M-JyMy_Vvd zir4*7hEll263^VYC~e|Js??k^dC&?k8~~3?h_5sxNYg=ZAi%BH$X|#`)dqt64&B>t^qKi9oM2#`n1z&8h&NN?|QmSxB?- zggBgmPQd$_u7QyVgl#}`46u?XJe_;pNo41x1G(nYBbK?_Ot?77kPF3>97CHw60x@n zSGXOgWl*BR(gx^WBfF@h@UZ4tgY+9}5 zi__VY@0vD_RcZzlTT;)a5i+~^Q0Hv!D&;do(%un!TI-6Y*4yUnW%dNxp3#}JN4G=Z zCVp z4f~ixf>B7xS}YI2Q5z_)rL0VOBgC)AP&?w89vOM0_7Km+L?a5Tixr#qc{rZRCE{2t zqUiIVpw-zR8926iC;)}Rdzk=7Kq0*(CrQ}to%p!__!5QH`p4wXotm7q6}B4UrG0iv z>^FB6AbK_t00}VjXNI&7=ah(q&kU8ya6afu`HmGhT;nDFim+9n(WrKCM7HQe8Q*%d zyc)&FO2PfZeQ_OL| zbMu!ta`&&pu750_Z}t-%ZYh^M`>I=6-v_y?$nAb6fArA&^8T(WD|iKblbPGCwj9Rp zFxWJ5)T9)t^YpdT6C#|&1k!L!Hr0A)@-3}p(=;;k;9zw;=Mp#P8oP$NjXFs~&L5p? z=`*4fWCr@PR^r%$ces|XCa~(*k?u0s_SV0Ya~=mzH`9DZOT4NKGSAsadgQuR+f&cD zRgr!KcZzA)nKUGo9%gGD#`W8eZYkS%AxCF#=P&k-DJsvyY=7YFV!kEqixWRP`Nw$( z$;OoJ#893gUOhu;y{q9{*O(uZA{@dDsD-VES)tS_I3aXJ6Woh&m}cpn^HFAmWA7k+zDUrW_<73`a#L8KS3>vzs7S`aaw$Va2n zcy>$mA%8E3qbLH-H|9QuuW0&*Y1PYhxT31SlEto3V$N7ifmYve>w-(P61Y?GM zwb)kyqGi{w_yvfP?6XNuI+TD+z@71xk?gEI1UlT__% z@ADW4o-qyV_Z{#3lN-yS=~!!=H}#0r)Fm(&c?_^RRQK?ovrI%T)5%dFQqT+QarA06IVWIWR6NY%Oh0(6|y40pRptT`CHk*LuiJXPVmJH{` znhjA$mw$qfaml-y$L?Th4F-bJR5%q?UfAw-|Fp147?h^1CGXxeAvObAZn%}yE$oD1 zIeauLEa+?=E(qJ>j}U-V7Nq(7r_}9Xg9Gzo#lWASp&ancLkYh9@;j+CoYEAHp;}Xs zzYp2(J;(3&Z94^mmxU>(uw)uTyRn}1aDQc1*AUrIQ+2IKeodvHYzEvlji@m@W4mU3 zC0?3wcMIu8WuygF{h2-OQ3yA{d&qc`?R+}$)kW@%l9EQ8D#;7Yyvmzk;`u9=L)R(C zaacW*+XarOS&fdXrzJKC!Bd4jTe^);{fo%-pC2x0>*;j3^t$Rze!Z<@SK-r}!7(Rp zclRMh1xRXPR}C~4fFx|Z$!A}B5qbNRSe@5GL#1QPSK^C6>cYE*1J5ue2@8kJ<6TKs z5V^suRe&Se|GS)Blu$;iZ6<0anD|3I0JQ}|K2SWy3@c@tAetAql zASI~>f|%5nA=(k^&)B45**mVE2)1Kz&9}qoTYDqGZM6xn}Fb@EpLr3zqu)8Q|$|#ymS2Y?Cx6j2`c!!>V7Gu1@T+c0yrt`sV|{__9UvK zvV2ld_|2sm_(8CwBifA)4P5J_fzyFR{hF%3e zkOptXq@Z7833mR{F_kl8{@|}TLj=K2wnU&vw)e!^$el4%#Xww8Qj$r`ekRtA4meoY z{LL_qUQID=JbNigkPiX|{Jt87aL})u-zV&a+1tW12M9G#jB! zu63=d5_d;R^U9#77R{4hYmz4RMh}9&Sx?rDYO;S)F|#Q%08R3_O)s3vziDxz1hNV7 z*3P1JD5(*|CEp1H?k`@iE#}_S9^PbtheAEFzaj7b?!R-HD5jsYoOW^;9c}%Ksp>_5 z10R%p&kD@_r;g1MetMx@?0KIVbR=shVA)jHXXhw^4GSgZf@al@ipS-XGdj-cOAIj7~OkU zccw613Z>yjVHnab0uq;Jm77Uq^wFbRhGo?T(u#GZFBqiaFmJ}8z*sXQ2%F`KbaomW zG4ga%?0W>53FSID{5f0-V7574Lhp3*17j~Fw<8;8N;Owzu26dZDT!kuayqdZE}Ao| zQivdTv{DA(Df|pjVAkbELV98vimHEh%qA45YP>MDodf~@l*6}zk+A9kB2v9{`SSiZ zT2wfuC`!sCmED#G@Td#)n=|xylmziF!W>#+_B}j@g=NtBc0WU@OJ6UH=ia2)SnL&U|p5868j!)1X zzv9O?Tv|vS>bGADb>9bgT^`5NiJ?}B*F#{xs!a?kMWD1Dk~WgEtDqL(00lCF-Z#~g zlDx|Vq1<>qWNgeY0@NwW8fZx_9PkN(iQ`lrSy|<1G45&Mrkm^!e!f(AlO-8BgrUa^ z#sYKKvTAEtt1%+3B7uAaE*orxGnF@k7UT5(fPFmDyU>~w+Ys|Jq&dq^-X+^LHLc*t z4%xq;$(CbMV7t=gRL+yJgkw_c6;}>i!JJH_?3qB=#`IH5+ycMrdQbnd{&q95I=XE) zxw0o{#P_wOxGZax^Q!TmFtfn%C`T`^)CjIYA}p||rso{@7vLwNw#1YGGox7cbRlyu zKAZ{_jJm6s&Fw22WkbL_w7a)QTe0KzNVdOClRFs>Q8k2er*RA0i z8zwIgZ<~|^39?Mjgx)rFp6Wk1_6kokGD#wBry>^=;`Wz{$+kDtu^AGmPsgig6aduw zej*ln;jlmu5idB+waX;*r8=c&<^|RKC47h=8JjdJd!AmQ=qQj_k)73>Ou1AM>(-;N z{SRmL8Domh>Za=(p- zFg}adBc+=%pB#s;46ysMW$dM+4((QDs_mLoUw1Vdz=TU)L=^7j;mx*x^a z^-#Ke-pF^#_F|cy0^gn0zXcU~ z&BigH8XbXQ&(=<>8Ne6wxxFia_q_rTnax*restbs)OgrzEwZoteJbAhmHZM|IIGg1 z5q$+>NtMDlC9L@IdrM^uzc~95YU4 zKK=}XK7W3ompbp;Re{g_JeYTapG=mxPPG6aaF$3npygiuf-w6?A^=&df9u2+>@;D( zpNp$UTJgonZzwO;K}(OA$@SK&sQ#hLKMMxSmc7uD2>@XKVBp85Q3sf2hT8J?`$ z567?paM@e>4Nh0KO{XeSjOaCU4$A9auu9AD)m4q1V#ot8L2j3AOB&FD90SqlJDN_WOJ(S9g z**BwGlycg}EAZnM*1J}hD680u;hd>vUuFE%?4!Vb&I%jY`GgS;q zr{SyJk~sPq9WD&EnEKi&|BT^d?kQHVbZKI^v)mU*0}Q68jqwPrE60s&miHKz)yy|x z=J|k>RpdY3`TbLGT$j8o`4XPZqH_uLJHJTk^oY4cLprvzk6>$Q-a4NueYy*p>WUSx zu+cJ{Gy%T2fO@ENNt>{b&7B$8=x%SVP85naS^11ehioH+wTllACH)!v! zX8VM851!hudc-f%`bNxll^Eh*#YSxwK{W8l$kv`8Oga87u1mQy2ME=r)lCf8zQMb- z*5yrDXd-+y+@0WKHvvfK{*c@-=lOvm8z!P9G^Iay@vU8tiw$zn+D+yZExDi8=r4Fx zEpqw@0^^%dwyR2MCW5`9^4gftAVF0(@M-Dw!x?cDJ@aDkr zkuNx{0S;stZh1dmF9>g-|LA(GS+VpIf8`MiPc{qA#5>%ArEZbgg#b4pEq*?6Z*X9v zA~j^Ke(?MF!MjQaKPn}JQo;Mkdb~pgF_nfEJ220DS>&tlo!pa;t{gpjBs z+#x>85|`%)QGp5 zP6NQ}kB2cAv9Ir$EJM#+yU4~Z?^){sfqOz7jLA8c7xgmPvkRsPYOjS3FJk4Q$8W*+ z&pa=SciZt-m!jrc4!FWjdU*Xkp3!ebm-m_i+&kcv9okGHxpLP@Hp9;kIJ4LUpaV~a z*H;N3)H_i%6QniE5Mhl{fY6Y|WsqNHur zv@t0z4?SoV&e{w5XOc5?FPI|rch)k`73@w?Amj1gKGT_E-3uyN0(xzppnkqdes0=- zOlqV<^ZnsY_0u8+X`UBDt>Sz}mXnVX#x6SW=b6cnCBK+LyeN}0_4+@`?2mg9H{dw` z`%aBE?!BaB?XIAma~HR+Nfim4=pS4CDHduR?!NI}#iK7T-kz&C1%gd^9vuYj8oJ<)EI%2W;5o;D2uZBsM~A|2Yyil%|K%m4?MVeHxDD9J`3j zzVpowH#&AS7YTj-={LV0V$U)!4i#9tXAHB{e8**xCozUg-|}~myb~*rD6N(DAeecT z2H?LL3eveaj-UAE3Hv21)EBh9OnukxWj@SrNtV1+AGvb*dO6wZrb52o@oo|(_}6W8 zrUI>ruS|t=F)n`r%IN?@R;J!B#?a$|n-8Ac!E!@c*spG1gCfJ8XZmvDaN>%s{>%*o z++}qhKa~kgPg)};km7WWJM~7FEe7%Y6R)o9g?I!B)oxoV{CP9WZ~pv(!<-@XaD!@q zEQMn#N#(}!V##(?{Rz#E2!=)$z4D%zr2c#Utm5y=0YVME0$oLD>mWI9WXdc(_57xE zk_tZb&6Fs~5l4tpwY9k;+om^>?n|#QVWPMbYH~dDAc7Q4zN>Br)cmQ!gk~PIIdv&} zVwU~>IOHIk*(N&%lV1$*G8p7|^DhuG=v&z{D)Ft^}X7}wa#Sl)_j_QVy5SaahzK+yGNg< zyHXIr3=Cs^Fnl-i%eJVPbkIO+ParLTvH0rpP%H>GW<5$pv8L4d0ULBrK;QJwqng`g zWs{LDgjE?TWnM=kES)EJvumBA;RNAV$>GDd%3?%kmF0Iz)SH&j`@`69QmSlAYluku z!k)0pexyE`%*9#bdgjV)?pM$_9ytL_+ZtuiMH#r>%RV5~e(%>5=wO+u{RNp&jkI{u zjGVXd$>tc$GP^xr^)K(f(Q~xZ{$X(`bz}S+Pj$_GHsR<9g}fdkS?6NhMqis4S$CR@ zM&X1yII|IvBodIj)zGBzMB$1q=CSz>yUIrW9v4gRS|cemYbKH z1Gle5ibRv&MKY?}vME4qSYHMU4n##gPSi_?eBkBUcd2U;z6<~U2R?ft^T8)0cQ8Aw z3oUG2!d?vo>DI8Am)x1>k$nzkjsAmULvONManN1ynaE-Q<<(h^xsZ~1H`_HvhPKc3 zfMCm&ItDi?2h+m3(y-St>k_fK-QJ=oy*!{)Gf3%jut{;VNyC9yl(ml1YL{7tGCT@5 zz&*&mq&K6(hotiuTe}z#ehRGIKELbjyapcC09O(qug4~I0`bPM5f-o`oZ!CKu_MOn zdc&&yN(kCPb$@1cjdPb>g6@xUM9m$`e(@kmBzr|hdSZv&U5|XsC5RN7^9kT&r-wd@ z>LyPn-PE#HLX@Fqih>%P%4`5zotUwO=O>&J7+&Vr!kd8mR=fe{~F z_Lw05@JkHwU?>dq3(r~pjBcBMmxpYCNeCYK56+Z(e>)Z$Hil6cmI`=@P9g3D)NXt1 zrzOi?j093^a9Y#j5p()1o9UvnhbKnEK@kezQvBzeIKwTsNr}VI40S z#`Dg*yW>S=BSFNRnO(JnCBAYO_XAUAdFEQfS|{O05Te8q!gnZIV=&oxRsLnL(5HYW z(*cku{?O!hn=Z6<2%Sn)cN0$fiBaVn4_)3z*PeT`95Ci)(7^bbLsc*G1jvLVcyJnc zhE2TPoLhBwhHO3zxx6$wya^Co8%m?BXIy0zf_4G0Km2Eaw)@XMfn8>uQLaud{{~O% z4=e`m?=}wBU4_tVn3a%6<6#(koGx!kYq=`VyGja~Ko7bD2tq?94E+EtH($^`s=dZD zQ9?j)CGyYT>f4_akVjUOmjtWvXfWeE^zc-!0C6Goih5(dlc+6<=@8J$k@Gn;$82fV ze!usF_zZM${UUP8yV*mTr6nMCVZtv9Wxm(EB5m$P$>JVa$9_!^)w3`Z(^CIYiACLH z&#xyW1dV@r36SPeDhcF$Lu_T8sz@~`Vd~S&L{<68>yRUSynI-2Q!&3x5_D$vHP)V2 zZfN(wnF#dfJ%Lso8Y&tVJN0O<)LLWq7%7ytUgF z%!6RDDKbaXPxg>`ZR3*#*^P)}3;!hJKea^RH{FIu`3N4IU7P?d`$}>kk5)pQ(g2|N97~|NWzgIsbP>MgQ-*#Ae59-$0}GP=7#=>|c%1ql&}(cL*pN~A+l8l;h$l%Nc$Aq|3nAljMBdsn`z~h>QK@URHu1 z0GQ#_P*yPX&;NHH(CFg)fiAZ0d^~7u{fA%Z<@57hBOh|B=Mu?XX^k;}8UkvnZ`7)U z5pT>u#=rDMDR3D;>R+idqJb=nO!(>ayeusAQF_y+wiVk|)m_yuXCVh)PIJ6|O-t}$ zn*0jA4tjF7lV^7q1;RXbQ6ZQ12R$d>??SIF2HGD|Q`I&NKXQIbX@fC0|-fVdMaZ6QD zSJZi+mb@+zpH&L-NJ!N7Q+b*;$uOv>XG2qjzgE>z9&R5}>niEAtg#QFQ({F58oAgE zzDQJdM+z!eTVZv7&xMcZUZaX; z+*Sw~fmH8pI=5I@Jh@snBbk_^)%jm++zsAn&~QT(p~^qg$&Y=^50i3-3lHf&}9Knol|(eSnSY=H!FJiZ#B1j zi^)cq(x5a!;VD@nWbPE05zId|^j6AUwjPhk)b-JV zs)uQ$qRw}v(_0*j`FFpTN9PXmpD=t7($B44uKSnCGc=o4D6yVAavGH4SUJs3$W6GF z2^kPr0i&xS8+77RdKK?&CiLqp+qB~Qtyp=P={~vKuh-tk+|RFu-EMyO(@D|UYxB@N z9{0EzYeo3IWDE}E5qO{7hNh!%l=FgJ)DcaWW{fRlgPWvu2QYY*Hxrs*CRx>bfb@sLu^n`{S6_^kS!0aJa zzZsk%PoC#BF#HJJS~;_zd>zMOv>1r=5Y@Ks6~8K^i?v>Yyo9g~D07eED=91EBeS|$ z=uDIZ0nvTe)0gP4VW*d&2Q@H8Z3v@niOQ?NZR@^!3v`V2d0y`&+jxI0M=xPZ_Ll%~rvP7vvG0@Q~lg{3T{=0=?FESJUTiXM^X>2)4ZEJJA@(ZIpcq0)QgD zJOUrJSe`eo1-rbxGL?fl;yNDO6-;l{5jFd*N=b(VDpAhRBPrpsS{ z5yp@y7vy-7EJ5+^3FGZ&d_Wp2kws~#h6pSwSNd0 zSkHHD-fcO;?-fPsV34q2!8%=?kGUYv8bhnjYI0Yg5H%HGGR|HBb(fZVTH#5e{Gpg@yxVsgwFpugDL5Q>$b1x` z$Vyj2iVZNX%cVKbWa}KK$8;)93lx*urbbXhAbMuUpV6sWp|Az?l}x2|*xnA}OWgP* z)rB7Ci_uMgb$GS^aXGKKxcoeZ95_*6DnYIhisNN^R-X;+PiIT-(;Y;Nc!z0KjnA# z<)13oD6+EG6l-0wB|=eG!vv7hlr$g+haPVj2Pdkug17R|#{GO=%9eGAVd%BTHEGJ0 zALDpR%9g8HWL*TVU~Im~FbJypIl`RrJG-{CiFmJ%&|sz^fUsNn?G@g1Jt?#~oc;(Ksc-Z1nk_xLZ57CXmOh<$qnhIz%57-SA*it%q}p zBx@g_yvUT-;F`j0oraNIN(ek*lF7D*^nr|#q~Sot5>Z7iw$2YODlPZIAbB`#JiOTM zJ(w6Esl?)65+hzcxzLH9j|YHRN!46Z4!W!uw-)I-uLdaVN4)s@# zULCjOewYyl;9KI*6;nICpVB8WzCAix3oiS^sRt+#{2plv$VY_TnV{EoF~27A zl>4@Ko%qlTVYhPV=GEK3tM}N`iNiF=-3^L<1N2n~a|0x1FgY?^GDFEqiUY-+LL z1=bqg5nz4;Yn0kvDWwp<UJ7&aEAW{!f-r`n^ z1K26ccilA$ID(61{)v=mEhzlqY8K%a4%7~x`T=%$k78C1+$#>f?AU_mJd{wqX&ujR zatSK_z^YFbda=KO`6qyW%(ar05((d2DnfgOX$judgxxc8UH4u*wlkghE_bnwLCW2C zhCR!0&LqGVNZYs(oT`D`17H>$sN*N8>2%`J?6n9XAWruwA88>Tl@yT>u3bNv&XVUf zeg+xN7bvZz_aTV*Re<^>b&5nvg%;=gRW%Z-6bNh;m)@l%hI9lJpxi&=Y0M8~crb zQnmw?-Yid*Esu=Y*vp>gEMg=h51NWNCtk12se@+JI9@dU0obY96YZ) z6_4e_&q_Cg;Dmd`T7ovhDQxjqV@Vv9pU(;-yHD$@i|e2_2eY^|Ngl)5mmZi;fx)Kc zbexe>!7ve-07PX%Uv~yS+i@RS4!v|d5R&nUt|i@4ukG@Z-d7KU|7qL3ioL`7aEjpo8JGeZm*P-23A7QZ@U~P0ym432f-i( zGI=T>Rhq{z{RSCvKT)-nI}>jIyaRpY+9&)I$BQ>fXKxm|eJoe<+PwDStJ{xHP^fjtj>3+yCDnglyfAt-Kp~K+dMRoaTP`?H62`8?w z4L&W4isSO%(O}O6WT2xJS(;a9M_L>h_HO*Lr{(yc3^fjVMYktH%eloEkIHiS_w8#Q zfPAcv8Roty!0Wl`V^s9H)?<9Zy5%z8WKvmbz}f9%gqpOIi_>ig3BEj)EdUCnXsj_{ z1K`^iK(!j%_6=XPNi&a{i}R$WSv03P7fP{6q6& z&|hyt_fhcXGi=&16j>CV-GMWn0V|G!TvhhXw*Ec=zUnhht>M zp-_Ja#F%Q8vQMk}YKJzaNR$~zV|Q>>aFOo$aEk%^%G9brX;C|+yT4zii|!T>=mDBJ^Wp3l z`c7P#YYYXXKJ#rx5LeQbh)a3LKT7^jLX;@rlWneS9PqYtN`ge81=J#nVB3z>VRQ0W zwc@((tg{EdkivgXTvnR%`v6P!)8U;6p48k&4?0ZMr6?zrj^sZ&j&kf&SX0RpD$C=q zsC~x)*oLq5Tb%I??pOtheq$^U*P{8r(JE876bG%P#2G#+7#O3fEj7i4f$vQGMLH~hmcSRpRVfC(K{OBf;Nlb2??+nhcjsog zIhE&9f5Mk-`nD<#iby*&L)>U!+eQ8X88sh=f$9_z+~R&GSAj}iRVNta>9>Ad{jg$TkVYA`h^1 zH&A=#$kXVJpo##chBHI?f$=vrLqI0L>7-O&iM@!4u!QiG2+7eR0C(ZXxxm-tLQ-ry z%*Ko8yDqv53;WG@_g+6M^M_&c^&hjhOjkV;tM?JB=OY4KAtX#m4KJ_PF=u|g-8oOs zYt-E@8@n!bI9$!wsLNHEQWNXD3vJ;m3X9=&h(%f7)99}W04hLL^w|9C>K8x&Gy$Y^ zhLg_*!zq5`%3j60pKkRizIq|HYw$G%tpaB;5P`dKAA5+erDjwx7*s-whx2hxtRPjv zH)6Tc;j-@ro{qeH#Y`u<^^HxnA}X{>X3DZo*C>2X3h`eh!0U`qkY!bQ#g2qLvC zbSne{k`R$EpyVDJNqiLC-d+8d*9~rXa!sosT%1-AUWd3aMF&vPpwf-E>mgKnaMXL` z`p;+P3#t+Vwjn?`>0HXgGllzDIUXCi=8v}mtl>Z*z;BwFX^wMTsKU{!n1_GJS|4(X z2~r5*^1mVF->FIr?y-DTa4*9j%KsEhm5O6x$yN7(2NHiYrZtB?mP22c_ucy=Br!j} z&xKLBomtvEH_eI=vd?cWC%TXWfdu-1RJGEJle3Phi$U7Uf1rW#sFCK|D^i@np@WdE zT{wt&5V%wHDgn3>31d=iY;6wZGJyiN$s~#FNj1$sK{}vs3tvd+_P*1Ze6gc4PP4o9 z)c_PBgv<&f1|kwHPgzf=ieW{cynFojzPC=$^pzK0PPoCzB=HJ%dBw}S1AH?41GT49&Tg>t1%p2Jc(5&0(a;hm3;HYu{}%BxUD=JvY^pRdA#J3?x}fstgm zQ9V;zIGxzN2`*pow^Srz`hI|*2AP~h2lSu{k!ujyVGz>bPSg0{_}0mmH}l_(vGfvy zjSyibPF6pd*F@p0j9mB8=^3{jhGPRN%7!QQ2nO3WQ49Rr8o&0Z=O0n%zMu5vK2`=` zAB17(!W_7d^h@sXUp+USz$vrQ)>xwkhjp!w8a$bI=oqw8l&8=Rf1%HRIgI~%Se_$_ zAst5@&$3W$TwrSFWKYg+;Ch2jJA$kO-w8_3IuPt-^C344c=6je(4k#@#O~WjF}2O( zAYuP%@*$$d-@mM*wFC(uF7Mjn+Ak9Jl$s++afm~YBtkCVIJ49r>>N?O3c0%5eu++A zy-l!a&oaXr+yu`1O-n8iHTaNVXh_m9?y^;`DEQ~RPb!X`6uru^sivJ9RikXYKmNsnx5Tru8(M9ah1E8B8$ln@fbNm%R!s;*J9`W3$I z>2%&>!W#*2f<9&)K%k60oO$MTOe(f5!v%V~@0~H7hplzi=h-Q^%nALNIm}qYvieYa zGIfz0wiL^f1~G{#au9kGD&o=UzD*c<7-H@1(UwtUPl8n7)F;+W7d5h-r;9q6P&^|u)D3xZlYE!`l-eqLfQ|RdKg@nI$vo(lnzSqlc zCIb+{acuNt(C=}cS$OQ2-=EX6gp;NwkAh-BCMC-q%EZ>I${cpZu1y_ulp#V!6EZ7S`H0EH=zB(F3u)<{llKytx)C;hfZ9EY!_iJ!)^sLWrJVr-+ZTc{(4hRf!{4G zY~q{vw#|t9aX}QAtMCsA3qc%0sS#vpozS|;{rEW$l+c08-$=t^m7zZjrW1bNb`dMl z_F0*qiFf#DSn&ET8PVdae>}ZWmOoqX6m?4bG=Op?0)`L=nFC1${>BUQK23ZZB@7h> z&KmW5a+OWaLm$KJ1uP-K=$o}IsM$hPj0gkk$&lW~vP93CHVJ!KHpAaGO~u7XzqQ<6 z&8Vemvu}wtlN#I~72c*kDyJSUQ)z3J@jpjhiOdmM|Khpu%;+_V={!A}2=P6XyZIP) zy?TQe#^2>@9c-AI*0jph~aCO@IH0*kSMbIuP^A=+SqIsNWxjWl7v0lwgNH@ zg6zt`wv8)`;)ZN9BH@Abj!aNICWY;6is(swXLeH}{%nvXw;t`yMeC%W<+w#=N#V?&ZdZ$KD|gi5a97v6Q!Y^}yFta^oJz8&T}Ny*(Ss$r~~>0Gp4Kg7u%d%jSQ?5 zmkXNBKG;ioMVCj|_fH#E#%p*RXV=x;4e<=o!N^`Nj=51xD{yBej92~)yn5Vs(0ut0 zofUQ^caz9H758_<9cLwO5_Khqk-JA8277po8&61NBJktnO1 zzo#FYLX86VQG)mA#f@?8XZhl%3v+etveJx7&}}8Nh56bXhVfh$)BNCA4#^rCTJBdv z{*BN0W6gwq#y`v#;mW4{!CCmWDeb#S+tge;3Cjnnhfxa5Zi9wGzOKcG`(>Bx`;$MA z&L)d5j4w9J3iCgRgzxZOiKLJfiYvYOkr3=9%HRlrI2Be8!oR}D6|ER^_wYjM)O|?} zSZ$qr2ynSaJyX8`R2wbh$F+N#(w<6IzthRf*f`ltos(~xHlu^62nGo6bQ$yMYGG&BD9T?i*T?hy`}5*whN7QPR=nLvvrpM7+E=g;`V z{m2pBvwFSP>mD+0to2_Vk_y1w!0rk$^K{ncLu$Zq2F$A5$@J>gd_#gmUN;_9x!Fxr z-+q`L>)Y9N2(#vAdl9P(U#QF0jf{$Kk@XdM%pl|LJvD8`Q~CmXP3^}NK_rX`YR zbI<>@SbEmsTUnRa8aj1#n{knRJN<<$@3Yeu34K(@o2@xH3@=?(nMUl!-Eb?SvYrx_ z^y4QyVx5I=MD?NhYjb;Z)`Yq-7I$SnFuS5>1sfye`m11opG44U@y)`sSFVk9iH@1J zRw6YVV+M2)z8?*3RUy}j5^6=g;{G1_mW(Zwu9X13wQ=!|@r`Q_yReZkM~T zV>+}P$;$TNXAS{sTVe2BmE754*xqH|-M+?Cv}b>Aqj4nDU7_{m-^;tDp4+vZ8oBd7 zT0kCEZsB{Pu*J)L+Cw2f8?HPi`Fg1mWODazDdnUJNg7s(-1yN2+hk)d%r_pn9V3mu z_&vIEKurc#VtQWPE-`J=K)V{y+L2Dr2UZ)VCy9+L-PG24&1#*?rVJRR=iDSqCX30k zaC#Hs5|VFrIo^^#gZ7^Sa-|B4J-%s{^saYKrP{Vk5H*n5*c1txch0+(*Wk;c*4C<* ze2XZz@f@0DkhdWt0FWS4iQkzwMtqRTLDI@_?W22hb<6iiG+AV8ngX@JYD}4WDj#94 z4%S`zOAHlwEF$AHZ13d}V7nu9t3Dh`f5(AYw3f)33p*FU@Y$_w^n{Yoma3pf!Z5H~ ziO~JMI*f{w#cA+=UWw?PQ&S@W9@@QOplU^Rategi{{G&VU2a2P@=!>b1m8obXE@HZ z#nWwIxm(O!7%|~>p&P}tt)IZ078KL)_5tz zIC_&U>hku!AAXSFe(-(WK+g}LY@Z}j?*D2~r=nfN3d}@6V^!)HdtY{?6){Cw!Xjy|Z3X{p7@lKy8l-sf>J|iQPB9zv6j#T+a?eJ@J|Gi`^8nH+eII z-@}Y$j*#k_hFbLD%N%A5oJ${?kC6ZB5s z#fWUstuDF<^Qh}0UG*`li$`GTN*D99??NE>l8*$0`n}uppO{E=6@8(g3dX@9P#Vtx zC3&EgFL9+Q@2PzskXdR}JX9j43Sa-DW@@}RHEV?9^Uj|8TBo9osDkr{My`0d>YV(M zuJ{oRv{gI3M7=HUHHSgYX5>ar+f8assv&Al_)t;JI_3%bX z?(FaD{&s%Bw_7`;5`+z~2NpRxv{{Tq7C!Dco$9W*dEpQ0uiu+?*je=lO{z3_oq!z`Ifo2}l6NYa z1!PjM6kO$%Sx3!E24B|0+*n~Shmp7(KCctL!Jl5ntIaBQ>5c=zK_XvTb1eD1tD|WT z!&Fx_1@RGPC0CLL4Y3SVW8$WCc4bm3*?6Y-3H=1w`IHjk7vk2zuQs#NvA2UFkccLym$`bL-C$p{sqD z*27?AHEaIq7ZX49Vb}>#-{o|WbK8yl|GoDbS?d}Li#Vy+e`bI(N=^s*f-Xy;F44kjBg$3sTK1mAf1XJ-VH9IY(f#{Pu(8 zhZ|(AHcEVcq|ctP#YO!?2f~Q^Sh&_Pw_A-Voq2hQex*w&@ZS9RL~>c(sG^fLDa<~=hj2I*&pXaZ zT=;%h^<~$KMG*62E~;R4eXsq6BN2(XqCWj4Fng3Cc!(8~U4W>R$7lLVd0(@7c^P(M z5q5caM^hTZauF0ZM|l@3U}ozyKJD$MUf&ZIO3fbcAhbB zXtJqvbsBX0d)@u*`KS3>n9s1mS+>w>A-+~wSp83HcCZQSyX-d}943{OtzHV6vX9u> z>&ayOLXNOiW%4U&b>)&PHZf~Pitg!rz4e>cJdgL(*xo zwqx#|tnSVJek_Q&j2bf}HNbt9>>nYgiu5?uaacZiwqL#u@zQkGHg zo4*X<#2&72w;GQ$0D6T!3{7q^&SDs6dh~}~>}22rs5aP`=x!)+x0Bn{?U^zc{=#;FBFB^La{RNN>a+4`v^n4@P{K~R+C$!wg6MLS{yjLQ^B%d0zh?s2l<>&vGrPMYb=FJ%!JsUvI}*y!e9 zB&q;!@@V?J-qCWXQ~f35^^`w87~GUIrWns2ttJvA=$Cm8>_{8s!MmT5?9tCw=<3#r zusL$cuxD=6+K$7ylE2j5jcdNqo0lz|A0tG}OHzI5TzT&Ek-*Nh4Xro7RMeKT?Yn}H zuPN3iE?U60Ol*%h`u+KnLk|!y!g}(zj>lEs-Mvg0CNFM4+m-e$>{A2fk6A?+EBCab z`$J}IH#!dU0UxPGwK0uoCYMk+!^L7=OMTS~8vErQ=|A#ucs{PW>A%d=y+ifmU z=X%8A$j#P|y;ADF!poUSPLn>7Xq77Wd$ts@S5|~2-+_t1;Nsz->8X(O<9})^l6NP0 zBSb{a6)sViLaO*{`mYDhP|3%aA%V9hFBvsodb1_oMH%)@ij-DABuq_tG4HOwAVIN> zSu4nB=$4Vn5rqqWJ6};1MjFoE$lU%xzcMr8vvcuc>G5$ms0asmjCeAIcSLPCHTHNuhc}G6hHGVKY)I!dX^~? zHBwE^QNCOxVJ*WOcC)gX95k&)bb4JI&&16)r456A%-uCMdMMl^86+(p8~5;*wp!qEli^60r>X8e|U?KKJ36Br4W zk;G}-+p7hlu$7|aklW(myX;+he^Ma;0BA(s2A#@GKHK`X^u#d&zB3;m!Z;NU9wn-F z^_PUL23qz8U3z;yWr-A(sLXgeVKjX;l2VaT8ej8vvpY9gvDg{1WngjLHkZ~_LCCm5 zh|g&ew$S0HoBM_6PtR?}d>L+d)Kb27Zomd*d(Y+-mOeQ5`(QOI>k}MZfP&kqoy9w-)SLdLh#Q$|J_#RXss3Tn99q`T|5T^J>jS z0o!MLuqXR+l5bN|?4Ct|6}VqdjSNiQ7fcrHZG6F2G2X83LGK?SD(W!9lXo1e1;O{o zzfrf9(*p()c`q#dT>0LetfL3UN8F~%nN0Bx`!0L>zK{K8p1?b!0S}fYKXy^)*^`{K? z*tm);gu1a16QYoA0_*xA7*$EtL|>Ha{JALH%Dh-qO7EF72({kVJWB(uuDz2EJ5I(%r| z6!ZJG{C2G8@7$_%p#Nou^waQpsy4PjBHD0|YL4cv?rGD*ueHZ%{XjR?)o&<^2me_r z9*`Mfdq@K~CtB%>_Yap(Q#`{`6zVk|;l3&);qPzKp12;^$RB^=P#w5@kL}dZ0;`%)mOBZTe_1fl9~u zGP(5RyC28ll9X(y`=%~sV_`V#R-tV&A`z&JFH%ATWO%i5rF=X+wbCgO;CP-AwdJP`kI^)aQrum)qDC7zz&f-5D~LhlJ`bC zgzgXcZ)CCAvTupqD3A&cRD{Orb9QTjam;9+1ZIZ|!-h2Z;0F2oy^Y$?^;HuQeRZe8i_-tB3_v;6xd2};H# zsig2R@JCjvPE_EwU6PL(BjX9Ebh5;C;O}v5?vJV}D83CtYJ{jIq@2~xU$R{eeNZO& z=QX=ELwWlMm!srM@nw`+mq=CU$?~Yg%G2PxgV4&lelzR<-d$W>O!7^IvIljk-}+Tq zdiq>z0fSCnDPA^XR9)c8zd`~aEkayShMVeevCZQUArgGTa$%;%AYQO?3K_QGlM9d zA&D4mlU8EDcu?Fd&deEo9yeB+BpgLnPg#C*D0FY?eT)51I-F=w2$XSj1k5t1UYC+g zI+ENIw1Ca=V5b*5)yGW3UA1=b=X3HY-%uzSEUdBtjsB?#$t)8#dP@CRV*iIU{(AMc*@eP9}A?3^AAc;e3v*V ze6l3xsg}|tjk9|3)MxTFGw_LvhCw!wi7x3TuQc6vE<>8e=K{4yqgOML&2J-#R6~3? zFiW$MHg_N8`14p}4XApctEk(%<<4&1D`R-`cr`?3I!>(Ihpaio_3W+!zaIj5Z2LBSq}q z`ys^Z+L1D9Y5C`f>-s(!5~j?Vc+DheIFU$@snnhwt2*nd&L7g!vt8)?SQeRXn{2m- zC`Judbays)L3vT>Ix8GI#yJe$AYzSxg%W$Fb1%1E5>d8A?{BX7aNFhO~Gn=*3AKHgQS87KBC1Ps!XP-^jLdK*P)_@-CvXOy0B(d%R{ z0I(j1c`ebegniN*F60}_`CCffnlKMQ|vz!Vc!&pFY z7-1_1YD+nz0x6uWg-jU3 zls#A`bPe|!v_bDm)hXXRygzrbJbh6Ywd=ot-kdb)&k z%fTp|7q3hgZ19AlEsr61UUu285A@|uJK`i1bcU2%VB#257MnqOr#vrqtuyly(JRr&=K8VTxeZEN*`pj`K)|LX}Y zUx?llRTxM-HWTH4U)LuG>+O>J;WMirquFL0!!YRV^AKa2YUBwHlhBOt;v+K{&e|1 zh`2SnTwHpU5^zt7(H`S-EW(8U$+FgbwF>~qp_+c&KoG`OHo>m~y+L_gQ?5Kk?^=vh zj+D1P0d&}Ck_?;C)xXVat6SJ%7}9yA0>n`Skc5!nV!@N7)_fYpBaaFK#}IrXs)+t; z)5V`xe+*Jx;c5mJI$ED9ei{P+LW*Z=7CRL${Uj1}$=TV$(L5y>BKv;aK>#A6j#x?% z-#$F4WyD0Sb-}>2 zw~TKYA&krsR4x+Jb4+$f{Sv_R5EtSxJtUPR4DeHoek zD;h}jEgPf_MAAbE52L(h#MioJWO4Kw-gNclJ0JiIHb*OBAG8osj`_rh@()Q`$QQ&H zydIaYmEX7mQ4#GR>Cr6&&0ynC$%6Ef2R9CB^Fu(Y2o)d&7*8^+IXn>*oKfzxx1X?n z%pjy^sZOkj>lrSR1)8Y!KRLi}G}k$2e@5kxJz+_8uJRer=Vs5az4;^jI@07sXbL$7#a%Bn05Ls*OJ)8m1;!{gh&;#Jl2OLKe# zl(a$1R7x;HVL;=9B9DVQf$cgWeXftR8R86@et8Z7uF=mL>I@kL&r|LL77HpoRX}bIV6c_92<9VjY#zLH-dRsiO3@JWa3q^O#N^BL-G;h5hXHEOfKKPOJ6poNUV=Z|O_O8(th@{u&3;OI$o zOp}R)BkeR1qmoJE=iTD+-~K*t#KoISgLm?%omMLE3PWcL+{~LEb(C}(sJ&85qu*J# z31V5~`*CBVgUzIM_*B@Dt{mpg&G^9Xr+e0S9623{*U`^p<<@dYtI?~M@XX}yOslqxH@e+euMN3e|98ARaBlz|kHcyr3^%vtY9*KlKO^fm1&R2Eu7{XRL$ys9Ek zJPNV=)TVMLSr}urvve!Nl9+hgVu!B`|CN|~V02bUiwm<&^7()r7tef*iYG4 zh|+gFii~OoPZ=1hB-T?*q^mG;e_cr_jggqMBBFQaY8j)>sdC^T#$mNS|w<&scKRmx+(rzZMj< z$TQnJsfmeQA3OXR0C|0i8hS-Q1oHS_hrn51h5>+L zsl~_H2*GFLgp;W4@1ef@yTnLyD^b8UzE6ZK2#oi!e^VpPh3xDbZxsO^;N8FB{_d8% z)p>f9gPj$r(AoM|WccaP^>xtE3f@dtxeY^fq|1A^B)?0-hJW^7s$OPw`u(p@P4;M< z)&*tAz+~NY-i@|}5K|6`kjKy|sZ5j@(D2G1t(n{8cN}R;Gg*AxTKI9|E$&=EX%c%g zq}SCQM;1;=t5~MPOc2()UIe7JI*TeKzPX5=Eg$|RW#C=AUPn}`FH&de6k^Hl3brlD zMp3s$mLhHONU4X&&Z9$=!-FXUOJ?`Mg6+GaDa8Bs**PgOve z!p^g*lAWq{yZO)Fu(;GRFA=bt3#FSi*UR}Iv7??M|8M22zm|B~X*$2K|1XR8{yKN<%$qn+b@yd;(FOtO#4A_i1|e% zJ}AhF1`iqzi->gal-1JR_U$bx1OO!Qko2AkmX@3b!K#{;)UAK(5=n2(4uASg5dylV z^exR!25|g5TcvcKke_NSdo#@Kjj1QPpA+F1@=*}+E0i;9oPKp7pZWQ%JQf&h;(0&i zdxO$>IlegEmb_h_w;W%2Kl)h@FUEo^vXPKVeceG=%4ikYJ8^uL20c z*;`P(2>JWP;_vY*IfSK`=k?*s^)&^RmwAM&7ct^o#L0YGXdX3rcmssl_ zJ9W^P@zEP4ZpS~%-}$`{Zr7M|hh+jByx*SuH$6A8t@>&UkNGf180eVKK#}qGgSZa? z0*B91knn!BXi5@3A?e`H|JGF3RGUNNwW?CH#1tgnkmn|tIeasl6Dvd)eC(9@IWjD& zZ`Vlo^7d<)tjW zh=)*R8Ij^xE^(0dcI-Sv5)qRQt|&MwP?Yqyeq^6-C8 zzx^WW6PU4=O?%&edWS~`rQI>ynzzY6a4nZm8~w(~W~>3BWiS}J^t}K2`sCoXZ(~ub z193e;$xDSxO8b5ScVbIix^O^Rmu3sPV@d`28@KGChA~+)kH!2xd2?p9ay@V9J^p{p z1=FxfN_XYEwnCzmtaaODv1gE1F_jF`3A8MAPYDzoGe--OHxZn$8a?Icw&Q%jk-sadpR;NV`2{kSm07M|SHoZxl$HDT z3o{M|1iHXAUiVc-)_-piAi5#j?ix%u7NzZIQH@%qglS?MlOh|3@Weu};GpmRmmJz`ACd7(+W z+=Q8uZEns}da`lfdcwEYLLlXDw0%N?0tfaP^@?)(<0@~&{O9JzVh;wB_LjG0>sRS% zCY(w#L@XnJVlNfZf-;j{_~zF(1+i<+OI53!srqzGf}85No_H* zea#g{=F<~G_9!On{88XZG zIY(X?(&~$obl@D^Bo&{i(huo+9HUX6tSM^kc|ebyLA;v&WYRvZHb=SdQi;O zn?DvHq<^&bxP#CoME36Y-8E^`fTTK}G=Y=++f9Zv96L*r4EEAGTR)L6(lbK|0s6qy zH@z8u=lq%%h>)qI;?HKEFZ=S*cehTOzu5}G;S&atbnNa;PIQn_mEjb8)afv`!Wfi0 z$f`HIr0?!9>2Aq+M^iqL8~4nCFp@U=tp}S#!{L<~%_B%E;!L^KXU`n6K)66?iASsO z=m%lNxAYl7WH+ggS-S}FELkMMW--~0GMFV(IENm#g~dI4L)pRt@{?)G+4?q>$(YrV z!sG4OVYu-Ha(3&g#jU#SjA9pvICn;}nQ)J1EcYO0_qBOsYnFQAzJ6JI1mPnZX2OL= zzR0%6l6{MiZeO-AkM|S?Ih^b$+&$d?A{yBd*5k&;J(9dVExn(K*a2xbm_ry#FPo~0 za}+EDq`iuUkaR9=wAr{*Omn#!@kxjhh|Gp1TVOYKJ9}I{(I|tC5WA5qQsbiD;vby< zqyXjM;0jR$GATRu)VazOjm#5^vMJBSeY#l~Qb{f3Q74fF*YJwPZ{3eV*&hga_B3bq z1hVx#(;?;iP{@vT;(1P^h9r?#!JoFN)%O|R#^#GRZ5~GR#;08btXMTM8aE@J^-tu8 zdau)`!l*hN9B*#I0ao2+=1FsPwsd8;cR#eg3^`tWUM%%a{bm%28#CC~1*Yq+7a?Zia3N0qIamLVeHU|E%-(e|o$ z@Mi7Jo2nay{2dM|f6!3s8pprcP4Bc8czpI$I5i;1dw6o2Ft?(*-d5}Qn8>_S>gL$B zE92-Zgh|B2&#C40zrzKhqbYr{COS7iRKjs=ETYj|w)xcFrH>jc#+2^ZSqNznAO=by1bGA}dj z21-`h^*pnvLO*k)Xn?> zK6IK+ldwVMkU1bw7oo0~>~>0M(ZP4O)z}la?VR+F)-lLK{k8?3XdGb>@yx%!Pc2z= z-=t?RYb{T;>@(mZj`7!!2q;Q3L~|lky_4Ne2z~v|b3Ibn!<6Z< zp&l3@{f~F2YqC65s=q2vV9p3mvQ;(Z_<9hX-PGlo|5MQMcWyxzL8YpRhMq;~0Pa4S z4>o8{PX>%d-W9XFK5E{fb4=7oV(O_3hEvt%mRBJYb<7r-I zOk2U|tD}!u2EIZrp9$P>K>Xautn6vlGWf<^lT{@T5~Z%3Y=1s#e|PTMl^dH(0*_hI zxauC3ATj=|c7B5%rgRv=;w4>sz#INOi(zV{@LLXpjoBM{GzkRCCv452n>xcE9g@tY zAR{vvNfr?nYQ^&3xT|kan(0WY)rRa8B)85!v+1q7+d{C-mzS%&qHJr(U-&Kc{M5%sAlXAk&1>JdMK?m}`V1GU zk#-u~ZrDo<|Hx1bRgtFxiXsWyi-B=y{Kuo3DgvRTxE@@wYLfvE^ZOzDL6O7|?Q|Iz z^*n4Dd1Q4I3_`grp|Ufm^(v6(l?w+4*&ZR2jj=mJi#DhJ@00~KLRnAb0FzRIVe##Y zayTtfMbp*KlOY{60TT)G^+!gYhifs(e`(tr?bJDH#iurEQ_Uuxmq#XZYWG5lnNrWb z#bMzjb#Qp6=hPxS8EzVWo=LpWA=n`VwQ~YJ>3#?(+=lUo)L?b)0}{}7I0u(vYiIz+ z?YM7OZe}l9&x`5(CgDazjaW^R$j4;o_ahW$zMgBEPK$FG@eQa9Fl`YtfNCIB1E1G(}j(hg;7h#5;|m#_y~ zYc+{u`tHU)zwjL$@)diFpCYEBG?}32yT~Gs^ZP~Ni>mRQGbf3o#PJ40ZWqvN0X=L{ zc?LFU6dfi|&8|(b_OpSOJ9D0(KK!Kn68t_`){!rQYORVffxDG@VJ?%wyX6w4ADM>QwwXN0Y~9i z)6q+J4rV_vy79wc<^ZXuC+0L=p+UdbniXrDcenM5RFyI7C67M*4`_l!Q)`nlOlQD- zM~CsY2H1Fl|tSWS^w^h|Ap!KPyWPhtIp1!@XOa`SQJVeIFpM->@ zDND_LQns~b%)q`EjR!s}`HxU*!dkbGh;R??bmaz^L$azX*`y!^HKoiRsFT)c+9;e* ziywP9p@mP`{HqEr^>-JW)w;Lq*q|s_@FE#ntaU!fN@s+VWAOIW_wS5vAd_(Bx0o$e zZya;!*L4SGdOfkoV}*->HQAH!i+Q9Ks{g_}z3fAaQc9EBaW@1#{YuY>CqnJBV(1qUP=#1C={%^7!D6hk+(Vl>(?o*C^bw@zh?aNx zVF;Cb4{0=ngmFkOZf(4yD^)tr=uBRBIg@x==yj(cQ8FtwlmwwNk#H;?A8P$Z^XSxWtz7}Lg+0)oOP1(16*#@M#9qVs5G3^WX;P{|@Yn1{nZ zgg9=CyAeu#5m;hVw~E|yLb)>m*)??*RR~5(bvKW1Co;yi zPp?Y?Q!Fe&+ThYcQI>^iHHBCn-)1=}=#X#sT*2Wr8&t3M8n+gBX&7~0HM}RWVFkql zFItbKB(aP2;|ccEVP`0^wEp%(bwK^4`b%G5yp5mdyV5>EzgO%-?JQ%tzjZG{oLkXgG zXV784t$or_g8FW39OmE#EkwtQE`9I;oWW2~8qw?4MpkdOUnAh}Q13t>d8zCN##9Nka zDHNZ)$SXRWhZmd$dHin8wHBC-(4!i;Z96>F0R~w(I3y%7^uCUv44Ha4DhI8|L7oO; z^M*$<$mm?ONC7(WZzdA_mQIwTp+#zHQF!*vs*%~FUGTJcwO|G|)_WauRCfzo>^G5B zcy>k9Xpq^3_Jj;_Au8w5mlPJMnTDTL1Za_Ly_|Z+ zY6af!S=R_YCcacO*w=!^PV*w+2q-JpXe$k&Uh;6*w+Ow2=olSq5y6@@SmCy=p}4W#-(NQbh0I7sE$uPYZJXW_U+Pr zKMrANFC56K;{InWVuZ@_jx*90m9whr*k1S|OqKDf2;VL%4@xg|Xd1M< zcdX6MGH9CpbI{$!%IF4X0Z+z(L2~F9Z1e-}3}4y|I$Cngxzx)ech1rqUVRXv`%%3q z{={G;*p}tj)^(y4Yp~x!6r#O?8R0~_#r@RH+kYFM5NihgE3VTWKb)@-dUb1Y_lEA~^CCVw0%`j6yzfMx~i`ys{7 zx^$^FKJcdkSsfpn#m*8}a#0((BkMGacK()Dt0vM`C>d=ZUVYpcYtKUl^!Q$k$d+R9 z=~MgJR@{D05+v`ka%W;$a*)XZs`|-BfStQd5;?7??Zu7`2qMH=7dKs)az=ibyIt)3 zr+auUEUP&%txUPW3^={kFA80B0*8%#Y(v^vZiPV^ggtAUyi!(umEL-`5ZFEB<4}xF zP6BB@xc!-6v(kZvRU1NoL>e<2h>9YL*Z^<4jhL-%z0R(5ugIfq+gB?ZP6o|Aw@}0YBt8r{15{-A)=i!~x<2n` z9hB}mn|>?&cz#ifIotvcpd4}Aqpiv@mSA2N36e+gEn-u`Zw}IX$rKA?FA^u;Dgf#r zW)b;;+oe(iq2uwu38Q=@y!W69h0azy-LcOZ?S*hj@9sz<_(3Bu)ks2-KD`(xoX6O9 zfM`a^c%2G7uq=|?hx{IWRR4Z@X!J=)Cd{%NOU5G_uBh-yoq*{*nX_}@P9-nDW@K_s z%{^a-+vYjZx)TW0Jz6{f29qJ8AQ&aM_2ag~3m77@tE+)nfDJ=BqC;OO)2KYjb*9m5 zy-h#gjvRW?Nk!nS`3n@iMMMlCf$;9avqQ~A`cN8=p`<_y}mpi><*>B+wxh{ zMsj5MVgjJjb}L2%0=z>lYF%@>9#^yQd`%oEegChZ&(-zI|0i#}Xk`{noF>ck5k^lM z@CnKW?e7{Q@Qkc3^_*6;4^ZeS7mLtm(ESjoo`GcfRLzHVEv-BSpG|D)tsd#eRr?Wh zR3m89_-Jjdy;wN;j$RHDaw4~gs1)EK#XV$k@ak}WE>%j2whZy+yY7>2E0#oYIgwAE z#65NR`5?Cn-*>2l+b|sUic`4YgK(?=x3&AH6cMQ~gwiG&^kYxy6%fL^!K_n=%MJ&7fgd9>(o`M)#);ZNe^lE}Mk>0LsKp@l<2A zuhqqQF2!Z%aK7piSjja`#B`!4cMluYuEN7Nkd+^o(!P*nK)u)aVd1m~sC}I@oQOeD zi$)5-u|$Hd(xAMJ-t|JL3NuzRe9Q8M1hRv_J-qJe=oEH*`h3;#L>{ero*NbzAP{1g zbMi>t57H{W@CK5_(`v?8N^L|jDl`s%rPbt?tLOIAfLJrz=p=?!yF+;gBV$3k51@If zz%dQ!5xvQv@A6*I^@}q=kOO%|_XSM$)Eyn{Ex%8Qv-!HZ1*~{m?};K~76&FJ{ZWIo z5iouj0@`ZH?C_`KhqRqRcQzYhp+6h~gGHPw-dS(zkQe+uF@fI$jPhpYJ7c~s&z-e5 ztwHf~cOn&k#7pKA*Rnf)I!IM;qBsQ*nzqX~N=n~HRMwiz*@1imu?0*Z66wixAHhaz zC+yv+iAs1S=oI?*=P?KIF5WD&;^^a6VZlYkK#p|onQW!2?8H4{;?a=?4l|(sa(3Jox0dH`_>sW)n^E$bdIxPR4Gm;58Y_=H^f-aPBZS6zI*Ge z4hHT~qEzyn-6(i0XhRPceq2@k-ep~5On5+QsF?FX0(j=zfJknka0*(?ikn2%7q7jY z{b>&`Z^#6IN^)n9kRuosJG!#J@T$r~8TSkP-XEM1L1Ti^=@-PiCnk9Fxp=d;l?q53 zWXf>y&mpCY<%6%y?>Iz1*c<<(5K0A_RAhQHL9w)?W@}Bvwr1}ePXG3=OP600tDz!h zep@;`)lBs$&Q0_q-u*>8p^<1m-|-gX#dbKuK2no7K4HbLYDY?m0+UD?4oy~bAtKzU z#}n-VF^#|nVNBqlyR>#<^hjUo@i&bo@u}o}jP{@1zU4lp`qTm=Nv@Dp8OCD$XK>OU zy5#m&OgiIhXl63CL40{4((Z`Z{$x@z>+j9lh{1+bz+P_O$aWvEB(4b-2_%YLbUY5P z;G4L~fN%|=d8?Se2gh?J>9RH9Ut`UunzWL6c~3R64+P%{xO0K=;wRO8?;N)G-H-ei zq}uFWeNVV?ME1;g|497xd&(;ocoq@v6TNJKvQ$auuHIHQT~IDOc2GlOwV>tR)&I0z z$Xmcf!|p`OFFj}q3JBP1oK5vx%bml9jh378T>wYUO5KA+a1ES(*DDC1oClB3dEztl?q7vsm0Nv`T;Ub}#I)ajI4-*dk&C-Ht2cJR~V&*rzw9e3mB zD82MeV-SSTu`zFQr64mz&`mhulKu{f4MMfd#VczG{XK2?dvHI?^To##_y}k36D{i! zC#XAcKDrJ!)u8G<*T;wK9QTTXBpegAW=Gdw2?qUk=a&}4uYX)wyiWxoV#Vfl*jspp zCxx&^C$TrB5BFC7a!kCE3nttbei>ht=yKF~wIkU-Hv6T0cf%CA zkw!y;)rRQ@lgTwyc`e8a>#+~Q3NC7WdVtfGk8EJ<52WRdq{aEx(no^nTUZPuDs!g~ zX{*RSvHBqALLdM2l;HZUNbZ8mTHqeNci#;Zgh+lg7rnH?Yr`t43oyEjL;7ts3}p)g zqtOL*f9`sYmCn@H{Us8UVZDRHbRZIaI~vo{u`IM)e95ekqL^frW}^L-vxX0D7jEnn z4=fT|qJK}2IO+(mCcZqeQcZ)r9jH?ejQ2KN2IA$fZckFh&!{zMrJ_e{O8217w62#V za^28w;q?U;m(>N}E6&8^_EK0hPiSaJP`byLXq~(G1|$Qfs4Z0X9!^5@_tiWa_pQbs zH?{<1M^a)KVw;&Q8P2?f@o(L2D)`FD9mEN7+}@nBNLqP;FA4}!SooIn$ADy2n|{;J zOVOM1m(!vY@?d}_j0u#E8 zk!)xOo!iuz&LExj%sD@niN3PVSEe*i4P4-9TZ(al>3qx}t@K8}F7BhvZS`klW!y(E z%?FCZHnBd>%CbJoKq#(AS8AZHt4vQ^7(aa3?INJpCiHCeUOv+}byvn#eg4X6=5_RK_g2Eg?p+t6Qnrv*0e2^`n;q?3SN(!{7_KsX~U>aoo?@ zKS-+)hyn&#i9|@`$1WpYl&U8i?n4Drxl2hek7b_^v0$s@d*WoMqX(|P1?rk-vr_fr ztkc@k<%!<@D;%c1jzooFf#Qq^UX@Mpe~y1 zek307ZgP)Py)tfBIa-0D=?nl~LEQ;eMI5#=D0-9=wHZ;*JqUr&MMC8$?R0V-rUUO* zLa&~`U`lZ-J`c=yBh&#&s=q75H~Sdjcwe=Bo4AqN@v|j3*fhQIg1f28&4d^!=gB6z zr|x(VvQM6W{p1DA#=9!vIZh82ly~8I!j7>A#`%cong&Ee<>Q?aDYK1qMFk#gwZk@Y z=gy?EG>J4E0wX7Wn=(n-2`Ky^vLxymvL{cnx!gZwiJDKHL|~tN%)8SKX!+1tFCD7a zbVQE(Pa>x+8y6<1^I7h~s(8k9vA%x+Ukm)O8+@quvM50-oL&Yp*YX;L!$xjn^LpLQ zrr0ZS9H?5+WC;A|Y{fO|Og#93vuh`Ti*p3ASrWeJUd|D+B$Lh4jWg zS@KJAbw0`w;5Llsi-yc4gzw~Bz!*p(p@0Zd@nKkw8R0&&CAEkWz386Irt#wK;W{q1 zzklVKW|rq7kJ&5QgO3d?se=>tOBnhVH3Ch9KXL5?fVtI*goVABEBAiNgX_*UH)}5@ zEmoDt(ac;)1T+?YhR>qr=pi&)06C;eJm+N%T0y4XPKm zyn=n|eEoQ{*K139+}N_!%dXXK#JYni9_;VfD_5e7PBb}!R$5e!P*ra7&hiq~UjaL- zM12)8giZwKHPDo?i6_w}oEG0`K9IAF$7f4R(K&}Y8XN5u_+gPa?WJ1^D_!4N2K?fp z-4ZXk$~b$z5qiJB|Ff2756S=;DU=&zRg5JOn;sSAFI46OKYS_&I-?Uo=T^&tB4KO~ zXt4u%L{K?=J&~k3ydd|m-?7yONWInlN(MK+yRJBC5ZzJeAMYX_1vL2Q?^`wQSQOUZ zQN%`TEA>cNa};M?w!EPkmB|>VAr> zQ8LMMWkHE{UEl>*^rWnqhg`xs_~#4tLjl{Ig+_(mE`|_L|H=`2UZ(@vm%1UVCD?fZg z6DD1S4Lk$=iwqGV$rx^wfrVs!6hW|KihP|<0*?~o9%p=pY1{9d8f6Sjs?cUn@1BWr z^e!Usf;-bOEcup`^&w;Q>%MF=!-wzoaay4i3LuY#JG_g#zm*|^_4PvDv&3UUa|=UD z6U>F&BtXhJ1?eCR~MffKeYF(iVOl)!pk+NfhYt(-?C#il$E8L+?IJDtL`7i9g=^KIsMzb-%WrS8XTy* zvOD6SprX|S}nuZP{c_OIPA(~baL2N+k^A2#d(fnT1K&gh~?`j1tQoPgYr z3z~ayCK|8)x~FjMgJ9}R04-Mc8^ihPoaQEv_1jH(AaB-j@!V!iCuiIk&`6fcBBB); zNd*Rm6yL_{Sl==;eJWV#^3V#sINkZyr}C_#(+3QYhB?42f$s*I)4n9}-nww}+c6#_ zNjCniHQ{>ulu%Qdp8kRFM-n;#9Z&TlEzefUFH-W-uLgJSv)d-*LpLWwVSP z2_}R}(&5yux;<8RxQw|IeG?~fn(@GY3ctf*Wm zvg>vRzkSZ=Z@SX_YYY#da%pJ>JT-c7un~AoKVqyS_r*(&gYnyAP-K%Kd~Q9@@=0V% zUzDq==3nj1rCoH?=1=`jfApo?OW2oYSyX=Tz`DCM(Q0-!(g#1rJC@V(Y?dBpuzL(W z&aC1j&!dwO#$Zml-&u8uX>mX?{2*Uh8fzYNII29hdnQ)#Z+aap_>~oy2eK(WD#uWlLQ))z1<6`2ene;;{{;>4aw9Q0qsDu?L@sM z>#dSZy^#8DQ`QSBp#l47KF-mJJ7%yXNA9Dp(5z?VMz3r;$NEJ0PFpW^8tt}>DPjg& zrIyCr61R0aM@Rsf4MXd+#!JHLn$Sbnz`+-PI9CaNg0VYuBQB-`QG`Sz>jafx7Ex|0Z>rtt%XQPOR*n~2A&lpt_Qf8Ilx~! zL9lXMV&2A-2MA;eCcaH+haX%`TozSbrax~ReB2{LP~3lRBnELeZs(EC`?J&h_Ov5N z?8Cbz*MeUmZe;rmFL!AC3D$XT!t*Sl`-PA2R>9nIWmIKqRmCj3JB+y#F53vDuc|)D z=!$0dRGq6QJT5cHVX`F@dVDqd z;<}Mzz*~oQ!3T(x@wWSj1hH()YIeZ9mB53q)n+oE#tZp9;5mN6^LAFQ=6?sLN-)+q z)i3{*_1uMDs1t3wL^a{6uN^=2kKpjb!Nr6RlUd7-%j08HP2TTfW3hfCBHqS_yO=rc zwPn348QT3p7t)d}wKS4gL;S^^sS90}+*?`g_}|09PDeg%l+uAtxmn|$;UHNIb3FFxAew!sgQ8GLW4>cQ1w_zlbBZBS;Yqj*SA zb16sAOBV~SX+FJ=CG8|#w3o4oI0l6mwn=Wzw!%WdcnscZYDF*i36Skrtf`)zJYiwc zmt+gC!u*-V#Md{4?M(*n%4u>DWEAR{k!7#m68sNw6VVRDbqmD?im7=zF~?(`dar*l?*6P;aW>&%$202e5n&n!~4)2;*HqTxYs=*VI17Pq(>* zP6)%`jRa?jp1p>Io3C6}%yAHGr8wml2EH#3+fCu&x!Xg-%R=o0 z?ibAYc&c1hS{vhH*+C1rd&t+-X$R+rEXNAZDO^$5X(UEcu)QGhe<)`%dt)yXQijPe z9}tĆRZPNq3QeV0(!_<2(wW!rM&oYPu8*(JV|&i_$m7O}cEZvIuZW{26Vlj?)a zzfe~i_tWv?X>CzaiASmOm8eZKi)HmoLAFW)`H@@BlEZ%q{}GDVrDm*7 z76vY?dxn!AbL9;SC-3ocLs+pK21*{1B!MU@Ytibu4B2&g6UQpwUoJ+uzLTPXh3~L3 zDHSO@K#02K<0-6};uz#m&R3i$ESVwwrGqRlEcCFbe9zC68EquBqmP&Kb<@m2g9k<* zbLB~lfSTNV0sk?*o1bz}w9%1dz0}BmU_7cn^FW(GNa*}dYlD*I9!Efu z&&Q^l=eI|H6cMfnkH1Mypr{%_cQ`jzJNhXkYV`ehd~~2&sW8A5QgE=Zk%Td*zAf9y zE~B=aVT@&a(i#rKT-h6Zq$6X+kpm>-$<~Z#J&l`GkS5~)t|*=`rfG?(%!_2eV|Y`% z-c}r*{9gc`)r{5TtP*GOa_DHgUMHNKcIpWhS?_?6b)>*L9dY%~swyX8x8M^VT|=PP zq;A(bZL}hSHyz=IC4t;msT+h zccuBAI$_hMYOqyRfT_W?sCN@X+XGgPaLm8p9EqPHrHqEIt~|4|+hY>ExaeC#o7KP_ zz4Hzx)E_nIeR8^}wXggiBadC`Txvr5HPx!1>}>NL1v!s10Arul1+} zB?<@q1O#1te1{ajN%nzv$`I7$$COMB4FW_5y~dcGopGfaLF-U$>)-X*ml3=_};?i%{aHRt~^RXsz%#camQZzp7nloEo=Za3&&mPAj2 zdt|LEYZB&kUl)%t+9uWe6t5y6iJ7-YBjMc(I9qXV%)pB?VsbThHrkv`*`dr|z5i4nz7djA;c z0h>inB@7-OfkfP~zV#j~Unn0^a?>{|T>hz4CkYgO`|kTCxAjLLW4*JhA(Y$5H>gXC zO}F$=!b0zz5}IV{LuzlU0*Z(;?}Ch?vn@HR49O%mIVX~yxl_^6i=hB!@nTa3N+Um8 zay8&?X7WhW%k%n41%J@KU0hPP2nfjIaDfTvLD;<0;?|uFD(WvEw62WKYpD%Tnv56> zQv&B=rfbheNx=wN9n9foungEWpM!}ByV@`-Q#P5no^#gp^QMiFQ2lIO=6Gpdm>+1W zCR$HI<+=TXsCD+aVdXWI?DR8yOWHx}R?_xXDq`=HEY$-Cryp|`MlUlN3lg?=6Q++A z@q~v4-Gv(ePDI=}r36sqG^kC>J0QU*>y*XES*oF=76S+TfX|HRBM^8 z3bhT26fsKs-A|Cu;g3*xLy_B$IoPBS3CH4TYJJ*eCW7 z3@Mv00HO3zPtF3i04X|~>h$S1`;q~8O<|j_`I7L}NYi25U=sg5Q+-`YyhQ-Sp8vy3 z|DKHbd8}0(pJ00{r#BDBi>e3mY2n|EkBjdHm%gqk?_CH*I^h1&P;|QYf5+c8EZp>F zv6`sbxj1G^AO7^I{;wjD*tvd?pDO;V+?4{Mwf!e8kQ#J z*F{(9MywX(BvJaLFZ^L zK6)fQd0kciQ{>K{(*9p}rJ*`Nt215ZbwyNw507-Ni~HNz?S@PuIo&XmG&Tfiz}(0i z>8toCvXdAM$%&YwOU>g9d=-{IC-!_s{fQz~kAdSu5O1to(Vgz9(LwlDyoax~p1#of z9Si`W#b{TkvPew{$l43xywk$kKjSp;<-&pMPKwF4bNB|qnisYbm}^CQ@!6Q240YPa z)Ctz`m_Uylj7zDDB{fUTOQ*dYH@Fl0h!SrxJP9!ot1U&1ax6zXNHv!z&EB#V#9~4B z^-?EfJa-qaFnI&{Zn|K%hOH?O|>A2x*a2my0JRVm}Mk zZN{*n`_uW$*rEec*j<1Kv#?)XhVX3XoUJOP=N+wXc$cz_yFD3CJV4}0Hy*LWVSRn_ zPl3L3TwJfmppkXIM!p3VOLmNu;7MQEGsVwRGSR>lGrhKfg4{yFso6mJX>y=Ztjm;U z={${tnjb1C(BQhA8a83@vJ(gqR2_4)TO|iF1de>W5%j8qX-KZtEA7wK7pw!Y`wjsc zx^#^RhcxpI_3B6J`3fcH3s1i(03{pgCT}uN0)Louv(_(-Sv;28pOsu3dzHV!DzBcO z*r(Ph7VZZ|;ey;>?0?-m?jZ{lQH^7qP+$D|7LvA=4L_(_J02X~QAN*N?1$Tw-zsW> zlOW~}p>Cy#s^V_J^Eb1OLBTo-w7~_#CLm<)p@iB+q}PH_H5dYjvFXxPy`_|eg)TT# z!v)xGS#^0_O8^yTcFe+gUB{B#%IBovqqIonOj2S`9}zd&4|5CA#Z9PbF=qdi;oSTH zJK@H>ETLnk9z%*RIJT^XFv5vzd!gYS`)Z37RdX2AHj-)t+^%l*&3a4m(}3b9^QR?^ zacG#t1Zv{biNSH;+T*aDBuJiWo*4J-e_uNPBW!YhKH2yASIC!^84VV{)9gKsJS;p> z2(}8Z5u-Ai)J({6RM3=E^_tkEjuAZo+{?feFe`G$E=4XX3oZ5{>I*35fB@J9$l zCuW4PwM`#5&6~j)<+&OPx$i`!2Yah=x_Q%`S!Od>?k2RwB&V9HZ72={&vKi&4gZtT z92jyi`-}BVqa2~OX-Jl1t8gPHm2iFww$CmjHHN(l&gd=z2p7Q zO;u%ZtR5UbdjEGvajUnD3Bm8(CmeHr#NmX{FK+8Gr{q$6rGqHO>;P4RBSuKKQCP^0 zdj1R6=XMKvn(XmN*CvJPo1*-e&i>D9nbN(vfp{P3KsTmw(=Tcm1CmC9X= z+JKVqxmtwxXX8Ff0eo8Xn4L8CuJnowp^IkXtiFOaZn%x{=jYxFMypNLLizBs2Yh$H zy#M9)^CLMH9a(U`cV4v{Vcyz^g{kHuf4cHQ(O`(8KdGcu?j!I-4E;;lh)6dvpZVxP z-0hH~-tiW<;|vQ@XE7(DG(mN24>~;PnHM>NPGL*^hhQq)>0pQ_AW5E$NMJ=U(%G>?42)8}R}1HSo^56+NBcvuwu$Ir zSc2E>bnfvAoeEe@WQ66TC4)L=!Cj>sO?2CZmth#k1T`5ScR1~Q@JlD9$I;4ZtdYw|u zx0?d1*Tz%4PbS~aWK*06DP38c(>A$4o<h&*O~U!G-O#YLuq*>AZf z3o#XoR|Fq-px%Dh&LzpGGoIbrq8lNjAjD-EK?|6AVi@|B#;)9>QywEU8gdE|&s&pn z(AYAB>n5lKH!;*6G~p5EZYt&}8jIeem8%AnO6z)Pg+`7YI@s)x0i60VD|RQXL>5 z_kK}NoYO6%{xA8Cr^KIFDlewWLg^6N$Att~*73EC4yMYYlZ+}oA}D1}gbBZ1$)1!| z>1XOTs4TQNB~d3ItS!7vkW7+im+kk83B5){`=A?Q6CXd-lJrn&Ne+JQ<0L= zDjQ1};^M}}Q2Thd=RiY$KlsO*`w`%B$>(4pkuRH(l``U~cKJT3G2?+~wB@k7-R884 z;r==s9*Z=kDf-am@QcF54F1{>8`}mnbk#rvNC?DE2r?M2Ecw57@dna;c+4vNRI|}L*>BapDfcJHf4?^n=Zg%0rrsLl+ zRnBi@71R_t5+Z)6v2;Qcm@f#oMour7Fyw!!s_oY+VUn&J-~mT%b!NIEX&D{XUTagJwCXq5&t zHR}q87n-9Nd5EODbWJH4qjqC!hvLtkVw3zpmsvYy20L;|w^>&V@_lN5jSK(vQc z1&pC6a)%Mn!s#UG$T6#EmBZ{QxZmcri`)z=HYJz2G7!zQCoB1OjEEMc)O?!U(~U)RDlSUmHhC08wvSX3ZYE{#h4?U*(rc!43Ay zk|w-H0##ndoXM;Xtz6Wrq3C!muhE8KyclS32t&~A-A#Q)G*8W*Q>*HeS2=`$qVmyUPluu^r;o}ZGZx7r;a z;Z{he7MKwB`ZN8A7?kiR$I9vVXDytGCj~`l^$XejautkddxviDvChxhiD2dCv6+ALq9RJpnNcgW)Joeia*tL35m@8FfcXUR4qM ziC9DkzrRpmZ=mr0uEbuJ%l(c`Hl{76TFn#v- z6mH89(G#5Ck{sG*c!BeP3QwnNu(i_utxv9Ra<5S z;#=#MC*@+tkQWx14rZ5y1sUO=SWeIPr9a(y`B7o&p>HVU$vpboe;MISL-q&Z4*c=zj_>Gmu*HpQ6;(-QW49=B2RRkntC35Gc9$bcX zFW=;rlYR%Eebs_7y!SH<%awpjA@{b=^^*0F9FDEvx+ z>vi7eKtLf&_RTr&^;5~f%bN^BNvo^<>FqLEO+(;!|CdvbUnD-2%%i%DoG(yHEP3$% z{>(!y`Iw~p1JkYO5gP|v5+EZC*{fY_lR=k#G(8U^i?NP<%o1GkDf8RGy$?q3Y3KGn zefR}Xxr?2>DCmQB4=vqHwL$4T`!P6bWAmy{=i2>4Pf0Ib2^DpBw`AOZ!LqJf!l9+rIw)LKV1fm*jq>$VV+H<pD+2O0K<0)5G=ZYXV2r0*z@THyiKE09KL6+jp9mCOWqet6|%4n&a z7R~`j9Tkxb;l!epixrwQ`)21v<0G57c%7cdJ&ab{eddm?JS**SzAxIL`BTTEtN~VB z?Skrqnd4;JV{39C&~bxZzredNh~4&=faVU}h5N=__?y?QwhUZ~s${Voib#jx_l>?a z{C?!Sm=4KGXB!;)cwG;d6bWG!o<}p<%(^Nmk4bp@XYmO>`qVaBO}7}ioN=!h5RWYq z9k$QfPx~X4pU^sV84aJvx!8NA49j_P!RYUx>;QG2T5j2 zZv&^)_lG%L8`*Eg28&ig*IVHAhetu*CxD6HN8Be_#AKSd&*87OOS@Vv&S;+L+sUCF z*|}YI>z%3vsK}|sO}hMSRzbWKCkX*pjh*L%+U?T9Qedtn*2nPHujAj9y<`PlP9}_k zwm-LqXr0l_$3@i+l31CSj+qRc&QI@gDc=0KkwEruR9Gf zuS>;@ou~xHzh4|JYg7}^fP~>hIU8mdGi*XCS5)?m2kKO^%1@ zXU}Q&5pJSO`|7wzH4VN&zvmxvH{KC%23N+ncRE)U2I0;3 zgg*Q5;`#g_tmvJ-U6f^ZW)35Jdi-N-(#WC4pArA)Wp}NtR*zrg*QeSczdlxT#6eUq zWSNJesEXyFH1pRO*+xID=ZWP5mHhhf4td6OrtiJr*Xla#{($)TwY9%u1EqDP@t1ao z&?C&T!G_q~sM8y_&erB7$sciSOXQ%}YH4?_?>aO0Zh2`E>#tPmq~>CEm)q9*?9V=n ziB*;xEpwCSmw$5UHj$A_KP6TS`o)Yld)2-;?q~WaM~fGG?Q8<;f1hGJRL)y!JifE} zGv1r$&&>MIAxD&SqSkT9GumfC=`J~b^uAr8XC`S+GH|mNZVLu!xW>H~<{Am;>8xj$ zJk6ikomABWblr8ygsUU_QB|DmAT&eD;_P~J4IfRf_}JPd#AtP(w;!hFNRj2Gp>Ib_ ze6*}>#Pf2N3Oy|@thTe>(5jm?vor`n=#f}Dy1iQ8q&B==^b1&)b+k`-LWoOG|A01Y zPz+8^P;dC&$gvIy{q~9f4cwDk+ zC}9LKS_~458bt3U2opUbdW}v*9liH57|~mdBnZ()?==!e5R*h1y+lp)5?%P8?{BT= z<@3_AmSyd8_CEK%@6UBzU{+-*ytc3`|7SjPfA58m1N?TS$Gxt9>(|>Smbp8&`cW;Q zACyha4z^B#j|3b^&#%M$Tv9!C+_u)o+R=jFY^f_`n#pS^gGhmC!}w_PM7Os(l$zv? zhr_E}Fz8@c;mx8Aux|fUPzq7U2=_S~=b?IE-{ew)JrG3OVKYe56>0~> z0x1X*SfH>2__*fdr*;KLklseDIM$p2bKKjKY?|p9ZnJ@r5QH+=603gwH8@&VjbBK% zfh#Gm!pV608L6dNwYO&R6HOeS+nd)q-M8>e%s`UeqcpdjB2i$wbhzFsj-+i{&Rf6z z;BYL5h5((Ce3X0uQ0jS7E$buCx7uILOVb}IkMQYFHoFzLSj^_Oi>oEVtjDHay^wNn z%O}yM#3@riR6KFx>-+BkpG~!~)1H{vPG)(M)7#Q#GI6qk(4S$*30oj)C2hMbvGrA7J%%@{fgPe2h7Fu2PWmc_`=9ew=s0tqFPTU`=OY+ zQfEt-PfWkFBZ)28H(+Pezlz*Oip0l;XsiVTtDp5K*&_WJb|&{8y3fhKnV*mSvrFXK z6a+Z~!y;N<=1*li7J?W_NK3J6(z~9EN*8CQINL|wq*oCKQY05y4jL|$fhG{tt$|-E?I}B3NNp6*GA)c$Jbv5<)g}%M*zm3vK zdtW|!ZafeaZZnL1gO_tcA1wfGRRczFVtAkWtCB`AY+*(Skjjh{c6YrEa~&gB9u!f% z#u=VLHj+E!T)La3Zf3d;o8}J}Y%C>kfLbgwsw6?3wvgC)WXynRrRxYkwS+lcFx^PD zBr#I|#0XL2ZKDHOo2{TpmDn#F3*TC52~qql-{>7^HP4eHo!Itd*@&OY9wxwjMAz4D zACjar6DUQv&m6tl-sSzCxFjIyEhQ%}3!Rs*N?{@w>3&yurl0h`#p)h_KVZ~+Y~g85 z2#tRbAzg-Y7T{9*G<4ooZ`r8hJ(|vwF4|B3@hs+fI0`gyB=EZHFY)ZRRlM#ZufbSr zspQW-C_9@l4r-@7=$g8kw+{=ms|mX-EBJ7AsB6hb^C^aUZPP~vA^+BE9Voflr!I7v zt(vR-hW$QpDn}$6ykM$y&N4`D!uwxWE}TOMK@bjXUMl-wy7(B<#HiUFO-=xbdt><^ zy)I)uIOruM?9+1xt7)r{>!vTp?%I2Ec{xYi#EWgJwA4A;n$=B^s6f{CgAo|9Q$d4* z2@y`&6T-npgnh1F_#w5ZVciymz}cdbkA0TiZM|h!E8=H4siB47ito%%+Ld$?{ zB;bC>gZ){uE2|MD8P87dXwTzEI)NPYA4DMFUZ@zU4n{x73CTSa&r+^5;zknd9rcz$ z88Q%NoVE+?9xPe+U^yXAD-nFuk-BKV*tZFgY?a;Y1`?og74x3hTx)d==&5LLVzWv_ zFa*SAwL)rwxcr|3=PwBKa*?&wsd}dq4i>pm3muL|ge3wNSfD z{NMUKj*0rEdzfsIOmgueJC~1WIdi?=zP0U9XT82F{b+oE?lefZ6$DDu-wjAjxwaJ) zN^8}Y??6=GW2+O#A7SImWXzxSW0hF44%Ls^?UBeBlvqJUudwMm&U}@EE!==SH#+VO zzhCy=I!!Y9(af&UH}{DJ(?%($9UBM!6_*vQmE>cQsHI%>>RaR@xK}O~zp>;U>iVlCrv3U+fIpSH6Ej$sWvXPkr z?t6tz69LT8uuGq0_Wfk;eaI(6-iadJbCZ$~g%i_7Nq?08#oTt!8TMU$l#DIo;RIUC zxsBNNwD_Z1Xk5zi1323qWeqN|k>m2s2`VmNfu2d9xFlDa+elrzJfh7g)bz5%HSuuM zK7y9yZ%t=u)Qdshq$P>Kf1t(9??4_2H71@Wsoj4T3kgMHjG}JCR1>u6R-Dd82B2H`o$n(atlxUN&AaNX=4D*( zmLPBg;03jf5HK}$8yhc_I*4^^Cfng-Vk6EkW4afM6kxaI%FWc~XAuKB2w8PAxN*k{ z@{u*h`WeW|T&t;bMLohW!HsNzkew}3?mU3F2uYU)dhc=z_$JEF35n1IkiUL1Ib$@f z+LA1id<%{-ah69vn#cmHnW1i%95&)*8k5#scTR61l_+AA3rgBpHtJJ5J!t%Z0%4wA zIRZTVxbXfvC9nwaJ#PaHmCUpRpHQSBxVfH5uyTbItts8s0fVC+tO0aF!ci$z3^WwP z8b$sSBe`YDiXzWC9>e33E2~-**a=}wth-t3W%bDiK)Y6XzxOf%C$}<-%>sT+8WFkd zVz#cw8Re{zXM2bef1nD4ve>=2S;w3kdwkp7%~FduoSmwEcq>9APB4uFz6^(hma1B? zvUYARMb5o)AmrOTNEA5?z7bWo0A*EHzopa2*604_m#Nd2f!`_=fU7XXm=@D9*fbDT zdxvTc{F=0Vfpx3hR+gyhmVSp(4$iChj+hL_ZRNA+5tXb6iHOR{ z@MoXg(OhNP>*p^sU8xLU&wxw=>7TTCT8`>hs+J#Cl%*){x0ijC>~3C&QIA2>a(E#{ zR5z4eLU#z+Dd@k`GoYnmPMk8%kI@BruK|@OGt){3!@HJhj`G+8@|8O-{sz;gD@({G^hktELKdSxl zSzuxYi{#j%3vyWed6Gp4vDS=A{j?!;yR>7@tP2S}Y(6Tish_AJM3Vu?r*9;aUADcf z{+28C9UCZgq=or5Bp6V# zSjb#S7_V~4W^6&f8Edufl2Q;vb?Lt`KHcgv9TUd~?-hs%;65JD!$ZWf+U&`IU{!{A2g<|DSPBni4FLf_J`k!>;Owf8 zFRiwlRoag%tHVlS#Y-Q~76*1nNyRt$%Kc*ec1tZn%v4O(#Kb=szc9<6a^g7glkQEw zD4AJFzZT|FCC3E`n$NmtR7gok19`Gson1ZZmiGoL8dtu~aN8G=8W4UVl>zbYB`yC^ z{-TUi{B|el{%J;cHG#ikuI#1VBmA(?#i;sc*ChueV!dT`u>;hVl zq5$8DA|J+`+SvII`}H&*;SIUJnYZ)^cZ{vC@0@R!i5n6VBI*>JrD)~4GAMQ14 zmBLs^LvgEk?3?3mvHQQ>qJKlXS6cpeJ@$-SPAjK7%lTcBj{x`j&eQ)mZE&T4qKN8V zvG-4=T7k2YRG#K!mx?Et{Ccx*6+n=%u_QbdB|S{ji?G5s#y79-KbAq!c7g1kv`JuCyqNdJ19l5c34c>dcKOpJ?vU9cjT_JP65(UMB7f?3N|gKuGTcXKyw zI7`z>8N%OjXQbHC1D~DcjPgkKcx7(9V{0~XWcrX{$xKOfp{-N`!>c7`nOi&~Y5aK@ z48KjS0l_wq4WG3*9oKX{`nT*7-_dbY935M3?%}$BM;U3kzZ|-~*$w1R`5C){A;zI~ zI)O;yxc3-~VxU}QS_%CsvG}cDchH8tQF`F`w(Jgxpn$bb`Z!+onw>G`fBFy3-t$Or{X`agB7j7Y>1h~o zGOyTw)Qw$rlHjKX&`Zs=BbPsz0^8H~Z+58O1jQ{p92?ygP`nP=vm*ICezN&l~|pP9ansI z(u_D>Zliz-7iec|zDT74>CLm=92GBh-y9OhB!S4B(#3Q*W$GIYO_Gm*_Hq8{ka57X1=U%3g{2ujtSZ$0f>CtC9SWihop*)_ z=Xv>m#U!v{Vhlz#Z#Cbl)iUpKXM{bxHMcj1I8=IHSK%p8ISz(_`gG3t82wbkKEA!J zDy{xsoZUA+5q>xG7Bx)5f*{rHUtxWJ;Y!5I&pGSAPU7o_T?S(#hv*dfKNEs_h4r_U ztF5NA7pF!%7Kdh?@3`H9DMe&$N>tlE2pFhXR{2OA(Z0^6mGq0Vr# zq<_-~eU_zaI=Cc1!Z!x(ybszcYeVSnJNZXEYVTqCsn)9hN{C!h=5 zrs8s3o&9b1SxjUr`%_?aF0U!{EWJQ`Em1>fBa>Xg6*#N3;Suc zzXc*c@|-6#K*T)5^;aI?v-Al;Ok>d+QQ=4 zj`BeBiy0QkW6&o-ZPc)TBGuvIzZpE=Dx5@Hw0z9Mjbg%2(0g!gdKd&!UX4i{Q##b( z8#NH-y|<$7I!zJle#A{ASgiYr-s?^T#LnlgC3yj<(P@+EA4>pkv(HXMeD)sf(EoWf zA@bk5lT6uicgNU$q~~I@cekMU{5nm@sSYD&4EcMlpazmRsSn(*QIDWbm6hzhJEF{b z|85Ia{``;yQvmC-%&lceaf%WcMeW7H7{8Rg-7wBt@Q}0M8^N=pOG<(8ZYwm2^ql}) zw=e{ju|29}wfOZ81GW*@+)T!z907@thljkkKia>W>F=uXnDFK<@D z`}_V!K2g)#uW-?@xX&w4_*X`*C@S%1O-stn79eVPbEk+f0ehqm+mVGsf^N~#<|}5q zp`k4AvW-d%65-1iqs#uRPYE$1_x<wI z7XJBlqJc;J?SG@zCGlkyE`>W+Hd zsIBG`@8--t6 zfO}~M^#`Rn@RY=VcwJ)O*5V#lVHC@DLVij*&~DypTssUq(|Oq8c=|5*ox~CUInRus#O}Dfoa`4qgA%uKxF# zvM{dcZmeUu$(@%n^vE(|N}9mH)Hzcz(xa1oVdo(%Grimhao=Ulvw8a2`%&%kFHM{N zv|ob;7$Kfd^tj6JIeDcc;le*DF)}Oqk7Eo4v2nc5Xaqkf!HUu#9B0+?q@Qm6wy=-I z>1U~PKZu*cH@`6OQ%IVia3xwGdRX#|Ei+U8X#gy58AbiJWUsY{=F{s28eF5jwy^a* zWKE|F=Z9!lw~&LO8LdgIklTiNTRMdc^TJz6s}7mqC$+OM$$})KS_lD>W5uE#E;<4Y zerGWn#sky=4b+8=?q(hBb+~p?tq)Yog&q?sDG5C0PbwFQSM+AwbWCp7!V7DZHaeq^5Ahw@P;L2E@CO2Kkuc&xIF#*8CvX!tyi6# z$px6`F0lO0Z$op{yTy11oiD%bt&fWSB<)G5XVbzXbN13q_&D)kC0!&BWr3J5oI6LX z{YI116EGJ2_7dsW7x+Mp{f$nED1@UHj^=~=sP(^1eW<# zvvWxU^hIm0^9(0@GPwOD97!w+4fGPksfk8tbvCBUA9g)>K<_F*4cx%#HrbxLO#mA6 zWv`>B3__lfvW9`#_6Y`r5cKgxk^4rHF7A`~Ff<0-3eN&_HLbVVl5JHv;yN@t-m*C5 zdP-NlZ>0J(NXYoINLT$C&!=dV{MMs4B{XK2#oh|XBHU# zxn$hTKJlZijNA5egGg{1MCMCogN1jwG-5a5v1bHDE5wX4elV+P^;{zek-GXuOnIw# zRa|QKxa(p^nN{NtquL$-=j%lAk9hY>@L*GGQ|eii06+|u5#quoHQ8_;5&*Fyq6T*C z@fXL|{Utw1c_0*dvUBTI1MY|x89@%Dz^50ajI}YuuNu4zbAE3%Roisn;81l8>4n_l zFRWyjX{nGUf{+T@n1V<=Nn9Hmr?-uitGtD5%v=PL;1qN@XzBvqRyB|^grey~LN-uH zh>Vkd>1)0Vdg!!}xO7jN6#T(Q^4p|jTz>w!a88VL&9{R2{@wfCAf!4Z#JG!4uvN#W zC{g>4#53uYjdzsWMx#$mT+ovQ{0((kY9;le9l zg3KfYw^=6CNXhkwrsjiNISb0*4tY!^@;Ta73Yp$UqyNmM%Gfhpa}znKwKWH%t0_34 zc4h|}e5z(25S3Ma`_~#U&1(s9braY|#XYTwaI(>jrMa8&&u&HrI)a1E!vr{g=@iu}5XZ^Sa)R*!hlI7IRXZ*)Dn z_Nye#F{Y(dfCgUzoP%cMy+pK}^f?xQN%t{Z28Y17*XCi~@NZ>9_$mec$GW@uvG?x$ z^_h`&iKfB_g9*~0JeYGc?q)ri!4G%sEncE$zQT*7H|9r(2*^s(&A9Rey<`UMu`*66 zT--|A>+aTkQ_|F?e6e(KWS`boHC8BOsJG%2IcmWu7|-_H*IjZvGQzvuJ`JcYn%+C? z6*^VX0%g}dpQ259IP~T9NLrZ08*2AHsdcp!-#gsnmRr13&v&*iPCygrL}npQhOB&o+ycN|Y7>p%8?$ z4~GwJ-csrDwt0ssVAjD3s-7gR#N|(l7&k0xtJDWp>>E-!nmCiZtEu4j#G1OLQ;wx? zO|@S0F)Ob|-4!DNiNIF?%ROADqr&yFs=uT#$Q%8Q0V9DICjq_Yjeu}*^yjU9xTRv@?(7&t zZS+`#Mx<2l5tN&mqbqAzTeQw#R`HO0^!&Fz-&qj1YOG$u!?xdl`2mT3)Lyd=MlZ}F zVToPIiIGmnehYw^^;eXi(iC=BH+&~$1=!F3Nah$0W%ieHlS0)_KsEJZ{{GyI02M$M zy(yJ+bK4C3v!MoRa3J7cu8>R__7JyY6X#UPUK9Pn`tW!!ylL*y)QPKL@e!ut)Pl2BYPw-!Zd3Z>^%#wIsDy zj}h%1ZVbtm55L)(5x{`}-#zr+Ntv2Sd%hnWYU>01Tzm?VXQM6_*EeTA7t5b6QQpw} zx+btn{gaYVI4(+`d)lwM87s@m*%0dH5{HZM$N7b3twA+Gza51ML>*chIXGo*@(E+c?Q|?t0?Q0d3z7FEvCOJwCP*$rCWIS;&zf?o<(pF z3;=4s6w>6xU+g#^CC_iRa5N@k7#b_qIH)!Id5A)t(|3htf-fDMK2CN)skzE$rdeFI z(?=qM5MrV3nUu6?>R9lvIYOE*51?E$wlPW6(l*>kNXq&Sfw`G}KNNk0yS1f4%=USA z`4kq!8cl9FS;YKK?B1pm(1TdOy|5S_DA%_C=p5kF7W`z{mFJm4{V%_b^^>l2GLi_u z9Dbw9#oXB3<6kH#IfLzrvP-Afo%Z`k3S^zQKEvb~!(_vb1yA~53ENKE@Fzpd6t~jN zP0m0E^zP!Ad*P=%2aeX`WJK?-vIqsb1sxw--vU}ZoHqDno zCGg)@9aRXok4d+y2q-*Lt$usoNiDfcq$Yf&6yE2xU?8^himW+yiJ+tCGC{!AvM@%3 zx8GhM^kmu7g^j1YRetlG zk_R5Jh!BD_IhjkA)1L~aCzB^-LjI&V!yCk=kNLhVUv~w@a zmIC4I;f6`U5%hiipgs0ex}!er1>>eN`5^0ay(`cEIOm86lMwXnVg8mIYB_!v%u(ZRQu%TQh?=o>!bVF#q}Jm)Hcqn@&ZO=3IJSALqNE34vPk zBwF{;@$fz%v|uVrE}W6mJ1T!wfej=T31Y1Rta$OH8`0h{Y1ZfgTp&prxg^l(s0(w( z{KlvHuvayZ-wgcDr8lPZU-?o}xbXJ(Y)5-J%GrD)6bQ(iocYlTScuUjQ(*(0LbsW! zP_!F-X~oJrbY47@E86y!zitlF-*fqjYSJ_F9L|_n&8Y8fm#%fbLMN3b_sVUVGrJ-O z1Z@(F_B}H@@1BQ>0D`wZgc*XeaSUuTGC_W0FJsa&vr> zn`5ETRD#3|OH<+>XPu^>`dSD^OK*xZuLEX%-pqgeN;6hu&Ayxbhl;BaQ8Tjle}w>o zV-6Y$OsA~&9jUorofu8pke3jZkvisxuyEb`1PE)ua-363+)ArI*1}^|Q=?RxOy?e} z(4iU|9HoSe5y9rVgw_4{j`?^rBbD5M%>nfW!cihYJ>THANNRRA-(;DrGIsr~Sc_+? zZ1i8?4|J|H1gVOuA1j$DRiCXrKK$(Hw^w#7D7{eu20-JgyP!JechqcHa73C$sjuFL z3`9_1y2V$+(tx5f+J3tEFVcm}4=1m@(mETn7G+)z#U_YIlEaHyA2Jrqh1XtDkwt1{ zir!z(&+qp(|Bs9HnLYhoci1~2n#$&-n(!f6yQ?v;E6m2T)~eZXg)eU0O)cc*-tnt3 zf8z=}`ArKd66XBq4M94gDu)$=%@uaD6jGo_S}E#411~-wi}#2SB@JuwA5~x8u-ckR zQ};@~T*>yVSQ%>Y$Pqj1S}_9Pz?t*D0-B7iSE?}^Z<62EQGg(5y+HuUJ#=L8Y!mVf ze@KtzXTDta2M!UiWd%NJXxwT&d&GkDLC5cHT%`1c1 zz2HpiXt=zbreauKtG~%)lc~0h-3K~jTVF*G2t;VnEOaX)aabIN#WH`{%83VnZ6V5Z z!J(}$mHNOsWe@<$3m$D^W-fN@cpMU0zTR@%Hy~4R{i!*#lVz=7Tm)SEuu6SWDoM+{ zzp2T-82BHwY;YZydV-a>D6f7Ydgqwe%pw|nuJ}IiN*ar!SLQzCvuD}*5fB|JlgxdN zbG)82@;kOKBwk2<)1Hyer<1qLaJX7*euqE>g=%P*G%bzG`^L2bI7#tMvC;P{wLHB8 z`hxJYsSH5K^+;-x_m>2m9y76L-V^KhJ6z?+Uw>b3x!8NDOZV!1+lv=hO5pUeADv(A z6~0;&#TEZOjQyoGJDv6TjSEcXkt6rnJ`+T`@UFPdgtyC|ExG=mRXcD`Q*Q5muB{J# z!_8pompV^AH&{r0v3OP2W!YIRKR3R0fUfqqOgs z5&#IzwWuq4v#dw`qDTV&~Rf~_2&2!n^aHnfUrcN~QOjX{hMxv)V{UL$rW z)=1l`z98;y5sf={Rd1hMskUcSR?9Z0eRY}~GnHVXY+P*=(|Bk3OcD5&GjTp)rwgAO zosgSUg4`-LIB1gZ-X>R``?@AY0#HBe>Q?vvSa|iOQG3Oe0}i>H7k)o|RhxMR0gT$o zKTeLQpi<4lPX5N=L9c3gfIIqobr9?FtjavpKajsiw+vpj>VQP1i7}}ooIeQd(V6na z#Ri4R-B{+t<-}>Ec}~O|I{_^z|7gL1$7J_y=-=$o0R*S}%#7*QI(8C2DR~Cz2>zpc zlx&bJ!TRx4>b@XjNQ#v@r#;9FQm7jRr~yhg+cf;fr?7#&FF(Kq1Gm1YC(L8M#pRMU z=T#oVt4dzwCTa`lH~aU*?JBPkC$JS+02d|zgeFbqia0iS@ioIhM5i{p{Fy5~QGaQ& z7V+%hgi)!ax5PKujdK5RSy{KpW$_>Pin3A7V!om2+RRepS8WK{A4RlDUVwhbIDW9@ z#eGXAm)_sDg@RP+|EL%%lnN(q!y zCcb&?;Ijb(5^@`x^W%1^s8A26AL>_C+QdW68HVs#7!R})vfSDXh;?Y2alYCopzd?l zST1+sQ2t9$MdiE2fZ2d$AH`sORoCAPog?snOLrGcuZ7L`#;QI+$UrWvIy~H+{e+@ z2aT=>trVn$e52Y$bi=wz3sry{2|FS5^o2|kZ6izf+4^;5N7B~T^v4k`^KBHciT%rfi+A$xKo#~23 z(mOkLb{1|?$FP`I@$crFGsJiy^j9C<6(P(eCgT{B4=L_iE;Wve1du0p-cX;wjl2=09xUmhb6kj(JJK;{#Ws){N2q!&qC{anScC?M}s$8J*R3y6vw9Q-%ejciV%pO zt;It+%pF$wZ2&bN4**@7t&%tpgg)_99=&GLZrT)PHXS{r%{&{Y z)arA1DDn`sShG_Q*wG{0L`i|@f_$%W64C~|v{@Y9-&)}(&F3LfcKO%o2RNdY%?4-j zVt8T@bs4KO07 ziKia-L_;uw7WTd zcQbhN{kzs+T5b8t;y<~bRPGC&>tfbT3X=u@K4>WM%2g-Ae|^LpV3?zWdg_y~_p?r{ z&AxA7d>^|YygP&y{LH+2(|*|{TS}k)fG9UA7-1HLMqI`YcZwYsf=n*1A`v$Dv#!7n z|8eaNjI#jy-PmqKVR?0MT&?)(CU>9WFFo5B>{-QehvCtB)%E&|P+g`CyA7+kw#RJm z4{R1%i$`}yX1+LgndCM%^^(HQ?bEvh5uQF1VUA9%wBn%mF-ITE{pyc<&Xa1cdBP8P zdJdbUip0>*oqk_qD?R?{A;X^{AC4IdRatd3AAOEZQ$JLvDBvAFxf z9t)XzMPb{C*h}g;%nx6?DG0mq554++Eq61s@zy;2WBtt+)Z1Ex2f`#ZbEa40i#KcT zJj@_AmGb^)H~)mLPHt8&6@o%X!a!2r-78ZOb*}R}_2=th|2Df0%fubr?vl&Blb9$v z!69JiqbGcVR1-lJdi~PW1L}K2&A+aH612Pe%*^CBoHYG&G-K@1bgepa*l|1pGP5e4 zxFttJKjt;#c+xRk^}4nW$8GX98?3vnlJtb)*bYc2D*0#(yEigYP~7frfl3pjvDLuh zV%rf8&g)6dZzkO)WL=_9QAg9y&7>p=In$x+9IG)K&(?G)uHPx%45eJ{g~=Ovb4fo4 zTxQM5`+#{<({qS7?m5AJzeiP{OwC3EqZUy$t6d@W|4vI-)S`Im-E+uXGk2cX^VcJM zSZsxAx$-dcf3MTMUpe7N6Mwoad3VF_CzJ_p356Y<4Aj(wLP(QAun6+P=CGdn4svf{ zkCf7N*Xu@J4XkXOWR&2X4K0hxLU3SD9Lg#^nT7p(W>{JGf=9Sb3)e)S^ zdn$(JW9`+in?n-GOMTt!X4>8I@lpaNL<_P-qi=%2nu!QLdX7Q$+v!)|BxN}Q?0U|R z6tBm0g+9J+RJki6_ZQT6omdl@#$RSR( zK7)Ep@N3Yx- z+8_8!fR)6|+NW2fu$Ws*PqB@*5viWpyl;m{zr3SeB33*;uL=1#yf}Us-H!ZVeKY_4 z-=^XX?c!yDkXxuye8A=pT0Ch~_3=>?v)Uet4!OS(zJ&?j2&W(;y?on|>U6*B(u(3| zhc&7N(**d`tNg}Jlj^sOed%|RI<9dNrQU7>XBa@Dc1ga=lPv4OK?7z{?hj*E#dSjj z=wt6*qLq=j*k)gxERc?l3tmjN1Hq9$#U1@x1CFvE()5x^7tw52{oq!1wJc-uH_7`q z+9^?KC0FIofI&PLW#SG=zb)`GJrR>uZ9d7g*o+I_LmlISH@Z%H0ppiGkh&6KDgg*W zzA)*~)nVNIc4(L*)FD@=eoTc2UUvVg>w7po4Bh{7?>^i>aOmCjXQ}QEo+@C5e_kAPnof?cqj+E z>ar3wwVMl7%BJz&!#J`W3Tjbas8i!+&$|S>XZg_H_^D%3n-cSMG>N9ggYlh08Iwle z9n^uP&q`McjGb)-1&v&V_et~Emik^coa_{z*xE>X?_B+P2w@-p?`V}eWw4s%?+FUN zKAHED^auqj*FMZDR=xws0|SV^($;;o*Eb(~`0R6N^KAkokRr=&*9ToeAxdeU#Ngs9 z^yOp56rsePEGK)r;Y%5-T|NH6H_?y!^nr1qf;w7|0PeNk^N(NgpSR-8_nRfEkc(Nx z^X;A!OQB?%Fl@ zRNEY*9R=*7^4CSD?EeLf|zFnY> zd6JIoOkGiSOf0afA%h7rU7j>vthIdnPd0;3{?ohAiJ650Q#vfmK%RgHgsCczO(eH9I{}>A*kWu=4)2e(@)w!ab7m;N;>}u$dQ9vTI@^dhak6amlSmdI z6hVs6V4>6+;I|H5ZfFaO;c5)mq?$${@rKh|O50S*B&s=`*Ds|R!)oILD*m^h!EDqo z+U3tLdAffn^gRom{dhgjdS1QL6e9dh#_6fuiz&fs?NRTlr{Cq_+m0rfR~nT>17IL< zkcqD@FX1_N)_N85GflQEZPLLLzk{p(U*ybxVk4P&MRY^n%Nl=k&%G+|clT6~1b}QQ zk2xDVcU*oxFtxT>#~i`@^r5%=N#A^of_;9zQh~p$y|+&vvX3KWO-+URMn%JqMhe5+ zAGL{&Gbiw6J`n#-$FTjE$p|d$F+XDJ?bISamp`GVU$(Jy9|Ul{UVZmh1Q@>NG%UcB z_Z6hcaZzHBIlX|_#P&r}*bYJSzc`NN2l^taBY=Y`S|pPlt}b)+sio&k>t@yX-C0Jk zYai6GDD1RFVKTJ!MwA%X55TRC>NeQZ1|xm#vTsw{cFu599KJGJld=>b%MwBUG2r@b zv^$H_$I)#)5muJmE(TaTgrNP;Nv1mYnZ}0SDoRwK`F3C^`oCr~0?=rDAlAT5O?%r_ zQ8}zoX?h3$>{P&X*O@O))le}2QJoNW4!S5kfqMECC~Ij+9^ms@-|UN*1w&ybaz2!a68b%Iy>E54XYmgt?F*yi{@%hF~_T0rKx~5kf%0Mp&=@O^ifq%?Y#z z3;O+P2jPoN`;_;)$`{Yf-vK1-=P?)8ytDIm)6@@u$K90Swg1)C;nEUET|3i%fff z_R(3V+}3h&>6_)i@RTT4#}~imFCr*m4YqGK0bmvtB{@mmnce+)diz(KP>7g72pbetO_S zcd=wm6!Q1tLQCky`G(b0PCB%>qh)t~s=&jF`4O*8|9^yX(P{6+R6C$1Wi)0qHZwN$ z2-y~_-qlMH$;K}VjF`ud>_op(@R-F;;o*CB;0RCS0}oDih7VA(Y+fBr2=(Z+iX}(i z%$a%8x|I7!_*U|l{1&J9;H1*3f~KE=zYX#uz9OMp*D8Gg=d56|l}s=e)dIN(0;PGt zCk#p}DxWkwNJhYZW!^638m6-vYLdZX*9adHu@ZbvPm#Ud@yxt7s30EA zzRbtIMQBNa>jO(_R2}2g0t{~7Wk=Cn&)%$`{yVG*lL)$OZP;OD# zSbyJmgk@xCCy}QXje-^e1nx}nla7uK>A8HVBT*yreSAxi==xi#1yZ}NgTmqn_h;Ws z6QCfa82m+WNuXUzdth+4zrWdifgGzp7Vr#e|EL@E^UwBsvr8~&Gl5zrHYUh zi|M5C|InjT%3%s3kaZjF%FTg)_|BHqIk%PDa4PzGbMY#$q%ZtR@$x#^0{tq(ix1f6 zTcug^{IhaNCrw{2Mxr-Qo_h62i=xWF^KT( z@V{N*>!;zPJ@E?%d+I>-D~ND)?tAGFOl&O=CB?;i%)Pyq3O~)cp0T=-kxzTb#x8wi zb-j3vln zcY*+>xXAlw^UHh(|Edm6fhaeO#HE5~FL!La!q2Vp@hDy#GJASn?kD~0TDvFmyIg); zg@%T~B_G0tdF7gqgHvlkumGjR(mK3vdUaOW)?YXh>@_Gve*sJ%JZ&~dbFtDMIRmj1 z$D#M^dk5LJdZoNsEt`@GHAf$}OK4Q1j!lvTpDNrGBM1a3``%rwEZ(qQwN0{?w1is3 zKoSprt6d-OrH#)H%L7-!w@~mW#u)I}OcU+~pRZ@9*AG;2zO`^Gorp|7P_9fAdEz{M3%dXzR0$TTip`_2!nE#~ga0ON`&C#BIiU z=J&mTr2A^{o{9$pE34oX+Pbw{6d=%o^554}Kf}CSYFcHOJB1OkcVVhXC;k)=-A4lv zOswu_@GTe!bY_@7am#eLKPH~c<$R@LowAZfZ~q5xA(Zzux;^po&oEmbylzChr!npR zg!}V16|SXNIKW!&^Sq;HWgAfwKNR-j9d(t*Racedkhbe89}dvGZU={N2P+&h2)WO9 z1;!T?VguMs7`iXTghDokXG^JS7Jv!uTM(K+#S_$Xc=7XQPio;h@7?+5tKFS0Q@KUO z7$}IqMy5Fj{C$o#>4EgWk()im3;&y`7Ry;amXEn>p}EZdE;9==0{(j=PM2!cRqe?g zzl}ra3ahm7zYkk56cTlXh<2|ZO~SHD=?B{IY{ zIin~mwIPTnnKn(io=m2FfNLyB30ZJ(CnM46%|^PG-&-*T_6Luje6FEL|ME20V`iH* zbD~HRLpTXggMtf|5~MjoF;ozvkb&eVaBI4$EF(`2Ht5mw1pBK4Zfr0W(DB~r{zt2L zF6G`$6+_Pfxis!M6(f5*7H_-82W(pm%nuprISl8wdFu9XP6@q>ILyxl@f}p6dzDlu7~`yL-e`zhXSb5t;r~l1bE_ zZI6BvJoNu7OsDK3qTR3LH62L%j@kys#xow3OoM3q!GImik6wN7+z}Qj{l2TlQHl8d z#CM+U?38nHw7O10qyeBfkDSqV5Nuoeo6GFY9>LuztnvMM*8rsIs8IihucJA-pnpg` z000G09N|!4p27jK>kOOmgbls`;#5K=%w{?0f5zC8KmBtSwy zGYB-AugroBWb8s_TbDxbfA;ccS$1}2SV(biS7fdBv$K!lx1K-xz%)W)<0FgmclnFA1pYa9w2>3jCv_13!)E6O5R`B6f zm##~KIwvifWgvSCdgbcyu}P4TLgDlc24r2ovj8} zn;x#s&W=HPAvU1Mr)f2oOAUR|Ugtt2%-)+?v#IK|VOz!pJgU&lZ2Sa%L<>;5Fu7oe zJz&CMf*(Y6m!@3oka_M{qZo@ZR_DnRz7_!#Cjix?tV zK-v~>WNiXkw|zRt?aEK(O0Ay2?JdCB;8J51Tca0dAC-hP>8-TZnx5Aix66?p|5caB z^1&oz6CteUgFvYf9FP=k!VOCW{C@vEc=GJ_-qp!kLC?v?&BnVfQP)SghS%>ruhLkrUZ!7_vz{+rmAw3x@q8to z8L-+Tg{w1O?^A^w?p=?%^qi!G9c*JR_m;DM&YWNuD1I$-uuQi#eb{Vk`uo1VSIsVD zzwnObv~x+A^5!;agi(QleA??rbb$nbj)(`BwcKW#D5kUFdyq16t~bbS=Ekt|z*vJX zW(l*jkXRCPA5sM3gxvP!PX92=2o3RZ+ZwuMASTQuO)dg>GOOWYAqlqS)@T8zr~+RP z6Ahh?ACz1igXQ^mn*X+J-rnKMDjvl5H#yZjRq%55^sN%>wLto79W|LJ)$lCufDL&9 zeM#5|scC!_b{mJ9slTu84#ZII58V7{2|pRyFFXtcTeDy7`#(CReHVOwbhA3ib)55S zrASd9prYJaC&Je@y03C>PJ}woN2I>{ordKA5^9AimW?#CdmFY3K$Hru5pOyvOKL-p z`Gg?L6QJc;Rhoz7fEI+hBIIT^MJ2Ero+T#SdA5Do+KBZhGaA2ceT->HTaPw)*`K!r zUu7ia20@Sn)L-HBPZao6GsK^9t=MDU>EwUuGHnz3f_^X1D;ELoOO;;Xl%b6o_PQ)) zH-)psxc_*)JoR&KD3vOLO!M&9hgL7=zim!Di(Uv%*kpPJ)j@5YOZh%5+hI1l#AC}a zCj&-JO@o17?47UEDL=qQEB^iWPC+8#4z+l^;(oBg>G}7Y_25UN@npc$j~D6*+`qZ_ zV-@(%rAG7hUJtE1ak%QQ6_~neo~=uHyMkBAL9n-&mAIQ5x~^NR2Gpw}WqlhGNd{qx zQO1ED1d*0TH4~00)ei4M5ld0t)tp+yh&We6Sy}I=;FzxoAKpi<7RT_Ifd^$aUe|r? z7v-kbV>q|B3-~j-e}S`hD&rh5-C3LxurjC=ywmS>EKi*O`T1(k z3JzB-gF5%dSfj)^?^*>hQXNme!3rz?{D}02i(`M zpWm+Qb3Go{^}e3(=PN7FObu%AoM}O0W0=MRpjJCHbYa1q5v_H~8@{m0I4}=ymNuO@ zy4qx}jn|P8JXHp5EL<{nmX_uAd{ns2@zZPcdLX3~NX$yCSl?!O@&QJEaqlJP}zX9m9FO?%@maCQDzyM>a>em|t#)LH5>~SD*j=IJD-^@7}=F& z;q-jx!^QZecp9= z7Rs{m>nI#3raIK$T{A4mJY?<&GMjQwcXN+Na!VZxfv)g%DN0g0_DrB_YGYN7 zy#!aQ`%J@R%+14}iB|H$XLw=Pz;UQ#n8_~c138tJ(jR}-Lq;5>%SU@yfR+Nus#SjnkJz)?Cd&v z>d^UuGa<3saaK&72QbdDj-El%8DG#0hPgdsYL*$Vb%JB4`8Mx0aO-amn2F-$>MO#w z_Er`}qwPf;Oz-K(!5`T6t(2DA`4SFi(lx>0ii<*^OjMER7zLmRGh?Rm!9vX;ZbLQA zw%^`a%uTwsJ~K@<{-+2db}oS(*cwf$PYvqO@p$~eT`Ul_$HpJ3fp(1IEktPgr^xacJ^+P;Pxq8JL~HSP=qOX!i4C zM~n3%{vKAZDh1l}RZtJcFCDbS{6bCg;UZO>ka^s3*cWD5X82E8dZGiJf}^ZXO>8!8 zl51r`DQ-EqzpjRnwrFuZFj0}@2vDYzX9FLM{8TWCcspJI)_6`-UkLe@)}`H4m!*yW zJ31wGNa3HgfOLd`RAs<*lOQ(F!n&pG$Pp1%cKx|;!Cm_URvNV#GwPn4?*i?W$PGzn z8(36E&jR60_H~t^6R?b$AEwM}+;6JL-&_jEEK?qnGhMfha$rLGt&(sr#dI}2>OiFC z;PCU3DbQT@O|k1r<0IkuX4MywG?<+rfjV=9UO$&G1~S}acZfnK3( z)CzX{3N+sUKS`@S==*}cl6_nP+SzCdhQQ6La`gyl*;|fcA^au3re+ao=zh7eBK_2w zNtr!4*Sy$?1FFt|f$Jz8%j?;R$b#YapbVM#L3Q#4m}+a}5*{L-K#}JFJX2wD!d;U2 zA(3S_?3d=k)`Hj)Mhq8Vs&3Q@uO&?H$51)4tk)7?^T@+5bqI=ZY$Pm1-9awO@r=dv zZVh;0Co|Zc6BC71R~rvUY43oS??fmdqH>NKY#6lh1Q zpzqHVdtFfi>CfMkjF*;EW)R|^vdUK5?9Kp8BkED#XmuICZwrZU{fC zFJ_SXJ6p)pJR?tIo7H&hSr*>8;lCKWndM=O74KklxbF4QSxrx~Fg|b`sFrgh_9sTT zW1IfnH2z<#<37_7xKNn0QCL_QJ*#C+bO*XDZnK4cjydOst0$3{)X;onJ%YD0ZVih2 zB1rqLxRn+vnVG3z@$M+B7zIW)zU^$ykpQlf9IR}>k|lDKK8uQ^ww@qV-Oes(gFRBp z6R|Rc2jjivoL|w>wPX#lLPMfRs^vS{FI9EVfr(-{;0*zFNC9Rw^w);Zv>L_Q1elYY zX4R-2#hLf6Uy^YK$9`$zW>&R}$X#2m0wbf~K3A9m=nwb2&JjmH4~-@jlhv;uee519 zh4^~Ad%1`G-W_uYcj9%dpYwwF6glXnzcFa|kn!MhQRIr#gj`q@QOpo=i%wH~+449l z3?_u|ufqnAD}!bms4z!)vgXMqo6*`$&0IhUlY@ZgVRpV79%nKawT`2;4z2*TspHPv zQ}LF&Ken`#Df5KYF85G+mJDA-)n)8@Z?xbXmf4Y>|_~N~P;3;{Ee-r-(1g`J) zuhhCX`8!%y@TGWr8_mwQN+(QfBK5Tm?|3dC`G3Vq$f6PIEg4B%uaut>EbCNxBH%i5 zpSfpysr&rvQ+7uIwiBauF~|VR&U>RU@xzGnP&W`uvO%lMJ;K;tG5lUdwCuY`Tyo#|Z*v&@mKeg>*3GnXMhZKySb z_BLY;%G~q~>n1Y$eHm?EPW}Ar1Ve>%b@P@58s1{Ep{+-^EKcXOcAqkbiHw=jsF&D4 zsDVB*nWO-UW0hOPQ?g#T?2Vv*T(NR>|S$?|pmMNx>gQf#5Jsi>uG z&vi##6Y0?!!!cP7fP$9cHhy3CkXE{6S5%TAEF?GlJYsk{n7z?7BxV`(pGLJ%+GxMj{t#Ys&l48$ohsgv-7GwMzQOb ztuJ~~le!C!5cbma=Lw(B6=V+EGQ(!6yM6q`yA%Hd=wgXw2qL6~Y02BN_?Eq#zO%|$ z&-A6|Cq zuWJL~t`Br+Dt3LojfNOIAL#vB$)X5hpS3o<6$P&;wNBvh3-nezS&Cj*t`3z>D{_LO zM~JayP$9%$2|zZyh$d7%iEB4R>Y#uF3On~Y2D+DjM z&820=%9boITDj|NerPXVym77Gu97`EJoxHtE}vU_fRtWb`<;&&edvnC-3o{{IN_`E z{Gu*TI{^~SHN|WA#X%zHb%;BdY?_&r*-$~^5$!2CaC4G5?hDd)nc5}aSG7P-4 z89l%2;0!_bF$Y`rJR%1*cXzd}0Z(X6NW;ehY+Nl{oddp4G5a{Gk*2@Rk%#xTK)>%5 zD^SG^RF#Wb8huzF6M@xOp@>4@2nkUWJkZh9obkE1J-~PB@{KMU0J)`nHhztmFF-D( z&Q6d^iSOIHN44v!hydmksblUzc?T6{k*w82hhTdb|<16t1_S$ zB+ve4X!5ZXjq@u2MSOax0w*XQ(L;{+48uKMa01)zgSfR8JnG>KlbV!bbDxVKxt@;c z{4Sdo4YLQ|`^Dm)lOUg_<3CvHqWS+2tXB^Z&Pcy~VYjVwVX8c-ocK{kN>r^|V+Rgl z3I7?Zc{qz>Jab@F%l_6|g871Op|2M&`fL8!J{f<@yl#xD7ecPK<AzJVm%;$55}Tyb#8ZBY}r5e>cqMjOR3iMyZ0}x*4jOz8re&!_6`Kt zr-{P2Kb69V8YYim`A%mI%4bqg$H^V)Cqz`<567#~eCgVLu>iockURCPXUh8|C&u?`bJ#l|xL>M|A zw*kbJGq0Oe$`3uKl(mNTHsmJwMDtPZIs`dGIlvlPtMw=6O3QF}ns zpV2F+7u1AHw84RsNhPp(E8CRI09`gjJmu9o?ev{_Ah^cdnLTdRI-Zs#-SB?%h@0Vt zJLP3=m@^YNc7gKxveuzn_@S-XjPYZLP_UNTxjX=k$BfEUKp}2_=o8U~_+^3Q#mS)B zDb9umBc2-)B{gH0p()BYUMN3e?yL0Ke3oO$;EJmIj+>75i5tgI{A>dYM)76CvDt+i z+2z3-6LD@fzYF+dA@bS;jLPejz^L&NN;gEfYw-4K4q;Xp(rDA> + +.. only:: html + + .. figure:: /auto_examples/images/thumb/sphx_glr_plot_convolutional_barycenter_thumb.png + + :ref:`sphx_glr_auto_examples_plot_convolutional_barycenter.py` + +.. raw:: html + +

+ + +.. toctree:: + :hidden: + + /auto_examples/plot_convolutional_barycenter + .. raw:: html
diff --git a/docs/source/auto_examples/plot_convolutional_barycenter.ipynb b/docs/source/auto_examples/plot_convolutional_barycenter.ipynb new file mode 100644 index 000000000..4981ba38d --- /dev/null +++ b/docs/source/auto_examples/plot_convolutional_barycenter.ipynb @@ -0,0 +1,90 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n# Convolutional Wasserstein Barycenter example\n\n\nThis example is designed to illustrate how the Convolutional Wasserstein Barycenter\nfunction of POT works.\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Nicolas Courty \n#\n# License: MIT License\n\n\nimport numpy as np\nimport pylab as pl\nimport ot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data preparation\n----------------\n\nThe four distributions are constructed from 4 simple images\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "f1 = 1 - pl.imread('../data/redcross.png')[:, :, 2]\nf2 = 1 - pl.imread('../data/duck.png')[:, :, 2]\nf3 = 1 - pl.imread('../data/heart.png')[:, :, 2]\nf4 = 1 - pl.imread('../data/tooth.png')[:, :, 2]\n\nA = []\nf1 = f1 / np.sum(f1)\nf2 = f2 / np.sum(f2)\nf3 = f3 / np.sum(f3)\nf4 = f4 / np.sum(f4)\nA.append(f1)\nA.append(f2)\nA.append(f3)\nA.append(f4)\nA = np.array(A)\n\nnb_images = 5\n\n# those are the four corners coordinates that will be interpolated by bilinear\n# interpolation\nv1 = np.array((1, 0, 0, 0))\nv2 = np.array((0, 1, 0, 0))\nv3 = np.array((0, 0, 1, 0))\nv4 = np.array((0, 0, 0, 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Barycenter computation and visualization\n----------------------------------------\n\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(figsize=(10, 10))\npl.title('Convolutional Wasserstein Barycenters in POT')\ncm = 'Blues'\n# regularization parameter\nreg = 0.004\nfor i in range(nb_images):\n for j in range(nb_images):\n pl.subplot(nb_images, nb_images, i * nb_images + j + 1)\n tx = float(i) / (nb_images - 1)\n ty = float(j) / (nb_images - 1)\n\n # weights are constructed by bilinear interpolation\n tmp1 = (1 - tx) * v1 + tx * v2\n tmp2 = (1 - tx) * v3 + tx * v4\n weights = (1 - ty) * tmp1 + ty * tmp2\n\n if i == 0 and j == 0:\n pl.imshow(f1, cmap=cm)\n pl.axis('off')\n elif i == 0 and j == (nb_images - 1):\n pl.imshow(f3, cmap=cm)\n pl.axis('off')\n elif i == (nb_images - 1) and j == 0:\n pl.imshow(f2, cmap=cm)\n pl.axis('off')\n elif i == (nb_images - 1) and j == (nb_images - 1):\n pl.imshow(f4, cmap=cm)\n pl.axis('off')\n else:\n # call to barycenter computation\n pl.imshow(ot.bregman.convolutional_barycenter2d(A, reg, weights), cmap=cm)\n pl.axis('off')\npl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/docs/source/auto_examples/plot_convolutional_barycenter.py b/docs/source/auto_examples/plot_convolutional_barycenter.py new file mode 100644 index 000000000..e74db04cc --- /dev/null +++ b/docs/source/auto_examples/plot_convolutional_barycenter.py @@ -0,0 +1,92 @@ + +#%% +# -*- coding: utf-8 -*- +""" +============================================ +Convolutional Wasserstein Barycenter example +============================================ + +This example is designed to illustrate how the Convolutional Wasserstein Barycenter +function of POT works. +""" + +# Author: Nicolas Courty +# +# License: MIT License + + +import numpy as np +import pylab as pl +import ot + +############################################################################## +# Data preparation +# ---------------- +# +# The four distributions are constructed from 4 simple images + + +f1 = 1 - pl.imread('../data/redcross.png')[:, :, 2] +f2 = 1 - pl.imread('../data/duck.png')[:, :, 2] +f3 = 1 - pl.imread('../data/heart.png')[:, :, 2] +f4 = 1 - pl.imread('../data/tooth.png')[:, :, 2] + +A = [] +f1 = f1 / np.sum(f1) +f2 = f2 / np.sum(f2) +f3 = f3 / np.sum(f3) +f4 = f4 / np.sum(f4) +A.append(f1) +A.append(f2) +A.append(f3) +A.append(f4) +A = np.array(A) + +nb_images = 5 + +# those are the four corners coordinates that will be interpolated by bilinear +# interpolation +v1 = np.array((1, 0, 0, 0)) +v2 = np.array((0, 1, 0, 0)) +v3 = np.array((0, 0, 1, 0)) +v4 = np.array((0, 0, 0, 1)) + + +############################################################################## +# Barycenter computation and visualization +# ---------------------------------------- +# + +pl.figure(figsize=(10, 10)) +pl.title('Convolutional Wasserstein Barycenters in POT') +cm = 'Blues' +# regularization parameter +reg = 0.004 +for i in range(nb_images): + for j in range(nb_images): + pl.subplot(nb_images, nb_images, i * nb_images + j + 1) + tx = float(i) / (nb_images - 1) + ty = float(j) / (nb_images - 1) + + # weights are constructed by bilinear interpolation + tmp1 = (1 - tx) * v1 + tx * v2 + tmp2 = (1 - tx) * v3 + tx * v4 + weights = (1 - ty) * tmp1 + ty * tmp2 + + if i == 0 and j == 0: + pl.imshow(f1, cmap=cm) + pl.axis('off') + elif i == 0 and j == (nb_images - 1): + pl.imshow(f3, cmap=cm) + pl.axis('off') + elif i == (nb_images - 1) and j == 0: + pl.imshow(f2, cmap=cm) + pl.axis('off') + elif i == (nb_images - 1) and j == (nb_images - 1): + pl.imshow(f4, cmap=cm) + pl.axis('off') + else: + # call to barycenter computation + pl.imshow(ot.bregman.convolutional_barycenter2d(A, reg, weights), cmap=cm) + pl.axis('off') +pl.show() diff --git a/docs/source/auto_examples/plot_convolutional_barycenter.rst b/docs/source/auto_examples/plot_convolutional_barycenter.rst new file mode 100644 index 000000000..a28db2fc6 --- /dev/null +++ b/docs/source/auto_examples/plot_convolutional_barycenter.rst @@ -0,0 +1,151 @@ + + +.. _sphx_glr_auto_examples_plot_convolutional_barycenter.py: + + +============================================ +Convolutional Wasserstein Barycenter example +============================================ + +This example is designed to illustrate how the Convolutional Wasserstein Barycenter +function of POT works. + + + +.. code-block:: python + + + # Author: Nicolas Courty + # + # License: MIT License + + + import numpy as np + import pylab as pl + import ot + + + + + + + +Data preparation +---------------- + +The four distributions are constructed from 4 simple images + + + +.. code-block:: python + + + + f1 = 1 - pl.imread('../data/redcross.png')[:, :, 2] + f2 = 1 - pl.imread('../data/duck.png')[:, :, 2] + f3 = 1 - pl.imread('../data/heart.png')[:, :, 2] + f4 = 1 - pl.imread('../data/tooth.png')[:, :, 2] + + A = [] + f1 = f1 / np.sum(f1) + f2 = f2 / np.sum(f2) + f3 = f3 / np.sum(f3) + f4 = f4 / np.sum(f4) + A.append(f1) + A.append(f2) + A.append(f3) + A.append(f4) + A = np.array(A) + + nb_images = 5 + + # those are the four corners coordinates that will be interpolated by bilinear + # interpolation + v1 = np.array((1, 0, 0, 0)) + v2 = np.array((0, 1, 0, 0)) + v3 = np.array((0, 0, 1, 0)) + v4 = np.array((0, 0, 0, 1)) + + + + + + + + +Barycenter computation and visualization +---------------------------------------- + + + + +.. code-block:: python + + + pl.figure(figsize=(10, 10)) + pl.title('Convolutional Wasserstein Barycenters in POT') + cm = 'Blues' + # regularization parameter + reg = 0.004 + for i in range(nb_images): + for j in range(nb_images): + pl.subplot(nb_images, nb_images, i * nb_images + j + 1) + tx = float(i) / (nb_images - 1) + ty = float(j) / (nb_images - 1) + + # weights are constructed by bilinear interpolation + tmp1 = (1 - tx) * v1 + tx * v2 + tmp2 = (1 - tx) * v3 + tx * v4 + weights = (1 - ty) * tmp1 + ty * tmp2 + + if i == 0 and j == 0: + pl.imshow(f1, cmap=cm) + pl.axis('off') + elif i == 0 and j == (nb_images - 1): + pl.imshow(f3, cmap=cm) + pl.axis('off') + elif i == (nb_images - 1) and j == 0: + pl.imshow(f2, cmap=cm) + pl.axis('off') + elif i == (nb_images - 1) and j == (nb_images - 1): + pl.imshow(f4, cmap=cm) + pl.axis('off') + else: + # call to barycenter computation + pl.imshow(ot.bregman.convolutional_barycenter2d(A, reg, weights), cmap=cm) + pl.axis('off') + pl.show() + + + +.. image:: /auto_examples/images/sphx_glr_plot_convolutional_barycenter_001.png + :align: center + + + + +**Total running time of the script:** ( 1 minutes 11.608 seconds) + + + +.. only :: html + + .. container:: sphx-glr-footer + + + .. container:: sphx-glr-download + + :download:`Download Python source code: plot_convolutional_barycenter.py ` + + + + .. container:: sphx-glr-download + + :download:`Download Jupyter notebook: plot_convolutional_barycenter.ipynb ` + + +.. only:: html + + .. rst-class:: sphx-glr-signature + + `Gallery generated by Sphinx-Gallery `_ diff --git a/notebooks/plot_convolutional_barycenter.ipynb b/notebooks/plot_convolutional_barycenter.ipynb new file mode 100644 index 000000000..d0df4867a --- /dev/null +++ b/notebooks/plot_convolutional_barycenter.ipynb @@ -0,0 +1,176 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Convolutional Wasserstein Barycenter example\n", + "\n", + "\n", + "This example is designed to illustrate how the Convolutional Wasserstein Barycenter\n", + "function of POT works.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Author: Nicolas Courty \n", + "#\n", + "# License: MIT License\n", + "\n", + "\n", + "import numpy as np\n", + "import pylab as pl\n", + "import ot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data preparation\n", + "----------------\n", + "\n", + "The four distributions are constructed from 4 simple images\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "f1 = 1 - pl.imread('../data/redcross.png')[:, :, 2]\n", + "f2 = 1 - pl.imread('../data/duck.png')[:, :, 2]\n", + "f3 = 1 - pl.imread('../data/heart.png')[:, :, 2]\n", + "f4 = 1 - pl.imread('../data/tooth.png')[:, :, 2]\n", + "\n", + "A = []\n", + "f1 = f1 / np.sum(f1)\n", + "f2 = f2 / np.sum(f2)\n", + "f3 = f3 / np.sum(f3)\n", + "f4 = f4 / np.sum(f4)\n", + "A.append(f1)\n", + "A.append(f2)\n", + "A.append(f3)\n", + "A.append(f4)\n", + "A = np.array(A)\n", + "\n", + "nb_images = 5\n", + "\n", + "# those are the four corners coordinates that will be interpolated by bilinear\n", + "# interpolation\n", + "v1 = np.array((1, 0, 0, 0))\n", + "v2 = np.array((0, 1, 0, 0))\n", + "v3 = np.array((0, 0, 1, 0))\n", + "v4 = np.array((0, 0, 0, 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Barycenter computation and visualization\n", + "----------------------------------------\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAJCCAYAAADtIOKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXm0LNtdHvbtqYbuM9z77hv1JCFkQBaYeUxiwF42a0GALBAOkxkSlolNMMRBYIhjYwPG4GCImYLlYGMgRGaSiCFMxmIhls2gZUBiCLKEQejpSXr33eEM3TXsKX/soXZVV5/T597uc8+V6lur7+nbQ9Wuvatrf/X9vt9vE2stJkyYMGHChAkTJmwH9EE3YMKECRMmTJgw4T0JE7maMGHChAkTJkzYIiZyNWHChAkTJkyYsEVM5GrChAkTJkyYMGGLmMjVhAkTJkyYMGHCFjGRqwkTJkyYMGHChC1iIlcTJkyYMGHChAlbxESuJkyYMGHChAkTtoiJXE2YMGHChAkTJmwR/EE3AABqhQdSJv7tt5b41bfdxJveuXwQu8cnvOQaPvKF1/HEYfFA9l9wkF1s937H01oLawFjLYwFjLFolIHSBotGo1UGjTK4uWhwKiUWUuHtRy0WrcaiNTitFaQy0NbCWgtCCASj4Mz9PSg4CkEwEwyPzjkKzlAwipIzAMBSaTTaoJIat5YKS6lRS4ujSkEZA6UtpDaw1oJSAkYIOKM4KDnmGcN+zvD0QYa54NjPOB6d5cg4xV7BYzsyTsEIASEA9X8Jub/h2MV4XmQsw7hZ/1wZC+0fdashtUWrDE5qhUpqPFfVOJUKp43Gu04kltKgkQZVq6CN2xYhAKMElBLMc46CUzwy45hnFPOM4pEiw4y7MdzPu/7ljLo2aNcOpQ1OGj+WWuH5qsWiNaikwfMLiVZbLBoF49trLdzYUoIyYyg4RZlRPLkvcJBzPF4W2BMchXDjmnEKzihKQWN7OSUghIDAbesiuOyxNMa9lf7mWm1i/y0bhVYZSG1xp2qxVAoLqfDcQmLRatxaKNTKQGo3hmHlj64vKPYLhkJQzATFY3OBUjDcKDKUnKHkDLOcQ/ixK0I/EjcGAKCNhbH+fJLuetAqg2WjUWuNpdS43bSopMbNhTufamlwUmsoY+LYAu63VggGwSmulQx7GcM8o3hsnmHOOWaC4XqRIeMUglPMMgbOXFsyRuO5QYBzf7tX9To7hDYWP/cH78Svv/0YylhwSnBYcLz/oyUOM4GnD0p8wFP729zlfePNz57gHccVjqXEW56vcFQraAswAnzciw7wX3/gUxf+7Z2HTcfzSpCrB4W33V7iy1/5L4DT2w9k/6//zFfg+/7qRzwwcnUVkS7HFAiW9hO11Ba11KilwaJVeOeywq2lwq2FxJ/errCoFZaNwslpAyndxdQYR644p+CcQAiGeSlQCIYy53h0P/cTNcNh4cjVUa2xaDVOGoPbpw2qRqGWGqdLCaU0lLJQKiFXjEIIiv15hlnOsV8KLGWJGzOBR0qOjDLMM4aMB6GYglMLQgEKgvBTDUTwYUYgVtYiEiupHTlupCPFzy8bHEuJP7lT4/ZS4ahSePdRhapRaKRGXSvfv93ExTlBUQjkguH6XoYy45jlHC+6pnBYMOxlHE/oHCVzREcw14+BECyVwruXNU5ajeNa45mjFsvGnS93Thu0yqCuJZSysf1ubAnK0u13lnPcvlbisGRobxgc5gKHmQCjBNpY5ALgyYXcEuJ6hJArPbbW2tFxC30nlbupqaXGSavw7GKJu5XG3VrhmTsNlo3C7dMGrdSQUqNpNMLPOPQhYwTzmSMrZcZxYz/HXs7wwsMMBwXDfibwuCpQcIqMUxjDHUmmHblSyfkUyF6lNN69rLGQCse1xtvvtjhtNG6d1P5aoVFVElpbaG0jiaSUIM8ZOKe4tpejzBjmhcALDxWuzziuFQzGWuwJgZxTUAII484rRggsAErc+U7hxvmqju8QShu8826NqtX4lbc9j7/9Fd9+4W385S/7Ynzbp38gMk5RCIZH9rIdtLTDrdMWjdRopMFX/5vfx+te9UPnfud7B///9u/9avz5F91AmTE8da0AZ7sN3L1XkytGCGYvfTmWb/r3D2T/83kG+pD8IC8TUf0A4hOT3LUq7S6qp43G3UrhqNK4e9piUUsslxKnpy2k1JFcAYAQDIwRcM4gpUaec1StBiFAnXNU0qDVBgBwXLttV63CreMadavRtgqnp4FcGSjlPpuSK2udomWsxe1lBkYIck7QaI1c0zhpcWq74/N/H/azYLhGqZusEcdAm05BWiqF01bh9lLh9lLieNni7mmDulZomjAZmt4ETSlBWWoIQaGMwTznqKVAzghaZSFLi5IzKG5RWobSOqJcKadoLJXC7UrhbqVwt3aT77JRWDQKx8cN2taRuvScCfttW408Z2ikQC4otMlwY67BKIGgBFJnYNQdm7UUxhJQ+3CM69i4OfWq+61JrxAtpMKplLhdadxZKtxZOlK1bBTu3K3RthpKabStXulDxijq2vVjnnNYa7H0SlWjLVptkTMKZTnmlkMwA2MJDKPgvokqtseikQYLfx7dqaUje5XCzZMGp7XC7RPXnvR8Go5tljEIwWCMRZlzNNKgEAwGjmDvZwoEBJRwSG1BiAUlgLYWxMKNM+nG+SoTaAD+RhN47rjBh3z+dwK333HP2/ql7/tBfPj3AU/+hU/BK//KB+K/+6j3ASVk6ypRuO7/6BufwXf82Jtw6z/80j1v65Vf/k/ck5d8KP7w+78Qjx/kAO4/YrAO79XkasLVRyAh1nYhptYY1FrjpHEk6KSSOK0cqaoqidOTGlppaK1htAEhBIyz+DDGIMs02lKDMwKpDBrpLqAAcOoVsGWjcHzaoK41mkZhuWyhpILRBlppAAChbtuccxBCvPIBLGqJghPMMopaaxSGxXCTsd2B2ahaOZXmYUcMDfqQrLHd2CltXLjVE+OjSuG0kjheSpyctKhriabRqKsGRhsYEwgsBWUUUmoI4UhTW7i72JxTSH9e7OUSxqucgTOcShVDWLeWbhI+WkrcPnGKZFUpnJw0TnGpWxjdhbTCfrU2aFsOKQ1muRvn49oRu5xRSG28wmJdSMJaWDi1Kh3Uqzb5huPsxisJySchXeWVv9CPd7xafFxJHC3cb+7kxBFUJRVkK2E9iQEBGGO98ctzN+3UUiMTDK2yaJXFXLjxsxYQ3JFUawHrVUipO3J14u0Ax63Cu08k7tYax5XErZMGi1ririd7bduNq9Y6MiFCCLI8A/fnkyw1pHak3VoBALgxU+A+vFtqBkYJFAn9hTi+1o83IVdvjIGuTXcWLV7z+8/itb/1zvsiVine9Tu/jX9iLf7oVoMv/7j3wQsfKbey3YC3367w3b/2Nvz0L78Vt373t7ez0T95I/6Hf/3BeMVHPon/5uUvwPV5tpNxm8jVhCuJMDnbcBftwxWtMlhKjYX0ysdpizuLBnfuVFgsWtTLBovjBZRU7mKqPQniHIw5clUvC4hMIC8ytK12YZ+cYa9wF9XTWqKu3cR7926FtpGQjUS97EibDdtlzG1XMGit0TQ5lDK4M89AKYFgBMtDjYLpOFkFZYCGCfjK6xubIRCaqFr5sK7y49Yq4xSrSuHmQuHWSY3bpw1OTlrcvr1EUzWQrevnSK6sI7CUUohcgAuOqpohzwXKUkBqg4NS4G4pYGBxUHAc5s5DYwGctAonjcHdSuFtz1c4qZ1S9vzzS6eU1RLL06UjBY2EMX1yxThDMysgcoGizCEEjfsEnKfo0ULF8JU2FpoAhFhwRnyfdJPvg8Yw7G6T58FvFVTG1odya6lxt5E4alrcXCg8e7fG3UWLo2WLmzcXTi0+OoVsJbTSkI0ErOnuGCgFpRRZkYELDpEJLBYzlKVA1WrslwIHpYA0BjdmAtdLBWMt5sJ56MZCvO9cVLhTKTy/dON6XLU4qWQc19PjJWQroaRCW7fuXDL9NmV5BsYZ2maOvMhQlgKUElRthkblOCh4JHtzEaZKBqUNAOcJM7YLD1obfsldH18FonVaK/z6n9zGZ3/RN7kXKNvexu++C+9+/S/gn/3Kz+OfAfiu7/safNrLn8JeziH4vYXdGqmxaDR+8vfe0YUsCekuMFvA6//Fj+D132/xtwC85v/6enzUi69j3/+mt4WJXE24suhUq9TkDihroKwLJYSQhZQaSnZ3zkZKQElAS7ctJaC4gNYclNF4/asq1t2FIrwmUdfaKSl1C9lIyFaibVpYpfrb5TmUcH4DJRWk5E4FkRpSGbTKh8OMjWQjNX1fiRl3RwjKlYnjZqGsC7/WftKW0o1dmAhlK6Fa5fpXa8AaWEKhmZsQjDZgnEVlZLlsoy/rbqW7/foBvls5hfNupXFaS5xUEpV/NLUb07b2imTbxH2CUBjGYIwA4wyEEEjG0DQaea49WXQERCWkOagYriFOmbwqI5wqVUByDgI9hdhY21eujEWrNZbSYNF6H1Pr1Ny6Vq4Pmxba//7QLAGjOyJDKAxlaKx1NydKewXZIs/dX+tD6dT31lwoGAuUnMFaN0lXSrswr9K4UzmSfmepcHfZRuV6sWjR1C3qZQ0lFZRUsE3jzqce4WNoAXDDIRsJ4kNaTaNRcY28VahagyozKHhyY2Q6NdZEdkpAwwWFEKRPHzSkMvjyn/xd/PR3/svuRaO3u5Pk2vmVX/Zt+IHP+2z84Bd/FF50Y3ZPm3vmdoUv+P7fxB/+1GtG97EVJNt7xRd8Iz7/6/46vvMzPmirPqyJXE14aGABGKR+kPAw0NpCKRVDgVASUG0kQY7RGFhroKQL7YAAbZut3F1WlULTOP+Pat2EL1sJK1tAtu7iFLbroYib+F34wcRJSfuLsPU+jnAc78mIBmn3n54CqYxFoyxkGD/vYQuTrlba9bGWfoJ2oUFoBk280blxly1CCKpKxIzN01qBEh929TiuHbla1BKLRqGqJJZLFYlVIM5WKaCt43kCQgHr9qOVgOa+fdolM4TwlDSOMJoYKsIKWb9K6KtVHdGPpD8hwz3lURvUyqKWLvOz8cZ16QmMVp5YyRaQTTd2hEYyY4kL4Vpj0VSN810tuynoeNkiWHauFdKFk62B8ePgQpMap9IRq9tLjeNlZwlYLlvUVePGtJFde9qE7AGxPWg5FNxNEWUU0vsxG6XRSoName5cNRYi3hxZF7L0/Wl8rDGqVqQj1w/SeVe3Gm965gg//drfvJwdenXpt3/u9fhbBwV+6As+AvPiYhTjuJL4ytf8Lv7w/3ltb5u7xo+99rfwZR/zYrz/k3vIxXaUvYlcTXgoECasGLpIPFjBqGqNdcRKy25y1qq7YzUaMBqSCfdZY8AFjwb1YFKva+n8Gk2Lpm6gWjeBoK3d9vx2ALiLtFGA4TGUpXXXLmV8W0f8LUCnFlyF8ME2EI+rp9B55cqrO0qHTDQDpawzG3tPzMr4hX4m7o7SKoGG0vhZLhiUMpDSIBMMVctxnHEc+4t68M+d1hJ37tZYLltUlUK1qKJKZuvK7U+1HblKQifhvHJj6x7KuElXan9M1sBY2lOvrpo6aeyAUAW1DUj8gDYen/KlGBqtUfmMwaVXHNtWQUoTiVUkxapJiLHtEyyjASmgeIYKgGydYlTXGepagTHixmqWgRDgsFCYZy7TFoDP4HXZnm+/XeNoKXHkQ7xVJVFX3hLQKujloru5Ssc1IXtgAlAESilQ6UPAjUaWadRZp9TNvW9SaAJFCZSxALGgyvk5KXEGeQJ4Uze6Eg0PiFj9zO89iy/+5l+Aeet/3G4Y8CyEH//dd+F1P/Dj+Ji3PI9//IUfhr/0AU+gzM5uw6JW+PHffQZf+92/ivaP3pReSHbcaAf11t/Gx7/iDfjQz/lv8Y8/84PxsX/mkfve5kSuJrxHgfgwRJiM3YvUEywSSZYxFNa4MAVj7o41ZLoEJSUoUc6vkUwWQU0ZTppk/OV1uJraxuYY+nfGP9P/7LpjJoTEx9oO9P1vjIlJBUpqSE7RthRVq6LyETYRMgIrb24OhMAkhK4bW5uMLe39HSO/qcKzKdI+u2xCnSYYWIvE/xfIle1IsCdb4cYgqrDJe12Y8ZwOsM6jBKNdf2qvKhFANhKUUtSUoK4VTvw5cLcWsBYuWcG366RxJVKOa5/EUkufBKHQNo4oR6KXkvN0XIH+9YH0w0BDQ3+4kQvKXlDNAQMCCkrcjREL3qvk/AslGi5buTLG4qv/1W85YgVsPwy4CdoKz77uZ/Htj8/xWFmcS1Ze99bn8H/83FvR/n+/cUkNHEArAMAbf/TH8b9yil/8yj9/35mPE7ma8FCCIhTgDBMz+pNz+kgv/p4cWWvjJK2U8llNvvBkkmloTDBWm8HEmzwnFKC0RxDO4ggPM86aSO2av+vQDRGJGVyRHFPm/THDsXMKpTUWWmsopSAlA2MuTDUsbeKIlQvzSl+HKc0k7Ro7JFVe3SAUhJLB2Lp9UH/+nQfrvVdpxMi9frlEK5CDQB6Cktg9d22SuvOQ9YmF+/4QoU8sTW5siAWsHmmAdp2gJbQiMSRHKEFVqVi64bhyYUFpWMzideTKFQk+rRUqn3TS+NBuUNFWiFW/sd3f5Ee6jjwHzq1tR/KUDsqzz0QmFta6dlMCwBMrCwt+yReButX4vWeO8e5f+Xn3AmUPhlx5/M7/+zp8Qynw2i/92LXhtmWj8K0//Wa85Wd/5pJbN4Dvq//4Iz+KP/68D8eLb8zu2ZQPTORqwkMEV+2aeELVVX8OdXQYdynfhDFYLsbViBBe8qEerbS7sEaTEKIRVivtjNPOlNJNGjAAcRMvGAe4cBmDPuWcMVeR2lWmdvXUWLyII/59GLjXmDpl17yfvjecggPhDBW3OaPg1NUH45x2ZTK0iQkCQeXovDL+Qmc0tCZR+QjtCCUV6oyhat2EUjcq1rCqKom2bmNWW1StwrYp6waIZwDlgMh6ZTxcMVoaswOZ93uNhX+stbCkCw9GCw76k3lXI6nXYyvbu1+4ApzOD6ity76LhV6ViapMUGwq6Qzkjf9OAO397rrz3nCfbaVlR1zGJnbjQogWQFOzeJNzLJyC3Lauhthxxl11fB9SqnztuarVuH23cuHdSqJe1OO+yNiVpPu9UtY9RA7CXBkV6q8fzFdfD6pF6jlbKhXtCNRff0IV+Yx3Vdszf35QAmDHhSpT3Dpt8ct/9By+9K99q7suBQvDg8Tpbfzav3o1fvLjnsanv/wFKxl5zx03ePUbn8EfvPY1azZwiQh9xTg+6tO+Dj//r78RH/Kiw3NDmuswrS044aFAn5SQqFjFC5xXF6hP+44X0DRMGC/4XTjD+Wj0yiMoVrZHzki3vXiR5gBlTt2g3f5DWMBNvMNj6U+sVx2Ro6Iz9IZH+n5QPsYkKwKvNsLNN5wGchwmM99vzsACMBaVo24cSdImt580RBiqg7etRt0o9/CFSdu2r1jFOkzp2Pb259oQxpRQAppMvI5UIRL9oUARuyF6Bbt+Cu1Pjf7Bm7ZLi0kI7ylPplypBWdODxmAtfcZLVpX16rRGq0xUEnbQrFIGs55Rld/d+kj/f3FDjKAH4tghm+9wlhVCotaxezO+KglTmuFhS+V0jQKMgkFOr9ekgQRxjU9hwZtY2GM4zEkCpQfE22A1rj6bAupsGiVz5o0vs/co1UG0ic7qEhiLy/4/9Z3nzpiBcQw1wOHP6m//O/9BH7pLe9eefsX3/Iu/IOv+t93f/JfBL7vPvlrfwJvfdfpPW9mUq4mPDQgcCoQJU4ZEl4hYgPlKhQKtVb0TdEprIG1xF2Q0ScFSnWFQkMhS9cA6m5HgkmZUIBzf8fbKRvMrx3o1jLs7m4fxmr8QxN0qsCE//v/AsnrJiFfADrVyt/lZ8wtcyIEhRAMXHQJAZy7LK7OK2cBsG5D1gCGuLCgdBdCl3nGIKVB27ptWgtXosOX6mib1iUnKNXVPQrbROpCpoDInKoheHwIwZFlFJlgyDhD7o+DExrPy9AXFt7HFBRKH94ksT886Sap+bm7edgFQs2qUIxz2bjCmY02OG4lpDGQxpXKcAqNI2RSWywajcYvSRSUYs4phB837utAKQCG5y7JQ6vBGCYI3kcpIf25whbMk2Q3LlnGkGU0Fo5NyfPJSROzPZu6cSqzUqtZgcNxZe5mCNzVTGOcJePrzkfG3Fhaa1Erg5NG412kgWBOfRVercw5AydurcF9IZD7c7rULK5xud2SmuOw1qJqNT75c7/+EvZ2j3juj/El3/wL+Hef87H4nlf8OQDAJ3/Pv8dv/OCrH3DD1oAQ4G1vwid81ptw89e/655KNEzkasKVQTqJjyFMQJQEotUtrpveSQcFSw98FW4jNOwsKlfB76N9YdAwyUdyMObbSBQOQrr9hno53V9/bUfn7Thr6rxqmYM9EzScVyeQK5MQq2EXxQWARwgWJ1698koQ526yDupBUIuMhVMGjQqNCRsHqG9TyOSjXdV8a7tlTmImqA/zGuNUKzu8U47SaOehS9U0xlgXfvbnnKAEjHbnZXfsPhOPdAbndDeBgtHgNQO6DLNYM2n750AoDBrXC5Qq1o46aSVq7Wp31cpEk3v465aHckpMDMv7NQOpHzui/bgxhphxGczsSGpMAYgJJlrDUtYP0QOoBXVeMEUhhCNbsSaar4umZadY2VAwOPVGhg4HOuVsoDbT5LwLv9dAkl2mpAVptQ8Fuve5H/dSaEeoGIGxFgXjKA2LayECFErvXo1plMFbgsIy9JheFVAG/Offxk/97Bzf9RkfhFYb/M4b/rh770GHL4ewNrbr5kmLx/azCxOsiVxNuDRso/ZP8F0REtQgJGFBV1U7kKW+udb0N2QNYF0xSkssNLofd5yAg99qeMF2DUEwO4f99cMKXcgypGunk/Bw6gyExV0bz+6nyyRfkSjYfso+/HMgtD3xZvn/hqyylGClXhVGO29aCA0GYmWpJ76UANarH303eAwLEuMUSCWVJ+gsIVdd6KmX/RmalKb6RWJFImGGP6ccwepCgpyF9vf9VoGI6iiK9RUrJOQ6XKtDhW9KCIi1m7nk7wHdunwuhHXUSCyVI1i3lgq1tGh8gVdt++ehK4ZrvDcrHEo/FE8phaGeVDH/m4nJH0kSSEAIuRsNrRFVSBCgadw6j5xTKNUpV44s61geJarLoa7W2G8nWgK68U3Jc/q7Db8tC6D1ZL1VBAtqkkxUFxIuBEXOKApBYACU3KA1DBmjMcp1P4boTaG1xd//hTe7/1xFYgVE8rS4eRPHlYQ2Fs3Nd/Xeu3Lw7XrVb7wNX/OJf2YiVxMePDZJ0V/5ztj3e8KCV34QwktwITdGwSj1d9HuQsmYuxMmlMASChB/cQ8EyRrAUIA4Y3RQi2KI0NfAihft4QQc/iZeoXAH7BaHdiEBTikEJeCkI1nuWFaN3906Zcmu1vXVQA06/xv3DulrHaVZZWlNpGhdGhno8BmdfAdw5CqEUHJBUQvmFmRWLIZ2jTFgzC0pBAZAoz9+/nqslevM4KHqxoH1MkKNNq5yf1paY8WfEyZeFo3a3Id9uX8IHxIU1Id8/QAEhadVBkojqhxjiLWR/GeCwT+85pZ72f6kXLVu/b2TVuFESrz9qI5FVp8/bdEqt6qAW3y8+17wNwJexWoVtHbqXyTGQQEyjohaywBq/QQVlKukMdYCVneV0zVH69XjEJaPYX5fnV8nHq22brukhLb1teZGLAApsaLMefmY6P1mg5eOEAJjLFrZKaCRbCUKLgBvXGcQnCLnFDf2MuznDNdKDmksDjKOPSF2njH83FGNV7/pHfiVH37t1VWtAggBnn0zvuNX/9gR1Zt/cvXbTBm+8+9+Nz7zJ/4hPuCp/QuZ2ydyNWEn2CSzbJPvDwkWIehPTFEV6ocFe+nhlqKXFh4naeKIlE+ppn5C68ovYDzUMEC6v2BmZ0mIoWdgT8UX/0+IlqzLvBvb3/BDu7qIp4QqzSpLayONhXIJEo+W/6yyJhp8CUmVj76xfaXmlUXn3YnHbeL4BdVRKQVmWVQeATchh7INgTQ7RXLNmEa1E/GRKhup6hb6PBQR5cYtAk7IYIzQTdTR/kOCF8+dK9HLRHcmXKH1ocATKXHUSNxcSBzXGqe1wu3TBq3Uzuwuu99K+M2x5K49qkdq6KtLfneBqJLBby92SKiCbyMhspq7kbSAos4XRymFZkm43tcm663xaQZeq9FxTcOD4+qvK8NiQP14RGXW9ut7hc0J4bxVuXDnbO2ruR8ULIZ4Z/eYabYp7i6lM4Tz7GqTFCC277v/3nevvHZlYTRQ7uMb/+1/wnd8xp/D+zy6+ZI+E7masHWk5ufh6+d+N362C0UN0Xl3Qiiwqyu1UjNpZQdJiEIDIBQWDJak2W/+AExCrEIIA0gmYBr3F9rVtaebgJ0OMZxs3cFa4ibn6Mk6v4uSXvK8I5XCtoyQWZYu5ttVnx8nVzH0GcmHy7aSuqutFKJfIfMsHb+1YxcP2k/MWsfx09AujGfhlBM/MQYyFbJCrbF9NXID0gzSlR8I5AjwvADWm8BdeDC4pcINeU+ZRHdTQIgLKQbCZq0nWYyAkt2EklplcCIVTlqJW0uFWwuXhbdsFI5OGx92cwQjkkF/7JzT2G5jbFwGaGhd2wjxbsL4iKH33CgFC7cGJaEEVHdhYqAby6BuIfis1hULPQdxfG0Xxg7HxJhB27rPaW2jUmdtR5R5kpBBCEGjNIzJ8EipQOFu/A7VdhcDHqLx5n+odqf7ea9GfYrXveqH0Hzqt1zoaxO5mrB1xEVsAZyVVRYxakBymUrhDjJN/Q8ul553h6emVDKyzaBWWcQQBbEuvYloIIQQw2eDumH02RfsMb8VddljwZMT/FYhtBBUIACg1hubYfttHpOCkBKXNNssbGP7kkfV6phVJrXFolVotEFrfP0ja3vhwZBsQDz5DW119YJcJlolXVZawDC1PzzchihiDDBVJkJxUT9+ljHISAgGE3I4d1LT80r4KOm7nqrWldZIFSlpLBplsGgIjrjzLnHaUWiLcP7aWCYt9E/ImiwYg6DOt7OXcQjuMmDvta7Oebhdt3j2pMa7TiSabvtEAAAgAElEQVSeP5V423OnWFQSy6XEyUkDpZKq9ejOa0JJr/5T6APjVa5QD24jZTomJYT6YravYmlXIkFq7RNGuj7v3fTIplO9hn6r6PUCYk260aZ0pBsSMMZ59dLjC4tKq+QYY2gwyRBeLFrMZgJ3/dI9J43AE/sGsy2tU7cOX/Fjv7PT7U9APK9+5j+9G1/11P7GX5vI1YStI0y2cSkJ29XxuZftpEtRAHCLIPvPpCrHUOxYUT/ixTd8OyyJY1zokCQX59Tfk34n3HGP7Oes6uzdrl01Z+NkD6dcXZATkYRQdRP+bqSrVhk0viZSrTTuNK2rfaQNFtL0ik4CiKEuQpwnLlTSB7q0/lq6R7fkyiaT8nA8/F8D76nzL/uQVCyhYdFNvCGElH4f6Cb2BP1Qbl9JM8YfhzKu2GWjev4ra7tjDb+DlFyFG4K9zJmfM0/eCsNgOL2ntO9NUCmNu5XG3UrhuGpxumyxWEi3mPWijiRJa90Pc1Pi/E+0nxlrre3WhEyzMFOkv5+xsF1QkkPosLcSwpqbntRflYQVV7abKoA2uXlJf4s+29R9xcIYmmyi816mBNIY0xFvRl1JB0ZiEsXxUjo/Iaeo9nZr1n7jj/74Trc/ocO/ecM78FWf+H4bf34iVxO2ji6NO1GeAOAMkjUawUsmpi5r7ezvbxRSAvp+j+ALIQMiNXY3nIY00N2VnrVPY/sLTVPiFi8O65IR0j+gdVwjCnKkK8bpQqTYmVGnVa420kK6opK36xaVNHFRW6m7pVGAjjwQAuTMkQbu/2+tCzMuWo06LNw88LKsYGUixqCDwrp1SdHE4PUJ3wmNM6oLHQ230ZuIB01I1Ipg0G+VRpV8JRxjWr5AJkZ+5dvQVXYH9nOGglPMM6d0SmEwt3xnGWZLpXFUq1iU8/RUYrls0dQSTdVEAhHIQ1rWJJArt0wUi0QlEpBQviQQrLTfNxpD/yecKIAP/aIfh00XYR+G69Ntxt9o+M2m++98eYZ09ewodeUkonKe+PSGx2etjSUcwhI+YfcnBxKZoCg4wVJd0Uy4CRfGG3/0x4Gv/sSNPz+RqwlbRyM1Wm1jCn/INgsq1jqM1YAKIcVY+FAp1NqFpKQxUbY/E+lFOJKlEJYgiGGndEKO3022bf26aBtkcgVSKbVFozUaTdH6NHal3TIkw+Md+nPGENQqSlw5gBBSyxhBSva2hdNa4dlFhaNG4k6l8I6jFqeNRtNqLBoFbUxUZ6LPDI5gibAkCHHZcJFgaUesjpcStdRoGuXXc7T90Etg4saOj2FAZNaqb1wGBsrJ2MQOF35C8NYRwJLYhqhcaAspDapawVgLRglOBQP3mX4BKoRKjUUjTVTmQhi4M7IT7BUcRcYwzzledKhxrWQ4yASePuvm4D7w3GmLdx81uHlc4+5xjTu3F6iXNdq6RbOsAKU65YgkVfJ9Bm4kW4z2biaCghUTBoIfKjWaj3kXUzUYAOBvdAhJwobrJODBjc8KkrCgJV0VCB0yARmUVCCaxMzi/m66Y7LWLfAew8k6XTKJAFxAK42mylDXBcqSQ2l3bXr6MNt4fC6KP31+ubNtT7h/TORqwtYhte2tW6a06YVHxshDuhjuEOHOXxu3xlfriVVYYDZN8++XgbD9u+fRsASSiXi40OywthU9+30ElaNTqlzVa18/SBnkFjCUQJvVVP3AJ4bHkSKtmyVMt54Z2dFKVgulcNQ4A/SdpcLNkwZV45ZMWdQy+lJi+zyJoj5VPdQg46lXx/dN1SpfGNJ403CnDiA9T4bEaqVmGRL1MZmoe585YyK2njCHEh2hQGl4GNc2rV0RS0KABVNolOkdl7sJ6Az/0k+wwz4KxUhbpVEIhrrVKDjxwg3BUu1m6ZKlNG4ha7/ETFu3aBv3QFP1SxkQAhjhpVEOzTlCXTeq+4kcrluTTEydqkp29bnrrOTLAxXLogvRn0WuVr6bIlGarUVHsrrzQmsKailWarb6c09rjejxUrIjV6lfjzJASbS+XASlFFWlkOduDcRFu7nB/qI4ruTOtj1hHM+fNHjh9Xyjz07kasLWsWhUNEErY7GQyq1pZt3/gxoF9NWqWGIhrB2YXPHCd0+lwlK62jzHtcayUWikWzJDqTCZmW5yHr3IDy94ZyhXAenkTZGEE5GoG0Hh0KhbjSV3XpznFxJN7hQN4VULnhC1UJ7AojOHp32U9hOn7rucEswFh2DOBK0yBmCzH/1FcLNq8Ee3atxaSNw5bfHOWws3MbcaVSV7yiEhXaFNQgiEYNEEHbLN4oK4xnpS5catrmVXddun2htjxrPBRosOpgv1nk+Ce5812k3mYSJXgOEchBBo4qqBh3R8QgDOGapKrRxPyDYbe572U+iTshTIc46y5GiVwZ1lhuN9gZLvxgR9a6lwd9Hg6KjG8XGN5ekSsqqBegHUp33VKiwVE5Qk5oiWJRQ6rsE4En61pltsO00IGfNGrRuXNInhLJz5/eT3Ogw3Gg0Y5tY2JBRmeEc3TGaxtjum1EAfQBm0tajU3C1AfVyCUgLBKO4sd7fG3+8/f7SzbU8Yx+v/+CY+//oLN/rsRK4mbB2NNKikW1aj0RonUjmiZZ3yFASlcE1zfKUrqEjhM5VSE7F1S2+cNjr6fWqp0SiNxk/SKbHqL1+ThCQCxu54x+rxhAamBtmhOhYJlo1koVUataQQLcVxrSOBynwojwyOzVoLg64CusGql4kQ+LXs3IVbGYucU5QsXXJju1i0GkeVxvFS4njZ4uSkRV1LtK0r5Jj2cwgZhQy7lnfkKiVdwQwdyKjW3fI0oVBkVEFMEqrqqY9nhILXjeMovC8HfRJujAHRrq068c00DY11ntJj6bLKOkIVl9sJIaa0nyiNRFwpg6NSeLWPYil3MyE3XiWU0q3JqKQC2tql8WvZV61isVziw6boiFYshYG+HwpISMm6UOCaRJEeNlR7xr67knAyqBAfiHRKJNOMkrSt6XFohT7R8s/D/mQNUAbFGaR0Nx+NdNeqXeGdJ5Nyddl4x3Gz8WcncjVh62iUWwh2qTSWUuF2pVwoT3frlgXQhFiF6tTBpB0KhAKdKXzRuPDaUhosGye9t8pNUDpZ3qTz7QxJ1XlejQF6mWTpRGziJBwJnU6UGKnd4q2U4qjR3tzsTOjhuEI/hEVyTfI3EKxhXxU+Xb/gFKq0KDWD5BZiRxlmJ43Gae0M0C5tv0VdtZCtRFu3sZ9jdllYH5C4DLNQpyh9PczHgQwbbaBa1SlWaRX1SHjOUx/vFcnkG+ouEQIYA0MIiCa9NQuD0Zsx1uMV4ZxLs8rStQzTczKQK5eFlkFri0WVIeMUhWA4aXYzIbc6rM3nlwqSrSNWQ3JFWafkped/zKZNVL5eIsAIKVn5e14475z3zkPvtxqQjrHFSvh4eAypwrVioB8oWmGfWgGqhVYFlFRxDcRW7Y5c3d6hKjZhHEf15jduE7masHXcXNZ4+0mF20uF41rjuZMWjV9ao1X9O3gAcY3A6B8izgRNY1p/52lpvdrRKoOjZYumUahrheVSom1caCmoIL2Q0vCCvyl6xncfakgWGrU6g/EZQ23TAj76cHTUoG01TmqJqlUQnCLjbOV4jAWUCcUYnfm/y5BcrYCdcQrhJ+HH9zMcFhzXZ2yzcgb3gOdOJW4e17hzVOPoqMbR7RO0tSNXpq67CYdyz4hFND4zzgZkxPl0hmZo61WeWE1dSmeuNqqb9HsT3JbIVRrqDcQhLjYMWC6gNPMfdcRRNjIeXzyGxIQfFKo0w8wVvZJduAkAGEOTF+AZR17kfvkf59d67nD74V0AqFrntWoaCdlI57NqK6e6yOSOvEeeAsFKlFuahC1HjYNjSQTrPI9bPG97bUl8lCS0PQnnEeoI0aaG+XUhwrDfsB3K0NZ7qPMMVaWwbHZHgObZ7tctnNBHfoGb2IlcTdg6TqTC8wuFW0uF40ri1kmNRrpQmZR9chV8K+E5Z64QY0q0AiEJ5EN7s/By2aJtDZpGQcpuIde46HIgV2MT8kUm53j3brqJJigpRkP7StJauXALIQRNo2LoC4BbZ5DT3rGYAaGycNlmgWiFEgVpteyw5EaRObLSKufTupbvJkSwlAZ1q1HXCk3jQoFN3bj13JpF14/Bh8MkLOWwjHUp/YRAsy6MtkKuPCmJoUClutDLWcRq2+pVyCqLFcMBUAsVFiXWBoaZtcfQU6iM7QiVUf2wEgAQ4pZLtLk/X1wfV+XuQkk6ZPCGQqEmzehLw1yJwT/tmxhGQzyG0fJqw3B8eG1XpGq4zTQ0mP524f+kpHrYjBWVe0AOR1U4+CxCCWiZLNNjox1gF3jyYLfV3yes4sn9zft8IlcTto7TVnnzbIujpcSdE6fitK0jV0CfMIQMs9QQnVaDJonaEUJJWltUlZPf21ZDtarn24kTRxpOcju+GMnqrWk3CCFZ4ggcZXFB2VAZvK55DBFqbePC0qlqFYiTDj40019mQydEq0euBEWec3DaFS58cn93Pp22dR6StnGKFdoWaJdO8QgTclgY1xpXEkG7BXKtLwJpdFdte2zdvbgsjdadWrWOWG1jkh7z5oRJOIQGw/YVgfHHFwjjSvutTSbZJG0/tD2Qq6h2ONO4AaAohWwV2pZ7r86OyFVSFLNbBmi4dEzSD5GUDEPj4cAxHhZMn5+nVm2NICdtGZKsYWg/vjb83qAtw9DfCsFKjsN0Yx76OPyed4VHit2VeZgwjuvFRK42Qjao13LZoNTVKnpPwzuOWjxza4k7iwbHxw1u367QNjIqO13WlCtKGKpApxWh4/M4Ibttp6qOkiqSmqZ2RRC10rBN003QMXNpzFS7wYWv588Aemni1gKkhfNeCTSEQEkFxhm00mCcgTEGLngvsyw9DkeiXMp3CCellaCDWR5w/cAFBxccWc7RtgrHezmWTY5r5W5+ystGYblUrthk1cAsT4Fm6ciVajtyFZUr4Z8nryWmaEso7LpQUvg7zAxMSdXYZJ1u5ywMxxFIVIxk0k0nZULcOeSfb9T+YdvjeZiQKyAqHUpr1MsZGGfIc47FjkJJ2k/2q562tF1mXLkKhDM9/91Wx3d2ETK1DXVnhSwDvRId8TPh8xc4hnXjm6p9RjsCbXSiXJlY32wXeN/D+c62PWEcL722t/FnrwS5evZOhXferePyEZcBzgj+7X9+HsvTB1eI7dlnj/HLf/J8DHVdFrS1eOpagZc+Vu5k+4vW+EnZrVtWLerohVJJJlRKrnpEy/t0ggqUenWCQhAMwyG7LBAto9Sq8pFmmwHjF/PhhXm4dAaAfljQh0+MJ18K0Ez4j9uYZcYYi6HCUKgwPYag2qRFK9eRKwCRXCklsEgyzBbtbipBS6++BRIbjLvQPtTV6zPbTXIxwywhosCqEfq8CSxN3x8Sq4tOyunnI1tPlY1EoRyWZ0gLXIb2j6kzafvHTNBpn1EJKAbwLN4YKF+5ftewQ4LQvXHWl8ZJzFmfj8+HxGfL17uxsQ37XadoXWS7w79nvGYHj11hV2tQTliPWb55n18JcvWGZ27jf/nhN2J/fzdGzjFQSvDcu45gb7790vY5xDN/8Fb801rihx/d6xUZ3DVOThp8yxd+KF762NM72f6idfWnqsqZzZuqQdu0LntKJt4gvzBrMDtHQuWJ1JBc9eAVn3AXrqTqFubthTuGPp0zlI/e9pP3exfnsJ0wASfvyRbachjTFRRUVPWWC0nbv3IRHqhYvSKGHlqJmIVWVQU4p8hzhdMdFSvUsYBmqDsl0VvbLfYR6chIiJ66LawaoglBTy0YC9uu+FpGxjB+/wLHPlJOo0eqQtiIcnS+HNsd37D9Y4Sv59MZhAfTPguva58pqbULJV8CuSIhlDsGa935moYF06KcZ90Enzc2m5KNdWO6rs1j+0gJdPr9dURs3XbGPH47JE2bYpZfien7vQrzC/T5lRidX/vTY7zzl38W73zQDblsPPtm3Hz2zbj5AHb9a5/4vvicD98NuTqpJE5OGpycNDg9XmBxvHCFCkPad5hoqVteQ6fFCkPWGTCorzPYSSAd1vg6DYlata6I4T1fHAfeHMARjHChN7rzG0kKSxkkE77OBFvf/tAeo7u6DMEnZgYkMbSEZ2hFjraYQWROKWOM4mRH1ZplCG94ZSUqVj6kBaAbu6hcJQpHyNJKJ8WesjCibpylUt13WGls0k4zy5L481BlGzuGMTKRjuvwPEwLUFLmwspM9JQrtSOfDotexlBhnfTVuPOw4l9a85ne/9d89l69Vpt+b207h98/g6yt29da4uf6NFgbgm90V3jqWrGzbU8Yx2MHmwtAV4JcTXjPgtShWGFSqFDWHbkK8FWf4zIbhAJUrV70h5PbWAZPmo11VhFD4OJ3naPhhKByJJ6U9DOpZ+es9oftr4SSbJLyrVbJBeW9ejq7DCVZC08GMejTJFw6pnb0Qm3pBsd2MhifMZVqG8rB8HujmWVAp9iE5+irb2cdQxouGgt1pp/3j8sIJYUFtWM5jPT8DKT4PKR9kL42+tkNwu+7QjqmvdcHyts6O8AKSTyj3cPfeJK4QTclrhPe4zCRqwlbh9LWLcTrC0JGUpWSq0icEgI1nOiG5GqIUZOpXU+s7uViP+a9SlWLoGClIaOUeJwZfhkJJfWqQss+yUrbxPhA7djNpJVO9jb27Zp+tAS9xaPtCEFZv6PkOxu8NrqNsybAM0JgwBqSlRLpgHs4jmH7xnw8nryGp7tAUK2CsjKqXI2RgTCOY2G2MWyDVK0b54uSlVEyOPgdDz9/XltW1rH02/JKfOjjXStXACD+7MdA/uFv7nQfExz2PvzjL/T5iVxN2DqCcqWkcqn7ckS5Cmu6hZpCaVgQOJuUBKQXwnXG57NMtZtg9DuDOjnEAtAJ0RpOWBuEHkI7Y/mIxKuTmqAjASAxQWDXlaDPbDewqtQMlxwB0F8g+5wJ7DwytbVx9FgJISVtBtDLLNs4hDZC+sPrw89dEnJOkWUsJkWAZ+5hNEDbs0nHebho+G9byuM6rFOnzrpZugiIz6gMz5nwDw7GXR8LwZDz3Rb6/Dtf+l/hG145kavLwNd/ycdc6PMTuZqwdWiT1P2J3qgkXAcghpKiKdxPxoGgRNJyDtaF2MLz4edWvn/OPtbd3abm3pVQYXK3nKaCb3IMKyHCweQcyKjpiqWmiwJvG2ldKrIpYUyRhmE2UQXOIla7CikNQ0hjhuh1741u7wJjEbxPgA8nrdrztgXGKBhzi2gzxqLS0t3ImIu1/Sxsm1RdeP92/W8X2JxkbXJ9SPyjYAKMMV/XztW22yU+7ulrO93+hA4f+cTF+noiVxO2jlCHKq67NywICfQvSqGcQVzPLFzszphM1028ZxGqe7mwj30nJVQ9RSYJFURimC6fc84+1pGrlJQmJvdYENJiZ6U8eFh0mflQUjohB6yblEjyfB3OG6P7NrBvgE2yyi5ihA7b2nRiJsEATePKBLvALGMoCo4856hzAeSzWJsJqu2fZxsrrxsqi5eo0I3uc6U22Zpw4SYqVlCtCLpwIM8AUQB5AZEL5DlHWQrMdlwu4dF5jv2P+ASc/O5v9JcwmrA9iBxPf8JfxuHsYhXxd0urJ7xXoouAJIpKmkXV+/A53pR1j3SbQ4P1cF/rfEL3ijECsNJms+b1sceavhnd9+rndllLJ12yxpXJuECW2bnenDOI1VifbHscz9ru2Dl0T9seGqYTryHp+vMyMswyRiAEc8oVZ2CcAYx3hDmqWAM/5P3iQRCrTdqwyW9uJakmHT/SU6zAeCwaHPq52HFYcK/g+Buf/WHAbFKwdob5dfyPn/4y7JcTuZrwgLHxNXldOCy+Np5ZNUpahtuM/9/RhX3dhDz2/ljbh8cRvzM04W9ISHeEkL7vDNDoV12/SBr/EOcRq5XPX8IEfd4EfB752xTDTD3KEuWK7izDLOcUglG/hJInV1wkVfVpMr73ODVc1u/vXrCttoT+SfuMcUDkzm/FKTinyDhFxndraH90P8PnffDT3k4xZSZuHZQBbYVPe9mTeHTvYssNTeRqwk6wskjvuoydMZw1iZ2nYA0/09vuOSRnk8dYWzdty1rT75r31pmgB305tl7ftpBxNxn3TNAsmZCj4nHBeknx+Qbk+LxJ8SLjdW7bLkCax9o7RKp4pJNyUDu8qTwoSWFS3gWulQwHM4H5XGA2y5CXOXhRAvnchbTC2PbGdKDY7ALb/k1uG72M5pHxEwVQzMGLHHmZYzbLsLeXYb8UOCx2GxbkjOKxgxxf8bc//2oR2fcUGI2//01fght72YUV5YlcTdg6UgP02krQ54aUhhPcBqGbse+ln90Gzrqgb9q+i14Ex/qK0J2SqgDuTdDODM26u/Q0PLhpm8/DRcZy08n1XifmbZjpR8etHw4ME7UzQXvD+Y5M0AWnyDlD7hf/5oKDCQaIAWEehgZ3Tay2sY1dE62xPonhQAFwEbMEs8z1cSEYSrH7KVYwgs/+oCd3vp/3Vnz6y564pxueiVxN2DpiCZ2h6fmioYbzFJ+xz668vqOL7nlK1vCz6z531rGtIVXp62FR612V0+Exu4yCMuor6LPx8OAwnHSvoSVg9yR5k+1tg2AFjPVV6EcuQJkLJQlBd7aYe8Ep8oyhyBjyvFMjueB979VYOZFtY5e/y11iqEAyp+Zy7vpRZAJ57vq4yNjOPVeAU5ff7wm/oDC/WOhqwhnwK4S86MYMYiJXE64CKHFKB6HET8jpRJzeAd6Hr+M8s/FlhQzOIlnDz90LemEl0puYQwYfY7vz6YQMs6LgyPIMtChcGCSEkcIEk2YQXqQWVHy+gXl8V+N5ETVyU6yEA4eEKov9SLMcWZ4hz10m364yzA5yjkfnAtfmOQ72csz3cpTzEvksB8p9lz2YjmuPaA0e8TivoM/nfrxwvf+PHHc6flnpHsUc+SzHbG+G+V6Ow70c1+cZbswFDvOLmaDvrdkERcbwNd/6lf0VMCbcH4zGt33PK+85TD+RqwlbR1hmowsLphlmSf2ne8EmoaNLNHyfuc9tGmjD34Skhgw+QrCz9P3MKyohw4wyuuq56rXvPonzOlwWUd4mxghW6lNjAhAZKKN9I/SuwoKMYZ4xlBlDmTkiJzIBLjgI5wDPR4jV4IZoeGzh+MZef5gwPIbhcQxubDrPVQ4qBEQmIDIXEgz9OxMM+Y7rXKX4+Bdfv7R9vbfgg24c3PN3H9JfwoSrDDfpuwwzEiaUsybeh/WCfJkYTtQ+wwzELWuyO0M7QZ5M/IwHj04aRiID5WpEbRs9piuoetwvhsd7FsFi3BWd5M4DlWUMOWc7yzDLGUOZUUewcub2l7NIsOK49rxXdHU8h8f2sGLUCzogjcMbw9RrxTNAZDEcmHmVt8w4ZhnFPKPI6G5UyDG85JE5/sY3/M2u7RPuDb7vvvmffhVe+tj8njczFRGdsHUITsE5A+fc19LxSkdYysWafqgEGLkz9v+/qPrzIFSrdN/3WpgwBSFwRQotANMnLXGZDVcJmnMOztk9eQI2wWHBMC84lvMMbatRlAWssWjt3BUtpMytfWjOqULf64NQdNUfm7Xu2B7k2AWMjeFZOO/8BQCSTLCpCbqYIysyFGWB2SzDbCZ2mmF2kHE8PhfQxkJbi+cPi0jM27oFZRSSURhrAeVviOJC4iT5LSaZsGHcCNmeUnvZWFvLak2mp8/wpOUMIhcoygL7BwUODnIc7hd49CDHE/sCj80FDrLLm2JfdGOGr/7498VvfdHn4Td/6NWXtt/3OFiLT/mb/z0+50Oexo39/J4385Dfeky4imCpcjWs6t0jVAPT7NhE9bDfgZ3V/t6d8Yiq17tjXs0wC54rSgnYjvqp4BSFcNlPWcbAfFkGyhMTdFon6TyPziZ4kGN+VlvPmnzTz6x79LLLMjAhYsaeEBQZZ8h2WHiSM4qSM+znDHs5wyznsWI7z1JzuxgpLjqiPJ/3/2HfpNil6rVJBusmYxn+n4YCY02rTrHiPsRaFAKznGM/p9jPGUrOIC4xLAi4oqLf9Vkf4v4zmdsvDuHI1Ld86stxcMGioUNMytWErSMT1Ic53MUHIgNU1leugqIzzKIaQ6pihYtgUDmGd8xXRQE5D6OZgOE1it7Cx2mIJvhi/MU9yzjynCHfkQn6sOA4mGVolYHUBrN5gbCg8VLuA61fkDv0e1oAFUjGia0qH6Cr6lX4zoMY1zGfzfD19LXzSFb6PIyfyB15yQrkZY5iVmA2L7C/n+PaPMO1eYbDYjeX5UJQXEsM1jcPy1gktq4llpyj4Q2MNlDST8zpwuE2jHE4N4GNxxJYVbaGv+VtYDTUt25czhnL9KYmJm84xZFnHOVeGetaXb9e4pG9HDf2c7zgIMONMsO1PEN+CaUYUuSC4WUv2McrXvnX8Jpv//6HW1F8EJANvujvfBlefKO8b6vFRK4mbB2cOnIV1qRbKThpgLju3JBYjV0cx4hUOtlelQvIusk5fe8sYzCQTEYJwYqcq2+GprEG1e6Uq4xR7GUUJ75uT5YxtBkHlxxUCJhYLNV06x72iNTwuIA4EfeO34xMvg9wXNeR3zHFY3ScB58bmti9CTqoHqU3Qs8E3ZkJmjOKknHUzGAvc+pVLQUaZVAUAlq79UC5D2UpmbuQL5AQZ+L51IBUpcc8FjY8C9sgzhcK5Z6huKXPU8UuUR2DwucyPAWKQmCv4O6RM8wFw4w75WpXNcvOw+d+6FN4DXA1rosPE8p9fMYHPrYVD+sUFpywdfBYdNIVnnQEa1hLJzWKDoyzQ2wSZrhqODfcueZ4eyHA1VBg6Efq+zb08648VwWjKAWNk3+eO7VM5D7LTGT9IpS9LMI0mWEY3kyOLe2zlMCM9c1lY12oOj2W8Lk0/Ncbs6RvRAbiVUdHrITPMOPIhcvm2xm5ogQZd6HBGWc4KFgkBWUZym040rdSXHSYHUr5+icTXRsAACAASURBVLHcNOSW4l7Cx+l31743HJ9zFKpwbMOszmT8uFfks1ygKDhmM455ITAvBA4LjpngKHxIkO+qAN05+OgXX8c//z+/1v3nEk31Dy18H/3I930lPuZ9HtnKJiflasLWsZ8zlN7P0TQCIhdozMy9qVVikh3e8SbPV0oupKFB//5oqAnoGaYvA+tCDWf9f/i9FbB+/4RJOyuBYoasyJAXAmUpUOYce9luJuT9TOCJfQFtLawFbl9rQKkrLKqkAm84ZMshKQOUAlTThQaN7sYnDRnaZHx6ywQF9Sod20H9q12EBzcJFaUKVHxtMEH33id95YPnAOcQRe7S9nOB/YMSe3s5Dg5cOOnJ/QyP7XHsZ7upjZR7kkzgfJEvuiaRe4/XslHIMqdMGmMhatcGLTmUUkCTJC4MQ8DDxceDwgUkiQ5J2DB8ZgzbItArNzKDsRwlxoObvaQsBSnKWIF9tj9DXuS4fr3E3l6Gw3mGF1wr8NiewON7AjeKDHueLF92WDDg2jzDJ7/sSfzkD389PusLv/GBtOGhgtH4dz/2TfizL9jHLN8OLZrI1YStI+MEmQ8hhXXptNJQOncZZlq6i2u48I6GYEZCSwDiZLsy+Y4Qqsv26Wzi4Tjre0PYZMImxN85584EzZlfgJe6vt5R+n7BGGbCmaAXucEs55ClgdYWWd4ZZo020DQZg5VJmPT/Av55GKMkBBqHzL82HMNtenU2Gb+UMA0n4t7rg7+p0pNlYIwhy53ykRc5ikKgLDlmuQ8n5RQzwVCw3SgNjBIIRqA5RWkY5oLjWmnRKIO90mURGmOxWLhpQbYSkkiAAMpk7jhM8F/5328YT4Pk95Z4skh685OM22WFfIdjddZYDgkx407F4rxXzd6NHcdsJrBXCux7xepaybAnOArmwoGCkZ3Vn9sE+6XAx77vI+Av+2ioN7/hgbXjYcAjH/eXtkqsgIlcTdgBMkaRc7pCrow2MDxzFy6j3YVs0+VHonKVTqxjCgfFhT0f28C6yRZYVTnCa+l312637/mgPsMs1NVxtZF2mGFGScwwW+QGe4WAVAZaG+RFp7BorUE1hQQA48mVkn0VCxioHWGCZX01M54XYSzp+IR8v2O7Liwb/o6FrdcRqbG/PITSqAu1cQaRC+fVKQRmM46Z9+vs566PZzvMMKOE9AjWnuCQxqIpLfYLAWMstLE49VlSbSMQCgFbYx151qwbw/A7DskpcUxpN5bDJI3LKN+wcmOT/hbHwoADtTE8RA4wt+5jqAUmfCiwLD2x8o9rJcN+xjHn3C127onVgyRXgFth4dM/9UPx2olcnYlP+Yvvj3LLSUETuZqwdTwy4zicZ5DawBiL09OZ8wdxhpoQaK0B7SdfoB9OGPt/eC3NRBuGJOLknYajBhfzbWIT1WLs9fQ7cVvnhBK5iBf5cq9EVmQoZ66uzrW9HIfzDNfK3fyUy4zhkSIDJQScEhw1JcqM4W7OYa3FcqlQ11kk0G3dQmvtJmOlYYyBtdaNtzWASUJI6RgGchVM8en/e0RsYHy/qIo1SqhGQn6Md5NweN7zCyZjGpQmT6RC5fxQ0Z4xFj1q873CT84cj1+f4do8wyPzDE8fZnikyHCYCxQ7CiVlnEIZBkoIKCG4UeTIfHmGWhncKjj2PbFaVBKUEjSNRttIVLyCVhpaaUjOYY1NCHQ6TqafEaxlMsZAd+Ozk0NcVR9TDxyhTv2Nz/nq+54QU9YRYsYZynmJzC9PdOPGDHulwAtvzHF9xnFjzvH0foGDTGA/45jlzBMseumlGFa7g+Bfft6H4X/6L/8h/sJf+bvhxcnonvTBf/ipf4SXP33vldjXYSJXE7YOZ4B24Y6q1SgKDmPciayVBlUU1nAoxtxFdkiYADcJI31vhFxFtSMhUJYmStbI3fI2sI5YRbPvYBJOn6ffC9tK725XFC+Ac2dgp4x61cOFJYqYZcZR7mhCdhlmDC03kBnHtYJBGxdCOp5lCNX4tbaQ0oWMjDbQWoNQp3gYY2AZ64hWGHOjO7IVCBVlXWmHlCSDAjYJI99LWv+Zxuc0BEu9YbtTDFdqPrFuTMNKBIS47FhCXH03LnhM6MjLHEIwzGYuFFiWAgezDIczgWslx17GMeMcJdtdhhkhTom0jMBYZ26fWw5tgEdKHrv0eObCvdUsA6XKj6+GlhqKdWNsDIUJY6G1CxnGG6T09+nDiYSgUyF3oF6t81UNw7RpmJ0yN5Z+XBl3Kx8EQhx8VkUpfC0rjn1f7PX6jLtHybEnOObCqVbcG9kZJTtbUP2ieElaaZwkv6X3ViR98JL7qMJ+FiZyNWHrKBjFfk5RtRx1q1GWwkcO/EXahwiZ6k+41lr3HP3nPQIWFCpju4u50X0fV1pROtwtb4tgrahLIxfuMCHHMAN3BGqEOLlNdMvXdOsxYlUB4Qx5mcfJeZ7zWLSw2HGG2cxwKGNxzU/CxgInlXShD0ahtYGUjliE8aWUuvE11qmVfoyNMYBFHHtrvMIRxhRIaiuZbgx7k/OaSfmihugh0U3DsOkivWESZgKucCuN45Q+55zH94M3jjKKshTIMo69vQxl7rLLDmcC17xXZ87dWnQhpLQLMB8WtJbAMIqMu2rse5ZjP+cwXk66WwkQAtStBueu1IfWBpIpMOVUOqNN9NkZY2AoAyz3XjvS/Q3EmfJVorxNgnVeaD3Nto3j6sgVYcyNISVOqfKEOCsycM4hMo7ZLIsZlQezDPuFI1ePlNyFAwWPalUgVo5cXQ12dTgT+NbveiW+7n/7eeCZ33/QzXnwMBr8ZR+NH/i6T9p6ODBgIlcTto5reYanDyUEc+vSSW1wWknUtcJxwaGUcQ+p4uQbyFTv+YBghYk5kLEQfjLGwMrWhSiM7pvmge0RrDHFKlU1RNERqywDpTSSo3QSTsmT21ynfIypIFxwcO5qh+3v545YFRxPXZ/h0T2Ox/cEruf3vkzDWSgEhTIcjBLkjEIag2uFxPUZh2AEJ7XCslGYlwJ1q7BYSEipoZRB22poHxqOIULTjaFTPxzRUlJBa+/Laxs3lloBkvgMUzWYnO9zUk4nvTRMFNLwQ7FPJkCLIob3uOBR2YgEmNE4tm5ydvXHsqwbt/k8Qy4YbhzkmOeOzLzkkdwVac04Hitz5IK6DLMd+eeo91tRQkGphbUMnBFk3OApW2JfcBzmCowCt5cCglGc+vF1mb8abatQVblLUFEKWuruhskYX4BUwWrtskcJ7bIMh0S5F97d1liOhAOjQsWBbAZwDuLHkjJHgiml8blbRJthNssgBEVRcBzu59jz/rinrxe4VnK86CDHvhDYyzj2C0euMk6Riz7Buir46//F++KTXvVF+Odv+FO86h9874NuzgPFP/iO/xmf+yFP44nDYmf7mMjVhK1jxjkOco5WWWgDHM0zMJ++DwBt6yZfKV3at1LGRfwSVSM+B3rKVvq+VjpOyBKADeUAgrqlZRcWsOgu4FtRsEYUK8ajCTbLszgJM97dGackym2G9AgXjZ4dpxhQSlxSgE8QONjPMcs55oULSVwrXF+XfLcZZtZSWAvs+wKThBAsWo2cEZxwCmMs6oyBUgIpDZTSqGtHrrQ2UMqNtTEWWvfJlTXW9ZVmzrdlLWwgssFADfhx3XJIY4wwJ8U+wUWccBl3xmZCSVSoCHHKHfWVzjmnkVwVRSBXDAelQJExXJtlOCicef1a4VSPPSGQC9oZoXdmaHemdksBhhAidOM6E+78ISC4XioQQlBJA+EJgzIGQmg0jTs/paTQmqNtZAwZht+itRaGEMejNOuH7onp/Fbhd4n0/zsKEUa1yi3dFDxV6V+Xzcn9IuUMe3tObcwzhut77ne3X3A8OuM4LDkOMoG5SBVHFxIMVe8pIWcKag8CL318ji/+sKfxqvACZeevC/qeguRYP/PlT+2UWAETuZqwA+znHE/qAjPOcK2UEJTgpNE4bTSO9ls0UkNqg1rqSK6MV6xclWhXUym8BiC+FiZmra1XRjSUVGiqxqkfUkMBrt4STSbmNMPpogRraD4P4aMwCfuFXNls3nk0ZkWclDNPOjgPyhXigrmEIP4NZMoRLIBzN2mXGYfwYZzDWYY9n1n2Po/k2BfuIr+/xRTiFC505EhW8ALtC4GFUsgZxVJpLFqN5+Ycy9bgzlJCKoNWGSwaBaUNtLFopY4VwLW23qPVjX9dKyjpHoQSKMmcJy+98IeL4zA8CFxsUh4mDKReuTCeeenW/ss4ynkZ0/DLUkTCFKrjc84iuYqeG0Ywyzkyv6j2IzOBmaB4fF9gLihmguPRIkfp1xOc5U4JFIwi21FYkBACRgFiPckSAGMW3O8vFxRzxcApwSOFwkxQnDQaJ43GXilQtQpVo3FctZDSQEqNqlJ+/GRUoymjfiwpVDp+WvrfjnWP1HuVjs2mYzlkLsPMzjREz11BVJ5ncSzDbzSMKecUs5l7ngmGw1kWPY1PHAjs567w6hOzHHPBcb3Iolo1y5xiyakbw0Bkt1Hpe5uw1uLlTx/gZ1/9DfimX3wzfu0H/m93UxjC8O+p4Blw+AQ+7a9+Er7uL74fXvzobPe73PkeJrzXQXCK/5+9d4+RbcvPg7713I+qfpw+9+25M57JjMcm8diQsYMNNk7i2CHJGHuEX7IVAkkcwBGYgMDIiYKtyEYKNljCGAsckVijOFjyI4mioIARjwCOFYhQIJhHFHvsmTtz7z2nT3dX7b3Xkz9+a629qrrPvefe232e+5PqdHV1naq992+v9fvW93uslZIIKc/quXVAqzg6Tas64wOsC5ish/O0Z51P5Ml5yvwIcSZZsXqew0zOBUyTh3Me1lL1UlaAnNXzajmX9dcOOeOdKlj7oaQ6h0PO22JILVMCMznhrGBkspSVqfxxeZWbS+U5zyXzdL0aRQ66kRy3eirbX2lOpKpKpL0JcM4gBUNMxQFa8kQIJayPaASRrBiBrQ6QnGF0AcZFNErAhVDIVu6jZH0gu9uQcrXIBlbQtbHGlhCxzw4yO1zGAfj5+TtVIC855Cp3rlIhWVIcKedGQWkJrSkhPbfAKM5U8pJf02oByWdy1UoOLRlOeio6uNXK1CF9VjyyYqUSKeM3FEpi+TTBEBGrkBWHkrFcirWS4IzBhAAtGBrB4HzEhRJolYPgDKP1MNZDCA7nPBgDrPUwnFFYMIX0XdnyylfE6oq+Ze+UYL0T0pLV61Rxm8O7OnXHzzaVkmPVKdqkXHIcrzR6TV3zn18p2uxaChxohV5Sk9Bst3wvyJTEnlWrx4tazakIX/HBW/i+3/0hGPPt+Luf+iuP+KgeApzB13/b78Gf+poP4YtfOXgoX7mQqwXXDsq14mCQEBwwnUKvPFaGQ3EG46lx4WADnI8VuYpwJecK5bUQiWzFGIuTdp7UDsoD8WmCp4lDSKpoKypHXsm+m3DSfoL0VatjQa0Sch8c3VDyK20VQ5O3TMqTyOSK0STMEqHKapaoCFYOM/SKnG8rOW71tP9cJwUOq7468saToAGAQycnzBjDYYhQnkFz6vo9+lDsO9qAc8VhQ4TzEaP1hVxNjhSrwZCCaZKClUnFNArKzfIBnkuA+9k5369i8J065B01sk5oJ5KVw7nUU4wSmZtGUu6UFugbSc60sivnDG1yuFpwrDRHq6gH2XEr0EiBI63QCoFW0l6NlPPEC7ES/Ob2iSRnzwBEcDBwkrAAAFowsNTks1WiLIIU52iEg4tAN3kMaYE0Gg/jAqTgmJxHjCghQzPRYieGCPBUWenZ5cXJdYZ4L43Taozm6k8+F4YISVs51TbVkuOw12gk5b7dXil0ivbWvN2T3XpJlYE1Kc6kaj8cmBXpxxFScHzdR14AAHz7p9KL1xmWfVxQndO/83Ufxpe+evjQ8uAeC3L1Ve8/xF/93X8ABwc3k5R7FThnePONC7z+D38d+MyvPbTv3cfRx78OL7/vpLQqeBg4P5/wVe+//r4eGb0WpEC4gM5TJdTkAyYfcLG2cJEI1eQDXIiYXCJWEXA+kmpVyBUQEGE9Pc+qiPEB9zYGg6GEW84ZhoHCcC61BPAAlfXHuFsKXvdKeqsS/rciViWHowFraEuTpm/QdpRwfvt2jy5V891aazRSoNd1oispCIylkFsiWCqtfAVn0JIcbSspVKM4x0pKNII29+2SQ5Dp+U1AcAYFDsEiZIzgDPCBw/kIJRjWgRSsI6tgQ8BzrYMNATYEjM4TuQoRWxPgI9lxdAHWR5yNHqP1GIzHG0pgszXYbgWMIfvFGGGVJtuVvmFXhJKKfd6hc9jJs5JVCIn21svb1KzXDTX87DVeOGrRaYlbvYKWlOTfKiJGijO0in5KTgRYcSKfKyXT30UhUfl5rX5lMntTIPWKCJYUVC2Yv0+KCBXoOKynv1tH4/RQG4zeY3QedweFrQ3Y2oA7G4fBOLyuBLaTw3ZLBQ15oSOlhAvhct837JGq6yg0yc9ruzKW9uOsyHKj0Ha07VDXKbx43KFPbU2eXyl0mgjxSUd7BLZC4KhRaFLfqk6T3TIJFSkczJJixTmr9qV/TNkVKOT/DV/yEv7CT38//uzP/n18+m/99acrB0tQ9eqXf8e34gc/8Y/h4x+69VC//rEgV1/xvhP8zL/yVTe2YrsKgjP8D59+Ez/51xV+8xGSq+/6xO/Ad37py3D+4ZErHyNePr7BKgnBoUJMVUlkU+U52kAO2SeHO3qPECNcJELlQ/qZyVVSsDLR8iFia4lcjY5yr2QKJV00JiVOU28hLzyFlPIEC7y1elVP7m/VaLJ+fwo11JVGStGKuG9lqS66vdJoFcNBQ842J4nnEI3gNAlzAILP+RqKcwgGaC4KKetlVkxYCUtkcnYTIIcBSsCPSCSQgbHZZoJHMAA6cEjGZ3IlPVwge651gA8BNsRCkAVn2BgOyTk2o4XzEtaGErpx3CU2wPccc3VwDzpsHnRuSfdLtiltM8ShNTnfVUvhodurOeS30gKCkQ00TwSaEbnKpLhJ5CmrXDJttp1tl4lVfbteNzKpym1ROFV5ICAWcs8YEAIn+waykfQMEQqNE2iFB2cMK0fkCgAuJMNgfArbR0jJYUUq4OCM1KvcNyyHBuvrfWVLjbcgyve7QFe9XinMubKTwr1UINJqgVVLieqHrcBza4lecWiRVEbJoTltAZXVxawU10rjVaHAx5hX7eAbvuglfPYPGvyE/wP4zC//jUd9ONcH7/Al3/JJfP8/+1F8xRdez2bM7wSPBbl65VaHV251D/17pWD4pVc+i9986N884/f9ttv4Ha8ePcIjuH7kfCHOIliaSAUPkCFCclWcsgkCPj3PRMrFVDmICJ97XwFwIcBHYHQeYwopWj+vuu+lFg/W+rk0njOqOqvDgm/lkB+0R1L2QnnSTlWBMiWvN42gcvsukyuasA8bAZGcr0z5YQyYnSqSggWarBXniWTNPXOKwsFZcdh5or8JsOQ4AiIEqLqMBVKwYuSF9AJEgjlnaAIpIq0XRKRjgPGkXLkQMXkP48kxK+7BAXRaYrIh5TLttjeIlxTEOqH9AfJ1riLGl090J5RU2mgInnLnOFolsE5Vfie9RCd56XAuGIdgFA4k+85boNR205LIs+S5LcIusXoYSdCJYyEiRwWpgjCPCzouICoOkcZYjEAjIiZPCk0nAzpFIXrJGM4aCecDJuchpYAQfm6oyhjiPvm/6UaW+4Q8LRBKzlUqSuhSG4XjRK5OOoVGCOrVpxWRZbGrONakmBdyNYcCyzV+QtA3At/9T7yK51cK3/PLf4Mqnu30qA/rvUF3gBnwo9/2ZfjYq0c3tuvBW+GxIFePCi5Vpj1KmKdFgq2QnX5WonQq1Z/VqdRKIYf9ErGKQMm32n8eEgHbOofRBYzeQ3GGOwNJ9acbUxLd81Yswok5oXYf7ySEVJSv/TwOURoPSiVLB+e+Vzg5aHDSK9xeSbx6RJWTh1olNWrOswJQGg2WPA2gcrSo8rRQiBVju875ppQrzuifLDawRAxyOCnnxjWKxpJLeVVX2Tr/bpL9Wjnh3Dj02uHe6Epxg1ICxvBCsLwQVNK/r3rcD7Vt30rl2FfDkl0ZZ6UjvpQcTUMq5EGn8MKabPryqkUnBRoh0OVqwWSfbDdZVY1lhVXy2fayem9eJGQ73xRm4kZ5V+VSgMixYEQWfLKvT/bVkqdcR4G1lim8S2PwsHXY2kCqVwTutVNpwSGkoN5XvipMKAox222Rcj0nuBsSTO0XSg6dlmgaKjI57KiR60sHGrd7amnyYt+mjZcvh/1yTpXO4y79ZMBeKPDxDgfugzGGw07hW7/8VRz8xR/AD/7CP8D/9Ys//2SGCBkD+iP8zm/+RvzYJz+Gj73/0QkXzzS5WnAzqENJmbsGzoqTzQ43/7wfsQJQfs/J0KTkeAjLsG4EJk/5PI0S2KaqnRKOyCwFmPN1rpNLZ/UpeSeRnDG1TRDoFMdKU4UR9cOR82qXzyQqEyrs/Z6fZwdNEZbUW6ly5HXl4U2ApQOLka5/AP0USF0tcjiJM/CqCMHvPc+kK5OQrXOwIaKVgRSfpPrM7Sj2VJz7EqXr6FvGy41bmrhynvqNzVWBreRztZ+cq/2yLTJxyoUKPD3PVWQ1+SrJz+X05uc3jZ0QIVKEm9F4jQApW4KDxwgSRXkKAdMRckZ27K2EjxG94riQgvp1aY5porGYSSr4vpL0DkK6D3ZCu8/rRRDjpY9VVphVbtiqqPK2U0SSc2uMulChqFU7dp2LUoC9qeYJIlb7+JoPPY8f/84G3/iLP/+oD+XdIUZ88Gu/Fj/5Hf84Xr398KNhNRZyteDakSfgmNrZMMaSOkUVSjH90ROLSmTqalKVf6/DTzwtdFsp0MqARqY8F5Ebb17hmK/Ce1kxF7XpCkcsOFrJ0GtO+ywmZ9ykXI2sZOT/z3f8wmXSxdMLdV4H3/v9ppKgsxMuCgNiccLgqdtFctA5zBRjItKJUIfUsyyrWYSAVghMIqBN12Xu88V27ZfZ27Wc0FUhwcuv1V30c46U5JS8rgVHK+bGkfvkKtsrO+NMimubgc3hYOCyevmwUC4xMnkGIqPfwdOORIwBCPAMxaYU8gc6KWBCQJfu9U3qbp5bj+TcOc45bZFT+pRhViKvc8/PuilsyrnMCmhWInNIUEtKTu8UbR+ViZVK+XA6tU4RRWXEfH8CM7FiN7u4eZjoG4EvefkAX/4d34q/97M/B3QHwHD+qA/rwZD6df3c9341vuBWh1bdTJHPg2IhVwuuHblZIUCONsSICFZ8dM6juvQ7drlOrIiXK8qVh/TkePtJwDQeG0NN/5TIvaTmR1kll4N7jxP6jmNIIaS8L5lgRbnq9axaHaQO3H0j5gTmFDJi2HWmOUSTryOpRvP76t/5Fc75JpAJ1vxv8l3JVjEyCF6R5Lj7PLfSoNAuwBklRfdWwoaASYVK+Zi3j+FJhdxVIdLv+5s5v+uT23PGfC5QKLk5qUqsUYksC4E2KR9a0mt1f7Jiq9puV9hsX7Gcr/XDQf1dHLHYFrm3agr/5kIGn2woGCjf0bHSsf+kkyV38s1elW78m0aVHRYmk/vPBUpwD64+GFzqQ/dAJ7Ef2mVV5acEZDO3SGk1bR21UjjoNY5XFA48ahSOGoUDpdBW+zs2ShQyXCuSfG/MPWxCfJNgjOGgU/hb3/c1+Aff+uX4rv/0f6YqwicAH/1Dn8Cn/vjvwm97cf2oDwXAQq4W3AByGIlASkeMSHspR8T8txyCSKvm9FL1N7ZDvDyoCMGHOc9I7E18jOUD2D+odzn5XfX/LiVYzwpWVpFEIpgyK1p8VkBKtSB2CVP1YzdEdAXhetjOuM7VKT8Y2YcxlPydgNm+RK5S84uQFJAUWioPxkuIM6t6l9QrhqsVp/d0Qry+iHuvJyfK50dutSBLiC+rUChhwxK2xS6hAi6TKuDxCyXVKhZAhIulakLOaXHEGSuh/ZzgrQWFS/tEPlslMKRGqyX/Ue5tbF5Cd++QVL3Vdao/s9ruJve1yrslaE0kvld0zI2gisBS/Vc9Skj+ijD+Y2CyG4MUHF/8ygF+8fu+Br8zk6v3ovTfFKq8sJ//3q/GSze8pc07wUKuFlw7OJ/JEhKxSsIVaiK1C7arWiErIHlSjynhmRydC1TirgQvfYXE/ZxynbD8bpWO+1SY1XsDZkecyVN2xjWxKk0HBd9VNnY/9upDqJzy/vseBcnKJLq2736+eYyMcuZS6wbGACcYQqTrQD27KDSjU86OUkmBFLOC5Cl5aXae15qvk/uWzZsyiyq01Ug6tlYRkdAil+LPeWJX5dLtX7NHabe3w76KBaTFDSOb8oiUIwn4vIcOUEIvx40u///N1K+QMWCzMWV8mMnA5fEYPG25EsPunpE7LVHexplf0fyVGvpK2kRdt2W3hLZv0fcKh4cNbq00jtcNXlgrPL9SONIaKy1m1UrONmWsarHwiBY2jwpKcnzohRX+x1/4Yfz5/+7/wy/9Rz9Nf3gcSFYmVarBv/Rv/xH8y1/5/kfSceCt8PDrExc8E7gU6spEAjlfaJeYzPvspXmS1e+rwytz5RzDnPtQfG9NrK79pPZ6LF2BOicql2jvJKRX51onxbKdxx5py9cBqFbP9aE8/En+fvat7Zr/xtmu/WsymlU+2kYkkeSUNydSDzGWHeeO2lSFgerfgf3YcnXQe/9n//9XIV6WFatqr0DFKe9KMl7uwX3b8co27C3s9kA5gY8Ite1mm+7m99VqoxRzov9KC/Spg32n510K8tZQQtJWUbOCVYd7r7DlVbaq31Mu/lzBCy4ApasO+yq1SKGmvn0jy/6cVPE5b7hcn1t9zsWOzwixqvHb33eIH/i9H8FHPvHN9MKjJlYAESsu8M//ye/Cv/bVX4iPvPR4hAJrLORqwY1h34GwPUdUnA7uR7qys2K7zit93vw3dqWzYvk/3NgJ8r3vr8lDuLTykwAAIABJREFUdq7VuVfXYZdU3YdE5cfedavP71FO8vvXfd9Gdc+mHftiJsS5+aZKD0ps5yW5fa78rCvNriBJ7/zgLzvo3GiS58oyOo6ctK7lrETyPbvt5k+xHWf8pJCqGrVN8+/zvYpLKm0nZCFX64bI1aqZtw1SWhaCxaTcI1fs3dm0JmP5M5J6xcRM6JSe26SsKnKVKwRlUZNr5Xv3nPevxbOGD7+4ws/9q189v6Ae3m4ql9AmIrU+wQ/9/o/i/Y+4KvB+WMKCC24c95uM6pfrUGF+OYJCShyxEJXZYbGiDikxT/Rzngyfv7dM3tfQs2XPGRSCwedqt7I/YE2YkoetSWX+/1fxvydtAr9MbFESmZHO0SPOjjnMm1O3UmDVcKwmjk0j0TYSpvWw1pecneADvFCpBDW11cB9bEpfPj+//0HPyc9cgEsJodKmvqkZbFY7Vpr2CsxKR61yzKRyJlm1U35SsZNnl+24s+Ez9bQDgFUjwJmGYBzvO6LNvLXk2EwOSlGI1VmPSUzggmMIETAjKRBBAN6ibLZeihWq8ODOge21dMjhQC6oeaRu0fYtdKvRtA2OjlocHDQ4XNH2Rc+vFJ5fSzzXNjhMnfd1Cv8qsZtv9TTZ872AMYYPPNfjV/7qj+Av/b3fwk996lfgfu1Xd8fazR8EECNe+Mp/Cn/6Oz+Gr//wize608h7xUKuFjwW2J+49vOy2PzG8nsmKiU8gyuUrFrpqP7/9Rz0nPy8oz5xBlmOqUpkBi4pW/XRPI2TN2MAci+sOJNJzlAcmGSpvYHipRSe8p1E6U1UtjOqk6Fzjk69V+SDHNB+9WFVJSiEKCX7WgtoKUp/q0bw0jX/kvPNH4/rvcUeBzCWCheQOBaqdhJ8zj3TMqIL1GR0aiMmH7BuJayjhqLnjUQItG2VkQY+asAmF1Ryr6oq0Kv6l+3nWdWhQCFLOFBpRft9tgp9r9J2VNSF/bClY6x7WknBy8KI743LfA0WAF/08gH+mHwVLkT81L/3qw83RBgjwAV+6Lu/DF//4Rdx+yHuRfxusIQFFzwx2CcnglUSPliV0I5CenbjaG9zu+cy8QcFn/O7cg5RCYtV4a9y7G8pojz9k/d8TWYiKlI4kBLbGVpJ3bCz2pGrvLjggKirzPh7YzH156Rk9pJAL0X5/kZRz7JWzfsD1kUT2db5I59W1CGxOcEbuwUcuWpQEoE57iRWqbN93ym0rYJuFGQKEXIp5wT0S2HCKuRXDuKKPKs6iV1qcCkhNbVeaFpNOyZ0CutWYdUqHHdEsHop0GYiX1UH3k+FXDDj1ds9vvef/MD8Qv8QuqB3B/QzePzeD7+Ik7V+6/c/BliUqwWPJViWPHK7hkKYZvLCGeXAKE4dlGXKkRHV3oKXJuvyBe+mp86eQ97bg06kfkiiVAXOzSVLOPAZWhUXxSOrV5jtl5OhVeDwMmIlJY66gMlHHPaaNnz2AeedTp37I8yo6V7wjsJIAK1mA/DOQ0m7vZBY05ReSG3XlF5Ih53GSS9x3AqsFakdueKzJvP7fcaeRpvWKqQAA+Moe4j6IApZfsHTFjKdtBhMwOtaoNMCxno0jcC2kYghwkwG2xgRrQGsoi8Jft5yJW+Vw6pmkNl+okqK1x2gNJjS6NYdhQKPe/S9xnqt8fKtHrdWCrd7hfcdNjhUCodaYdVIaEmKaZ3QvjteH/ZVfvwhOMOrt3v82n/zo/il//Mz+OGf+V9x+nf+2xv9zi/46q/Fj3z3l+H3fdGLaPWjbQ76oFjI1YInCnX4JUv4lBSNIuvTipoXVemS0nFVnkBNtPKGwPc9iPlzcr5VvYrPPa44Y+DYS4q9jovwBCKTZQqTUqf+smkxT72SBPUdapUovZKU4jBVnyIX1FyGzQU1omQM7ziUVIUD895zJQFa8dILqdHUD6ndy7XKewleriJ7iBf1IaImyiwFCDnSjguMmozG1GKjkRyrSNviHHei7K6w7lTpfbZtiTRLJeGQFlDOzF+4EyLMhPmqUKAqxEppBd1oqEah6ygcuO5IOTtuJW71AispsVLzbgm5t1UOVe+0XajUugWX8cJhg2/72Ptw9Mcl/sQNk6uf/KMfx1d96DakeJvow2OEhVwteGJQiFW1sqwJlmBzQjsqghUvhRauI7GdJvncoX2/4SQdT9XFGdUkzXY/5mlGdsq7r81hVF6RK+p35dE3AoOhh9YS1obSiDL4QNuoCDmTYJaSoDNpZnsOef7SXcecnDNPjSaJWEloLdEoga4hktfp1GhyR92oiRUr5/o0o869yjIWZwyRk5oRwREjaKP2GBGixFFLndtdjLjb69K1f7Ohzu12IgXSAYi2CvVwkbsO00/gMrkSCpBErErLhdSFve8VDnoiVie9wK1e4qiRpD6qeZubnGvFa8WqUpefdpu+Vxx2El//4RfnF65auL5bVA1Cv+ILT54oYgUs5GrBEwCa7GKV5zKrHiXXQ3HotCWJUgJKSTjpaG+zXPodPC51uQSuDg/W6tVVK2ap5s1gU44OVRyJneRntZfLsUOsbuRqPZ7IDpmnjv3ggBIs7UPIsVay7Cf54pq2RWGM4Xxri/OzxoJzjsEHwBqyAzA3owTeOpSUcquoD1ILSA3ouapstW7R9xoHBxrPHbS4tdZ4Ya1w0mocp+1RmpR0L/cUrHKOeLodch2uR1JoWQSi5BBpa5wQqb2BlhwutlgpiaPOwoeIO63CvaRgXVxQKFCNCnay2AIpRGhQGo2WRHfMOVl7ocB+3ZeQ7slJj9VK45XbKxz1GicriQ+etDjSCgda4rhTZbPtHA5UaSuqp63a82GAMYaTtcZn/6cfx3/+d34df+b7fuz6Pjx4/PRPfz8++bH3Xd9nPkQs5GrBEwGWVkR1LkRuc5DzriTn8759V/ZIeo+T5Q7ZmjeDzcpVaTaZy7kZ30neBkrq2DOFS+pVlTQsOYNP164VAkYErDTHQcMxWYmukXDOwzlSJmKIsMrClT3qUijJO5TKQSYut2JgfC/PSu9UlsnUC6nrqBVE30gcNAJrTcfViN3tUXhNmPHsqFcZdf5VDg+CE1mWgpfLv5KyqFUnfSbQEacdKVfDMKtVyihYgJTm4CmvLnjsqI9ZsdItuFJ7+wZqrFYa617hqNe41Uuc9BKHWmGtJNZqJlZZtdpvFrrkWb07NJLjX/z4+/Fnrvlzv+VLv+CaP/Hh4cnS2RY80yjEJK8w2dyEMudPzEntbO7wXQjWXs5NTZbe9ssrgpYm+Uze8obNsiTWz3lX9YT9LIWQ9pHPH5ivQ73ZsUpKRyN56Z6dm1G2rULXyVJpJpSAUJRrUxKb71dxtl+qL2TJ0xHZOadcnbrRZH0M+128d/qX7ZzTo7m2Dxu7TWOrpqIMs5os82bXAqtEbG51MhEehcNeYd1TCK/rNHSrS/sErijcVx7ZbtVrXNF7VaPQdA26TqPvFVbdTKxuryRudRIHisKBNamifSyXPKvrAmMMq0biP/xP/q33+kHl6V/+iz/wRNthUa4WPNYoK2QAueWBYJH6I6U8nUaQwnDQCAyGHKQxHtYGSE29days8jmCnyvM3i5Ppw5FcFEm95z8rBuNtlVU8t1K9FpgrbNDFpcc8k7u1TOGrHLQTs4RkjPk9V2T9qjjTOE520BxynHamA6tFjjTAtYGDI0EImAmA2skJsYpjOTtHPrNoUFgNySo2kKsmr4pzvzwuEfXKTx30uF4pXHUa7x6rHHSKxxphaNmDgfuhASrUNKzhv38K8lpY27OaKN1wcm+IcZCmiMijhqH084iROB0sGAMuNhabDYKnHOY0cBMBqPg8M4jeg84ChNDSrAUhu9WXcmxolAgEatXn1vhpFf48HMtjlIo96TTaFLYvtNzR3aV862WPKtrw7/w8Q/gE7/8o/g3fun/wF/78b/wzj8gRnzvD/1J/NA3fpRyZ59gLORqwRODog4U5YBWnpKzsj2JEjzlXIm0AbCElx5WqrnCLOfqBMzJ0ACKkFuHkmqVK6skOd+q2txXKVHyrVrJIBmHZPMWNzzLbrWC82TPHe8JREri3JaBMwTBESLQKwEbAnwbcNgKOK8QQsRqRTk6w6AL0fbOw3OG6MScnxPjXp5OIle6BYTYUatUQ/2X+pT8fNDNvZBWiirL6k2ac5PYWul4llSrGvvtUvJ1qDu4a0mh2hg5DpQqr99eOXAGnPU6fRYwjg65wjf4AMcdghfwgsZrzm8UUkC3GrrR6Do5t83oFU56hdsrWYjVQSpO0Kn7eqkOrPLlljyr6wNjDEe9wr//B78Ef+3HQVvVjBfv6DP+3d/z4adiPC3kasFjizpXh+ZcCrdFDoSUp6NlRB8kDhsJ4wKMizjsyBnHGLHdNgADnHVwQgBG0Yd5N+d1lG03dr58l1BVW2tIJcv2Gut1g4MDjYNe4ahXVJXUkVOulY5SjVTO5dnCVaX8ojTjjGhULCFC51XqkyRgTiKOWoc7nUSIEeedTY5YYxwdhBSwxsJZB6sUgk8EyydyJVL3dcGhGlUUx9VBj7alkOPzt3scdAqvnvS4vaI8nZf6Dmst0SsKTeawpZa87Im4hJJmgsXBEBlKvYhgDJ5HxIg0TmkB0yqOg9TT6l5Ptryz0TgbDDhn2G4thkHjTEk464g8O7JlJlZKKxwethTCXWm8fNLjsKOx95HnWhxohVdWHRqZwpINKch5EVbatST78WfYfjcBKTheudXhb//CD+P7fv5/x6/+zM/uVP5dQvrbJ//NP4Yf/IaPYtU8HbTk6TiLBc8EWPlnbkSZVY9GcHSaY6UFukZitB62lWgaSoI2mhKfPWOIISU/l2aFFbkq5f2JXEldkSsiVlLTQzcKbSvQNhKdpv3nekX9mnKVYFY67hcSfJYm9P1QEhGtWb2KEYiJxADAKkocNBKBuiDhdKXBGcMwuaI8ONeUqk2AFI8YKBQMoOTcccHRtE2xX9+n7t0p/+ew14VYHTVEjvP2KCrn8lX9zAqxqs7tWcV+BSFnQECEAClFBF7sCqCoWCd9rgwFLkayqxAMznkYI+D2yJVK+z6u12S/g07hOOVY3SrJ66oQq2y7nJc5E6vLm20vuF586IUVfuxbvhTf9H9/Hnd/5Zfv/8bg8eE/9M34c7//ix/rvQLfKRZyteCxR567Acx7CVYJtCKTKymw0gF9I2Gsh/UBTSMRQoRuNBhjcNzBhJ4UK2fnnKuaYNVJ71JTlZmURfmgPcuaonz0qbpsrQVWmu/kWs3qDHZCgs8qaoLFSyJdRa7iTK5iBA7UPEWdDAoMDJtErqTkcC5gEhxOSrKvc4ghwiflSggqPJBSpqTp7Jyp0eSqVTheaRy2qbKsoeTrnV5IicDnfmr7NlwcM6HkR6bcupDbbqQo/A650mTX270t1bSbUZeQnTEBUno4R7mTAKAUhd+1FlivNFYNkauTlcRJN5OrlZKFWGXlOIcDZ2KFJRR4w2i1wPuf6/EffM9X4o/+yi/TXFo3igVo65ztPXzqe34XTlbq6g96QrGQqwWPNeZwUgo/cEYJs8COEz5udKkcPBt9av5IxGq7tRCCUZK7sRi3IzWj9AHOurKZLMKcBM0SKZJKlvyqpiPlo2kUjo5a9L3CS7c62iJlJfHygcJxo3GoFe1Fp2jTX8mrDWHrXJ1ndFIvYTRQ3yvGGRRoGxWR7Ev9hwIiWqytx6FSEIzhdPRoFMfF6HAxWrStxDQ5jKPHdqvhXID3u+QqV3OSWiXQNBK3D1qsW9r77gO3NI5biVfWbVGs1q0sPdQaJQpR3nfQCwjzvXw5RMgjFaEAc4iQMerkzhlw1Dg831soznA6OpyPDqtGYjQexgVYS7bMveS6RuK5wxYHLW1L9MGTFmslcaAlTroGWvKdUGCj5lBgWexgIVYPA4edwic/9j783Pf+EfzNn/gvLr9hew8/8uN/Cl/08sFDP7abxkKuFjwRyOIVKR40eedGolKQcmUlJUIfdwIuRsSocD6SYmWMh1IeRok5ETp3/U7kKoac38VK5/WaXLVdQ9uiNBLrtcaqlTjsKCRx3M2hpFbuKlc5qX2ZxglXdfouSf9JJQJIxWokL47w2CkIzrCZPO0nKTisCxikgNY+hQkDvKcHgLLno5Qc6zVVjXVa4NZa46ChxPXnVnMfpK5KflZpj8gdGy55Vm+Jq0KEAPXAqkOESgQAAmsny9i4vfKlks/5iEE5WBdgHNlSp1Bfp8lmhy1tEH2oyXZ5W5u8z+jcb+5yKHAhVg8X//rXfBB/8ycuv/4l3/JJ/DMfeO7hH9BDwEKuFjz2qNWrnKeTV6ExUhNKLTn6SEnPR51E4km4GDU1qvQB0+QwTR6MoThhayxiiJSjk3Pa2ZyrI5WETFWBXaegtUDbShyvNPpWllyPk0SuciJ7DiXlLXCu2lrjWcY+wSpdGUJM21wEQHI4HwupOdQKnDE8vw5oUodtFwK2k8No3p5cHXYKrSZF8/ZK4aiVyTkrrCQlr+vknPeJVc6bAxaS/CDYDxHiihAhFTKINCYYtp1PpJbBR2AwAsYFTCnnqkk5cCstcHtFtjvQEgfJfrPtqka+9wkFLni4+O2vHOKv/KU/jW//w38ubV1FFb3/2R/+OD7y0vpRH96NYCFXC54I5Mma52qztH0KY7R/oA+xNDCMETjUDs+tHHrFcTZ6HPYagyEnfD5a2q/OB0yTRwixPIA5YZlzhqYRhVwddCqFGwVurzWOWokvOFJlcn8uhSTqrTXq0u9l1byLKpJUekYFxgAECC4gA5Ev6ymUxBnDUaok3PYOW+dxq5fYTB6DDbi7dbA+wPkAl2wpU1WpEhy3eolOUcjohZVCLwV6KXHSaiLnKZSkBEOrxNwmIm2PAuw2nFxwNR48REg/rQs0XjjD1noMvcdJZzC6gNEFTI7e1yqORjB0iuOk1eiS/Q7buUFo7mNVVwUuocBHj4NO4Z/+0HP4pU/9Wfxz3/WDAIC//1/9ebx41DxxewY+KBZyteCJAcvEKk3anDMIoGwWm7FWFGqQjGFaBbTpbxeGqggbRSti6wMm6+ETsZrbPsydwxslSuf1Qq4Ux4sHCgeNwHGj0cu5A3RePYscFqxWzAt2sd+eIcZYVCIEYlwiqViMcfgQi4KlBG32HGPEWnNsTYCWDMZFWB9hE7lSPHd/ZzhuJXrN0UmO40ahkwKdkJcbhJbGr3PhRD7exS8/OB4kRKgEZd4xBvRKQjIO5eleMIHGqPFkS51z4ASpjZ0U0KKyXbWYWUKBjx/6RuIrP3hSfn/+8OklVsAzTq5CjNhszNu/8YaPYcHbY39/upx7BQZETgpFFHO3b9pzkMOGmVytbcBgBVolYBO5Gm1SruKucpVbKLRKpP0COY47iVZSy4fne4lW0iTfp3BFHZbY3dh3CUncD/vhQSJYbKeLOwPtDqxlLCql5AqK0x52rfRYKSJXLhErmxyyEmnfScFw1EjotIfhoSYFTAp2qWT/ylBgFc5dHPQ7w1uFCFWg8CBjgA9p5wVOVWNEkgNcnImyZNS5/0DLojJmYrWEAh9/NJLjI5/4Zrz04hpKPN1GYfExcO6jwyM5iM/dG/F3f/Mu/vt/dPoovh4vrBW+6aMv4cOPKObcypsRVG7SnjHGtPkrEEKET78bF+BDhAsRo/FwIcL5gMF4TD7g3FhMPsCGgI11xQGPLsIH+ow6lJTDCU3K39CCoVeStmXhHIdapd5aonTw7lTK70lqSSFp7OGEk27Cng9rbOZ5KMZ5wREiiqroY4RNNh5tKPY1LsB5svvWObj03vwZuX2C5Ay9lIU8NTlsm58ndVJUquV+KBB4eMTqSbblVajHbYzzmDM+kH1DxJRsmZ+XRU8OKVZFLFrOKlUj5+IRJfhjFwp8EufZm8RpEjSOV/pt3vl44kHt+ViQqwULFixYsGDBgqcFT2/Ac8GCBQsWLFiw4BFgIVcLFixYsGDBggXXiIVcLViwYMGCBQsWXCMWcrVgwYIFCxYsWHCNWMjVggULFixYsGDBNWIhVwsWLFiwYMGCBdeIhVwtWLBgwYIFCxZcIxZytWDBggULFixYcI1YyNWCBQsWLFiwYME1YiFXCxYsWLBgwYIF14iFXC1YsGDBggULFlwjFnK1YMGCBQsWLFhwjVjI1YIFCxYsWLBgwTViIVcLFixYsGDBggXXiIVcLViwYMGCBQsWXCMWcrVgwYIFCxYsWHCNWMjVggULFixYsGDBNWIhVwsWLFiwYMGCBdcI+agPAABGh/gwvifGmH4CPkT4GOFDxGgDrAswLuBssNhaj9+62OLe5HA6ePzG3QmDcRiMx72tgfUB3kdY6xFChHMBMc6fn8EYA2MA5wxKCQjBsGoVOi3QaYmXj1scdwInvcT7D3ocavrbYSfRSI5OC0jBwRkgBQcDwBh97nWglbieD9rDTdgzxogYgRAjQrKfcQHWk90uRgfjArbW43PbEefG4mz0eO3cYmvp7z5EhECHxhggOEOnJbRkaCXHcSfRSoZ1IwAAPkacjR5bEzDYgDtbi8nSd24n+jznAwCAMwYtORoloCXH8wcNDluBo1bg1aMOh1riub4p7+m1gBIMgjMowek+SffLu7XvTdjzJsfm//vaBYwLmFzA57YDLqzHxjp89h7ZbGsDBuPgfESMEYwxcIZyjbVgOOklesXRaY6TVqMVAp0UONASgtP1zffLxjgMzmPwHm8MEzZTwMYEvL4hu56PFtYFOE82zlCCQ0mORgocrTQOGo5XjxscaPqel/oOjeLQkmPdSkjBITlDIzk4p2N+p7Z90mwJAF/xg/81QqDrJgSHEBxtK6AUPQ47hVYLtErgZKXRaY4X1worzdFJgVtNg04KtNXcJzmNK8ZQxn89Z1sfcG+y2Dqy7RtbSza9sBhswOQ8zgcL5yN8oLkiRhr/+fPXrUKjaUy+cqixbjgOG4mX+hYrRXPxupXQkkMKjlbxMm55silP1rrKvjc1z25NjCH5nBAB5wP5tRAxuQDraX7aTB7GBbwxTNg6h63z+OyZwcYEbIzH3Y3FZOk9g3Hk06p5Ugk6byU4Vo1EowUayXF7JbHSAivN8Vyv0QmB40ajTdep1wIyzXGNpGvGGP0O0JgMkebkydGxWx8xGA/nA0YXcHeaMDiPNwdbjvfNjcPkAibjsZkcrJ/HbLatYAw8ze80NgVurRRWWuCgEXjxQGGtJHopcLttoCTHqhHpXBlaJSDS2M0+GKBx3OsHG8SPBbl6mIgRiKBHfhLSDemSw95Yh3uTwxsbh7tbhzsXEy5Gi8F4bDYG1gY4Fwq58n4mVzW/4nyeUJWiyWZaOTSNRNdIKMlhg0KIwO3OQXIGyVk5lpAmE8ZYcS7POvIEG9MkW2znYyFX9yaL09HjdHB4Y2MxGIeLNMGGZCPB8+BzxXFOPqJXHKMjI7oQcTo4DDZgMB6nGwPj0iQ0OngfdshadiKtEmCMYfIKNkTc6iwEAw6dAmcMggeEyBEiA0/3I8P881mBC5GIqnO4sB5nk8Pp4PD6hsbaaD22k4NL4wugMdVIIjtaCphks5UW4GDoVIAJAYwBDReQnCHECBMC7hmDwXlsrMfnzx3OJ5+ci8FoPC4SufI+pAUTjTkpOWT6Ph8jRivRSg7f00EdaAfGJBhjcD6CsQjO0vQSIyLYM2HYO2+cI4RAZENwCCHQtApKcWgtYdYeOpEr4wM6LREjsNIcBw39PxMEbJDgjObBICi4kqe+Qh4SGdg6j7uTwdZ5XEwen0mk4e6FwWDICV8MFt6TXa2tyJWkOXkwHq0W6BsJzoBjK+F8RC8FaHhLNMmuQEAQDJzRfcXSyI1giQA+vHk6u5pQ+bDaj5lEsDbGYWMd7k4GZ5PD2ejxW/cMBkPj63RjMFkP5wLGS/Navv8ZhODoO4VGEbmaXIM+kSsfgIOGbNV5gV7StVSByApdL4DzWYTwcbanqcmgcRidx9Y5vDGQPV87p59b43F6MRG5sh7bZFvn4s6YZQyJ3Eu6/6SAcR6dlrjXEO0Z2oC1FhCMYx1kmiuAEIkAxvSTc5qZ+Ts06zNHrjJo0stKSCwrosF7DM7jdPC4u3W4u7W4ezFhOzoMg8XFhYG1ngaqsYgh0mqtkKuZXZGRGRhnEFJASAFrPZpGwvQKnabLLxhwYR0052iESIw+3YSRlVGUCeGzyLH2SXEmsy4NTusDBk8D8iwRq7tbh9OLCYPxRK6cL/+PMZoshrRaaRVd960SGC05Zx+Be1siZ2MmV8bBmKsmIUBrGshjQys2FwJi1DhdeQjOYX2EFBEykcLAKztXRn0WiPSvv7GF8wGTDxidx4UhYnU6eJxtLTaTw2TJbiGPMdCY0ppsppWACwFbLbG1AYIDB02AbQIkYzAiQHFOJC4EnBmHC+NxNnp87sJiOzkMxuHO+YTJemw2Fs4RsaIF00yulBLQmpyHsb6om4wBx42H4rQy9yFChIiQSB1jbOe+fZrNenb3DDFEMM7AOQcXHE3XQCoJpRWsJXLVNDTWOu0AAOtGJPsxWB1gQ4TiHG3kidzskivnIzaG5umNc3hzsDifyK6fPyfScOd8wmgcbLKr97GQ5oxMrvKcPEy0wLU+woaIw9YCADgDOiWSAsnhI8BChOQMseLNeRg/rPEbk4ofUhTGpWuT1XzjAiYbcDoZbKzD5y4MTgePe6PH62cjtpPDdnI4O5uSYOAxTVkw8Om6M0hJURchOIbOQWsiyzYR5E4LxAicpzGxUhKTD+BMw8sIFTg4Y0SyAkOolKuZLM9RiNNElrfW4bVzikC8fk7z+GAcTi/meXgoxDmm+T0p3JxU46YRkFJAa5GOdybRF0bguJPQgsOGACVYWnyT8pYhQkwJVOwdjd9nklwVYpVITFY9jAs4NxZ3RoPfvGdw52LCnfMJn/3cBYbBYhwMhosBzjp45+GsA4IHnAViyB8+fxFjAOP00BpCCGxWLZq2QdNHpDQgAAAgAElEQVQ1AIDt5DC5Bs+vFThIdjx0FNLwUYDHCBaBZ2Lpex/M4dyYJhR6zMQqYms9zo3F6WTwmTODOxuLs63Ba3e2GAaHi4upTLBAkvLT4MuK08GBRqME1q0CQIP/bDCYJo9xdDg/n2AM2d2MBt57xDL7A0orKK2gGwVrA9Zrje3ocJCcya1GgTENzki14SGCM5bUOIBXK+CnHc4HjJbG2z1j8dqZxRtbh7OtwWdPtzTeRo/t1lyyW1aBlRJYrzWahsLsF2OLdStx0Ai8fOjRSg4tOHyksMNnzgzOJwr9f+50wHZyGEeHe/dGGOMxbCcEHxB8gHOufJ9UEkIKKK0wDA59r8AYw8VKY7ABh41ERESMOqmWNPSDIF2D8ex4n14F+tY3/gjgDM2HjAFCAUJhbNeAbiGVxMWqhdIKUkncO5jQNBKnG4O+kegbidOhw1ErcNgKDIceayXQColDLYtSZEPE5D3eGCecG1pI/fpdg/PBYjNavHE27tjUWY9pmMpY9X52wEIKCCHQ9i10I9G2CsYFrDuFs15DcYbbqwDTB7RSIERSspQIgKAoA0Dr35y9zJKWlVfEN2nrOhToAoXTbPJlZ4PFuXE4txa/fm/E3a3Db7w54Hy0uBgt3nxzwDhaTJPH9mIL7zy887CTRQhhRyQQUsxkuW0glIBUEut1g6aRaFuJ149a9I3E5487HLZEWr7gwGKlJHopcexVCcNKQdfE+hx1CDgdLTbWYeMcfutswr2RyPJrpwM2o8PdZNdporncWQdvPaYxjdkQ4J0vx8w5B+MMSisIScfbr7tyvHcuJhy0Cgedwulth5NOwoSAAyWxVqSo6qSQAzk0GMHA8aC++JkjV3HvyeysyZlOKdY7GGL1Q5qAx8FgGiZMAxkW1gB2pMkkeCJXMc4kC0jEKhEs18ALhSnHCwAMQwutBYZJYjABow+wISRpMpOJtPJNS9+neYJ+EMTqZ7ZZSMoE2S5isAGj9bTSGRzG0WIcLbyjCbZIx5whBF3UCikZvI9lBepDxHZry6AetgbOOjjryqCuyVUMsQz0cVQllHRhAtaWjs+GAB/4jo2fRfhkMxtoxTo6stloafVMDxp7wYcdp2gtrUat9WQnL+F9LOqjDxGd4mhVRCPI+WxtwOngcTE6XIwWF4Mttt1uLayx5ISdL98HkHP0zkNIgeADBk0h3+3koBXHhRIYnEcnBUzw5ftDIcy79+xTO2qnTUWuOCAkESwA8BbONhgZ4J2HVBKMM1jrIQT9tD5AKw7nFayPWGlOCyhJIdasCtoQKLIwktJ5Nnrc3UzYJLuenU2YJoftxsAae2khVNs1kyvGWCIUwGZjKGTIGc4nX/IxJ++hOYcUZF+elckIcKSQF6tU6ErFuimr52hLVvOsn8Ol9yaLc2txOll8/tzidLB443zEJt33Z2cjzGRhJ4thMxRyBVP5NLpQcEIBQgBClbEglUQMEVOjMI4OjAFDSwRqtBKjDWgEg23jrETKCMcZZCDC4nyA8+Rzs7p2Nnm8dmZxPjlcjA5vnk8YBovT0xHT5GCNw7CZBQ47WcBbwHv6ma6/ZxzgAk63JWoUY4SZFIzRSbEkQaXTFAY+bEXhAo0S5TorwSgknGz+oHimyFV9XWL9SE6OnHTE6CKMDRiNhzEOU7oJzWTgpoluQJfIVYzJqFcoV8BMroIHpIabdHHs0+QwTQJT6zG6AONo8giJMMR6Vl5QUNsMwKxixVgSpE1y1MbQwxkajLWT5pxT7lZyzlLyRK5imnAjhsElOzmYaZ6w7WQRfNiZhACU8NU0OSglMDUexnmMTsCGUHLpsgoXkcnzUx4zqvCPXt8AQAllGB8xJXXKOgpPWEs5jXkSzaSVMUbkx3k4KcjJpfFyoUW5J04VR+85FOeUAO0CzgdbyNVmQ8RqHG1ZMJnRzETOZ7vyNDeQXY3xkNIRCTQeo/YYbaRwVpXTV0hziQnOeCoXR97RIytXMY0NLspzJ2VZgHDBEXyAlLyEYRslUjQhJrUXcCkXS6QwvfEeow94c+Nwb3Q4Gx3ubQw2KW1jszFEyrdjWQiZySTn64FAimRkHE5peCHAqxDQNGko5bAVHBvj0WmOrSXy34gA6VlJwg4RYJEyrnKqAmcpe7IiWDeFrHi7vTyr0QacWYvT0eKNjcMbFwZnW4N75xO2W4thsNheDLATLSrMdgDsRPbLgkHtx4QkO3IB61ewgtTHGCOsUTBagXOGafJQgsNYD+sCek2pEKYNUJzy6Roh0KQF6eQDppSGc3e0uDelPNmLWYk8PR0xjhYX5yOsSYugbSVwmO1MBr2bj5kxOmZn4IWEVxQpcg3dE/V91zcSLgQcd7Lk9B7omRppycEQAPCiVj4InilyVaNWrPIKgCZ6j8EEbJJqtd06TMOEcRgxDROwPaMb0Fu6IfMkUqtW+cbMI4txer9QdIOmvw+DhdYC29bhwlB1lEkyb07aDpUDfhaTnjN2FMeiOqKoBC6GNFjjDrEiUkRK076TZoxBOQUnHZyioaAUhzHkWENSrqxxsCat8KynkNG43Vvhcbi4IjUrRoxjS8qV5hgmj01DtjWpsqVWNzKxqhe5T6UDTshOIcRUsRtjSmalfJGc/+FcKA6yVpMon4IXNWmaaPUMAEMrsZmo4kkrDskpLGisx5vnEzYjrdzv3RsxjTRZby+2ZNdpohB/tmtaGLnQwidiYBoDzhnG0WIjORotsDEeK83RCr+TR5LnFw5WlOc68TnjqbCz1PSzHhMAzXsAGX24gDfk6LwnBcs7D9UobLcK3kec9wpnrYIPEQetxLoReK73RbkaXcSF8fjsvQnng8X5YPH6m9tElB0u7m1gjcW4HRHcVRGGam52LaKQmJJyFULAdqvTnxnOBktVcpxhs3ZQnFMuX8rb4hapGpSVpG3OYqkyYwwlSHgTsJ7U3kyqzgaLsxRm/3/eGPD6xuJ0Y/Abr1/g4sLgzTe3mIYJZjTYnG8Ak67NeEF2Cn7+WS/2uCAfxgW9Vyg4IeG2B4DWkEpiGiaoRmEYLLpOoe8VNpPDYa9x1EpcHFOeYisF2kRmB0eiwvnk8el7hkKZg8Vrd7Zp8WNx73QLO9EYdSbZczxPZN7OamkMu/ddjhoJVVRUM65gVAvWNLDGlvQcYzzWa40QIo5XGs+vKAx9pBUOEnHUkkOHmJLaxSVbXIVnllwVlJUmEBDhw26JaAixrLYQwjxIa4PWg7YOC0aQkRFmuTxJmDkRPueThGpCLsrMI7gcjxseNGwWK8I1P+JcZBBRrnkMkdwcZ+SwU0WntQ6ABGMUbgohwloH59xuuMj73fsAoPiP9whC0Oene8f7CBdmwuyTfcu5ZXtf83V7XPHa6TgrdRXqUvb7ko2sMGPOCfHOl+qgafKlOnczObiwS662WYFMinQmblnR3CFWMaTxS4umrF6FSlnODx9IhasXa+UeLOdaZeLsrb2eCiKtO3K+2TkDs0NmSRnK86Wz8I5cjzWZfAHDQK/FCJy3ksafJ4emOCUdj5ZCvGdbyh3aJlI1DJbCXEndCNbOakxW1HLqBktJUolAhxDmvB2fx20q73eUYJ+LImwKwTGWqkJTYjvAITjlX1ERQwQHA7/B5XAdDsxV7mfG4t5k8eaWiNXdjcH5ucF2azBsBpjRUCht3NL1cQZw03yNajKckRXIbNfggaCKP3O+xSTETJg9zXttk2zoAtpUhd2pgF7R/bAxHltL5OpOUqtyaJdyLokk28nCDQMRK2cAM8zH6t2uwJExD65qsUQ2j8FhkqL4g4t0r93tiVhzAC+sbWl91LmqmCE8+Ey9kKsKmWAFxL3JNBRHuJtfVT2A+4QGSU4sylaMQHCzk08Tsa8m6ZxwX5OEBbt4L9ek/N8w50l55ouj5jyH+GIJQWVyFUPcJVc7rC6Uz89h5nLbRLoTKPG5+m/v+iyeLLxxPhVFJ19/xiiMIhgrrTEEZxBirva5imzFlMyUnaJnHowzGEO5H5wzDEbABw7BKXdnsjnE70tRwo5d/d6iqSgcSPJi9f2ZPAGVyowd0lgT5vyc5b+XiX/nrMqzJ41o3fq2nwaaFakE2enl68fFnBqREUMZd87OoZxpUuXSnLeyjBvqVxZKVdlgXCFWOW8u5w/lsH0hVvuLoJjmYxr8uyeSyXtNsmIsPbLqHMFsLc4An+eLVLqfW3GA5zDhzSBXSZcejcbibHJ4c+Nw54KI1dnGYLMxGLaUM2wnC28SQXFmfpToS9y9/4FEmt2ukpWV3XRta3IVkljQtqJEhFpFFaErzStyRdGazeRwuiElcrtNod3Rwox0zM44YErHW6tV+/fajnJVpePEZOscoo4BbmyKvTcbjRgj7m1M+e9vbhVEao105ELpZ7aQqwfEflpEdnw5XHP5P4TLr+XSoBhTWVC4f6C9unFn8pYGc4yFYJWcHFQTdD0pPyOo+4bt9xDLDogxEt5nJw1IQTJ9bmTIOJsfYbflQc6lAQBn3ax0gZy4nSycS+pVTpoM7upVEss9efa+I859uTKBz+T50jnjyQ775p5UdTVnruikRn9z2XWMqfmqYOgVx6AFjBNoGll61piJkqJzIUdelFB/urBjs1GKohYCgKxyspzzOD83JX+udsTBOcC53fFdbMoAIejeYZfJXl3tmZNdd1VTNoevy8fGct+Wr9kJID3ed8H7/8R/CTOaQlABgPXr8veZqMaS47SD5PQCAGdcIVqU5K5hjAfnDNvRodUCm1EVO+b+Rqf3xhIK3JxvyZbGwY4T2bJ2wDWxqouMkqpWbFpd8hgpl8mnVINzQwsvH0nBUpyjl9RoMjcWzdVwrYqlgS2qfK7rxmQDtpPHYD1OJ4PfPBvx2rnF6xcGn35jg/PzCRcXBnffOMM0TpjunVMY0BkqQCihwD1lbx8lj676PRMVLgqpdlLj3Aeqqm0UnAvougn3OoXt5NBpgSb1AQSAwVA+6mZyuHt3TGqVw/npeRmf4eLerFbl43Vm9qXFtnvHHSMQ/e7vZgC4Kf/fTQ2cbhFjxDQ0pHivNc4PGmgpcD55vLj2aITAcdDwIUKJJefqZlAPzEyqwCl0gDwxXzGY6ol6DzVpyOuhsKdnPCvqxv2wrwDk3/N8SAoIOTpVFBCeerMwCCFKnk7kEYHNTrQOHdYqVv5bURj31Isy2dT3w54Dzo969ZoJ/Pz91UlVSvaTxqNDiDuXp1Ze6waHZbXtyUllIqtSXoMSqWGnFnAuUF5Veh/nNLZC3LVfCAEsMDjnk9rlYQwRreyUS4K8CyUMWIjaVdgb6/n+Yen+4nwmQ/X9VyOTTIRkWkZTBWMMLMaSk5MDhnQ7scdywH/TT/0vOL034vx8ohf27s98bRhjiFIU8ht8qJT+sLtqjRQVgKfP89bDMgvGGIbBlbArfX6yY8rJy8RqmuxOeHdHzciPevG7R6zAaW64PG7pEEvXcBvAmacQf4wlTKkFR+MFWHpvENTvLJ+l4DdnzNyEd2MdLqzDnSFVUG6pH2NRrEZSrGDHlC/sZqKSSdWDIiZfN68UCHYkexoNk8b0NExFwVeKwzQSWolSiTelopBpcthsDMakVpmRCofiNM3K2s7xXqGu3fd4wyx61MqWm1UqO7UAgO3WpLUUw9lgIAVDIzi2Bx5aOAiu4PyiXF3CVWGkedWYHzSoZAlTpMRZQSW7LlVM7LD2Iq1UnhGYb9gsh5eJmgb4pVBHTPkaVdiohCIf41XsTaEOvRTVByjVRFklyKElLTiatILstMSgPTor0TSUAzCp+Vafw7y735crCetKrxI6CuGyc+ApsTFP1jyVdieVjKcQV84D4my+x648553z339lF48ydJQdXh0GK3+Lc85RDgnkXja5C/PWeoze49w6TI6qv2RSr1zqPZPXLrlc34hUtZfI777CWEJMicxReJAXp+w9NRzMjrhUIYZq0s35kUxUhFmCS0kdx6WAlLI0n1SJDIq8EwNmQhUiJRyHSGPdloUAK/dsIWSMQl+kwOZ56dHZ9z/+2/8QxgXc2dLuBNvJIcRYGkkqrXYaJ6OcF3Vml3Iea77OL3WV3SpFOqQeZmYyMyEDME0CSjkMTa1AUtuUi4upqFWlhUZOYL+KNOwsgtIcLjUgVbGtSM0yM3nOncM3o8WnTwGdelu1kkNLhsOWturplcCtRqOX1Lk/xFi2yrnJcToYjzujwd3J4PMXBp++M+KN8wmn5xPefHOLYTNQ+6DzCwqr5cT1OlepzlHI9/+DoM5zyuMnkdooNaapRQizijVN1EA2N+QFaGzTI2Cb1EdrLOzFZlbYzHYmg4VU3SeCdBVKvl+cjzXGuSjNGXgA3vQQQsBOTTpWidF4TC7gVi9Si6SIVj24EvnMkKsHAWNU2ZMnyjzIMvtinCHmgZkT5JDDgPmi7ylYdcgoe4wrwkcZD0LGn3bs5K3sPE+Jw6nSLqPO3ZGcQQlW9oPLW5dkBYQHXlow5KrB+QtQFCwAO/l2pFzVX5pDwJVdOQeKU885Q2RnyWfH+rbnfmVOznyu9TWi127eEdeEav/7a56aiVUOheZFQ66OzL2KJu8LsRptLLkMuTKnkQJeR6hUnh+jLPk5RIh2jy/bKBcoWMvBeSyihU+5c7lJaFYiLy266sUQl0Cleu6T5pwnxtO8ka9PVutouyWAIVYEO5afdVUZQPuheUTIR0Cc//L/9hu4mDw2JuCNjYXxEZvJwaT9+fJl4nwmUOV6p/VffR+ylIckGCUO53B8Jlo5HJ+T+WsCBqCydUyq5UySraXdMXxq1ZFtel8lZsemmThz6t3EqRVD6SrP54VvXhDMgQeytxZErkYX0CuBTgVwxlKbFdqDMMP5m7Ol87T9z7mhnQ3OB+rfRjlLpFbZyc6tgzKxul9fxnyt7nf99pFVrFwcAMwJ8QCs0WUOEELAWZEWKKnPVVKRc99AZ12qCBx31ar6WO83XoG3P+46325fxWIcZmrpPhAc262FUrQP7Nn/z963bTeuI1luXElJdmaeS1V1r57//5P5i3npWWumu+vUuaRtXUjiMg+BAIIUJVuZVlZWTWMtZcqyLJEACWzs2LHjFLF1ARtj/pu5uqkp1dZGkGZHKzFxCgZLa03mZJVWvhAWXOquZiGGObD6RxOv/j0ah84qI5JxBrBMAVfeaPRWoXPEKjhH4EobephkEA0tsgyyuKWUoKGRylhyOHDGZnGrY9/Glb2zZiFBTcellKrwW6+wEhVIKjUDlPRVIqyYMQtHAW2BukeTDCL/zMfBx8wkm/yZAFZjshKPWcrFTDXjWDx5ToG8rrhYLNUN1AhRC3CFyoikmJCQoLLoKwGWUylzwokJxEqmmpzAdhln4yr7UNsS6zN1wiUGm1grTsFnbQ3/qaweoCKFK5X4aC5eqxUZVfLn0PfT+9I3mhP+5//6G15GcsX+6wuVkHkZqJDvFBOOhbEaA9dapGuRLTBSSjDR1HuEGzNT1UtONfPjrNoFLMcOQGWslFJVS5eSqdc3g6sUUwVWNdMzlSze5QJ8Ng83lhlKgqoW1gRQQ5AYA6aocSqaK63o+rSazDI3nkTanVUInsZ+Y009j1sE0Lc2YoEDngfKuHspWZPHYwmvDSPCOLasQGmzcG0XfwlMrbUaJjwHVxhOCLkHMqp1CrOEAFoGdjEDjdPUMgIlELymB3vrccvrQLJtQA0RTsNUrwWySSKT4KdTxM4bbF2cFXR/rf3Tg6vVxYBZUH6oNlFaTbsS7wxpQJyGdbZ6skT2cwEWYknVLjS18MGY3dCKBLIitr82l56HiESoSP3zurTPxkuwIDGxH1KaFWpmzygZGnzsDMZA79mV9NphCNBaY9JU3iGqc80Ns1R1l10WbF6Mz9330cCVdbPJw1bWjOoMOl6MV9irVNGLOtMANT6kMF/8ukJdwABA3Sl8nMQ4ZDRtFTNS88zW3BLrsgwJspi9uOhHqhv2+USFk09TxstAepZQHPJtqR243boajkopQ0+awrWxeZbxzUL6nsY4Vo1WGedpnKqdRrXVSIsx5f8Fq1FDRraVSvKWtCPO6GojEXLGIQRMScOq9jqPHYcBme3yVldw1onnhcN797H8v78faQEeIw5TxP95OeK3w4TfjgH//usJ+1Kc/mk/IoSIcUyz+5HBjS1u11AtrMceZNz/Kre6qtQBgDEGWbf7i99bGc7YWOKcM22ItMZohYt6YcumYUKM7Co+knB+psdZG1cREtQGytrZPduuF9LovbyMYgPTPo6zWbe9Re9L6aUh4oeNxY9bC6WAD9FhF/NNppO3ts/DhF/2E/7j84j/fDrh19+PeHo64eX5iMPzAel4IBE3i9dnocCV5I0vbTLkxokEDLKmE4JxCNOujidfE7UcUYzzbEDpS8bGoGvA6kuOm6MNS2+sOAHaYIg7xBDxtOnqZvC/PpAmSyvg575781f904Mr2ZaMALe6RoJ2k66kYFozZz20oUW0ZksoDSgZFmTacfkFgrWqD0AyHFWTc+F6WcPs/7wASzyXD57ghY6HF29mtbQqhm+W/9cYLJVLIf8VGsfqk5TjrHNnu+mMdeZKadRMFF6IK1PVRM9Sv2E062rmtoIZRcaVckP7/DX8vwRQNUr9bWqYzUBUZqsQzFyqJaiSi3H19krNMDXkhFD8gsZADy59EyI52E8FNAMUhmLnfGMUUhLjV8Hdgr3KbfLm12uyQoxnTEttvAhLxkqw1rowVjIkqBSdF7vNH0PEqNKZuF1BVb8moxWsopIpXGtNKQVb+tDcie3gDckpJDxPE347UD3H3/aUCv9SHOtfXqZq4lqPf8aetgoHxtBGUtajyylXtopB1rIxkyVbzrlopYU+SwtGsoArDh/WhTkJy4VLDEedg9XKBrcdHwNIPh7+qCSuGboGNGUSTgbDVNzly3t/2gZYRdUBbmE6bm1jojDuyxBxOIVZJmyaprnNwlvZn1saAxV+zpZDDFjC2L5zUEjaIpVNC4DGNibhDC/tMyqrkObf+V7HLVk3pYrGyyAYh3EYMXiL04lMiV9Gh/1IJtBvbf9fgKt5WEPststrLaZeMs5MAVZGVfEqi9rlzqdeJDxIFWAt2kyX0xZiCbDO/uSV81nT3px9xj8A8Lp0/JIN4ZAgmXBikXlWxNKRsngAyjzrjC7gysC5COc0YtSI0SAYUxdmlcjwT14QNUwhdtXniJwvGg41yGwyvQBWqgqWZ+w0GJgQ65RyXgXXCg1E8yaArtUGstKd0vcZSPH/oZQH4nGoiRiC0ZIscQVWEhSXBzvqD0XXQ6AqF5uGpsNSSs3ZK62RTRsj1O8VLGRMLRSVm85npvmpiF0MruZFGO0eLWFBGlfdsgUFqzGGDKcj9tM5EOFzUCBwRRs4jcdMdcts0mTpYGiTZu+UYRYSWRlwdhkDq9/3A/54GXE4TDVzi8Nv9djLdX3W12IOO9uY8HWrWp/M7qXF5cqfW8FxpsxeDtfJ8QshEOsYFovxNfCw2OSugSsGVsReoT6X4IrD/TEmymrtEzae1gKtgOeR3NydUXhM91tih5gK80t1VKXFyExntfSwulfLCbWKdSqgCWhjogMQTZsEpSD+LINxhYF872NVCzAYi4XHeEIYdxiHCcNgqUbtGHCYDE7M0L6h/VODq+VEv8xkmu1GSljQa42N09h2FseROrbvbXFRT7DeIqBv1CLTn+x9JLMG5QKsW30mVepZkUVA0+XwY7kAy+clGoRCYrx6/rLN5AffEHid71AvvG/x/rb25bo4s1fSFBJNKCXM9DKFWrw55wxrKKtn11ENrNM21EkxhNhYoixAlGCpKqhLKyFBoE3SxgAFeNdsMmcpdORNA3glLMh8E59Lzqqu7Qo4x3BogAqKaqwxy2nKZ3KY6R6N073JUBEYQ2rFsgtzmDO975I+K2XgFHisAk4h4TAmHMfi0zMGvBynkk1IguUaEhaO6KYwVtaZevHrqBvASnPfMj4GfnDhbhLEr4RHKrBSlaniMeVitbZIBUzp8JQzPp8ChqDxPChoFarGLMQ8s1XRUMUPSaG3Cp96h4012FqDH6NH5wy8XQfY79EOQ8DfjgN+PQ3460vAv//tiN/3Az6/jPjrX19wOpEAejgOLWRerrda5FirylatbTpkeG/ZlqBzea9VE17VxlSCnwaIU8sKzOk83FWBn9g1n2VtqxkozImuj1EcJ4NyDkPPsiO1wtFTjb2uzDGHIWCYOnzoTfErzPjg3VeO2uX2PE74/RDw+TDieT9g/3KqGYIY9s0bihmke7ZK8UUUv5EiFC/mo3ESJINgu3jMZDbgrXYLX3zMpU9SeV7sJJAzTocdODnpaT+isxq9M3iZVnzbLrR/WnA1X6B5kucJO9fFIi42OxwW7ErGmS+6GedKtoMxSCYhJWHJkCKBpyyzmNL8hmamS2QfNcG8agvlpYm17ASzWIJfu+zOAJSYc3K+D9NRv0p0quzf5TFfZK4YCNfnqNlm/BhTmhX/pNp9VH+Mszq0CO86pxECjSdni0UdZ8LoekwZ84l/2ZRu4SPVTEpb5hExLWQsiLoYcx+klBEVn1uqI7EEJtJsUim+TkhjlkGHYICmbXnn1kBtrqnp0lqBWamxpCpz2LCdK/3M7tanorsaYy5lRQhQcX20EMiPSpaXYQZTFjOXxo+SoVqKpGeguQCrLHfxayG4BavBrI1SmGWTcUbgcSLAb7VqmZEgIMrXMUAbuM5pdEbBWzIXnToKk7IIGgA6kW32ni1E0oQ9Dwl/HAOeTxOeiyP28dD8hcbT2PSHBWjmlBF1JN2UzTPAI61NlqDpfIO3YPXqBS8W0hpyV7MIQ1uI48pinNp75PtfQaryOFNKQGjXEwMryXouz4NB4PEYYIpOcD8k7LuIB29qksY92hgzxhBL9YFWSSKHsAivLfrmPdG7DA3K12p5oQXJcLYmXQBUa2DwvQFivVbE8RbtFfdlmAJVdsUYQ0wAACAASURBVAgJQ/jvsOBqy+UuXQsvSd8kcvkmSpd9bDjjjEWtNawg/a5SBGWPsb+VELUvzOtk2q8MMZiSrs92ELPjL/+nnFezzS6c9fzHGse4oeO+oEndzfLrXmOxZuBCjBcvrjLExCn9p5jIO2miMNNhihgDLd7M8FBot4V5o9FV9MyhCGmDOVsYatkinpzEZFJ2N1JvxVllDJqZaQJQM8lCCaNpNRfQr/ULA6t6LgWIZ65nljPULRk+N7QgQq9UfiSSQD1lHKeIKZFOakyxnhvQxpG3AqxJmhJlBw4FTMlQIAOrYYiVVa4WEBm1BqfsK6Xm48a/k3YaMxYy8QQugNXKAnFuKtnKIgFt7phCwmGMVWNVNWYpYywu9MzCKQViMa1GZzU0FIaYEbqMBxeKLkvdbUEeYsJ+ing60eO5pO0fDsRWUXZZoALWpX+yVkjaICXy+uIkAg4Ryv6WYbsKnNI8jJKpc8ULYgxeO+86biuhI/k5wHw8c17dR1ZglTIiInTW9cJlcHUOyssfC+Z7UhPG0eN0CvClkPdhNHXDd682iPuomuOGWEr/LEJs8xN/X4C19tnS9kACLUBqWsr/C9ZxtYzcHY5z9lxorwrIisFRJuOUME6RHv9txUBNTmw86XEGk8w0O02phptSBowCdt7g0FmMU8J26+queTz5OtmOMQKhGInK0jdnK6OmEgHWQ4sQg3Ma3uvKkDkzDwsyyxYVLW5sOKiWi8nKufOtUzPMVNPuNO3PfW4wnoNkWAjl51wOWP5+dvwCkM20PqzVKVlnY0x4HgMOIWI/BfzyEghghYyDyDwbStV4o1VhIMktOOeWDsxf2MIOAlythY+AylpVndXCZNJ7YTJZunlKucbsM4h90lDVOLYVdp6DU6NVsQkhLRkDrI1v5TfuNQ0NU8RhjNUA9Ok0UTX7GPF5nMqOjtgbvrfkBplBB98WKWfsRxJV708Bx5Gy104nKqhM7ttTY5ejYKD4eoqNSZChXFmvU7IO9W85VV8CrFmTG6I5wJK3SiogM6WM0VJtND5GvkY5bCqZNwDEoBaG4+XU4aG3+LSxsEZhiAkhO3Q3GBXe0j6PI/7zecJ/PI345emE33474vl5wOHliP3TvtScKy7ePIhFI5qsRyq+X8rauqGotgqy37mf2SKB21oG39rvgBVAsLgPJWhYADh6vyjZUtd4M2NKUqLxDlM404bRITQ2bs00FRk1BHo8krO8tRrPpwkbb7D1Gsewcmzv1I5TIqNLFrKPxc5gzdMKOO/z92rLzYlkhDLOQdXZ3y+A8RqourdWTHp1qREYjpiswzROGIaI0xhLlu3/58wVA6r6M+Ri3TKY5mniGUOMiDkhFvBtSiYP62fGMVaPlxgj6W2YuQLoBp55XqGxViUsyBk2kr2ypmlpaniosjZq9v9r12f9WtakVL0OLXRcduPt7NftjYFT3bzmtsBINkvWYpufSwNlGY2pkqJoDjONkVL5DxNlzgzFUTqkNAPRQbAezEJcWjyXoaXVJvzKmLWSmYJs71G1mxmIKWEUtQ3b71o4LfBuWvSP1QTQtFLYWksmhppE0M7SyhFvqHl1SwulD8dCi38eRxwCpfL/bR8KW5gKuELN8gNQz18pMlHlfmBt1WkiB2RmreSDCuemmX5HhmmlSH0NaC1B1oytWrIdvNNOeoav1hq7hE8h1XmkjiNv3sq1FkLTi5FrvIJzGpOhLDIO/xmtsB8jVRgItxkV3tLGIoA+joH0QUPAUPyQ4jgCw6FlmDEDwZnRAKAjkAwxkdrMwMiMqeIMsJzbgnW2OF4AHdcW1iW4Wr521nRD9QqN9eKP1RExz0X3a7owOoQ8e13+ngo904Ov3ak8wh1BAW1mxDU2M1LN7VEPfCWEd882Y7GAi/Yis2zAO7JV1xqL8bMSc0WajS3jhbe2f3hwdVGzU36XGKTwolxCGsMUqzD68zDV8NLTONFCUTrRFFZp8gZ9b+G75nMVQ0RQitKB48Txm3bDy3CgsdULSTJXrnjlOKNgyw0eCwCkY6ASGjHlFV3OnPWRfcFATddJg/RkrNu5Yz3RCoAYTLHYmfUouRw8X6cyjLh2PimjsoxjSDgWtmo/BTydIv44Rvy2JxbkNFG4g3VBbH5IqeVt4Wvrqpr9z9/bRLa80xWTuPBDquFAoc3hTEH+yJDIbuCPU0RnE5lHCtA1xgYahyiZVnqPMzReTnPJDYPeGPycOvSWRPP3SlA4DBHPp4CnccLLFPDvn094OlG///o8YgjEap3GWMEGt1rSZREe5dDuqZa/iDgcploKYziNMz+qpfZNLm6SUZDvrTXtuICwXFjXjCaZeS4TbE5kA1BBXLmWxjEUxmOs40zHUpir0MKZfO0Re1b6pISnnaNkllAWxl+3tvqg/RSFl947tucp4PdDwB/7EU/7ES/PJIA+7U/A4amVBGFvISFlQHJtkxjGakWT1zQ0Mu3/kh7qLW1t0a2f9cpn8qKuismz3ARLnZa2CDHOhdav3EoSUM41W2XcI4Fvlibcq1VyIKSacFXZwmXf3SsMWL/jAjs2A3dxPST8ls+9V1v2Ez8iFXNPsYErron61vbdg6ur7MHZe9f/vvZXXbREvbOYapjjFMih+FS8YKZIN0vNyKreRbqmZmutEZnBqgdRaEa+YZWq2YLSO4fdnllD027aJt5WSj5fCq8biFxr0rhQKSAbDc0anTuYFHJrCQNFzByb8Jk1bgDqQizDhrLxj3LMhkhjQ//n8iAWhFOST2MsrAFlnnF4qYWa6Ga5JICu/y/ZjnpgCYBZvfGXcwedP/k57cdYDCb5vFCFz1Ok/hpD0WNlVGsJW33XFEIGHnxGcOQErYt/kmSM3rPJwrCfhwl/e5nwdIp4OU347WUgf6oCOriPqR9aXUUW9zPI577hQsqstZqmhMC1HAu4WqtHR39/zmbNLBaSCE2tZZLNxq7EjbIi9ko1UKUSOb4nTQ/KZMRM3L4M47NeLArNFTNXPDdonSoDFlIR+Jdr4F6u3qNIHJiKw3kteCxrztXwiGohHUCE1QpoYuAlmxQnA+8HruTPq2O4bDy/CdZEhg9ZaC2ZL05Sqe+R2kqx+RKWFGeHnNt8lu4WrG/fdf0NdwYmX9L+XszULU30m8QPt7bvDlxdA1OvneCS9ZDgQ7JXjPinSBqYQwg4hYj9lPD5RODqZaQFm+l/AE2ALpxmleaQXxY7hDJZz4Tsqomfy9/JxadN0EQlx6TnomdF6skly7MMtXFjXdVSUG2yQtYKSt3vImfxcvOiauCKd+qcri7Hic9/2XIBlzFz0d+AIVL8m3RWqWbNDBNpEGSIKWdUMMWMAvv4zD2PFqwVMAdWchLOCWdO/Jhvfoh9LCGwoHCYFMZANeU4VBoKoOLzO01pVi4GQLXqcFyTK1IW0oOzsFrBaHe3BXmKGS9ToLTvY8BvhwnPR3p8fhkwDFEwOgu9FV97FVxhBkbI1JXGYhxjBVayWPYSXJ0D8JV0fhrwOUMBzENJs1Y2QzmDvXlSMZmsppWlZqEJph7DElzxR0smI4tjbhN1y1qOiwfVp3unwVu0MRBTP5X+bgLocZ5dxv2kDfWNXKNn+pmVOn5LEDtjC79gsZ8xH7eEj2QoSjyvwFCcRxKMyjKjTbr2AzSP54ysTQtFp/Nrs+km/45gQpodf6v2XvqubwUM12opvlP7LsDVmkZK/u76367/HZcU4UWLF/mJXYon8kZ6ngJ+OYx4OpWipS8TxhCxH0KdiI5DqLtsADUEZAzdYEHrpr+qu+TFzarmoSNO7TaCrZoSZ1PFOgnrlcmbGSEOH7IIWvYFyQioJAy7QpPHDoUg8/3sV4op5HnCADNPMRGA5J16KsfPGqt6DnzOaLqkIUQci0/SX58nvAzEovyxH3EsOhLpMD1NZXFe6HFYpxMK9csLec0oq+URVsov5FjDDcxuMMMRY0QIGsMQwFKup8OEo4k4TabYbdCZUYiUFrxa3qfodCTDR5olEq6PweHFG3yYDLauCdnZxPC929Mw4a+HAf/5NOGvLxP+9y97vBwow+zz5xOmMdSU5bOwdAVXxPRKawPq0sY4cQHeGCPCGKqTegwL5mmJPJaMolzcl0zVJcaD71EOI+UMBFVqWJIZaQwR2mjEEKunmTzHmcmreD7rD9U2aMtNFUAQIOd8N8bjFBKFzoeSPDBOVCB5OgFhaG7eZxOJAEocGqz9trKISiAlmaG1uXw1u++Vxe4tgKWCJd7wlns2hXbca4DqAlt15pOlDaLvkRJ5XE3jBOsMMea5mefes1lT9LrVsFjXsk3zc1o5N9leSy74krZ2j93y/q9tl67L+nt1fh2xrIcZ2Wqb1Koy3CKn+U7A1WXmYo2Vme8Q5C/aU/ZIYmC1fLD55BAjXkrhy+ch4WWYMBZR9FSE0JzFxAJVGU4CaOLMMma/bItizctDrsxMyiWjjEFcA19AA1UhNUASOPyGJoAGUPRWCr0xcEbBa8ObLuRMC/W9GougOVHgOBYPqkRC6CklhMyMFp1z3eiKQZSi+wTSIFGhX3q8DASCORQ4jpTGP47MXNGij4yz2mc1BTs2Y8nKYs1CShcW5Jxo427tTDzNMfppSjAmQmuF4xgQjEZCrkWc68fkxuZxqFqGQQEax6hVsUIwsFpXPQdbIaQ7zeRDjOXeIBC7P07Y7yccDiNOh6HW67sErqpNxQq44vNHxhnI5XGhjCcGVhcyz+iD5q9fA1dnLbW5g4kOzurMpoJuneieYRAotXZ8ztWigFnqCqrm+r4z935FX80ZpPdoMTXz5JSkmSqD0dz6re7oRciUO4hDgjmiWs/IdqnPrzFPb2VY3rwIi7BgRjtebdpxV8C0YOOAFZAlXhdsVwYQFRcLjyRqj22DdE98xZKPCtg5irIEVsuDeE1/dQ8251uGKL+ENZMMZQVZPIeVDaLYGL+lfR/gCnPAJDU4md/Q/nsVXPHnsVZpqbMKFVhRWOllJGB1GAL2p4BhijiW0FKMCcMQEWMuNw+LZS+wanXSuXCBirCBBFVD0eWcpozRx9oPldmC0DClVIHjFNMMROayUdMFmI02wUeNziRRRFTftVo7G0wy89cSBkiIzvqSU0iICcUCg2l00ZXlcLVqYbShALZTyHg+TjhNEYehGL0NBLBkyIMXfS7lcSZCjXMvG8hU8mVWmWwpUpQhlRIdsWhzyiQ7TbEe/76k38eUa5hW6nRk4kVd/LLweGKNluLQasIUde033kjco51iwn4o9cuGgMNhwvE44XQkbyTW7IQwdy6WQn8u2ssZWdIjifogz+wVammTFIEwNVB1MazHH3SFLVlb2OsgoDFWHDKKE/2NJmaajTSR0VzK1fl5znyxBKA01iDnQnALRtKcgaxzj7v3akFcV4lpYj7nZdhOAisOpwHi57i+cAPrgOoSyLqlvTXExiwkgDPtVUI77gqqJKPB74/rizRvogWDl7RBCAEuOtrU1QSV+Yb3vZtjNsVwWSZNKL4CrCLmvyYBeY3N+h51W5faa6Dq0pq8BFa1vN285BW7B7y1fRfgisXPKAtM5v/RFh9AgC6g3mgZYv4Ur/PcIVP4j2PEVADV78OIpyHgt0PAfz6NeDlO2A8Bvz+dyNfiFGpmWXOMTjVkUbOZpOMzICaTZbiiMSO8CA9DhHMRBxPwdJyQMzFqANDZgI3IAsuZQ2jn2WV8I0+i9Af7Iu28xtZrbIpeZ5csNsXI8F5tP0Q8HSfsS9j1v/YDnoeI/Rjx2yFiDGREeSr9ypmFPG5Ay3IE5hutyvAkKjcxTQSmnp+HwjBGnA6nKooOU5j5H3FfVmAsfaxmOp0V5oObnHgmjZQpNDAOY9XnUNq9wfGoMQyRsk69ntHMldVQ6ipXwQtwK3XT/o7bvbQdLyMV9/19P+C3lwFPTyccXk44HU44PB/IF2mZYQYgK13S9WkxCsa0fqthJT54iDCsADZnZpEXWETqgMXPS6BwpSkNILawV9XUaUCNQApISiMpjWAtoPQsHHjGXEnQpRu4MsYgRg/nCGjxQpwzYBWFHKy+bXd8S6N5tYBZvh+YnV1jm+r4pHVQAsxvzqtjcOV37934q2YF1kWYkNulcNlbmB0OK1nK7Axjh8lNmCaHMcTqxRfvdF8CwMZpbLxF31l4b+A8+TIF19Nxra1Fy/N4rd0jZPie7VaWSs7dy3E2lvwojQNsB+cdnHfw3qD3hrzLbvCg+y7AlWRdsohXZ9BiyqCpbrQkc5XPGS1+jT+rApFAeqZDCNiPLdxxGEL1fjkeSY9wOk3Va4fDAsioizUDJNLnCJZj2Vj4XE6IARZpc0gTNDqN4xhriZTOaPROYYq5LqINdJI2q5aACRkhN5sJuSm3QtOhFLE+3iT4pO+2GAPAVIrDPo0TnqeAvz5PFFYaIj4fxupzNE7kMyONIrnJHbx8ziJhFkFPU3P1nsYwy4CS4aocF6xHFTnnNna8iL/FoJAOjDQcqYQHhGHgNEwl7EhAwhiNEFotSWub2FsKv7VugJJDiG3XVIqJF92c0ahU9b0WZC6xMYZUWMHQtDrsiyQzzPjgZSaZUqVgq0jwAOY7ybX+l+Jq+ftluzThv7ag14lWpoiLBZnBYRjb+RTQlbVCluezYK1meixdhPGGihDnTPf1NEVM3hDDK+a/OxFXl9u1a4epcPl8lthxhZF6ja264xw0Z6+A8+xB8dqZRcBrn51baLA8GvvdIhIpn0sE37PJKiLemwrgg211bGfM5OwcvnBz/T0wWu/t1bXGXFlbjaGdK4bQVsPpt9+d3wW4kiaRKc99kThEArRdl2Sq1gCVfG+9yFPGy0Tu0ocQ8XmI+FzKQByGgP0QcDpNVLx0ShiHuahWampqmQf2FqlbwhUhLe9wyqLBfxdL6GgYyPfmUFyeY6IaZaegsXF5ZqXA51kz8XJJ3y5aikmIKLUi6wkfKRzoQq5ZfPe+6aeY8FxYq18PAb/sJ7ycCLz+vh9qFt84thpyy3lWLZirubcMKqPIxn3DaaxhQMkuplAW/igWae7I5c+XhNDy/XUgFKr+JACwqKFHgPQ2KSXooJGSgzEa0xSFpYeePefMUWtNEzpbDYOmrTBawZbSTJ2hG92q82Lf79mmRCL7gW0TpgZgq+GkLGAuxcKSCUoizCIBFrdlhhn/PEvlXwkxLT/j7LUrF7oEyczIsBYnobFXDCrYUFOGhgCyWQHOAJdkt3LK9WcCV6oy16OP1XSS7WLu3RqWvAas0so4SbB1K4P4ynm9x4JdF/8FQ3UWJgRmQCvj/FwvNg6Nto2ArASwZOHv1TxX9rDz8mzKGGQGVzUT8k6A5FuDrPcCVmtsZa3/66CtrQXbmxelhv9HCwsOgZy1Zeq+ZJwqlZ1b1hiBqfnzinHQUv2nlAqoSHgp9vX7MeL/fB7xcgp4Pk742x9HHA4TTqeAl+cTFWs8jTOxs8xsqjdQjKKI6GIxkIsxazgATKOtf79/OdU0dgDw3qJzBk8HB++oCrctmX62xNc15hvJhNY3UnOVoKBFn/H/9DdzQf57t8/DhP/aD/jr84Rf9hP+/ZcXPBetztPTMBOb845Ptir4ngEstQBYDdwyQyXZKgpVxVYRfiaGvrCjXguNLN/DN2UV9ZYFKAakGJGsQ9AGcYq1iLO1lnQ6JcNslj2nVQVUxGg1/7OuM7CWMgI71+oKdoYyPzfWoDP0MDfsqG5pp6k4qU8UKp+GiUTs4wCMxxYSlGxGBR0rWWUSBS4n6Fn/L5iqW0KCt7ZlyGjGrinMAOOSfbv0fgBZNbAVLYUbUkywo0WcIvadJYbSKDydAnZe47GLdzOe5LBj1egYLfQlvBDnFSYnA7IQ/Vp/3wq0rr3vq9q6znXGUgINUGPld/z7S8fIczqD7cV58Tyl1XXs+rXtwVl86C0OG4fjENBvfE0GGfxmfuzLdem92i1Znu/xHe/6uSIsrA2FUq0H/Aa+9+g2HfqNx27j8GHr8WljsXNvh0zfBbiauHCrcE+XWX3k+4RSmkZ4JIGBQxbPGWxkMmiMTTT9PEQcp4TDlPDHYcThRIwVA6vTKVDx0olCH6uFSOWkv/TS4YsYmO+UctvB5xiRNKV0T+NUd7L7PTFmkycfHWc1BmdgC6vhpahON88g2ZqGhx5WKzjdUkhNCR/x//dqp5Jh9nkgt/Tnw4SXlxHH44TDfqhp9xVc5XVwtQayZGMxekoJcRIZZuOpUfZxusxGybb2u4thXo0q9q0LUmo7ZG0RAKhIQCpFKnQbQ6yAypiWyh+EIS1R+7QAppRhLY17ysRijpHE7Fzc19x5PDlkLzPMcspNaJ7EPQC0kIlkq5ZZZVI0LPu1Pl+AqkuM1btN5ovwUGWxynONNu7LOmkVTC6yzJaAq2zGQmGvgg7VOHWaivtzZZ/vBa6agJ5D0ZTGOM+QuqhFWmWyXgFV3wRQXfncJcsmAeIaA3cNQL7SWkiYw/W4a4jXaYWtozqVvacSbYOzsM5isF0L14dRXNcrR/ReY3GPLMP3BFZr564WG4yiueIqKqy36pzGxpGt0VvbdwGuQiTmigEWZZRR7bhjiAgFLE1FIEhAS2YDEqAKguHi10PMVaP0PFAts3GK+LwfcRgIUB2PVJxxHEZMw1TDS2clNIDzXfVyV3DGesQ2uZbFKAZiLcLUCr4erZ6FyozROHXEXFmj4K2p7JVjV3cBtJrYuUyiimLyndXoahhJV8HsHbFVrWG2HygUuN+POBwIXJ0Op+ZpJA0iS5MgStb8WwKupXfVLPxX/XpSY1WuAqsrWpG1tpbKrVSbzDR9dzYGURuk1BgrJRZXaVPAvzPWVGZrBq7K9fdhjDhZXcSy5T7A5ZqTX9tqaJ7Dtym3UPjs+uc+KyGTtayyNYZg1q9rDNYrLOO7tAvaHD7mGXBcLNJnRWkX4U9+b86AscjBITCoDlGk7zdj43uJoCWwkmbIaS27bAY4JIuVLi+ir4Hfe4cFV72NluH8Fb3Y8vzWPmv5d/wnwmZnlimq1Zntyns3rw02niIcnTPwnoCVdRZwnrzLkhNlfy7MgTIU8rXtvQDWu4X/rvT/bCOkipDdA86XfqSQYF8fGv4GC6PvAly9nAKeT4GE5lPA345jZZieTkWPkDKG4l5dNVmpCeETmnanphtnKpbLCwSX6gghYr+fatr+4eVYRbrDcUAOgdiPpbj5Nb2O/J1sDK74IjcTQnTIOVfR3DRMtLAajeeONDrOtRCRc7qGjLw31VSyc6aKnDeewNhDR95WvdV46DS2TmPriNLcllp09/S52k8Bv+6phtlvLwM+fz7hsD9hOA7YP+2J9QiLcFLtqyvhlmW7BHBnbNUivMR/d6m9NjEsj29NV6QUoMf6PGuDrMQiBlBOfvm7Zco++0MNnnZQ4xjRdQZ979BZUxfflw+Bkh/i/aw1aqi9bFyaG/oCWM00LQxMBPsD4Cy9/dLie2ms7hUSlB9xCSwxO3UtvLl8Xf5OGxL1A0jYIiiFMAaMo6WNXSiVBmKqrOR7t94qsRCbuhCPfiW7TJk5uyPbLWzVW0OI79Eufe5SeD/TYAEzPdI1PRm/XgtZN7aD9U7OkQ6qsxr9jUzHre3BW/y4sThNCVPo8PjoayWK48sRIx7p3MPYNJEptrFdnudZKPgL25eGCr85oCr3tfUErPwG6HfoNh02uw0eHjp8+NDh087jTzuHn7YWj+7t7tvfBbiaYsbzGLAPAS8jOUHvR2I/no6BvKlSpuyy1HyrcmadUa62C1LwzACMn49jq1x+OgVMRZgr/XryMFAGGGt11tgobhfB1pKCRtvMC68eZjVYc2QMgasUKavIOluFz96bWhTYe9LiWKsxeBLbeUsZgK5klCml4cw8dGSFn849tQBjCfNSDTPSlIXywHBqN3sM53+8DElcClEA8/4/Yw8XY/de4YllZpkEEgDqAswLkwRdMnsuNaCV2KZAm+oIzlllJtI1kbODUmRI6i0B6dOUMPh015IpX9RmIZcLzIH8Xf35gv5t+dlXv/uNk/mtwufKvF34ff3+5ecvWLri3ZWsLZnDbZPIiSb3ci2r2WW2bNzKZq66ei+zy97KurwlDPjW3y8/763t2rEuw5mXQOObvmdlcdamzt2mzMVGJJzcq3mtsXEGW6+x7Qz6zqLrLIYhwDpL+ivnyWKAiYIzVvIC0/RebNZbhe/fEljxcx7DUve3MVbUj11HIcGdLwyhJdLire27AFfPw4T/Ohzx64Gyy/73r0e8nCYcx4iXw0imkKX6NxfeXYIooKXpz4wiZehIZPqxs3QMEWEcgVBE0FPR69Rw0hsn99WLR+gwJJ3OC22KyNogaIMw+mZaVoTPHCLicJExZga6SPRsK9Dabh2c0/hh7LDxBg+9Q28pFOhMgoKqWoB7CaCBUmZjICPW43HCeBoxnAYMxwE4vZSwXZiDqzUQdYkd4HYpjPSaCPo92A4AZ6yGrFG2JuaW4Gptkq7sliLd1ujJfLJcryF06Hu6ZY1W+OPYY+MDNtbcrXAzwJ5j89BHXlLqyy7NGRV0LJkD4PqY3MJcLd/z1rb0PwLmwEiC6Lzy2iWvp/rahWPi1P0aYhUbwvz1l+a1tnMWu87ioXc4bAK6vkOcKAlkdH05bpEActNct/a+O43dWz/nWrhvtgFI66/PPktc7wxEqwC6h/UWvnPoe4ttZ/HQGew6jc7cpywVAHRO46N3iDvSFf/HQ1eSljL2LxsopTAohTCexNqjLrDNaH0xO+87sFnv2V4Dr2vrCa+/PJauA6yH3WxIxL7t8fjY4dPHHj8+dvjzo8Ofdw4/dA7+Bn/I7wJcHUPE8xjxxyng90PAHwcy9TydJjw/j9UpnevEVVftnIEFmFr+LF+TAnXOLEOKzQiRxX8cWgLesBN7ywUn9CdAm3jDKHaMCdAWSSuk6KC0qgzWEmhxnTOtNWJMMIbAVUoZ3mtYrSuzAHD+KAAAIABJREFUt99aeJvQWdKwpazvznKwTQSXZWH7ieYLE9a9kWTfyNfoUy9/4VrY71qY9qvDEldYDX6+ptORk/glgFXrt9Hfx2wxjeQGboypAughJAwxkc9ZSndblJegqtoJMKhSGlfHRp73lwCq5e/Wfv81bclc8fctNTlnC9EF4LjG0PG5Z3UR8NfL/46MstMkFfBWw5cQFoezYH27P5UupOyFDNuLmqsbNXH3RJL8+e/RoWssukzbL9IO3uRSyr5Gb/VNTMetzZTx7KzBzkdsO4vNYHHqLZx3ZJkSAoJxRQtqqU80aP5dG8drmqn31Ga9R7sFWC1fqyC5sFa2q6yV8wSSN95g21nsvEZnCCjfIqf5LsAV1/d7OlH9sufDiP2eUvdfXlayy1I+B1BADa9deo2NQGdlNSqgSvPssmt1zG5uIpyQ1ZwRq7vEBKhAg24ispq7QUugxc9rJlq5uXPOmCYDa03dwXw++TKpqqrncCu+Uu/ZWOPWwrIlwyw207163kBjPtYYg7e0a1qd994xX9RrpPZcZIfOnkOM+1nmmWDBJDjLCdG5WjSYCohHTIGAlSx+fY/GrNXc7JTcyttEpVfCDYuJ7z3YjvcKCcq2DBcB8zGWId5L37n2Gfw59T0LBkMIoblxlu91v/4vb06TObF3lP3kHOmuCFy5ssF0pBdMaNcnMx5vAVhr7R5aube25di9haWS7SKwshRus3RvWmvhipbNO0P9bBXsvRgbgDS3xmBjDHaepAK7zuJQHNunsWQOOj+3jUho41nnpRvG9u8Nsm4FVWtSE56/mIEsIUHnXQ0JbrzFxlsKC1qD3hhRQu719l2Aq5cp4peXCb8+j/jb8wl/+9sB+/2I4Tjg8HxotcuCKOJ6TUwuNVJrjMby/6tWCl/ZeIEF5hPUUgwdRRhJUpZKIyuFIDJ6RmtrCNG64qFkDIYjXSDTFLHZOBy2Dp0zCNEjIePn7US6K6Uw3TGMVItlxwauqG5fKA8BsrgvAJyLiV9pty7E7zGma5qaCg4XC+saeJI/y885mwDKoh4DeSSBFmKqHhDR97EWsGZfuHs0b5o7MRsVaqMpG8m4+SZhCSAutbVxeyuLtfz917bVnbv8zguM1SXN1Wvansr4AVwU1hhKMHHl3rxXrsmDIwH0YUwYJ4+HhyaAPh1OCBLYx0kkhvC8tRgrGWrihfpeYvVv1dakCAt9Vc0q67awXYeu77DZemy3Dg/FD+lTb/HBW/R3LDPmrcbWGeTskZHxrx8o2pJyxufHrrLN42nEpDSNp1LzDOrMm8LFPbcEKNd0WbP3vfM89Na1YJWlWoylHEfjCjj2QL+F7zw2uw22uw6Pjx1+fuzx84ce//Lo8GPn8dF7bLz5xwsLTokWiSGQWeE4ki3COJBWp2aXcchuDTxdYy9m71uAsrXPe68LZG0HPJucOYyU245KPp9ln4nyISlQCNEYjCnBGEOlNRQ5QQ/egdOBj2NA5wz2g8EYKZQUvgFzxS1nNECShagkL97EfbUMx8w+aNHeA1Dd0hGXNBz1M66NNVZ+Fq+tMXcMPoUAmutdsgiabUnuNZxkPEkV4cl/q4CrWYFYZunWJuArC+6tC/G3EENf0ubIa1P+/Obv0LMH+5pV89hZssl9mCtvNDZe48EbPHmDrrPw3mJwEdbZUtHACYYjYm6psQBT/+htTedZf7euiZyHBE31Q3KO+rNzlCW49Rr+jua+AKotT2cyemPx4DV23uDQWfS9pXXUuzq2USYt1OSMxdjyOS/H983C9K8AXF9y3b8FVMnnUjNXgHJ1YvckZK+6Oa/x2LFRs6736FvbdwGuwkp2WZzieXaZBFfA9cX1NQ3H8r3XWJDX2qVJ9rUdsNTq1IucJ+1C48rsM0BcHBGIGjAO0RjEYkqZUoL17PxMNQs3nsxTh5AwOTJlvXeJjaUx6Bc5wl/6m9dA1b3CEGcTzhp4BoB0/jOAV/U6ZyaWbUJrAugGrthA955CaFuqA1hD7vGUEVWKEEu9YIqYg0bRvjSE9JZ78j3H9bXJ/WZAtcJGlkWZ/c2MoTqTtFDSw9wLXGly9d/4iK036LxB1xkMg6nZZcl5YCzZZdqUSzWJvnkFYK0BsO+J0XrL+K3qIiWoopCgtRR2MxwO9BRK2jqyYvClusa9mhH3Zm8JWD12CS8DZ7sRUVEzB41rG9zl2C6Zx2vjy+2tY/re1/O1Mbz0XVIjWu/Dc8NQX+6JjTeUlODpnuF+1v9o4GooJqKnkUps1OyyU8kum07nZTaA1yfW92Qtrn7OiqD3THOCxkzI3190fMY8bDbTtyxo6vIYQw/lPJRSpdh0xsve1x3O5yFi4yI2ISLE+4Gr1XtSiqCv/vHKAvYWsPSe18Vb2iVgBGBmnsk/AzgDWZcy1pYMVhH/y4SMVPzbYs7VSPQebevKgtFZ7DvKiJrGCTZYRNeV49dt07MsdP2lC+xrwOoeaFKG8a5prt6k1Vncz3Jhtq6KZ723tezVxmn0Vt3NG6lzBh+9Q9glTDHjx5pdBhz2m6qnG6btnOFIoZ231BYun69uPi6M/7div94cVlqZf+Vca6xI2e+BjjLLuk2H7a7H46PHDzuPj1uPn3YWH73Do7c3hZFubc6oYsFDP/+4IflHyhm/PNC9mXPGYU+ZoOPQt7m1JmwxsAJaiBANIC/bUpv11vYq4/WF/bR2jDO2SqydzLRXs9Aequvge49+2+PhocPHjx1+fOjwL48ef3lw+LH32HkyEfU3Jih8F+AqJrSdOC8eMbW6fbKUCfD1N+Utk/yXDvpbWI6ZOPoSowXBZIhwRBWblp1IESxmADH4Wlx3HCPGEnIdA2UMhjuW2FhtCjhzKn6zrupGluqtbNfXtmX4aPm7tRDSpZDSNdGtfG0RUb1nfUhuttQydCXLjHVX1loM1rV7k3fCUncmJ2i5M/7ahfWe5/0W4HSprenneHKvmyBbHfg5u8yWvnWGgNW9mCsaS4PeGjz4iE1hWoY+wnmLGKj24eB8Y664zYBVauMpQdWt2qt7A6xr/XgJTNXfLzaxle2wgHFQi5Bg7y06b7DtTKn5eX/miou586M3GltrsOtSGVtDVT5K0oK1FiFG0vfy2CbMx202tjgfx9ekGpfal66jq591iZ3S5+9bspCsZzYWsBbGGOFtRSCKROzkIdaX0G6t7XvDvfldgKtcdt9cw6yW2JDZZWfeHN/q4L7g+1YXXDkBLQDVpQX4Usr/slYbT4RhBIBq1UCJAGSaOgXarYaYEfP9Uvf5dLjGlpLASupOEC/fJPK8bvn9l2iuVj/3SuecMZJXGA7+rLcCrOXnvzJItUDsHSuYUYYZpXv7Ug7COotgQ8kw442PXIjF9b0qGE/nz/9Z2kzvsdTrKMBaslExXH1BldR9ArFW3680FYeP+kDGiNvOYjdGMqb1BmGi8JGxBjEVwS+3FDDXiS6A0SVx+2vhwXsBrGuMxlWt1YUogUwyKhodyi5r9edqSFCk7d8XXInQYNIL4GzRu4Cus3BOY3K2GcYaJ5jJKyBZ9tFbBe1/j7YGqpY/y7WnbHIkQJZhXcq61OgNhXd5HO2N5tvfBbiaUkaIJNalB3tQLTLLOKtvrb0nMga+7sK5doxrOqxlKIjfIkOG9c8WJUSk6L2wWGEcAQVoozEMAcMQcOotjlNJHIj31VzxTd/qmNFiEmdO0OJmvqRluUmr8wbd1bX3v7WtMZL8fWs6q0tA+y2i6KUwswDVaomgUOqX3Q9g7azFp43BfrQ4TQ7braMMs5TRHTuMqhiKzmxNRFi7ltrga/0LWY6/Z7s0Wb/2XNbsK4aTxjn4zlN20ob686G3+NiT8eTWWrg7pQt6q7Fztlp3/PnBEemdM55KdhkUqMaqUghhAlTRu9asasFEMpOl0OYhADP2Y429BM5DhPdsyzARv/ZaKFAY+tZQkvWwnUfXd+i3HXY7j8fHDj/sPH7eOfxpZ/HRezw4i654Xt2rmVICjcYQePSWqpfkjJ8fXCUs/th55AycDh4AMALAJMq45FQYLIikweU9+RXn8eYoxVesScu5khuPoWQerYfqOjjv4DqHfkOZnp92HX548Pj5weFT5/Cxc7NxvBUsfxfgqtUuK/2bS8iDmaq1rD5gsct/JxF6/bwbwgOXLoo1luNaOOjaa/LzZufK4UO5wAVkRxQ/O9vHVDyREmWW3ZO54gW/AoECBiqwkjt5OeGutXssvt8yJMrf9zULSKEAefGrhp7Ccf9e6xPXqNy4UiC2K7XwPDEcJhqEWBYfoABnXlSzWFz1+fPVc30j43GvdmmS5p+XzNSl52c7ZXqwlQWbTnpHjKC3imwvSgbhPRqzHL2h0NWuM9gOxHJ0HWWXTROxMikmBOva/Kt0m2rUWohQgi6sg+c1RgS4z9heYzPWwn/yef1fPK+u7LKO4FzIvnGUjdmVEmS8wbxXU0rBKCCK0KA3xLjw/dqX46O6tFyipySj8HqaSiSkbvpWQPDaBLPGtp8d5A2gjD/ma66HJTspXxf3IVdC4XqQXOqmdwZbp9EbA6+JfawkgcI/XliQwlWcZt5K1LRQ4AqwAr5u0XpL5s9Xa7uu6K6AdaYDwLkAevm6/A72yip9ERUQJ8Tgz8OCKWMomZn3ZK5IaEkCQO8b9Romi8RuwcAcNK+1eyyu733eSxH0pVDD2s+XdtT882xCaJl61Qm66HTsHXU6O0uePXTdZHx88GCT3tOhr0BvShGYWMchPMwusli8UmP+/C0hpS/VfbzWXgNW8vklxmq5U+aH6wHv4TpHAtqNx27n8NA7PPYOnzaGCqu72+qX3dJsqXuXMvCYHf60tbWSw68Pvr7veCAWK0wBkc8l5+KTxItuGZtVxmM5fy3kDcsmCwnX164s5m9pa4vr8vUlmALm9iIsYOcSKa6Ddg5dT0L23Y68wj5uPX7cWfy0s/jUOWyL+NmX0mP3ajUsmIFcxO3bbBFSxs87ixAzQvTY7TxizNi/dPXejb4vFBbm8zGP55kWeKUtT21tDqu/e22tlTKXPH/tS8Z9dj/OWSu4ju7DwkDudtRHn7YeP21pHB+8reNYs3hvDNl/F+AqZxQ2pdXaol+k9rj2x99L7Pe19rXHuqZf4c/lHSSDlVRKBZXSKOyL1Pr6yw/jtcYXoi2aEt4xaVNq53G8X8c2Qa+d45oe414ajW/d1oCV/LkyH6qJoEvh7uaNRD5UWt1Tp0MFS7cuYutpN8y79ZriHSMm44iC5qQTYMEyCxaLNTtrbNaXaHbWvu/WdqkDL4b9Fq/VSV2M3cxPxxRgbJubd3FK7xyxDV4X5upOg2l4MdYKXreyKZsyrkffNHWs26TC8kJvtAz/1fHiY16A5reEBbnfLjW1BGs3tktaq7OxE/fccvy0rb5W/PBeoyvs0NbpqreqfmU3anRuPi3FzHWu4nZb2KuNJRZtU9iYk29MjbUWA59XNbIu9yAzWO1L2vNrAHitj69tHutnMoBaMJk5NdA9A3u4fHxrxyJZSDmOVW9Fc1lfsnW3xXqh02bmO8ePs8SsK+27AFdRLvw1JPid6zDeo73Gnr0GxpZiar4oizatFqyeFYcV4PVOzSgS6driPs1Fp40xCMYCyYmJNi3OcXGTrYUXuF0KOSx/N/ubO4Kzt1Dgl1gs/vvZIs0Tglo1nbRaFVdv3HTT39KMVuhKmIFtGTY+YugCrDMIwcBGEsumbIGwyDCrqd6F0ZDX/Jl54WLMbg0RvqUPXgtlXAK9a8/P/hehwOUCbUQ40BH72Dma1Pui6XCa7pl7hZK0CB9ReFBXULDxFscxYugIYIWpHG8yCMnNMwelp5kMEV4KAQOXQdaltrpoLrMX39gugYBVBnKxseF7sGSW8RhSSJBNQwlceRFKMprD9XcMC5Z/VAFYNTSoqbZhBXzlWJ3TCM4iTIHuV872VbqNI8/Ja8WcXwMy/PM1Znf5GTMihZ8rVGnBmX3Ncr147VjO70MjQLKT4MrTPOeNrgQBg+R6aVwYi7X2XYCrkHMzRkyCWpE30LvS/zfEgd/SbvHwWNNPMThaCy+9he2Sn1Hj6KUGozCeZEfvBNw1LLhxlJK87S0OAznexuARY8TQbelNHCJNiwV2BqwvhRcWIaTaB2LyBr4NwFqdcK5MLNd20fwzhySKyR3rPNgXqekDKJPvnk7QndV4dA4hZcRdxg8PzUvn5WGqYUGy/tAIsm4ngKrpAMpYmJaYwgs2AzC5W714DcjXvqStXQ/LEOAr43cplMTP+Wfrq6+V80XI3pOQfbdzeNzQ48etxYOjhzP3K/bLfne8yXoo4zrtMj7ufBW6P28pRDgNE0ZFyTEh9jSuMcznGb7HUgQgdDxS+C7HFbi8Qn1tGGn5+lvC7mdjaVto13rUor7ek1lo56sA+nHr8HHr8XHr8MOGyt08eFvCSLpuMO/VlKKNLN0OunpepZzx0XvETJKbTzuPlDP+2PpKXoynERPK3cBlcViGA+DV++2sP3neEmFV4+bght/HfZLEfS5L0NWyS6kdU10f3sCkyWMSTuxwHYz3sN6i27SSRR+3Hh93Hj9vLX7cOHxwroZ1XcngNZW5evv4fBfgii+IJIosv7ndcrbvDare2t6i75LtWsjo1e+ax6vX+vLezBUXiub0fWvndHpMHR2nHtuxnulxgNWso9mud0WnA8zB0zWAxX/7nu0a27G2YC9/nmk+igi67JiphmRhAzXVorNawar7hR+aSNaU8KDGvjAu3htMk0EIJILOKSOwsD2ghR2WIEqV8a6Go8vd8pVrgPvrtXZpXK/dh5dYxbWd8Nn/i8VlFk5yNSxe9XLOoLOarBGKcSiX17gX26FVCymTLxKV9tiUcT0sxpUTFuq4cubRmXO7puHKQksn7+dlxuhau7TpqL9fbIiWi2y9Nhb6rUugSj6XYygtF6qLtwEXZ2a2wzHr6Jm10vDaVG+rGhK8H7Yq54BGsKlzYfuuK8J2R87j40i2DMYayspPsiRObuNZ+/YVpmg2b4l+U1oYr6qW8CLYvFw1KgVEpYxmWJsWGzTxva8xacvxXbDHchylkJ2SEei+lP5hSvTxLe27AFfcakhwrX3NhHNPUPW14cs7Hhv3JfdrxrcxD3WaFg1vSxmIouVoN3UrPTBj3K4JnS+xVmug60tCSV/SL6+xT2fPb3i/0HsoYWdhTDOd7CwBrFu1ALc0DkHWydobvHiLTRfRdQ1cWWeRU6bx5T+Wk6NceDWXV8EcUCvM30dHgPNrAK/fd1/SH5cArxwvBoqznfjiOf9vXPW1Wi7Mzhn4Amp617IEdQnz3qMR0yGE0CXk2xmNndfYe9Jd8bhaZ2tyUQ37AufJCnLxU8C80PMaYF4cVH1+4b5ZazM2Y8GU1esIl++1JVslF2J5/1k301q1OoJUPoi1Or7Un2s6HYA1UfdqlDGcwbYsEjj74rW1sQZbTxsi0kpaTFOqwDnFRDrYyjCKjc4sgrLoz2VfVnNO1567rs5fxhjITGcaqlwBVoyxJLHxRkzO55IweON6OTsuPdukzjM9LXpXfN8sgeNuFtpt86u6cZ79rsCVkp1fH1oIoM0FFuKGDr+l3U2bs7I7u7TwLt+3bEtWTPzdPeP919rWWnzaWJxCwhQpo4ZZyfE0QmmFYAxiTueUtPQyk6EGYD6JLn9euwHlJLu8KW8R1F5rlxYEueAuJ/Oz54vFm6956wHfVz8W8kay1X1550mU3Nv7mRU6o9A5U9nln3acYZbx+87X+3UceyognlIxsNVISheT0dBYLJkhugRf8nez/1fGWOpvuB9fa2/ZCMmdODAfkyVLJYEw/41krLwnUOUMfE8hwe3W4eHB48PG4YcteYg9eIudszUMca+xNErV0CAAdE7jEQ4pA396mGr3Ph0o3Hs6kTZHa42UEsJEXnUZmHsQyvv2bPxYS7Pwtlu9ZxYgZ/m+pXRgFjpafDfE9bEKrFaAwYxxNIDvWzi+p8yyrnd4fPR4FNllP+8oJMjZZdZIFvIOA8mnBRTwloFSmxJZIWfSR/I9+5dH8jP7rZTEAVpGKAAMoQemsW1Is5rr6rjvZl++YP2MrSFUWAtoDeddy3B2FmzJo0t5JwbuOWfKTC3+lpMxQEpACG1tABpor+B9rVMW92Vx1IfvW4bgpsPDA/mTfXrw+OnB48+P5Gv1sXPY+JYl2JzZaVNyy3B+F+CKKc0qHNOLC32Z0fDWD32PAwPeF2StUpkKqwDpUnhwRntLCvQckDWndPJF+hatq2LKQkev7IaRgeg8KnM1mzwXxzmrfyXHZC3kIJiONXaL29pifAsL+dqOeA1ozQDXhTCFnNyto12fZTq7hJRMs2FwWsMqfdewIAugfRG27zqNw0Ti9ikmhEA7wJwyrGtTSkql35Ng7upCrOZjniKqiDWhjfVskl8Bysv76RLIkoDs2v0sWcYzHYmej6UcX6kzKWa5zFZxgd+6Wy5i9k1hrTqjxQR+PxYSzG5kQCfK5rUxVx+zNq4GQ6Bj5YoZ4zBWJjwkXyxfFswCA6iqk1GL1H59vjotw+BLvQ4wH9OqKRWACli5dhbaq2sAToIrDmUtMgOddzWzrOtsKZFCXmEbSyHBWiaF+/nGxfhLmlKAgoLKua6hnKndmUx+Zt5g11G5o6H4mTnvEEOEtRajMci5eJpxyFeJOXUtzFq/fMG02+J8blrZHWMMrKeMZ2bhAcxqpSqloIJC0vRajLGB+CzDlbR2rK7NZ/eurvNoSyYRpW6KP9mDN3jwuoTJdXViZ+ZKAV90T34X4EpSmuzorbRClgtNFVDith3ore3WMN+1kNO1Y1myF8Dln88+4wJ7N9N+rFOZd528S3OaQlacfbG8qRlcBecQuf9YxAjMKWoWQdddqbipls/5+qjds6LZ4ra2wN56zSyB0dpuGJgvztf+DmiLCme22DZRMbjqnKklU6y6vebVLW2m49C6TNYJB5+w6QymaBFCqgux865eczWZghfhZGmy5GOVYlUeo5lIGi10OAsJrIUoLt0rpV0KGy3b2kJ/KWwkWS7+vaWwCE/mckJnC4vem5IpWMLmWs+rGtwPW9F4qlyNJ61R8HExrt5iCAldZ2uS0Qw0x4SkRAah3Lxcuj/pL8/7egmoZHhJ6UIXLMAVW35I9nPmHr8IHy0X20tjqVQdP1kaRY4fASuDTUfM8daRVUknHLz1Ipx0r8aklQIIOKt2v9oytp0x2DmNx85g11kMU8TQtczBFBNlcadcrvPCYDGYuaS5OmNwNWpJGdF3fA90vSfgZ5pJbkq5VGTJ5SMVYijVWUCJbnWcUkSTD0iN3crmShIzVmjmluPYUUH6h94QEWAbQLbMsikGsOtfd619F+DKm6bN6ToL1xGqHnIGxiN1UrQlU0XQv+/RFgLwVV3Ha4vypXaJSpXPl/8v37f8/kvHwIsAh5OEiNbwQyvyRQLuqgXoncYHb2v5hV8fOrBbOwEsi+FEWUgxRExFXFmp4ItUP+bPZ+Z34v3L58A5lXzt9G8B73L8ZHbMMlNmCaIuXQeF9VCGMpOss+i2HTYbj+3W47F32PUWH3qDrbO1SOy9Qkm2mBMya/HJ+7JIA3+c+pK2rBFCwvEYoBQwjlQ0nJ2+Y4yIwdYQAIPrOk4sZGWwxcXas1hE10I+l+6ZS6zkWliJf8d/J8dMZv1VwOvaOPH3al3DHRxG00bDd5Rh5rzD42OH7dbih4cOn3YeP+4opPTROzx4DgkSG3k3KwbVUvYdKBOU24+dJwsVrfB0inBWY5hIV3c4TMg5YxoDpnEih+8SwonWknYm8njFOfBZztkyLMhMEfe362tIyVpbWQ5V+iPnPAsjVaPp8dSuGfl93NbuUTmWlo6BtUE8b3Z9V8fvw4cem43Fduvw02OPH3YO//KByqT80HnyK7MtQ/Bb+FzRqRHCMlBIWpUqaeSdxu2HnsL3vzwGsA5svx9r9YxpnKC0QtAKOQXqQwBz49+zL57fK0VfKAFpv+3hPDG2u52Hc+TTZy3dOyFExJgxjhGHg6EKAeNUGG8AqrCkgUPQwCyJYvWYRIhSGyjnSVbhHfptj+2WDEN/fOzxw4PHnx48/rJz+NR57Lyl7OsS2nWmbVw5+nNL+y7AVWcVXCkFYW1DmDFEBNcLlKznmpzloF9Kw11rZ0zYYle8DFVda/xd1967RqcuF90zkPWGc5DHwDFmXSYmad0vxI73NJ0E2BvJoDeRdncd7YSnkND3tizUxUFeB+ScoaOmrCSt28Ib5VgvQLUETtLOob5W/qknqoE1xm+tXZpQZu9ZslKqjae280XjEriqzEf7nTKmLs7WWVhv4epuy8y9kYrp5D21HXUnbDRiohDSmAxGl/DYaUzRIaaMp56mkmGwFWjklJFigo4EPnhxZHCVkm6i1ljY6Rhb/1TwBZwlO0jWiH/WK6ALaNeMZMqW9g/clmGOek8VHZVYiCszLLQkbUNj4Dondsptt7zxFruuhM0NPZqfzv1YSFWYjVxYDmY4YjGKHWLCzid86A2mlLHrbPXFO51s+QxiJDmEo5QidrL8P2ezdGOwanh3AWRlPztf+8868pWSYaRqipxIxE3AXSFH1z6ziutXwoIzTZyZsYxaa0ChMsXaaFjPIaQSRuotdr3DruM6kKZsbpoAeumLdO+meGBRjEQVkPW8oPOmjO1jZ3CYLIYQ0fe2Vu+QiQtB2za3SoZo9qXLtUzVOayZHTcfqa6z2GwIZDlRb3GKBuMUYYxCCOzLSOPONkKNvSyPLL53OUcvN0eiVFGzsaFj2XUWj6We56aMI4PipXkoA6tbh/O7AFcfeoOPW48pJISY8PKyqaGQfWE3cgi0Q5nF9Bc7lLcAIcl68G5Wfl71+lgwWUsW65aw0hI4zahvwTitga2z41+cY41Ho9Lquhfivc6i71vKcFc8WO5JV3fO4KN3tfbd08dIug5vEFPGcQg4HifWMjcDAAAgAElEQVSq1j4lDKex0sEhhLoA8y5VZpXU56DwRB2zaWwC28DPw2Ln/AXnfE04Ccx3wrZri7H1sxDDWYhW7ITkIs0LijEkgnbe4sOHUqJh4/Bp5/FTKbWxs8RccVHRezTKFKSdogLw4C2sIlB3+piw8wF/dOSvsx8CjNEYx4BhiDh0NIHHmBCm0DQWMc0WSmYiKISYkCZXPJVEssPS72YZvuN+X7t3ePylf04MAogH8Zk8Mfv2md22LsDGNfDL48YLM9crY3C12TRfsh8+9njoHf7yscePm1IqxXt87BzZH1gK8zpzx7CgUtDcLQpwVtc1i8aVNHz/9pHc+MeQsD1Z7HsK9Z5OZVydIdYhRISRxo2d+sm2QdO9KRmsCpYXm5Lq5UYRCykgryCnMB2paHFSTBjLnBGmQBGOaIBpaPpcvl6WTCTfl2V90VpXsbWWImxrsN16CuP2Fj987Ksv2f/45PHj1uKnvsMH74oLemM8zGwTe795llkr1iBpccl7wUp+8A5aKfzrh6mWcnk5TqXeIN2v2miMeqQxDKaFA2Upq9mX6/k9VjYcNRzuqN/63mGzsfjhQ4+NN+gshVQB4DhEnKaI4xiQM+rmYjzZxnArnH3PvGapeJ3XzzLGXKqIk0k+fOjw+Njh487jLx87/OnB4c8PDj/1HbFWvt2HdgaUWXd1G3v1XYArTvE+dBanKWKzcU08GSjEEINB4CwC9sRYUv3AdYAl3yMn7BqGYDRcdslSS7BksdaQ81pbDsYy1Vfe9HISAC6DtUvnWBZzEl82Ea21LfvBW31XXySgeCNZjU0ymBKFsNi89Hnr6kUbY8Y0RSgFxEgTp5mM0OqkVWBVnedjE0QmpZt5pZwMZjvZK+D3Urt0XdVFnMfStsyUsiDLMIPcgS91cJIFkcxHvyEqfbOx2PRFH9CVtGE3LxB7z/R9rRVMBnIB5ikDm2zw4A1S2Uo+bR2FfUPE0WpYS2PAu+PR6KLfaeOaYpoxETFGJJ0wJtHXfI9qNPZDbkBmDFMRk0sWCxAL/AKo8e+0bScrP7cYgPLuVzIqDK6gQIC4gGNrTQl9aGw2Dl1HYv+H3uGht/jYGXzoqe8YGNfwg9gt36vxIqHBLIfQXmWNbabsxZgzPm3a8nDYuMp+p5QwTRrRmsog8fnzmAJAggP01MYRWCyU3M8GtXamEJA7Z2AMeYIBKPocCkGzLifnTGHKjLJJDeV+j4IlFsxHCbtXl25D38XAwHlXv5PAAbEdDKw+bFwZv3ntOQZTprCDCvgmgnbZVPlHMStZ7lWeix+8xRgzTlPCrncYy73pPWmvUiSLhpAzjQvfd9dkOAuQJTeRpLFS1ROMqjvQ/EWHqsoymivQM0bN5kOlFF5dZaU0gBOB2ALFNfZxs3HYdha73uKxM/jYE/vYW9PMQhfM49eM33cBrjpr8NgZHCeHKSbsdkTz0gJMO6QYKB7LmQS82PKN3OoRXviSWequAFTypufMBEljL0NvN2WUyRDQyoJQd8eu6KR4oWi74rPTEIBOPleqsR7WW/iuFIn1nKFkaGdcQgH3nMBtubF7mxGywYfOEsbJ5P5sNIWBc6Z4u9aqMBwG02TPFmGptZBgi1muGCOCUlTpvWoveFJnGwDgYiIAdeD572TYeM2csILhudYN1lUxp9Kq7pB50qA/F/8rZhXmGrnNhsZvt/UUiiiTwo7rXwkB7V2NJxVp9XKmcUs5Y5Op0DD3yNPJwhRw5YzGqeycQ4iYpgRrdRVHcwggBAGutIIOujGYfABhbOOnMmbKUmY+ROr8LN2bN/Y5U408pYUmiOcLNZ8DZvcnsSqzenKdryBAa13Wa11BKAMCazW2W0eZss7gcUPg6kNP4GrnbJ3UjbgntcLdVuS6+wb5I3HmoC26uZyBPlOx7pwzPm1ivQaOQyQQX0CytQkhRCilEEKka7iEColRLpshZhrYoLJqroTUo4xXrb1YQjjem2q4qhTKHEEbsjC12qmKUYzcMZ6xHY2V5M1Ozeb0DTB3XUsc2W4duiJ6ZmD1qaf57KGEdCldX68szN8OVjGBxaAZBeAZletc7G3G1hqMPuHUJ2w7i3GKmKJMXEjVDDjW8CB/wYW1TyYZ1eNp9yCBJgVfygTtPF3/AH10RkZIuQGrW/ttqbnUDTyzrMJ3NI6bnoDVQ+fwsTfYOYOtbY765+FAVQHWlwzndwGufuo9/sengI3XeCiU4csp4DAEPD10dDOFhGEIZXJu4CqyRiM3sLEKQDJKGRiazKdxoph9iMBwoEk8BmA6zbU8Nf1TTArXhO5LqpJfk4CKqfBuS0ZrxqDruxZ6KIvyRXB1AUA2IaavyQE/fOqpavtDhx+3Fo+dxdZa2HtRHSg7JW9mWp0HF/CpD+idxvPg8TJE/L71GKaIl9OEKSRMMWGaKIzEi3AqNSfZJyvWkBIBMw45DcehlGCxtDBPhnbNUofFqeJnYvIVgFXDx6H9vBTkVraksFX9Dto2MScDLN+56qzOE+8sg1NMyDSx03u3G4fOGfz40OGhJ++wf/tIoaSPJRzRVW+dO4Er3UJVWtFYkldSwp9zj50LeHQRTivsR9J17MeI45jwfJrqBH4aI0IBV9MUxfjlIoafME0BYSQNntIKYVLIxi7GJa2GeZS1M18dU0JJvACnmDCNE0kMYpn24jRnOSW4cr6C5G7TEQvsHTZbTyau3tQFgYpp6wKuNKwmq4zHjSs7doN/efR47DT+9bHDo3PYOYutp8LNbK1RNR93WpgZWGlkKNCColWGjgnRt0ypP6WOfJIA/LA1eDpFeKvwMlAI54+OdDvTlHA4TJimiOORsoE5vMsAMRgRYuKDkP9rVVkr62wtMbPbefR906lppXCaIqYp4nQKCKF9xzSUTTdbfyz7TzDMnAVoLIfdaUxd0ftut62o9setx8YbbDuLf/vY4UNv8Kk3+POmx6O32Hamlknx0tVbKXGf32UoxamRllGOLco4KqWhVEbvKBv1p74rOk1KWuiKznkYYj3/GCImM+GYEoUHg0woWURrFnrF5Wa/MleGalc+9gafNuQLBpSNG6i2sLOtKP25yWiafyewMoeXcKDzdVxd5/DwuKnecn/5uCER+87hXx87fPQeHwqb1i1YSKPPx/AfUtC+tRaP3tZxexk6eEtUolLANNEuaRhsnYx5gZVFiaUjOTf5O85cSpF2O1z5fUrFXE1pwXgUQZ/01VgDWNwudbxcwJVGqxlnAd/Xxdj3bUdsXRMF88dWjLgCIOlr+GLW6HuaIDabFo54KIxHb6hUw72yywCuYaaQMz0enKUdvlIYtgmdUegtsXPDlCjbLJHg/TTFWsg7xFSBFY+zZD+sjcSMlN0WX/xh5FIdC4EtgBpWAtoifU2nw+MuPXSow+eLvHFQpmXKuM7V0Ebf28pmGKPan5fjqHF9BWI+NE1I247cg3/YOTwUGvvBk9aqt+ZM33GPpssuOGvK0SNtF4VYvdVQytK4RgenI6aYsXEaR5+IyYo0rkcXECJVCBgKuDq5WJmtGDm8XzYJkTYadQd9xgKLME9JAqgMkyHNB4uvOdzIjEoLeyyyB+vn06MWy67hhZLN7IhVZMDMxZZtyXpmJuhx44oVicYPW4NHbyqw6i0BKgY0vFu+d7IJhY6I6lBqLmzPRiGXcQWo1iExIAqHMVWn/pQyhslgKKHfadI1nT7nXPstqtj6E3F93kTbbFT2VqtWIsiRhUDz66P5gAEtM79vPv/yPbJ4b9exTYbGbuvhLbEsH7aOQEFH4/ehI7PXB2cJmHB2oEwcksDqawfrhnPKOTNRS2Na+iVr1PBgZzW2yWJKCZ82lLQQYsa2tyXkmuC8A1daCFWfWKwQ1jb1tLiWcTXz6IJoRpVC80bVLFUGMks2f/b3Gahlly7pnHlDZN3MQsN5h74nAftWZFl/6ImxamFdwTyq9TH8h/W54uKwAPXTcUx4dlSOwRpagKeYMEwRISbBaGTEmCu7wUAKmAMtXpSruDaQi3QoO+UUE6JSJJjnWHPdAS0EdNcA1rVWF4MWQjLONeqy98XLiMJ4DJSWTZ4j/8wDz8ifMzN6L7QCfctsIV+d+4Irmqzp+Luy0FmlMaVUym3QZH2aEjpH4llmOGIZrymkcl8RdZwzTQYhUXjAuQnDoGFMxDTZelNS/UIDJAZOWQCn9P/Ye7MdOZJlW2z5GENmTWSz79Y++9zhU/Wi/9BvCNAHCNAPSJCAi3Ohg43TA8mqysyI8EkPZj5EVhabvTfJri6GAcUamJWVGRZuvnzZMrNVOuJJtV+9sJX1KvT4eQVSI4CW6xEZVExAepvdjnQc1ire0NaN6fIpKYMqyWnTHYOrt6PBVUes7pXRpSeLlo1O4GtuyE26QUtR0gBWV/B/bQ2MpJTh6COOS4SSwOIT5pBwnBV8jPAhYfEBPiQY7bF4hXkhgJXTd0opBBko3SMFEFB9dOHay0avk9nC3G8rhAAZZJEWpJSgkqL+annTR/P8DcuRU7lFB5RnkfUUrDPb1Bler0Kgs+QXqyW3y6BeSLe9wahVAVb5lLxKR8ivDKx4E84mmw1YSQJWQCxi6CtjqKu7EJh2EZ2WeDShAOTJkb9nJTDPocRjqSSErxrDi5ZT7qsXiAZcicIgDVZDSnrtISY4TpvLc1HTb1VXC5ZbSFE1VkYWn1qrcD0YWNYI3Y0Ge6uw6yRuzoBVBlVV83gZGH+r9GBlsBomi5dPBs6GpRpZBzuHhNmT/srz/pj7ECqt+CACUO8rTu2mC+J2gAEQfXkJXAFNQ+IS9/Lhrf29MwKhrRa//MZrDFZP04HDQFqrzPzfDvTe95yWz6z/p9bgP+rDFwGudp3GjwBuvcHRB1xZjTlEnHzA+2OP2UcsIeHoIlygTTchsxuVuYqowKOkkZgFiYmq1BYf4VzA/f2MefaYJgcIwM0KTimk4Olmim2vDwZZlwAW8FSXVb5uHW9qGsP0QNej3/WwXa5k6EvJ7ziYIgo/d2xKCfEZcJU32sFqGD59/U/XttDZPwyUkuiMXFWTfGkzSgBQUCrBBDqZ+BAxBlXKgpcY8HbwWGLE0Xm4mOBCwslFhEjT3F0kcBX4/1ICTi7Cx4jZRXw8LjjOHqeJUkkn1py52fF1ioDnW7xtUNmCqraHkTb1TeTeS7nyUCrqSp0XfFuhpjRgbAFVtqfRCnlh3+07dIaYqCJ8zdogDi5CkBiWhoZSI9arjjp433RUFdgrjbu+TmzvbRVifq1qQUnIqkhmLJhtKetLElBSEj4mFs1GLCHi4D1coLV7WELx8dFFLD7hw8nhMHscJ48QYglqk1ZQnnpkrUBVtsrTr4TQtqOJ99bSdc96IO8jpSAZXKWUEJQi/+bnX+npSK+VCxJaQez1dYd9b/Bm33GVn8DOquKzwVLapdMCO6PK0OubzqBTCiMfGDM7kgN7Zr8yU/i1LBM9mecQUhBBryVUJI0OUCsJd0Fj8XQgOvmAyQfcDhqnJeKwBAxW43FyiDEVAHTSCsEHiCDWvlul1VHi5vlmLARKEc5giUFS/NwxAS7Ehu298PzlhN1KALiYRFZ9V9cZ9D31ILtisfOP1x11q7cK7/a6tFu4623R5+w6klX0pknlFvYRX519fM5WvuW3LYVApEwhPKd+lRSYQ49eO4xG4uRiGV7sXMTJ0tpzs6Mqwhhq9S7Q9A7kzE4E96lTqyKVLO9oYZYEgz1U0JJjPBEltaI4hlx45mvcbWUZrebSWNIZW4PxaiTx+mjx9nbA3Y4qBP/zXYe7XlM6sDelwrMz9aDarsF/1ocvAlwZLdFFVTadhITJR4w6oFceS0hwkYJyiFTtkJjeJ/BEzxNiKpLlwMHfBwZhMeJoFWYXcVoomOdmffOpVkt4pWvpcEbr7en2HGDln59bdv5qI6hC2TISw5LYbrejhd5bEr8aTXPj2vTRedozf9+ml5QQGDtVUm9vdxpXlk7MO61Ln5GvmRbM1WX8HUxMkEJCSQK5Wgn0URYmq+eN2aeEJRB4ChFwBRjXr09LxOTpw8dIDdlTosHQLsKrRq/WslLZB8BT5ipXLK3AVQSieNpLq3QJfsqirAeDkjg2+7M3CjeDZiocq5Ou5tOSFOCULQHUndEwUhAg1hKDUtydXayo7K89wwzIp0tqQpmPmlmzIwT5VQXqU+MVAWMtBXykrwej4Ji5OiwBk09ljabE6VAVquaiue/pOl9+g6t2FhkMcUopp2oAjxBS2Vg/5yTaPm9mU5QS1GPMKOx7TWl2Td2vc4n7oCWUJN/stKZpBUpiNLpW62YRdMN6/M7s1j9s5xodsP5KyjqNL6d+rWZNlgCuoil91SKAgyYd1pEZR2sUFhOYUZJNyk5ejo9Zr9MwHudpp7wfGEXXSCv5BHy2lcRP9EDPvP98r5z7dOw0bnvqQbazBIgHRWz/3mhmq0RhLNfNQp+yx99S1H7JpBCISAxMKf0cE1WF7oymmNtTVagPJMMYR10mLZSedFk311bdnjNTDH7OK7sD778JFCPi6ldSyUwUgiS34cmAO6anfyvbWTowM1bUfohYq6uB0oG3g6r7IK/FLKto50A+IVP/CR++CHBllUDQdQQEAAwcoDse8OtjwhQiIm/AKQGhpIsq+m3BVUrEgISYMIeIe6NwWgI6Q92HAZTRDgVc5XJeISkNlANEK2oHLt9gz1kbZNS6Hb+x9VScG9Td7ijvPxpZ00jNn4vP/N1MuQ6W+ln1nI4YlFqVDeeg/rUsd4LO0SZpWVlGAwa73AgwJlgGVzGRn2JKCIn8n0CLz0X62eMcMHHa6bQwyI6pVPjkooAyn7L44KwQ4RxYKVNK6lNKiEJQpZPkyjJx5vv2eRqmQ3A611qaqThYzRuxwtudRsfX3mrBnaOIHheCxJ0EWNiPWsFICoSaU4at6LIMFZVft/GkAF0TKVgfxhmdqCrzlhKBZ4D8axk8+xRpHftY1rFVAicfMblIazgkbl9Qq/w+GdTOUkrn5d9SClgrS1o9BAml4u8OlOtKTlHmOnaGqptz5eZ1pwqg6pWEEgRCyH+tFqvZmNt0kjzTeXyjPZmgFfkv5vQMbzakqUsMnoExqgKuEoilM8rjflKFuSxr8BPVzgBQmjYXNiKuUkrnlgdOr0iqs/RRWj3XBQE0UOJR1V2RTzN7se8UDdLuKF5eN4eaqq8ST8r2lVhrc/4oTPUscBapaAIzBh20Kgfa20HBsdxiGAxiTDgcTAE5bna1ejd4VC1yBj58jYsuNvJHTfPl/RioMir6qDra/PhcfEbBv/HpOWslZNFcrnVWBKxGlsTkdOAVD0hv0/IVsOOLr8EXAa56pitDpE2252aTMSbcBlPQbWYxCESlsgm3oCM2XyfQZh140/7l6PAwB9xPASkBHzSdbo/HrtwUs7G1fD/Fmg9Bw1p8qqHoitFoboKcRmpYq66nqpj93uDHmwHXo8F1r/HXa4vRSuyYrqSUUfX2s+CKg4aV9WS10/XENdjaV+drpgWlAC/kVIJQiAlRU1VIZCCVBc4+5E7QKClcoALkBBCjlSIeO49TCCWVmNMFfa+55L/p6izQgGOsP7eLM/uEh4uWZpYhwoeGzcr3QZtu4DecT+taUyl3LuG+GQ3+cmVxOyi821n0ijYoq2Tp80LBmVmsltHihd9WIq2+zkJagSen5i9lBPoSEojK1xIlzSCELOtRcVWo1bGsUx8uf/1xdpiChwu0EfgI9EZh1gpK+ctC5UrX1p+XE29lcAkEkdZNc7uPECScE0+fs33u807t7ftnwKy1xMAtMd7tNO4GCta3nS1VWNln6uxrYoEquJKNf7O/v2Y68Pw98RuHbP0qBGJKEJDQKUGJfBCSJe2749T+0XscnMJpoXTur4+m6GG1UfBOQfo8I7ZZg6uJC6K0w4mRi41i1dO2cU7y4bLE//y4zHTExBMd0jo12GYQxLqXlrXUx2rfG9yMBm9Hg/+0t9gbg9EQc5XbLHRGFp92TAQYVQ+/Uv5jjSa/tLXidvDazRKElFCGSueq314pLCHQcGcrsbiID5Zi6dEqHI/UWFQtCm6RiLmVyXm/OGa0clow8szA3D7DB5IE+MJkgQEd/yykIqrPzWhDntBxvr82Vdqq60sB0e56h2HQePNmwM3O4ma0+M93Pd7tNW47g3dDj8FQhW5vmjYavA4LsMKX8eGLAFdKkvhZygQV6bQUGUwRlblGv3kjzqzGJUYno+Il0Mk5MyKKD0yDVZicwrQorvpRzYbcVo890532vKHoc/aE5ahiynzSy1Uxo6XT8N1IGpudJsYip5BaazPZ+dyUN2otZBE5581YM+uheaP4msxVuyFnWlqAfCIABJmZEE4nyerXShNXP8eUYBSB78RYN6bEJ5AqAj/vMbNqQHeJaWQfr5pBynrippLyzweh+Xnya9FSsPZNkI4jd1TnVFF+rVLU35fNz7I+qxVc5mCfWaS6OX/dgC6Y5shMRwJVEJazB/9cIKd/mRFhfzpJLGWICWNUSCD/dW0TxuLD33g/pbfO5TJwgFPTl54rtc+RnhfKnr337CsliLmgocsENEZuBlrbVnDlJ/s4+02Jqou8dFquf+vbbc7nfgX7FQlUkFLSvoCMxF5SOlcjRGCwEv1S20nkHm1lxqKUXDxw4T0113/VHPicyUC9j+pjUQ7EheEAnjJX5Y3Sa8istlSyMldcdDBw/7gce3PH9cwar0ejYJVVyMDqJZhoncqxJCFV0J9QmsamBOyNQWDQej0ahJTwcTTFB/PJFDYpalOvb9Ejs2UfxvTEn4lTgkR6tDGetNIZLNeq8JxibNZoCTQ145D7lJG8RqHvDfaDwVWfWSuFK9sUImSfqrUvS18rfDk/vghwZZSE4o02ATDndCKw2myzc8A/L/Gy+Vl+rOMT8+IjlKDTvpYOPx0MFq5ANEZh0XXGVFSNVqeArNzhuxFGP7eIz79uGSwpG5ZDwlpZqvrejgbv9ho/Dh21p2ABdLvpfsryJt2ehEuZNwf+nIrILQG+hpXNV9DmKxOQZBWkRnZa0GdgOYMrAGge2/pRCFFEt3srcVhqUP/szbk1UUvAcxfu3LyUwLbA7wFY/JQFWBlFmpwrq2nAKy9wq+UKSNHviZUP82m4BvPqz8J4Naetr2XnTAeA4ltypSjr16jqs8CzA2Oi1G1urxETPc9gFgwmYuReT22fm+LDs+D9JKV0YUzSOdBqN+OyIcecRmo/r4P5WnclShWnVTQXMFf/ZYFzHvaa9Tft2m0LGXKTR9n4TjT3wLeySwyWZJF7PghpKRBS4s7sxGIBKAemm84gROB6NKUatOfS/tzxO0aNlCIVh7TXO8fSEJBUqkJm3mQpZUyZB8RcnBR5DE5cTWhYj0g6Y604YyBXOleDcSQpxjWnjt4MClfWUCUZa7AyGM7rtZ3P+kf771PWAiwhiBEHExhSJqSkGGRE/Ji6ckiYPPWqcz6i7zQe+wUhREynpTQY9VLRuLGUGnE7HXja6RqhYaR8JObKhZxtSkWDGc6Yq+zXFWhuCQ/blx50w26A7S36weLt2xH70eKvdyPe7DTe7Qz+dtUXn+46HpDe9iUT6+Kieu3+eXsR4EoK+kdksI0MoATfCPS4FlwhVdAF1J/lr/NJRwgStQNUidVHPi03F/ZpQD8TLD9nn2rHcOn3y/PngC3LYu0U6XCs4qHHXC2znlP16etYhO3Noq+aHDTVEF9Po9O81XJyQq1Non+FoEWfKtWf/Q3wJojKWMYSKxOUjDBSNuzcZwq6z1mrZ362ug/K457pTHwhjXT+XHkBa1n1bjktm/1UcG4O2M3XqyB+DqguBPevaSVgA098y4i61oCkTBbW8n8B+r6wcAXwV7ZPSoHccbv44DlBdLORtqLY52zdP6dJNzxhNOvfa69zHX7OUwhEHZxd9ThyBYpF48P20HMJFP9RG/N6Iya2WTKDldiXKVUOP/vPKOqbNxj66Dnlkhl51RxYQ1tc0l7uRlPTgt/SPJg/6F5atzx6AqafGzLMTEfbC61kDFjbOhgJqxQ6qQqzsdLGyXY9roHV+jq+LKPtpmqxcksVpSQMIlKiWLRLJM24G4iRvBpMqbTve1MYJTVRzPNArR48l0mwnR94Voxj8W0quqvWp+V5V2/kqbTGdAZdT/2sssbqbtR4M5KIfW9MYSFN23ZB1EKS9fX6cj58EeDqXNchZAZLTTEJn5BTygkx8SQm5v8rrFfKj6FwkQWZWohVtcBqo2ov7rNpQdGcjloN1jNA7GI5efPec7CSor7GJgW06hj7/EUsT5sflzd3AKvTMwX4557on7dWWFk3YeCc+QAHbtn6tfEzgSrBoJrujQpW8nXBKi36uxdHcxNdZLye3GSf19usfR6qDqzVT22FSgucRPN7ZRNu3pcAnmg7/qhw3vo2i90Fp4EzeM4fOZACQEz1fWshSguDllF9ctB5zpqUUluhVAP4WYPh5vNv9c9pD0E1PqCkBWW+B898+iyzyP5t0/EvjfHIYS2DLZX92ZT2AyhTF3Q+CCoa9PzIPam6TmFZFBzPYQwqIIRWg8qsVTZGS9U3aJpDc0oyJW61k1b/t6oqA7BKITW6ynaosOaeZb3hohNOC/bMPLYxV12Iv4XhwMvy37k90V8JgAKuKP3qopJlXugukeg7pISb0ZRr+zBoTtMBxpqyjoJiPWp2ZdHVnQOrCohJK31GFDdg+WJhQ8taKQJWylAvO8vtNMbRYN9XAfvdoHFlqWFvbl2TdciZZKgHna8TR18EuMppJOSY3FzX1MwtSuVnafV9+01Ci4xTswCoV8vEYmKtGhanYa8uiqCFQE0J8t87B1it1RX3yfddTsQCpfzeKNLjmDM9is4aHVxeyOLsm/x9bhQosO7d8fWZqwoSqr+qjwFKF2YrrFX5vtVhZRYrngU8rNjHleaKP6fzrusAIbv8Uf7W5ZQSP+Ap08fZwHEAACAASURBVPEZ10+ICgZXwErJM1ayuV7ln+rrS0G8/Vn7869t679TA3dKKKnCbJJZK/JtZNKiMj2dIn3LYCOVw1uFyVIDXKfrDLikuCFs+bNNajAERKVqf5x4xnw0+p2s4yCdzplP6xukjajtzs7jbqxmMayukw40s5Gau7XnIoMWHOenBeq6e2mbcpsiFPzvyp+iXBpY7mMHUPPYlIAf96481/t9V0DpfOrKWlx8T+mk4KjqrLXUDGFv9DeZ1fComr1WzL5KH6WEIuFoJidI29FG3FsMY4fdjvrQ3e4t3u47vNtT/7ibzhT2ra0ma9cpsPbhS/Hfc5aBsgBKdkgk8AFBNilCOjT8JQ4YtYZ7m/Bzp7Drad7vw2Dw+LggxohlWrBMC04pIXoNeF97xrE9aa+QGapEVf4ASkFaiOtD0CoG58bOzZzPtj/kmzcj9nuL69HgP/8w4u1o8F9u82gbah6afdmbS7q5L58OzPYiwBWwIjewEiKvhNvrB6/iYgFmCUkIPsmsqVwhakqMfn52QT/n2v7ezuz/gIny2mqOX+dUCT6DsficzfkbxoQVkwWsAWqxzEfm75r0BAcHWd4/Cq276jPTpHc/257x5aq8e/0fl79u3mt+a5mlIx+sU0HyzMei+f3zDRmf+L8/Mrhnv5bXs2IpsSpqEGXNpQLyNbO1nar6tDyrT3G35ZUgOh9yfsNnq5Nw+Xl+0OoXzt9QYTtyxSk1nKQPrZhdzsyVqC0Hqi4yr99136OX5rvn7BLrnNmPnMLOfezymJ9B00Deq45apAwdNR5dlgBtdRk5BtWMpYrPdPpuLBNSWaOX/Zr/7+JBCKiMVQZXmbEyugyy7zoaq7OzEiNPruiUWm++5bCGJxvwnwFYZWsZrIRaSNGOtMqXcjBUbHLTUXowIuHX0ZbrfThURsst1KIhCglkbH12nc6Zq2yXvn/6wiUgGaIwsMqaOdMZal+0IwH79WBxN2jcjZwKLJ30xcVJCOdp3a/hyxcBrlpHlMCDlqI+Y6mKrX/anqIJbCUOfLn3B8pnevxvAI0/YPG0f1E2gTsH7CyG/Zzf/9Tm/K3tko9b960BNf2nbACWYOfV+6OtuGp8K1BOylWzc/auz1b2JW3AE3sukH/ivQLEd2YwBbSvswX6l3VT7fNcAlwvIbg/8WsbMJHXG61BACW1qZoUeK74rABLliHkNAIn63Uknozf4B5J6aI/165e+fcTFWXtmBTZAD7qM0ZFMUbK1f23OsQBT4L2uX9fgu+es0sAS5Z4SmxsjHmAt0BXAFbEVRcxdpoGsbsAa2sPQaUVQtIVXBWmieySNod+fu5frH6neeH1Iiue4dqI2NtO+4MlgfNVpzAazaPBqibnfG3m63Jpnf6ZrPWt4nSvlgJo5kqmRAU4may4Hgxymn3gr5FoYDYABBHYrywJ+MT1+VQYrQe1JoukFCBEAVZ5VNwwELjaD4ZaGI2GdFa9wZXVpeVCHlO0bvZa1+TXtBcBrrKdBxwhmgt++RfKlyWA8r+ZOVilXPhnpPFaa4/Wm/FX6AHFUb7VFeSgEc9uuPYkXD6kWGk4PmXn//upTftb2wow8JfnPs6gOus9RErIjUlzek3z5my1hGXmo5SB5w7RmUp4zvLRuPjjGS3HeXPCnJY6ZyYa5qw0GJQ1WK+1fUBOtTxJC55dn+eu30uyS2ngtgKN/EbpXy0FgiLGYAkai424HTQcD3keBsOjM2LRePhkm/EbuACY2X9nwth24HfLZJ29+BXTAWNZz2HrfLJOY+w1bnoa5Dvo2lhyXT32VLh+fo3+DHYOsJ5sxpq0Uz3PDX3rLbSggpz7KZSq2Gny1H1f02iUZZbwSlGczuwVg+f2+lwCWDE9c/gRqOBbW/pZN0JoAlXDbkA3dBhHg7u7ATejxd3e4l9uLN6NGm86i53VZRzK2q9Vq0rX5c/lx2xtejCPx0mcIkSWKCi6tkYJ/CUN2BmHndFwMeGXA1W0x5jweNQ4HGgtztMMv3jMk0CuRsuMc0sM/Pbra/Y9LjwAAGgNIQVsb0tq9+6OUoH70eBvb3d4uzN4t9P412uqDLwd7GpE2EprdWFtfi1/vihwdck+9cbbRUZBvbJXQgBi9f/N4gBWF3a94f/Ghf6clGBK6xd04XcuVVEAlxm6c8bpuVf4Wy/9pQaF86CaLx2Q/Vm/blkf6kjf9A7KVL6sQGc16maVEooA1CdTTCstx9MX3dxE6+qynJ4seX1Upm1FRQNP/PpnAlTPWZsuLD9D47tm07JKwkrJPctoUK+1VMmlc7WZkhBKIeWh6rk66QLAAs4Zj7OHXAJWeZxRLtlXT6vK8ogUqwSsUsxctafhGktWABp/Pv9lawGW4G1Zgt9zIp1oHqkyal1GHdFQYGp1M3K/pBAiJqvL9XfeAEE+8eXnXKvzeC0E6/Jy/zMhIZixyhVlfU8jUfY9gYTrweCGWaterxtKnvexqn/ry17fb23P+7N2jDM81cBqiT1IT/d21KUo5f1oiy76eDTleXPjTwCFcV6vgaefnx76UWM3s8ZC0GfbWfYjpQJ3gyGQPGq8HUnAvqoMbDrpt1Xy33Jtvnhw9Sl7emEul2I/d/n+KVH3iptuS0bPWK9csl9Yj2e0IGgKXi68iTZo0/ef9zL/bIH9SUqi/BwMmlvNUitub3tdNeM3zttqXBqN0ZSBn6eYntg5GMsDYUVtrSFELcOv7SL44WgBfhO4gW+y4L+VPQFYgk7JnIEofrMsAh8sVWwdDXXOtjbAOVVHU0UeTdWm9J6bW4fPyOK2gDsDKx4C24Kr3OC3MwqdVhgtFZycNwP93BP6n83O/Uhrr97PpUBDSRJCx4ibXsHFBB8Mxr42ozwdbVlfwRtEqYiN5P5/bTr//Ho+e+jg30lCUAoJJGRvtTl9XyvKdgywbjqFvVXNZtw0sxVNSvAJKPhzO7nVX+UgK0Rth6Sb9CAApERVd3lv+oU1VwAKewUAwYeyTimVruohU633rCz3ANaZmfp4hay9ziyWKVWBFvvRllTg2x21XthzLytKBa5nr1aN1dnh9iv78k8Nrj5l6wtYBZmZQSiltauPT6zmS31xnut/BKBUF2b+tTxH3chr+qL25Xo2ddG+t1ey0H/Liu9S1rPULsM0ukHyBHuifzuj0Pf1xBpDxKJZ4yEXTkN8Xsr3We3V+Qgd7hScGZbc48fy4O1ey1VfrnpyEvWePDuJvxYrAJmZHXCLFaUkTAI6Q+flmAzejTUUfTh05TpNky9VezFEqk5aGmqzUoOrU9RzlzEH7FjGWzHIUgai6+qGPPZlNNXdvsPtzuKHPWs6jClph/NedN9CKPutjWQUtTghNxAVIB8qGeE7qjizSmIOETvrsLcKi4/40JHWKYSE08lgngyxHT4geGKzhBTQnAKqh5Q1E9iKzJUSyIO6lc4zQXXZjPuxJz/m5pI8DuVvdwPe7TV+2NE4lCurMVpV+iCVRsvfSPT8R1iOqxnAtKOPuiShuYLQ8DX5K4C90biyDiEm/DIYvD86xJRwPDocjw5SSXjnEXxAlkiUfmcNI6jZnwrNmimPVTAmwnSmpAVzLL+56Qtj9bcfdngzGrzdafzXm56qAo3G1UBAOY95U7Jpoi2+TSqwtVcHrkQTd2vlQssWZEqUg0ZzUso/+6RdAlaXUg3nTSbPchTtxv3crMBP2WtZ6JfsyWlZCIhSMVhz5krQiTmfVM7HbwgpKJ0UsyA6oTRlucR6/BZrtX6RvCmr1UiNEiiKOLa2i0B+/XieTX1tluN4fs8l0DFd72Vtmru3EadOYegUFq/hfYS1CjHQEFltNFUnRVNpXqnOmMo1u1vB7JoVKcA4pdqY0FRg3nW5qkxjsDTMd2cVem6VcllLd/7eX5+XhSANpGh8iETrLx8S94Z6JZ33Szrs6pxOtzjSRJYnRmE8RHPwPQetUlRmul13OWaUuYG9RdebKnzmHkgkeqZxKLkHUmmlIWtzyXPR8+v05fqMAtQ4RelBIgc6LXGVyHdvd5Wt+jDYEo+XJWBREm6hFhsZXOVsQvZl/kgprbIPNL+TPzRVCgOAsVThmYHV9WgLsHo7UiqQGCtVxOtrVnmtu6b3/W18+erAFfDpjasVsleq8Iy5On+C5zbcT/283LmsAygpqGcYkc1+0/ImlhdjLuW3TaWZKR2iNYIOtTt07pdSGt5dyjN8xiIs94hcd37m1gH5tKYliXvLPMcC5Pkp+OP1hezLlg81uThBiVRSSiYmDFphMRFTF7HvDFWb+bjqDp2rk5ZIY28AoB0n9VTztO59lk/UgkExpCA0oDWEqqkk21muKmMhe6ex57mfvdJcVSZXKYdVVRmeZ87+zFaAskBpkZKZ5Ky9iklgZ3QRn78ZdCna+Tgu5bnc0tF4KaCk/zP7uxplxX+3jdWlmz+DMa2pySVQmY4MrMaR9VUjfdwOClcdgaucDiysSsOMZVa5vO9XZuf6qxbsJNbS5exLThEC1Assg+j3O1sKwqYpQDZgmZZYrrSVHP/yvUNMmRJVJ1vanfBA7byF9j3NDNyPFleDwc3O4s2o8WbQuOmoMrDjTvst81hSjc2W/q39+CrB1bnV0wc7XdQ5e1o2M81kDb6pZTaEeCqG/lRqEMCzacH8FBvI+k3jWL4KsFoKBEn+G7XGEiJue6o2CyEixIjdzpbnWOYFTgr4OAC+meYOlJQeLjAfokTYzHBwn56cStIWUBrKGBocWkSz9LHvDc0U7CQLZs/YjuZ9vd7NeB3AZe4OzYHb6qr3eNt3NE5GSTzMsUyuX3xE1ykcjxSqlnlZzX+sKQhdum/nQF17ZjHgNbo0EgW6sv60od8d9gM6LvN+82bA9Whxt+Oqsp3BXW9w2xl0Rl4O5g0D/trskhi6nVfXJ5SpEikBHWuwfEy4HRR+6Qlk3Y8ODzsHpQTm2eN4NMWX2X9dp0vT1jwHLh+irFYwJqDrdPF/zVAIBsYKd3cDBhau/+sPO7wdNd7uNP5lP+DaGoxGYddROvBbN5d8KZbfVzsdRStAcnNlJROvVWDxEVZH/BUDrozGTUcHnfdHgw8nByUFTrPnRqO0rrqOfNlbahBMg9pF6QjfG4leC/RGYehofSslYAzPr1QS+73Frtf4y92I24HSuf/tjlKBV4b82zYJzTNdL81+/NZ+fPXgSvCVLSdZIbjvDjXEqyeh9ek3FYbiEw65lBrMj//M2XPn35+nJ1/nsv58y/oAKQQiL5AMUErAVfLJ+A3nFLynU2xKCd5xSiKcgWapVoxGZTxkZTiirykkKEboGjBdOSkX8XOnS5fn3nAXb1GHvop20V/w/2uzTwmilRRlHE4ehuwTVZu5GBEi9bHJNs+eni+m2pgSNZ2U07KZ+VCi6ncy06G1RhnNwy+osh21f86uN7jqebBvT+LnUevai2uls2oYM7xOoAw0AIu+KWBLcjopgebVGS3L5b221X+/nmzZ7Oa9hVKSKwlJ8K5U1enokq7jObASpZGr5qH3xigOu3SYklJgGAysVRhH8t/1aPE2z5preiAV1qoBVZld+R4ts5L5MKsyxQRqMppt0KpsdT/sapf9w2ihiz95VI6h6t/OKPIZN+FtB5uXqSRG8lBwvWKzrrkI4Q33sbobVQFWfdNJP/uyrd4F/tj1+KrAVRvIhSCJTWYIchpQCmr9T4hZwhraFI3h8u8ihO4qYIqBNuQyAZxTfvkz+I+cD7BsO0s3LQHKaI18E3HwkKJuPjmA5af+3qwVXZaCLkF0dUoCUROzkcuCf9y7EuQfTq4E6BBoXAMJaC1iiPC+BgWt9aqDs9IKUdaZdaWqKQYgsP+VgjSk0el3Pbq+Qz8Y3Nx0uN5Z3O06vGNNwLU1JZi31SvNgfvVbsbZqk6Hm8IK0mRYLUswbGfVuZhw3Stc9x4pAR9PCx5HA60lTiePx07DuVqdlMHwMNR0Xs8i5dC0O1mWDk4p6hreCG+7voO1Cre3PQMrjX95M+LtzuDtqPHXPZ+ULemvyqwyJVapwbbC7TUCZaCuy/KvBI2x0hIqJmhJTZxzKfxf0GNvNa6thxDEdPx6sjBa4jh7fBg0liUgBIqjmbnYs05q7DRGQ9f61EWEoKnycG9hrcSy0CicnIa6urIYrMZf7gZcDwZvBo3/9qbHtdW4MrUHklGi9EAySq6Yxz+K6fijrL5P7oSf7+HEIAuA57QpAHRGYnREHNx0Dh93Hob7m+06jdkFGj0nBDODCtc9pdWzbjEmYG8lFq8QInAYLKxWcJnFlAS43l71uOkV/utdh+uOfPhu7MoaJPG6KCO1zruv/5F+fFXg6pJRwKvVgvmkaVRlPtrTUhZEQmsgcXopg6vCSl0AVy1TlQGWVIUdqR9r8bOUa0q6Ngo9y/t/syv28ixvWkWgKAUkb8YmUopmZxWmPmHyEbte8wyyhNPJEbAKAd55xBBpXh0v/sx6ZL/XyqNURNRRRsQoEZUqG7m2me3oeCq7KfqcsdMURDQFkvOS4Oc6sr9mEyJLEekaBK46SykhqbUg+orZxjQkvB91SeWfllDYDucCvI8Imb2SAtbWQ5Llvlk+JHgdy9gTIQDvZfGzUrKwHbudxb7X2A+1xPt2UEX8nMv1dbNWW7ajguXX7dhLKcK8PsFsRKY9qF8SbTO3vSm6w+PcwWgJHxIWS77MOhvNG7Ll+aqUtkNJC1oT0bMvlaLNWDKbdT1ajJ3G3UgDfN+MugCrsTBWYn3YKcDqdTOPv2XrKsLaMkEJ0mEBEkbVHnJ7U/tcvd0FKCmwBNJoeU4NGkW+7DX3slNUiKQEyLdaojcRQ0etG3zWzkn6vTejwnVPrOPe6CeVuqvqzhcErIBXDq7aUxZKOgak7ZACnaZxFp1WHJgrc6WMQRm0kXU6ueosa64Kk1XF6vyH6XMe2yEVj2PQpA1h8XPRhUgJLTJ79emb4Ttd96WZqOBAmAOjlgKDUtTtu4tYvMLVYEqbi9NoIaVDCB2N3/ABUslSGdimlLTRxHbJyj7GEBFV5M7fVeNjO3smnNXcQ8fgqleli3evVVOJ1AKrs/TvdxDRc+zOgVuyqJ20HpRWSgALoul33o6hpBBPSyC9RoyYZwnvI7yP/NwCXddU+RnFm7eENwoxJnSd5mpO2shz6mG3I3B1PVBF2dVAwOrNQCmIXFVmV1WglYHMf/97NHYpxS0JIFafoumXtAeBnJw9OCwBWgmEkDC5AOcjfCAW0miJzlKKf2BdjpICo5FYgoSPpNGRUiAYZryYCb0ZCSD/sCPx+k1XgRVVlJ31QGqB1XfAPH6OtaA5NxnNQCED55SA0VTZy92goYTA7CMmo+B8REKCZgZqsBK9qaOjAMBIAs5jUBgtpQ4Ds5BWU9+7tyOn5RlYtV3026HaKmd78HIA8qsEVyWIo6LXXJ1klESvE66swTIkuGDw094W7ZVzAVNnISX17fDOwy0j6TtiqKLodj7WufbqErjqBihjaKJ3bzGMfRk6ue819r3iAaLrKeyZxfperd2QFQhMkV/pZJNLeX8MPc03M54qWQaDjzsLaxSOs8f9vcWyBHgfMM+hiC6z35WS6DpdUonOUSsA05kCrACU8u++pw355qbH2BOw+tvbEW8GEs7+MNBk9hzUy8Z8Jpr9Xlx7SdxeNUsJyQBa0eiNlBI6LXHtNaQQODiPhyVgZyXup4BfR4NpCVh8xORC8Y3VpHXrjMKbfQfNp+ah0zjNNIaFxuowa8ni12ueNfefbjrc9MRW/fWqxxUzVld9BVdZ/Fz1HfVA9EeflL+lnaeSqi6Sfk4pwgRAw+oIF+ian1zArfXotMTjHPDvvcLJRUwuYvGVhbzpNQYrcdUp2rhlZsIEBiOhpSwpJKocpk38xz0Vkvz1qiuM401vSvHBaFWtDsw9kOR6HX4vPrxkT0TugkBC5DgJAIrXKZBBkIISEofeY9dJnJaIOSQsPkFJAmQ/7AxGTbrFveHilBigpWDwDLhAVaUdz+/cWYkfBoud0bjr60ibsdNcPEGPywfutrr0JfjwVYKr1pipRhZC54+OBbQ7G7HjBnchJhwGQyei0EE5Be1Ih5Pb+wdvS8oIMa7BVTskUIoCroQUMNY0/Ve6UlU2WPro8/BamZtNitXm294wL+HG+RbWbsiF8RC04LP+Kpd/j0Yhcof+N6Mu2rrF0ZwzgHqxOBdgjOfyfvo7ucdK32solcGVgnNUXpxZsPpYSiV1ncLNntIQ+570ObcDzZ/bGU0NRPU5oMIT+vG78yd9Q50QkIrukIwCaL7/r60pIyymXUTH6cPJBsw+4DQTuEpAaQTZG+pL1WkJzaxX1ov4hoHMlUXXo8W+U3i3N7jpFWuENHZaF2B8flLOKaT63r7ttXxJlgFzKeeXNU6ZmJArpzsti1h6CgFGSriQcHSxAKwI6uB/1VE3/JxeV0Jg3xFTQho9wLEvNWchei3xbs+AyhqMWnN2olZ2tuNtSkVZ+z6+Z0ee2TnTDKSyjgAJo+sB9SpoAkgxolcBUyBADVAcHrRiJl8WYNYrVWLrdZ8QIvV8pPQhMf97Q6CsTQVmYJUlNOcp3Zfiw1cLrkpKsDigDv2l7t4Kg6Yp7td9np2UcLqyMEZSXx1n4FyAXuoIjuBDYTJyWXeeqfSk8SWnkKSUBVyNu570OQNNZSeNjsJoJHqufGuHwF6qKvserQVaUgoo1NEbAG2su0S3812vSU+nJeaQWJ8hMLlAYKvTXNGSynNLKdB3xJTElKjPkgtckZRWehACYga9UbjbdRg7jate4e1OUxqCN2ZbAvqlsRrfn+4KuKzrWAdtMLgiEHZl+ZQqJJYxojcSEQnHRWLyGj0DZYAEzZYrj256zXoMFNGyEIJGsbCORCsK1ncjaeTe7TRGQ77L2g7TAKu2X9mWSiK7VEHYpgg1N6MUoqZ8hACug4GREmGMGD0Bq6OLiNStAyOnkkbelJUQ8KmmAGOqm3HHWp7eSNx2hjflyjYWYNWmAuW6MvA7dN0n7ZKu7jxFaDlFKATpp6QwcCFhkhJdjHAh66dE8eOgNLfrSOj1upqesRg6rhDt1NqPqwOOaJv4rtfhS7FXB67axU5aANKdKz6lZrvpaHF3iiqKPpwCPk6kmTktHvdHh9mT0HKePTFbIbHwMpV5WfnrSy2rsiaDxLaUctrtDHpLoOqvb0a8GRWlkvoON13Vd+Ry7zYt+P1uxqAh3II2y1wFSqNHEjyzS1ZH9EGhkwpH73H0HrecdvjpYDE5ErwfZtqQwxl71Rm5Alc+JMw+lMe0zUv3vcFgJN7tDXZWYt8p/NBTKmLQCvu+dn8u4tlmFMP36MvWMrBKgvwJkA9y5ZcJCZ6rCYegsPcRo1E4+YC7XmMKEUuIeJhj8WPuhm+1wDWnDuYQSQfiIh6XyKJ52pCpOlHgtqfhvXedxaCJ8cojNLSiPjz5pHyeSnpJJ+U/yp5UEK5ShBFKKuiYypp1gUCXY58u7MsphDKtgoZjC1ipcGXp0NNrhdlHLB3dAznkGinLY286Q209Okr/GSW4FYB4Mg7lpQifX6o9lyIMZynCEJgVDnRIygO8l5D1kMCgqj+yDi/7dB8i5mAQGMx1slYA5nWYKzuztq4wjy94Hb46cNVaW2WWAVbiVJJtgNZtX3O/KQGPi4bVCosP8CHhtHgE3ozdPwSuqHO4URJXg0FnFXadxg9cjXQ3cBpJKazLu5uGky/sxvnW1hAeZTHVVBJgtOQFllgXQ+A5JmA2VMkyuUjgqlNwnAbOarlcvaIkKOUQEgV9n0rAJ/aCTmI3vUZvBN6OulDeN53hhqGiAKsMks/7r9T39f35ddUyhX7A14VoC5VqwAxNIE0JsKy9WULEEiMGHWjUSkzcZFaWk7IUAp1KWFTAaBIGW4EyddCnTXlvDHotcWV1AVS1e3dNQWQftimIzcjOmY42RZgPQyGfjBCLX/dJwytaazbIlX8INFHFIAEhDSMjliDL2pYC5XGGK8zy+svMdk4rP9cD6Xtcg7/X2hShgijVvmTUEFgKipU6JpgoylrNsTr7wigqXIkJECFC8tzVnB3I2aXMLBcf5nV4IRX4Eu1Vgqvz4F1SSQJIjdOy3YTMYlH/o6OLuLeSRXkkmo0xUVl3rCdlH2i2d3gmLZhPR1IQK6KlxK6nXjk7K/HjlcGVVdgZvcorn+s6tsVPdk5RNxXfMIpk0kIkxEjDZHOqaQoBWtJAWRcjDguBZp9QNmUhRGlWmPUcPiQWWVbtgJL0uCvW9FxbTbPxlMLI863ywNMSEORZNcsLpLC/tWW2IzWFJzlFWAYDcxpPClkCdw7oSyRfdkoiplTkjkrQRtopOum6GOECNSUdtKq+ZBBmpCS2mDfm3LiyLdV/0iLle3feM/ZcijDr6rTKh90KjFIiHZxRcgWuZLPJ5lgtIKF407asvRMMrorcgwsOMjA+H2uT8YDc1uBn27p/ZBN/ZdWrBcWxlw86ISYoWffDVu+cu76nJCA5XZz3UIAOsVKAma5afPDkgPPCU/KvElwBZ0hbCCAmaotfnE5VLD7QwnYhwseEd4OHixFH7xFSgo8Js4/l67wppybnH4qefU1ftcJJy031dpZOWFZJ3FhbRH67ThdtQGfOO0C/bIT+LewSRQ2gNLqTQiAoWqRairJge6vgA1UihZjgU8IcQvVdFqqzn5QQCCmV//PNos9/R0vS7OVS4nzKaivJMkjOacSXTmH/EVb0V1inCIUQiLLq3HIK12gKxL1XpY+Z427Q2Uv5+mpFUC0H+5wOzM+ZA3S7EbcHm8I4Ns/V/l59/Zu1dp4iFIKajBKIlggyMWAWCFHC6ljWapumz2ukvf4h1s27rR3Kfmr9VlJHzfrL/muff7PPs7VWsl0DNUMTuQ1HbPyULRdpKUHaSIBHmSWUx7ePzXtf9qN5wVWBz5nY5tttttlmm2222WabfTmTv/2QzTbbbLPNNttss80+Fj6OSgAAIABJREFU1zZwtdlmm2222WabbfYFbQNXm2222WabbbbZZl/QNnC12WabbbbZZptt9gVtA1ebbbbZZpttttlmX9A2cLXZZpttttlmm232BW0DV5ttttlmm2222WZf0DZwtdlmm2222WabbfYFbQNXm2222WabbbbZZl/QNnC12WabbbbZZptt9gVtA1ebbbbZZpttttlmX9A2cLXZZpttttlmm232BW0DV5ttttlmm2222WZf0DZwtdlmm2222WabbfYFbQNXm2222WabbbbZZl/QNnC12WabbbbZZptt9gVtA1ebbbbZZpttttlmX9A2cLXZZpttttlmm232BU3/0S8AACaP9Ee/BgBIKSElIAEIMSHGhBATZh/hQ4QLCcclwPkIFyLeTw5zCHhwHksIWELC4xIR+PdcoOcDACEAKQSsFjBSwCiB607BKolOKbzpLXqlYLXErtcwSmCwCloKKClglIQQgBACkj//s9Zr/PNPcsG+pT+zz2Lz2fP1DzFhcuS70xIQYoIPCSfPX6cIH6uPpBBQEjBS0tf8kUDPe/IBLtLvTIG+diEipIRYngNQQqDXCkZKdErixlpYLTFaBaMljBLojYJW9PxakY8BlM//iH+/hj+/hi9jTHWNJVpnLrDfQiSfxQQfImZH68nHhDkGxJQQIngNAFqQrzSvESlQ1ouSdG2FEBAA/y75auE1HWL169Gxf1PCwn5NKdGaA90f5FeBK2vQSQWjBMaO1qtWEoOR0M3flrxepRBl/X6O/Vl82dr/8f/+iiUGHF3gNZHoGgIQALSUUHwtekXro9cKStI1spquW/aflAJKAIr9KoVA4rWW13dMCYuvMTd/nX3pYsTRB3hety5GxASklGMyYBX51EiJK6thpUKnJMVfRa+lNxJKSb7PBKSkew74bd9+rTh7cinl2JVA6yrHQRfoffqYMLuwioU+JBycxxIi5hBx8B4u0H0/e/q9yE8shYDl+KSFwMBxzUiJ0dDXWoriu9aHWrG/+VoJvk6Sr1N+rYljdowJIaGsy9afi6/+a3178gGe1/US0up1SwF0WpbXuNManZKwSmJnNDSv2Z7XrNX0OClQ9lspyNcCKD7+XH++CHD1Eizfpdk52bk+REwuYPERi4+4P3k8Oo9H5/D3w4zHOeKnR4eTi5h9wHH28CGDq1ieN4Miq+uCvR4t9lZi3yn8643DzmjsjcE70E0hhUDkG0CKBCkFJBISBID0RQDWn9laMJyBVUyAywsxJBxnj8VHPMwekw84+YD7xcHFiCUkzD4VH+Wg0GsBzQuyBVcPi8fkEiYf8TAHLD7h6GIJagAtRq0ErjqFXkvsrMSPe4e9UXg39Oi0RGcUAMBEyYFaATGRvxN45b5e/5K/cjC9cIBhn80h4sO8YOZN4MSbtgsJ+dJ0SlKQFAKj0WWT3BkNIylg8h5YNmUfIu4XjyUGzCHi4+ww+YgPp4AlxOLXENeHI6ME9uzXd3uNndEYtcIPocOg6WAEaJiYoJWEgAQkkARAX77udfvf7x9x4us4+1h8lc0o8o1RAjsrYbXAzvCGxz6z/HVn6iZtORaKxo95jYeYMC0BS4xYQsT9Qgfej7PH5CImn/Bx8lh8gosJs4tIoDiRAdtgFTol0GuJtzuNnZUYjcYPfYeR/RqihtEJRgkACorXqRQCEan4FvgyB9/PtbKWUiUEfLOePBMCPkR8mBxOPmAKAb+cFhyXiKOLeH/0mEOC87TXJQbFEnTNjZYUDzmuWU3X6nbQGAwdIK+MQack9kZDMwi95EPJYAvIYBBPAPLcHK4enccUAn32AZNP+HDymDyt04c5wIcEHyOcj6v1KgQdYo2W6JTA3agxGonRSrwdiMwYjcJNZ2CUxNipAgpjAgEtSSBJCECA9l98JlbewFVj5RSQ6imXkDQxHouPeHAOj87j4+zwH48OD3PEz/czJhcwOQJXIUSEQKfwDABERvBaQWsJoyQWH3HsNB4Xjd5IuJ5OeddOQwo6ddDNmMoiQrNw86l6szXACs0m6thvj4vH0XucfMAvR4fJUwBqTzvldGZlYReNIsDjQsL9FDB5YlY+Th7Ox3IqDHEN0A69Rm8UdpYWbOgjRq0hoCGEYPBM/o0xQUhBm/B3YE/YxnKQIZ8tnk6kRxdwv3icXCiA1gXaJIHMOtBm3SmBuYu0OSuJmBKBrKRpYwbKyXcOER8XAm0nH/DLwZdNxoVYNhkfKvCWHHQfO/JrSsBVF3HdK/RKFZBvfYSAhEBEUAJIxGQCKGH5Na7b//X//O84zBGHJeLXk2dmkA6YALOMsjJ6O0ub8u0QYTUxfi5GdIpYo33ShX0EsAJXLaPhQ8L94jAFAsofJoeji7TG80Ho5IiJDMTi5PVOB16B3ip0WsJqBRcTrjqFfRdhpISPiV9L5HcqoVVd62BglRhbfUu3ZtYntvsVg6ucXXGBwOfJB7yfFxydx8MS8PcHh8NCjP79yWFxAY6Z4pjWh0XDBxijJB46TWBFKxyWiMEQ8/N2jOhV9WGvFGJKBWjl55JSQPH6DamybS2gmlxkfwb2bcQvRwLLpwwGPWWQHiePEOu9tmauCOAZJWGNwmEx2FmFXUfgaW8V5qCgmJGTHPNTqhkEBfKpYvCcfgcJuYGrC9bSleVm5Rs1A6tfjh4/P3o8nBx+fpgwLQHOBRyPrgAr79fMlRCAMQSutJbwMWK3aEzOYG8lAoOpY2ehpIAPEVJIKL4BhSDH/xEL+SVb4vRNocabtKDzEZMn6vvRedxPAT8fPU5LxBwSFh9KSk8JAkaDoVO1UQJWSaQEzCESuHIBs+OA7en70GzCQggoJTA5g8EqnKxGbwRCTNhbX6hmHxNkJDYypgSRAFHSFa/fsQk1/V7AMLONkyfq/+A9Pkx5E4j4yODKh1gOLFYTELZa4Ogiek3BPqYEKyVCSpSSgMASKJUwhYD3k8MjP+9PB4fJBdwfHTPU5Nd8L+W1q5XErtPoLTGPk6fNeDQOAL2ePuT0vURkNjKlfHB7vYv2/THgYaaPD4eF0kyhsvcZyORUzMEqGCUxeV18towRgyZwFROxkp0iriCnDjMon11kRpNAwxzonvnp0ePoAn49eM44BDycXAUbLpZ4IXiz7zsNqyWBZiQcncbkFEazFKDR6exXIERZ0syCgVU5+LKfv8UaXjH2TabFM/hc+D3fL0QI/HRc8DAH3E8Bf7+fcVoCTrPH/cnBuQDvI5aF7vuWAcr7ldYSQ6dhDYHR02LQGYXBKiw+YjQSbkzFhzfJolMJWoniw/wB1OxQ4NSlD6kcfE6ewPKvR1qnvxw9TkvA7AI+Hin2Oh9xmj28j+VjJcORAl2nCqExLQG9VRg7jZiAq07hpifpzRI0lBRIieK9Vkw38+sOSFD4fQfgDVxhnV7K+fismXI+EvJ3AR/mBf/+MOM/Hh1+fnT4t58fcTg5/PrrCfPssSwey7Qg+IAYI4IPZdMFACkllFZQWkEbjfv7AX2vsdsZxJjwYWdxWAxGoxFTQm8UB6UEEwkzC0mb8PewAX/KWp8BNeWT07FLZphmh/vF4d8fZrw/enycA/7jfsK8UOqiPcnmk3VnKBWgGFxF1jA8nBxmFzAvAYfDAuci5tmXTRigBS2lwDga9L1G32s4H3E9GhglMI8GLiRYLcu9YbMuKNFJKe/DrzWFdL4hBPbXzOn39/OMh8Xj4+zxb+8XPM4Bp8Xj49EVZimbYZ2E0RL73vAmKfF2NOiNwG1P2goJYAoRk0s4uYi/Pyw4LgGnOeD9gTaaw2HBsqw3GQJXFTSPo0XXKTxOHleDwVVvIITA2zFgCpQayUveKAkgApBFi1f24FfGXv2PDzMeJ4/D5PD+sKw263xQzWtDawlracO76k1Zb7c7yyk5hXd7h9HQJn1tTdHN5DTy/UIprqMP+Ps9AfDDEvDrI/ny42GheLxEnE6u2YADUj5NCYrJXadhjIK1Cu9ve+x7jf1gMIeIN6PH3aChpcA+EGuppEDMrJrkpVokG5T+Jf9+3TidU4A57p2WUGLfw8nTgXLx+P8eJ/x69Pi391Px0c8fTpimgIXve+88Qgjwiy/gE+D7XitIKSGVRNdbyrwYhf3elOt2t+swWIU3e4t9p7C3Cj/uZwxaYdAKN9aiK1pEAi1ZW9UCqpOvrNphCfjlYcHkaI0uTGA8PlYwOE8LYohP9ls6EAloq6EU7be7Ha3dvtf46abHfjDYdwb/5Y3H7aDxtxBwZQxGQ6yb5QwTQCnCJDNg2tKC/5AVBoRPLFkgPQXW60wBH6eAx9nh8ehwOCwUlOcFfvGYp5mcHSJCCHy8iIyKAK11AVdSSk4dAg9XDkoJ9EbSTaZquik2QCL9xuv/3qyALA4ILcgikSOdbvOp+mHyeDw50mn4iGXxVdDOwd91ulDhSsoiuHw40qYxzxyQfMQyU1BK7CAhBZRS9Due9FgPo4OUAg9zYI1CgI8JuhFxypQgE5DS69blABU8xuZAEwswpmA7+VgC7GH2OM60KWT2IZtSAkpREPQhobcKs5MQQmD0FBgNi2knT0zV40Kn3xM/9z2DqsfHCgrc4hFjpI2YN2HJwMl7DcvslRDA/WTQsZ5oDrGczil+0OeE1806T44A8GkJmCaHZYlwjjbDfPDIDKBSFVwFPmhYTrVOncLBRAgB7G3EYLMPCVzlePxhrhvwTweP00L3yK8PM2YX8PCwlM34dOIDb6gbMIE9CSEFgrfQRsM5BWNk0QJ9HGwpbDkOvvjVhwQpsmAfQMz+pPRzEjn9C9Rk8Je3c8YqA6ssX3lYPB4Wh78/LPhwCvj5fsZhcjhOHh8/zkQIzB7TcULwAd57uj7xKbjKcc0tjvYvreFcgLUErkJI6IyCjwmPncZoCaBcdRE7GwAAVqqStgdA+sZATPKHecHDTP78+4PDYaZ7Kfvz/n6GcwQGT8elvFY3O4QQyp67AldSQBsCV0orhBBgrcY0kTRjWgLmIaAzEotP2PNrDsmwfpLMRAZYAJL8fF9u4Kqx7Jiax64b9ewjpkDOp0DvcTw6nE4O82legSuEAHgHBFeFXAAgBLzu4I2Fd56DNW2kh8nBaolHq3FYAvYmrk4lFBBEQVevPMvwWZbOvs4frd+WGIrfiu9mXwLvNNXTTgZXMSaqDGJWJIFOWcejawK2Wy3uc3AFoGwqj5ODUZI3g4jRkMA0KN542bfn7+c1ujZr07Kl5hATE+ATB1xmHnMqYHKhpAAyGwIQuNJaYmGd1eIDekP6icVz4YCkTf3k6HmPBVx5TEvA4UB+PR4dneB9gHcMrsq9QeAKIL8Ogyb9iBR4mCN6TcB5CRGdkuX+07Ku2/OUwmtirxbH7KMPWJZY1klNM9U1JoSAcwFa06ZsLTEhADB7VdihyUvsvYJErlhjH7MG57AEPMwRHw8Lb8YeD4cF0+QLs+wdZRO89ytwBbDmSknEEKGNRvDExOR1+3CiQ5FVAkcfSpWcjwmq0VlCAiIC4LSh4ENDrlL9WpYS6QjzRwZWk6OCjY/zgl9PAf/x4HB/cnj/OONwWHA6eTzcT7RnuQquUgiAW4gMaPJrQRtAKkBKWGchFWVgvPcwlq5ZCAldR4fKY6cx8OHjsETsGCD3WlGxAsfHOVAhwsRs1cMccFgifrqfcOJYff8wY54DHh9nLIuHdx7zaUbwgeLv4oAYgch7bpsXFBLeWAgGVzFGOGuwzIYO0c5g8RGdVfAh4bpXpfJ7b3S5R0JgHaVA0Yt9jm3gii1fsqyPKPnrkHD0RLHezx4/H+gmff8w4/5+wvEw4XB/wDIvwLIA0wM5OoYKrjJzBQDaAsogaIsjUIL5x50lGlNJfDj1GA3pP4wSCEoUdoN8+zoC8peywoSc660ClWE/zgEfTyTcvD8ueHykAJxZqMx+ZXA1TR5aU+m1YoGj95ReWJawCkjLvCDFhBiJTcmnYe893GLhfUTf0zL75dDBSIFOCxyHQGJPrixVMlGMkKkIoIHXtQHXQ0LLDtf1FhvB+dFF1loRGD5MDsejg3PENrZsiJTEXp06OkUbozA5AllHDqRCCCwua+YCfr2fMU0Esh8e5pVPQwgILhRwRX9Dlo3YL3R/ZGbyw85CcTXhu8GX9ilZRyaY5UACsZMgjqOK21Hey5/R/uf/7f8q6boYU0m/ORewzK4wgHmNZFAjpcTR6qLnOe4crFXoOo3j7DFYjaFT+HAy3MJGljTSLweH00zM468PE+bZY5rIl25ZszFudoih3YCZ+ZQaUArOEnOlrQYE4Byt27HTpR3Hm7FulaNRxW+K2wxYnVtH0CFJCkoTxq8YqzOgykL0x8lTOn1x+H9+PeKXg8cvhwX/4+cDHg8LfvrpgHlyWKYFh4cD/OIJTE0PQPDNnrUGVwSsNCAEFtMDSgPK4NgPJQvzMHQw1uDDvkfXaXSdwq83M8ZOY+w1/uOxw85SpW1mI09LZqgDfnqYcZyIfXz/ccI8B8yzx+FxgltcXZs+IE0nep3BA25inQG//jNwBWWQlIaXCo+HK4B9PZ92sL1FP1gsi8d+tPAx4s1o8MPeAwBuOoO911zln2CiLG0kPsc2cIU1uVQYkFQrmqhCiU4EC+tCMuUdHG228A7wMzk8uHqjtn8gO4a/D87BKwnvfHm+xVNl1BKoD1NMijegym5kupkE7q9n8/1nLDWfS3owVZG0j7U02bl4UYMROP0juIJPqVTAVQixAKv8URZ7TCUgBak41RAQFD/eUyrLcUuB2de+Llk8mlNkwOsUP19irM4t39v5o60mLMCZC0Vi83xS8ulS1MdqTRuxELXXFaWCCWBNk2edJJ1+W5/GEOG9pxMxv64oJVRSCD5ASrkS0RLTRm09ch+03E+rrF1+olZzBSFK+ujPrMPKr1+KmvrLmhf6fwbUDYMVY4SUtMmGIBGCgpS0VkKI0FKUQiIBwf3has+jh5Mr7Mbh4Iov52mBWxyWuaYCo3OUTYie4nO2GICoEJQqaSTvPJxWcI4AercETJarhH1Ap0i8DVSBdlQSQiSoBCTJy1YC+J2l+7/XMnjPAOvoAh4daUwzsHr/uOD+Ycbj44LjYcIyLXCzgz+dgGUC/AIsp6eEQGtSAWKhzynRZ6WRUoTXBt4ZkkE4urbLYrAsCkoJZtICJASOnYLVCqMhvx8d/d/M6b/T7DFNHg/MVrnF4XQ4FbaK9lhHrzeDQT9XUBXD+nULwe9J8XuQQHDwocekiMmKMeK+04gx4f1oS3HTu1GXPoeDV1x9mJ7EsU/ZBq4u2LnAPaTcwCxXDdJmmU9G0TO4aoFV/qAnpM8ZTeev3YKgNT8PB+pSwvx0A6bn+tZX4+VbSefSN40GiwBWSKm00/AxNht1KmLIvLElmeClaDZ1UR/PYKoE7RCJSo8BZVWmiJRU0dxFBgOBhdi5lUBIEa2uDxdSg392ywAoA14AqyKE32utX+NqoxbMOmbxNKC1R0pqJaDNgvllCauPc2AVQqDNOEWUhkgAohAIIUAGuWq34rin0MKNGHNj2srS8f0EZq+Q00WppI8ylv6zAaz/5X//vxFTrrTl3nBK8sEkQkgBEQUSGtYyJYgkyqFGBPqaUvKSwbHidRu5RF42bGAFV/PsC6O8LMRStf6kVNf8NCYDtOECQAiIUjZaWTp0eQYti4vc1iGh1ySip9uCgHu+RWj9stA9Jupt9hV92WZXss7qfvF4f/T49ejw8bDg43HBw8OM49FhPpJ8xc0OmA4ErFbsD1+fFNd/KGdeMoiRigBLSoAnFmsGEBxdW7r+xBgvS8TS0zo8LQrWKBw5BTy5gMUFagfxOON08sxWzXCLg1voNXvvgdNhzVZdyg49AVeyvt4GXCEGzA24OnQWKSW83810Wwjg/2fvTdcbx5VtwYWJlGQ7q2rvMz10v0y/Qb9D98/+err3nn33UFWZaVsiial/BAIIQpQtZ1pZWac2vk/WYEmkCBJYWLFixa8nB1PMpB9GB6Np8Tbm64va/BNcdW0VspChihLLnn3CXAZlXvHCL3SihqWBq7oE7yhWoJysCggLUiD91bJQiGr2EUdPYRGfUnOxLrcM1fxy8McMEG6yHptMSBO5t4EdlQGJRYMhwVVS9JjDFqzBSinV1XAdvGMEQqAVMW8/F70VD9ShZU0tgRiOqfStTxljZWlQdVtrQSz9Em7f+8Tbg6hmzrsGvD3CYoNBUzQugyEvMGOKg31x7NZaI+dQmZCUUum3Fr41DKZmOvZsWkgaIGKdSZMTEHhCDqHqrJASLZaAMtFYABFZaWJfxPkTQvMUWkJZfKWEJTVTxBAzFkVCd51y9Wxi52fNWh0Bur7XK/t/+d/+T/x8bD5WIbWJeHQaOVvMdw7WUnZljBnBGARPfZaK71VKqYTyqf+ip3AsiaVZi2UwDBqnJRZDR1Uz5J6fFxE6mutYXPU4y0J9yBNwHZPL/vLEW17jibZds4ZkA0Wo/8spFOd36uvRGvzgHfaWPJ3CaEoSTAI6UH+rNgfSJJ4W8oP6z6cJf330+Oujx3/7+xM+P814fFzwyz8eMZ9mnD4/AfOR5qnpqR2bGNo8Jecrbik2UiCGFioMSwMuywnBDgjzHbRzsM5imRfSZA0OT0++9qcryQsUrUk1NM+6ZWarkvfA6XEbUPVs1dZ+M3PFpEaKtK9+AqKHdzv4aY+cMqbjCKUUjg8ej6cRgzV4WhL+/T7i4AwekkNMeSV0f639E1yJVudHvkdjrxJyLelQV801hrjRsddsrKBtcqtOlU1hh3cp9G3hklxDCv9srzcGIz0okWELACVkk5FVhkpKvKbqJM6AqQqdt7o8J5ChggQaLcQsw4AsZk8cNoIAJEqAaNHdUoz7vbYtYMUlb+oxQCP72D9IFRreFBfvoVhhuGJEqMUtJYWs5PHNQATo2BNbCADLEiu4YpsFygiMVV/FmqB2TTcWsrYyuSilKu6RKeuyTzmcyeBKq8JC51z9mpSiPdWKWJ1mUshO7t9P+1//9/+BvzzO+DRRxu3n4hvFpo+ynIlSqmb+5Qw4x5ORpcUIUAEWADruqrBZQdU+WIolQEoGWnsYQxmgvDA6ncj6xvt0FtatzCOzMG8dm4G6COMsvONcWJmcoQHsXDm/YoJ3qXgkARm6utIrlaun0y0ah0jZF+7jKeLXE3kvPh0XPD2RTnE+zcRWzUdi8SQJII/RpWOVM8hSBKjlBiSoYfBVgEyKI5ZIwndm+onF0rDW1HOC5BkEsKbjVNmqZVoKYTE31jEsbV8ZDPL26z5e2u9iiVL1ZAkwrr5tmQYAwPG4VP3m48ljNEUf6yNGTX5YIV5/Lv0TXJW2Ci1hDWS4nhndGhCSg+vFptjrZnOjQFkJp0JFx5gQUlkFlzpnrWZUc4ilzZZJ+HcWSnjvxkBJlePBE7VVGlaRe7c1rNsgNoQnaTmP8cCeYhHgar5waYUdIw3cbSJO3QQswr6Q3ytYGxbc51wzU/j/nLavoKqhbO3WLIAiOHzUfv9v2eQ1IIFVA5Dtd7Mxb8qttmDVRmmF0ZAvjh8phHq3c/X9pz2ZsHpPGpkQVO0LZrJijkhJ1f+TFouOTxDhdz/7Vfp5TePmPq3hew0YWp0rTbocYjR1Fcpz41p6IVOW6hJIL7mEBBdIyydr5nENQq2ALGqZ/VbM1f/x3z4hJirzJN2xn+aI//zs8TRHPLGPVWHrOPRrSp1MzqDcDaS5SYk0jr6EjPiYK6/qtcQLm+ADhVxLRt9SzB+XJZyBq2lq2keZPRa9Jza5shupix4IWQazLtrUPpX9yazKk1L466cTnNFwVuNvO4vBGvz7fcDDSOXLpkPCw2Cxt7SwGqzGkPgaNTfpr9lHPC0Bv0wLfj4t+P9+nfGPxwk/P874xz+OeH6aMB0nnB6fKQx4eixMlSewIhb4AF4GobzCS5HSIfk1Cay0oXtzAozDFO8B21gsa23NNATQ9I2lD0MIlBQ2PzcwJRkr7kcJ7K7Zb6T1xM6fDwvgZwQAwd9BGw2/UGhyv7NYQsQcM/58mGjRhKEaCF/T/vDg6lVw9NbGLp9sfpJzoaDT5sQr94EnWSoqTB4q56zGNmHyR2mv9ZdCyUZidqAM9lQbq9S6MrqEmUhUy6vnanPB20jtOYeDpG5kvWFGOrp6mjHLwWCPWxI9eKZFKiwpFVDJFVS1cJHYVv5tdTo9qCq7tGLqmAGQ4MrHBqr4fUATRTutMJaCqjursAwGPqaS8p1giwFrzgoxqlU/8U7ESCtWpVK9DFn7FkooWDJWKyZSaQBl0mgxuzr5rkXbXd/mlgTDJVpYK0TeV6jhT3o/nZ+qlEK6tU6nb//P359rPUd2PP80E6j6PFNZoFPxkzotoWZbLqUyQQixZmzqem2pEvpU1Q8MAJxrmpgUEwwMQg4VXCEBCQkaDWDlEmbXOlVwlVKGX3wN0dcMzxVb1YMqHovFdVrBVQNWSgBmznwESKhtS6jPh4TBkTHsFAzmmHFXXPoBYBdMqVuo3ySAfmvjIvTHQIzi0+RJi3bymE6+itcxnxpb1YdIv2T+47ksF1YoC62TzDacT0CMCIky4YMJMMY0SxOpS12WJq9hQNXrl+VCtteFXWqr6IRgsqQ+y0+AUvDzWPfvePIYncHOUYm7g4vYB7LQubb94cHV1zbFbAXHNs7f0AAW0Cbfrq0B1prtaPfnX59/4wn2W7atyZwbgyqepGqISZUyNlZVJ29r22RQB9SsUGFsRtVr8XMZClwBK+5LHnDKZKy6W337KhLZ2FIGJVwwNSNXJ36WuassmY3yZbl927dgO3pQKUEV/7+xV6jFmWtyRuaSKCjC78Zs8TzEfkI7q3AYNJZoaEKzGrGUj+LwqtYaqQy0FSQlFtO3una5AK4Y1+Fd6WW1alpMwkpXi412z2BCrRjGmHPRXEU8B2JPjSYbAU7pliVAuEisVgV1pYx0w+v409HXEinHWTh6L6FGIrvTAAAgAElEQVQW9f1lWnBaSgHmkgl5nFv5kaVkNnPWLdBsTNi9m0Env5Yz6j0A6KCRQICJ+PiyfEgZCal6x8kwOIErAsQyW5cn6EzI9jJoWI3V7Z77VAKrnHP9bQzKGTz6SOeihsISLHykeoS8xfvB1t8/3hJcpYw5UvUQAlcBp5n8F5d5qWE2+OlyKLA/PpfA1tY5mds1hlwWOTL0pk1lxrwiK5Oo4wpcsdyCgNiFpDAZIbjUr9eCRN5nCa7CAigNv/jKrB2PpBHbDwaPc8TDGHCw5p/Zgm9pbGfw2ntotVlqXHFIoNwaW6FbBgo7BuZc4jgJKxCmTV2q9ynLfeiosgDlPSvRM1BnNvk7tnHe7xN8bWWa9WyfZIgqW2WoIOfiEu5HgyU4hJQxjrbWA1yWdglssRgy5MST8Yo61ApIuoWPlKqmdcbSKogMSVUJAamVpoYBSChMS86J5vXCVnGoiO+1arXujJjUb63TkccbaGCQG4857OeU0cpbxIwigG6p9Cz0Tt35HTP5fI1GIzmLP+0pjdtohcmTNxiL1tmgMpRJl0N7OVNmZyoWDdxqlmcSiQwiLEWHsITxlanAuTpUF08f66hcCtUJNVXTFTPweaL6h48mYDAepvTjYDSs1jhYcqneGYPDYGBL4emcTWVGmk7kfdvnUr5picLOIEQ8+4C/PE/4XDRVf3uiWovPU6hAbFoi2ZkEMtOt4VUf6wJP1k+VYAug/w+DhdYJxkSk5Fp/CU0jAOQoa/+RVc1qjCzMFTMfwRfbjJVP07le7gxcWQcYR8krRsMUSwYARdflV8ykUgQih+LN9fwh4DBa3O2oXNm/3Dn8y13EzlLJnpzJ++xWbfIRv84ef30iEfsvjxM+fpzw+fOM4+MRy2micOD8TKBFhgLrhdwxMdfOEZW94gtfhAs5RJhzsW1wlLylDRKzhfw+vsnwXxBGpltAcIu1uma/5T7LpLNiRZGeB5zYnuFuVz/2t6c9nKHox7/6jW1faH94cHWptcFCTHJlfdWEtSVGb0pqar14ywS80lvJFVN/a9vaao2caNmCTX8l0rk3PySiSL9DdutS9hnQJnSJdWRYUCtiDJzR2FmN0WmMpdSGdxEh6KILoTBT0onC83WbXRhwA8QSoOYMJFVDDOubZMpkf6CKvGleSci56ccYZBmisKDVWhAN3c7JtxQUfWu71AfyeR1j6yKgK8ocG6Di4su+eLlxogh/J1sZaKVKrUAyjhyswc7lkm2UixeZQi4iW+mjxAwWVNtfuVLmJJLtEC9PxqjMpjGtvho9Frq90mLKOC70uwjgJ2jQgmwszKkfLHZGYzEkBHcpI2fdMssUFZq+RZP1Un1IVM6rFPX9x3PAp4kKm//yNJNz/UzgqtqWJLKf8D61bNvY6moCqBl9PD7G2GrsSRbKlOoUzDzy+CfZRygg5ghd0t9XC50CrIitYmD1goC9hgPVKiQoNXR8rrDZKTti9exZjLmYDKvKxj5OsSZhnA4RgzY1HHyr5lPCydNt8pQ5SSVtlnUWe2WAXmD13qPlhJXgnUOH1bRVzJH1/fk8A3AlsL8ezHzR/ia07YcFWByitUV7ZahywxJxWsgxwKd/gqs3t2rICXEdlhuHlzi9tk6U5cI8Y6NYd5XFCdaHD8X7JbCS4CeDodO6UVabWrFW6N7Hz9hDB2jhw34732t7bVKXLIn8jaxp0SUcM+im3xksFYldnIH3xICkoqdSSlXt1WqSzmugVZvSrY8FsKohBs1O1HSe8DnU9Db0vZyBwoBEAvrGmvLkQwyqKsylLLmBG7BXEjhJINUf/xUDVd4vwVUDVjSxL4kynKIAV3IeYnG40zRh7azGrpQmGcv9MGQsC2emJUQxifd9VcFUx0CeAyvxULWJl/uS76u2iPuyMHKPM9kGVEaxsDmj0RgsGWPurcZoySjzkGkIdqZoxEBlkW7RuGoBhwI/L+SL9HHy+PuTx+Mc8DS1+nzTFCp4agk8xOpIOxPpOQZA2GYkxLgW/vdAhUPyqlsdyP5jPyzZr7WeXA+s+ibHubqYZYAlNXTrfaznCNoYQN8BpGQRglmxck+zh7MaO0s1aHcmYpduq7liY+upgqvm20bei0sz27yWAfraljNWuiY+/gyeNsFV6ABgz6694zGU7JVSDcBVgDUj+IFCqt6R3ceytke6tv3hwVUfSmusQfOicVoXga3C4DRGZzCOFCKILsI4V7x7MmDKeocv4pyxyhZhWtQQJa2KgE6XWnamiK7r5Ik2odEirQmBo8r1PTKTjF+sE3S9F+/5jr10gMuTOodJORstC6aEJ2gCJKS1OlgqxvnjztTv+HyiNFylVE3VZz2HigoxC71HxibDwVoRAsj0mrV2FT5yg8MwUCmIYTBwVmMwxGBQyDfhFCPUoprER/QjhwIZKBpNv0mW3OD/3a4fsGKVYmqWClKQXh3JUwtfy9cmHyu4+rR4LDHh0QfKiC3GqrwdFnRrhZrWPlrKylIKOC2WTAmNgvepGoimlJHUOjwoQ73VRiO1UFSv6+EmBc4c4jXWlD6ldHJbSp6EmHFaIpaYcJypEHhCO3+VQkmoUPiwdzg4jYfRYPmQcOcsHpyt+pxUxoBbtNk3X6RPxRfp708BPx89/t+/P+NxIjH0588LliWUsGsXBhdhMj6mfM+vVaCiUENtVa9WDrEEZPL9dSEjABXfy+uxlrPJqdWU28p8qytlXgCVcK9gIlci9phasOHCoir6phviQt/70dZN/scHD6vp2jzE202xRx/xeYr4NAUhZJ/JzXx6pnAX660kaLlFq8eHoza5ARlp3sr9wJ/h/dlirVbf+577KqJJQLF2yHSsyj7OpwNd707jcfI4nCweRoOjj5tfudX+8ODqUuOJTYsJjlbRlI5LOhqDUPQYzQVWtZTULRsGkf4LY6hidxdm4IkUaIAogxmCwnhwJln94hbyk8wbh5BULcVQ3nC7BdVXtTPBNNZAqk3eolYd2qTO7+NjwGLinTXY2YS9IwaEQyNcqDWlDK8pVMETyGr1LJFeadLzqE4gxXx0rbcqXk01i4q+z6cEHRWAsKmZMpr0WQyoyEuHQkg5A1oLZuZGTCQf6wqoGOSmXAXpbOyYZJ8IsJsEa8UZaVNMePahGG9mTCFV5oqvOTkG+9hquTmri8eShnO69B8BHQ6rrhjHup/pHFRtXAeSVeEJWGtdrtXzMC8VjE4wSa3P1fKYmEfq/5xRsh9zLWhrFPBDdNTH6W0lNt7SuFTKsWSY/XIkc8xfnz0+HRecTh7HIxU9Dj7AL76CHDowDXRWr690DmL5GAJAMi3kp83a6qBnhXvGuGeuVv0m2SpZU66fjHNuGh9uG0kncp/qmCuAVT1XFO0HFEqGohZO7lReiW10+Fq4VQuZwuU8loXQkjXWjBWDlhuG2PrGmYR9dp7q+0eAqB5YfYt9rKFLtdKAxRirATTbjviUEN+wb39ocHXpxO/DMpbDS1ZXryRXspZYg5FMQrIO8EZuoPtikf5rqGjoGWtV/GJsYV/kvtLKnAbJfiqlt3JYszFfuUQodUFaFap9h2HBdRinASughaBSbqGnOrnXAVpM6OWrGFw5rQqwIuZxDgm7mOCcLrXNEnTRgTQLhcvHqIaRxQBdNVblnLDFp8faBqyYlKBMHwIUvoYfsAoDG0WhxNHqmkFHxwLIpgFw+p23GcQZJPCxZRF6SmtLhSAeN3DR7peQMKdIrtKhgKuZamjOgXQj3Le8qOEFDv1mCjESqFSl9AhfM6QJYnAlmfvKWl0AVj14lizKGcCq26PrlPssFC8tHwVjlxoQVYqkBdZQOQ1m/B5n0uk4rTDHVBnJW03IrHNjEfvHUsz88URmk8/PHtPUiuRWx3qcA85eIyUZrhXDG9fXR68v3eqXPrGk/i+JCZhrBW4xMtKFnZ9vaV27thVKvtgXZbUrS2kFoSn0sdWYvFVjy4+QyBtRlvMikMDO6zfUWfWNT3j5vLJZLKMQqybg8v69xz7Lft4CRtVOIq/AVSuFxCWGyHvyDR6ifzxw1U/gwHoSV+XG7JHRCjtDJQ7unMbDaDHtaIWy2znEmDGNFGbyAFLY1dTO1UY41mwHAlduwDAOcKPDMA4YR4vdzlAl+IH0GUas3ukiTYhJ1VBJf+GvxPdlgjJGVyZAMickF/j2AGtrsJIv5e59POHyhFWL4orJXTIm/JmqDSrAcl/Cg3Gf8eOeTnulgOc5VBAdQoJXZG6YkM50IPQhEV4VE45SCtbZGhIcd670qcVusNgPltK3y+T6uEQYHaufVUxN2M6/g8+/O6cxGI3BGPw4OhysrVlILmkkc7vQYCgTRyx9wGVPYgn1sZ5qCamspGP9LaHWT+Qi2lTy59NE/km/HgMVKQ8ZpyXUDFl5yRiemMV1wJmeAEpGGiUlsLidJ//VxJ1Ip1Mn69SxEhAhWSUtF/QqLMhgWXohTSJUIDVKBApQ91MXgfNuMFhCxN7pugj4cQxkwqne5gL9ljb7hF/mGb9OC/7nk8f/+HjCL48zPj+R6eR0mrFMSwVXKYgixyXxpobSOtbnjOGRTfExaKxXv3BZgaoeBCcBqKRGhkHVRRNMBlmcwc1AQ9ENnBjRAGR1ixfnAt/Xx7qdHw0n8CKDFgwhE3t1S0wTEm2LWStZ+3RtZfAKG7Tlv/g17FH90cxKoQGri59ZrYi+fNvA9u95rXXiei7e7n2ohbHnmP+pubrUtpgR+Xr9d9Up0aBematibDg4qu7tHIUljBWFeo0Bikj1zMSOmauit6LBep3a7SyV+nCmTSi5ggdAifIsW0BFZsopBbjMQLEsGFTJ6PlGCxluZ+G+DUDVv4+BFQpIYhDFN1+YHwZdPbgCmn+SQtFhaRZHayyB6oEFR7XMjOHspnXI4CWGc8VwGL1iIsnzh9hOK/ozZWDyqT73qYErHxu4MKXffDTYuYS9zRgKe3WALaEyCpelG3UoM4QcBmyFxanOZkgZSwnx+ZQwxVhZppgSEqgv+DfGlPE4R0wh4WlJWEKEDwnPc6h6wiSON5tRajEh+9hsHS4SCzmf3Xr93Jaepp9M+1vvyk6Tc9uuFH+njf0LKSFEhRA1fGE65lAWDVkU8r5Bi4UtffYkvD8WX6TTKWCeFizT0gr7Rt/qKwJVp5SURkpm8xrZCunVjyuq2ykBSt96t/0VSwUIpqoDV5IBWTW5wGWGIoGsUwhU6ZJlmtAMhVehfgmyVAPeLVTcBPucdLIibt7aSW9oGTzW8U2e698wBHipSRbrmv35Vuzaxe03lq8uEnIDzi8ymRvtDwGuJHjaAlRVsAuR7aRa6jv7Jc3R4se9wRwsYky4vx+QM3AsRR+VUkQnakMlGJRqAwALKYcdVAFUw27AuBux2zvc3Tnc7x3udhb3g8HOcggoY0kJalmHSOS+C0xYL3LOMGPRszUaqUzyJpMC61scc95PPr6vvZ7rn3UGmo+CIeEVYmjFcUmzk88yzzJyPYa19pklgLU4Ygp5cHKO6pn5hVa0m8xVaTzY8grWFG8rKWTf7SyxV45AHIC6r8xOhJyJbi6T6xLWwm6tFe4H8s7ZDzTJLImAFbNXCrfLSlpCwuxjDXUc51KAuphNsn7q0ymQ2WR5b0wEGoGehUSpS0fib9YzPM+UmcYZaKs1iWqTlmSMcs6Y51IyKqQ1Y5Rayj5nfknmitkKOfvlolvkQVQJZvc8DJarC3zfKDyJ1f8YmBkxYadM/d/0WY1tvUU7BXJf//uTxz+ePH59mvHx44THx+KLNC3klH16atldQBMh871xlK1cvf3EqgFok5RoZZ5qrIL8XN8qsJIp+VkwVB1bdWnilvoepVBceetnMoCo6VrXWiOqSAJ8vdaIrcKhWtUyLuNIC+JxtBgdZSGPjiQILOv4/sQXXbvE8rwWTru2fUvA9BpjVV3lX2/vEZr/Lw+uemC19Vw+bmzJevV8xl5ZQwzWQML2aA0VqDQaKRVDyVSM1LJaZamwxX7NQCqs1WANRmswWFUnzpgoKzAoGp5yBkKmyWcrhV2rYliodPXLIQF0qiniCkC6kUanP+bA+XGXr2X5GgNFAa6Yharp/Ilj4A1o+ZLWz2GoKJgrBszEnCQssQmnlWqht5VIWbITr4yO58yGrs7ddNN1O/SbCgupWhhwiQkhEWBYaqZb279JeCDOIcHpiEHrytr158B7tuqNVMDs5COeQ6BCsfOC5yXVEN8cyfU7cBHyC8xSzNSHs4+NchcgKYTzcIoqjKtkjZodwPq+D/lJs9BV0e0NpqPX3PB9/Z7M22X/pmbqCqCGZ3PGKlTL4Koy01bDasCqc7bjVs0nKvI7FcC8LOS0HnysdfqwTOsiuQBqKSAGWHxyMhPfR3susUly8uPPy+ey0+V3MJCS4EqCqosTYWp3Elwx6Io02SY4rEKBqejD0FhppVQtzdN2ubn0W0MLWFuKjhu9lnXcqrE2se4rLwL6Y4sNYHFt+GwLlHxJ6O292tfsz0sAS1h11KQNZiu/oCP/y4MrYD158/O6SsQ6fXwtxqXPKdUA1s6Re/ToisC9AKMQii7DGNJ3ZADaEpWtztN/rbWw1pbQIq16BhbLF1E7Az2fUk3tzigsTgFWvPLlppWCi0UAbRSUKsyMUXBJV3B16wVFzxLWcVIAKGk4uQW0kgC9NTQV01nm2RIpA4qEnetjwqAjZjavLLfUAMz6tp1F9FKrIQPNoYMGBPjc4X0hhom0HfycgRVryfi317BhzDAqwxoCiRRCSqtjdqvu5PDrEtgbKeA5BDz7gL8/BzzOZLD369GTMWXRTkmrBjpG299LpUVy8VRKtV4dnxOy9eAKaJ5LVAcuruqVxdhc2GWpm1XICUAVPCMhF8PKlBKMMvUzKSXopEshaAjWKrV+1hJkNdsBrTiZgXzWqplt8b7i651D+beakIn5zZgCJREQuEoNWPmllR/JmcYuANW3TwITgJ5LLyNuW8CKL7b6WbFi2GryO/JGf21tg59XvStqv9bMNXYSrxYABQwnTWxcppBn1k17xSFMnTWQKUtQmtPWRRqDrfLYbpyv79mqTYsSRejLGJYr0/hOIOi3BFNb7Wv250WARcdtPQ+UPn4jyPovC662GCqp4eEJIGXSlCALYTTQMn54EgaKuF3jbtCYgsH9ziHEjN3O1tWwX0inoJRCyAnIpb5SKRDK5TOssxhGW4Xsd6PFYbQ4jFQew2gOCUb4MgAwoFpKmm/IBBSiYC60Qs0uG41Gyhl7YzFaDWvIARwllf1WjQFqD17lhJsFw9TbKPSsIn+Ow4I+knD647xgiglziPg4EciaA4Xd+HPtfGgarpNPVTPEGqJXNUs82YtJX6Zsy9YPqDKjDqChXvpEWg0E8MSsSyiT/ieNRynU0L5fgtJbtclHHOeIyUd8XgL++9MRv54o0+w/P054LjXnHo8LfDEybLqj9j0NuIrjUt4TI5VRYUaolqbpFg69yJiOQbnOU66O3bK8TQzttRyFTif2dEusC6CsFNX3K8c3LKGGGaEAa01xhyfNjXOpel45Z2BMMQ4tpXE4PG+Nxn4gdnrvNP58Z/HDzuB+sNhZg9HomlF4izbHREzjHHGaA6YpYJ6oDl1aZvL5qb5IG3pR+bh/LttbxMkv/daeyVrdb/yvtij2qTOu5AhCBYa6JSAphawNstKknS3v5bA/6ypdJL0ss1taK5IolPPV6DYR3yjPBADKGK/awlzMLYtx5Lm4sgT6zgDSb9l6Zq9aJFnAtMQkjihRdQhiJq9t/yXB1aXQ3yqlXICrGFOd6KtBp1h9sx6GNTssNK50cLFRYJEjhQYToDVluhTmaoWGtawiT4OqLWnZNTMqk+5HFd0Q74OPqRSIbXodCa4AIBt6YYkJViXYRKUa8jcQs0sGUB7LtPFYHnMZBgSw+R1z0fvMxa9nCuSe+3kikfQcqNAsh8tWY3ABLaz58VVP1Mp4NCfq83T9LUfvqs3JqLcmZs7V4ykYypZTqg3IdUUEBVUiyKb0D6+atQJ2lhgOLj5ttYJRugEWvBq9/OLGDNMxUDjw11PAL8eAX48Bvz4vOM4B0xzw9LQgFDZEunlzk+BqnWFG996fAyMO48m2xSj24b+cG0CrqekZJXuKWZCN9G8NCnFpyj6sx0AAMaVV9V0yJsOYBMCWhAj2MKNrOmr2W2vGrwys9oPGwWnsrcbOaIylXIpW63Die7Y6nvH4x4xeLGCzd/JemS12j6tHELAGM+jA1Rv0Oi/pfC6BqUvgTab8Q1gAJGClvapgsQt5cn08pZG1QkiOxuyoy2apeLQ3GtamWnkgFL3hjYdYALRAGyyFI10px8MgcOWnWMOC1xtg/qGarAtcbtJ6xbEFU1ngXtt+9+DqkvCszocrJqRpVCR48jF3r6+1LKzrkRlpGq0kjgRJsqYc0ctlAOJJRcZx9TqcQBlt4jeABkSFxlrFjJIWj5p9FXhCz8WwsOhBrG7Fn2sIrh6T213+KyCbBJBNa/uEUITL0q9qK0QLoDJ1U4g1HPhcyhI8L+RSPAVKS548hQgrsyN+Ku8Ha7fm4rAcQqwAq9fsXMosq+dXysi6pY9L75sYSevlg4IP7GdVnNXLON6Ku54DX6MJXI2WyveMpnleyTqDt4o+hGLweSyhwI+niF+PAZ+OCz49L+SLNEUyngwUYmKgI1u/sGgHsCxqOtaJj2v/Pfxdfav9wEBLOoczYIgbwEGyMwmguqA02FaQG4TIXTVwFcv1njOqvg4ArCXQxUCLNkN2ALpkAo+l3iVZbJAOq+r/btSXGXQNSeDfNGgyAy9jDT4l63HJs+gC4HmTGPqVyf/N38vhwbKfGQVYpRbqBJrJqFLte3myZdBVFqbRODr/MhCGUDOD2Ug0pLSSbdyyGaVr7VRb9oMlJ7OxG6bW6nUm8Y/WpCZEgCs2964G0CWx7S11P797cLUFArbOj/6ldYYSTbA+NqHtLDLNZp8q2FqKU/ScYhMcp0gsUYz4PNOkzqEnpVStMaYLbaxiyy5JKdUspC0tTz9RsLaItTVZnRdbNkoBOlN4SSuoTECL5+gqpnzz0X6fxmwH15aj0FuqYb1mpVAy/Ur6PoPYDPpczaBCW3XPxUdmCQm/nAKOCxlQfjwuWDyl9p+WWAvOcrhvNS6LCWZZWPeTME0BIUT4pfmc1BDVaiIqX6Ta9wEg3Up5PhXn9xBokh2cQUy56upCMrBaNzbK0KqIL2ClAFcm24MjVnM0Gg/OYW8NDnat07tZKCkkfJwX/DIv+NuTx3//dcLH5xmfnhf8/e/PmKaAZfaYT3M9ZrJ0yVYq+xb7JPVQkoHayuq7eGJnrMFTyufp+7Rj25OzZDAKc5EVWSbw9Rx8oIwxZ+sianZNS+mcrUV9x9FiGGiADpH8rUjIbsnHTlNZnEGbKoh2pfzVLRqbsDJbzAuJajpZGb0N5moFUK5gQV5inr60vTlrrWPUlFq/xn0dfQOJMuQpQZeYeEPcIVi3Mh2e54BpsJg8yROWYiJ6yyjB3hp82Bk87AyOs8N+72ptQYyH1qdhoQ/kDOACCP4W7SUh+bdq/Tgp7ZHsAAx7YHfAsBuw2w/Y7x3udxYfdhTC31mz/b0b7bsEV68BqvzKe/n9GY2BYhZFFpGVKf08sU8hkndPinWCn2NCTIlcpUt21FRCS8y+9NqQLZ+knv3gfcqZhc0JIWnMMcPGjGgotGgEODPIgNZQmTyONHiVpMDu1oNRdTXsdFsVc/joLWLtL2kcduDjzOAqFDfuEMlM8hjIG2kuK76YgSVGChnm5v3ExydlkGlepD75PJEWaFoinqdQs8/mOYjssS22qTFazFiR7qeAqQISZC26lnEmBycgKQUNXWvaJZ0QFWVh8bacIw8nrRR8JBZKKcDZjJjIhR0AYIBB0aTrtCoxfoWdNXCawNXBkaEtT8I10/FG3RkTafxOhSE8luK+x6Mv/kgzwhKwTEsVkm9ppXoTRn69HkrJOnEYTwKia2YpqcuR7MsWW7UJrjhMlNv3lIE/G7NK20dGM49Ntqbpp5jgi0M/nV+pygZSzjiMtoYIl47hqPzlDa/NL2o1BMjhtFdATj8mv4fn0hcDAblt3b3WgUagMVtA+92VnSvoNHhiNmMrNxNCri7pbAQcbwxenKZ6t+S9qEvNS1PNjKNxgF4IPHDfyaxB+btu3V46B2QSwi2bvK4kwGaGj/0nDeutNIaBfC13jux73O9Zc7VOhRavb/x/6z0yBR+5Ffpdp/KXTKVyfwoRcyR/nucQivNtqhP8VNiWOZIB4tEnnJZiolgncLHtTXCYK53cvHaaXw7Xh1oC6aiMztjZstLQGlZJYES/20LBqhJmK9vRoDpmTqsaPnJa14wSpS7by7xX68HrLIr2Pi6BVnYp4slHxESmhj6yhiw1Q83UQnoMrrwAbc9zwBIiZp/wNHnKfAoRp1OoIb4orA1kX9C9yDaLFNKKsZX9qIMnM1ar9PTyXUojlaMfY6wTo19CPSdOJ4UQqP991PCBQk6jI6ZCKdAAmTVGg1oix6hielpCR4M22BdgxUyHBFi36kvWtT3P5E01zwHzHKvhpF98ZfvIH6m7RrVIDa8al25DDKaAtTZKpt9f07ijX8sy679Thrlk0VlmL1IAtEXKthhppgaoymM2oWThc865GMmaYlCbcBxtySTTmHzC4hK8OU/AuHVrmYmcdn5lZpkMo/avrd73jszVl4IzBoS1CRZUbbBx/J5NoCWAZdFicQaqHMuZbec9vqX8gseGQ6mXegau3ECsFYOrFAFppsrtW4Ks36JdWqzI8944KklnOzH7QD6FB2dqoti17bsAV3KyAzqQ1L3GoIlPgyTeIN9T6e9yTx5CLZX/uBDLcYqhmCESyPp4osKb1Qwxo4ayUs44zbFkmkV8Oi5YlkihkSVQxlNcp37LmltsZKi0ggoK8+xruPfz3hN7FhN0CeNuuyUAACAASURBVAXFlIveJuHgTBEyKwyaStqommFGjTVbDKac1tg7A1cmYgohqcpk3aotIeG0NA+jT5PH0UccQ8DP04JTYf8+nohCfyoeRxw2ZF0UG2PK80EmHMy+eSOdTqFqp8gziTQ8Vb+zAu3inBFsCQOpswwznuw5xFQPuAJiXLEaMZARYUqpWnMsS4QxGsfjUusN7vcUPhocZYqyCeHz3mHvNA4Dl1jRuB8UrKLsTw4Fcn9ySPFW/TnHiGcf8XkK+DQFPB4XPD4ueHqacXo6YZkXhCUA0zO4dMSq9Sn3L6Xg87Ht/Yz4sXzPa61//zUia2lw2Qud+d7TKjdpcisHZ5UVjSVnkSmtsAxLNZddlohxpDT/aYmYQ8RPBxp+tVKUeGLUStf53s0olEQcXXWiXAdzLYBm0foLX7Z1XPv/bf3/W07gMnQp2SkAZ5YSr4UQK7jKgKYwomSuWnLGehduyUIOVuN+cPjTgSIpP9wN1Uz3+fOInDN8zpQBqti7rPyGiv42QBb/3vdsl+wPbsVYXQRUMmu0sFZ2oNvuDsN+h91hh7u7AQ8PI364G/AvB4ufDgb3jkqYXdu+C3AFoIbx+kw/CZ6kLxLKe9PWY6Ce7DI7TYanaDUeMcWAxyXguWh3fjkSs3JcomBghFarsDBziHUF7z35xUg3aA5zrM0KKZxQw0chIgQaeOdS404rYOc8UqL6cd5l+BI6ymV05E5j7y0GVUYraKiV2Jkd2tnYTjJYt2rMUrHdwefF49kHPC0Rf3sMVYj+6eiJOZxDZbl8bEaNknGqGjrxuvephv/mOVTt1DIvYHfuGGPrB/E9/FhmBbKDNwMz0iuExqD0zIdkOXRGUrp+F2eVJUN9T0yGgzEUJkqJWI3F0Xk2+IjREUvio8ESyZIj54z7IcIqBScc4xVQyhw1H6Wb9GXRxi0hC5NPMp6sdcz80ownUzehsUh5C1RdzDATjNNb0vo3J/q3fJ6ZjA3BM/+WPkR2KaushA6jiTCRABaxmJ70WE4XeQFpOX1KiEmvxrH3blqVJBwljXMJCMII8fZKW/VKOGf1/AKouobZumWTDFZladL5//DCa1mE1LZQVPlqxdcjbh8hsIYyTfeW5AL7wRadX4AbHDHxwSEZ187TBHGe5xdAzw3E799KW/UasOKOWrFWDlqwVuNoMI4G+8FgP2jsLckx3rKI/S7AlaTE+TEzVCuzz9zCb/S8gSgJqDJa1plM92cGyseMpyXgFCOOntLLn+eEpyXi4ylUM8RQMtu8YFOWwBN6wvFIE7oXE80KYPWThMqU4q1oAo9lklJK4XQK9fc7QwJYrRXmkHCI5Au8cxq7TNodaA2FDAVdGS0GVSyIlqCKX68A64boimvQLSHhOQR8XgI+zwEfTwF/ffI4LcUb6eSxFM0Uh+e8b6vAlHrGie+bPxKH/pYl1FWkX3wFuLLkSfseOQms2auass+ZZX1q+ha4qitaMiEMOQOKQDSHhyqbVZiMGFOpP0jC98UZzK6UtwkJs0sYjEJMBh92sQJpStAQi3DWMd2gH4ESno0tnM6mnzEWdjDGViqlB1di/86ZAuAsO2yLper9jfr3vtbe8rlesM1ZZUn+n/v7layyEk7USVcWE0BdSJ2cwWmJmLzBFHIVP8d0O+ZKoY0HVjBXWos09Drp5HIMNibEt7BVL7FYlz7/ta0f21bb7diplenoRt9KxgqpgCz5FV2FBtWMgxVum1RkNGlrR2twN8QCBAxOo6l+V8EHJGOBVPRXHNaM6TqAxcfl99BemtO2GHRmrgp7VT0oB1uAlcV+sLgbStTA6N9ftqA0l5R2CLl/LF6T76XvWKfx935VfRr/z9OC55kKmP7l84LTEnFaAj49L1UUzRRrTdHPeeUIvSwEppZ5qeCKtScxRhI+8iQNUJweQErk4j7ruXyGuuF0opj5PAc4Z/A4eQyW4ukfDgMOjuLrPx0Sdo7qHd67XDt+V7xyWj3B9lgr+Rg3DQvOPuJ5jvi8eHxaFvzfv0z4+ejx+RTwl1+PFBbpvJEig1IpiO6u6U3WiftFZPVVj6OUyGeMJ+l0aQLoJvM+q2w1yffgSgheOd1ZG4Tg6sRrLHnPcMhIGzKT5TJIw+iqNufpsFCtstFg9hF3O3LY/+mQ8NM+YWcN7rMlew6noVUmpv99uu6sVT+12BzVfc9aRd+MJ8+YK378yqp1a0K+yjBy67u+4mhcYtteM9Hke73Ux9EPiNYRKwQC28fRASBLhucp4NNgcDdqzDEiRINobudDx/YP5LNFmYzDYLAMFsY5xDCWhUVoH7omHNv316XXXv2e92KzXjrXNoBW74l19t4NjaAqZXGKvs65FrLfiUobt9JCAhSVeHCualT/fD/Uee/Tw1Tf5+cHrLIiYxALxdQAFvAyyAK+P6D1GknQh3olqDKWWKvxAIwH7A477O52uL8f8ePDDn+6H/Ev9wP+vHf4YRjwMPwOw4K8GmdBYDW4yxCPG9DiDL0eXDGQypnqaNHEkOp3niK7eCf8/EyhwMc54vPJU3X4JeLpuGBZWsYZg6s1W0IMx0oAXVgTZq8q+yH1IypTPSvQ8B0DZ5RlzJNBjBYhpOL0TP8bC6ORMzANBscSOtoPGosjFovDnqNJ0OVkqgBdtdIb7Il064KibK9wDKGygZ9PAR+fFzw+LzidApaFvJFijAhLWDFNvSZqq22F9Gr6fijaqBjXqfjtw92XdRPIS5offl9lObpwA6fx83u0RcwWkGLn8jjoUBktay28p21Q6I2cvFPO+LR3lYWcQ8KoqRROTBlWZ2Soi8fpaxtHQJJkkQXbt62LkukV3F5hO1afw+XjfvYdb5yQt75jNXlADMgynL/hlQQ0lqcPG3LoIScgO8RgEU2kkGowVOaneCI1XyTexdv0JS28ihmtUXBOF/aUChFHa4Ho2uSTN8TP/JtfAl2X9v89+u+atrW/ch9kaHCLtXptIVAm6eppaHQxlNbFTqPYqih909AgL6B3VmMXDB5Gg6fR4jgHjKMttgyuidtnrnWb1+J2iGv4JZDFv/17AFhvAVX8/tUiiN3YHWBdDQcOJbR6GC3uRmatDHa2JQ9d274LcMXutjELoXLKQuAsapElKn1C9dUoTTwUACUz/Mg+gRzKY6L6bEcfS22thMeTL7R8xMfHGfPcJvwQhG5HsCkA0BsVrhylU9Ho8ITONbpkSxGIREUuGZXR4BCSsQbzNMJYg6enpdQu1Ph4N8CVrJBf7wbsSoz93+8j7gaNu1HDp4SDtfiTUkiZmCra72ZWysVEb6m5ohp0Hh9nj78+efzl04Rfn2Y8Vm8kj7AETMeJwktelDtJ/UR9xUpXis1rKK9jna5hPzYn9Bf2oxdpV18cTavDTgQdDbNZCot1dXA2rhXznqcBbnAYBosQMg4HAlazHzHHhB93tm56PxhoRZYcw/X2K29qsrgOg6rtN25ppOTjrc+8IZT0EhC7tvXfUSfZ7n0viZ3l863/JfG/nKuBY7BkPukXD+8M5pmyXDlDmMezW7FWALAzBg+DwQ87i+cl4XAovkghYRgH5MLww09rdiOrNSO5FUp6i97ttevvPdoKMEvRdqe/egvAUrpNyI7CSHyt7nauljC7czQhjzf0LAOAwSjsnKl46T8+uPr45x/m+r75NGNWCmGZAD+383Qlbu+us2uZLG63BlzXTFibfSbG6C0Rux1gd3uM+xF3D3sSsf8w4s8PI/79weE/Pjj8NA5UosqRT9217bsAV2yRsPZFotdmTwaePpFLdCisCDt2n3zTUbEHEptNMrgKCeeWACePOVBl+KenBctC4Go6LTW8J8EVcM6W1NATh/5Yf9JP8n3LiW5eIxvS6ChF9DJvi3xyqCwIC6CJwqeLaT8YTD5CK2AKJIDe20BeOs5AgSZeZhwSx45uLLLk/mRvpJMnwfpUsiqnyWOZFvjF13BqrqLxApLoYL++oT6cd01Y79J3rF67MgzFLIcsrQGcT869CLpoc5IxSEohZ4eoKcuQHcBzyphGC6WA4xxqwd8pREwmYh+N8HDLNwsLykag/IVkCGZ2XmuvgaprJ+WvHdAvfn5Lo9OzcUmwXPJ/SbBXAmRVnzSZlJEreM1oQPZW85TVCs6Q0z9lIa/T94MPiNYiG9cAFLMb6sI1dA2T8dr1dIsfLBmq92hVBN10OrwYtjUMSLX+nJEVFG434DJzxQbDB2twv0u4nw12g8G8I/bKOosQAgIL21l3lYCaUclgue/P15Ia6vtupM+69vi9Bqx6EXvVWo0wjlkrg92OSIv70eBuJLNmBsnWqFVN2NfadwOuvLBJmDxl9c0x4WkJWBJppY6BwnrPM5lQ+rgGV+xHlTK5rqcknMJTxhIauJomj2Uh/cjz81J1JOw0zaJoBlFnOiCexHvWZLXi6xgTnoB7IWFO8CBAlQxti4XQvlzAOZMY1pWVyuQN9t7AKIUlWMwhYe804i7j3kfowlaFSKFCrVr5m1vjq5SJjZxLXy6BBOfzTCFAv3j42SPMCzF9LIjm4/oWlkJOyJthvZfCF1euoDcnlU6vUcNFqm1XTq4SZPHjSBd5BFZhQz7XponA1WmJGF3AcTY4+oSDSyW7LLeQ+jeg6ntvJKWKfxUPWq8Nwm8JA94qLPhSkwwGcA6MAax1OCx+lgBMgq/UmCy5MOt+Svom0LiEBbWmxBinyP6jgCsOi8QYEYwt56dprIZSOPdHunLifand8ryV/Vhf22ClXgoFrkJJtk7KqiSmGEvHbyxGnjvHJWmauP1WjYuCUygykwZ3iHgYyd5lWiLGMRJ4CBazG1rSiQSL/Xy0BbDksXqpvYc+6y0H7SVQxf+/JGI3DrBSxN5CgveDwcOocXC2Aue3+gl+F+Bq9mROyBlmP58WHEPAMUT87dkXX6SIzxN5TD3PZBIZYqkjV7L6Fh+r2JyzmkJo9d6aQL1ll8UQK4PCoCrHItTlCXtFiXdsiXzcA6pLk3JlL5oAGsYhaoOoNLwbyCdnWqoPzXx09WI+HodicGbwPAXsBoP7ncMSM37cE+CaosVDcnCmnXwulgFSK9woigSA2MIpJDyXUkHPk8fxGHA6eUzHCcu0ICwLcHoiYMWAlI+lbK9O2Bufe0kr9Vq7erLoRM9A69dLjy/5JxWjv6gNYtzBWgvjaGUcY8bj3QwFmhw/nkbsbMDO6GpfYbW62RxFej1Uca4p+hL28ArWUR9ySPTSuf9aqO8SqLolc9W3uooX4ULJTAJ4scaeBNgogKyOCY395k1Q0W2yT1FAzS271YQ8WI1756gqwiHjx7sBsdjMPD7u6qor+AMw6yZuXzHBav287vA14PrG/ffWdondqtetuE6ryeQAjDu4wWHcjdjvHe7uHD7sB/y4d/jpYHFnLQ7WUrFfcwG0vUOzJXmJ24/jUB//5fOuPn583EMpmk88gCpqj369oDhbKKD9j9sWML3U3vtEvkYL179XjrMSVA17YDzAjY58re53JRy4w58fRvzHB4c/7wb8ODrshgKe7e8wW7CG9QIZeX72Hk9LwOcp4n9+XnDyBKI+C18kX/yNfCm8y2n8XIw0lNp/LbtPuG2nvHLh5gy/FBOwTM0M8TW9zhZrcoktORPNytWxYFzKajgbA5+p1EY0JPLWgcSnAOAdid+N0Yh7i5SotAYAfJpC8bTR8DEVIV4LEeoM5HyjERwotQFzK4NTysvEkkVJmZShASs2nnyrFuMtOp1r2K8val0IqU7EW4+ZueLwoBjc+bwJBgEAFBB9RLQRy0KLjtmnUresJX3kjBoavEVTXKBckWN8q6NZ/JFWKfwbq+D6RS+Ej94KrK45H76kXctcrVL0u+evfPc6bZ8+YqQW8ut+wYvN6BIODAYHx6n7FqcxYhgMvLeIjsLT0Q2kvVr1SRcivDYM/Fu3K/tm/ZoMI63DgWynYp0pmliDsfgh7SzZI9y6CDeAmqjE1hp7a3AK5CZ+PxocZ4vdEEhOshTXdmuRkmsJC5W1K327VTPypZDfW8DWW9s1vlgvguONhWwNB7oa1mXdHFkvGNwNBnfOVG+rdVH13xm4Com8pKaQ8OwDPk4eH08Rn6aAn5+aTcLjiUqcTFOrHbcsYcVWrbLOUl6l9stSJtKFO3nfMsukGeIWuJKtTgKv6EaANgjJ0BHQJtn6uJwYJeSYjEGKBshkRMkZhjFExGhhjKq//3HnYbTC4xwxWIrDh5gRTIat+hxiOW45JrbagqjANrKTcdETIQVxnF9h+2R7LTT0VsbqqweDrYy4l9iMDZDF+5hzrVsWlUIIASaYkj1IBqtLKCH03EptALfrT7btsJqZK2KvlABYmcMlK52OODbXHOMzxvI3CAvWa/IVgfO1gIrbGbAq43wZsPl5Sza5zYxcw4LGYO9oEjkWb6QKrgJpdFJKpL3iVtkquWDg4yCO23v2x3u1S8ezf12Ov/I16V6v1+FAtrPYOcooO7jmh3TLslR11wTAcobMLqdI9h770WA/s+WGrfudoquJFtC2jMH9Mdm4dq8J+V0DiN6jvQSqtv6v1CqsC+PO+pEXG3ejxs4ajH0N1zeGeb8LcDX7iKcl4Nd5wafF4//6ecbHk8fH5wV//fWE08ljnjmTL8LPflXepJaaic0Znc0j6+SdBD3Pob76PwGm+tT9Lw0l9Z+rcd98/p4+bBRLCQr2zNEGYXG11EZYQj0xgg8YxgG7nYVSCrOnFakvBUR/GFxdEY+OMsuUAswNKXmyyEDV0bFPWE0OkIaTDLKuDQdeo9vZ+vy7hgRLU91KT/axXNX3BYHrYxbCxzbYFYYn5wFhGUr5nIB5JoHqVBYhS0xVb8XeNrdog9G1aOm+DNLDEDCODnagSZhKbJSJOCcg8ySb1izWFnt11k8XFjPXsJBfexAkiwicM1QAqtZqtU0Jtrrvq0Vh1wLoYSCrjZ1tOp3qnH6j+dgZ6sMMYpf/7aGBp48/7ErlBgU/e0ABc9yXTNfOw4x1WCzgl+n8qnss+/0tbOat2kVtleruhehZl3Cg2wHDDsNuoOyyuwEPDwN+PFCJlH+9t/gwOOytqaXGbpktqIvIOkMjZzKZztki5Yx/vWP/K+DnhxE5A89PI9jeJriRviT6dRJR7Z5ugcRNkgK/dXtNxA6sMwTZ18qNsIPFMHb9eD/iXx8c/u3e4cfR4WGwVPO1hHffWmbsuwBX7Is0x4inmeqYPZ48Hk8eT08LponA1el5qhqpVR24XNgQLhrLA4EcEKR2qtdHSUD1UmjimnZxgu4E0IAQt5d/9ytifl6BXwFXqhUNZedncnn3sFbjOAc8Oo270WCO5KXjjMhQumFIEGASpnmOydfoCR9/8U9+/aUvXT2/AlR9LdNxcXXWTcLAxkSsu/eWSRhAm5TE4zpHFQF0FIuG1GothtRcvGU48HbMFYU5yBtJw1n2RqIQdTABWmtygc6pgcStLLu3hpK+te5qpSHCZYZKAirZVpqPtf5DqWY4ybo1a8i7zAlmkHRYt2kyhDQaEuw+zxrPo8VuMFhGg2VpwvbFGORk6riDnNs4VQEVBEOr1sewl0VsAaxbt9dYq17wLF/rM8skQOYSKY6dvIk1Go2pk/CtswW50oZRGVGI20djcDeQWeyuhCzJ08wiWPLWC9oCOgjrED6nL/Rbff6NmKm3tot6K0lc6AqWmZywtvXjYTDVqJv6cR3eNYV5vrZ9F+Aq5SKCjlTQ97REPE0BxyngeFyoMPK0kC9SAVcUWiou6BJIMUjaCuv1eqjXHr+lvTrId9qc+poIAzITonHOevB7inA4WYecM/zia7hhngcMA5mhnjwJypeUat2yyDodfdu4IDMq9fnXmPe8B6h6b71VP/jwNi5pc67KMGPGpzGsvGhgcFXD25lCr9+ikRmiKs7TdD8MxL5oQwM21cq0gJELGLEK7o//l4aSvseQE7ABssQkzWn77Glm1rfBKoy2GU7qG4YFtQgf7Qylmd+NCXdLwn60mD3p+6yj8KCxBiE5uphL0gUtCAVjVfVXF8DzVv+u+v8FPc/XtNfCRv3zTWAlmUe3GUpi8HI3lCoZdh1GuqXmSoHxAwEs3i7tB+nqDk7XrFDed03Vu6vfIv1W0Z9yXuI+le2lvroIZl8BZV/CRl/q4xVwFv1Z9Vb2TDc3uAasdtZg0OvQrtYU/nlLd34X4CrEhFNhrT6eAj4+z/j0NOPz5xmfPx0xn2b42WN5fqYsPj818BT9ORMFrF/jds2kuynae8Mh3Zp4AQGWRCipDxWxISHvV02Z7U6SFIGwIBuLGailSJ4GAlwf70eYsip+WjwGTRc++4mZlG+aup+RyUIlr9PMFccnpUiUH2+tai/11xaoei1sdOn33kRzxa/31HoPquT7dAP/hdVrhrXlWKa8CgF+C3w1WI07Z/HjLmHyFg97R4a/MeHpUDKSFFUryKGIZFfZn4pAYwrtt+e4vg6+tN3qAEimqtdbcZOrY3lfwxC2hCEoFMGGk+Nosd9b7MfipTOQAHmUq+QbzcjOqFocPKNll2kA/3gay2StcDwugEJduHmFknzi2+KAQ4Osv5LnsBLneA0VlufA+rVbh5kusYtbKfr8f56IC6CCscCwq6Gk3X7E4TDg4TDgx7sBfzo4/Gnv8MPgcO8chZHs7cvfsE6PLisKX6UyTtw7i58OlPzysHdYfMRuZxGjQ4oJs3NIPN5wpm8KXX8CUOb8Orv0ky6xR/L5pXYpqUW+9lo7YyDV+bXoBmhL16IbHXY7i7u9w8Pe4ce9xU97i3tnax9yhiAXPP/daa5SRnFez1gCZQ16HykTcAkInryRsEy0gvJzC+UxawWcpwh/rai5zx56a9v8XKfneHUC7tgsJQAlgBwCiZ91OU7eYAkRi0/kMRXJgDWIiTnjpsTV2c/WujspJWCEAJpnF7Ha7su6oSuA0XuHBs9WcV1/9uGjrfdfGmhWi4TSv932bxlm2GpGU2LEaNgfiQwKp8HCOY3giLkythSs5vARh7x5oF5pcVR3/w5A61btJV3Hpff2YaUSTiKmj25DEUDvrIbrspFu1cNr8XMpmxINDqXo72kwGBfOgCvZZbFkD9bsstJfdVFYxjAOC27pr4DzRWcNH36jMNPWxM+PN5mONXultKpVFLhqxs6VcJLTdQFbM8sUjXu3vl7rrhYGixNQnC7XrFUYy/lmra6/QWuNJIX6PC69xlxdIg+2wNRWuHWr5QTAYAWwWLqSM4G5a8fss0zBc+aqXYsG1pLr+liYeWc0hlKjV4rY+faW9l2AK58SlhgxFUdvcvMmR+9lXrBMC/J0AqanViT2UtiP2zWT6qtoOr79iF46+WqTq3fWKshBCFgJopX4bQxGpLZFKaS8gweqL9bp5PHkKPvhcY64G0jPxgarKd1OAM0/W6OtrJhWZc+uoPX6oq59KIEl2oX9mlbjmvDge4UGL4Gt18KCfbaZDBGqznWsDApb2WVKAUYDLzqlv2Njb6RQKiL86W6oId+n+7FqiYIn7dXCJaDYXkOW2QBooGTWYzURi37+rQXRWytgfr6aUMQELMNINfww0ErZOUr3Loknh73D/c7iw64YFVpbBLNvF82+pVmjMBiFnOl3fRioXAoLoJkh/Xw/IGfgdGyC9xh2gJcSBiUWszK0x+c22nlOH1qzIPwTe93il7TXJt5LWWR93/EELNkOOwB2rEzHsBuKt9WADwfytfrpYHHvHO6sreJnU5jIW16jPAaQHoh8r1KJUBysxRwj7kdDJXmWiHG0xSzbwTiDlIotg5fARlyXAM6Yq36RfHYcN46lfE1+bivKJAkTudDspTvbB2S9P0B3PTpoa4X9gsE4GtzvLO52Dh92BnfWYm9JN9eAMoOs36HmKmfAl9I3MUlPpJIByGVlVllm8fIB/xoNR3+Bf83gfUmbw9upk4oYhOSJV/8HrE74rBrhVXRnyTjykAoRIZALvY/kZB/KjQbSwlzdEF0pqKIfaeCANSecwp+MAFeXioh+Tbv2O752W1vs1Fvai6JoQPoiNX8kReAVeNPF/iWNNRyjId+Xu1HjeTGYPQlBvTcIgQaslBKUoWy0dbiBf5cAS9JTp2c8+LUttuOWAOvaY3k2WfSTi1g8mOanY0q5mcFqDCVTcDAGTuvCctwWNPP5YrWqAujRkJfPvgigx+rdRHq6GEpZJq2QjRC3J5RFYBYLvx4wXwDKq9aNe2c7/RLbwe/ZCF1tftdW2KgHWBtAmYXshjyumH1s2Z7E7jIwZu0cC85v1VS58QPpm2YLe0XJKKU8jyPQx8xVZa/qb85dP+JCn/EOSBBj2zGT5/8KaGmcidD6BLQq9ZGv6xKy5H5+YX7fYiIFwJLFtq0t57kuZYuKzoqZZAaufHzr8b6yfRfgilP3Q6ZK8VXAW9L3z0DVa6wV8PrFdumEkeDnPZucNHg7l0JJvVFh/x38nqxXx4SNUKs7PddazFwUtgmib9l4kjAaRUOiG3u1eVH3IVEBKK9lr76kvTfAfCnkJ1vPgMjXgTrIs0aNWSsaNPnfLbPslhlmukzGFELSZLA3JMy+efyEkKo3kim1MsHO7XLCkroc/p1nJVW2QNgG43z2mTe21xjmS5qRLTB8NjmX5wWUtMFctzp0lsTsroBXDucU3exNGocFUxbhwSqAprDv6GgSrgJoYxBNJDNjZnTU0n5nPSby2u2u4Utp/cD5j+374iK46sbFLSZsq/XAil+Tv6UCgzY5cx+aMiEPpf92TmNXaglqydLf8Jpc/RxVMFF5wgta0ghRyHk0Cs6uEymqCTD/XqnvBXCul7u0cQFglCKNmnRC1wxSJRNPR2ZVq7fO87ntz6bMp4tuXNy3jkWjQRR9xq4R1yIDUqPbIraOsXj7MPNdgKs5kgP15BMWn2ql9hCoRA2Cb2UYXmOtrm2vDa6vgawvmeRl2IhZqV571YeSZJgJ4iHvc7J0bPyMGPZU8pXuqgAAIABJREFUdLro1ZYQMYWEOVDGIGfx3brQr9PNG2nniHodS5q3GxwBZgDB71A9dJgOPluhdBd7PXYbYSPZXmM0bhkXvbZtMR91hWdLdlkpDOtoUh64OGxlOtqK9RZtsDThAhY5A/96t9T/fbwf62QyzwFKK8QQy71GiuO6xIb0M1uJonlwv9DvWyU5rhlgX2qvHa+tEEMfbpD9x895cjEWsE3IziHBux2JZ3/YWXwYSTx7KL5I0qz1Fo1ZjZQpZZ8F0Hc548edwRIT5mBxv3MIIWEcDVJy1fIlZ0pUQXTrRRGzCzmhhoBlqHAVNtzYqf7YnoVf+2hCN+5v1SV9TUcrgUTPsHRhXQ4jcShpt7O4Gzmsa3AQAmgn2asbepatfpJSNTTYLBmaG/9dMchs47CudhspJtLTsWEs91cCNrVOZ+d8OW52oOduqGytdbayZMZSUXqlO3DFvpQhVu/K4Mu8Hz0lsMkSaTJsiG7/Lo2nvbO+tc38tdQSvBtMtdLg63Ctu3p7R34X4CrlDJ8yYqYUc2auuGjyWexVtltPku/KlAhmQ4b9ej1Ofc/G+1ffl1cMHtVQXPsicSiQWautwrHv3dgbaeTVeaGkuUAsuQQnSgfOthSIjS1MCGAlkl2xfi8AKmDNarwEsN4znCS3/drrrzIfPCCUgahj/owm7QyHHDjscDO2o3jnxJQxFAfog0vkYjwYTN5gKdYMoaR560RFqJMR/ZlKUgavkKFR078BNHPdK5iPl0IV17aXJnpgo5/0+X0FAx1ztRmC0HWVzCvloTAeLW3/tj5X9N25bIvvyW5DsldO7G8NIxkNHTWS3mDouF9fSsqpj/vj2QGqnnGQ7+HWRy34Wq7ArtN3rQ/Cenv8mgzprhY59Nsb46Ea82g0BsOanMbYK+CbMFdKAaisFYOs3KoqKDq/hmKhIvtVVlioLu39OLXFxHfseltUWEBbKDc0EDPYKqC3jhaLUCQRAXhup3sGVDESUE46IWqFnPK6f+X4sXlQLlyX2q5YZMNh0pLcMVpi+hhUSWJWWjC8Zdj5LsBVzM3Rm4EBO3qTQGgj5PeeoOc922uD9qXQ0VYIsAdf8j1MhQuxX0vdb+Cq3sR+3RqPWl28kUwBWUXHYa2uKwcCV67RwIAAWDxoZjGRStC08fg1sLQVUnwPgLUZUrowMWxpPeT/ugm6eSMRfW3LQGC1gtW6vfULV1bXNKOa+aSrBoURz0sp+eEM5oH6N4QEay1qiSNtANOFAFmnIzMI+f9Sp9P3N4AzkPU1bWtVXv93YeJfvSb/twEMCvPIwMQY1UKChrMEtQhDNKbjVjqdNgmXiVjL8KCuJbOc7QFWC4vppMnTLJd+lP36otUIsJ24IY5bzyDxce4Xn8A6elEnX9boqPX42G9Tfu9Zv4mQoFkDZMMZZoZ0OmwAuwbIdGzfLNB5h8b9yrdmGFuMautvEIBR64IKxdizCu9ubUQwfkIszpYjvIAed2P11RoGKtXG5x2A6t1HZexowS3Lu6mg4FMGolqHCQGBAV5Z0NbzqQEryvxUxWeuRQLYckGK17krv6R9F+DKJwoJ+kDhQS70W0ulVIbmvZmGdzr7X9uv10TP12p16rY4ZJhWgwrTrHT8ci2IXbME+TBe/cO+rI1W42GwJQs048PeVQPT5+ehDj4xRASjyW+FExbC0oUSVPvNlxiNM6GjPJYihCAZQW6X+uWtmr1LYY0+7r/1WlfzCtZBVZM7WwvD7oon0t5S6rf0RbrRfEyu7CYhZyqx8TBQeY14AH4smYMZwNOBwoXL7MrhUaT/U2jnatV1CCDVs9GSgYDpBlSxsOC21Q8vtVVIyaxf679jqz+rFmcDFHAoyTgyKnTUf+TmbSlTkP2tRoO9MUUITTdO37/VpKwUZe9mBRiVSdhuNJzJlKzgLB7GhPudFb5INBZbZ9vCzQ00IQdRcF0CnP4eZmNnyjE0rh27GlItjysIpP5orHumJKecqSZsmNvky+GjvmapPAh1+xthQWPrvqiSWVZDu0OrQXcYLR5Gg10RtRstw0iNubp1wokq9JVGc2uvgnajsDMUFnwYE+6KUew8h2oUu1rkAm2+3QoL9uMWhwKtgxl3dJ7vqbSMdRb392MtbL3f26ZzKsck5lzPr9MpkJRliXh+tgg+ICwBSinEYMiwJ2zMET3R0u9j9Spz9Vp0A/lbcUjwfqRC1zVLkB32xcKVgetb2ncBrlLOSFiLrl/NZttiIt7SbnzSn7UV63QFmLq0fy/stxQIyuMnBewZeP3YfmWjArEGgzHYu4TdYLBbyEdnGHjAjjXDLFlRIHblk7QVKtoIN1xiOPpJuDJiGyvhvl17flyizfnxisW6tGpW65sQ0FJIiVehnJFELFYvuLxFU4K5av0aqy/MyLW3nK7MJJemqpmhmY9Fpi6rCwSxStalfE4PolehYj5+Gzspj698TTYGVL02p2dU6neIyZe/UwJifk2CK6VIyC7YHsoyK2L24qkzilTvPqR065GpMRyo2iBi0Vr4qPkiqcp0MHOltELOBtC5u1aFfq7aMVwAxKtwUllYuLGyRb1GRynVxrWMqs9JKSFrRSBL2n8AaDqwV3Q5q34VGYIrpqOFkji0y6wVues3loMn4VsDq77xthVyFdVTxqBq8gzD16pBKL+Riq8rIPFYJcByf031x0nblXM9G60Og8F+7zCONObf7ZrdCFuNxES1Z31MMEZjWQKs1YgxYS7Hznq6zmIQAHBVYmuDvToDWGYlsajXYjkeY0ksaf2oVtfjl7bvAlxlCKF1fsGDSVLyXwoQXjvhN0N2L4C49wAqfYjotf25ouXMoJVOvx5U3RJg1RIMhsoJHAaDaTCYvC3ZZXGVvh+MmNx4BVon1R5MXdLidGJnGU4ExHN0A/0Vx/c1y45+cj9jqvr7PhwhbtoCqlH2dTAoqd6Svq6T4xesqq5tbbAhhmwoJnuDiTg4g2eXMFpO36dBMgqdDp9nifv4kuC53vOE2DOWwLqPsT7e8rjK/8lWQZUAWPnCWLLVV8AGc9UAce0/CY7LPaXBq6rTGaxaa60gQc8NJ2WFGs1ruj3UEOWu0+fwjUFiiokyB3MmhimFBj75WDKAXlnMdMdWisa1LUyfawuKotGRAIuBVc5F9FwKwXsAWbPrv2SoxTkltw2sz5W+T7kPWYwtwLFhgFI8w6RG51ssdvpGvBWaJQPamCDLHXHGINUGNWstndYkalfCe1Eeq9UGxbhV+k1p1coCVdG/w+HgsBst9oPBh/1A2za0SASAkBJCzJhDhNEKJ6thTMCyNLbaz74u1LK1gE9tobYyr+33c32Ncj+28K7QP5Y+5WQSJo9V6Uj+9rf26XcBrgBBKggKTq0QMvsiidi6Es/7L6Iv297YWwHLVjhJbuOtQKVnN/rHK7bjlRPnO2xkPEnhowzgX+4aM/X0gTLMjNEInoqI5lSyRaT2ikNIOa8pfrkSlX1/9litX98yMLymvcRsAJf7rLIdWyvkS6tlB7ih0tfW2WJ0Z7ErBWLZDZqzWiRtfYumFWnosqEss8Fq3CeLmBN+3JtSt9Lhfk8mlKeTq9duDCWFP0T4nJG59qAME26FkvqqCy+BWzkxbh1zYP1dfN/XIZXvk9+/yVJd6D9tgYEEvRx+4JI340gZZoeBCqrvLflLVW+k2pe3m5h5RQ7VtHTWKLhUatFFiyUlyhwMlNnIhsNDKZVDh48mu6Q1klIlHBcv999qJ0S4Rhtg3MGW8NuwG5of2DhUXQxrdVijk1LGPJMAOniqOxtCQPQRYTYUPvLqfF/6fpX9x4/dWIEV96EdOKxrsC+h3R9KSJAyzBojwyH6ymLdqC+5P3POqKFBRQkvOTcX/mAUDtbgw47MMicfMRVD0RBSra7AheAr+wdsh1Slj5W11ZRzGAfYweLujkxWDweHf//pQJl4o8W/3TvsXFtYAKBqLDFj8gl/e/J4ngOeJ9r+8egpScaHOpYEABmDuF43FstAF6ZvxqHWWQyl5M1+JDbtYWfxMGrcWVsLqde+VOKa/AI28rsAVwqonkgKWDl6a9Pb9OeWeZQzap0yYM1OrDbwAgjp3/9WUfS1bWtFfWli3gJWl0IecsLe2Nxv0bSiQXs0BqOJuB80Tt7gNFiMziDsLGJMcKUWorENvMTkgFCe8GDNA3i/EmWGA+hYiAvhw5fM5y41BlaXzotLDMdLoApogxQ/LrdVhiALocskWG8r4SVuWxxWNQ1JzS4r4ZCd1cRe2YTBGoxDgnOG9JLJ1kE750ysh0pIvK85AVF3E7JYqKxYkI3wb2UZxEC6Alrd0NbrcFjjt9J+dQey11Rtbbc+1kAxmdSCFSCvKAqtGU0hQQonrfvwa8Wz17bKcKjGeDaGQ2HQpcyR5XCvgXMR1mqkSMkKK0YyibEnifGxZ7GA9TE0DjCmAivrLNxYdDGWQkqVKXK6bKsk6sQMYzS8jzQ/pFQPXIyWiBcpgJaX/dk1qVb9Vxkr7rtaqJmOxVAyKsmjjEKCa+NQORHfpg8vNQZzLGZnX7PGSpaQtGuMpBfC9lSvnwyqc6vWfbc6hnT8WBPXPMDI7oH1TGQ7YvDnO1u378qAtUTS5B59whxT2Vyu3nkhEPDjRZrWlLVcty8ZttU5Jtm1tUcZs1ajMxitKUyy2UxK+Fpw/F2Aq2pS6Az2pbCp9xEhUMkBjwOFFVJsxoRVeCc9L4SOgtslYMUnyxk67z7fv+dLAFZ/ldUJWUzGW7oOuc3Nz+vVxNxobErdJyM5wKqOsla3DT1wwUti8R3+fGCRM/A4jbRaNwreJ0xWV2+T4AO8Uogl4wx+wVkNSdnHkq26xESsjOjMy+fGa0B7y1et78N+wt1iO+TnxEQjC/xKxmM/WuwHi7uBQq07Y6qfjjS8u0VTqoQXMhX+5X69z+TTlEAr3l+PA7QCTvdDYSYDYhxXg2PVyRRN1iobmA0EObmB+zKG9bGvx5lXz0ObFG1L9zYy1AwatOt2Y2r+OTym9N55PZBa6arKRFz7tzleG0eAwTqLcTfSKnnvSDi7IxH0w6hfFc/epC9Lf6qMOvHaDOTSr3fJIqaMH/cGMWX8ctfYqtMpECuj1f/P3pstx5Hs2oLL54gcSEqq2tPpO7zc//+efmuza3at++xzTqkkkZkZ4UM/AHD3iEyqhi2qKFXAjCLFIYdAuPvCwgKAnHMdFq+U4rYbuvkzzbjqvL2+ptw/yg/M1HqLw3Gs9/zx6OG7uW9KKa58plTSx6cJ00Qj0j4ajekyY55mYsG1RiqZGCw5bOtF6NlGS2ioE89LbyZjiI2h4b7ExNQBvzy6aFdHpXTFJaqlCL+GMWkFKAWlWGtVpFiBWMm9o+Kih9HgHB2mlLHb2ToFxXkHSbem2u9K9tq1WLx9SHsKAS7eW7pOO4+70eGHg8e7vcXDaPG3fcDIYCbwWXdOCVPKOKUEo4G9TxisxqczrflSCj59ospybTRUovuvCABcTAhQy9fImQBjDYzjdGVwlVU7Dg53o8XbncXBUaGQM3ox9qaxkC1t/1vsVYArKgMmyjBwtOS9hfeJ2I1cKK3gQkOpOS5TR4uD90YE+pytwVQfydbfUfgswHoOqPU/k7/7RXbjGeZq/V5u6D6aPqFj/9RSB/A11nyfcgiZ6PO9zzjHgl2wmCNtkCEQszFdWipJ8us5ZSR4IDMg6tMO65TDgn3oAbbGQkAN4GY5eP36xsXpfdqXeC8e4wabIVVQt5gPeV75nnUVHEvpMrWsWAovHesVFnS1PP1v9tKvMwVhrUqNiOUjmNb3avQGc6Q0JjFXBc617aWmklImMFg0jbYqBaVoYkAKlqm7NZMl160HOs4D0my1a1qoTfOrsGcpJq6mpRQDRAgtBSZpbvdH7x8RXYuvGFDVcURd/x5hYsR/MkpGhud6o1YtGL5OYUJvInpufZG6ggX26WAzAg/pnmJe+HXumGapUCaiQ3F6ydChl4BlLzO5no2hFdaqr6gcBmI8hF0I3lBxYmoC6FyIvVIKlCJkcbvoOCGaIHqR7c0v1mgLSmXvrAUIXaUunUc0pNlbg8GRljR0oEp8uV6LX5O9UkpBldK6tPMZ0DNXO6fxqWok6UO68KvE1FsvbK/61dWZpJYd16UXn2jSvKORSjunsXe6AlEZEwQQqXLRGVop7L3BFAtOMiVgaiSB1svnKkqDbi7U19JdhLY3PDchwRl4R+OeBstFOuvqa6ASEb/XXg24GqzCzmt8ckQpUpdxqjwQCnqKuy412DFZa83GrdLfz9nV4FEAV5VovwCw1r9zxVbp1eeevnyO3bgBCteHc9dnpBdAm8psUMpVDmPg5Tfwvn+OlUPYEcDa8SGccsEwUNfvS7CQuzmlhKwzsqZrSwdvXunt+BoLq9WXgi8O59yVFD/jmzXgWdsatK/Z0atUkURNtn3db+jyN7r3va7z22RjNzKx3a2El3xNa0T1gqwVIM/BB7FuoNlmzWnfzCNxDOZEIEu0MdNk6uuUCi/xrYBoiZgrqyTBjtIr/3agp7/nrW0pCe/adeRqM6ABgDhHpJSgEwG52iaiarDWUXoHlJmpUtYuAJV8LZu49PkRvRyNkrEI3lCFpdO1eaikIGpH9hdGV8JyyNPIc+tMjSetUfCJQMM+aIze4DIbXBx1a08MhqfJtoNOwBWArKjXXta6pWxqBahcU/pYCIytgePrJXqYw+gweotgaeSSVkDMpNG5zBScyX3v3IyUCnJqUw2iFMSUdRZAdYzVsvBAabUEx92cRQJV9DG6dSqJ74OOsar3/Vc0Jf+wX1Vue7A3Gjuva4bIOwPvNS4XDuhid910aYwxcL0vrt6XtNYhcNWkC3WkEmvTBimUYHBFARs9xsCv73HSXBXdwFU/Y/Vzr6Nad5bW/dQISNac2qXXM3paj0vdI5+VHVD+Pa58FeDq4CzejURHaih8PA8UtQTqrXI+B0yXGSfvEOeIy3nH/U1m6nkhG+M6hXDrMF0fjp8T1vZC6FvVZr3WS+xZULVipnodmVLMdOjrg/iW9WDAejpkHKVQXZB+LLbeQAPnuZcCvV/hmN9pVlOaQRbD2xC4W7DC05yxc7Rx51LwNMY6PmWeE566/itSEVRLrksblwCgYz4KSox0T+TY7olbo5Lkusl1XGuf1tanIz83dqFnOIxbpKuUMYvIi/6mA0cd2+IHX1OC+z1R7MfB4WE0uB8MBmM5LXgtoH0J04p6I0ms4TpG6N47Tj0r/O2Y4K3CZc4Y3IxHT+/5cqFRTOczC2g5pSTpuR74yPei1tzj7obeTalasm9ME0FbZzHshkV0qrUi1xfqpUOvhdLPWmuYaEgEDbQUUr9nSOrI+UX6o5bor/yntKKULh/Kx6PHMJDY/2HHKZKBRt7sneW04DKl9JINYeltEcLSoOcsAIqhA0cu9b330Erhr4dE+jCrMcUE5wzOLDie51w1TyUXzNNcATIA8iVATWRFiyVBRadrojQ4DQE/HDwOo8PdzuPv9wPuB0qF3w0EruZccJ4LHqcEaxQ+nmY4q3E6zbQ8c2kDxDW3i8hltd5tXZeWgXnPeFpvOa1rcDgEhGCw2zm8PQbcjQ7v9g5vR4s7b1l7RR99pdlLT0245U+wFEkzIpAilFIUgjM4FOA+WMz7glgK7nee+tUl6j0oe+o8WR5xZFA7oq/P0RsZmsZgUasY7wyzVgY7S2m34NpcTQCYY4aJdM/vrMWcC0af4V27nr8IUvs1WxntVn0qrSHCGGg/3Xvc72ktvttb3AeHgyMtsOuA4To70K71r7dXAa6sIdpwDjRs+H709Xo97efaYyTnDDMZSAPKnBzy7Nqhemug89rW1WUibu2/7vtn9AzFcyzWc7agK3vWQgBVx25Yfw2u1s5c3+SsXVAd21HTEV1PHRLPto7eLx1RaY6WckFNZ+2cQSoF94Opb+Px7KAAXHYO1ipcLqTnITEji1X5AK6fWdchXwvwigCKNq2b7+Ka3UhNLNim1df93z47rR3NBz3DIaxVl66SjRvdtV9Q6n3JvnecEqc0SWB6vYJk0w+HfXGyg98j71mqzaaTEu+hUMXgMZB/fxpsfX+XOdVothTAWtJ4RKNJmBxT9S1AzJY0H6X5lwxupEL0GZGq6NRCsC0NF8yiE3SMBUrNvGErpLk13SWfiT6PHVtZyE5XIqnHVR8mYYyVVgjBwlpd/bfjUnRh96TS87rH1Vc6jIFavd7YltKYZp5JN2WNQ9C4RI0pUaVq4sAmhASlEoPXxjoqpYAISvmVZ94Q74PLlJKqQmNvieETbdohGBy9hVEKc87wJsNo4P2JmNLznGo/LmNWfbHqc/YHMF3stV5I/Ou8q4xxCMSkDb73IVVWDlyt24ug/5WGk/+q9axkW6/rDILB6BJ2TrfpCrxm4mxgouECAd4LE6+5stpPhV2++TraPV2fW+mrbAbQ5iDKeaGVglX9vSFPuerf+Jz2FUBL9y6ZSFqTdB8PrLHa8dBt2+lXa4bnX2StgFcCruTwjaUgDhlvdvSyjFJ4OsbaoLCUgtnLYFhiN+bJ1AO2dnQHCHCtbc1W1WohtUwNlII6VFaA1lqLtYhyP8Myye/K50V1k22HsXS7FV1H/3f19V+DqwWocrbS67UZ4I2mk/qZfe9L2S2xbClAtAUHb+usww+jg9aKhnZbDWtTB640Jj6E1yxH7RTNs6hqWiJlJAXyfWUVC656GfU+6LVR6+teCjEavTBetEBia6DGA3truoqBb53l1YErcUJfYRaCACvDwIrSEDsnQPk6FfHSBQqaX2tRIm5vB3EoGsnS4NNUCu4Gw38DTNHhxIcmQH5NqSDGRNqdmUEWr1WlFCJirUZLJbEGZJlOXVRTrjQ7ngfUDgMdyAXcrDCSXkiu03wxVVRfWQ6l0EB4p8nRSx1O71OlVCsgMZpTgfQaRgFWgRgY0umYmoZYbOhA3dBf+lhuJfy8DPhwk8MuGIPR5qqDSaXgJ84iAMA0JAZFiYFrmwknrQGu9DHP7JGyJug1CBNkqGWFN9g7g6Nz0EphygmW5QKDU3ATBZBy/a/YYYDvHyz3UtVprPRyD/Xe1spASVHuuKCEAB/phoJZCtkbqLq+1l/LhMWSgoVeT2e5W/uO5RljMDhxY2fnNGbOGEigkCWQ6RuKrvSmtxpW91aDvxpAtMCw/lx+hm500O+/AHVfN6YNapZqT+9NbWmz9/pqUHMPktctGH6PvQpwNXqDN9ljNBZ7S5vi+3PC+xNV2Xy6zDhdEn76dME0RXz6NHIjylz7naRE1SsyCFLoaQlfKtNRiEKtU7hTAqYzpRTTDMys9QDaoVyBFoBfakrZW4+me7aq9sQZ+TAOUCFc6UV6x966gWVjEGr7cBwwjg73h4D7vcfD3lN/E9da+/fph5cyWswaioeIJm/qAi8oODqLhyHCW41P54TRG5ymhMuc8HHvcel8m3jeZIyZyKPUBlPPc6KKl5hwOV2oF8ocMUnFUu+fnoHsGUM/tCpLayq7dHWf5ML3ybwE5kDzrRtqCimMYcGqSPO6PiKTr/vDebcjcDV4g7/cDziODn89OLzdOdx7h51rwHnd9O4lTEtIzBuiMwoKrXpLDpdYAnYsdP54Sfh4IdbtNCVMMeHjOCOmgjllTBOlBc9n8t88Jzw9cU8bDpzkfk8pAZpTS5JS0m1GpVQBDYPF3V2ofYjuRgfLIC2mgvOcYIzC+RxhjMI0xXowxCkilvIMS7YCcGOAtQze2G/Wts8hWAIIzuDtIeDAlWV/u3O4Dw5vgqdWB7U6aa33eCFHoh2+Ql3pDktaTvdqpRAT+fUcMwbWX82p4MPZ4ukSYY2mMSpTwqdPU236OE+UMlQMaBbskVzTkrHWxMqBKzMNRy/MlcWdc3gzUCXqnCyeYoRWCscw4zwXnCZT+2FV7VpvMvOLLsCCORMm0g+eQRWlAEMggPzmEHAYHPaDxf917/FmZ3AfHB6CpzSXZAiu2qP8vuqy32sVLINcazhrAGgUZA5uC+6DQwGNQXvX9R782FWFTpeJWOfIZ+DNwjGKtGSGqAS/dSZwwWIqiEIL6oXRQin1LKL30H6/n4+bu+eoM0tljfateqrUZtnaI4wBu53D4eDxZh/w9hDww4Eq2O+9x713XKigVz2u5LW3a/xb7VWAK9fl/JWyOCfHPWEU52E1nkKCVsB5pj4oJHjPOJ9jLSmV6LRPNQjIEtZDnDRPM0yiMvEorBTQdFvSXr90U7jXOpuexbplN8XrXMUibBU3jnTeNaBkSeAtM7Xk9fefBXz14udhcBjHFmkJhS3VELq7wV9aOCsjDgo0rGkrbW8tLzbg7ZgQDPn4iQGW1grTnIjydwYxN3CVs8ydFA2NQowZMzeqlOujjaaKJV0AnZovxU8Cbjmy6fUfC6EuR2q1ejF1h4KkG/vCAqlOWTMqg6tpjz5tIJ8Np/qs1RhHx9GVwWFwBI656eRozYrxWKYiXtLksDBKURN1gMEL/XxnaSu5CwlGUR+nORV4q3GZKVigKtGMk9GInEaaplQ/56yhk0TOPUOMCu7oW43iaeMsOJXTXTtv6ZCZYobWCp/OBikVWJtqGk8ea5lGkoKDrgKXP6w1tbErPa/iiis63HeBxnwM3uA4OhyDxv1gcfQWO0u6DrcAVF2Ej/aWX9pU9yHsRil0vSw3jN050kWmAtwPjV08z6kejPNM3z+faU5hX9kFYLlnCrAqeREs9l/LmpDh71ZYBa1QSubeUgJkbl+rlj5aaS3lNXBxhPjW9mmj0VWGQ4DV3WBxCNTSoJ8HeTXb8wWDnF+yxkY2oKVUl0XgYGywBmOiNP5pztR7MFjW0NHg9ZwyqHrFrEAxW3dte/aqnr3y/88pZ1aOKwXdlBbKbFSwJsCql/LcIjSYbe7T+MJYtZmQxD4OhsDx59jHRZbhd9grAVeqA1cKx+RgWAA9p4KDN/g0JSgQQKTpAAAgAElEQVTQwnZGUwQcM04MrmKkm2PhEBY5isMEhJVcaoQsTeiyXEDpULugRLH8Xp8O/KWeVz17JYdwPYxbR27nXRVWOu8qZS32HLjqR1Ts9245HNYbDEYv0hB9ZPVSJpR0z3ZIiBycoQWvFKaU4XRCygWfpoyTo9d5iTTE++SoxDrmgjlmHkSd2Y+0kcxzgtYJ80RpHp35cF5Me18BIUn5dOBKqs1EGyUMKAAkxZPa+x4wPWBbaYEWpdysBZLNWzZiibIlrWQ4atrVbuzUVfl+sFUU2qci9I3N4CVMMWUPFAbFhQ/iUkWzAKUsAYuDS5AmsnMuGGzGaaYGgXOiKi9rImYOfoi1SDifNVIySLod4tfVQRKsoP2OgBTNYz64EuhuMBVcnWf6g+CorYAwTX2a9vPXoGnjLI8PGQZb111wph5eY6AKN28NHkZTU0k7S32Rai+dnkVe+PLlj2chIZQiAXRB6fR0BJpzAUZjkF1BAfW+oqAp4Ty7yrRdWLtmrUaMHWDtrWcDcwHU7Rmocq0BLNIzcr+njnUXYCW/v368xePWPVovn6cD51KEEAKljUYGx4dA99JdsFWYLTrSvj/ZrfYoX9tWxCQPc27ssjMaQzYYa4VvxlOg9zzP9GGsgUncnqEAVyNxxBjkCMMvWaH+vCXdJFCu/vi2CSBLzH5VDFfBW19wtiI2OvaqNgzllk7S1FQIB+oXSIPThXXUepWix7/ux1cBroIjwOEtHaDOkA4npoJ773FJCaeU8PPDjNOU8f6UcI4Zl1TweIm1b9KFtRxyCJcCxJRRQJ/nmYTS05Tx+OipQo2p7HnSiFp3wz9dSw8CXRQkYnc0HdZzVg9e1QCViNethx6GSl/uj3s4zvePo6tR8XOpQdmMLXeAdkbjfu+xDxb/9mbA29Hizc7iIXgcWcQn7f1ls3opk41a8wYeiobVBZHHWMSUMSTqf3VJCXd+xpQzzjHh45RwnqVzb8KcCuZUcI60cE9TpM6+c8ZP4YLLJeF0mjHPDeTOZobO0nGYr7vopLiEX7pDC6g1zmAYQz14pRP06elMFWUzp5/lSdZVNHrJWvnga7rq/j7U4aXW6Ao+ZDOuA5kNCXgHSz1Y/nbnsHcWP44D9s7WUv7W82qZingpU/weNUrnV83sFQVAAOBthuV00iUlHJzFOSZcUsaHM63ZKRb8fEk4TQn/9Unj6RLxaCKenmbqyGzM7feSC6UHlVls9E0Qrbi3DgUX7/YWoyNm7XGi1/X+0eA8perjmwCu9lDT/VlctSiixTnuPUYGwv1Q2mPQtQT9xz319tlZix/GgGCpSlZSEO2A7rRzX9JxN2yht2LQbKBQjObSeGIeBED7qBes5OOUEIzGx0vCh3NELtS48vGR/JfitaSBrmvhLEAGtGrppI6NlsC4N6OWDJ9cq/qQC4aj1D5myJkLnbp1uprQIOylMJH7vcMPxwH7gUa2/OPO4xA0jt7gxzEQc2Up8JFGycvxRW1flmv9ta0CZgWA16sEt4M39bX9Ze8qQH3/GOqs0tMpAKqleBM8Syw4QBXGHhpICVkbarHCBEeMRHrMMWPmwDiXBrh6Y1xG53Sh3mVTKoiZ/p6kP6nqq6mfWmqoq75hPleZqPDBww8ewxhwPHrcHQIe9h5/v/P44WDxw87jITiM3LtMUrt9NuBLpOhfBbiyWiEbBa00YipIlm6KORU8ALgkgzElWKUw+YzRR5zngillfLzoegCf5syol3QWKZOjcqb/P10iLjHBe2I/6vM7W6nHtO5LJKMAehPGSnWrfG23ou5VC4bWLLKVI9Mi91w5cx1ZL5krmuNnWAh6v/PYBYO3o8XDaHBwkoponWe/hqBdniPzxp1r+qXA5QKtaCMvvIkDNAqBWgxEzD5jzhmPE407kBLsOZO/L3PGyUScZxHUEvPTl8ernlGSapcuTVt7E0lK0JIYWsCqCK9n7havUksh1cdaPW7/3IoPfKkck1EQcggLuBKgRWMqFFHWTmF0GvfBYTSmpZPsummhMEsv68u1Tid3pfxiyVI1asokonXMggSjMaUMo4mpPM90sDut8MSBkaRFF/2exG7tyPXL5c/ksKiDw7mQYk6Frre+3jAXTMfnJjOgATlrBcgRmLsbHQZL/dwOg0HgirujdxQhcwWcrMPr1gu3rvnLWZ86ErpDddeOgNUy7bt3tr7eJw5kcilUcTanJipfM1f5xnUVdiOvClRKQUapzMX6Na8eYsVuoGYs6onda3NuBMGK9wEZsSM+3QfSyT2MJKjfOYudtRi4Y/yii7f48MZj/5Em4FnAgukYLGkUewgZT3PGPlhMMeMyJx49Y2t6MOdMVdglt6BGABZf24X2ikFuKgUp07pKwmTJn8qaQ8duFSDJPcBneErLe2Thz/pGWwFKL+/o57JSOtBiz0B5NIaBsV74kZiqLyexeB3gyigoRVR0MrQRSjpocJrHHhS8mT1SLjjFhFgyAaqUCEAVAlszO3ZO5FyJli8p46enSJHyJUIp4PGRhkNOl6kJmK0jT+uJmSlZmCvWatGm4Rlv9GmoK/bKtSnig8d+77Hb0aiMd8eBykWDXURFsuHIGaQVeKI3HWYPI5Xt/zCSuHjvKAKTXizOLm+mlzIFSvcoCTAUVYVZeR/sT2tIFN37eIoZsdDX55QQc0EqGWfuzPz+HDlqNpiqrq5wObZZtjy49RYZcPWpHmkYOI4kZrXWMMNpONWca4fxVgH1zHvn5zWmdeg+8NiMv94PVP7LzessH2bOEHthjcJoqTmh1wSugmlsh+W0161xGy/PeADSS8co8i2gYVRB0nRQJwYOiYOZ4AxiooDnMUZiIFPC3k94f074dEm8VvPicBar4EkO6ATAoKZ/+3REC2TbnLxgNHIhJtzeCFL63ml1DI9s4koDRV0BOGkLs2ew/DA6/OPOYeTqox2P+HBa4+hc1ViNnphjYZBrhVIXLdfr/BVsDZqNZFWKBGx06DmjMCe634+J9l4FYO8jBqfw/hSRMk1biJF6malbIKsXH4Mqe7PhQiRmPRKzxTGVetCmFeuR+HszB10xEcMhUgEpblqwVj3bIu+/C6yo7QIFQG+5B9LbHY1s2VkCVvvQCknEh5bXbU31Vx/+McBqzUpqLkSxNXVfKoB4E0KVZ/z0FGn9KYWnJ2pXMl/muo9Oscvg1F6SpRb25NzYq3mmfXqOdD4TE9XrsEqH0Vr6MLJPp0gSkDkKExb5HklAjCsmErwhNd2y9dTvTkTs744Bb48B7/YOfzt4PASP+0C61sB9yvpszpdkH18FuNKKRLKqrj2NpAq0posoeVit1OJQzgXY8QGcCwGoXBcffX1OuUbMQBNaB2cw+4R5boey0mrFWnWfa0sGftH1e7iOzJ5rHLr6qKJarepBHBxNLx89pfUcL9yeJWjgSnGrBTpMjp5SbXfeYjS2VrPIRrDWBryUyb4tX2gowqIFsEUhK9LuFJBfpfIsc/WZ+DYkjcgL8hRpDlXkvPycCrxEHn0V3u94Xy21pKu4FQDruj4D1H7F48rgZWco138M1F/lEExN6ckQX+lFI+MqpMJTgJVbsB5tE3hpQft60y6FNDpFgW7GAhRDC9gVcAk4LRTL/lRKYdKUnnuKCTtX4C2V3zcW7sabWEerWS/1NaXpKpsgdpk+XzxcWW7qi945PXt1o6pNTNKQdNAq0jc60sQdnG3jRlyLjqVhaJsleA2K/4gzuQfNGorYZvoP9yOifc9bXX26sxapFJxjbnsM95pajyuprRDEKtWUK6gVZkICrCysB5Z6HXJ3aQ/RsSJN69MD5RXLASwCq1oxWKv+dB1ts3OUzt07S8N9V8zjtcbq64Lj52xdOUhLVCZ1qFqsQL3MKEA9BEOp/IlGD8VI8wZz4vZGImzvG24D/P9e0N4CnepLlCXh1X0Gv0ZiIcnnEljXFHFB97FmrVQtJOqreoWxCsFiPzgKhAIxkP0InjWDvCbO/1WQ/CrAlSzswqJZsBY5F6LqEi8eYW9sagewS0Rh51KY5Sj165gLLimRnsfS4SyO905SQGkZadX+HujSgv2LvSFi7zu1/1LPK3nDwpxULQfrOZixOgaDNzuLYBqz0ftaDler2ma9sxbBUMQsh7JEzuthlC9tPcDSvMzLQrMDABQhK9WoYGlMmHJBYhBdCmCVxlmT9i66gnPkMT+rg/kXF0Rp1aO3XrOUhBd+LTf1I93jtK/N4nF70GMNbd47xwDLGxy8g63gSsNoeo++85XnNOB6oKhEybeyaC9l61QSASxOKYGCIwCAYSaGX5wclgDqfTqYGZNt78foZRXlZ62rUOo38x409Skl8UdGL6JG3bivKsv6+0I298V1YNCsaF160w7i0RK4Mp3/hGUUX1aNVc86fqFI+bea+LQ9LwVCmuNIGVOioJEsrVMAGK3BlDN2jgbthgquuCJWAJZWy/2wrzzrfLhIJ/H9IkFy6orD+vQR7e9Ar7dq90MPllcsB1DXtO5aadA8vMYqB0NaM28a8Fp31Jd12ADWy/vst5j4lI8b9A2ArdEYjcVkM+4HAlfnmfp6xZhhnUGMnbg9Z0A90ztSAHKvfWM2KmUwa3W1lBYBTl6B696nlOq9UTgmlfe69bRqMyqpzxwBK+ryP3KKXqp1+95W6/X3JdbhqwBXcoPKOpADthRa4AKeUtaVxZJIVQ5l+Z32u/TzC4uinyKJLw1ftH/y3KzJ69pwTBuuFBNtlOiqrtKCneZqsXi7jeQW+9V3Xe9TU7zAvdUYAzFWb0eLf9wFqvbT3Hiwi46knYGwH5oP8bqp8wYwuLYZ3EpDvIS1G1MiqOZf2dANFKUeCuCMbKjkW/DXsYto3ZwRosYlUXXSJXVRs5bqr8+AIQC1ICEnFN16WYn1w657DZD83rMsB98PfeTc3xaiczgGg/tgcecd3g1hwUSJTq2vIHOVlWy9V5zR3abe+ul8nSoz8Sb9WxS61G/T68jm6Di9nwpVmc3cP2k/W8RCVcBPU6axGE7XlNu6mz07gb/IgDSVNaWmlRJXIsacq96SNDwSRaOmm1pbj1tC2bx6PnnzjeEUAC6DcA+OfDralso3nf+0Usz8gPu/YQmsFtf369o6PQgOgJQCPAc/1HwVsIlS+8dkmUEqeLObMeeCw+iqKN0HXzU4s7Q9KQVAamswJWRjKjsiYugkYuYunZRL4fusC555iHNM0sQ018dKNSV4Iwi+quQ12I3UcuE4OLzZEfN/5x12vo1sGXzrqi9TEqTT+B8tYl/brZQvNPeo43NnTFIhGvBpH2sa/eN5hjUap1Pk9Wio/5xSiEovm20Dlc1aFidkIjrkoyxF7XUld4FRquCK12lX2b+sEiztLNUG8K3aftyPGEaH+/uA+0PAw87jH/cePx4s3g4ebwePwD3m6ribjr3q99MvYa8CXMm9oBT1mtHMYRW5Rwq3LFKKARJt7gKuKKLp0wKo/ZEonVGQimF6l9Mw60O0RpAKRavrF7iG3eoZgFXf0G95//T7kgMPTE+P3FE3cG+VtfOrOL07mOUwltJSqk5DZay+5tJfRMb0jeZboKYK5bAW3+bSUk+5UDkxAWpieaxe5snlMFg+OX/uD8vVL/VpoUZZl6ufL/8IjRqRnynUSPz2dWiRo9X0Hvpcv/gIWIIrAcMtpYs/PFruU4Tr1G9hjYd0iFaqUHqfA6NSMhK/f6tUTVdb3QOrxuamdaQsB3Pvt9yYqBZUceCFti8sNveyBMw3mxLefPMNgEuFJ+kdKQ24Tt3KOpS1Sb5brtuvCY6fs6uiBWGau1hSRO5Zty7uwWROoVHrCRlUXTueR6qgLcZQ5fVVvyQs1l8pLSiO8rNbaUEIE8n+zcs07+03SYGt3FvSVsNxA8lgDTV3ta2LftXGmZ5lbWkkuXZ/JDj+nLVzldsycNbAMNDKmbSuO2sx+4LLUHAIDnPMGAbS0KWUYZ1tgnWZv3pV+1FW/hTWarWn0i9fvVbxuazf/p6oKcH6plph2LLtDbFWwljtB4v7wbQec6sKz6uWNviy++krAVeyU2OxYSsQQ1NUbY8CXYDCIKsAlYEoUAy0aBPQHXIuJXO6Rbqw9lqPnprvBMuVseorwjrN1fNv5ndfg3YIUzUVbWA8bsGZxcYs1kfAwm5Yo6n/im7fW7f0/1r7wOd8C0kFawJbcijT4qLDOfNBbpJC7XnDIHShXVHPMFd9VV+hbbk2MVxtBusycLGFlqN+83Za8OpvOjOa2y4wcBI9jrMNXPUVnXJ/9sL1LzGW4V+1z4FmSJqwd0HhlETHoDpuEuxFGGxaS4V+PtxiDYpdNS/MNbVQI+Ge3QaY0e60OQuNTln5s2ej5d7iLv49eGIWQ/xpOp/Kodw37l3rHf8IcPw56zGWVlho6qQHlrxHnwqlznhMzRgoE3DxpGGKArAMNQKGtiSG7iUUKz9eaeGwbLBOQTQay11KlQ1IG4ardSpvTClA2ypi111vq8EZBB4zNbAmp58duARWHKji9YDjW9avUQAL7VUppd6fvlBae84Z85BxHAzm5DAMDjGWa3BlHTDnltnpbOnD7nufeZ1FPvgPZK1+FiyvisJo0LatY6/2XfPXu0WPObXw6UtXer4KcAVcp5KgeKI9f1tXZ6mFM/qFl+XABDUsFGGc/MxrGtQYbIua+2i5behqmcq7frGrDVjJi/vlN1pf8PXGIiY3Pg3rpTLuXTBd1NSeU6vugKsbeDuE+5TTH7UZ3EoT8kvuFiEACGimDT2xbk6rQmJooxC0gdeJ53spjkZM1XzUIcgyI+vWC6JTdsF+LLQbDLRa751cP4gWj8sDWbVSZXnMHqwLQDIMCh2zHsJeCXBeACi0Tbxt5utI+Y/b1HvQLD6VNCHQCCBhH4V5zIUqIueccTcYnGfqYSZaD9nMpQx8Nt0mLu1TeiE0f0ivpJgyYs5VryOl/ZSmyJ1fc22/cqXPqVFOG7VD88noY/Q0+27ndWWWhbXynS6n72WmuzUo1+w1Hcr9GtXMLBspMiqcjkaGqg1jyd6NHkoB/3wM9XuPj3O976fLBCggKlyvG6Bbf7nzH/muppPQDtsmfl6u1Ssxe3tjVE1mHOB97YEUxoD93uN49Hg4BPx4cPhxTyOmjp6qybxt1bl9ZeB6L32t1uvosqR7AfZhqeDiPjgKdozGh4eEwVH/OW8pXT9NCWd7oYbbKVO7ojS3Ga7dRegZSGEhBSBXJgoN//ZAugVEjY1sb4b1VbUBNPUnHHYD97TyePNmxHHv8beHEX85OPxwoB6Bd95x25SuBUPvT/0y5+KrAVdiS5ElqhckZdiDL0CoYtQDDbz4tFLIqm3wSjWk2gtK1wM/W7RcX9CS/XiuK/uvAVbP/O4SYJBpoPUp6dG2bv2FJHqSl6m7BS/Ddl9TpLxIKQHoU8HiaM3QIbMQUyLovqKjMT8tPbOoVPoc89Ft7rej5qUWoHBo9Wy6YfEG2/ts77ndg2sGQ9gpYRn7A7hf7Lp73N6Hf/TBLM+/ThPK/zXoHiwoy/XHzNXA1XaDJYB5dgySpWs+g5usDVPXy0Dn2n/tICbGaunHJhu4Dmj4DXUAq3Xc71kry33lgm3FB07rDhz3flXXPuye6o/23y3rU4TCYAHEIhODB67W7oYBW4O91zgHi2nOteN3SrayHtRD0HJ60NwOWjvLK//Uw1h2i851fVq/vZGu/FwbwNplCkkGM3uLnadpFkdu4BtWBUDrlievbR1+ztqeq6BkXfJ7ItKBgjzRuz4MBnMu2A+2At1hsJUZtI4gw4JL/owvbwW3v+Gk7N8I34wErKQDu/WWmzU77EaHw+BwP3Zd9WUG5A3WSvzZX6svaa8OXAHrN1kWX7bDuH1TwBYFtKW2/b/a8FS7wH3OtTa/Exqonmx9WlAB6EDWcyYh+63vr1IP/QZ/6/DuN+b16+4jYNxY9LdYqtewB1wdyMCzICsL86E6MkGAFUdaTiIRK7qdJcCqD9BeAD9nozxvHbi3/HIlZr/h6/5ay7U33UdL66ECQK2X/XKe28D/aHD8nN3WYaFu5jIJSXeHldcETkZHDNDgDE48Ishag2hJ7EzjqThalYkJul2ENTC+Bsqownb6/eVrvwmwODqWPaGf3+mMJlGsJWDoGVjd6pNTA54VkHqNPlwb3YetQvRWSslmahdySQRMzrHgMmcMA82q61NKpRQka2ktpsQRb19JuNTPtm/LmlQdwGp2M5PfjxoDAOugra19BWUkVQitMvsYDEZnMBpbmY3FIdz7cnGdXr8zZV2KTxWzWAXg96rhcsHIvRGnUHA3ujpo/eeBtFc5E1sk/kmVuW972a96Pfh1AKuuGwWgGwXXz231wXN1oO16z1luAEsVvK3asxUGrf35Em58leCqt/WmJItdbP0/AVm6kHivF5SK+DRYEpvWi87zwmaOlnNi4V5O3PdKdAIdsFKq5zaXL7o/dEsB4Xde6Dd6rywP8K6PFVpuXyJ+EcquD115Sevr9lojrFsAmhZdA1mNteJ+SbqVEJ9NxjFoPM0a57n1Z0kpw3pbdThxlnmA5eZ179MJizEa5frnRU7rxRtpnffXYln5oNQl33Msfm5auAb6BTz212e98F+TD3u7Sv0KacDCaBFEw7RI+c67yjT9+97Xx5FGhmetEecIzZ8zgFrOr66vRUsbNV3O+ufAcrmqtjjaWtcGipsSSpPfcaTxKHc7j7vR42GkqrK9s7UH0rIPmVr4Ur/CNfic1XuPGY/Ma5H/gbftAt4FB6MU/u2O0kjBUOd97wy815jnjIubYM6GAFZMdWZnne3IAa2kZ36LLcFsC5KL5XWvDWxovtwdBuz3HoeDx1/uR7zZe/z9zuHd6PAQfK0QlHmR/Ygi1T1Xf51euwkbqUDaSAUad6S4H13yhgFzxo9pQDAGT28y9p6a316Yjfz0idL103nCPM2YNJ+BCrXaXjJBtYADi1iovabFa2P8pNpZ15Me1lokl+pzhSHAeoswBDw8jDgcPA47h3+83eHHvcN/uw81vds30Q5cRa9v+PMlfPnqwdXa+ouwYD+wjLTod8Vp9B2rdG3W6BYpJa6u42hVa41c2zGUBqQkhKmtGD5TMQi03/md77M+Xfe9tbD51rVZRlbLn71Gu5VeKt3PKgPUA2WuuJM+O8EaXFgTY61FsqkxH4UFkCLgW+kEnrOWrr3h236wN7MddaSOlvuJe/9IdaOSaLhFeovDpYv+PgeYX7OtWazGXBHzUfvsaIXBGpxTxt4nHILBFG03giO3tFJpwnWiMduh/EWuieg55GsWyvZNCb2nzzRKg8TPUlXWWCt1tW774OdbM9nWBBwWtAHPNLKM7uue8Yip4CAppUQslvhvnkiLJXo6CUZUd93oeW9fMdV9Xq6LxnDUSlPj6v+F5XCcPhpHyykk2w1ltrVp73oCwmtpm/GvmgIqjaVUk1zIAPbCzUVzsTU9GFPBcXRVB/X46Op+WDWLCjR6rM8EqU5niG6bvHHd+r1Q8+9WkGZomLsxRE4orTgV6OGDxW5nsRtWjBU3f23+7DM+AuJefm1+c+Cqt/5QvvoZejTcdC4kKFaL5nBGNDvMXCWdWlfaLKI9eY5n5gx+sfd043tYbybXG9EtQNX//Fuwpd6ON7RSugXRFknglNLg6LOIL53TtQGegKtSDEo2QGZf6e6A/pWvq5pWdAsIyBbmioG5RHDWUlm6MKRSrdrrrRZZ6P758O36sLeF3kOVug5rwYYxGE3GZLu0UkwYu55JZ9/SEDllZL4Wtw7mniF67vXQ5xW4lfSRpKo6bY5xBKyGwWAIpNHZs5B9MGZRVdb3kFsDgW/Xh6ggWTR01YeFhO65gMv5afzYkVNKoteRNO18IXCVVILKqjJNt3zZ+g7JZ349/NWy8pn/ppsXSq+dHt95BxccfCAGchyla7fF/UAHcU0h9Xqregivr8m358teSwdZJwodq0xg2fM8zoN3NEqO/SkC9XGc62OmlAhcAV0hUV/h3PyzejE1cu3PaQFWa7mOMQbFtefxwSMMDuNIH8eRGOWH0eB+tDj463Sg7Zob13sGL7s2v2lwJVY3cfoPKKVE1Uut3xMfyNbgzBqBp9niEhN2O1dTQZdAdHKKNPG7Mk+J5xoBTW+Tu6Z44p+ah35mBE4/uLkKZZnh4KjJ6T7fv8rzd1/fOky+xYW/NtkHaloQnA4F6uIvxVBaaU+L7qenUBfl5UKDZC/WcmowYta6pgprlNRVFzYRPF/XusB13aRrp2Lj2os1DrAW2tpFJZJs4sfR4X4wuB9I+Dsas4ikzA0//1IE/9ptvR412oBuAAg8kHznM7Sie/3f7hP3GVKY5ozBG3x6Msi54HKJmC5TrVbKObOPNIyTkn9d2aN2ben5pG2C0YoDKV3FzSVTqqoUAlhyT+wOO7jgMI4eDw8D7vYe93uPv995/HCwePA0o2zkhoT+Rgf9b9V/Yj0LKSklMOuvlIbWBSkTuHw3egSrMdoZ5znjGAz2LIT++DRxBSEwXWakmBBn0s/JPDjnWgq9ZhS6QKQBc2pnQntkk3U4R32ZfPBIllJIopfbHXYkXh8d/vJuh/u9x8PO43++DXgzOvw4BhI+O4PBmzbVwiwLFdZBz7do/d6qtKLmrHV6QEbOFs5k/DUPGI3B3k2YYsE/B4sD+/PxccLp5PDRmprmtZb6TBHLSyCVpBC91rQxWajfa751RtUB587R44TB04gibwm0WYO7O5oduNs5/NvbPd4ePN7tLP77/YB77/GGm4V6uxxBdV2Y8LLX+rsAV8CS9WjflIvYhMNScjo4hZ3TOHEqyXsa0isCTOssIrjaIfeidqw61Kqlnkd1/Y4WoMp2mg5btQGSp+6rF/uWC/L6sQZZWLNV3/iqf8ZoU+NRNKUJ+0l7ZZj1KNgHS52dc8GnsbEd8+To3uByb4m0+oi5j7o066GSQq1A7Md5KD/ceuYAACAASURBVGOWYkwGVguRZTeNfXDSP6dprXpARS9m6Ut539+y9QCLpRK1gtVoBVNQhbQ7S9FmzDRw/b84Ui4Anp5iBbyLDtxAnawgwYn0oKprCE3HJodkXWuirzSZQFYpFUAba2oKaRgo7bDnw+VuMDh6au7bN5q8mUbC93AYL/0o19Fw4COz6rzV2BeLXAoeRlPbKLznlBIAXC4RWitMU6z3t3W2zvM0/SGIllZqrwUsyG7taqxRFZhZSylAGf4tvhxHi2Fw2O8p2DkOlEK6HyyOzmJgxmrZsbsd+t+dL5UwgK34C8xeWaNQQKAkFZoh+TDOta3CYZzq482zwzxrmglruswB78+GwfC6EECIq555lHFSTlN7HVczES3okfFKAqzudh73O4e3Iw3aPjpHsz0XjNU6bX878/MS9t2AK6ChcpFHCeNhC1BYSFuKQSoOb0ZbBa8fDqFGQCllXC6Ur49zRIoJkyUhH3ICpnNLF6bYvgZu664EXFlP4GrYQ7smlKUyUuoqOwYqCx6dhl8cxFgArTWV+a0fxL3djJbZj6UQc0W/BzwEV0vhHx8Sdk5j9KT3eBwdTqcZxhCTdfGXNu6kSFm5hh98bUAXAkdLzkCBBO7eG+RMYusQA2KMPDLFA4oOBwFW++OuUtVv7wIe9gFv9g5/PTi8GRyO3hLLIcO09boi6VpH9y2bvBcZ3K1IngFnSUzbC2lbpEwb+d1o8fPTDK0Uns4zTqeIj6zFmudYmQkZ0Bo4ZRcY0AaOggFgsBmj09zo0iKOGePoCISxtqqU0jUklOjYYr/z+MfbHR72FB3/447FssGR1o8j5OrLRTpErsO37VRJKfX9r6DkkNS1wag1Gc5qpAwc/Yw344xSgJ+ePD6cJhijcT7PuFwSTqe5O5Rp7e1lH+Q+Yk6rRUBStZYcHI+83iX12GQilLEQRuvNmwH7weFu5/A/f9jh7c7i3c7i7/sBB+ewD6aKnvvRYevxNt+6H4EuNd4VK1ijecSRxlAAa2R8lWYNVsH9MONhnFFKwfunCZ92Dt4bXC4JMRKxYK3GfuexHxx2wWIfaJafFzmE7HVowEpz8OO5vcnodQ2UcymIkcYbKUWPH4LFu/sBd5wK/F8/DHgYLO6Dww+7gMFp7EMrRpBRRbXtUvfcL23fFbgSW+p1pC1DW6AybPXsM6ZocBhsbbt/GilSjjFQGigScKozsKSKMCVqpNZPCl8PfhVgpRSDKwvtXGU4hOVwTElT7xxV++f0i7oCqxvv9XuzNQsprIfRS+bKW42hUAfou8HUHpMfz75GK/OcYQylIARc5ZQhYlfnbW0O6ZxEsDS4eU60OVMZsq1RcQ/QBFw53zQAu52r09jvBirxDqzNaakjPny/Q9bqOZONzSiqIOyFtKMltqOg4O2OtiWlFB4vkdN5dADMc8Ll0qUYgzCFphY2BKPgbTscZZP1RrR5BKJrilgroACW+2x5b3E4+CqUlehYxLLS7bmyVqrpRL5nX0rwKoFrHYsDusakmgEOztZ+VO/2wjwCpylxr7AEpRRSyhUEhWDhuWHyUMFqP0WDPqxWdcD5wJrG4ExtIpszCa6FSQnB4LjzpMsZHd7uLN6MNDtwb21NQy1SR3oJjL8fDzZr7BEFsEWB572yP62u3dMPvp8lSWvTKIXzlKgbf8z1mktq1dsmb7E1Vc73kAA8NIBVpzYYBW/pMeaUcRlsLX6wlh7/nv35w87iYSBfHp1rvtRqkQbss0Bf075LcAVIXrfrr1O4nN9ohFywswaRq1v2g6ss1nlP1HVKBbM1iHMCFGuwat+dzFoN38BV7fTcdweWMn0FGEcjF4Lrhoa6OsFbhklKxOa1af1z1Pe7yD9n5EPa0WVNakXAqpRMkRX3M7rzciADH86eKWla+M6RxifGVAeL0u+qCm69pxEYVIZNWotUmSvS46XoYJJZaLecdxUkC1194NQDNbOjuVY7Bm79gXxrHMr3ZM+lIZRqvZIKSEMXnIZsRw9DrOm8x4unKNQ2cGWtRNqUEpI0bOBNfXC6DjrXikDVwJ38B28wRapiAwBjMo3cUYoBNh3Ihx01JDyODu92NND3YaC0w1BbL7AuRzftiPpO1+o64NG8wWqtYEApXiBTxZnTAEiX+Ga0fIAqnKYEqxVONkEp1HFTxmhiHJk1Fv85BlLC3GsG5lYrBMsaWk/s1Xp0laSUBm/xwIfxG2asjt7h4BwN77VtRuR1OvDrMh1f2/pMjxYWqwtISqGPvbW1Z9wPu1jPo/OccJoSpjkhlQKjVJNCeIPBySzYZVuSPj0oj+VYRzc48ukUDfXZGmjagtW0L4/e4s3e4WGweLOzOHqSFOzYl9L3sG+fsU4tfy377sBVH10Z0DwzseB0vdg/pAHBzBgt5XTfnyx+vniMweB0SXh/9JimhGlKOJ1GmvQdM6Yp8riNRELYbjzKupM3aaXos7GmpqHkML+/H6ro+S/3A97tLN7tLe69x9Hb1qpfUoN6eRB/h+u92rq6xWj6r7caJstQZ1M3xoIRdz7iIUQEo/Dx4vHzOeI4OpymiA9PMyYGV/OcGvPEWg1vDd4cPEZPaYk55bppn6eEaYp4Gh1Namcfa61rKtF7g7fHAYfB4jA4/I+3AW9Hi7tg8ZdxILG2RHRdubfcnq9hZuBL2K1iE0lDeKthdNvQvc0IjkDRQ4j4YRexcxofzgkfLwn/sfO4zAmfznOdKSf6isEbvDsEPIwGD6yl2VkG3ACwA348Oh47ZKAUcJ4b2FZKkX/4YPjxbsDdYHA/WPz3h4CDI03Hw+jgLfX/ET+6Z4TP36Mv+/Sg5sPYKErZi9YGIF8O7Ms3Q8Rf9hGj0/h0IV++f5ro2udSe/e9O3rcDQZvR4sDV/AN3WEpPcx22eI+kKyDGLEB+0DFSZeDJ19ysDp6g3+7D7gbDB4Gg7/vR+wdMVaSDhy9WTDierXHfm9+BPr3xP5UlLYvoHMGYDaJ/Rmcxp67s7/dRfy8jzh4jY+XhEvMmGZiI4+jw8FranHhbWV65doKyyuPnzTt3ztrMfPYqr8cHAarsQssoufga3A0CeC/PQTcBVrjf9sPNZ27D4aB93pg+h+zJr8rcHWVTuINTxpRioNLoYqlzG//zWh501VIOeDJJ2gFXGLGZU4IISLGhHnOmCbpVlswz9yoMqYKrPrO3j2dTRVNpBERjcFxT/lp6tFBFWV3oZUEmw5UtVz1t1+F9FtsnYrQqtTeLLKRA8DOWRbaaky7jMElDI42/ceJcvDTnIhqnhtAkkjHW43j6OoCniLpBO5mD2cjzk7X1BSxJuSXYXDMlhA4O7Lo+R1HVUJXC6jqdXSV5fjO/bkGytJeo68gtF1aaedMrSKc9hneUkSbQaklbzUid/3WWtJ9NPLiGAz2ofWgUgpIhWYZHoNBYoZjig7eUvVn5uqpkTVxgzP4ce/ogBgMjo70cqNt2pzr3jnfj/D5c3arpL9nPIBeF6lwiJZTwcCPh4RgqZeSUgpzpMNUK2rpUP3nqcVF0KbtgR2L7wwNtd+7jDkYHAf6PR9pHSpmUEZPa/nd3uLoDbEcrukefc9yaKlqa+/ze/aj2FUQq4AkHdx5jq/4kzIErgYS55gxWI2nOeMciaQg/2kcg6lrcFkkoBYpSUndWV7HwdA9kEtr/J0LSE/LeqqHoYHvtVZOmOTXEOx8V+BKTNIQpZQqvBS9S+nE7QAd2JeQKHfPPVseJ4q4pkio/NHPmCINgj5fYgVX0yTgKteO3j093R+eltH0ONqaO357DDR+YbB4O1rcjxKtmXoQ94LnW/qcP5PJgimMqXqdR0ylpg2m7Gihcifw00Sb6WXOBK5iqn6Ssm9nNaXwuIfRnAqcUZhThncaw5RwsqYOF1WK0lqjt/RzZ/DjweMQCCQ/BFf750gH72sdwLLJ3vdua6DcuY+nDhDoGnpwlTKcVtg50j4+zRofnEbMlFbSvAEHo/AwWhyDrozHwI0Hsy1IhTbtwg1NU6bRHjGRP40mX46clvjhYLm5JLX8GFcHcn9gfO0qpNdgV0GPboeJBD1KleZLpXFJmUceUVpwSlQdqhWB64fBYh809v56HpzR5DNrNPVbYo0eVbNZBJtxiQS6lVLci4we6+3oaP6hs3Ugs1v50ax811JX37cfxW4FsZVhYkICQAXLWilMu0TFInPGaSKpxT4wCPIkZpc+cLf2OwFbmiUCIRuMpuAQiFkOlgah0+MaDFZh7w3uvat9yXwNXBtQfi3BzncHrtZpCKMAbRTpZiQNwRqLkDKGROmJKWacU8LbccaUEn6+RFxiwTlmfLwkTLFgzgWnKSEyeyGHtGzQMnZj8Xr4NXkBV9wDZHAa73YOe6+xDxp/3QXsOZUhdHVwppYHL1r24/ulq3u7oq5BlUqqAEUJtVyQDC3cmAvGlBGsxpwKLinhbZgx5YyP04xzLOTnSA0OgRYRO60o2mIhZswFl5TxZmdxnjOmVPDEjFeNqjRt4gO3Wng70oIfrcHbIVS2ahdIAB1ci8RlE/izHMi30hAA+dLwYZby0peRD+M5ZZxSwgP78mmO3OCQHsNokP+8q73s7oNn8A34RCOTAODNkHBOGT/u7eIxrFE4eALkg9F4CL4eDrtgKqgaHW3g3vYVUH+uA/mWLy2oeb5IF5JRcAyc5lQwRoNgCGCdYsIPuxlzypilZxmIfW7+c9wridOufNBrRXv7m+Dr0OjBGlwYKGd+TXtPVWrBGLwdfG0aLZVkVitKQa8CWP0nWY+99dpIzdpIYoAKDO+TFGhy9W0yOEZHPSNjxpTJpwBqhedgDN4E38BPJ4cQX0rvQqAxjo5nCJ59wpypKa1WICaTma2HwdXmzDvfiAipDKzFYPhjz8nvDlwBS6pzgch76tooaKUpzVSI1naJAAxFWAZTSphzwf2QcKngihisWArOc0YqtHlIF+KUV+BKiQibDuPRE0PmrcLbkSLs0Rrce49hjcRXLEdb9F/vWr4GW/tTg8SXrZKowBVA80IsBTA6U7NDKEw5wWmFORfMOeOSGkgCUCPX0Zq6OaRSMKUMzRG2AO1S/4ZAwT7QYeyNxp13CIYjNifRFEVfZpXmVX+yA1ns1/pSpQytNLMVCjZpYplThmf/5EI1aSJc31vLG3DbyGmDpQP54ByV8qcMqxRiaSyk+F8GSt/7toEHZ9rIrE5ftQZWf4aAp7dbvsSqYazLMsOONZKJrq9Wig9PnjOogME0/9XhyZ3QHJx5EKaZ/k4hlYLBlHpPVF/yYTy41hh0UVRSU4F/rkDnlvWSGqkgRFcRKuZt58/s4HXGlBO81igosIrWntetWKD6sGOVgFZoZlSp/dIAYp4JzJWaNpYUY+gAdw/Ylr2sXse++l2CKzHF6UGJsPo0hGEKRClekMxoaaUw5oJgNOZMTSlPLiGy2E4ipFTowE2ZQFdh1irl69cgOgGjFHZe1/zywdmKxvfeLjaARVpQv46b5Y+2tT+LBkQw42S8AXfGN8w+AcCQNbw21Z9TTnWwr+bH1Iqqj6SvTi4ExCyDspgzps650tojGFOrO4/eVhGosI7SRqAvStB/Yh+KPedLpRUyBz7SuDCmDKMLFCwGXptykIoPNR+oorvw3HW6PZfGIVvaoDnV2P+9UVxRqA0HQY3hkA18kQqUAx9/nrTuc/bcPqsA9iWqP6WA4QpcobWgaT2Klr3+AHB7ABoeLX4ocJRNkEITRaOVZP31XbrdClgRqPpzBjpr68EyVRACgFqCZdPAlQQ+IWl4nSu4qj3JWH7TindUZamB1l6nFPl9qjgdnYHPGokBs1JA4Mewpk8DLguD1i0X/mg3frfgqk8PKtXSEBoKWRdoTam9XIjFSoU0HLMngesx5VqRNKfcgSf6m1QKYskVUFEfEPosjEjbfFW9kZzW9QbsF7qkjCynHHqas6es5b392UzeM8VHXXWLokNSK9IFpNKq0XIpmD3ppGIiv2aekVVwXdnZL1I5eN9090FidhJoB7oAcqMpmq691ORrhZrWuFUd2L+3P4v9ki+VIq1cynQQp0I+HByttznZyjzWwhHg2hd8WVNpB4E8bkyUkOg7Rbvu78V/WnP1ER/kknL4MzNWvd30pQJ04X2WmSXxZeT1N6RS16iYsJf99RdAREwhpamMpsM9Js33ha73AtDW5dVa5AO896X8/p91La7tZkVolyJUSnyoq/4t51ILTGRtaNX5sGt1YZjxBQh80NqhljrJFPis4Uyu+2/Vt+rn/Nk1CX1l7KO6NfR4s80222yzzTbbbLPfZ/qXf2WzzTbbbLPNNttss19rG7jabLPNNttss802+4K2gavNNttss80222yzL2gbuNpss80222yzzTb7graBq80222yzzTbbbLMvaBu42myzzTbbbLPNNvuCtoGrzTbbbLPNNttssy9oG7jabLPNNttss802+4K2gavNNttss80222yzL2gbuNpss80222yzzTb7graBq80222yzzTbbbLMvaBu42myzzTbbbLPNNvuCtoGrzTbbbLPNNttssy9oG7jabLPNNttss802+4K2gavNNttss80222yzL2gbuNpss80222yzzTb7graBq80222yzzTbbbLMvaBu42myzzTbbbLPNNvuCZv/oFwAA54jyR7+Gz1kpBaUABUDKBbkUpFxwmTNiyni8JEwxY4oZ/3ma8BQjHueIfz7OeJozTnPGz+eEnAumlAEAWgHeGgSjMDiNdzuLfdDYO4u/7gL21uI4Onir4YzCzhtYo2G0gtUKSgFa0Wel1O96X4PF7/vDX7A/2p+9v3IuSKUgJvJZzAXnKSHmgpgyTlOq3z9F+n4uBYXfguJLJJc4F/7dlDCnjMc5YU4FcyqYEv0tABit4LSCtwr3wWKwBm+Cx84aeKuxDxaOfTs4A6sV+dbQE/0e376EP1/Sl+IngK5rLuSvOWWkTP46z7n+/8zr7SI/L+16A3TNNRS0UvBGQyv+nmrrRZ5LHj/mgqcYMaeCxxgx58x+zeTXTPcOQPdAMOSju2DhjcZgNN6EgMFqOKOxCwbOkF8D+1XfWLP0eM+761vz5f/zz0fERL47zxlTyphyWqypxL7SSsHwhzcaVitYpTFYU31mO//1PlRKoXT3Si4FU8zIhfbmc0yYc8bjHDHngjlnfJoiYi64xIJzlHuL7gOtFBz7NBiFu2AQrMFgNB6CRzCG9t9g+fc0Bkf7sDe6+lRr2ilurdmX2mdPcym5tHVU10QuuPD7nBPtd3PKeJoSzinhHBN+nmZcEp1NH868h+WM89zWlFaKzykFp+me3nsNb+m9H5yF0/SzvbNwWsPzGaU1XVejFZRSdR0o0NkHALnbo2MuKLwu50TvIfF52fyZMeeCT3Ok+ysWPE65vvYp8n3Rvf7B0evzVuF+MAhWIxiNB+8RrMZgDHae1uzoDayh1+qthtZ8n+p272kFjO7XbcqvAlx9K0Y3MTk+d5vznAhYPc0JP08TPk4RH84J/+fDhKcp4zwnfDrPfMATuFKKHOisRrAGl5hxP1jcDQWD0UgZCM7QgoVGygVKFSgFFD7yC/Ayq/YbNzlvixy+vPHEXJASHZ5yEFxixjklTCnjKSbEnPnQpsfQCrxp0qaeCpByxscpYYqFNibezAhc0d9ZDVitEKzGeVdw8AlaKcRcsCu0mAH2rSG/ogC60AIW35ZSfjd4/lasgHyW2V+589ecaPOMKeMyJ1xSJjCUM1IBYpZgRfGhTV97TcDGGw2r1ALUlAKcU2IgRaDqkugQPs8Zl1Tw8ZL4HiGARc8BeAZOpzFjdBp7b6CVwpwtdtZUcAxoWEN/ZwFkBRh+AaU0sP692JwK5khr69M84xwzJj4UY85IGRVcAajBxGA0rNYwSmFM5DOn6dDTmtaCYxBjdLtoAo5zAaaY+eCl55tSxkf+fJ5pjV54zT/N9DkzIFEKsEYjGAIDTzuLnUsYHa3PnaXAyGiFUjRKodcOAEkXGCgUReuUN2cAX2fNlg5Y1YChAyiR1855puD/v84TzokA7390gf/7U6z74RwzMtq10VBwVsMaBWfofh8crav7IWGwGt4onGKCNxo7S0GH0xqRwZXRConBsgAUgMEVr/fYBVRTzIil8J5MfiS/Ejj++Zzo/ooFjwwcI99/t167M3TOfhgMRqexcxpxXzBag501UPBItkBrhVwUstHQusAAgAZUoccCCspvOHE3cPUrTFiQ+nWhGyPyTSzA6tM846fzjPenhPeniH9+nHCaIk5TwuN5RowZKTVw5ZwhcOUMUi44zRnnaLH3GgXA3Wz5hgRSJofnDBQtTqa76M9wAP9aK7yBV38BleGQAzuyz+aU8XGKuCSK6CTalQgIQL3+Wil+DGDOBR/OEee54NOFgJkcLJn/0BgFq2lRz6ngFAy8UYg5IxeH0RqOhgCfaePR7MvSLeQ/g1t7EFwjcPbT8tCOOKeETzMxEZEjWTEnUbJS8CbBamKWtETOHXN1ionZlYwPFwJV70+0aV9SweMlYq7Rf7dmeaM+zxaj1ziGDKMUMVy5wNumtHCZQEEqgIFC5k3/e3Sp+OgUU7emMn4+MYPEvhQTVmPnCKxarbB3htaMVthZy+yvRshlwQ4V0GGcCxashoCqS2RfzhnnSMyMrNHLnOr9JfumtxrGEGA4x4y9N9h7YmAuKeOQLYJZ+hUArC5Qml6QrF0o9dWComVQQueR7HFTbHvSpyniaU746TLh05Tw8ZLw7x9nPE4Jlznh42muAOUSEzoMTD4wBK6MJsbdOwIsn0YLbxUGq/EwZgxWYe8SAoMrYbOMUnC2LJhkoAHCXOj+SaUs/HlhUHWOBe9PsQKq96dY39/jJSLlFiynbj9QCgjWVID1NDoMjgDWnAuOweDgDRQUdpkAdM4auYDBNF8DpZBRoBlI/1rbwNUvGB12DWH3EfVlpgX8X6cJP08z/us84f/+5xk/P8348DTh//vphNNpxuWS8PQ0IaWMFBMA2qits7BWw3uD929G7AaLu53HnAp+PER4rXGfHQ7e1k27GA1rAKDAKFVR+gawmom/+oN6ZmZp4gV5igSm/v10weOU8DhlXrQFl1QqSFtHWpLafTzPuMz0eU4ZMWbMc0LiA8RaDWM0rNX4z73HbrB4nEa82Vm8HSO0UrhLlqlojVIUCgCtNKA5UvqO3dmnbun/BIJ7tmqKlLY9s6/+43TBU0z4z0fxE6cCQOJRipKxOLRH/uw0gd3C6akP54RzLLx+Iy5zxofThMucMcWEx3Ok9ZoyEqcptFawlnx63HmM3mAfLD5eEt6OFg8jpbUOzmJwje2gdH4BFKdEvjLD8TXsaSLQ+xQj/v3pgo+XhMdLu7YxZ0wzMQsAarrFM9vnrcbeU8pGUjjeELgaraG0lOY9EAVnThfNKePnS6TAdC71+X4+TZjYlx9PFNjGmHG5pJp5kD3TWg3n2K97j9Fb7IPF+1PC3WDwMBrEXHDwFntLR6a3FBBZo2FqIKagUZCrmOBl/StpNJE9XFiiMMWMT2fa4z5NEf/v0wnvTwn/++cJH88Rj+cZ//nxgvMlYpoSHh9nxEh7V4wZucuuyPUxRsEYjRAsvNew1mA/OgSn4a2pEpaH0WKwlDp9GFsabsc+NIrWI0BsZyrkx6dI7OIaGAuQ+vA0UXZgTng6R8SYME0Zl0usazTGXLNL/WuXj/3ewXuL4A1+uBuwCxbHweJ/PMy4Hy3+FgfsncVoDUopNb0Pz3uLEsb51/l0A1efsdJDeLQIO/HijEy9PsWITzOlAn9+mvH+ccKH04QPHy44n2dMU8L56YwUE3LKbVE7C+MMJu9gjEZKtPX8fApwRuExRnijEYypoM5oeg2KgVX5vs/g32RX/uJ/Sh/V8cF9iglPMeHDmSK5xynhp6dYqfFSUKOVXuuRCgG1x3PEJSY8Pc2Y/3/23rTLbSRZFrTYAJKZUlVX3b7vzZz5/z9pZr7MuXPmLnO7a5MykyQQ6/vg7hEBEMxFLapU1YpzqIS4AgggwsLc3Dw0cCXMldY0GDlH7EVIGfejA0A36o/7SKv3qBBThtEGJpfKjJY2//6p2aseZEmYQwCx9NfMoYxjoL566MIC/UrbGgUF0s+cLU3SB2eqpsYqWtiETGG/KVCY6OHkMYWEh1OAjwkhZJx5Qs6ZBm1pzhlYS+EhHwxiKjiMbRj9fiTgbLRCTAVaUTg/Z2I5SmmM858l7Pt//ecD5pzgc8KcEp58xnHOeJwTnvg+CaxJFWZBmNrRmcryngfSIw5GwceCwZIO6n7MpF80Aq6AKRI49pEAXN+XPmZ85L8h0D0q4Mr7bXAlj1IK5jHBx4TBaYTsUArw/S7WUNMuGWhF1ydU01hmDuZruWnlBr7RCJ15QVIXkAysfCTG59FHPIWAvz9FfDhH/P1hwnGKeJoCPnyY4H2C9wnnk0dKCSnSox9HlVIw1kAbDWMMhtHVczVNEcOg4ZzB2UcM1uDsCXDtnMEpGAJaVuP9znC4UFWQLBoqn3K9p6cKrhLmkPF4pnvy6RwQAgGqcweW/RyQEs2rW/tuna377n3CMBiMfL8eRouztxiNwhRJjiPh4sZAa1hhXDXJNl7bvoGrV7SFQJongFgZrFIn6Q9nWiU9nD2OR3r4OcDPHtNpqhcA0DreWIMUEiyjZQB4nAKc1Tj6hJ2hR0wWRpPmpxQQaOg0JH/w8fmzttpfVcPTWMeUS9UdnGObrI8+4XEKRKXHXNkvpUSoqlq/p4wj3+ynE62iZOCWlZMxPGmwMDLngscpVNH66Z7o81GbBiY0sVfy2zIo/xkm4K3WQ2E5bzXUwROgz5lDdW3SfpjSYsKWAVGEtEYpzAPpd6ah0IDO7FUG3bOPM2khfUj4eCLG6unk4T2Bq2kKSKlU9qpNxASuACDuDFIpuN/ZGo48xVRZlkMuMPzIhdi1XksnYd8/ev/KxC4T5dnnhGgg+QAAIABJREFUquc5+1gF1RMvPmS8UkrB+UTA12j4aGrY1aeCgZN95kR9uGMdVC4kZPYsUP/tFGkyjgSQ55BwPHl4T+BqmiJPxgkxRJRckHPrU2MN3a8UEoD3NHHvB1uB+49zpLCWUriPJNeIWTdwlSnsBX0ZIrxVy2Vb+zvHjAcf8OAjPkwB//3o8XCO+OVhxmkKOJ0CHh5mzHNADBHzeSZgkksFKD37o42mh9bwo6vnyvvErJ/BPEf6GxIGlrpMwWGwBjurcAoWIwvhR0tnZY50vcw17Ef6sKdz4KhQWoyzIdA4O509AcGUEOaAnDNyypW46PddgKE2GjFGuIHYKwCY9haTd6R5TgX3oyZNbSnYO1Pn1IHD+wpA1uVKb1y2b+DqhSY3lwzgdSBhGvbRB/x0pAv4748ef/9wxuPjjKcnj4ffHuFnTxfA6QlIEUiBvlBpJDsAboByA3LOmKcR3ifs9w4xZfztnaMwh1L4LjqaOHRG4s4mAfSnZwv+GZv0V9MjoDFWPBk/+ICPPuC3U8R/PwYcp4DjHPHx6Im5Cpc3qVJtwo8x43ymm/0sN3o3cAOA0gpaaxhr6vut1fAhwacR/3Jot97daCqIS5akk0p/eQ3Hl2pbDKP01XqyIIYx4smTjvFhSvhw8pg8sQtbE7bhbB/K7GrMiOFzGllTJZ8/HmkiPp08s5AJfvI0YOe8YJu10Tyx7DGOBrtdhFGKRcMD3u8M8h1lm94Nph6jY0BmVEERDR+npqh6Fv549/L//V+PVfvkWWd1CrRYOftIzFVImH3CPMfKBsoloCWb0qrKClqjOTuPgNaBMzMHK1odCkN6Fmr3LNXTk++YR7onQ8duyD3aX4OVmbEGft5hGAfsdgSsng4Op3kggHCXMR8yZcplxxq8TMkppWyGCN8igH5rS8JUdaHAo6ekqn/7cMZPx4BfjxH/389PeDwF/PTTEdMUMU8zTo8nxBARQwSmE81NOdH8JOdGrkXjAG3oMewATefLjQ7WEjM07kcYa7DfO9ISO4O7O9oerMa7PYEYa1S9F0iqQeMyMVTLPowxUT+GWO/HGKk/c8q0r8HTfsu+Awu2IRoHGAtog9P+DsYauMHhdDxgGAfs9xbnOeLdwcHHe/x4F/DXOwcFhfeDqwkrg9XIlnTPr23fwNWV1t98jbUqjQ1hkCXprEdP+pB5jnQBzwHBB7oQ/AyEmTo/xfYjfFGUXODnAdpozLPFPEecR4tzoBXgnUs1FClCzBY3+ucIH73UtkK4vVYulyagFPErhZaEgqaH6DLW9DIxDKjxfZkooo91FdUP3AKucs7wMwHjeU4424TRR5xCxhQTZmtq3/Ysm+5YK+nYPxPAutZ65q6Gczkc6zkMRJMq25/4VEM8AGvktEJMNEmnXGpmmmaRasoFx6kN5gKU55n6MMWE4AOt5HlSlmasQc6ZWY4BSilMPmFwCaMl7d7dmLC3FDK0po0XWdGqWDKPTMdw1EjSH6yPZRGy1XqwnHNBCMQC5lwWiT1aK4SgEEKuIaeUSwVXMWU4q2tYkGw5qP9nZjdqiOtMYfqJ2ZicMvzsK7MRY+QLLNdJOOcMYwxyyrCsqVIKOJ8DAXOj8ThnjCZhNAqnMUGB2NBSWNxuFMDqP2GwcOOEFNEoxkQWJVOgTM0HH/HLiYDVb8cZHx5nHI8Bx6cZ8zQjzAHzeUYJnsCJP9PcJCCltOsdSgPaE7BSGogeMBZZG8zpgGACtNFIMVEUJhLIcs4ghETgatDwMdf+lExpkWCERAsbYRopjJsqqEoxLfoQ84nBVKT9Kfn6vptInWkcLazcgBQTtNY8bg8YBoucC347+MZUHgIMJ8KElDmpCcjm9R36DVy9pRUJC9JEHTJlG00hYw4Zk6cB2vuE6COij8iB0XX0DK4ac9W3FA6IPiI4EsDPIVVqPXQalB4o6G9qq2ebACv09HkpNSPQR/Iqk4fE9ENINawoE90SXNF7ZOUneoUYImu8CFwVXuXEEOGNJuA9GHgGzZKunlb924B8A3V/oPn2zU2AcP9/QIDWMhMql5bxGVh3EVkjJ80YCsNGTSFDo2iCrH2Y2fsnpDoph0CASlhImZiFuer3zRSDGCK01ghGwfuIeTCYAulGzj5jsgk+Z7isa99qBdbpANAKqmAhfP4j9nPqWCilms/YuvU2NokTQKTJ4iUlgxBy7T/PCSExZVjTJuVSCs4cagyBBNkhJAbK1IdhDm3R4+keLbnQWFxym4SVRimO9KzFIHgan7XW8LxYtlbjNEc8snbvcR9RQKn8tD+cXWY0ANJPShyYhoAbaa6q7peZqxDxGCIe5oifnxhYHT0eHz1OJ5KmzNOM6CPK+UhzUvRAmBo4yenyhwRYaUOvC4uVE7I2yNYhJ1pwyF/PjL2wkSFkONeSfADU7PkQMmtXeXHLwDjFhHma6T70MxAZAIZ5yVYJqNra9xRoX1Og96SAEgMmrevC6TgS8PrtQJpYpYAP72IFV3fJQivRO7++f76Bq2eaMFYtbLEc3M8x4RQiPkwRj1PA0xToIj7TCiHOM6HsMLcLWMAVwBcI0bFxOgOKwkGnk8cwaDycA+4GjXcjpaDbpGCTQsqF00YLiv5mybBui35DA6N9+OLEAOfsKWwx+YjzOS5Er33rw4Ip5Tp4y4Scc67gCiUDSkNpVQcbADifR1ir8Wg0HqaEg9PYWcrqqX4wKUMrgs1JN5ajmpmWUifgP2JfV+BULtnGl1pGF+bNNDB7n2o2n/SZUi3cNAymbtekhJQxTakmIUhodzEhh9g0HKkN2jkblEyaOmnnc4Rh88QP58jmsRrHEGG5j4xOiJzmLaai1qhq1Ci1MpQIor+yhdP/+R8PFSTOKaOA2EQZFyUAZg2l5u+dRkwUEkq5ULi7MrDo+qyBLK1T7btp4nNqqA8l+1ZA2jynCqwlBJg4nCv3pYDjEjyQeAJOsQErQbMMGFJ2CN1vnEZXE0x+GSfMMeFppufejZpsGpzFvXMoAAZbaiacNRq23LYXPXtYTSHj6CP+djrj78eA/34I+PdfjvjwOOPxccbPPz1gPs84fjwCfqK5aHpqwCR6viFzp6vIjQBQqm0LsGI2SP6f7YCsDcJwAKyFMgbDOJCezRoMuwHGUDhREkISM1EptX4TlqrESGBK5s24Cv+VsgSD/b73TfZdG/oObQDjkKJHcjtM4w45Z5z2I5RSOJ4DjtOIvdM4vc+Y7zIO1iIPBrmUCvBf076Bq1e0XmwrgvZcCmIhs7PqxRM5bVvoy9StBmS11F8A8v+cAEbRmcNOIYhGiJyFQ86VtZLfL1AXw/A/O8C6uL06VqQZ7jUGQ/72wIkEzFuhRlQmI6VUVz45Z1oVF7S+VgUFBlnl+h5ZpYnw1MeWGCGsTGMm+fcWlrFYMBx/pL5eh9nXrT8KOSYREEtmmVGSZYYFO9KMfXObLzMBKgAVWAlzRSGqNjkLS5VSqn0p4d0iHdH9Fv1ersJoEb4HfsypuZTPKcNoBR+p37QCbFFAUVBKL1gsrZrQ/Wto/8/fnqrf2DmkatQ5xYxUcmVZgTYmaZCj92g1JlsorJcLQtLMSGnKnFTtc8L2Fmb15Bo3JtdQrjBacl8SqOYsXQnNxwaKpT+Ru3G4H4MFPFRQoYDS+jRnFsBHDe81jnOs+/XLSWNOBnc84eYC7LrssnUW4a1a9YJjn8WHmZKqPk4RjydKqDqdKAToJ98W+sJY9WxVD6rqdmpZj0puLCzPnQAtYbRKAYJBMRZzLlXPJqFXpVVdmAib2If9Uky0n6IB60mJHlD1c6fsN11Q7QQpXrWUtHy9FDoP3Pd+HAAAp5OvWd4PU8TOadLaxVgzjnsfrZfaN3D1QqvaHbSBuTrJst5q4swG7yMCh4piiECc20WyvoDl4sx8AaeAHOlzEqo4zRFPM2W0nWPCwWa4RC7fJhckxbYMF+6x7QL4o0y+n6M9R4TUU4+22qbnm1tzA1gtm6hHazLollzqIC4DRM65o6cLoGnAzpk+l2KqoYsQEs4+4cknPHmDc0zYGQPLRniUrNDKpRQtLvFYMBxfsxB6C0yVZ16TJr5iwuQ5TVYke5excxpTNBhYzxSZDVGc3ZE6fzL5rhhzBVfy2znT5By7CfkiFFgB8zKEVIFAB7DIc8dgGDLOc8LRGewslRghDx+D79JAvluJfM2sVthxOMlyNqOuBotflrk6zRGPU6wloubYNDyekwo+el/B4tGTVEHC7lo1A1fpO3E4P3tXy3bFmGFM5BBgBpCJUCqr+00BKSbqW63gfVr0YeZzLpNxDeemhBQIIOcoAu1uYu6B1ZUmIE/E75NSlRE9jh7DYHGaIw6jxRQyfjhYfL8nHe37weHgDJeMKShW3xRciQ/chzng13nGv3/w+NvDjF8eJ/z88wlPTzOm44Tjw5FE66ePTZ7Ss1UVoGwMoGughbRksQCmipkVChOzWRbwZyRtkIxDOO8AY6A1ZR0CDVwhJ2LUUh/2i0vw18+fzwGq9b73AFE+K2NlpIiSVxrB72sGpPcJ93tHsoNU8ON+rl+5c+byd660b+Dqja2stmX1UL1TZMW7WAnktn2t8cVDK2E2dOPwR+TtkClTsLEvvOrjNNG6bwWLleHXNvHeqgkzce01gEHJivlYMn8dU5mXk3VlK1Kukyx95oqod/V6Becs6pXwcioZseTqDpwywWTFPkmArh47yKVNwP2g8ZWEkq6BqueeLwAzFkLkSLkaAldWCcjSGE3m1H22XTAKKUmmYFuY0nW/vU/95FyzAbt7t+9bAEt95OoU97YfZNVBrOQUyfldXKcViM3Rila/mQFHMcRiLXQ6X+B+Pc1UT1FYUx/bOCPWCeKIPyc6FtEJUskRqlYAMBtnyIqCQp2oDOJoDWuDyPOtFIOUCowRBkuhXxPK+c8l0zWR6RpXXVi3lNKAMAOsnkXOKTdgtTXmLvqTw0YrDWwppX63B2BM5DAyMWgxZRzGZtXwwz7Weon7RPocYaNv1SREOyVyYH+aqRLIcaKkKj95+NkD3jfGqmqUOrBJB/zyD1bKnMmBClR0951CuTMAEp1WyRQ+1BbZmLYIFRDV66jivM1SrcOWb97vAkk6WMhzwoSiNMIcYIzBZDWOU8B+MHicbbXtOVj7jbm6SevOqYAbqUFXSqkhphZKwMaynCnK1Y1c35cSDTAi+kxckiDlmhki+iEJH0jZEFStBhaTroSPaPv3n3y/eKtMQBPOSkkbU8NFy6yeRaiiA069P84Ws7X928vvlbEn5oyYUSc4CvtS5g+gWTiZObTF4REOIRU2NxWzwq+xV/tTI8cNrABVz2h116s8hAVxXBJl5xR2kRyhA2cfGWF8OoZgDXj6676GECUM2HnjrPv7oqn+emkPOV4RGPuY2fGf6k8eBrrf99nAKIVdNsiFAElhKtIKBZQLyo3u05gyjSG51XPry0EJwHryBKoeuLjvHDN+OcXqmi11F1shZsBqrj+nqVi5lIuS1PsxUUFkOU/iCRejRiycvcUTct8HAqjkXPfgSrI5RfNYGWSZuKVjVn1Yn6vAahtg5ZSRFO3npMizLqXMfwsOo69f89e7XgBtuMxL0wHeoqVc4DPZXxw9V57wiYyrJVvds27pIgy4AVhe09YAqwcspWOUREQu4KkUDiH6Fj7sQ3vR03sXoKoDaZ8KrPr9rrUcVuL36AGlEXxgOw6LaYo4jRGnOVIGsKMSad/A1edu9T7tjQ6bW3utXdeFky4G6AqsNuiVuuTOHXPFK+CQyIwvJhxsQkwUEjG6QKUCq5kRUcxoCHiAMAE0UH/NIaTP2VT3Vx6i0aHwBRk87tjB23HxbGP0UviMBqh6JktCRlWbUxrbUZtug3U/CcuEL5NwYIbjzMaTxKqRl5nRrar8wOEFqfOlVRNFC1D8vTJH16zQGlC1ewXdvdOe679HXtNKcUkgcCkKes/3Owq/fJwkq0dhDhQ+EoEzwO76uc8gpI16b7LOo4Z0RTfXHUu9BjgUKFog0Y2IMSExKuDvLzj7SJNxSDh5KmY7Oo0fDxYHp/Gv9wn3zuBgLUoZyJGcvc0s13DT6jYTsgApKZJ7YgYqxIzHiUrXnGLEr5PH0Wf8cozVNftxii1tfo5dfT66/iTUabTCfrCVWbQcAhK/Kmta4kbPXiXpg7S87xb90YHfXusYQ6wLnspW5Xh5AqpAG0tgZUWYrRcMWQwRMXJWqA9VkB1CxjhaKEUM4NkPuB8MFYfOJHKXNrrXC6Df2sizj4xCfzoG/Po048PjhIeHGaenE+bTjHg6AfNxCbCuZda9tvUAC0DVZAFLViszkaCYMVuD2F4D14duN5m1fLkPn7TvuR+k6OHPQE4Ip329vh4ednT9Go1fjhE7LuPj4/Dqn/oGrp5p17pvESrCK/p5zVTVGNWVCbE0bReFj4TpICsBAXWVemZAVcQwWDQ6G2yWMFl/aoBVo2aqhpokFCirS6PB9ea4cnvHgKyZjgtWY6u/L0RRDHR1D7CWwLag893KGTom0t9omqhy1uyf0zRICk0kW9SnFRT9HO2l8F8RhlW2c6n/z7klh8iHy+q7AO4zTa7OPrcstJ1VCM4gZmKvsi11shZQJwl+a+ZRJuGe6dhaDC3uD9WeE/+y/tHruTzbQghD5IzGFOiamAaquZYLVVq46ybhwWooRXYN5fWyjje1Urpamx1bJca6xxhxChF/fyLT1p+fwmaB3CmkmvQh4nRZnIgvkGEma7RmMdxpxYWA7TI8SLYjdH5LWjHG/V8G5r3WsQKr51irRX92miHJJNvoy5wzlFLIpYFynTW8p2OSjEZnIh7nhP2gcTfQvTywBcctmavMY8cUxA6oswJa6H5XHlafCkz6JgBr8zVmiHJCFcIDDcyuv2cLUD0noflc+w9OZBDgFzyidQvd8+RTDYfPKb8pzPsNXN2g9eGC1Qsg+nQjzVX+og0mPcBKGYilielFmxN5cNOKPFW0qgttTvHuhM8rgPU1aHRu3QjziIYHDK5oFeI4ZOGMJgdvo6E1C8o3Ts0aYG2Gj6Tfu8H6EmA15ibmgikWWJ3qjSsA62ANLGvspESIVi3BQusCA3b6LnK0t22vAVUXbBUfpzyXcgNZ8vmt3+gF0oOm2mQHp3EYNOsRDQZHJWhSMtA6sXFrumA6UJbM1YKR3ABW6wVILQWi9YK10uyfJcfuQ+L6lZpCl51poo9Ua01CC8cQoWCrDksrKg59K51O1fnl0mWsUqbZR+/JBX+K+NsTVSz4cPQVXAmgkkxLSh5ofSX6N2M0AvtSGa0QXK7h9xoOBmppqAauaCGyFcbdCtNXYJV7YFVYjHplYl6PuUbA1Qooq3YNyD5oaCQOe6WYENgHy7mEyWou9UMJTj7lxTh9q5ZL4exUGkN8oNJNIVCotJpWPwesPte1Vs+5EAldCK4HWgAWN4x8thfVP8dYfc4mzFUpLSNRPAtZX+djqobT4jf52vYNXD3Tmlpn9bxqoTYNSRdnPY+utNHCbI3+AkAGFC9NjePlHL+PsylUpx8RT585URr0zIMiAMSkEFLh0JCqlbuNhI5U89IhYNFChTdMYvmi7Zo+hsrJ0GSlGZyIoePBGoSBzuXdaGuoZBxJfCs+LChAVnkxOfeDfP9bAGiwhmy28JF1FnawcE4KxFK5m5wLfCr45UgrX9IVBWLUjMK9sxi0xnejo2xCo5BGS6DQaK51xe7jN2Yie/AEXGGpVmxVby8hoSjZltfXvVcJQG5UBJlS3d85B6MUfjxkOK1r2RmriZGkrL1WqgigOVf6rJ+M16HdxY7IfdxtC6tinYUxVELDOlsBAkB2ATkHZj8FcNDrZx9rrbqn2eDoqYxKzAXvSysUqxSQ3uAC/ZYWErEb5Gye8eEcuAZdwP/724xfzxEP54C/f5yodE0tQ0K2BAKCFhq6HgjzcTtn6rGPo2mslm0MvhAfhl3OSynQnUloD46rLq5nqjqtXAsFysS8AhE9Y6JtC9sbug+NNW0hZHQ9nq0m11GKxGwYQyajxzni0WnsB03Zv9bUCgG3alLXVkoNzTM9whwQfaQMvOgbwFozQrcA8WstVgFqhuFVpuvKft0UWPF3ZzRxe5gBbRCMwTzNmEaDabKUKDBnTPuE+A1c3b7VwpC6sRHGrISu6xjzRdhI8c1u6kNi/nqFfmTiSiXX7B6jZcWrqu5BK8AVHtjlepafMkxrLWwb/nhtC1Ctn1LdXwGfukvvl+yzwSx1V314MG8g0GfDR93/hdmQIqfGGFjbJhr5rpgKAatI/TUEXYsMp13BzlJtq2gLDsVgsBkKFEJKhRaDuuBmbEd/zD0rBWCho6qhvrxM8pAEDCqwzKGMlBuDtbHfffp6z44Io7dzCj4p7JPGaA2SIzZGQk05C1PYs2wd27j+27XKWHQh3D4UWPuT+9IYvbgGejNTKdidc4G3GkqRZYs1CoOlQsPeaMxZIxe70DHdoqUC0vqx5Yc4en+YIn46Bjye6fHxacY0RRyPnl20Kbvyoq9WgFSYPbJcoOuctgloOadraLxmVxcBWo3tX99TFWT1zGORxKEuFLgFrPpWx2EaGCsT2WmtelC9+Gj3/kWGY7d/qSw1uKLLvVWj3+OkmFQQY6natU3xet8W4FNtP/9ce24xtwBY6PRZV/RnWwL154AVUf9v389+f7b2oZbRyZwsUZqLPDO+6Q39+Q1cvab1mgulLsTSoofReqnJaOE+1QGrzjOnB1bW1XCDMc1VmnQ2qk5GYuLnRCskg4JC9ZwBAFMUSmHVlaZ9zIWBGLYZua+9rQf358Z6oIUEFUo1nxRwNWiN0ZIGZgw0SVOFd5owUyoXg+i1/VhMCjLJSD9yQVjr+u/nch+ZvNJOQUFH2r/BFNKDGYUM4OCoNp5wPEPsGI6sa7/fCixvASvZbtqpBgoEMMn1Wus5pq7GHLNYkT+Tu57TaNqyfgyka5sYusFo7GzBbAsGqxETPazV1aSSgM32JH0RDlyBrL4/+wlY+tJYAsrEWjXGRs5T3ee6yqXMX60U5pgwRA0fNXwqi9JWLUpxm7sz8bkPkTIAj5FKpXw4J3w8BTycPFWaePKY54jTKSxsDtZtHTbtRf9QxN4KuNKaCjP32kPSTgmLeAm0F+HADlAtgVXZBla9N1nfJANEdaBKd6F7fQnyFve1AGweo+VYFvuNFm26ZasJVbmBerEDajqmN4bYti7kT2m99EVoytfqqP5Rxuoa8BNQJvsjv9WHBzlEKNdk72sZ89vA8jdw9domrDLT/VpW0ZZSwwcuVumcRXSWxITWLVNKhf6sWSoDhQaNhRl3sIPFuBsx7hx2O4edMxicrs6wc8owMSGXuYX9lK6hk9EYXtmT3sEajZ0rNZNHgFZRgNHdQX2l7Zq+Z+v1rfcUoIZnrFbIhiwODqLTKQU/7G29p+7PdDucz7F+d4oGKKh6C2C5yl6ULeGQsNYabnB1It4fqDjo3Z3DMBjsB9bZFNZJdHXWBKRbrXDyGYeBBNDvBoPZUShJjrOyWADsjQbyNajqS57EdBn2Wz/Xs1WUOk4an1hytRjptTgKlNYvjuxGUfgP4JV6ybCK0v0PTuN+bKHY49wyxLyn/opxleK/0upc01z1TIa4TBtDZTys1RhHCglKuGvNNEu7tIkAa54IWInruTB8uTsXn7tR9jGVSvk4B/zHw4yfnwJ+evL4j1+O1dH744czgidn7+oDVpqtxYJl0pdARM6dLDIExFhr62sSSgVQgVUP5BaC9dxCcTWEm0IDVX3B3ovJL18CLKCCpTV7ZThkL//vQRdtA8NArOXh4DCOFqMztbC0M6rJL248vGa0RUwqpQNYkjXZg84r4cDngMhb3r/VFiDphazJtwKqTz25z7FeHQtaOrDaLJfehjm/gasXmjAf/UpaGCvJOhNTQwkryWqoD/dV7ZUyDVwxsIIbSb/BD+eI4XCWhdaaWIzIAEsYKtoPVTVf0RY4raGVJYPCAq51RZNw4oHp63RGut5kPKXt8vLz/UZlginFvQqkDYUFd44y0E6OQLIz4mNjKnultILKEurdZjmAFj6SQZoYK4thsBgGAt+DpYG4XyCmbmCRsi1ZK0wsYJ9igTMZztBEPBbdijwXCvHeiu3ogVWWAbyIeW5GYvBEYb/L8J8Asilx2n/OOEUy15xiYqdvurZFN+b4vjJKrCfaFVtAiR1yuDXbkxcTVDJFL9gk1HPdXztLJL51/jaZK9OKz8r9TuGuy/CwUu2vM3I/twxVuYe/1P0ofTanhFOMeJoSPpwjjlPE+RxwOgWcz6EW9/WzX4DQ9XmRe0Oe619bs1haa6SYFtqmPjOv11GJqeumNk6E66ljZZ5lZzpRNTKAl1MxZf+rblIv5QLDQMB6GAzGwWA3kIfXYCmcLwxrf15u2V78CaUBdNYLAjBeu2+f4xiuMYm31FVda1+gT4Bv4OpVraX0lzqQG62wMwZ7a/BuNDiNFmefMI4WIQxIMcE6i1jYF0NE7QBq+u+4B6yDGxx2hx2G3YDdfsB33+1wODi83zvcjeSPU0qhdNtY0N8oLSwJHKypItmd1dhboq5bMVEOt2igfOnc/RfacyzUhXCaX+i3rzFaEplRSsTRNAmPuSA7i/ejrWLsj3vyTzpNoYZnvDc0+GsW2aoWLqyTokwkrK2SQqUCqu7vaYX7/uAquOoLgFaLmNV4J7ol0cmIm3YPrHJRixpvn7uVUqqtQCmomVAxUZmUOmEHsgo5hojAtiFTSlRguQA+EZAKqeDM1/E5tPCgCEWVkhqCwsYScyuFjmWfAp+TObUMHq04uURC9KoP19FJWppN8jnsigdvgYQarreGkxJMLSZMoV5TQ5nWNF1Rb50xOANnNN7tHe4HYtwOzhDbbMSvTC2A5OduIZLO6uMc8NsU8P8/ePz6ROVSfvvtjNPRY55mHB+OxBLNczN27CbHohSKTJKmG9PDr5z7AAAgAElEQVTq6rPplnogJoBqzW7JOe+ZxF7EnthcWbK5Xu2FBKBaAcjfpGlQMAZJKeiikTX9li4EoovikmIMCglAt+LR+z2Bq/d3A/aDxWG0+MvB4vu9xfsdzQl03eqbJg4ZvkcqYOcFvjacCSllaGr/9P34O43/vweYeq6tM0g5sUx155MIDrw5cegbuHplI+aqDdgyUTvdmVEaXQdcCSUoY1AyX+ilG3yMBSxlHBlr4EaHYWSaebTYD5ZWRBwWzAWIHMzvBcUyoVCmIF24PieYDNhE+pOs1aIgsMbtJuO3tOeE6QWXIElAUM+k8CnZZq7kNWABQASQWkXO36PRGGxu7ILVsFYhRl11dL0Wozbpzo7hkPeKJodWuBYDs1aDo5vV2eUKbs0MEGsjRqLgsO6SPQVuP0YKC1U1f50J5RxSfe7oI+aU8RQCh7oKTiFVEOQ7cHgOGSEVTOwITlYKbdAVYGSUYraHrnFx/gaaDcnMhbApHIkWZuwA60UaP18U/ba0ah67ESps2y3cJyFcywJuZ5rhqzEUtNVaYXQ0PrwbNe4Gg/tBV/Z00KYxWRsans/Xl9wX1RuJssy8J3+k4CnLjPyRAnkk9TXd+hMgYEpKoCxKynRZgZqBmFJISS/ulR58Af0iapkZWAFVX4D5pdT9qveRgsLdfvI4WbRBBoUgNWcs9pnaWcs1aWBtu6ak/y2PF6MjecjOKgwszRDT4ltm8SqoBXPbrkkGCUotH9/adquDaruuhf02RnWEyttO4zdw9Yam0EJxSgFWEc0/GNFdXYIrYwxiWoErXlEIy2GdhRscxtFgHIlm3g8GO2ewq1Rz2w+J/+ZSyEhSlRo2NLoxAUm3rJVSA8bqd0dWzwnT16CqgqPctDwimO7BljBUm4dWKLNu/bsU2qWMwbH3vGKTQwox0Y2W1fMrrn7SIMGrqqyGZRfuwbEug3+nn0QXKe2K9m3vJKOR9tF2IYf+Jpfr8hZNzrmAmRClZEquwOacEj7OAXNKePARUyCh/nFu3jDCMOUC/o4MH3LViog+C2jZnQJQJDQutiJSWqUUVB+awH5MLQttG0xtAa0FsAUnD/D7VFEX7+mbZKGS87jGbjB1wnNcS9AamnidUfh+T0z03mnsDTFXg9H1uG45GUtCTEgZUyRwPIUOWIUOWAXfivsCS9CiFBbp9Yts6P7kaCLZ66SlK9jKzOL3YEZaBbwCmmLYZqvWhpOLgaQr0Jtl3/p6eACSQikGWdGYqIpCUqkynDVztACxs8cQFlcWO5oXQqOhxZrTDWDfnLlSND9IiFpkKagAS7LVGYwq/fWxR79XW2SPipmsgZJEJD6nUtZJzvdr2zdwtWqb2gv+R1YsVSxuNQ7J4rudwTlkTMHhcHA1fXMaB/6+ATGnFqMyBspaDLsBbnAYdgPu7wfc3TkcDgP+5d0O7/YOPx4sZbMxepYWIDmH7Tm7sTjppbFX5oYv0raE6cBlyA9olgI9I1WAmk0lOh+xMVj4K20ALLX6LfqOUlk8owCjCfzsrIJ3tB26zL6Ulkag19K0K8OlFSc3GAyDxp5F7PvBUoaiJT8cq9qKCGigXcCFTMjvBovRGOyNwZ21GBic9QP4rdiOxOE/MsYsOM2RfJJixs/nGacYcY4J//0YcAoZv50iZgY6Zx9rH4m3lei2CprflRSz3mKLJKVfKVRAaruJrlUxKJjnVlzX+1TNFEUovahB14m0JSy4ZQVQSoFJTacTLG173/yQiqNagY73sbFUpMMZjMY9u7PfDxY7ozEag7+MrfwNMdS6loe5SV/mgjklHAPVBzzOpLU6nwMV+Z0oLIj5TCG4NbjaAlHX/IuuVqXo3NGBVkdxS4vT/3YpHVv1HKjqgMN6f1XP6Gjyf1IK2TgqJqwNYuc1GEOsGb8xuLoQBoBxzNgNxDiO1tRxSypAyDxxLdHhczRnFPbOYD9oHAaD3c5hHCOGcSBJyrCjYzR2eQ6/AazlwkAbjiQNwLAjnew41CjSYTC4Gw15l72hP//pwdW1Fek1MNJWKy00SAMoM1iuhYOEucops2EoDw58A/ep3TQRW+ycwX40VOaD6WbxPQIoQ0QG3z4tVBg0KZ1iOezVJozPc77e2l4SoNdF6irE128LcyJam5aCvLIAwHZ/1hUof2e1Aih5wWiR3qX3LltqQi6OSYjAZ0NILZTch/qkX40m1qyFmsWOALUvD5bA1c7qljyhmw2H2IPcoknITmrQzVzn8hgiPvqAhzniac74+1PA2Wc8nH1jtHxsGTdpWc5EQJWwAFJOZR0ebfop1Ky8vkRRKS2rx/tUvWlCSLzIaRloaxPRRViw5KojEl1dQoKBIc0P70+MCUoBMebar57tMYxWNXXbSs4KT7Y7R9Yfe2squBr4GliEdlas5OdspVAygIRqYyIPq5TaecLaIwnoQIz4F2EZdtvc4V5A3YcMhU1K7f9b2XyL390I/a0ZtS2wsN7f0u+TWgJG1sSW4pC0qQuonHI1FpXrRsxQ55AoLBhTzf7sky2A2zHKAGeLaxpLxK+vj5xESZgSAMFg8nddaX8NbX09KrUw8ja9pIN1zKOwV9/A1cvtudAUsAQBCyZELSdMq1g7YduKdRgMpqmVyRBDycKZKn1qr9CPw0BMycjanP1ApT4kA8XqVppXQFU/nAg9TB5Opk7Moi/S3T5/qWTBNSu1ZqrWmqnSP98BKxF2p9JS/rfS/uV7t5iruk9ATX+X7DWZcGh/WnjudQeJBrDkOBeAsgcLqH3gOBQpjJn0r4T+qD8pXHRwBqMm4fNglwyHYaB/qz6tJVMSA6aY8OQjHkPAz8eAhynhcU749cnj7BMeTlQyJcaMeW7gqpa66c5Rvy3gqj9nfcZdr3Haqv+YM4EqYcFC4JT+yMAqiTFgS/FfhJ6ABhQKkJWikidI0KkNxinSBG3YEqOUsrAV6BMVQtIwusCVwmMF3aODaWn7i77sANYtmtx//cKEwFWpJYFeNJ/ECmjJFz/bupCUtC3G6oJ6XwOoHly90mm89invr3ys/n5p/5djZvf2WFCNgAHUa8i7SKDaJ3hn4Ln2nOeQeZNivOLU/ANNa8V+fQzenalZydZaBBOQjaOFfQ2HdtmT/4zs1UXZOV1lOjCuSnWcozl5dGRaPFgK+34TtG+0rdDUmkXZer2/SWgwpdcUxJBSYWc07hgM7QeD82AwjqSjqoO6SVW3s3Z6XrNW70aN+8HgfjQcxyftjYKkby87WPFzwljtrWlZcY6oTFcnY9F2fN7zuzx/5eo57IGTsE2L7Lfc9FSSBSbgSf7KxHCOqWam+ZR51XjpolvTonl/xEE55oKHOeIcMk4+42mmQp0CDhbGfDJgitA2NyZGdDk6EYjOmj5Pte4U5pBgtKqu+o5DImQJoXDnbHWN31kNqzTX0xORdJt4B9s8zBbi6RtNyD4VnPmcTCHjb6cJH+eAX04R//bLhMcp4DhF/PowwfuEpyffXI1DaqaPpWAJNBUuQKiA7NX7ek+lXgy9/p5FhhmHAmOIC5+kWodOwvTriZp+CCUbZjA0Si51kZRSgrUWKaZqJko15mhAnkMiwDwYxFSwc3QfO6NQRuAdl8CRJJQGsBrjfKt7k+4NVI+31F3fwsosLQ7K5bmRrlkzQYv3vGHS3vSgusKuPAeonnX0XjMVGxNsHyLqtos2iNoghl0tZQUAKZIXoeLF69FnnEKuWbFjt0i8VXNcImsaE37YZ7w/OMxcX3Dcj8g5YyoFZR7pAxU4A82eAv88IGsrM1AbwI6AG6H3B4z7EeN+xN3dgHd3I97vB/ywt3g/WBqn7cb1eqX96cHVNVD10vOl/oOVrmdletiHfXTLIiFflGZO15fTuNTsNFZDHKrF50cYqUETSBK2rP+sRgs7KYU6ARsJD5pem/NlQoQ9cM110lyaUNYC1CkvAJVkqInDdynN7VvYpsBmlLIthpQivF43OU8A7QNlrgFHnzBFAldSdy0kAgcNYOWLUFJlPuoCWFUtTwNXCsZkeAZXc0xVixFSQdAFg23XklaoIEsy5TT3Z81O7QHVF+hTAbJUxyziKUR8YH+kBy6Xcuxcvc/nuNA4Cdh5LnTahwvr33qDtfdf81aq35Nb30gYMMXGVOXUGU7GcMmM1J2rNz6gFRIzk0XYNwH9zIwB4Pp7BJrjaBFShtGarSgK7kYK0U+7DKfpml0v1oRV/hLeSM+21yCCaxPyS6Cob88BtLf87ov7uzKzLH1IsgBKWLiOuRK2Syx0FJUoigBiiKTDigkhmJqtSlUIgILrCRCfszW/PoPDoGlxPhicRlM9E2t4UEKC8ljQ+/8ELNaWBnARDnQLb8JxpGz9/UhRJDHo/hYW5PZSWEqey91/KtMiL6JlTNWVX6cV6fU6Aox0rxXpdDELfc4VBjyjLAZcAljEXJF9QIv7SmaZNNHg9ExHBVbyuKE+pz+WRfiPGSpx9a7nkcXpvZO3eCqtgVZkjdQUM1JhcBUTZh7Yjj5xZhrV2gL/XjPzW+5f5tX7yWf4RCn9Z99S071PlYGRkEnPWvXZZ1BAhqz8iWGJDKS0pu9SSuE806CuFXAOpmYF3rkCqxrjptASJ4SlkvCuZMwJsLp1f+YsPlsZU0x4mhMepoiPZwoBPrH55PHo6bxNvjJEFVyV58EV9cmSTl6zV7SxBFnr1v+WsFjV1TtnIMbGVPUWA1vgqoaR6HeyNshcd07AVUqphoyipVIvAAGtYZDCvaRremAn+fPBcnhQd4uH27myb7V+QUj/v3jD5Yf6/pPXrwGIC7br2vtWwOoaqHzt71xrBV0Is9eI6e7/ndBb2KxSGshitjkrXRcOUncxpU772bP23RrhFq0v5bW3mhJmJDQ4WARPACsaS9orbfiY+IEu7PtnBlhbzGXPWPL5kax98SeUjH3xLRv023zL/jTg6qXQnjwn/+/ZFAFPwMpLST4j7wcBgciePZKGHljw24sZF2wUZ5rVIbRgMWFL1XkfEnww5EFjNSIDgMIi9kGTPsNxBlWdXOV3VBPZy+uOJ+Y2Id/ef6WvNSdsk2SJ+a7GnI+tCLWUcDhHqjwecobPlLKfC4X9yNW7lQ45zomAETNPMdP3hMhZaKuhTZgreb4UwIdUNUXHKSKEhOMxwPuIEDJmBguSpi6anWpsCNRJn/Q3ptZhi8HCe4tSCobBIueCcTB4GgxCzGRAOGjEAtwPGgdnYJRCsgY7EO0vAvua3s8gW8IRLcPwNv0ZEmUGPviAjz7gvx48fnoK+PA04+ffzjgeKdvs6eGIGCLCHCprVNk9YDP0ttmuljGRz620Ov1hl+7zEvbrTTB7QLUWa1/8Thcqqqt+zSJhg2BtK+sy2ZpVNp0HDvVbTFPEbker4FwKHvcOO6vh7+hafje4eu/mXJBvfF8ClB1rFf/Vkr7f6uVF01WQuNb6vnkOSL1WF/Up7c3lUla/L4AKuAwXyfbCygCV9YwD9bckA0iJlMjzxHrcuVUbLLFV77NDKhn/497VMO9v78b6vvl8R3sUZr6e2dpC9Fd/VoC1yVb1gMpRhuB4B7XbY3fYYX+3w7t3I364p8e/3jt8Nzi8G7gc3T9LWPA5UXpZvUdWFeLsLWEoCTlV0FVZlvbZtfZHxNRTzPCJQlKeQZesRntma0vgLOGLlBJytpQ+HjN8TDiHjMEmzDFTmEhWuPwdSq0KRqs22YoWTMCWTMTNR+czd8JGk3BH9TDqBLSe0/rbNgGqOREbNaWmozpzFk7KIMYqF/jYit0++Vw9k84+VeCbGGRtjee9nIOAn4igKZXf+4RpCgiBAK8Aq3W9s1qGQ45ZqeqXU0ohvyDQ9mwNci5cVoeO3xnNIN1g5zRiMoi5YOT6h6UAo6XyNwT0W8cpCKi+XWaZtFwoAUCu83PImH3C2SdMU8Q0Bfi5mU8GH5owOr0CwPRtK/NrizHZ+uz6ewRQPff32X0rbQK+CBUZlJJJk6UpGy2bXMOVxhLANkbVa+u4d9BK4XFOZDhpEuaUqEC3jBkveGr9o03GgB6s18LTuivZ1U9CIny+poOS9hpQ9bkn7teeJ+m3Reuvn9yeK53wOye6DjSahUFO9R7v+0lYaN3JDzhYcbMm2YIjhwbvBo3DoHEYLXY7g3k28BweDHHsLBkkDHoFYAF/fJD1HLDq9VbaAG5YeE3uduS6L2a/ozG1UsSfWtD+GkDVv0/Yqt5fp3ShKBFWr0XUPaDqmS4BUDGTBuXEYOjkMztO55rivGVmuAZXOWWO3ZMAePIaU0gYLBXuNSrBKJrgqEjz8nzUEKSiTDPwDSeASgCXADIAN5+UJeRWPYg6tm8OqW6Lq/cxxioEfWLxNDFTJFKPXZkTqWGXcsEUOPU+NXCVSssaE3Arba3zETAt1D6l8mfMs9D+zFZ1GWcVWEUuEiwDlVbISdfvVVpVhtKbgJSo2Gtksbw1mlkhA6s1gcZksLOxZi0eWMOTMoOsVZ+p7rhu1Z85N43bHJuzN5lPRmL4fEDwgUJwMbKT9qpsylvaS8BH2hbAWjNfa2+k9fa136ngCi08JKEiYcCUArSlrDL2QgMAm2xN4ZeFxmmO0Cx8PriMw0DndKuc0a14D9FlSni51UMl5oqcvXVXB1XAxhWAdc3+oG5f6ccbgcerbf17F2BLrqMVyNKGnitq81rubW4Ul1C/pf5x3XTXj3trcDeSt9oT+zONY4L3pCVKzlHmoIjaK3Du9Gdful9u1a56rHUAq9NaaSshQdtVSCGwejeQBU6vc31t+6rB1XOhvvXrfciv/3/u2CpJ55eisrnblgFOjA2FzZKsMgEMnhmWkClUcvQZ//nRU0r6OeCBTfmmqU3MMjmLj0xRNAlHH+vBHI+uiqid1TjNDkopfDcavN9RpfaDTThYy67Pit3E6fO1lplquhzR7ixAFVq48lYtdqxUYOAjvjof54ApJpxjwoc54Bwyfj1FTJFco49zJDYqEXgiEMygikHtOvW+9zii51ML526I2+X6AFABcC9+Dr6FtvptxI3aZtKUAnRAURrJGKTkEA0LX0OEsQbBhxoyOp8jnNPY7SxOc6w1yo5+5BplEaUA9wMV4U62IBeaCJUCAbcvUPI3Zbrmp0QLiNMccWLzyWmKZDx5nuEnT67eYdpmiF7TXjKFfPX3bHz+rd99NcNMBmfftoNDUQpJG6Swg+dM4Jwzwuwwjw7OEWv522HgcL3C8S5WkWzKBUkrGBm4btBEAL13ktksk0mEHSxstJRhabt6qPU8PcNgrUHUFqh6zXm/1eS+HutqCGClwyroAKUiUCUM1sLrS+QeqtYbdFZXw9gv5dAu1ixy2v5lT6HAUoCf3+/qGH8+HkjzOd21a7n3Mcu47Nv++v+jsFjXMk/ltY0MQQwH7A477A47vH8/4rvvdvjx3Yj/7f2A//ne4Yf9QMa/rvnSvbZ9leBqK5MPWIIneU2eK/yG+n/ebgxU80WS7Kc+VCXZaTNP5oGzfARcybbn8hE+FXyYIo5zxoczTTjHOWKeI5WTCA1ULfQnTDWXoghsKUBphXkOFfQc98SKPJxJr5NR8G40HDoo2BmDwnSuTbJmAooUZpbHmq3Cl1lVybmMHD717AEzxUyAKiacQ8Lfnghckat3gg+ZwBWzf3NIFTzFSALlGJeMk2yH7r1VhF6WRXn71guotzLMZDuG2FL3Y2igSgam5ZcuVsUpZ+TM7BOHyIw1SGxE6ZypWYWBsxR37PadS8H3O/LTeTc4GN2lzjMrWfj35O8tmjC9srgQfVqMecXmMVvV+yN9akbZ1RDTGwf514Sq1q/1Ey7QTboy6eTGYK1BVylA8CjFEeMaIiS7UZIk5pjgIxVhlzJVVYJQKPx7O+aKjIWtEjNbsvNwTrei48YgagtoKW8j98knOns/B6q+FFOyXgSt92ctXpf/lwIgA8p0n9e1TyWkKlY3zlDC0aKM0Q0H3FaIXsEkhb0xOFiD+12mhdocqcj0YOGCw9kNpLeSDEgBVH34d6t97aHCaxKBBbBS7SGO7MbVkKAdbA0HHkaLd6PBnbPYG7PwonsLKfHVgKst0NQ/LwO8DPa94HxdAkWy0VCE6bgEV3No/kjLYrMRIbeisrGAQ1EE1KaYayHa4xwxhYSPRzJQnOeIDx8mAlhTwDzNiD62cIlMziKOBZA5hKCUQvSkYcm54GlnESLdJPc7h5PP+G5HVddDLjhY6vxSgMEWZqvAVbzVIoS0Bla3TvUOiSYPHwkgfTgHPIaApxDx7x/najz58+OMySc8nH0Li06xCkV7wCSWCL3eof9/deAuy9ImNX1+YyBfp/5XqwUpEJtLE39WY8VnGJmedo6efHKURnADldbwsfolhTnUtN95jhgGi/2e+vzj3uHDwcFohR8PCXtrkLNDLsBgm07CaiNuATebp0oRJ/vm6h1rKLW5nxOr9wpw9RyweY5d+lQ26yUgd9FecBa/8EhSi3uaQLgHjIXXuoL8aYowRuPsqezMaTSY0mVosNd6fu4mHngHZ/F+l3C3s5iCI1C/c/W+8fOIohX1p0zGQGOwRKPTg63nWKut19fPf7G2ETKq+6CXAAu4ZDxMK4MzdBPyOw7J7a2p2drWaLyB6Hhzs8xcSft+dHX7X98Ti6WVwsPDDACYzzNmmQiib8cnILIajOLK+HZFI/ml23N6S2AJaHudlXHMWg3AsAd2B4y7Efv7Pe7vR/zl/Q7/8n6Hv74b8K/3A34YB3w/Ouy4JNrIFTJe274KcLW2R+jLushgcw1ILYr5rrRTpTR/pFJa2ZOUC06BRNQ+JzwF0v7MkWpuhVRwCk0n5DuWSzxNYs44TcSyPJ5CZaymKcLPoRZCFe1OBVarsg+Zjz/4UAHB+WyRc8YwkC4n5oLB6ZpFd3AacaAJb2dkVUWvQ1L6C2A4aCTMxheSAtRaclKPToDVhynil2PER2b6fnsicCXGk+Lqndhnqpo+FtTsvAv9Wsc8Ldiq7vl6DrZaQRsktjLMkqTvl+UkcxVcyeRS2gqRX0sAUtI1fd/aps2RkOY42vpVD9OA0SicYyKfs0ThI6NJm5NLIdcA3Fg5Cz6XpW3Xv2sw8JqQ4FsB1Wuyzl4z0L8VtPRp+xIy2hQ/o7E8KfD/VZUCmGTqNR05gSLItSrXMXAzxkqa7lL3d0bXVPPBagyDJfsRDmHH7Bq7AXTnjhn4t2h0Ple493O0nq0CGmP1UhOAxeyeNroWZne2FVeXqgoix7jlQrZPTkicSSzgWbRXZ58wjhbeO1hH5rfRugYWhb2qoFmO9xX9+6UZrZdA1eZneiF7p7WyDpa1VgOHxw+jxR2zVntLj2ra3FkZvbZ9FeAKaGzVBVPVMVY9eFqL0WV7Dar65zwDFZ+pNtrMGVC/nVnzwwVNfdX7NECVO3CVODQysRfS8ei5WGzEPPkGrAIDq8qErMAVD8SUXWYqYDDMVFhLWWspFYxWI8QMHx0OzrDLMnCwEXfcjeQem5ElPKiBUm6fUbZu7VxRSPAUEx7miF9PEb+eAp7OAU9TwMPTjHlOOB4buOo1TtWjqGeVOiZqkSDQJw/kbnIvGRUV0BuXO9sP/FtZZVtslWTcrFsfRgHaAFUK3dB+ArRFYnAlmYfaNIbjdLI0BuiWWXaOCTuTMCZdr2ejecEhh/EP9tm1Jrt/tb312noOWL32//3Ofcrvvqmtssq2QJZklamMNaNVsulMaEtN2xdglcuq725FQQI16cVpAgMHpzEywKJyHwYxkM1ANhlZssuAmiUH4DI8KKHTegyfeK5vdexbA2DPTvXPCXsln1uHk7QAK0sly4zGaCnjVwyAe2B1y7FXoSU0SXhwNJoKvI9UGeDsW+agdZYsZWxXEqeGQTtbigpAZWHxSpAFfH6g9RZAtT7ZC+Z5yT7CuqVh6M5QSHBgBpIzBKt2rsvKf237KsBVZac64CTAqhpMlhbWW9eU68XoVJCXqr+nDMwpkf4hkwmiT6SrepgSA6qCD+eAOZANwtMUuUBtqh4mvXBaGAYJW6VU4OdQhevzNDcRu59buCSFJfsh4YQUKESYEqK1CF1pjeD3bGpmMM/kmXO3c5hCwvu9xV/25J/zfrC4d+SZI+VurNEoALQuzGCRnuNLAK3AppxTSPjoPf725PHTMeDnp4D//OWI4zngeAz4+HFC8BHzeUaMZHcQQ6wAaeEl1YtK8wbI2QJH9T0vhCK2JvM+3PFaBqVnMXJs2+KXI2nu2iCFAYkHuRQT3OAwDxZKKYRAmr37nUXKBX+9t1XHcYiGV6x0HQqI1l+AlxR/tFbjT6OVo+no960U75dA1XOA6hrj8WYm6g0D/1Xt1ZqxKo2x7DVYABADkjEwyTCQ7ixfNnadFgq368eB65++KzRu/HjwVcf32/vmi+QnD6UVprhD80UqLeyZI1oISYTuveC9HtD2jvwjffgprf+NTaDVsVcLYCUhQUuhJDfCDhbDbsBu73A4DHh/cHh/cPh+Z/BOSqRIspG+XVkqAFXvJQuA/dC0Yf/jroUIf363AwA8Pe3qc/PU+htJMp95TlrrrxY6tTcArS/Rts7vlleZgCq3A9yIcTeSkP1uh/fvB3z/jsKB//t7Cgl+Pzrs2UiUhOx/UCsGGWx63ylhntYi9HV2X4i5Cm3PMVX37olZqolNKedYyKMnkhj9cU4VUH08BfiYECKF+mJMmOdLMXUPrsTLKOdcdVUpJYQ5EChIibKnRLMg4aV60PXgqeNZ25NLQeCQgtaaQwsW1urqCLwfTD1n3+8jC9gV3kWahKPTUKpULU5GWdzkpZSb0tXSX+KNdPTk7H2aI05TxOkUME2hsnzzNFdxdIyxeUjVOmdXwNJ6kO5X2fJc/76tgeE1IaprzMnFd2F78l1MPrr7vgLkgtgV+53nAGMoC2nyiW0PMuaBvKZ6RjYXGlYb43ubPpVEi96wlNi1rryTMUDSy8n1Ne3a+f9HM89e/aHyyiQAACAASURBVPtXJt61yL0PiwFYpu+vgEb5BOE3OIT0BcJIjgtH340ad56dqAcLvyNLGOsoa1Bby9nWwsgpXADorfI1fxQzyi32ClhOzn0oiUOCVFNSVxPPndXYWYNBGwzMdtQs7RuueTQz3LqUTtyu4UzB3hq8GxOeGCCcBgvnDAKXeIHlkjjV16y7b58TuL+Wzbple+4e6fuuf/8qJGisgXFU13fsReyjZt3csnZrXVj+0ZiryljlxlaJbUKIeaF36h29QyavKdEiTeyW7lkz5Tl9PGQynzyFZjp5miPmQBlaT+eAECjEdz6T5kc8j3JeCqR74bSk7gvIyikjhUAeSCmQaFAYl2uO0KqbSNhfJimFnMmUUIxGyRGYQ4SjqZPrh4OtFPT3XBg4pgKtCrRmXY5SNF8RgXVz9kqAsrisn0LG2ecq+ifzSUrjF1dvsalAjE3zdM2jSC6aa/+/AEevCCe9NHk/x34taPGNtG5tOgZkBRxKRo4WSVEmSgwR3hs4l6qf1BSb15QkVtTd6WODN2hKgT18UMOVWlGmlBhPEnPVrRJraQ200OhLE+4WsNp6rf//4j2f4SRcYyN7nY6wHD1Qfu5+WmE30hO3sJG+vVyutho+0go7ziy7GzKFQQaDeSTdlR0YXBlN2a7FNQE0cJkpq66BrBd0O7/nBN23dbKCbAtrpRRNyAysnIjZnaH6cwOVJxvWk/EbNTqftOsQ0IxFLdm95f4dE/aDxW6IGIZmKkribt9prwpqWZwLXdozIOtramtgJX24CAnSsUvtxWEwGB2Fxu9GOme7LjuwL2f31iP+KsBVD5xSpnIm4pEkACjmgkcfqwA9sPfO40xaKc/bUnj3PKcL524J9aWUMU2p+krNc6yp5X72C8C0lX12oe0JvgGoPmMqdbXMtiaNdZaRXAQpoBiHOe7gLRffDJFChOOAnAuOB4vHKcBohcfZ4RQyDtYgFkfeJ6BxvfpyyJz3BYTtwjJOifysnuaEp5mK/D49eRyP5I00nSYS8k/npkdLXUHdfhB/lsn4DFqd107YmwAhXa6AlWrP9yFGYDlJZ6LvUxyR8wh7FkG7wvEcMFiNj1PE3aCxt2yUalRL1Lhh6r7sh2W2YzQKozUYHQmgnTOIjkX51hKnk0ILeQMNfOTVuejPR8/k1ddeETJcf89N2kpztXiuYyTXYVButbaoJsNOyyti8kNS1RNJd0DrVqyyMwqjY70fgO9H8rPSCvj5uIN4N53PAVqTP5vWGlFrZJE3ADwZC0uX27X8XDr/19iusVY902EoJKiHEW50GHYDDgeH+/sBf7kf8cPB4a93Du+cw72znFFGD6mOcbPdVwq6OwTJHCwAvhuGah/0l3va/uVu4MhLhh0sYtnz/DWv7rFV1uBrsgRfskN4bXsWjF9Z0G793tosVFsKCQ67rh8H3N1RP/74bsBfDxbfjwO+GwaMjsc528K7+o9oxdALz0UELWnfJ58wJSoV8dEHzCnj4zliYq+YjxLeS8RGhQquiNESBipGYqNELyWmkyklCutxSrmU75BMtasC6Sp2lr9lBajKMuts86KR1T2/tmY1AJTkEPNAGWYFoGxCmpCVUniaAgkZrcYpJoxcVsXoDKuptIZehWp6icEtGllhLMO5whgmDv+JLq2k1EKna7uD7jxcAJT+tcXrZfs9b2E7rk0Q197fsxu1rcNGaAADma4NbenYjQVyRGFbjiyZZbzI8JEc6psnEhaWJLfkPhTI1VuMa8W8VkKXkjlFLIduq2DNO4hu8n0Ng9W3Tb3cZwwJrr/vJeHzmrWqr5vL7+AVswArzUJnWRE70/yQRPis0NitWzQJHcnv763BnIi9OghzFROGwVIVAc5mzTkjW9fuLXFwF3Z2kWUmYfFX9PNLzNaXbBcWG0sBtDbsBWapMPIgRX3ZkHXs2Q7V6RNvONBK1LFFbFUX+iV2siYuWEpYcM7U44ihsyfIrX7mi1mDz+mqFuE4vf38VpPfULg+xr/WgqHXfy4AloGSTE9nYe2yH0cu0OwMZwd2Uoh6fz6/B4v2lYCrxnaElKvppI8ZH70n08mY8Msp4FQdvUsVoPtA4cAjM1ApFfZLWob3KPPuMpQntePENLLkwhN+B6KASwZqnUnWA67185utm4AzUA0K5bdkIC8ZwbTSKvMUaocfpwhrNAZrcAwROy6rYiu70WdXUlxQigzfahiXMG8qVF8wpqZXE0BbjVV7UNWDKzkH9Uuv6KH6517znvXz1w7gxYNcTbp9W4eNFoyHaFVKA1hy3Czqb/qzXEv60OIjVyPZak+C2wIs0VgtjCdF4MmDtJhPllyQtOVjQ2Mz3hwivMIYPgesPndYcK2/2hrYr61S5Dle6WpNLt4UlpNJmAsndyHCW7PKWqHqclIuFVxNjkKDUzCYAmVOxWhhHInxc86Ii9R93UJISvq2Y+7WE/JFduHvxHC9NMHXybnTlvFxk86qhZJkQr4bSXN1LbPs1lGCGrZXVIw7dWVaBq45uHcaI+uLnCP7CLlnk5EkG3u9z57TWa3P6VZobut969aP4cp0v/XCff5in3bJNlziyRjDNhp0LgarsbNkUbLQzHVaq0/J/PwqwFVgjykBVB/OAccQ8RQi/uuxmU7+9Djj7BM+njzVqIsZp1NYeCRJeC8GYqMELPWp/TUTrXfeFo3P2jLhqoD6SrjiLQLoddr+2pRQfJK0R84J3g0IboBSCsEP8H4k40kGj3+/J0brx91YUXdMGUqR94pMwbflOjizsxBT5SNlakZmDFMHHkpKS/+v9XkH3gam3gKu+teutZcm7LXOpA5C6Fbwnf7qgqnk9ydTBwFh9GKka9mzRUgtWF0kqxYMtlVlsW7RLHvnzIlMa9/vDOboMIeM/d5WHzE/e0ABKQ10PJH9nnJCdbStTJacr41JdpNhfOY9tzrwNdBaaKyu3D1rjQcbTpJOh0od7UeDw2CoZplpk7JMjvqGIixrqAi8LOoOQwYwQEHhf74LFUg/nDyUUjifdzypKLKVURoI+jJcr9GyzHogvTYcXYeaZAH5pdumNmcJpqrZpB2AYYdhHDDsBuz3Dvd3lCX4453FjweL94PDKH5hHEaSUNJtw4IMrEB1R41WsAUobC66zwb3zuL7vcU5ZNztLLxnXR17XqXEtgwLVhJYMO7AZV+tWakL5m/9V1/v6zpvbpASa3mAfMVzIULxFuz7ku0XWoFmMm2+29H5+X5vce9s9bYS9kpCu59irfFVgCsq7ttKpQiw+jgH/HQM+HCmTLOfH2ecfSTNziwC9EBsSEzVI6kHVZLan3Om7LO+Nlxeb5c2cEgq/SawesWEv37f9pHTn57hqGOf7pixAmj2xFKkhVBaQRuNaUpwLuI8GBx9wtlrTClhn03HXKGyHV9iMCsFSLlnzAQIdKdpcQ7L8+d067l/BGitd/at7TkmA9iejEXLUNlI0aj0A0uu12pN3S8tg1ZO05cMpPTeSKOhFd5oNXYcGvGeSvgYS8xVNJGqI5gMcOkfYrGEwRPxH3BhcwA0UPqa9qVDStf6vW+dZqcK/oXlMwqWV8ejUTBKL0SztZLCjXZfgUODqtSJQ4wn79jf5+wzdoPBHAgQxkiTsDYaKikUYxbHuAmQL5iqNZP1SgbzU9L6X1zQbumsNtiXCrRsDXsTSG4CaAkHjsbU8ymMh7plR240CQlqRZGJGv7VGqNVGKxqbDMfj4Src9+Xcj56plnOyeWPttd6cLrY7kJzW9+zFQXqoz/VgucFHVi/P1v7pk3NbFaaJA2WswIHq7BzalUTcslafUr7KsCVFPqdQsLRJ/x8nvHLKeDnU8S//XzCAxtP/vbbGfMccXyaq/u5n30LowQWk6cERBbpiUB6rY16Dh3L9lZ7DQPy0qD/EsORE4DO4E2AHovlZ22qHuzpicscaIVfT6S/+j/ex0pvhkS16wzfJ5S+T0LoWzUJXaUKCpqvT2Pe1zfmeoJ9Lmy0AaTWIOq1YPdTwxPXPveqtH3ZFwZZFTUt3edLAXsjUX3JDNruzVNv3Wjw0bjPFqkU/Hhn6+F9vB+rCHqedwgm1CyzFKn6AGJonS4rYmE1lIRIu/DDlwZMb2lbSQv9qlwmEeMAO9RVMq2UDXY7h3suYXXPLtC2Cyf1IOsWTTRfAnB3LG5XsFXcXgrwM48pj4ehLoz85FFKQQRQTDdt5EQhJdlWprFYCl1UZ8WE1IVlp1eTtpkcstHW10qvf7t2HW2xL1vMlXGkhRyoH8fdiP3e4XBweLd3+O7g8Je9rUJ2Ya2k9I2uzNVtEZbiY9IodPlpBVNa+Hc0GgdHTOl+tBhnyhq0jhKltNHI1VC0NOZKrcew/kc3WCrjaNsODWDZga4NQzYWci7k76LSgxAfOVJmqgCryMli/Tx+bY5e71fPXElot8sS3PE5eSdZgt392IPkylp1+/6a9lWAKxGzp0zu6aeY8DiT0efTmR29OcvMzxHn47mGT4IPHF6KBKjkIpHOkNpwwKWe560sx7X22kl7rdGpjAZwdQKWVH5h1FIAUkCKFEISw0nvE/siZS4u3cr+ELi5bVbZugkIAHBhmCihhuXgVrBIBe41HM/+0EbIaLM/3tC3b53g1/ocYMlavea3fg8Nyitac3/W2BkapM9jxilw+n40iNFgGCxKpuoC1bZEG0Dz8UmoGxqL+n3S1hqPBdPxO2l0ZF+e+399fgWylK76Ds3FkUXbMVpy0nYSDhRPJAC3rGRUmStNC6Bef7UzNLnsXeaSOAbDoOG9QQgtaUEnTbo6kSz04b4a6tvQX22FBS928Jmw01Zb3zvPaXUufmtDC7QGy9pSIoIwV1zyZhSNjmFXdtPrrJbs4y2hVdPOtv8rlIUnk9gzON3CXNZKgoVuNioXYT71cj/1zFRft89YAlXDUH/DWEPXdgc4+xJmkkCWcwY8JfjU7NSFjll1YekrzGYfguwAoPw23Zdd0e2FlxU+C2sFfCXgSsIeUkj57DNOIeHkSbB+PHqczwHn04wwB8xnckHPMVJJEbE/kKyzUrDwSurBVf+jwMvMxqsO4JUD/4Woc2PyFUajn1AylhdLDMjs7C0Ay/tE7F+kpIDAOqe+xIawIV9S55CBOnEovrlk9FFawgxq+fhUNuOaNuc5YPU5mJIeLF/br0WiwuvDHXJz9w7st14N9810A/RQQ0gZpyFj/7/Ie9fmSI4kW+zEMx9VBaAfnNnVla2upP//t2Qm3d2ZIbsBVGXGQx/cPcIzq9Bskt1okBtmRYBooCozPCPC/fjx49GTbEoqCMEiZyL9CtM+WUtRKwCY1Lk5ctC2A1elAn9LivB7I10vHfZX/6afX+FbdYfEczqJ0A2D0e8FCnnTbxv697sdw1912xQhP0fLlWWBxDG9d/A+wzlyErPNMO0Ecmr/ste21P9/E8HdX9wLPKj9v8vY8FxN//7qs3C9724mZOdcbBBI150Ddqy8p4KO6E13rMR2Vre9ef22Y4KsGEax5DqcMQ1RE1RGUoJmMwf7DIKeV1zbZqN+ztpZw9SqK0Okr9ZSdR4M+mcCna5TsSkwW1k8u/XpFIDkFn/z1vXpa5Sfm54G1bIoDTlWzpc6ov6Qc/wmnCvRuXpOhFr94znhH48JPz8u+PnnMz5/XvD8tODzz59JNuHxE8GFOQHruU/8req9l5CBH5l+eBGxQv+ZpAplk9KoW1oAY7EaalVBkbHD5/OKefD4tGTMgSQsmtq9cHbAb/MKC98YA8+bjjS+pA3KI3sSRk2FCZUymnPJ8HQjUv5O9OI17f+Ss/w1uyxv7sboCEuiq74BWI6M5ev3Ht7Zpo1kDPAQI8kzWOBf56HZ9nxOcM4irbnxGnLOKMLpKF4VK/CBqFEGbeM98gHg5iH9WwjR5oXD9rf87R5t1T8zllMgvpFne0rQYxqoddX96HE3OBy837TVaIfedzRq00Vinyc4g1oNarU4BI/ErcMeJocleUyjR0q5VQ76QgUMyQU0MqWg6poI3Ro+ixMtjphcyU66QuZS83X2pGg99nu7lry52Qv0xqTeSiExWtXK9lljsKWRRlKy3zT3ddS42butgGhDrr7zIjUGAO/raP6R2SBXwZIzGD0hkpp3ZR0HQNkpZ4nfvDktuw9UBRuEUjlgPAA+YJiGVlU5TENXs4+uVcxqn01LI6VERWeXZ6L9pJRw8YGoBedHNB3JBqKY3XOlr1Fdp3aUOdjxvPYC80g138pZyaz0e5eg5LeMN+FctT6CrLS+JJFkoHYM60rpv7xmUkBfL+xcrT0nu0ep9gtMj6/ZXH8PmfJL773Z3HdpwS+lkGSTEqejJFVZV5o+l2giUXNnqtDrTasVR0fOtd93d189miii6Q9sW1xM8rXOwhZL6aN9JFo5RdjmQI0/miZ6Dcf6axGqhtbR9825UoetMWgKzBZm/yff1ckS27X0kbdYisOSCw7R4jJQteowsDZScCiFU4SszVas7aXe0oOvIahyyEkkegP5eMnB/i1rVO/oL/3dl957j1TJ133UrzZyec6dkq8YmVgcrO19GnfR8vccRv6jDmFZo8H1ps7i+DnWNBPkitJIIPSqyP1XbIV0NWL1Alr1Jd6ORkW086WHThVl0/d7gM8Cvs+qr2E/GTvnTX+2dW0dGrV3eWdY/LUXJAiYp+0nTs6PGoJOGpBOnTNb5EoEMTtypV63sgZyL80utgcSzsME4qbFISLEAB895jmy/AM5pjKHllMZvV8vdUZJic56AMQHWwjBSsagahHbksmkOkWor3NDN+mvRmg32KC2ztIc7dffH7Xem3CuaiU9pFwplbU2J6Fw5NTL07Eu3bHS4pMarZI3BX7/Ifw1m/hv4mUpXsKtf9MO1i2HS8ia4kTyq3J7npxFyZ7a/SR+VQ4wOVPzKrwrgqZp4w5cIeW5kalUaSTF4ShOOVe6pFsfvreaAQN/3NH6XuO3OudtkwNE1Vs2orYJKIe1/Q2uvv2mQ6JfzbtaXMHiC47RUd/D5DBE4uZ4T+nBkgsLi3KPTGuAekMnqVUQaqRDnGvlaG3Wz1fa+yZfhL/eQjJfstn+8JWfbdAV9bKOnSrX0kmiDxY5ShYkV/M8NGr5PYZE36ZqXkl/eWPhjcHgmaPThGJ7lZWkyYp1gBF03Si73HKwgA0fao9WyYEtKIh83w7xHem9lm3VdxM1Lf3f5at87ksc2CsHeXsY95dW2Oe5UQ6K+Jvf035fGi0diO7YaZ/fqb2kOVZs0+tojdfnHhnePeMNuQpDR2mnoRVwHI8DhoGcq3nwjNCSQwqgafelXBFjwrpST18AuFwcF8ZkGGOwpF2jaTHnzevcO81yj7jaV2UuNmKhpqNrBr/fSX4TzlUqvVXKc8osKZBwXmiy18uKdVmByxlYnikVuG+IvF9AvxedeBE9+srxa1Uqe8Lz/jNvOViyUYnHLvyyldripDU1YruQ2s9JetF13lWpFbbKx36/DcBZ4pVM2eEQMo6DwyV5LKlgnkMj2a+XFcZQ/8RiHRUlaHgfUM4WaB42iEd5+RCWsTmofweP67eMW8/OPvK+tZHrihbVHDawajCJFO6Jl9+GdPlrQxANYX0NweIOAcYAHw9ru+WfJ0rtPj2t7XrWZW3vU/I+9Sv/wP/Rh7NFfw6acKU6nL+U5gG2ztB+fImH96VnYu9g7VAOzTsxzm3SScNAVUnHweEQyEGl5rA6DdH2/1cQnjQwtW54V1RZVpvo5GGgdHAMRGz33iF712QZSrHc/Hftc9cqXw16e5zd3ehn3pheXeYCEEdGiWj+NEdmU2FWgZS6fmFaGM1PK58NqWc0mnaeu7E37NKRktZle24lGLaCk/tUUkeCuv1+BG61dbI4wLW2iQA7J5IMXGxhLWC1TSTw2SF+8swLcd15YJgaYjUdJwzjgPuHCePoMc8B708jpsFhih73o0f0Ig/B+4MUsaWKn88Jz0vC8yXjH58Cnp5WnM/UfulyvqDWiuQ9qrSaE541gC0PC9dOoPWA7QUmzll4a1tLrxbsKEf5jzhVMt6Ec1UrTXKqtaUERXSy8ALaqHk3Z+pG6u9Hcal+7XP3ab992uhr00jtvunedZ/DzPMmYpO5dp2r1yrdByiCC1YqaSzGQD3pxigqwbmVA5dCCEetjlC17HrQ21KD4lTtIipxtJpDKuiDdrr2SMh3crBecqw2/38j1bQ5tDtyJdGyZdjaO7NDN15nExcxWmcqikoPDoWqy+ZQMEeLITrENSMEh3XNndORu6ZOrY4eRh1Si6O8Kf22N77KvwEvlu9fRdm7makVje+z4ezIL3whiLqVxtLph4a4dBK0VWm1wMitfBUC7fWG/vIl/NFhDAChqKgovafwWdPM0fVdl6V3ErS1hEr2w1gFPBuu1a1nXqFUPpKT5gLCEBriF2Lo68D195D9zqfeKspaFt8VBFzWeVGpyr2D3iYE1zY1pkkHbJArnUbSSDJ+rEMlw/Cedt1OqbflEWFTwxct+0ndIz36K6D2JxVQsEiupAPj4HE4BExTwGEMeHeMOAweh2jxfvZUXem2ztWaqYgteoPHxeExpCYfJH0uN1IgJfRiiqtCoT161fdXsaU89xLQdI7cbs7U3/3e8Sacq6zSWGsWQdHCit6U+ur9/RRKtSesv1XHSv/e7zHWLdIe369Eb1R5wTnsUluloOZb6fTg9xy6umxwDnNwmGPBeaUoPiXH/Bxyrpwnbk4GUIXcXnB9+O65N3ukSjtMLzlPewcLuP69r7HRS7bUh/Ct99SIlf4bYwCrDy9OQ1jT1IK9tZ3foQ7l7zr486w1sLWnCLWoKMkLEFk2BCGMll7GXuiAyqUyeVahU4LENjtb4hXqg9oAN7kze4SqCRXuHB+g23xfObwJzL7gcH8JudoczuY6rcuk9ea0CO+j2bLb87WG0S/lZAk/R65VcyU1inRdZfYrDvF+7iSlNMwNHYpjhPck2hmGwMgKpSZlyD63rrn1KIUBPWfJYi0jUUfEsWrBuNj2Bt1jk9bt67MhZgZUuq+QPnGsAHFUzHaJf4PD+fcM7eTJRztLQZJIMTi1z8g9Vn0zEsjqLMsNpFa6D5BzFTCO5FidpoDjFPDhEHEaSKD2w+yJw2doHwNAvOBKYIozBnMoiM7gvOY2t4+PAaXUdlZQiy3lXOnMxi3qjbGAsuPeWRb031lZg9/OUX4zztU5Z5xTxtNacFkzzmvGsvQGvyWXG9WAf5BXtR+/dSF8K2fua5yuujtoNHLF7XxSIqd0zRW5AKl2ztVea+p79qNrwpPVo6Lib0fPh4nBp+eBNm1nsa6cYsgFyVF6cymVTpwspfl2C/+2NNJOrHCzeeqN/cYmf3VI/46bfOlv9gf+5qDfHUgCWUsUrxrESu+rIbimih6vKlo2wdl3Gc4Y6lcGml6qMLOoFTh4jxSJ43ccPZIitpdSEWJozr2gDzmDDtZW4aWczSsUWgdQO7RKO6l609f/r+2wryDWKHhW7a/07+rPat+rA7ihVaHbz3uV1u3ppMFTkDE4i2hJrPAWoX3/cd96GIavKFInRe9NQ2flNMdg2WGm59F5B5ssI82sZeYDOcvA7sDDtd10CnWYYJyj6jIWdpyPUyNAHw6h8b28t21OJIC8XBKWhQjQj48D1iVhXVY8O4u8RmrVI7xcY7Znx2ZCtJNsFZeop+c9v4Lv6vpBOyrm26WSfs+QOHLrWPVCBeHSRW9aYQU1XnctNVg260cyBjfmqImrjvCRxFWHacDxGHE6Dfj7w4T7OeLd7PF/vR9xjA6z97gfQtu/pJl1qaJtWfAwrHhKCZ+XjOAM/vEYMA8LliXDOYPl0ukGeR1JgglQad8bKUx13ZoD6ThY1ZIa3tibQesfWZNvwrkSPlDiNjgiHSDtP4AX0lrf6kH+AQviN3/+CylDLcQGoEkttHTh1R/8kQv9uqGryyR9dIgF59Vi5uqyVCpi9Mi5C09KirCA0ausnJDmXCqHWpOb91ws4Mb38nffwN5fQrtuoVcbx+p2pCyRlUTs5IQycmWUFMONzfx7burWGFQDWFN7awirq8sMouONm53CZVFVoZmixVq4abgQlGtVzrIgV/yhGqna39rewRH0SJwcIUHv56RktGbsabmuLpbP3aeP2ucqR3lTzdYRrF7pqdO6Pb1rjUonmetbe83RD+FOhG6ik60Q5Rq9opYpRaFXKh2vOXMSCOo5006od40I7aPHNJFsxTA4HA9xUwRgjSHuKCPzT8HhwjzTWoELp57TShVlKcR+o9rZ076VPB97p1wRvmlN7u3YHQR5G41W/Yhh9De7Z6un9k1zpDctegx2+9ELAWKbI+Iwebah89QKK0Yirt9xv77T4HEKHrP3OATfqA2basFaETIFa7K33Y+eMljFYxh6L8S0JqpAlupjQSd1YUybB7O57o5cbW1ISC2aPRviJy89t79xvA3nivlWorPS+6jV7eHRiIeuL5R2oAJXlWRfGj/aodqPKz7OCwe0Hrt7JSX2igJshUOhnLBX2M6DMxi8bZv3uyG2VMMv58wpEovLJcE5Qw2KL0s7gHPKyNZQKrikLaIAoJFTNVFVIx+a4LgnO/4aGRq4/Wx8DQH6FsKhv7/lFLQmsaFFyoJ6REY8RA06ygEnm4Q4Wd/xWdboWCc/G5RqMDmP1ZN8ymlwWHLFFB1SJqc5Rt8JyHzowRCiujnY9vpEEorLXOtUryZDWwfEkeeQhAqdIyK0c10RGuC1kUtLLazLSs9XXrsQcXIK2Uo3JkOlc3U6UKJ53xs1a30fIkGbDQlaDjwRD5VN/TXapcguoJ0CjYhG5zCFjClaPF2ol55wJVNyGxX+rJ1YQRr3yJX8ux+Iy+Q9pQCDx3yaMQwe4xjw/v2EefCYB4/3x4HETD0Jm8ojkSoF4P96TnjmwqcYzzifVzw9BaBSE3Hqc2lRVrapFD7t53ePXPnQ16IjUdwmHup60/WGwwAAIABJREFUgYkmszfuHLa76484Yjb+knaWLaPf3iIyEimkdpHZ6H0jd5mUfRDB6Ky0dxpHj+Mx4n6O+OkY8bdjwMdDwN+nETMXAUxR0FrsqgXp5Z3BHBw+rw6XlFs15j8/R5RS8csvF5Qcm8RL9qzi3pxBFUjr4NX1wgjvPSN2NAdjsBgDc4Otdjq/TY/PN+Fc7YdEdVcloxq6tOpQxW4DBl6OPH9t7Dka33tcLXYVHf/a9b41B5GHVQdwLqaV78++4DBYXLLHshbE6JAzqXuLNpJOOWRdgi3Qr0axJEKmX0BDPjYE5V1a8Nd6mb00p7eQDYnM9++zt+GttKB+jkVXZ4d4eJ7Hxn9piIfZRKrfYiP40thu2N0xEISjbdzsNPdqJHJyiittDdvKyAdA6FI1QNFppRvO8N65amToABNibzEjitCcAmh8EklhMQG6FEJdcs7IiZ14TYLeO9K3bLlvUMvik7rCTUfJje+iUatN3PRj1rI+iIXY7k1vlxI8E/Cd4ZTKXqKAbWmVHdu61IedaT3mBJ2lakpCJ6bJ4zhR78XDGPDxGDDx4TcHC2fpLddcccmEoD4GQraeF3LmagUeHzuPkwqh3C4Yv5Hu1WvR2M2ZY0XfiteiIJAbRe/9ZOL7rkc95Plut1PbPzQ0RhAa0egSRFw0ByUI2ZLa7fXepl56fhyv+SFYTMFSgYujl+wH0dsN6k3XVeEsc4QzASoTZzqOseCRuwVEdgSlMIauWV9PxaaTg44IjdK3YgTW+15Usmmarm2p3krP9W8Zb8K5EgjTGkp/WE4ryYRKJLj6QBGIkJ5blAlsDtKvSf28kGa7+e8vOVo6wv6tQz/I+v1+7Xf1AX1jWGOaO7FHNV5rA28wNG9I0jl+9AWH6LCkiiVRiW7OFSE4SgHvetNtnCubrw/cwje5Kf0uyvHWVSUvVQrdyNXvh0aqNqhYedlZ+xJqJS+Vwtofys7ZDXStS4XlcH7NnJKQPbVjYJnPIanBgSPCwNWC3lPhQmZnB4xGWya0lgqaT53q3c+vThW28v2hHdQhhtaAdhiH5lyF4FvqQ1DwlLjBeyJUyibaeBvPT5Og5XqM2z4TwuXaO1ecrtBOhzgjrqXXcLWRvwZatR+Nd9Vsqr8XR1DpOTVneat5Jc9srRXVOj7kDLeO3K0NnqdWRanSSYRceRxHj9MUcBo8Pswec7SYvMXoXUsLCgHaAoiMbjyefaORUMDmm4NdckERG8moO6dvF+joak9Zi9IpQQKdVmGJtxfj6merOcyWxU/Zpjed5JfOlisUi4Ms9Yw3kdzAvReda90H5BmSisWWFjRArgYGpQXjobBj5hlV4veWQKW37MH13l33P6N7kfW2T9UH5Wxu0GOZwz9o2DfhXDlL6MYhZBwGi+MYsKaClAsOh6HdaFoTtV4AupDoet6IajYo+o8iT5uD+AuO1tc6WLcOc/n/LyEdt35PbeqyMFqkvDkEbxAtX2EjEERDnN0xOE49AH87pganP14SvDNYltQWac7cFofTSCU75Jz58Ku9z9SmsOEGWRnoztZL6bs970lXm8nQiJVOXWlJkP245UwB2/cXfpCkBFXlTQgWkeUNZLMS6LrZdWPbP2SuLw5x5io3hBUUpnBZ9eQdUi24G10jtjdezOjbe6Q19UPZGDr0bJcSaSr9tXaByH1K0HpCPkKfLxEt9MHjcIiNfD0MRF6V5SkkaFKBLvj8mVpsrMvK1+fIJxAlaM3HArY23Ns3xI22lQsOIRJ3aAiupbe2aUGZ22+TgvhaW24b/XbnbsOTdA6Tp1TvOVVc1l6okHNBiF2zrJYKYw2yMdwnjp/xstvnGF1sz3n0GMaIeQ44HiPu5oif7kZ8mD3ezx7/fhwwe4/BW8ze9+XPXTyOccHjmvDzOWHJtR3kj49Usn+OlCIspRDpXmd5xYHfkNhpLfrQW96ITlmMFAgO0VHvRU+FCU7tuZYdmX1A+9qja5hhU90YWRJn4iKZEOi+QiB75JSJy7RxsG5wmKxyVBoxnnpRTpHaAs1cvBElDcmoduOs8fxkW+FKRTYWqQi3Gpi9xyUXHGLGGKVlj23yLk0+Qkd62rFS+7pRz13TKou0LidGRePOls5+myrsN+FcidBZdAQrTtHhMpLo5Mibda0V8RxhjMG6jmpS+cCVCdW8m9+LKu2Rr72j9XsdrP3f7BEpef8voSraEZAowkoUQY6VpCB6ZPyqIEdDNWwFXKXIJReDaB1GZ3GMFkuyDbkSYnutVHIrB0DmikFjDFIFYFU5/S2HSttcUAdBtzYXuJ/HG9/L0J+zceDRP29fArxBqPaOltrYb0TKTr08i9v5toHvOTrf36pGfRWHzloDW+rtCjPvEH3mDdwiJYucie/Qp7RzKaXaFQBKAW2StdDhvF9r7lYJeESIdAgSIborQsvBIjp6T8FiXQs7WRkXvoa0JPqd1QH2VvpXPRNacJLTE8Z18ddtVZJt/MJ9lLxp0KxjqG9pvBtjv1V1hAPtukR0Mop4rSpUkGyCdRauOGTHKTkrNuQ0qi29RJmRCo0gyByFIIgHlewfBsdiq0SEHvlwFscwl4pQDC6Z9okUqQ3TeXV4XroUSA849drbr1OVrmTenm7NpRX2hQMULBeX2L4WxVGWe/wRwxhgq2FGhQrNyTIauSJ7OifpwT5X5QtZkevPVJp7pmuAeam+k1S4TpGr597BAJaWvP49SZ9LU+x9381fneN26PUUb1fZp/un9k6Mqhm70XqDzKGe298x3oRz5SylFIZMVWWnwWHNHqtS9AaA9TJQlJQySvLAwpufdb3s9tZB+zVDp372vKurHekFB0v+/tbP5e/kZ1eI1Y1Ukv47/W+K0Kv1SrZCdz1CeO3RNXMqSouKDYZiMXlCOC6xYmbO1RidgvW7c+WSaygHVRMaohQ0Z0ecK0WC1rINtWKvugBAOaYKQTKGyKz7udcVZrrdEqAQrL2tds6UTiXJ70h7Dx+uNvPtwdz5TXIIarTqVRwsAyrdrz19tCFAc2A0cyR4Dg5jIk4dyTI4+NDTMiUXwKBXtBrhjBjWbJMUU1E8Hn7e3TatFJizM7CA4Rg9xuhwGH3jVJRKmjrBWZzXDO/JyZKx+IV4WM4xAV9Sy3U72Y1bZTbBjThVzYbebUjQnsv3pfWHPpBeO/ABsCO179BQg0aAFhK+EKEv3sH7DO8d6w5SarVWQq9MFUFKRj2scmba+5vtfuU4lews6eEFi9HZjWO1qRasQMoFk3fIlbpQNKc+CCesI6QtfWSNKoCSiVBBlU4FOmnw21+hXYtpfJ3mVJnXQx+/drRbN0yzYac5OMPP4q61kTHtXjrafhuZ3+854lgZg031nX6uxMED/xsAZFTizqv3tPweRG8xmyDkq1J1uzNUZ3Y2ragsBQ/iKOtei99qTb4J52oIFncxwBuKgC/vKc3wj9GTNtJxxefnFSE4nM8rQgxYlxVpnXB5ngnKTyu1xhFkQaePZOwdolsVSZvKtBscrpam2DlgMl4y/q3U0L4E+FYqSb+n/LuP9OLWAyEGhOCpQWaQ6jKzq2hRCw7f91CWHD9YOmEorj24DznCGXq4n9eCfwWLJRc8DgmfB4daweW31PpANM7WZSWIP6tUkvoeOdOrpG1LpLInOlrV4sIDITK3wm5abgCAyEO0Nhtros9Iu3R041/tEDFd1dZ4Vv3fpaotDmzHgSpvpsljGjym6HGIhPZpbaSWTvoG0dVvsWltdgVQCZHhYkDccarow8G3DfKZ070hrE34cV1ZV6cU5DW37gtiZ1MMicnWSikmdUALt0rK98MQcDhQammaAv7+oKrNZofoCPkrlTo//OcTtdh4PBNSFYKFcyuWC117WhMSQM6BDrZa+ogccGPMhjDvg28OXxwjxpE4RPPgMTOX6BCp5Y0gkVrAUDtbZMvXcJh7ulecZUn3Dt7iUDzuBk/N4EvFP6Ye5F4uuTkw0jtS3tNkQ9WghffPK1QXG6SdNMAspsHhNFicosMxBBxiTysNwbW0YCkVazbIha67VOA0LHheCyNXDrq1S2s03a5B6edJmtl3jlZbi7GvxXkKOA4Bd6PDaXAYncfonApi0TbWvr9+dxO2IaiecOnEKbHWwJXaOgNMnq7/cSg4DB7nJWMYSOZA1l/2oaO1Vd2IOkdf6vYhTpaWfejIHhqvusUqPGGVf0dXXlJgxNunmkwtis2tR7bUAWBDt2gpwRgat2+KNA+nwWIOvok0N07YN1qTb8K5EphyrBUVHvcDXZY1Bp/OmaE8g5WjzlIqlotvvcvy6pFzpGoH6bunS7xl7B0trda8iVjFsRLHSW8S5tdRLD1uOknKgbp5AN/g/uiDm8u+RStmE2WpFIQ0FpW5/N5OVb/NDkk7tXFXR9y6HEgy4m5MSKXiOPR+g+fJN0cwpYLkyMEC0A7hztPhtkiVKRXGEEvypbRwm7/AhGjS15GDMsTQohwAvcKMnToAyBKZb1pr8OdpB1qQKV7k3eYSTdrmXGmOB4mHkmDh6E0rFfa2w9b2+5twO2VQm7epbdPR6JVUhB6ixZIcLrlS2ldS+jE3u5IvzCnfbGCLbalBgFJM0nWAfmk7bz2F6pro5MCpwOPocTc6fJgDBk+bdAE5V4m5KLUCQ3AkgLoWKu12ub1/1tWDzVk2mxSudsTbGuQAR3gdUZTrRQdMpTc2wpOvZ85mU6kqk8+3Bluyr6VClJErwMbgcAkFl5S5updaVq2LbUUKVHX5wofWsvk3jRJYa2DQmyFrJXHZO8S5ygBKFXFMpcnltkHkb5kMu0OttByK9BPc8Obclmv1WvzH3zK6I9PnuGnS+Z7qlYpe2QOvsiT6bKsVKL3rxxc1KHfXIt9cTc9XLIBy43Ne/Mxd5kD2CatS0DE4RE88NG+6Iyrn47cy4dtwrniBVO5DdQwcHRqDz0toyrhLKq2y7BIclqVHnDllLMZ0Jff1coMjo6u+FJdGnLJqlNrrC5HXl1As/Rn7n185VmbrWLmw+/kLyJUc1oqo1w5l18mD1GrAquj49SJjWdhV5dOrVIN4i6k6lFBxjA65VPxrdO02n5fcNvmcC1KySJIelD6E0m/Sdt2iWikFWQF2kNmWWrJD5tZ3BWbRRhKSrSxEgBawRHSCkhnD5N0kbXoyNpVRGrXiyBg6iuYJks3Msj6THMxEMqXDbGDOizNWRYJ0ejQU0nx/e17Z1XBLDXX4DRwZSzXoWiz+xfatFbiMqV1rKZUqhiqQDc2vnvNGWDUVgh73FE9HPqw1TFLlMvAWkTo8jIJcWeRasXhqZl6ZFB1ZhNI5KbfftjvZrL926CjHzm/tJ86VEKBjdEzGpdL06MhJ7hH69p7aHP8Ax1n2CGtU0YKzbFNK9Q7BYYwFS6IWVpLG995TcGNSc4BfHDfOQ0EltPaXyBxseDjsEFYQj7OpypuOAhro9Natz98Fwc2uaFyr7lhRUUlkQvXI1Ws6I9D6LYqDtbv3V68CRU/3yv2LPYUbGR1xIokbSfcnwYET7lnjL+cXP2vvYO1brX3xOgVp+5Xf08BUf6nP+DVQQ1enOtfSu8H14pIgFYSmI2wbvtWv3s3L4004V0OwqPCInlq3OGtwSQVPY8IhOnxaEn45R9zPAZ/OCf95jHi8JFwuGb/8MmBZEpYl4/x8ae1y0pqaIGVDOhjlaB3UBdkStWb5XkTnNm1W0PlYGsWSn8vQm7L+nVvpP+ch+jgIw/ZQloWv38fQAaArWsZ5bBU393PkUmaH0VEaYtOiwQA39vNvPiRSEoJlZAeBeBNoMHUuwCHQofvLOeOXs4e3lrqjLxm/TAHLkrCuBedzQM6ENBRp98NOtXB4qALNciV4prYcIjRqDG5Vm43z2NtvzIHTWOQo1dorzJaFepilNSEtCZdSgGSunXSxcRwB0fOJvi3yxkFw/aAep6GVpN+dBtxNAXdzwLuZusnPjGQ1tWzTdXZeYxgxKlcMCnQWnYEBVeRNmcrln1Mmvk6wWFLFPHh8PidYa3BZMy5LxtMTNXc+ny1X7yVamzzn2fRChiq8J/QDTBwhQfkEtXqYqIT/3ezx0zS2Kktpr5VrbTzE/xo8ljVjiW7DO2maP9YQ30vsKmlcOXwHfoYc8b7kWk6niHEMOIwe93PEh0PA+8lTqiv4pvfj9bqUe3sNW8rBxiexOOhE/DeoHKDVCpxUVeDHY2jXvaTCLWEscia+VVrTpjiBjMm8SEuBqgjK7g9mGZJO1tV3wje0Bk2xo5TunLbfhVHb8fZzaM9/CelAC7J88BinoaWPTscBxzHg4RDxfvZ4PzmcYsDo3SaVJGhkO5B/AHq1Tw06CW4rE9hLxRwczpkCj+PocVkDllQwDA45BeTE7ch8INqDMd0hFpmUkoDim61zppdUCOeCJpnR/vQL13tr1Ar6+9qFRlvHFukzXKSoqWydLDlXuQJb6APjSOndE7/uRodjoMIJIfnrlOa3ACPehHMlmhO0UVekbBtyteaKaC1Gl5ALMAVa+FNMeB7oYF4Wj8uFtHVSotTRuqxN06YhG02h2SM5RwZKaescWakwM2jIlU4RfA3hXcZLRpEDWBwr5zlVFRrSIYdI/5O+8Yu2j+SRh8FvyktHzwJutkPl9hWcKn2thiMTiTABWmQi0VABHAM9fveDbxvp01oYsk6MUBL5mJAscnaooXdHNLLJcKnrKJGTU/mlkEcOTa7Ix4w4jGNo5brGEL+DqlPpsF8uROQtjngmpSGMosfUEQ6YDkd775tTLGRerSQ+DA4xeoyjw8Rl31P0rUxY9xSUKPlbRVdfY8sGGTTErLY0kquUpvHOolRgDo43xoq7sZPYl5Tb5lVKhXNkTwAohXlY0lIFX958+3Whpdis7dVQImo6MS9GOPGDk15ivXqpHYz7tSpFDLvPbGKE3rX2H8PQnauBOV/zQDyrQ7SYWFRxY0dJQ+DGZ7/SENsS4lN5zxHkqqd6R19wZEQysQp/ZvSYHKweNNy8l1JJHUc5O5UPz6K+ArcP4nat/Du37FXQu3rIV0AcLV1dXLcBLzoSukkzs4zGNNCaPERCfUSCoZfua8rFj7Pl1TD9euQapaq3V/YyuTv0Clzq9Sr7mtJ9k/nnl5ypTZOwSHeQyt1BarPF14wNMgVyzDI7adL2qBRFF9AveYMdtaaLnHK3BC58GL3h81Epszf0Ed9sQ30TzlVkom52ZCRnDVIuSLkieos1F1xywf1wwXPK+H+PAZ+Xgscl4399XvG8JFyWjH89LVjXwlFxRxwI6ShIa2ZV5oz1siKlhLxmpIujNGJOW3RKuDSbxpAvVBXeWlQ3kCddgt+dKg+Mhw1ht4lKyiFi++ZFuj60Cbx7N2KeI+6mgI/HiJ+OAXcx4BgCVUNwtdJWifa7mZKuFcyjkOcfllIOlhabd5WdaWAMxCe6HxKepoxDtHhcCj4vGf85BkI7UsHjecWSCp4vCSs39X58tFiWjHVJjZcllUtVWJKcatbl1huF6IEIyMPgcX8/YAgOh4GcoJQLfhlWnM8rnKPPks9YLyuKtd0Zh0KuVPWYENWlc7xUM4VA/QO9t5jnwFo6Dh/vRjxMhFq9nwLuY2gqxUFt7N8quvpqm7KPJekXWGrQLakkWbf3JWJw1Ky1Avg8ZXy6ZERW0n5eMv4VLM68Lq0lJ+pit4fzFv7Xm/U1/8IwcuGZTzI4cqzk+c+MWkQ+XLwSgpSxP/g3oxZIA2Ihs4cYEFkC4niMTTPo/XFo3K9/uwt4N3k8DAEntmPQ63Ef+LzSubxJyxgDy0iH9FiOntbMFFyL5J9OmTmABksaEJzFJ2vw/EyI1bOzMFkhf5u5A5CB4kg1PWcmT+dCyEfh1md8QN/oiMrX3c+93juV/i4XPowFRcm01xPKoXXTtnzaxuPjtTpNAfPscZgj3h8H3M+B0FBei6cYWvXkvjAB0OjV6ztZskbBDpWk7yXwkUKFtRS8mz0umQRZ5zmwhhntU7VUZOd7ZkePWoCcGw9VbCh9gddcm1MEvpxa5RswFVY50vJzdEebngXKYuVMepf0ObkBJBstPD0BxjTUSvbeaaKsxN1M2a/3s8cp+hfPyE3/1j9gxjfhXFlr4NA3mFoNrLFwlhabdwYuGZQaMbhMqMea8bg4Rjs8ni4ZwVtc1oIlZTwO5FwR0kFGEocrcapQVkJKDsi+RzXiCIHTiLfKUjVa9aukdkE0dpYSZ8uF7WGs2njsy5eNMW0jF22f4+hxHHs1y+CYb+JsI5VfoR3fce3vwI6eJiyAd/LBFtFTeuIQqGzeG4t1LIieNvJagafV4bKWlo6wxuDsLKzNynG2V8jHBr1SttlE2KaTeD1HNVOk9hsAle+f14zkHbwvm3LdF6MbY68+p1WSRced6MmG0pl+Hkk+YIoep9E33tC0T+1a5Ry/4t69R5HEmWk6OszRAQojk3RKH5Nn5BI4r6VFiQs7wqSDVVjs8wXUQ7efkY14h37cio5lk5RDRkem9Cj2P9J/39JIm427I3Byna2sOzhyzgNxrObB4zB0Gx4C2TBsRBRfLjB5tVTvDZsadp51d4VSDUZPwpApUuXgFLmKMJcr6YPN9e/Rv4qeRSjEf5PmvYR+9AOWf30zmmnq7meMfJX23nX7rOyrynadFTYOlko1ix0PA9lw9Nco8q3KsrcwOpImNkWXTbGuyaY8ho7WeU5zJ5s6AgRFiZEzsJZuQ+G/7tKCWyTqy6O29xez0TOhew+2lGALgtR5vEcjbeeQheDhuThh8L0oIVq3Qa2c6fP1raz4Npwr3gAN83Sqs7xxV5RAuiaSWhq4JcrsMw4hw1ngeS14vJAS8nnNWFPBFBPWXPB0SaT2zps4lYPbVv2FCiSXqBHkRt/GdMdKiH3GYENy12PPtWo/v+FQbSoayPHaqxcTqdK3RavTGHRIWwwDtYs4Si55cDjGvpk3MVFjNtHxa2/g1lDFFqWRBGkBsie+TsqdSJtqITFZX1AqcEgFT5wWXFJGqbVF/JKSSIkr/NjpoMhZO8I3bLObV8diiUKMBoBULKJfsXgL77daKO3+fuX+BelwziJG3wnYg289uY4jqT9PkSrd5DV5cpRb64hdGoJv4xURD/TKQRA/BpZcD89oIaEehPQcg28b+3mqCI7X60JVhLSZd6f1i5Vm6D0n+yZLm3fjeOyM0Z/1rSMl9BtNwt2gVvuIWPGGZIhGU2Cy9zyQg3xk5/hu7I7VyA6yRqzsbiP/EeeyRjrkEK5SqKBSvUOprCtF8zxHiyU7xHUn2vmSgyyjFlSuchEnqOjDs/Z00P5gvpUiFlvKoS7v2Z035udo1EofxEAPWtkuIUhTX4c5WhwiiR5PzmFyvvEet07Vfl5/nJOlH3eJwRr5n5/B6KjIYg4UUMqeFEJ3SpJzQFaggHZMa1HBTbdh+/8qCCSPLzhY+udi8yzU6ErPQilbu274Vpub746VVPF6Fr8V2swceoGJ3ld1xWebuz9oxjfiXJm2b9nK4pOVcrfeGZRC0H709HWKrqUNP04rzqlgKQW/LCsuqeC8Fvx8zlhyxc/njPOasawZ//h8wdMl4XxOnKK1WOzSyJilVmAVYVKeGsk3N80rVYKvU4S3xgZFUQ+qfN/0OPyGfHc4joiRNFY891WSr9YajIErWCKlIe75MP4fdwNOIeA4UNuInoboGwLw/UGPzuXo/xUyO8CIZKF/yXxta66YcsHoHdZccM4Zd5HaICy54B/PCY9Lxv/jHR7PKz49W5zPqaV8dY+sq6HSOptUE38vTpYoRd+N5BScU8HP3sHbfOVYbd5Lf07tyA29ObgM2JHI5Uh8qrs5tL5Zd1PAHGgj/7cTEZ+PweNhjGTHVuVyO2J+jaFTSUY5y0KKrvx8ApQuXHOBNRHH5PGcM6K1eEoZv1wS1kx/+/PjgpQo2JENcfNwapiiZiIyF9NSS1nSBaUiZRKUlPTQHuEA+PAFR8O5fy1FSW6UspVmAdpe0J4X7VgNHu+OAzUdHhz+/S62IOenacTMDtYUXVNq35DZVbDzI1NJlk5hoICFa2mvFef4QxkQrUO0Fp9OmapGa8V/jR7rWppWUs65y1lYA+RuP5RMezlTMxK/1kRrXNJULT2oDvD2oNeOapBTXbAWQtSWXDgzISmrvLPn7oGwqom0F94lZwHmgL+fKCV4FwMehkCtjISr5Lfp5W+RRvqjQ6ORgi5X24sVpFDhWEjuaD3QvP1/c2wOzOcxUpr+HFQUwhXRgIIKc5tjSgsWrJls0VK8XClMa7GiwmxsqVP8AjaSQ0XPwMJk+ZXXuVRtX6kAyHnKNBtJB4YhbIq9PhwCPhw8HsaAY/DX6V21JvWc/t7xJpwrHRG3Rc4ZHcAiM18HQOtBlJ1BypRWmj0trGANllywDtSX6JxIvfdptXhc6NAGyCYhcFNZVVJdxNnZCE9yegkq6rkVIt/62a/ddHv/bQNNSfnNc+AO3uQoWUORxxhIjXjwDh9nj+PocD8QUtCrH7ZK7fuN/HsPXZWkbVv5/8FcAGMqckVLMdXadbEsDM45Y8kFpRJP65dzRsoOF0YidXf3zSG1v83SHqgXuTuSOnIWm6oRGXuUg354IyLeVSaJ8+YcRYpDcDiMocHUD5PHxJHkKQbM3t2044YP8A3h668d4jTTrRouS2D0im85u07wz55+aI3BEno14BwtnhaOHPm1SX9vJr0XJMi893REd5IovYRNBC2fR1+7r9bSSC0q1igHbqSzegpiQ6RnxDNyb7Xj4HDPiNUcqMpz9FTpKWm2nq7s6/FHncdXqUG+L2dEboP2m1rRRChzLa0n22fvGvIhfd82jXX3Q6XrJEWYc7dDLhUFKq2k/rQf0Nufkc2xqShrKFj5Qtk+SzBI8COtp4JjTavgmvArZQLsdj3qTMAfNcQ3HuIwG4Oe6rUavTLUPzJkKoBiVEdkGUT3KjtHFdf7wXuezLFGIFuuI1IaAAAgAElEQVRakHMHt4KczVvpdGBDvihASg0Rw5bMXr5g051EkRQmjFJcwh0ANvuqvc7sfItj8k04VwBaRFxBtWQGFB3D0uZTKqULxckiAi0d3rlUDIXY/5eSqcLQJSw5IziDz4vF4DIeL56j3NpEN1eGQbPNRITeiZB1IVF9sb/BmXopXXj1lmRda+m6YrSYBo+Ry/Cn6NvCmKNrjTg/HDyO3CzzEDyL3DFJT6Uf9jvAazhZe+KsThE6jqoAKunPBrA8Vy7XpgQencU5Z6RaYUzCFCzOyeJ56U1DdUpig1wZc70AdTRcOxTdoie+xpemZ0+0vgGPvDAXaKnHMTqcRo9DJOfq/ey51Qg5yLr1R0MejdJHujHPrzlk82bXqmkkwUplKPOvuEzPmoo5e9QKpFqpmjWIiKEIGVok2+13dUDXAlSn7Na5Hn1j55c6w/UovGEXbA9izQW6Ek3c3Hd33ns6me5jDhbH6HCMnhrXek8VSa73c9PdEn7EenxpSAAE1Malk2ulfbfrEK6FW9SwuOjA6aSmiq5kLeq+qpoPZUEIdUpJDuZc1MF8w8mSoZ3kVHbcHJ0W1DZtcin9Gdu3Romh61pNwWJw5CB7t03rmhuBzo9ErWT0oLZ/Fe7hXvR39A5zyJiixxgTniNRUVJIsM4i6y4Tm2CyXomJboIWKP9HraENAqnGrXUq79ltut97b5y/dtt7lEAK385R4pk5ROs2c6GD1v1c/pHxJpwreUDlIK6gyMlUwFagWnpQHFebBWdbtLPmDhPPSm/jkqjK4J9xwec14dOYcE6du/Vp9m1xX4JvizG5QA9Qlu7uUGlBJSzafobrA/zmTb5AaFdzIKRKIskGvDsOOI0B8+DwYfYYuIz8EF0TCr2PgbvYEwEzOIMxds6VkNp/FHS9TxGKXcHXIZBsLhWxVuJ5sA2jp27pc3awoHt/PyfkSnafB2r4LGkJSe1YZ5uz1Cs/OWVXTSNhUtqAK1JSRS6lbdLOGtokSt3m/Te5f65YaUinFD50dfF+ECsux+Dx92PAw0Qox8MQqVTfWRyjbyr7U3T8PTvKu1TSayKRW3sCchBL9Y/YDZy6l56IsVCKsAKtP+LDtGLNFYfRt0qgGB1y9k1QtNYKU/iAVodjKYZST8my1Aq91lxYvJTs2NIS7CAILysXYOXqJtHokfRRs2lJPS3Y2rYofTJHPKMYyZ6npgrv8XEccGQ9q8Pgmi0H/wIRGm8jlSQBEEDPvqm9GtQZIEfXaAV3MSDPlEW4myJSrvh59M2xuTxfaC+ttVfTyhrk1GBP7VayX6K0rqSU5HDdkKPRuemlVqRa2KYUMKfcbbrVQ6q7FJIBXK8ok4rhee46SO84HXjPlZ4travT8y147cHYWyG1iz2tcF2Bq3ZVuVbUQ8X7Q+A0K/Dz4QIAuDyxDTGS9iOwdWhqaXPc9tDMFX4tratQqRvX2Py15jjR97nKOt6hy2JTzbdqFdoBiCPCEDBMA6Z5xOEQ8XCMeHeI+HiM+DBTxec9p3j3FdjNlt/IBm/CuZKhU0ng1EPR3B3L9jVArQbZVBjTDWBNd7SMAZI1mLNvRExp4zB4qY7I2y7vQuQrThHbq0KwmNz+a9WB7Ya+DrXaD0l1DZ40ck5DRzeCJXhe1GWP0XN5ee/0vSWzq4MYP2Yj39v1CsXi6ywFCKAONtYSimkyzfvgKGqWao+G0DFhcZ+WaMiHNa3gRacGb6EffeMGzAbNQoOmr9INMmrFRqn9ag46sTQ6y6kVSh8dw9aGgjpuiOyaBP0DU0n7IZu4qbSJ20pSGLkSd4eCXgtvqeIzut7WZ2hpJalUym0d1lJRbcWuEHwTLXfblbYpd86VTktUlULq5OcNQb7souJ9pwVjewBkO2oq3SPofnp7FEGrNn3LrGnPwVtDOzoUyRWWvC4B2msFNfdF0JxMyu0qpSS9I5135CRbi2IsSGtutxcyWqiJ7KWSwyaA8EvZpM2hDGXvev26RjikQts1nTuplpOKMqmki9ZisK7Zr6cEu/jr9Tz++HGzEnSXGgzOYPIkKnqMDp9ZCiZGh2XpxVUkzHyjlRyPDXKFvldWbCsG2+/v/373vbZtuWFT+sed/AIjVrriXrokDIErwKPtBUJ2mxL8Xkjym3KugN1BDCblAdCRMhiEkIemVoNiu6MlujbGVIzeITHpcY4WjwttCDFIpQs/SMmhuEJ6SDWwUrsyZtMy4pSglmfYw9/XN6W+77B0/1m/d3GEnOUUkrc4RIe7wVMDX7d1rgZ1GF+R82yHhPVl/Bji7LWDJTYFp4FlWoqhQ7pWA8NokHcWsdi2+T1ylVZYckvxJu+6ynApsFU29+2S3qYFt5CziNbZalqaUBDOKy7PvjH47n6vKhKZo+OdwcC9rSbnMAe3saGuLNOp3fZ8oP//jxob/hV6qpB0qwAUoLCDXKtqqZIlHVEo0GENLymBT8m16i1jzQ752DrGPa2LFnmnoh1ibS92poFOiFaHu7zvhi/XFPfZlnxNupcntZwyHPhQqXtQgY7nlNMWsbo1l29jiC2p+W9t3KvG17GGgpvscBgy5ujwPDhutp4RQu/VaItFcdKrdSfJoNaR2Kbxa+rt6rJbS00CoEbnunGg95tTdA91GFNhgmsVu1JRNiqUqvNX+7nz1gIdPfQ+a7igSHOvvLOUGnQOh8HiuDg8L6RMvyy9mXNOmZyrkm/uo99jyLs2uypPu32m3tdVOpDaiPXihMPgqeqTJYpG5xpadUsW5VsGPG/OuQL2m43m7NAci7MgTlWLYJxGsQycLaT2DtItejf5tnf+awrts87n1HLvOWUka1FyBuzavfVNeoLfpIB2o7pzsrY388JN9oUu5cCiuyTEysi92u5Hh/dDbJwq6RJPEUhHN4IXxKOTsfdQ548/kAGx6T5NWKtpQqOi2Gy5UfDgLQCPu+jbhvqfc+T3BZ6e1rbZ5UQVS2lNWGvdNlpW978nZCZJK/Mhqzds7Vz1NkovR8UbBXilnSOb9yE4HLzHMVKXdkGsoreNXxUcSVVIahd4O2gHoBAPoAU+hjdEul4qWDCmYgi0NmqtuOe2Kh+P3WaPz2uLItNC63E1K5OeAVTX1p8mtjf0qnJaqGxFDOn3wcrR4kDvUxG1td/pNyeOFfWilPYolELiKqSRUkgPk8fdQKKEg3IYh+CacywpUb0ef7SDrIe2JYU0gigTByu4Pp93bD8D4G/HBAD4+XFp93M5j61IKKfc11/hPdJsEY/C6XhBjRvaqBCRNvTfNW7WdRAE6IOY7QgAfgBChI8ewzRgmAYcDhHHY8TDIeLj0ePjkSrKTjt7Snp+I8WAt2VHPcSkzhqgVARVbDIGOasi/n6M7fr/8XmAMcDj4wgh/KeVda/y2qvnTRe43qDJ6Crt3+eezHZtSl/eGBHHiHEecToNuLsb8HCM+Ok04N9OAT8dAt4NEXPU9uy0GWe/fYr+TTpXeuzLSzvqAWg0q1ba0eWgJjJmh3NjJoTgORQ8ByKIr7lgTeTlSnphDSsAYEnx+oFqSr+MWghcqhR/b9/EXopBR1BKbNJ2uQXL0K1Ev9FxSxtH6I2kiYKzzQNvcGdzrN7mBvBSmlAi5sJ2pbYmgC1kw1wMpyQKDkPBPDgsyWFJFHFJWf0SfF/suSBDbdA3HODNIStoh3ruvipCk8W+axgq/BzvDTfV7ilNQR9FIdhbXaaPjYK3zNuPRB9vjb0tJfgpSmRUnEXvDIKklVzBaXA4rxWX5DEOnvlT5MQIB1KU9+n/r7WUxPEtykY6LaF/Buw1rl5COMSWBrC+VU9RZOyaozwKhy70tiJ7lGNrx7e5HmXs+VcEvtaGpPf91GJyHosnGz6vBfPgsSTqjhGib2razju1/jK/75f1sL4VImIavMT7s7FN9qa3vfJNHoXSR1wl6JjEvnGmoOz4tgKd/bhODcp6JKkj6TeYnMHsHU5DxuNAvN3LmjEMDon7DXrvkbS2lHV9U2rvzWcY+PU956Vlfwo5ViHCexLfDjFgHLugL4nA2q79KIUJ2o47I36rdfnmnSug3+zmQKZ/gEZBIPVLggCxEF4ulTc/xxINFvNAzlXKFeMoh3HAegkN/cjW9ua8OfWDuVYivZaM1tjZuBdTRC86VryJaxkGqZzyltIM3pFjJZ3YPVecyebtFGG9kZ6VF/5WN4Bb/LoKtPL+gn4wF8V5mLzDkgtmX3AaLJbkseSCgQ/nUiq1cGBbSFNnzRbYq0nfWky/ur8bCAyBxicxhtvsqN6FriNX1NuKWrRQ+mibcvBOl+t3lEOuUa7yzR7KBhvZDWuoIrRUbO5x8g5rKThEh/NAMirzQOT2lAri0O2X1tQ+oxRW4OeIel8yrdW9f8u1t69i0ypl+nQYa4Hf1hlhIMRxbuXd3BVhx+ewdieF8sen+9WGNbQOhCvYnCsO/EbvcBosnlc6lBcmplNxQkAtFctlASq6g6UQDxl/9HDTv66Dj4ZyWEc8EuthfW96L71ZJ1bVF0V2Ld77kqTNH7ne1xxtf4XYEc2Ogo5PrMB/GgoOo8d5zRgG0i/LiYj/pfhNACMI5Pe4d/2ObQ80yqaSaq6mr88gLamoGGweqNPGabA4cAW25rNuKwXVXH3D8adwrmT0jRAtwuI4q6UkDD9I0gg6+i58+D5FeEOk8KelYIq2CZI+TQHPnJpYlgTnHdJKPeuWS0TNLFy2nLuAWV7Z0dK9q/apIraY9Xz4ci9B64BhboJncYwYxtAbv7Y2KLa1Xgit+aRt1Viee/RJ81odFWvH6i1uADpNCJDdCqckDAyKFQeoIHralI+RWqoEa/F0n1vJ9JoKxujwNNFhfLkELAuXFKdMQrHCxbOmIRHWbdFCQRcaARlQ/24bIuWco/Shl7y/oZ5W3LNwmAbEMWKaIk6niLsDpR0+zCRkdwweB17wGqGUVKBe9HpDf4t2BPp1WVRK9wKwXawdodi2DudYqF/dofere1oyc7AIRX6ODpcLpZ+E+5Ezucjee3jeVFtAYnQBBzl5Rm2aMqctKNE2bwijRzYG1VWILIp1FuPMVUgjpRtOpwEfTgM+HCJ+Onq8HyLuBxJ/7fIZdruB27e/HgG5Lhb4ZafYVLA0Ctlwja7N58dpgLeW+0dSALEsCSE4PAfqJbgua9tLATT1bMetoIQHZCSggEZD+mFreALl5w3dFnsa03TTWpFSdcgYmz2HaUAcKIV0fz/ieIz4eD/iw3HA344BP80RDwP1Zx1D3281l/Uto496SNDTOmRI8ACLQZ2L74bYgvN/PCey5/Pa5CnWZYXzDutCL1S0PVD0wdymcEOjQts50rNl5GX6/0tQKeCCrJ32Wd7BeI9qHWDQ0Ko4RpzuqELwp/sR748D/nYK+LfTgIdI61M4npv+nmqPlTn7VuNP5VzpsT+YW7EL9EbKbTlUjywp332YfPODPp9j22jXlcQpa6nNwYKhDb7kQgTpzOXaQvTbpwuvLlbliMW5Yh6HC67zOVSFw+AdxiColWkHA8G6+qDo0OYmfYS3v5HL2KR+6QcAkzArlxJTexVKg47MyTpFz6J1wD+ZQ2eNweWQmsBjyQXZ5YZ8oKLxQWhzF7Swb56SztEIhCCKelMBgIwIuXAffHOuKComZ3kcfKtY2VSt7FppyAEsB8afzY770dYi6D5rNXBVpFRA/eqKxzpW3I2+SSY8zp0PuS4RyTInMhnikHjFaRO72O4UW1yjC07mGCp93hzrrU2rZX0g3szDEFq5/jSFTf/AbZuifUrQtANkMy9/EjvqNKE4PrIWS7Ohx1oq7kYS9k0lYJpC4z6dn7st9fuKY6yDGu2M3po3QB/I/fcEUdquVSLVbyRRnG1dMKI09B09Tqov6+ylzY0uKOkVZRvn4E9gx44q9ypQI3bkczF6i7lQBuB+dDivBcfRczPngjjEVoQgVbVS2CHOVS/a4bUGlRlAt9mXrrPhEMphlnXqnGkaas65tkabc7XjQt6NHncjac7plOBWdqGn6vEr1/d7xp/WuZKxT0kID8szsh99T5uJ/s7kPCqAh3HFLxcPbw0+nTOeLgnT4HFeEj59iliWjHXNeH5emnO1XJamp5TX3Hkh4lxlaXS5K+V2xOFwIdAD4h3GaYSPdBDf3484HAIOU8D704CPh4CPh96JvRPwTBcIVREfoL3vPjd/lrFxlpmH5SwapB09Ccjm0rkQqVTMfsWJewH+co74+TkheounS8LzJWEcCcGSVjlCXDYc5c5zxDBQA+wpeubRWG7qWRs3L6WCcaTlYq3tfK6cW5QdYmjO8v39hHmmg+bv9xPuDxH/213Eu4lsemhOtG2FCHvtHPuntSOjyoY32kptrIxhRf5IIn7vc2wK2LkA/3hK+OdIyOSnecXjeYX3tq3D5ZLaxi7NWKfJU2qHCwXGYBEdNQGXAxeg6wiWJCBGFuV9jpn4GVNs+4igY+Js+eBxupuo8ugQ8e/vZ9zNAf/xbsCH2TfdnDHcJsrKwfxnsmU7bJh7iB25fQi1HaYPOSA6i8t9xiFanAaHNRX8PHh8moi/erkkXC4Jy3lpB30YKPgYR48xUl/G0ZPtQkOIdghI1SikoBssaBqp2m8cHdbVI46xFSjVWlswdTjNTdPqb+9n3M8R//FuwE+HgIcx4MM4NIX2IWx7tP4ZuFa3BpuQEicwgCXhZmsIiZxYw8xbg8e7hNFbfDpn2p+iw7oWPD15hEvA+elMGQADxDESCqgBAcUnledf9jO6FrO7Nqlm7IBBsBbROYwhb6Q+UoqdEsRB8jiPGMaIeQ74+H7Cu+OA//0doZAfpoCP40DPxg+w55/euQK2EVZ/knrZaYVFReFqCRqn5BtK8HQsGLzFp2CRa8XzxcEYSg8uS4FzpokVivZHzj3VlHPuzWR31SrtoVJoiaQghmlAiCTRfzgEzNKAeSTVdTl4xl1U3KIoBbv+mRGOW0OjHs2WoEO6gsTwDsHz7xp8PGReNFSMENhpqRWkveMs9afiqiSJ3oaBSnaHgVoKRZa/oDRIoZ+tfYFLRJ5zQMkFvviWcggxwPPvHQ7kWIko4cPkcDc4HAMVVmzaaRhsIva/ytDr0vIuVi1Y7VuaPFNMcjek9nefLqFF1ikVnM8J6+qazIMx4N5+pMAcWfE9shxCcHaD6Mo68ZYO7+hNk0uIsRe05JzhCjnqkraKkQ7ieQ6YR2qS/jAFPIwOJ9Yoi37LzRHHwKhr+DMO2UqhUA9BFGoFKrf+KRU4Bt80xO7m2LICz4fQeaCCHgOqibljuoNrIsnO2I7cKrRIDmJBrcQhGNghG7xrTnfgikbnSNVfUMhpIsTqcIi4mwLuZ6r2PEaq3hXqxbU9tzb9s409+ECadL0qWVDjg/dYh4L7iUjsKVdMk29nmQALAFj2oPNJm8Aq26XN1RcQXMPvq88vZ2hPDJYzN8xZDaEQ94s/31qLceqI1Wni9TlS9e4mTa8cqtey51/CuQKuHSxr0AQqAQCViOAyjsG3xbmWgsEZTIEesudIztVl9bikjBAs1pUqYS7RNVXhtCZCsFJ3rnLOu9phtMPXGAMf/GahR3aujnPEcfR0EI8kv9AhzR1/w/z1DmI9jOnUNVl0YkevyokHb2HgYQzwkANXVRosqfJmTQflec1wzjS7lVJbGm6a6HCVaqEpEnLlDWAMRbBLKFgH35ArWYw5lxbFOecwDJ3wfDhEKtUfSe35YfKNWDl7f/swxtZZps/681n5VrAjDo6kWio7NzLuom98i8+XAG9pQ1xSQQiOeJDOkAo8yDGOkaqCGuLoqSWUFH8I/C9aTbJZR09ad+PisEQqhpAh7y8tXWJ0OB4jkWNZduH97HGKZE/qAbnjWRkhP/N8qHn5sw2Nekig05wrLhiKHOiIPtX72QGIMAZ4vKTG3THGIHN/V1knA6vcD4EqaeUgvEVzqHxBIs8i6FVku4td14HWorX986TR9uHQD+K7OeK9ktHo/Tx1+7Ad6Rn9mv4sQ69Hoc4IbYZsSOnBUoj8nWrF+3mlJsy54nCI7X2kgTIADkw4MPW9YMdb257/rzmnZJ8Qp1nQq8Eb3sctI1ela17xnjtNoQU/d3PEw+TxMPU+u+Io7ys/X8OefxnnClDQXhViJEGgZGTayKMzWDNtgnP2WBMtqvOc8Zwy/n5c8bQW/NfTiqel4JwqPj2vWLh7++MlcZfuimVJ/DU3RCRn6Wm1vS7hF4hwqfcW8xRY+8jh42nEkTkc/8fDgEPw+GkaW+dugTSbAJrp+WJ9KP/Zh04Pau0kgKvPmFzrHW0Way4Ys8NgHZ7HhKcp42Fy+HQpeFwy/tfjgOcl49N5JVulgqxSg9LWYowOfztFnAaHn2ZyvFOlNjtTsJgGBwPgecm4rBmXi6QZayPljmNo6YSPdwNOA7VF+Y93A07B49/mqZFk5XNl0Wsy/V/BnpIeFOTDWxKHLaWiegtnKyo8oi9YUgEw4j4VPMSEwVv8cs74dIk4TQHPS8Z5zfj0vCJlUmOXysP7OWIeiF/x09ETsVxXBjlKRQrSmUpFnit+OpIzPnBK+bJkLEtqyJggK2Nw+HAacRzJQf6f78iu/zZPmNkpmKLbasz9RWy5p1xYUEo2gNviWBLaJSQykm5bIATyn3PCv549YnB4PK94uiT88rTy/khdKGJw+Hg34jQGvD94PIyEHs3ed1X0XXqw1opi2KnzFXMh54jargA/nwamEJi2L8u+G6PHh9PQ0OT/+8OId5PHvx9G6pLAralic7DYSbZ/DVvqPdVBgjmLQVWEvisRo3NYHjKOg8XDSMjfL4eIz+eVJW8oQI2RxGPn0eP+EPGOg47Zk1CwLhppWRb0+aO0Mwddpq/pyTlcvMcxFrybPXId8Ol+xTB4XC4J61oIifYWD/cjDoPH3Rzxf36Y8OHg8e+HCXcxYOKzte8Fr2vPv5hzdYN/RRAWYBn14JLCUqldjjXAsXoM1mFg4vMhUsPn81pwTgX/ChbnRIfAfElIpWJNBec1I2X6eU8XbZtZNqjTUeQWgoW3BHWepoCBHae/HQOOI1UH3kVVebTn5Jj+QGi04686NBJZ0Rs6A0DwlueiUh++RBFPrhWjJw6IswbPC6FRS6pIhcrF6W1Nqwaag+X0gMXMqGYqRPCUcvTLWjAEcq6eg1NCp9xQe/AYvMM0OPx0jI3wfB8DjsFvq49uopF/PXtqH8tSyAxb6QaDMxAZCxLGpc3vnDNzaYgn+bg4PK2U1k+lI4/eGjooB9eal0/OXfXxg6XK09E5LL5gKQX3IxVDAORYXYLDhR0tA2CM3MA3OHxkWz5MDg8jOW+z6k22aXFjpCjhOg3yZxwvoZAyr5Kmj5yCP7LQrwHZ93ktjBY6XlMUkHgOFI+jx4nJ5CMXBkS1NgTNAAdZhpErSU96azA6Wr+nweEwUjow5Yp1KC34CY4c5YfjgNNIjtz7iZyBY9hW7TqFQMq9/hVsqYfsM8RPpqKvCpqDGiyOITSx3f86xLbeSunov+i9zQPRWA7RIVq7sZ+g0Z1zpa5B2bTblf5OdB0Pkdb+zOiy9xYpFaINeIv7mQKwu8nj3ezwMBJi1bisSj/QvrI9/1LOFXC9GUjPM1TANQQEqJWiL8uHdcgVIdOCuuSCYC0umZqJziHhkiuWVPHpQtUxS3OuKpaUm8JwyqUdukV9XntoWLU5eIvT6JuUwE/HgEOgg/0uBkzebRe8SiFpWFPf919pSKTFwQ1FNyDdJM//X7g9jjGiyt9TFs8pY3QZzhpcUsEYLNZcceEGvzKiNxgcHeQPI/Gh5nYQWNwNGcbQQbGWiuclY0kFExcziJPrrcVh8IRyRYufDqSxIvYUZ3nfLLRxg37URH/HsQ92ZF062tWbo2y4NFwCh/sSmihnrcDnpeB5odS9NHQFyCZ3o2PhR5rriR0srR+GUtVB7LD6grvRcYAFpDJgWTMjaHQNgkBO0eGnI1WTHaPDKQRGOWxr5CuHsUZZ+hy8+rR/87FHIa34xKUHO8JnNQY4xdAoF0/HQgTpQMjBmqha2xnaAx8mmlupuhS+o6ALchBqOQGpCpXX5Cm9e8nkNDtjWjPnWlkw05Nz9dMx4J4bbd/FgGPs61IkF3Rf1r+eLbFJ8wqPTqqxJVV/ih7ShOjDnChVx/w6Oe8ic+XEuTpxi5nBuk3QaLBDrKClKvmMZrsS19I25+o0WFyyw2kK8M5iSXTmksi2xbtjxGnweDd7vJ9IVf/Fs/OV7fmXc66AvhkYALBd68OAHqIi2h+eDuXobes1dkjUiuFDirRAS8XTgdGqUvCcM6UWSsGZu4AvqbamsWuuN8UMSRySHl4i3Roco2MeiMNd9PRgOkozeEdVMOJ5a1V2eRD/zDD114y2qQMNzvagxs6u0sLNrrYqUGl/MgTL5NqKpzVjyQVPR7JhruRgAZRikIgmWIvZs7PrXXMMRm/xnDIuueDjweOciOR5TrU9R84S+fIQmR/gLO5joN5d3mGOVJAgdtX2NOwQ/lXtKffS9K/41kwFjLfwldpWkZNjkTKtxzUTOnwfAy654JIznhLZMrFz5YzBFFxzxN4PQzsk9drxtsJZSiF55bS9GxOeU8bHYyABzMzva02rPJyCxbshYHTkuN2NxLGitC6hHIKU/fVtiUa5sMagGNIzc2yPNVtET0Kvdyngkgpm7/GciXLxz6eEJddmv+AMHibHXERHlXqM5EeuHPROrROmeXh0JwAA3qVISCc35f10yfj5FJDYnpH7eM6Bgp5ZPm+i5+Uw9BS9tBbrldh/HVvuKRcFFZ4eWlhbufUY7VGlgp73mOEM8HnJ+PmS8Z+HQHtgAbxFm9f/cR9xN3i8G2LjrWr5g4Z2yrVgK53krIHnIonBW9TqYDHg6ZRxiA7eGDytBUsuTZR49AY/HSTw8fj3ecIUHE6Tb4GP9GrtOnivZ8+/pHMFXCNY4mBVtqoHkfmyqQAKMjACRuUAACAASURBVEOexlATWGcNN4Olg7tU+vlZnKtKkVKpFUsprdoi8feAImXzw2OBVsnkjNk0YN4372195hRiJZHUn53w/FuG2BHYQtmaN0DAJCGRgmqIc2WMwVgqRkcaZ+Ikb2zDC29iVeboqUS51IpTDYjW4ZIzrKHiB3GupfGRoJIjO8fBWpxiaBycIdhWldMU2P8b2vMqamb0AxytUnsOWnPO1rYpr7niUjKGNSNzE3aAbD84WkODCkb2yvdia6lSrJVS71TyneFtonSxctooRWURLf3uyFo5LRWoUvXuv4Etb6GQ1nwZhbTW4L4GxGQxOgtviMeYmhNLPDipihZ+qdivy5KgSXu0ta/mPnqLAxe2XHLGwBW/0sybGmvTM/IwxM3nBZXabehGSyH91W3ZbeqkWMFZBBQuFqLfvY8RwRIX0gJYMnFRjQEGnlsqCvA37NfnUj5bXwdYMFqrx0ubrFKBgycX5cOh4JAKLpx18OxcfZi7s/ylVL1tzyeuruN7jb+scwVs4WzDsDJBlLQhdE6UhasVmRcXKROzw8SOVmXnaciWmkNXsBdNh7U4V7nWq75mQNf7IP0P7heoqpq0IzUE19IMepPZt9D4C633Lw6NYAmXTjZbY0lHKYAQLVlEpYpzRec3IZa2OckbcUGOYkT1PijnCiDUceAiCGkMvAopHlIZRptMsFsHuX3PaGVvh/Lfy543+ZC8DkUHS1DZUi0HOGRn7ypisRhsd5DpPdGCE6fmvFV87Zwr31JXrHlnLWImJJkCIzpwnAGiZWfKOg58unyDbN6yjsWxsn9xW94MWK0BClo3BYOCzKiss/8/e28ebEl2lwd+Z8u8y3uvqrq6ekNqqYWW1mKwMG6xWAqHB4QRDBYgxjK2GQ9gT8w4GMtMYPZxAAMBhGFEECANRhjBYEMIyQJJOAAxhsFCQs0mCRqpu6WWWmp1dXV39VvvzcyzzR+/c06ezHffVvXue7XkV3Hr5bvv3sy8eW7m+fL3+37fj0rnS0E3J4pzaOcQuBUEA0ZCEjGW7cTY1yLSDRRFyZz36Xj3q04ZJHThUVqLMkRfAIoqx+/JmVK1PVpV9/vSl13c2GOJTprXZWbNAIeS7QR2plR0Lojg0B9uRDjCzaPgWFUqkZtYSNJ6XHVlD/F49ivC07hm1hCrBaV5zZiuuTkxV7wlyxPZ9Znr6+YiUcy3v2zc0OQK2J1aAtpWOVTVSWaRCIPpZCBPgTn7MEnHwY7PReKVPwe0Oqt+89GY641ECUB210sTb7ywRwNCupu/cRy7rwb99FL4BQBFICmkjRRpjMsmpGnjGMbxXLT+eOcqwxXBh2rBOM5TK9PY95ui8hidDHdJ7Z0wC617sKu1zc02nv0xZAzgPt7kUKqOxM48RY1L5VPK3sSikWz8WtEzOjcoeVWt9+EcB2AFiapjGtl5CW2LXQUo8Rzs3/jE9cbKoxiVvlnGMpdcxP+5YEAYv6iXosgxkRhallgzqm2YDQTizDo3lTHaW2Q3ItGGhYFupuDzsXZAqDolSYAIeiuXthHPQ9pGHL82nZuMphO5COfmDTyWfekM83QuQnLIcH4VIeouBcPUUu/PW8oyEOQ2yhuNXFO6vKd36vi+5ftAO4JYeCbDc2UYj2jJsVI4rBUqbZcx2q5k7XZz2UWZ6fZEtm1+wuPJjqsD+YABAwYMGDBgwIB07z9gwIABAwYMGDDgODCQqwEDBgwYMGDAgGPEQK4GDBgwYMCAAQOOEQO5GjBgwIABAwYMOEYM5GrAgAEDBgwYMOAYMZCrAQMGDBgwYMCAY8RArgYMGDBgwIABA44RA7kaMGDAgAEDBgw4RgzkasCAAQMGDBgw4BgxkKsBAwYMGDBgwIBjxECuBgwYMGDAgAEDjhEDuRowYMCAAQMGDDhGDORqwIABAwYMGDDgGDGQqwEDBgwYMGDAgGPEQK4GDBgwYMCAAQOOEQO5GjBgwIABAwYMOEYM5GrAgAEDBgwYMOAYMZCrAQMGDBgwYMCAY4Q87R0AgMrAn/Y+3IwYSbBlrPdaHU/vffgJuLBsnYf3gPUexnq47Kfz8e/0Wuexa9k6ejgPGOvSul04AowBkjMwxlBIDsEZJGcoFYfkDILT85wzCMYgBQvvY+AMafkwWMZ4nsZYek9j4sOyC8fUOg/nPEw43s614xTfExEPGWcs/Z4fHFo3Ou/Px91Yt2sbad0ABGfgnMYojqvgDGW2rARPrxHhO8CyfdtvXK+3sZw3Nh0rHY9jGKt4jrkFY5QfExG+8JzRsWW918T3xHV4AIjjh/Z8zMfPh/3Jz9VF5ygL25WCgbMwftlY5udu/hqefc/2Gteb7Tp7o+Ow43lNkKubEU9t1XjfJ5/CpzdrPDMzeO65Es87O8VzbpniWbeMT3v3bjj0iVX8GS/+znk0xsGEn3sRprge4zys96ithXEe2jnMjYUNF3ETXscBFIJDcY4VpTCSHKUQmBQCSnIoweBBBMxxBjBOkws8PNoL9s0Cn40NQMfZB5LTWBqX/vjEccnHp0OqeqQGQIeQmTD+2jpo52G8Q2UstHNpbG22bsEZCk7kuOACK4VEKWjyHRcCSnBIwTBSSBOyByAYwDkDPG64cdVhbOL4GNsuux6xiYwgjkkkJkRW2uV4g7Fo/HyPUMXvTNyODtuP56XxNLa1teG7Q+ev82G7AATnGAmezte1QkEGkjwqBJQIBFqJ8Hwk2AygszXMuv7QN0QDblwM5OqE8aFPraMyDg+tb+Htf3YRFy/tYGurxh13rOB5d67hC569ir995zncc2GKW1aK097dGwrtBbklWPFiHC/IObmyjqIZNlyIrfNwaO/OrfeoLE3C2jrsaAdtPU3QlqYQxkCESjJo5zC2AiMhwVncBw4p2uy8cB7gAAODp2s2bpaLdSLA6XckYpVIq20nTus8dJi8+9ErdkBEISdj2hKhmulAqLzHTBsaV+cxb0IUK7yXA5gUHIVgKISA8Q5jKVAKAcFZ+H5FUkVjyzmDgwfzYeduoHHdqc3u8yiQrTo7lyprOxEjHoiVYERQVCAqnHejQjGi1R8/ALuii0SQiVDF8ZtpA+OJnM8bes46QGfnaIxIrRQcpeQoBYdxHmMpMBICjAHOEWkWnAGeQXBBO8Dpc3h/fY2nNg6NcZg1Nt3M9CO0kfzGCN6ZiTqdnV0A7z025+13L17T83BeHllcGckUgTwJDOTqhOC9x6y2+Kaf+wAe/Z137/r7YwD+FMDbAJQv/SK8599+Fc5M1Il9EW4m+PCIqYt20qY77njnbZzH3JqQhvIpWuW8T1GNmbFojEdlHLZqS+QqvBegCWEkGUaSLtbTwmEiHcqMUBXSIcofpQeYR2civpm+AT4jSc63EYY4RiYQqhhxjETYeHrOh0srC1E/wVha5tmRNJ4iksY7NGFCnhkLbR0a67FRWxhL5GCuXYqgATTZTxRHIRlG0sJNPWrrMBIOivOQxqSIB1EyDuk8wBl4IFU30rg61zuPwvgY6zDXFo2j8yKSK5vlBiWnURGMoRAcIqbkOE+kK49epW1mkejGuXR+UvS4HcvKOmzVRCIa47HdWFiPRAABJOIgOMNqyTGSHBPFYSYelRWYSAHBS1jnUXianL3gENzRjZHzcGE/PYiUXKtEKxJRYz0ublR48Kkt/Mh7PoYPve8BwNTAxYe7b7jn5fhbX/JCfP7zzuPz7prgtS/5nCRpyCOLJ4H8hsg4j1o7vPOBx/Dhz87woU88jT9930eBT36o+6Y7ng/IEi/7ohfj//qGz8fdt06wNpaQGZFfFpj3/uBXLRk3Q+74v37sEr7uf/8V4ImP0xO5eGAPfNeP/Sv8T194N25bK5eyTzeLFqCv4YkpCzpBIyFy2KkttHFYrzVqa9E4h21taMKI6Y4Q7ao0TcJbtQ0XbodZbcJkT78DdMdUKoFCctyyUmKlFFgbCTznbIm1QmGlkDg/KVFIjkJyTEuRtFhK8E7a5KCL2PWm08mRj1EeiYipWmvpDltbj1lt0mS9rTVFCh2RpDy6xLLJGWg1Vx5tWtc6j52G3rtVW1SaIhybcwNtKCJZadvR3jHGMFICheIYKYELKwVWSoEzI4E7V0qsKIUVJbE2lmlcx0VIJUkiDfm4xnXmuJ7Gcn2nIQJq43lgKUpkLNbrBpWlNOt2bVPUKN580Hc9kCtJqTbBWEqzcsYgGVtIrtobnTj+HtsN7cNmZVFbmoC3K00RLeMwbyxF1byHDVosHvRzgjFMRwplGNfzKwVW47iullhRElMlcXZcQAmGaSmhBIMUNMYxEtfXi10L11ljHX77o0/gv3zsaXz44afwkbf9+tVt/M4X4qte96V4/u0ruGNV4b47z+H2MyN8zjFLWj5zeY5LGxU++PgzuLil8fFLO3j32/4b8PiDV7Xev/ENr8PffMGt+IoXnsdX3Ht7J3twEAbN1TWGf/mWPwF2nmmfOASpfeMvfxDnpxLf+op7lrhnNwciscojIvEOyGR33HNjsWMM5saisTZdpLWlSZdSUkDVI1SNcdipNK3LOFjr0t1rEXQ4jAG1kdBO4cxIAKAL8KpR4cIMWBc0V2E/RS8Vci3eDS8D7Xh1hdHGOtRhsiZyReOknUelfbq7zVNKkchExDt34wFjPWaaoo+blUVtiGBvVwZNWK61TdEZgFJ88zCmI0XjWBmJxjpMC55mvJHiRAqYR+F8SB1RVJJnad/reUg3Zjql5lIqPaQA58ZiZixm2mLWEOHRmR7KIejQGBGsMmjVJKdobyoMSGNI23SeClCiXq4yPkUZE1GuDBpN5Hi70oko17WBtfEcbdOCnDNIyVFri0IJlGFc51qiMg7jgid5wFgKeM9RSAfGOMB8ikxiQeoXpxyjfGKjwl89vol/8ZO/j9mH33c8K338Qbznp1uC87f/6evxqpfchv/+BbclXdraWGJaSqyMDkcztiuDndpgY6ZRabp+vuuhS/j/HriE+3/5V49nvwM+8rZfx0cAvO1lX4xf++5X48V3rOHCMQcxBnJ1Anh8vcLj//W3jvYmIVH95fvxpt+6gC/5nPN4ybPWlrNzNzj6kdlWcwXYEIUyNkQowoSwo02aENYrk1J9dBGnFETVkJB9VpsQ/XKYzzW0duniHVEUAkpR5ZixNEmvj2US7jbGpbte6zwY8/Q30GR8I0zCR0Gck3wYo0iYYsSxDuM0txbbjUGlHWrrwwWZyEtETC0B3WAx6eSIKO80NkzCBo1ul41xMMaiqohcRXLOGI1pUQhUinRWUQu2FiYSBmDNyBQ5s46DMQ/pfaunu0HgY/o2FBnoEEVsHOnYthvSOm3VdKMSz7cIwSl1qySHDFGskeIQnFK5VJ3XJcixItF6ItUxsjxvIjmmaFVjHOaVgdYWWjs0jYW1Ljy65IpzhrpWKEsaW86A2jhoKzEtBOyErhurygKg7yNjHgwOVoRChShp99dG6tdYhzd94FP4qe/7aXqiGAPN/HhWnp1Q9//yr+J+AD8R/vSSr/t6fMOX3o0vuGMNn3vrCpRg7XtyhPdr6/Hxp7bxZxc38R9++6GF0pn+Nq8axRjVX74f/+Afvx/f8+NvwL9+1fOOFME6CENacIkw1uEzl+f4J2/5IP7q7W8/+heDC8DRifz4+34Ko0Ic6/5dC+HqZSOPVvlwx9sYlzQXFKFwqLTDE7M5thqDz2412Kot5o3D+lwnDUkVhJ8x/aEN3Qk3jYUxDlWYkK11sMamSJOQAkoJrKwUmEwUpmOFZ19YwS0ThQsrEi+4ZYKzZYGpkjgzUSgkh5I8TDAs6RvyVMMiXE+ppD6c823aNtPw5OmmrblBbRyemFfY0QbbjcWlLY3KOFSGJnDr2wgTsNv2IFUIZqmheUOp351KB0LlMJu1y01j4BO5ojGVSkJKDqU4zpwZYTSSWB0rPOv8FOenEucnCs89M8aZUmGqJFZDinBSCEiRj+ti243rZSwvbzfpJiNGcC/PG2xrgx3dnks7jcP6TkNkxTg0JqZaaT2MAVLwZHOhJEX9BGstLyKSiB001rVuU/FVIE/zuUnjV4VxddZBNxrOOjhHv0cwzsA5hyoVhBQoCom1tRHGY4nJWOFzbpngzETh/EThc8+PsKoU7piOUKqYzpcp6qYkT6SaM4ZJsZzbov3GUxuH9/z14/jhd/w1Hn73O5ex+aNDSEAowIfjzjhgNWDN6e5XwPO/+rX43q97Mb7qxXdCyb1J1pAWvAbQGIff/fglPPLQxQ5ROjTi68/dhe3aHDu5utmQR0Ry3xsTUn6kDXHYaWgymNWW9D0LyJXWbVQjRjjq2sAaC2strLEpIyCsgLM0GQM0ge5UGoXgGCmGubEohUXBSfQuwsOnfQ07HgjWjZYeXHSDF4sOoo+RCwSZoiIWdSDEs/BojMW8tiFd5Hfdw+T3NTEtaB2J4edhQq4qA60dtLYZUbYwjYFzLhEsxhissTBSwBgJKXX6DFtzTeksxjCbGijOIRnH2HoI7mE9wJwHA+CSyL613bjexjaOUQ4XtXOxEjMUidTGpcjgvGl1bDEayIKYnSEQLdb1B8u3Gd+bihpCJKqqTBpLawM5rjWssXDWwWgDay288zSmPqZ6icxZayGVhDUWQnBY6yjSXLZT5fkpza61KdJ+G+eTX9auit9TwJ988hm8+Q8+2RKr44z4XCmsuWaIVAfh2Dz87nfizefHuH08whc///xVr3YgV0tCvEj+wu89gtlDH27Z+pVg81IqGx5w5fDet1WCMe0Uy8edQ20sZtphpyZiNW9MSjMY22pvrHWoawtrPeq6jValu2LrYIxJNcHxOalESkHMagMlOErFsaOJXI2EgLEOkrO0XyTdaCeXOBFdb5PwkRCOW0zfJu1VqO4zjqrzGuuD9s2i1q3wPKaoFq56QeSqaUiHQ9EOm6JVcULWjYZzDvCAcw6MMThHxMs5h0q1d7nblUk6oe3GQnEDyRmmVoBzBmsdGAJx8Oy61V9tzDQteL8wfNL1lWstNaLViU6EqHtdZEG8HtN0iyK1UYcX16k1nYvWuhRFbhqbbnR0rWmsArmKxCqOKW2YCJb3Hi5EnoUUaTubY522f3mmIDiwpTUYU2CMQZswrqDP26n4PYXk4Bv+01/gwT/+cPhs1wCxupbRXlTxx799P97wTIU//v7/7qpXO5CrJYExhv9w/6fw0Xe+4+pXZg1+/v5H8S/uuxu3nxld/fpuIrRVgugQq7x0vLYOM2Ow1ZCAfaMymNX02Jw1Kb1Q1y25ihf0pjHpYhzJVYxc5XfFPOTyjS5gjMPlsYKxdOG+NKXT0AOYFu0yubVzcObhg6A3mlCGT3fjEywgRa6iWFo7KquvAqGa1xaVttiudOu3FMxf86hY/N0HUmWD/i3qcGhipkm4qZuWKGuTohw+itoFB+ccQgp450N6WEFKgVpTZG1aciJ/E4eRFLDOE/FyHsrRRExVaq3+mYEMZE9bBJ3j8nbTRpnQ7VSQn18RgiOVupPxZksaU4FCiPY2jUt6tm46t2ugyxjrErYUeQKl/MKYG206EapdhEprutG1ljID2U2vYxyNKgChwAWHsw51qVDNyW9wPlXYqQ2E4NisFBRnmBmLMwUVpBhHVcGMseSHddLn59NbNb7rPR/Fg7/5n9snB2J1MOIxuvgwHvzNh/HPX3ArfvSrX4zzV+E1OZCrJeIXf+8Tx7aud73/UXzj592F288c2ypvKqTCnSSQbh8xGtIYIlratA9jiEgZ01YBxsnBWp+iG/FCHn8626Yc4jaNNuCcoxEcVWVQFALzxmCrtpgojpEkWwcqT3etCHpBJVIbybqBCdYecJ7co8jQlX6m1jghPRSrNeOEHSfklBIOxKqNfDjoMDHnD2ttSiPR+lxYn4fnPo1rjHzM5xpC0OS6WVly+xYMO6UhoXaMcLAsusYB7oNPkqcU4WljY6ZDdK+9Eck7GwDdOTvqp1r7C9baLPTczFv9GxIp8h4pirWfDjiOXx65ytN8kUh10n9hHOEiqTIhbN1G3wC0DNB5OC+hm/h3YB4IFmPA5qyBYAzrcwvBNAQDVnvFC1FvdZKa5sY4PL3d4IFHLp/YNm9UPPzYOqrmiDKeHgZytUQ89K7jExI+9K53ov7m+45tfTcjoo4n6phiRIRc1UlvVWlK/1XxEXQ4MVUUJ2SjKSWkGw0fLvDG0OQcf6eNOTjGk2A2Rk52dsjp2HuPS1tF2p+1QsJ4hamToaeZTyLf2EYl2jbcDO02GOJnpZ/RZJKjNQWNEy75YflORCSv8muXu+TKGNuZkPNoVSJaMYUUoh2OcTguwCxLGixrLKTkiZCXSmDekIavlBxzY8nDSXEUlgMIPklBZxS9lk5KpxNb08Q0aYwOxlY2eacCHY9XSql3o0w8RaaCZxUXMMJjtRTJ9XurECn6VTUGzrXjF/VReRSrjVT5dIOSnNkzDZxLRLotJLEm01XFKJULhCpGrJzdHdWJpMsI6LAeow0YZ6jrAnVdQAhOaX3JsVVbXFhxKIXAGadgHRUseB/P1eOrPjsIf/DQk/gfvumHgDO3n9g2b1T8xW/9Pl72q2/Dr/3S9+HVL77jitYxkKslIbr/Hif20pEMOBid9FDv+ejr7TyV/kfn9u4jph580tt459sLeFhO0Y04EQOAt/AQsNaCGQbDqcJQSoOioAv1lhIYSY4dbSAZiaBH1gNwnfLg2EYFMX10DfnpHCt6ldtRe8MyghW9j3JdTk6k8qiIz8Y0kqv0XCBPfaFzXiEYiTJNyh7gDnCA9ySCBqOKs6YxECFKs1OZVBm4MafI1Y4xiJfdQrY6nUT4l6jTyR2uffY99x7JR8y6WH1HvlGpjY3tOeH7JMNP7WOoJyZLDuzkuk7dCbT1KKUgfzHrIQSHiyLwmBb13TGJv+djkH7PxiYnV2nZZmncSKzi+O06MNlzDm3xkdFwjMEA0I0OWjCO+ZxSgzuVRimoWfdsaslVnjMY68AZB3e7CyuWiSdmFS1sPHFyG71RsfkkAODSrL7iVQzkaknYqo6/KsKd5Jl6A2Df9AJagXt8bT4JW7ebYEViFaNTURTbqTyKd/Xxgh1/OsBZDsdDSbg2aBqOqqKKxEKSXmO7sZDcgDOGsREAOBF1T33qRNDtOPiO78/1iD3HJxN3k/1E67QuQ2NrJUKqKZbr77LPySZq119GShvGKGNOlOGRJu8eE2+brzkPwAJCwFmXole60aSx41QRKoPj+PqcWlmdKQx4ICQ6+CRxRhYhuU/SMuAXEKvkTdXrB2isC10IHBpHRqDGkxO6TqlWn6r7FOdpLCRnoWLQQ3GOUno0liJ2xtGjkESuIsmKUazu2PVIbrbd/Hyz1qblNH7x9ZEM70WsGOkauwcqtKMK0S1nOUWwuAEPKX0pGbYril4VkmGmDQpOTZ9tfv04oWt2rS0euXzlRGDAYnzymRqNcSj2sWbYCwO5WhKe3mqOfZ0/+LsP4odf82Lce9fqsa/7ZkRe4r2oIqkVPkcdj22jHMa2aaMsctVe9D3pOwC6SDMPxwUMDLz3kHOZJoHLmyp4BJH26vzE4tzEgDNgRdEpSmSimyJMKTOGTt+8awULLRb2mGsi2QViCpDSY5wzCA84Tm1GSkcO2dY5aCswLUTqK6fSRN1qgqJGrrvcRqtSlCMnWXm0JP8cMVQWJ2tGE3D0S/LeQ1QirEtBKQGtLeaNRaE4thuFQjJU1mLNKsi4v7LtVweOpfU7i1WU3rd+bzHlVwUjVW09tmrdaV0z16GdjHGpKXnkmFFTNZKkLVOcYVLw1MIJoAjWWHGcKUVyZG+0oyiPcRCCoa5tMN51cI51IlTJlyojTjm5WrSciFX/C8fafo+JU+16DQtjG85hxklXF7Cz09B5O6lTNPDpFZ3So6ulDMse5QndDz+93eBnfuWDJ7Oxmwg//44P41u+8G7cefbohWQDuVoSanP8acH/9zf+CPf/zdsHcnVI5BVGLCtHZugmXaJ2aT+Dzk5aojcB70pfdN6YRbCcJW8jx5OWoxG5CJpjo7LkTM2AM4UBY0AZIliAg3LRK4tK+T279pKB/WOQ/9pPye6HNmpF/d9iO5SCc7KxkI760Rn6XQoGHTRQNI5ZKjjT8exK/fWiVP39YoyFxDG1OqGUIEceLkuTexTCGwutLeqaQwiqPJWcY6t2KISF5BSRFJxBOPK/4p4SbcsUQUdi1W9WXhuXTEDX6wZzY/HUTJPfm6Yq2sZQ5MrY9nsex2WkBFQQrq+UIhGtQtIxso6qX5Ug9/VCcVhHnQviTYwQDN5HC4bdkazOebfXckohBmKVR6tyYsWAJG7Lj3fKQ3NKDwqRUu8p9ehcW0EcvLsq40MbJtGJWp1U5Mo6j/qvPnAi27qZsHH/78PY11zRewdytSQcu+ZKFsDFh/Frf/JZ/KOXP/tUynyvd+SkKqaccidlztqGv7sv7th1Ae/ocRaBM5qE8wt8vEhnlg1NQwakUnJszXVqAbKdolcq7DtPeg7nAMfbVNK10E6lo2uLRGXB3/qvWQQW/mvHhtJn5CHFUXCOUnKUgqOQnlqnCA7JqRVJ1PHk2zpoUt5rP5OeK+UqBYIwKn2RWPxCoRVbk7DdpeiVEgY7tcVIUmPiOpAryRlNxpyRwHxJdNllxCoK13XoqVnr0APQGDxTa2zXFhe3NGaaDD+3Qn8+F94XwVloXKw4JKfOAlWoeC0lx1hRFCuOQUwdFoLDyhBtlL6TIozkKpLafGwO89jlDQGkKGNLsEDj2EcUoDPeEitOBSlpn1JUm9KnJqRSm9DgPa+sPCFudWLbuRlxpcd2IFdLQn3c5Mo0wHgV73vLr+AVj2/hF7/lFbj97AjnJmpfq/4BPSQRdGtUqDgPd9mkn5ChlF4El+hcLN1JSyyYnNvtBC0HdwDCRZyLzgQcdRxV0Od5D1wuZHCwdhgpjvmYhLIrSmHiRPC+Arzg+PRZ/QAAIABJREFUEDxE4jhOxaxwLzLVTobtcy77ZT/CldYX/uOMgXNAepZ0DzFVCgDnJjakRYFZ3T7fhG4GWrMsTeg7Y5cbgy4iWLG6kzO+K6qVyDdr3b0Zp1ZHXFBkJArqm8ZhXpOZ6GZlk15spqMImtJzwnk4tryJMo9Waesxq21o/WRxcVZhWxtsVAafXm+wWRk8tVmlqtnYNzNqDyOieL8oBKTkEIJjUkooQbqqSWoLw9N313mKeCnBO10nlGqXjeGJAEfT1k6qcI8UYfdGJiynCKNof7LMfIvxRJA5b7soxApfMEAqCSEEhBQQQqTUrffByDSkV41znY4Cy4xC5hj0uMvDlR7bgVwtCUv5rlfbAIBHH34cb3j7h3Dv3efwg69+Ic6vHm837xsRMRJCRXUMLMQHYmREMJ7SGjJU/bR30Id3zk5ELN4hx7vjzI4h/cxIW/TOarRFIzkayamEXzDUllJJhWvFsoL71lriOA/UIdEnVjlhaoMHPpEkly13/pZhr0NMYxfE62GMSsehncBIMYwMR2M9SslhLD2E4ODcpWgDY92tLYpUxck7RqHScrZzsbQ+viZOyHFMhWwnYNoHlibiNnJEabKYNuoer+UR5KhNi83KY0uaHWOw1Wg8MzdYn1s8vdNgpzJ4ZqdJUdXYDijXtAEtuWoa+rxCkI5KSkrV1tqmqGIpeToWxvpUVdh3Zc8jV7sOh29/7hk97qcDc+SkKpyD6VxkgBAijWtcjuPKBYcQlMqUMnzeuM9HuEYMuDkwkKslYffUcRwr9QAXMA/ejz978H78GYCvuvd78aJbVyE4w21rJSblMKQ5cukNyx5JCB6qm0SsQAuVXmIXwdrjyrlgmFkIpXif3QUzlly9GQ/LonVuB1o9jHHU65BMTT0aF9I3Ir8rDgT+FNjVoshUfK5f6h8zNJFE0Gs8+vMhsDtlm9aNqL9CIliF4Cgdx1gKNIoMYAsp0FgHZWiSl7IlN861aab2g2SfZ8HOxHIHlmmr8ijVonGVUoZJmEMpiuZIyZI2KYKOTZdYxU+9rGhH3pVAh35/O9pgqzF4emZwOZCrZ7Yb7FQaW1s1msamXos2q5JNxyN8dqUcOGfJ5ys2tW6MDHo4jlKJpJvLqxXbaCAyMow23YquFnJxGjBqGw9BrEKkiqo66RxMkUchElHOn8/HtSgkioJIlpI8XT+iHcXAsQYAA7laGpZ2ikXvpCDQ/sf/7Ifp9zO34zu/+/V46e1T3DUd48JqibvOjToeSTczWJgso27HebrIS8GgwiQ9VRxVwTEuBLSl6j2lOIzhEMKBc95OLH6B8Jmzzrj3J99498s5hyoUhKTJdzxWUIpTaiWUtHNQM1hKNZDJaRTKdiYXsBPhVnsRqji3OUe0JdebmFiZ59tGuznRyve7Q6zY7gKDfAImk0bAe4lpSBEyBmzVMlVOzoO7spTxtb5DkvuT8yIReyRVPNPcCCnAOYdUMk3CSvEUpVKKUkZCMIxG1Ky7kAJnpwXGhcRKKTAuOEaSQzCeDFJz8rAsLaVxHrWOqUCHp6saG43G0zONjz9dYXOmsT5r8OTlGeZzg83NCkYbGG2SWW7e7DiP+ggpEjmRioiIlPSdFmG5LEUgu0R+Kd3X+pHlxq7pxiGgT6g6qUCXVeW6BWdDXn3J9h5LIQSECmm/QI5pLGlZBKnAeEzk6ty0xMpIYnWscGYkMFECI9ESyNyNfsDNh4FcLQli2SdV/+524wn82Hf9FADg2V/+1XjDa+/F6z//WQO56oO1k3a8AHJGPj2kEyFtjxL0oAvqghTFguHNL6T5hCyVpIt4IdOFO2pUpBQYj2W40xcYFQJluCOO7t2nnXLopM6y3/MolY2EyrqkN6GS/dBwOZh59h2+46pT9o2xVhOXES3anu+8nsaNqtLKbOwayZNmTggOa/d2sN8rStRGUFgnnRvHUhUyaIwYikKmSFk+CY+UCONI2qNxITFRHBNFQnwV+s9xzhLBWuYw55ErYx1mxmKrMdioLLbmGpvzBttzjZ0djarSqOd1cp7Pm1fnxyweG2stOOcwnFzuhRDQnMEYldKFWstEPKOekcYgb8AcU49dj6sYwuyQ4RixyknVoqjVgsrOTrqXtedrq6tqI49CEDGkMRYYlxKjQmBlJDEpJaYFx7gIxRUxFZyuM0sZygEnAXZ1AsiBXC0JSpzeWfXp3303vuezT+Hrf/Yfnto+nCb2nDDRVghKDnhPkavCczgPTKWEKallRxT+FoVMTX5FMIz0UUgedTdgnYt10t5EIjUqAolSKV2SlgVFypQkQrVSqhTZuDBVmJYcEykwlgJl1HjkEz+WK2PfpaGKwQKfGyUi9aHTnZYp7XLU2FhPUbhItCJ4SAVxhNRslgJkC0iWDZEywVgyqpwoHoiDwEhRSbxSPEzYPKQH+59t76KEpMPJxrIcFbuijZOxIjIeBdycKujGBVkSFIJjbSQwURy3ThXGUmAiBVaUDESevoet3mg5YxlTgZW22Gw0npw1uLSlcXGrwRPrc2ztNNjebrD+zA50rVHNKiJX1sIbQ55PffLCAnERqk21LUiTcs4hlEipOCFFKMTrCsNTpWXWfijuQ+6gT+WyPed1v4BgMQ4wB3gOwNKMxwWcc+CeBz+s7phH/VckV/F8LSRHoQRWxwojJXDbaoFpIbA2Ejg/KrCiFFYL2bk5Oymj3yFCtgRkEdorwUCuloTTjhj9s2/4W6kE+kbEYXUpvnPhDEQI7UkTyUos8VecDBELyTqRqzjpcc7hmOvqd4KuK0aqcnIlpEBZSiglMJ2SsaRSHNORQinzCZmWV0siViMVJ2SBkZAoBfUsS6LfeFd8AkPcjVa1qb0UmXIejY2tU2wiVI2hMnXjPObGwobWKdpRAx+bDY5gLBFfxXlwXaeIVO7CzhjpdZKlQFimqj6WJuyoccpTi7s+VFxcQK5yrU8kWTGdJQRLxKooBCYlTailFJiOwuTKGaYlT42bz4wESskxVRJjQWQ5apFk+oxYKlmOpNQ4j8pQz8Otmmwi5rXBfE7CdV1r6IYezrrQa08v1jMxDjhGxEsI6rnoRDoPvPOt2N+KToQor7QEumaguUlv3oA5RrM6xMplpK9/XfA2nPiefkZjX05mrw7BnNQiVSUyRxq9vDtDDhkrHSVFrCgSSTc/0Tw1nqMndQm+gS/1p44rPbYDuVoSrsQu/7C47ZVfASF3e7Rc+swl2If+BD/95u/AfXfdstR9OGnsRaYOw7F2vSSG7IF0l8oZkqC9kBRtILEqT2kNzruzX+57068ci8RKKomyJI3GeKxC2k9gbaxQKJpwV0uyWCgFx7Sg7Y8kx2ohMRJt1CqlkUJUJ+3KEi+sUa8EtEJ6F0hNtx+dTX3pTKhG2zEGjXXQzmFuLD3vSawfq+UiJG/7BhZhkuKMDEOjWDhqlNp9CevyVAq/qGR6r2rPvt6qI2pn7WsSf45RyjDGlNIlPdVI0ZiOlMDaSGKk6DOslgKlpH2fKoFCCKwVEgWnPpLRVDMvnFimTidq37RzaJzDrCH39XlDpKquDZrGJJ2VMwYwBnAGsKYbHWoPcCsUd4HIWAnPGWyIEMVjZo3dJRbvV83Gn7kruzXUBD1FrLxvo2jedzVXtIJ23wBQdYntfgm8g2WAgEgO+wamU2CidbtsTBDsu25qWkXdZmh9E/VW+ZieBARnKF/6RYOR6DHjwt95NdQVBkoGcrUk3LZ2hfYIsWkogH/1f34b/t49t+DOtXGHPe9Fmmiiex2efX5yXROrPpHKRdR7vebgdbYRmDY92LaSsYJjLCS0pLRgY2jiHheCXKlDBZS1bS+5vPIs1+cIISALCaUkylJgdbVAWUrcdmYctDcCt60oTAoyWVwrJV2kedDicCIXE0kpplKJkGoid2vZu4CLpU7IPhEq51uBvbVUxh970s0bC209NhpqmVJbi/XKoNIOlXHYqm16b2O67tUMbZQptlIRnMhubKsiGH12wVs9o/eADhGy2npsVhYzTWmv2CC43x+y32w7tjTq2DAAKRLJwVsX915lW4yOqaCvmpQCZ8eU/hsXHGdKRWangiJWitPr4ljm4xpJ1qI+iceFmJ6dG4u5Idf1rbnG1lxjNtOYzRpUswr1vKZ2L9VOiBDZlsDEAx+R0uG8/T2ryvOMwXOKaJEpJ/2NCdHRtYUvQjr2nXSttbRNo7uEqu/CvldaMN9PLgBmUhTLCgFrVaoSdNYlywVrbCg6EbDWoSgE6hH5dlnvMZ9IjJTD1HXT2B2CdUIRpbMThde/9uV460CujhWv/4oX4exUXdF7B3K1JEzLBe6/h4GzuOcrvwaf96ILeN1L7sBzbp1gdXxlg3u9YS9Tyv7fFv190Wt2rT/815kb0Iqj4wWy9bsi7Yxgfc+rxR48+SRBPjksVEpRZKNUAuOg0Tg7JiHsSAqsholXcoaRFJAsVjLSnXAhu4Qqr0aKqbClC6FD+i86UhtLUarUj64xqK3F5apBZRxm2uGZmUFliFxt17bj8N0twW/JFecU9RHhuI9DnzqZSBfr6Bnjvmjnsd1QhWejqU9eJMXd5s1ZT8HcmDIXSgNwcODgKW3EHAvpInpf1OGZEDmLacoIDgbJYqqZ0kaStyRKhuic7JCq5emtAPpsbcTRBeNLGkNjQr/MkIaD1S2p8n4xcQHopGIhMkSDia57PQ8RLQ44kZ73nKJb4K0PXHe9GXHqp/9ycgXsTfyA7n5FxBRh9nmsc2CC9kUIASfaZtxOydCah94yH1sIzjHTDmNNzuwmq5LNcVKRq5ESeOkdkxPZ1s2Ee28bYaSubC4fyNWScEWaKyEBa/AdX3svXvWcCzg3Vdd1BOqwOMjpe6/nffpvQepvj+1EMXbUsebvo0ke6dHRT/AesdrjM/S1OpFkkc8PRaomSmC1JPuHsRRYKWSahJUIpClMxJwxqEAqBKN96uzPIT731SCm32KlmV7Qj64yFhsNNft9eqaxHdJNT+9oNMZBG4ed2kDbllz1J6JWqA+USqQowCiUw0vBUErRHpe4f0BKTc5qSkM2mtq5aN32gLOh559fEL3KnfYjIrHi4ClSyRhL6SGtHYSw0IJBG4eGW0jO0BgPJUIbFE9eVom88z2I1SG+X8eByJGiZs0EnVxsTh41Tt7FtJvfTWQW3cDkKTcPkICpF8kCQtQoRpBsG+ECdpMroEueItHq/0wfbJ/9Y6x3gQjbjp/P+6DBEjBekU7M0n4JGVKbnCWCXtUGgjPUISpbaQfjiWQnV3bvcSKCyADOGe5aHWWf92iR/QE9TM4Asw2cLYsrXsVArpaI+77pH+GDv/SfDv8Ga3DX33sNvv5vPOuGJlX7uXvnz7nsj7udrLt6IJ+tL8durU3QdISfJqto60RSWJZ2493IVbsy0EQU4JxLIt1dkzUDpf0kx0ix4KslMZESq4VKEY1C8kSuIpGKdgztcptCi/u7rBvkSKhMbJnS2NTg9+l5jR1tsKMNHttssNM4PLHVYN4Y1I3F5lyj0RbGuGBC2XoaxcrDdHyi5oi3BQSxrUryGgrHhn62RDaOZ6ODrsu41K6FflqYYCcQozOxGi2mBvutU1zmh+Q9vUYYuoO1hi6bTSNRFBQZGRcSs9rAe2ClFFgtHQRHmnDHQoIzj2gxkYhWJMtRR7dEwuyBrGIzNmF2rcfUoqhVHi1C9xjtWnkHtvtrPz23iHztueP7kKhYKdh5/T4XgeQTmBmKRtLHOCAkLBcAlzC6SFWi1ljoQqFpqMrXOY/NaUNap9AnsrYWpeAdk9+Tan8DAC+/6yze/HP/Bt/31j/HU3/03oFgXQU+54v/Dt70LV+Il9555orXMZCrJeK7X/1CfO0vHe09SolTtXFYNvoEqv9c3iYlJ1R5lZoLzKpTRR3ftwD9o+mydSebgCC2jsaX+V1oJyvS14PkJCpWs6Xede3DZo9e8VEiCv2Unwr+WlK0hCp6IsUS76V7I/l2v03UN2nS7Gw0GtuNwWZl8eSOwU5tsL5dY95QP7rZrEHTUOSoaUzqS5cboaZjwNs+jjm5qmuRlpXiyQW8Tyi9B4yxoY2QR12bsF3yaTLGJM+mqLOKKcIkku5odTy8Z/CMwzKb9pfr0G8wGJk651AUPKUICyUSgZmWLWmorCXzWkcNmhealp7yad/Zpz5p2ZNU7dND1e9OvwEIZMruJlz771x3PZ196+33rvdmyyll6dr9iA2dGaNlLiiyBsBKCedEsI4gTaXW1GxdG0o9R6JqXXZ96G32JHDHmRFe8azzOH/rCp4aiNWVgwusrBS45/wKblkZIlfXJF521xpw693AU48e+j1NQ1VX8gYjWIdqmYKWYMG3xpQxLeURnb7RcQXvrzvHout2HgFrgi+TsT5VtjU2pr/yDvf7P+KHaku5XUq3WNs2zK0tCbq1W6zT2NVnjUXBOlqNVfhci5zMjxuJgLq2H10V2qZs1Brrc4v1ucH6ToPtXj+62UynlFzTmG4qrkeuch1bFBczRqaN8VhEUpUqN9GLXmVktmnIkHJRtCov74d3VBHXJxOMI3o42bB+7zw0IzPNaDNgLQmejaGxLpQI0SCJaSESkV5VlDYcOwHuPARnnRuM7nFYylAeiM536LDRpPT7onSh6xGbsM6og0Kvgm+vbR6GSB2WTMQUpkdLtBK54m0aNGrBvIP3CtbIVN0YU80xPa6th81vDE8JnDOcmxZ4+Ysu4GOnuB/XPZzFl37enVgdXR09GsjVEjEtJd78I6/H9/zCn+LyB37vUO958rEnl7xXJ4f9CJUP5Alh8o7RqY4xZVpuIz6LnL5zstRH0kDl+5W9VlsqTa+tw0bTYGYsntqhaMxWRR5AVRPuVLWDidGP7JE+kyNPH+88GtEkwfT2Ni2vlzKl2aYFhxmTTqMUAiPv4X30PKKd5MF6IHlssa5recqwLHE2zhv81tpivWqw2Wis1xqPPF3jmZnB5pxMKKvKYHOT+tEZ41BXNUWIghHkLtftMA79/nH9vn39NkL53/PPngvUrbELzSgjuYNuWkKVa3pyxGgG1+TfJERwHBcw2kBKCSEFdGMgFdlt1LXFaCQxHkkY67E6VticUDVobRVKIdJnLyRPaUDPY9Nmv/iO4JjAGFVbkr0Ffd9aqxGqkuukyXyWRlsUNQIWpwwXkqBeqnDXzh2R0C3a1kGv7W8jT0vG5VyIzxvAFtBcpO+q1o6uBbaVFdDNYc+I9hSiR6sjiZ/8By/Fr/549vmGKNbhkB2rH/77L7pqac5ArpYIJRhe8azzuO2OM7h8yPeYB++H4N+01P06CfTTf4uiVDbk9WIEJ5KnWPqvFyzn5Eo7uqDFFF7cHpARj9h8l1EFFwC41DC3jVZpRxVvOw1Vtm3XlrRD2qY0QF5RFVNKsSUIAFhvwUOz5ujpYzh5B3HOsFPpVJW4WclElKbSAKA7Y2MdOCNC4XLigcVanGVXI1nfCsZjGf8slPGvz4lYxVL++dxgPtcw2sJog6ZuOnYHefuUvUw7AUoRxg+bk6lFTZPz9+XrjduLJCsSLjhLYm3bK+sHFkzImfCZsfQ6G2zenXUQVqSqMmupqiyKw7fKvO+hguIWtbWhUMKlFGEnvY3lzYUMdA5EvV7UfaU0rKBjDc4zkkHvaqNN6BGtfYjVUSNL/gDytfA9B6Qld2FRtWN20YiVhCz7XlgDOAvvRPc71o867y4fPuqnuWpwzjAusuq2gVgdHtmxGhVXWO2fYSBXS4TgDLetlVg7oufVk5s1bl0tU+rjesN+xCqm8vIoVYxQ2UCe2vYpeZWag/EetbWJjGlHLVeiRmpXigWZNgndFFLcBx3K0hvrcXluMG8c1ucGs5oedWNR1xS1ykvVU1VVrtfhbRrIGJMIQl1T3n5eq7QPl+cKDkQoV5RJ+0zRDA/AwQWtlfee/ILQmoeeFOIkEi0Y5tZiOzh771QG25XBTkUpwKoyqHr96GIqMPeSSj1osotZWmKMPJGApGHLPcQ6pKqXDs1NP6NIfVf6z5mWUB1IroBdmpywjxaAtTwZUEol4ZzDXIjUeHh7rOk7yBm2aotSMlTGoRQeMt5QOE9s2wN+ydWfLBD7GLlSwW1eMBYaT/NEYH3ypPKLo1d7oU+s9krjHRcORdry7S6KRrjsb679GS0kQoSzf1OQChDS93RxpPw08ENv/Hb8+996EI/+zrtPeU+uL9z96q/GP3/NC49lXQO5WiIYC0aBRwwv/su3fwQ/9bUvw13nxkvas+UiJ1Ux/RejTXnLlKhpiron66i8P7pI72iTokqzsDwL4XjtPGrjkwZLu0jg2ottEoFnUascDqR/Mo7at+zUBo12WJ+FirfaYmOjCs7VFvW8Thoe3WiKgOi6e4FnDI5L1M7BagsjiTjVhYL3wGgksT1RsM5jfaywOlaw3uPcWGK1kGAM5MiuyH7BhvQgfSCAe9rGSV284/ho6zEzpLN6esfgyR2Dp7aq1I9uY2Pe6UfnrCOC2XfUBlpSE5f3gWec+FInfZM14s3TPPm6YpuTRd5IkQznP/fblzxtxBv63TQAF7BcwOoReEgRWmNRFwrVqABjQLNC1ZWrYxr/82MNwQHOFLT14Iy+fyqcNAzLY1jR3qIQZGxKZqfUfLgsZaiqlFCFQuM9IAuK8HVE6bwlmweJ3Pup1mUTrf42Fv59QXQskeYsapVShNF9PruucJ7sQZSkCmAVKj9z81DeI/8niW+97znYqS1+9HdOZfPXLf7plz8f33rfc45lXQO5WiKc89iYaczn+vBvYgzvfdNb8fFX/tvrllwBLbFKYvRAsmKD35xUxdYpxvrUMqUJ7VPqsLxVk/Znp3GJlFXGJXJlfU/vEBBL3xl2V5d5ZJWCzmFeWzTGYnuugyjboqooracbDaPbijNYS47RuV4nCXY9YBhMiKrpmiI4cyWT4LosZfIbujwSqXR7rTApdWOsB2MU3eI+4wBZunDZiPsVyXBjfPD2sah1jOpZmLxtSizpN3p3Y93DpJNyLBI87yeC7k/s+TbjWMXXdfZnn/1grt1WTBHG9XGK8ND33LVtqRjQNAWqykApQdWTmkr2U6FEXiyRf4TdR+FYEHV7klFbp0JkbZ7SQ7YO5bFbRDLdDBGdvXZwP73RXgR2WWmrw5K3OKYAOlGrBRGufrGJ4LHdDdmsSJZZhERd5PF8mivClzz7LL7sf/kf8d43vfUU9+L6wTd+1/+ML7/n1mMbs4FcLRGXdxp829s/gj//wEOHf1O4Y/yab/wB/OE7fhj33DbFpBCndgd0JcgF6Lkjt3Hd3nPzhlJ8G7VGZS0a57BRa8wbh8p4rM9NMumbBRPKKrzHOY/a2DTxx+aqe5W4t6JphNeFfU0VZg51bWGtR1XpJF6PkRijqaEtESsNNFXQ75jdF3LG6TUhsjGzFlJKWGtRFQqzQsEYh82xwmSi4JzH2rjA+pRaa8wLizWroARN2pIzeMEgwVPLHo8ghF4y0fI+s2FwFjsNNfyN/ejio6mb1OyXNE09XdNempwr1eccuOMH+CHtl77q709O4GJEw2okjyRryABYKFRAitztlAW89+CcYXuuUUqOubaYS4uxFR1rDu+RUoPLggjRlpEUmFiBMyOByjjURmE6VUEr5lHNKI1tdShDj+PoLADeapQAENk6KFq0x7FeVvQq38aBr8srFntpwQjGgUg6JTVeH40kxqXAtJRYLQVGIRqY7FRCIcppsauREnjlCy7g2WcnePnbjlaxflPi1rvxHa96Hp57YXpsqxzI1RJxcb3Ce9/7V8Ajf360N5oGAPADv/sg/rdXPhdf8rm34npyZqCIVds2JfaUM6EfXTSkjC1Tnqk1KmMx1w6XZwbz4Hy8OTeojUUTyJWxVLFGXklUsROjYtE7KW6/X0m3qLIulu+nyIym8v2mNrA26IYCobLWwmpNuh2rW1KVu1dHxMknRjYaCeOoZ1l0BJ8XMuk3NkN7I8aAjbmBZJRi0FaBcxYiXAzcU0UZfUxaXjbnjineWDRgnIdxXVJqM+dzOEfEymWNfvsNfxcSn33+3n/+0Du/j+5nrxTVokk5b6Hi0U0f5RFLgPrVGQ4jTPDXEtDahdSqSw2mOxrB+L092qc7MvLed4pT/8OR5KnxdFkKNA15OgkrwISA96r9jEELeGAF2n7k+UojWAd90a+GkMcLhncA6wmZo6gq6NGEIOsNKXlIr4boH+edlCC7BiJXALA2Vnjla1+FP/z5/+eU9+Taxitf+yqsHXObuYFcLQk7lcF//ugTMB+7/8pWMF7Fe9/0VkzLb8FUSrzozlVMr9J346QQm/LGfmutHwyRo8Y4zK3Fet2klikzTSm/Z2aGUk4hPRf713VMIYPQ3YTIVU6SgG70KvcN6kd4WoPQIJwPpfqmMUm03tRNshOAbna7Vy8UQ2ciaO8BXQFOouE8VRgKJcK2ge25Dtdvho2qQCE5lODQ1kNwivpx5qkXW4hunNRFO2nn0EZYYjRrUc++bjquH7HaY4I98Pcr8TPaZ/K+Uh2QB5I9Qa7NiZEdADAajouUGk2tZXxmJOt7BrWI31mWfi4DPNMEFYJjJHhqHj4qBKqCHOelklQJKQWM94BXdDMBhIDOEQTuORYS18OO5xWQp8PsW57K7xO4dOEIYn9Bj5hCLaQI5JR1yFWSIvSqWU8Dt6wU+Lv33oo/PNW9uPbxd++99aoMQxfh+pitryN8/IltXNqq8fa/voS3/ODP7M5DHRbzLQDAb7zxLfiNNwLf/P3/K1774gt46Z1njv1LcNxwHsG9mKJW86xlyqVZjZmhlimf3dTYri2e3G5QaYt5bbE5b4KPjMV8boJhn02mkEabVFofy+3zxrvA4tTgXuiX78eS/eTcrZuWRJmmjVb1xdG7DkIW7QgpQlgDIwsYVZAXVtWgHhXBibxApS1WShUqGD3OFApnUWBsXFqVFESwGBhk46KRAAAgAElEQVSlkEIUa3kmom000KN1to/P0UL+hj3I1C6y04tqLErf7ZdO7O7kIT/MgnE6CrkCkOwZGGuX8/caErxbwamgwZCFh46PEMW1HWIVd2XBBH+MkKG9EpFkgTOlggOdr09OqaKZMWA202Qjog3ZgzAGH9O8McITx4YdoMPKj02+fOTjjt36ur22sedrsm12RPoL1s04wCnVC1lAKhL6F6MC06nC6qTAuYnEuYnEWiExUYIarIfUYGxpdNqRKwD42hffieKN347vf8NPHhx1vJkQjsUPvfHb8VUvuP3YVz+Qq2NArS0RCuvwjgcu4kd+4BeBnfXUiPk48As/9LP4/dd8DX72m74Qr1i55VjWuSxQ1Cq2lnGJWG1rgy2tsRVaplza1pg1Fpe36iSQ3t5uUsPdqtJ05x80T84FcuU98p5wi5zSd2HRVc7n5MG3nlU26IZc1A357nKeDtxrksi9c2gDAGuNK7WUiFYCdW0gwh3xrDbYLjhWCoHaWjRBr+Z83q8MS9Xm9LHXtThp2fKqqNhSJC4fKbKxV0RpH33UUSfV/bZ50GuBllzkraPjoKTvRJf0RzuL00bU60nOYDhDKQTG0mFaWExLiVqTYW5RCBgjU3rQew8jRPt934tQXcnEfaXfjyNtY5+IWb/KJSKlA8lUVUh6SCmglEApQ8RPMRRCpJZVZHURK5VPv6URADz7/BhfZi7g+4GBWOUIx+LL7rmAZ58//uKxgVwdAz711Awfe3oLf/rYFt7zgU+nqFOKXhwTPvFnD+DfPecc3va51zi5ir5VrrVamBuLHW2wXhlqlzK3eGa7oX50Ow2aYH0QW6YY003J5U7bfafvfuTqSBNuqiTzaWJMeirv9yZU/XTgLn1Q1mYj/j270jqtYcIFuKkNpOSoKo55YzBrBLYbS5WSzrbCZ5elkjxwGvfFrb0Fa53jgzcSmX/GEvacaIZKs0ONy4KI1kHpw4PWd+BrFk2+e70vI1Xxd++I7Xq2dyQzX8MpTbipnRJnkIJjLInATwuBScFRBYJVlhLWulDdSno6I1TL7pP27AhE+hDH5dhxqO/HHunA1P5IAFJ1xOylEijDMRtLErPnfUHbIprlfKyjQgp+zWc7ThO3rBSQ4urc2BdhIFc91NpiqzJ4crNO52alLT69PcMn1ytwBlzc1Hj06RkeeWwD1no8/pnL2HjqGeDRv+wSquO+S7j4MN77pofxvXes4ge+4oVL+UIcB6LOqtYkYN9sNPWhqzU+ebnG+lxjc6Zx8ZkZqspgY6MKqUCDpmp29YKLUSoSTAeC43xrCLlXiiliTz+eBZP1ovL9fL2LUlb7jXO8m48RD6sp1cB40ORYqEIl0rQ+a6hJseDYagwU5zhnXLpwk/6KJe1TnOiWeSGPE4VggODUeUAl7YmAlJY8nqwlETQAmHiMIuGwiyfgXFfV11jtNbbHWVl4UKpw199sj1zk+rL8O9G+ZVFT7tgvkqFbbLFMjY7g5MsUsVJIMND+3LVmIEM6a6vSkJKhqgwYJ9JsrYVhAAxrzTU7msMj3EguSu8edA4dFVfyveh7W8kCkAW4UihHJcaTEpNJgbWJwtlJgfMTiTOFwopSKCRPWknJaXz5ksfzKDgzlvieH38DfuTfvPG0d+Wawvf8+BtwdnK8QvaIm5Zc7dQG84Z6x23NTSrvX681npxXeODSLJ2f63ODR57Ywqc+vQHGgEufvYzZh9938jsdfGfe+o6/wD982Z24967Vq+5/tAx4IDU8jn5UlSXB+mZw9d6uNHZ2yNWbWqaY1u4giMmT9imm6vqEKl3YF0zCaWf2SSEt+tu+WqA9Iif73rGjFT7niPoVIVqrBy1TZVkdGiRr57KUYGhUDSy9sqwPFv6JOHFwlvWkI/d0IQRNxM4DQtBYxbL2RDKjIJzvPyH3hV27UrBXoNnZD3tNxossGfJoR/ruMQBZpVlIlUbDybbdDFLnANYhWMufhInUAS5YMkjBUQqPsRSYlhwrmqwZxoWEMQ5FIWBtELcLQTc5zrVsO4VnsggWcLj04HES5ONGlg6MUSupJEWtSoFxQU25R1KgEFQ1mOusYpngtUGrCKUSeOGt169v4rLwwlvHS5tDb3hytaixL2MMF9crPLYxx18+uYVf/v1P4qMffgT4xBEtE04aju6adz7yfnznu+7GW//JF+C2M6PT3qtdiGQgpQWdQ2Vs8EeymNXUMoU8kjSaqkkGnbEfnXMO3oT0XNQ/9Uv7F5X670d8DkWuDljPXpP6vhNE0Ojk6URraLI2OnM0J0NObRwabdGYUFmWDCdjgMTjpC7dLCMBnDEoTm1TZGydEiJYZDpJ/RQZZ/AQbWQneSNFzc4+k+9ehDd/7iBitSjVsxeOkhLsi5+ToHs3ci0aY1k6LpBTkVWUnZThZKxIFR5wnvZFCobSCUyVRFXSjdC0lNDGoSgkVeZashHhjsM5Ac9FOMY5WY4k6wBx+5Xs9EminxIUrd5KKXqMlMBEcWq4LkTrzM7a1GuMSF5LBOv8KLRhW7kF2D5st9sbFGsXgM0n22OyBNyQ5CoaVDoPbM41PnxxA7/z4GX80o+/JXlIXbcIKZYP/OJ/xM+96FZ835cdTx+k40TUWxlLequZNlivLNbnFhuzBhs7Dba2amxtVdC1xnxnnpy9XVO3Earc/TySkn60atfyYYnWPqnDg9KKRxZUoytwj1qu8LvRUzR1AyEFRfJGBvNGYqaJlDbOoXA8OXo7z0LVHpULMra8Ev4ogi54aJlScEwLgVlJbVOMIa+xYhSMJ42l6JWxsL5oGyUDQaaUTb57abH2Ir1HSQseh7B60TpyQfuiiZ8LgEvyRAoaHRWsDkZKYCxpUi4E7wig82jHsiZkwYhQ0fppnyJpPj8qUtr3mRn1Nd2Z66Sra+oiRde0ySakGOXxbv9IZK4/BLop4oMI1H5Vgn3k6zzsdyA1qeZtxEoooBhRhWBZYDIho9W1aYFbphLnp22VYKl4qhSUqfUNO9RHO0ncc36Kn37zd+BH3/YAHvu995z27pwqnnXfffjO170E95w/PtPQPm5IcrVTW/zuQ0/go0/O8MBjW/jME1t44oktYHoO2HjitHfv2PAT/8f/je/7sp847d3YhRgljF5XxgeiZUM5uqby9JgOi5EbZ0w3SpWTq/20VVGvs5eGKi6nHTwCkVr0mqO8DmgnZJ/d3UeDUd96RLW+SC051YlQnU7FWfTs4cF4shAMhWThJ93JF4WFlBxOkYt1LDCwttf3L5KpFMXaZ8OLxuhK0oKHmZiPMpb9lGCcPDsTdJ4mZaRN49R/TvA4AWedA04ycsXIwkNwJGG7dT6I2wVWC4dpIVBpgaIgY1GtReqbyAVPBLJtbJzZjsQUYSLOebqQt9+Dg77Lu6wR9jk6+br6pO2o50waRyKNrZBdoCgkSskxUQJjxVFw0VovsJZU9btCXCs4O1H4/Atnce7cGI+d9s6cMs6eHePzL5xdmt4KuAHIlTYOjz49w0cubeCNv/0wHvvMOmZbM8wufpZCn7ON097F5UHX+OAnLuO+511b1YN5paB2QT+k6VEHz6qmaYmV0YZSgEa3XlJ5Cu0gUgUsjmwcRK6OkhLa9bqjvDdMFLFPW+zZFuwdfNCYkfFkSA9al/rQGddWCEbtFXzWAgfLm5hlENfHCXitULDhMF+eUrSKMWA+N+CcwZiS+gxyssygz8Vpx6MIOkV+/P7RjoM0cfnze65jgWZqr7/3t7nffuUHvNNQmnQ6QgpIRQ2RyxDlWy1FqC4TIbXK23TSCZTukwYs/gIUkidSF8XtDAy3rRpwBmzs0Pg65zGblYkMm8bAeknHLpmLZsL2XVGp/PeMYPX79+Uf/qh9JDvP5WnbAwhWqiboRa1kAVnILHIlMR1JrE0KnJsIrBYS4+BtRVErGs/kb8VOrrn6YTEdSdx96wTnr+OetccCxnD+3Bh33zpZqjH3dUmuZrXB09sNNmYan92e488f38L7H76MD/3a2057104cH7u8de2RK5+TgdAyJXsu6oait9Suhsv9NF96/gBi1V9Hf/mgKNZBOIzoea+/s14UJ/4MB6Q9Hnk7n2zXsX+gZ1mIUauOs3fy+BEYlwLayiB+9pBSIlpkCCOQfMiEIM0zi8eiN/liH5K1F/Ya86MwlKN6ce25njatxFOrlFaTpiRHIYNmjfMs0pHps7JVLQMp+8gAjlbcno/tWAqsFBw7iqOI5KGgdi9GCggjwOhL0UZ54k57dMlKJwWcR7hygpXvYEaoFi33Ec3eOud3VsHZ307//M33PX8uaK5iuxtyZRcoJB2PstdHkLNMZ9U/5tdY9GpRc/ubDt5DSb70Y3HdkKsYCQGAx9cr/MGnnsJ//KNP409/5ddOec9OEULiIxdneGanwbnpteVj4rxPPekiSbA+96XqvSGl9q5iouunj65Uf3WkbR6QUkoX9uzCz8TuffPthS8/6Z0HfE6rgrbqpC6RkVjF9NFICDTSYVo4rJQCjSXxM3kjeUgl0hjHFCEAGGuJSXjenYjzyZc+cbvxvk7nanBY3c6RtDrZ5JylBWOrFClJb6ViDzrJd7VJySsGTwK0LQYWtHo8Sw8q5wPBIm3dKIi3K0XkiguerBkYY0SYOwRrj7RfqhTN06kLolb5urho17kXQYnbiNFQJtrm0n0fsnw/9jwwXd0V44zSgiK2u6FHmY1jvPnoFE+iJbHXIkp17VWYnzTOToqlE99rmlwZ67AxN7DW4a8ubuJf//Kf41O//a7T3q1rB9bg3//Az2Akvw0/+PdfdNp7k5BXCzpPLXCs65KqqEmI5eqOC4B7gNveBbKfUuhFOBYRqoU/FxCutI4DCF2/xckiHCSszk/kTkjKAa41QY1khDRW++/WSUBy0lfFVMuZUqU79TtWLaW3OMO8Id2V1hZ1mIi98zDcwBgD5ySlB/NIkfdI+qscewnd++hHnfaKhOz19zQ2vfE9bCopLqfKMgWoYmFKcG0kcCakBWO1pcyqB09CpxOJFQ+JZBm7wQfi573HxEusFAqN9Vgby9CyxyXX9lg5KISAcb4Vs8dIVd7gOenr0P4OdEN0fTF5XBZq999z9A19o0VL3lEhRYbz8ex/1/juRxhLqSSkoqjsuBAptTuRAhMpU2q372t1rUWrcjDGcGZyAjfiUfqQ4Z6v/BqMRhKv+9K7AQC//r5HUVUGj/yX3zzwvceNkxiia5pcbVcGP/XfHsEDj23gsYvb+PTHPwuUE6CenfauXVO4uFGd9i50kFJc2E0QclLFGAl/WSYE7lycO1GNGOrfZ+Lbi1D1/37Qc0d9zTGEl2NqKCKmjRa8kH5c9RYPh2Qh4KM/EqWOtHOYlhyNFaiNw7gQMGESjtYRTSjfF55sGuh7kY9x/DwcBxKq3B8LCwhy/7VpeZ8jtVe66LDop67C9zmSjzziUUoqBsgjV2l885Tgle3J4XcZSBo9hjbtG6tCOQMUZ2F/KZ0pQ/RGCNZGrvqN81I0cg/PqzwVDLSkiWfRL6G6uqcO6eql1fOCF6sBJ3d3TYjVqf1UYXzNwuhZeGSfU4hQCSgordsWJLSp3X6157XKr7z3mNXH05JtTzBGY/Gsl+K13/BFeM1LbsULz61CCQ7GgLMhy/KVz78N3gPNN9+Hh9a38FsPPIV3vv2PyYz7SooRjoBKL5e8AdcguTLW4ROXdsAYwycub+On/+3PLp3FXu/45BNbeHqrxvnV5Xl2XCnylFbHM4l3L9SMM3gv2otb3xvpqnZigbD9OHQ2R92HQ1xw8ztfFjU5OJlqssX7EyZfT02jlWCwjgjWVEk0hUdtyFjRWI+yJO2Vcx5CilQJyTgD9xw2TnAsEzX3K8p2RT4WEOvOpL1gp/P1HYgshQQcTafTI1hRb8U4SylBJQKxilGOLCUYOcqyo1bdj0AUK1YOtsSK9k2FisY8whbNYmNKMD58Rx8VCXCMdGbEBkDHvqJPqBgHVNmSq7jMACFE2u8Y2Y19ReEs0FRdt/hIugCKWuWR8H60clc+r41g5SawFGUkgsUZS5YL/WrPblDz2mRY29WSyZX3uPvVX43v/PoX4wvuuAXPvTDBSIldL7vzbOvReK9excsunMGX33sLfuztz8Wjv/Pupe7irDY3p+bqu9/z1/9/e+8eZFt2l4d967kf55x+3nvnznukmWEkjYQelkqDRiBBiYBkbOwyCKJYSSDlEGxZEJMHlRgHiMuVlGNjGZerSKiiyiROXDZgEhNVWShRLEACARbWgISERkKj18xIM/fV3efsvdda+eO3Xnv36bn3zj3dfXpmf1JPd5/bZ+919tp7r29/v9/v++H/+bl/ctrDODP45GNfwj/+6AX8xLevj+cVY8wnzYacHbohhQTZtrWQipKfpaLT0DIG6wpvx+BvAEHSHz6FXi9stLSa7whiddQCeiO4mQs0VskNXvcrbLiRc3+8hF/gYquUuBCzE1M7hK8WZLDgjPqqBVKwU2g/pwxXFwZSMOwvuvg5msbERdh0iUAZv1jGEHBQMMIiyPL8tGUL9SC8FLCM8OS/5+gVQ/i/C4szE4mQLzsXhgtzVFtkDAkqrQ6Fk0ohvAKSSFaY7/wjHNeiHEiV/3+PVwQ1TQqOUghq6uyLFgpNtgyLhYAQppd7ZYIlQ5i/SLYGOYb5sctJlSqpwb1UEEWZrA+0irlrXPDeMYk9Rg3Zl7SLypvwdsB8nyqOmwOvaBmqaLQGS3s/LgsJ+i+eKXahIKGQiXymSs9U7XkWcGykQmpsvuZN+NBPvx33nb85/6hSCbz8zg28/M4NvOt19+LzP/rNeOvfej8uf/y3jsWbsjPHn3OxduRKCo6/9ub7oOV/jF//wB+i+/THTntIa49rX3wCv/Gpu4B1IlcIygsRBOVv3DL2pKMKnLy1BgBY43M4IPuk6iiV41aVrVu90dyMfD2sroqvJTUgLLacMUh2OJfjpO/ftE9Hie2gHCzLGWwWHmylpca/nUSpBZrOQGvfGscvjpxzOE7NtpMk55Up5kDeSIPQURoElish4d+XkKmeopIdtFzRCL+HRZejv/guy7XLVZr8tTCPUZGlcJKKZfqhSjCF4iJZDpu53mSsEIFoDdWzQBSkV2dCu6Oe4pydj8uPxZI8KyDNScipEpLIlc9TK6oiuqHrgl4LPmH5FFrryCfPt8gSQqBrO4hOYBFCk8GDKxAsLmg4MbS89KBkP2PpZw7u+vl7juL4Lzp0DT74k9+JO1Zg9XDHdoUP/uR34vXf9aFbH9cpYe3IFQC84d5t3LVZoS4lfvnvfezmFrAXI57+PD73+PoQq2CQGG5EIYejlPR9oQQaZaCUgDEWQook93MDBwUwr16Fm2IID+UL7fCUeD4GgsNQ05F/N8j5OGobN4OMaLHBV2r0i9QqBSe/EIfFFgzefJKIgnXMl6QLlDIYTzpfUSXQSkvl+x2HFSKSDtbLq0Mmn2RzmisfLFeQlighQJqbWGEW9sGwdCEdmtIeqY5ieehxSQgpfI4QFuQ+lBbUx0BW8lydqEJm308SjDGw7NwPruKB0NO5h57CFpS1mCPIGWCzOV328BN+zpPWVQEIBV6WkIoUv7IufRK5QFlKSCkgBPPtlWhszgHGuGhE3HUWnHPqzdm0sNaiZUgdEIA+wRqmB+Qhwez34fVI97NgndGfr6GS/KIDYyhe8UZ806MP4v7bpivZpJYc9982xVv/03fjI7/xGSw++dtnjgOsJbmaVQqTQuLnv+/V+K3fezu++qH3n/aQ1h5PP/bv0JnvghQ3kmNyvAihJOuA2krMCkk98pzDsxMqgWUAFgsDIVisQOraZDxpDINzlkKE4UaWk6xhJVKPJB0RMgx/c7NVZoe2s4RoXY9gHbqB52GIFP4Iql7yRcocoHm2MLN+ddlxLs6Cp6dzlakIeR7FVtXAWIdZpbxHl8M1LaNfl5QSoRqSC05Lbk6cA3kKh9Zlc9TzM8oIVNhGVENkIjp5onSuQAVSFXJ0YkK0SZVm4d/DPg+R6YwkhH2FtjfZPBbeG6n0yeGhwe/QG+m0W6WwjDSEpHaqEuUUlhYpXB1yJRPB6pPLSHDDnMX58vMTktWrCaSSqKc1VKGgtMLGRomiIGI1q3VsKVMqEY9NsHQ5WHS+wbnBlSsLLBYG83mLa1cUFvMFDjinVlrNnOYvzDHQPw964+/nW4GljxVaBx1yYz/RmVpTOIcfftcb8F+85f6Vb/p//Q//DP7uPVt439/86Mq3fdxYS3IFIOYh/B/veRQf/gsvx//0v/0+Ln/sQ6c7qHXG/mW0xkEezhs8ceSmk0owlIJaRsyVRaVDebdEUVBlmVSy540E0CJswo3aIFM42GHFKiAs0Hk7Dpe/npGw6xKoG7htHqo+yknAEdtaooLkT8gheZbazaSqsnwBPEmVI6obvTHkylqa41L6BO5YYRYWZpuUq1z1yBPbe3k6WVI0C75gWUFATphCVVlYtAPpkepocmVMWmxjnpX/m5CbA/h5HIS2egeHp/f5atc8CTrkzkmfN8eRhQKDDBlEsBXM1c2Chf8Mai2INCQCkcKYebHFdXKMwgNMPgchFCiJTCmtoEuNotQoS4mNjQJFITApJDZrTSamggxrhV8PjKWWWtcWEk1rMG8NnAOUaiEE5fkBQLto0TofhhaLNK6hzUs+3uFHyK7Joz7rUYfgrORfrQpve+luP1y6IgjG8O337+J9K9/y8WNtyRVAF9Iz8wZPXW3Rtcdc4XDW4Sz2G4NKnz67Ut43JywkW4WGYJQEeq2xZKioBBZtCg3O55TICgd0beerB91yb6RebkxY3AYq1rLX4810mao1yA1Z9vrQeJTlry0hWcPt5+GkoHaw5AIdG/1G1YMaJi91gs4W5eO8j4ftczCAk7LhHABHpEE7jtpJ1EqiKRwmWqDpgrGoQNfZaEDJTaqkY9abUAaE8FwI34TXlqmK8dgxnxCdfIlCsrWUskfmQjcAOEqIbpsWzjpKtF/sU9JzO/fJz90NJEFnZD+Mxbuzx/J9X2EWXNmDChlDa0vm7yQWZeYJVfzdv5i34Am9B1VWRZhXDIacpL7i48lo9L5K5zi4AIoKkCoqVrrU2NquMZko1LXGxe0K00JhWghc3FCoFDmhV0pE2wryz7O4sjDYby32GoMv1xrXDlpc9Y2m9/cVrLVo5g0aIdCZFuj8OIJaGUPA6M+l/zw9g9ehsofDSmPi/S8uUgUAmO3i0QfOHcumSy1o29Mdamd3hrCW5OqgMbDW4Zm9Bu/6Hz6A+WMfOe0hrT8sHbN1QLgZW78Al0Kgkw7GWcwKgc7Q0+ekoLBR8EZy7ghvJIh0887VqV5uzrDMelC+30uWvg6RWvZaWCyATNHIt7XER+fQdrNFufd7/yk55LgocUQy+yncvwMRIILnonoVlA3BWLRqkNkinHJ1Us5VJDxx4/44hHyrQJ6Rq1Ys/V3uh1SUkZzqQqewnJLJjwmIpCpUmnHBYyPi1pVA12UqFusnvke1Iz8gw3yrFE4a5uqkJs1h86z3/TSRn1JJVSPlSoTDzROhPzT2YeVk79pEnwwLBSl9RaWW0IVCXROxmlUKW7XGVkWGqxcmih4wOFUvhtCpdQ6ds9Ciw9xYXFtwzFsXK2qv1hSWVlrFasJOqETa86rGZXMKRAUyfM5km8Gyj8p6xy+8/mJD8fAjeOM3PXDs+/mW738Hfuejnz1TXGAtydUnv3QF/+aJZ/DxJ65g/vRTpz2cswGf07QO4P6GTOSKlJjKkaPzrOBorUDnHHkj2cPeSMP2KSbcrENfuuClE2+QmUP0MuI1JD7Dm+CyhSL/HQAwSIaNrs/2MHl7riToJfvMDVVDpaDIvkLyc3hbUjxOTuWI3xEWHNcjD5L7pG0R/IBCUjePRGsYVoqSgEFf+ei1CYo7TQu11BT2E6mqTEgBXWoy75RkHZDbHFA00MZKMy44TGvQdZ13kucUKmQsqVbAIM9veGAG3/3EJPWHJWIF1icycTOntyIPFazwWq5W9sm9J/hDks/Z4Y30NsiitUEgvtGqolKYlhIblcLuRGKrJHK1VWgUQqAQHKUUcVehc4HiHAtjUAiO/dbGITxbNjDGQhcKpjMwncFCaVIjQwVhrFDNrt0lVaDDuQmn69Lj+CLFSx68A9/16tuOfT/v+Mbb8NTX9vGpx459VyvD2pCrp64s8KHHn8L//KHP4w8+9ji6rzwOXP36aQ/r7MDZtWiXApCdhnah0syhUzwmyS5MAcVblJJhr7FQkmPemOgn07YGjV+IgzcSYwydtVSVlCsKeU5MrD7LBhL/RmBpUjJt/JD6sJRc9SrMMnfoZW02GJbvr7eP9EQf/HyE/1Ihod2HlkIye1IQTtZTJ4TVeCRVSZ0M1YOlEFhIi1pxHCiOufIhTsXRtilhP4QGnXMAHxxfLg7PWT5PsgCEgNCpxUxZl5BaQimJyURDa9pvWUoieNlxarpUYXbtWoOmMVgsOkgp0TYtDhiDaxugbdIcB8KVVxfmRC/7nlcK8uzYBK+yGNZlp7cg50ac4fcwnpxAScbj2JUIYUGeKZIp6ftQWDA3CxWKviQRKqklirLAZKIxnWqc2yixOdE4N1G4b7vAhlaYKoWdSsf2Mkr0D5axDnUr0BqLeWfBGcNm2WJaCOwvOkjBcO1aqhZczBfoXElzl3smWSQmCQyu0f6xCS72Q6L8YsdbX3sHvvdVdx77fv7SK+/AZ742x6f+5bHvamVYC3I1bw3+6ce/iH/+m1/AH/3yL532cM4s1qXjeXjC45xBOCJbod9g8EbqnMNEczSdQKmF719G+TnGCBhDIRtrLVjeMiVXrHrKVSbzszxkF/IqlpTvDwlVvlgOkfcxO+T2zg7ncSxLgu7l6qSf81BZ9Lii+3umfGSq0c1PyUpB40oKZQiZCJYWY+7zjVKVWaZcZQu5AzLlYGCDEOAPLhAAACAASURBVOYsKlYSTIjY800qSQnRBfV/m82IXBWKkqJDUj1A09O0BovOovGtL+bzDpyzmM/ZLBp0TtGJyr1qxuUgsT3L0wljy77nVZzxOhiQqaHwk2/uNJCLUUA2dlDuFUdIaM8J2LLwbnY9Atl1xYCYiyZ8bqGIJqvTgr4mSmKiJKZKUnNkyWPBRHiYcI76lCKOiWEiJTrtsOgcqkLgoAmmp5THKIQgZTLvXciWKJGZCjk8TwGv5GHgNfdilq0A7FQSs0od/34mGrdNj38/q8RakKu2s/ipH/sZ4Px9wOZtwOUnT3tII24BgRT4eyo9wXMynyyEQCUtWksqx9y7QLdeUZCSQoTGiGQu6uAT3DOSNQwFDmV+AL3QEjB4Ql1CqLLE5KWqVSBWeZm+380hgtcLEeYr6/I8neiNlOUoBQPH3tCHx/oE7u0hehQWV85IRKT9p9J9yYNZLEu2A2JAsAZVZ3EO8zlbZjwpBJigc0IqSWqVVqgqhaKQKEuB2USj0mRkOi2lbz1D+7EO2G8M2s5i0Ro4AMI7fy98KwypyC6is5bUlji/HQ5VmB0qUOgvyEOzTRYqBY+Yx9MGjdFF4hy9rjKFMidYMaGd3uzVvXyDh8/xkBvHBfeqJj1YTbTAVHPUUqKWRKx0NF+lOQzHyzoGyVORinMMlRRorMVEG9RaYE+LuH0hBYKbvBUDe45lCnWPJOf5VunPY9Xni5xYAUS+rXWxmvO4YNYlLHMTWAtyNasUvvyb78PnntrD73zlGfx/n3kWv/fYk3jiA8fbX+gFBdYPgZwmYkWZvyEZweiZjwF1J6K0fn5iIDjD1bmJC/Bi0cV7dV4hKoyAAeBs5qPTy30avEbv6g8sJ1Thy4eawPs34vzGGSrNTGfgjC/fb3xlWcsS6TLd8hBhwNAbiTFA5GHBYG3AUYj+wta3MDisNhw3QjgphZC8W7tXJgshUApvJto5HDTUzLk1Fm0roqFoaGrsnKMFDxbOcp/MIgDLkzLoSZWPy0BpRU7edQFdkGK1vV36vB2F2zYrTAuBWSGwXUsUkkF7cmUscDWrMKu0wNWDFldLKqrYl+SzFo5x11Jz2WjZ4Gz/XAsLdHYuhXOHLCgS2SRLjT4ZiQTlBOdwGVj8T1KbkwpJXmta0s+hEXVw3I8tcGzIWxqEBcP8eVIcQrlaS5SlRF1IbJQSW5XAdiWxoRUmXnkstYjhSGq/RHDwC212bcw6CQfKOd0qJeatRVlKLBYGWouYk2eNSpWMvRzMRALDudZTkr0KG8K8UcFDug7PCtFijGFnhT1oS7lEoT8mTPTq9rUzK459ztaCXAHkyPrS2ya491yNt9x7Hr+wU+NnP3DaozpbOOaHh5sDo3ttqhxErB4sHEcryRdpojnqwi/CnYVSAkpRawshBKyw4Da1TznkfRUT2LOQRK5WBYT3+R5wwfQRWscn6lBhlvcyC8n1zjpygPYhy9CuB9b7KYXcnNw9ftnFmyfPeoUsqDm5P1hQrWLZ9xGbO24cytFBUqvou+uFCLWvFtSSVIdcvRKCw2Rl/DGsxPxC5yxtyKaqrbDY5XYVUsoYVioKiUkhMSkltmtKhp4VAtuVQiHIBoHOPYdCcuy3BoVkuLqwvqyfCiraNl+ELTohABvyvjJFMnqo5Qok6ymQ/bkMocHM/PVEZ3A5WJAj89+DeuU/UjDODH5roYHzUNV5Tjk1KyLpKbQiNYfWvrm1Gp7/QTHzx8/Bpz74153LvNa85UU470JIOA9J9/OrgtqWVRhn8wiWQqHxO6Oz4KQfbFYNyU+OEK0rjsOTa4i1IVd0kQhAAXdKjr/86jvwll/8Cfzkr34Sj/2Lf5H+ML8gRiRwcezS7M2AwgsMLvQv44DIboalEDH/qlYcjabQoNbkexXa4lhr4azDodYpYUFe2twX6OV9AP2QX1CrhIhqiBBUHh4W8bBwhPJ96okHKuPvOJpIrnLX5xAyzBLs3SD/BDj0pJyrACH8Qoty33uo/6ScHetjvlGEhThcdWEMiWBlC5xX3Qq/YGrvOD9Mhnbc9UiWi0TZpqcEf4wSYaGfiWBR2KdQApUmgrVRCmxVElMtsKkDuaL5N85B8pbClpzh0gFZl7QmEHqvrgiBjnf9sv3wfUiY87ASQ/R/yt3Mw7E5bZL8XBieV3kOXewvKFjvc4UHgpRAFvKYeCpE8B/0kOrqj1HIp1IDlZbCkohj4DypRM7/VzDADs49wXjK+WNpzH0iHx5uhm160s+9cCBPlZ95fmGu4J4V1Sqgs0t8/p4nTnLJWeW+TmLK1oZc5dCS4xtun+Ebbp/hoQsbuPwfvA6//rmn8ZN/42dGYnUUuEBdrMd0Ur4Q5bnAwiekAgyUXxVIw1ahITnD3sxC+5viQdP5J2SOtjVYCI6Gcxhj6OZoHUxQrUKoBjgcIszbpPS8dgS4Tg1ii6qIydFlqSAlh9Yi3jCtdTCG8sH29xt0bYeuoXClkQLGWYA1ifQz3idceSJ9XmHm1TPmyZxSkvYthe/DyOPTeHhyP+kqwSGCYmW8uiE4g3SAEz6UaR1qKdAWFq1xmJQSnbXojPNu/LZnt8E5h3U2LXpDXysgks6oWikZFauqIifvzVpjZyJxcaZ61WbSh3GcV64mrcR+1+Fa02FvasEYvV6XEsZYKC1hjIHoaF6c9epVIPRZrnYvV08k81DpiZ/0bvXU+ob1DUSB/veMhJzUPFKIN9CV1EvQ2FTlGGwQptqgVAKlEphr6StAhW+sTITXcgZqWTRojJydszlhoX2kczxv85QeMPx3lpLIrQPgPIF1ifTITL0KeX+9PD+ekfj84Sbk++X3B6+Uhr6GSoQ5pK8wZ8PQILLv6wrOgLc8uI1VFd3Nu5Nbjy/PzfX/6AbxppduHrsYsR6r8XPgrp0Kd+1UKCTHr737+/HlL1/Flz74a6c9rPXDZBv6BOPfz4UQcQiLx6Hkdt/4txTkfTXRHAsj0NrkfdVZB+1701kr44JsOjIWtUAWclhSzRUHk+VZeSfvQKyC347SCkpx1DV57wSPJICaxHadQdMQMWi8EiIbatlj8vBR7JU3DCXlbUCyG3uWbxUa/ebl79GGIXtSBk7nSTmoV4whhntTWDCpDpoLaGFQKo5ScRxIAS1NXJCltKmUnzMwx3w1KJBUj6QIHaraypShYN+hJI9EgBpJBwWD98iVsQ6lE2iFQ6kYSkljVJmylof2XG/OGFJT6eygZOpabsOQhwUDqaK30LbWbhH2AwohXsaIrASCGrzL8lDb0LuMtnNzkYX8vE6/949P79+HX9m/JSUVh8d15AAG98xwvmXnV2hJFRSx2CUBZ0+1AoDWrI4QLbrVqWDXwyp1lda4Y6+uX3tyFfDAxSn+9XvfjKcuz/FPvvNBfPiPv4Z/8/7fA770ydMe2lrgzte9dm3CgnR/otWYgxYY+Ju2lTyGS4x1UIKhsQW06MgjqbEotICWPLZOkbIjRcFXDzJGzZ47B+9FxKmiq5fM7hEUBqVj7o7SKlac1ZMCZalQFALbmyVVL5UqPi3PW4Oms96Li2E+73AgUvl+1+qUumKyFk253xXL8r24JNVKyEj0khrjQ1xaoFLe5yosZjnJyo7zSWCYd8UZg0WoEOJwIL8yB2CqKbnYAdiuJKyjPJnLlaLpcQ5zTbedru0Qmjkzy/y7cvKSLV7ZghmIqPD5OoVgqDQ5edeKws2lEj73i0dyFSK5xgnUUqBWNvZDTKHL3MMpI8K58STQL4rotS+ieSwUzWGtOEqfX0R5dLi5xf8YER6CgjLKmeuF6wohUAmBmbdLmLcS89ZAa4muszCdr/6znHIhrTvs74ZkERPzF/180GvLF81cFeq/Dl956T3XBv823OdRvx/aaChKECn3LoSeS0WEvfQkPg9fLgsPnva8PheU4Hjkjp2VbvMkPu6QhN8qHrljB0ocrxhxZshVwM5U46+96SV43cUNfO5PL+GJkVwBdz2Mlz24e9qj6IEBUe5gjMqX4UNJDhRKCv5XlSQFyzqHjVLAOAdrFa4UbbwhK18mzwW1xgEAZrw9QwhJYJDzEQeT5e74EEGoWlPe7LIoqHqpKsgtWvoLT7cGB00Hzhj2CumVLEq2N8IcVjjC587DhFG5yqqouIxl6RSC4JBSxMTeQnDIkCS94hvL80VOmmmBO2woqjn3hEeg1hwHLcdcC2gp0CoLKU0sVIhz4Tis9x1yeXLXDY2p7ycVLARC2JIHNmpT0r3MxpsvimF7+fdDByCoV5kRbFQfMyNYKTiKYCfAeSTHGCgfp40YIkRSmMNxiz0RRVL4ekRU5ESUp+vQZeGbjFill1xGeJdPtgvlxjeB4abCvSOcT27I5HKPMv8Zerl92VymBtw8XerrcFHeJDhn2KxX5xd10FosOhvvl8eFeWux16xOJdusVYxOHBfOHLmiEx145e0b+MUfegT/iRb47K/9avqDm5SlXwi48JK78P2vv+O0h3EI4ck4eOiEp2IHAI6ejp1jqKVEuAduBnLlgLqQdAP2/QeDF1Fsj8M5TPQiSt43yYuIZTfQXPlIREtEzx2OyhOsrUpCS7rwri6S11T4u6bJK/w4bG8/LMv8zghWTwVhvdyOkKMjgzO7DKGYfogj8IR1eEoOizFxW5eIi2AoLNkyVIqj8j5mpRZoOiqNJ6PYlNge1MjnVBeyfwqL8/DPWfgfy8KWnObA+deApIrw7LUb/+D5ueXJUlyM+/lWgSSHpOzg8h0P4OEfTwyHjnfG9vK8KOXzxbRgKCRH4a+BQDxSoQlwKFHcI+7H50sFBZP6icJf70nJuh56RC17PaikNu7jMME64mD0iXK8N6RQfSE9KY/k/WyGBrXkuOdcvbLt/cmT1/D5p/fx8F0bK9vmMnz8iUv4gz99dmXbW+UxOApnjlwFXNgscWGzxP/5I2/G5b/yRvzuV57Fe3/4777oiBUAvOyh83j7yy6e9jAiQqIs4BUrr3Q4Bp+3ABhGqlXwxFI+Z6az1nsVdeiMw9UDiau+wfP+fhsToruGjB9ZRyFC8vE0yScpV4uyJ5Q8dycshqHqbFpKbFUKt29olIre8+y+wSXvlVSovvoSqsN6SkavkhHoVS0GCwipIbQmI8xCkedPTT3WNkuBjVJgqmQsUQ/hJHGKoaRc4QiKJA8MBRxaOjDmUChSFTkYdqs2hsOuHui4EB0ckJdZ13Tx8xhjwEGO/C5bCZ1zYI5FrzFnnc/Doy9jHYwjHysXA5JIRNT/MgzdAIgWDe6IryMORFyIqa2LglAitnYpS4GqSNWLlQ9ThuMQ8w8ZO3WSHC9TPybHyBQyGP5qyTGxEq1x2KokGuOw6MhDqm2polcqSTYlvIW1lvIag48U4H8WvhDF+C9LCrB1aK1D6xu5G69eU7P2yMWWIifYpILRXLZ+m50vQgkN4RPJsv01YjCfQqVczLKkeawLH6qXfi4Fy0KDWT5dOKYvIlybd7g0b67/h7cI6R9OzhLOLLkC6AK7Y7vCHdsVJoXEd733B/GZP30Wf/xvPwN84Qx1eHy+YAzlw4/g7a+6gMmaVAoG9Ewng4blE6Gd5x1S0MKsZFpOp0p6Pxtgs+pIuYJDWZJiNZ/T53TOQbbpM9vgjQSTfJJuAiFsIzgo2dnbMewJG5WkFEYKH/K5DsAgPJmFkSBUzNEJeTpKcTJPjJWCqVoqqFe56eRpqR3RkyGQA5eFBpmD5AxGcCjrvNWGw1RbVFpi0VlvfZAMRbnlYIb1KweXEJt8gbQDguW88tFXLJZ/hpj/g2yBxmGlI4aQ8hyiMKfh57AgB5+0kHOlBLQiBTKE1sI8RiVylROzIoRzm4pPslCv4FkBAIV4lcoMRUWoGMwqZYHEeriFczz6xfWIsU2kKn9bmIvhmT4QwdKXc95IFJ5wJ/JlrV2uXg3D+CFR389lVCB9teCQINN7V3b4TxSbr38rLj/2u8D82i1t52DR4WrTXv8PbxFf3Z/j6t4KSFw1w+bDf+bWt3MDWK8V+SaRP+1d2Czw9/78K/CJr1zGX/nqZTz7hVMc2ElBlXjrWx7Cv/fA8XclvxXkagdjgAADfBUVgBgedI5hotIpuVXJeDO9UlJCdFF0fvFTUb2CQ1KvAPQIFs9CdsjCBDic5Jo8c5IrdO7Bcwg3KpL2Sr1VTICWkiwgQgJ0IQUqTUmzmosesVoWEjxthPFQ0QLNnxQMxhLBKoVEKx0m2qLWHItOoGkp4bvrko9Z8JaKlYMZwnwxZOqVg1+gLYxz6CwpV9b5RRXLVY+4MHsiFr6MzUmbXa5cDUO8PpE95u9lCdBKcBRSxARoxfnATgMpBIfTVTsCX44hLtD5JZjrk6tIsJgPDYYQqIRpTWZ1sOTBJgvNxXwrb8vRWYfOASYnxr23OjjHnvMYBaUrqV/IzpG032XJ9kOX/ZQ7x6CVgPIVpdrPo2Qp7ByjoVifa/JG8erX3IWPLRocfOK3bmk7Tz+9h088uYfvfMWKBnYEPvTZS3jiiUu3vJ36wW/Eq19z1wpGdH2caXKVo1QC5abAt84K/NHPfDd+9bHX48d//mO49Dv/L4Vj8kquFwIYA5oD/NVH78VLL0xOezRLkW44dINjtBLTGuUACA7D6WYb2lwAlOBOeVgOm6XApQPKvbrq1av9fYH5nIhV13RUdcZANg3WwXQc4KENTbqhJuXDEhmzFNrIn6LDmhqSjmNSdNzGklyOEIbsf3j0qwQFoApAFRBao6xLFFWByURjNtHYnhbYnmrs1tQGZKoldEgg5inXo7f5UwsRAsGWIYR9ZRYeDH+zVahohnpxw3h7CY69RQfOOZrGYO4Too0xMIxUj2FoLioexsJyCvd0nUHbCjStQdMZzDvfEDxTs8Kii+znIKYYaw+FkIyxcT/OOcCYwxJYMKNVGkxpKK2gS42y0qhrjVmlsFErbNcSM02NiGNFoshCgjj9BTlXCcNcOk6KsgON2Ui6JmZaxRDeRqXRGTrOV68uiCDPKfTXOQd0vrgkhuFYDAtaQ22k2pZUzMY4dMah9US5F6Y9QhZKSmNQLRHtW1rjYp/SYEYcTYCt6d8TcqIsFYQiW5ai1ChLhUlBTYk3Sl9dKqXvecgzBStdl2eJX737kbvw7OU5PvGJW9vOs1+/ik9+9dbUrxvBlYMWzQrCj/c/dDve/cjJkKv1MEZaIThnKJXAm+89j//rx9+G4hWPJGJ1ls7+68HfFB++ffOUB3JjSAp89uTnSYPMPIm0b9paK4GJktgoqPfYVqUwqxSmlUJdUz5EUSiognJdpCQvLO6TbHtJ5EO4tGDHJ1wfVkhPvnR8Q0WTHZCq58zNyc+z/MlYKjA/ztBjTWuqUKy0wESTQlAIAc35oKItO4YrnpubAcsWknwuGcsMHUUiE5WQqCU15p1ogdrbTRRFCodKJWMOW+6dlJOPfljQLg0tGZfmK05LL9yUKRwuC0nZ/rZ7IaReWJClxZiLXtuk8FmC2WalkgIpeuGk9SBWOXqnK3JfutTCKPiI1Yqj8P3/eqHBrMtA75pzNlo05Mc3n7vOH/88lAccVrGWIV6T6M9tnjDfu04PPQQdDtWTAklheu0VyKBcpXY8yJL6zl508E337OJl927f8nZOzvh2Nft6+X07eNM9J1NZ/4JRroa4c6fCnTsVvu8vvBb/DMDi0rPAl//4tIe1WugKO1N92qO4LvL8q9RCJCVEixgK4uhEup3OVCoZ3vL5VyE8CADzeRcXBtMaUq8YqVeWWViLpCwFxBABevk7/Rt9nsuRbuDpqfo6uTlAIndAL/k5Ny4tCkqArgsZ/a2CCWZUOXhWncROL6E9R57cHqYztDqKfSS9EmkdUDmBiRJYFA6NsagKgdZI79pOx78JrY6cAzPMCx9JuQr7HObtdJaUj2DlESpNw9wB/RBhnpsTQ4Igs9j8vFiuRqa8OdbztpLe3yqQZCIhZKhKSkesFPRfKZx07NN1Q8jd2hmSMSxn8G7tAqUw5Cfmqz/1IhBkemAIPTejW/vQ0Ddec8vIMfrX3RHjdEj/2OPAftvGpus6hB/jdWoHW41kWR4K72rvtVdKFrsl9E19c6I8PI7rjwsbBe7YKleyrZPo09e0pHjeKm7fLHBhY3WNq58LL1hyFfC+v/gw/sc/+zL8+qefxH//K5/Epz/0G8CVp097WLeMN7z7+/GL/9HrT3sYN4xhiBA+eZw7AOA+x4NuftKkEGGtBGYtXVQ7NflNXTpocfWgBWMM83mLg4MOVzin1jRth0Y06LrOhwgNnM+gj/3NkG7yJgsJtZ2NFUzGOsC38OlcUjhiErU9QrnKw4HhqViVgKJQoC40dKmxuVliNiuwMdG4sFHgwlTh4kxhp9SYaolSURscJVjvaXldFuSwGHOQtYbgABx8rpoFZxzGpryxc1Xh/ZIY9hYWhRRYtAZKNZDeMJYLHvPorLFghno7RjhkVWdkZNkZi8768JK1MM4m5cIl49CwtjoHn6dFpMz4sKAxLoaKXZQpQ/jIzynjgNSA0tCFhioUiqrAdKoxmxXYnGrsTDTOTyXOTagVT+GVWBlUoLg4D4/l6WBYBcqjOWzIhaRrZ6ZlJK/nJ21U+65MNZwDDvZVvBa61j8UGSSSGlQrf+0Y49tK2VTh16/c9AMMt4vBuFOYN9k5BDUyhCzz/Tk7eACKeXMK0D68W2hUPrw7nWhs1Bo7NTUEnylFYXr/4BMU5bMYEgTooeKurVt/MH/2C1/EJ/7k+KMn/+qXfxv44h/e8nbu2tIw1kGK6//treIFT64A8vb41gcu4Nm3t3jvRz9+dslVaCAL4O//xVet1AzuJBEUrKR6wNu3pwpCwPba+Ux9ovtOTZ+fgWF/0cWWJW1rsPCeO9aQQWV40rHWxjv0soUsqVNZeX78tyystOQ1xrxvV1SqMh+kmGulk2JVKOhCoaokqlJiUlLJ/kYpUCuJQohoWhhVKxwe9zo9IQfCx72xKOcMAohtjpzjsUl3Zx1mhcDCONSFROdz3oKPmXMOou3f+YJyNXwthnRtP0HdIVucnwMWeTl/UsnSB/O+Tbm3lVRgQsR+lLm7fl1ITAruFUgixmEhDg2AexWfazKFyzyvAnEIIU0KDZIVQa05GcQ2IraLklLCSBOvPecOO7YfDqln8+hcfz4Q5uL6B4mULrpmE5m+gZBgFt4NlbthLgtF6mPtw7syOw7rWmByM2CM4YGtKb7pB96Fj/zCP33+G/rKp/H4H2+tbmBHYX71ljfxTT/wLjywNT2x+XpRkCvOGSalxLfcdx6//Pffjd/98hX8nf/qH/T/iLHDyavrhIxY/S8//+N4yfkJSnUC9HvFyEOEQfWgB2V33RAhA8N23UVCtr/QcQFoGuONHIlc8Y7yQACAWZaYEUOsbHqui4yUj+X/fuh9IbeLi3QOZXlWUtMiTMRKo6oUqkphWiqfMCsx05Q0q5aUfLM1XJAD8suGwYcIGLxn0mEX/s6SC39rHZ4pZCwiKIo2hXZUkv+XltAPkC/SeThw6d8ikWj6/ejqUfpQg+a+ot+XkhpIU/JzpSVmhcBEce+HlPLmRMgzDAtzVDzWY0LzkD0DkVnBWdbImaMQDqWgsOdUW+xriUIJNIWAVAJdJ2CNr/50LnleDfIee4UKrt8KZxV4zvkEMrJMc9rrNaqIYJWKciCpejd5W3GGOJfr/MBzPXAG3H9ugne+4Q585BdubVvtk19czaCeC+LWhYR3vuEO3H9uktseHiteFOQq4N5zNe49V+ObHziHd/zK38G1RYf3/8nTeN/f/Nn+lb1ORCuMxRq87l3vxHvfdj+++1V3nvaobgnDECHnjJoBO4CBKggFJwLWGg4tyf9o0kkIxrBVtDg/6VBKjkvzDlfnHQolsL/osFh0uFJItC1VJC3mTaxQCjfbmFuhZK85a1TR/Bh5IAjZE3x02vZWCsLry5ZTI2b/ZnApY2ubsi6hCoXNrZoW4onCnTsTbE40zk8k7pxpbBUaG1qh8snC2jdvzo0K+dotyGkeuTeJJRUvnLY8urcbKyE4NeturMWk4Fh0Fpe84WYwiZ3PJa4yFkO8XdPFvJnU5DokvYdxHB7bUVdvVNmC0gYW1c/cnTvOpUsVn0wI6JJCSPWsRlVJTCYauxsltqca56caF6c0l5uFQhmSogXLKsx8IcDKZmF1CARLcAZYFx3aAbIjCNitVCT9l/ZLcM6wt9eCc4a5D8+TcsxT1lVGRobn7ypCa+GIhuOb7yemA+QPQIwBRQWmKExf1iXqSYGNjQI7U/o6P6Uw/aZWsdBGy35S+7rO5fUgBcfduzXeas/f8rbYzgkYWNtbz7d6633ncffu8TuzB7yoyFWAFBwP37UBYx2mhcSH3/VOfO1r+3jyi1/D4o8+uj7ECohjuettfxb/2be+BG9+ya1fDOuEYZI7Y8kHS3qmw4IDOKgxMGOkkOxObGwT07QWSnAcSA5rHRYLg6ahC9IYi64N/liuZ/oY2pUIkSR/yUN7lH5YRHCWyFjww/Hkiltvogi64UolYyVZURXQBbmw17XCrNbYqBV2aoGtSmKqFGopfY5VCkFwvr5Kx1GgKaPFjHMG4eDL+oORJDDxNhvBx8w5h7qkWxFjQNsqNJ7owAVPJHuoNUkgukvbAy0ZWz98ST+LSKxY6nXo92MBIlcMkdiF3JyyJMUqOOvPfHi3VhKVFL0Gv7HiczieNZrLYWiQzjsX51Bw5vPGGCopsFAWs8KiLiSa1qAoBIyh3pt5iyprRS8kz3rzlQhyTrDSPB59fEJLrZzc5MQ5ng/Z/pwQgPHkKhjAShELTLSWsbik9gpkIahScFjxOWybtE5zeTPgjFEeYfc8bQ7O3YOXPHQC1gb7t+hxJeSJz9GLklwFCM7w8F0b+OB//i24ctDi333xMn7jC2/E575+gF//8GfxzOOPA0997tTGN3nNm/GNr70Hr3/pLn7ibQ9CSX79HMLbqgAAEelJREFUN50hXNcHS3II6yCDiiWpaepESzSdRSEE9iYd9tsOm6XE1YXBtYXBM7XGQdNh3hhc229IwVqYmOQaFlMpOaZTjbJIbS5mBTXcLaWAYAyV4phojv2WY1oqdIZCGfN5h4UUCB5NIcE9LCBKqxhmmM0KVJXE+a3K+yBpPLBbYLuSmGmFC3UBLb1Du0qNYimclPUxW9P7d6o0AywoKZpxBgVSroSlRTYsUBdcgboVMA7YqlpcOqAb3968xbV5B6U45nMix/v7MvpPOUfbrSrtKy1ltD6oe0aPobluctJ2LOURKR5MMalXXqkEGm/t4WwKKYVcvUCkpZSophXKUmJ3t8a0VtisNe7eqbBbUxL7ri9IKPy4lMx8yvh6z2VeMQif2B6GWcjw4ADslgUko891ad5BC/IuS30jDeRCom1atIs2XnPhmqDrwvf09O7nirPYqDwnXXmOmv81vhAVSO4bTHNv2hrMXJWgByglYa1FBySTUy5Q1AV0oTGZVZhMNDY2CpzbKHFuqnFxQ2G7JBVy4udT+QKTHqnHes7ljeL2rRI/+lM/hH/w3/7s83r/9v0P4DUvv7DiUR3G9/7w9+KDv/k4nvnIB5/X+3/0p394ZdWRN4oXNbnKMSkkXn/fNl5/3za+emmOqwctfhvAM6dIrr7xtffgx77tfrz2rm2f6P3CRQzx+Bs7B+WpUJ44g3EAg4VRApxZcAZsGEVNZTlHO3OoNCWgWudQaYGDxoBzhqaz0LqLPc0A+Kas1Kw5fimeuWozCEY/l4p8twolUGnqf1gUpKBZm6rM6HOQqlUUKX9jY6NAXUhsTwtsVBJbpcROrTBVZBgawg3KjymQqqhaYf1v4Mt6D8Ywq1c8nE/215Jj4iRmvkiBM4YrcxUJSNMaCEEkyzkX5y2Q15BErUMINTS7jsctGXVmJ1YWXgUE5ygEQ+G91cJib4zM7B5oTkWWZ0UeawoT77u2USvvw0a+bCHXSomUa5Uqy87IXAIU2mb0S/gMIX9OCcopa6zARinRdA7TUsWK2v39lB8TSDGAmNsUvaS8TUVM/Gd91/MbGif8fLKBZ17WDD0ozM45GKRrNBSYlCUpkFUhMfUK5KwQUYHM5zJXSF8IUJLjVRefvwk142QMfNyYt4bsdm4WlJ+AV12cnLg4MZIrD3qqphDP7Vsl/ptvewDX3nwf9ttH8Zln9/DRz13C7//hk/jCv/5Xxz6WP/cjP4g/98rz+IbtGW7fKs+El9WtoOcUTS8AoJBEKAGiUB31rGMICpbwrWoYjHMoRYfa54Zcawz2GwshKGS4rwSV3Psk2hBanJQKlTe2nEZ/Ih6fhBeGo1KU2ErEikrSD2oJ4Qlv9EgC4lNtWSoUBRGArYlGXUrsTBS2KjJF3dAUDpwqmZGrfkhwncNIz4UQ6eVeiQzzR+CxCjSEeDkDdieGmgb7+VKS48AntocmwdYSuSoK8pQqCxnVvuBFpEQWhmP9BTiEAUOLo/C+UgvMW9qmc+k4B3IVcuu0FqhrjbpW2JpoTCuFrUphqyQFcqZkIsn5PDKcmTDS4WvRK0Q+PCj99VZJgc5JbBYCnXGYVSr2CKwqFZXDQFQBxAbXyrfPUd5HSkse8xpTe6CjSUwkqFl4UXj1qvDbU4Kn/WiVXZ88kitdahQlqcpVIMulwGYpMNUSlZCpcbqfy6DmnZWHnhvBTlHg9m99B77yyU8DX/2Tm3rvxmaNe3ePXxHammgU1fPwp7r4IG5/2QPYKU7G2yrHSK6WoFACr7w7eXd8c2fxPa+6E/vf8RAO3vMoDhqDTz1zBU9cbvD41w7wsT98Ek3T4StfeArtp37n5nY23cE3fNtb8F9/90N4YGuGWgtsTxR2Zyd/Mpwm8hAhy/7LGYP1+R/WheRoB2PpBtoai6mVmEiJhbFYGIPdqsHCWBx0Bl/f05h3FlcXFk1ne01iOWOotEApGSZa4LapwlQLbBYKlZAxxyIQraazuHQgcaVUKBT5NB00JvamCzd5wRmmpYL2IacLM42JFrhzU2OqaKy7lU5u9IWMVYIx7MASwQoL1bojhJWA1BaHgYFxekLmlgoVnBPRx2yqJDY7C8059qYdrjYGG6XAXmOx3xhc3mvQdIaMQg2RnVKTc3alBW7fLLBVSWzXAjOlMMlalASiCgCwiKamWjpsaEXl/zPgmYOSWr1Yh/mio7Y8cx1JOCmQtFDvzEpMS4k7t0tsVRI7lcSd0wobmhLYw1wOk5/DHJ6FuQzTyBjlPzJOxy4UJ9RWQnADKRjmncVEt1h0FhuVxLN7CpwxHMw7HBy02N/XFNZ1iL0Xi0Jga1Zgy/tIbZWk+ilfxEF+YP3qynxsDKRSWZaS7jvBUCuBrVJi3jps+wdSzsmmpWk0TGdiiFJIgdmsRFVJ3H5+gs1aY2uice92ge1SYbvQmBTCN6rmvaKEHgnE+s/n9fDWh87j//4v34I//zMcTzz52ZvKOX7Nyy/ge15x+zGOjvCeR+7F1YMW//LDN/EmxnDfqx/Cr7z3zbjv/Mm3iBvJ1Q1ASY7dqcauv2CtdTi/UeDqQYdLd7d4430ztMbh63v348OffhDzeYeDgw77+018eitL8jbanBXgXr7emRa4baPA/bslHr33HG7bPNmY8Doit2oIzXo58zkzYHCCgzEHxhy0rzTsjIV1ZD5aGFq0F8ailgaKM8w7h4k2aGMfM/8kzUHKhW/OOitk7CFGiwm5i4fmGluVJLIlGJwDmi6RKxp7SPzlmJTk1l0rjvMTiWkhsF1Q4notZczHiQvKIIk9hEfCMTkrGM5fHuINFmDKz6E2XkVgDBtGeXLJ0RmHa43FXkOmm4FctZ5cacmhfU5T8AgLPfzyqrzoLYWUmxMWx9J7NrWarCGs0zhoDLTkmGvjfbdoTrUW3gBVYGdWYFoInJ9QOHDm+0CWKoV2+5WBgVSdraqy4fxx5qK9RjAXdY7MRR0cduq0lBw0OobmOGfoupxcUch86j3eyM1eoBRiYD8yaHDtJzKFnkNOXXKTV5yu5YkmkkumwBZ1rSFlR1YR1sV8y9mMChM2KjIM3a0lNgsyDE19BFnmOXdYqTpL1+ZzYatWeMej9+LnPnBzxVwXt6oTWbdu2yxxcau6sT/2oUA4h7/x3S87tcjPSK6eBxgDdqca2xONO63DQxen0T/nXa++E9fmHb6+3+BL1/bjxXehKrFbadyWJdWFm4hgQF2MUxGQ5+8Ek85AsASSHO9cyK+hVbvjDJ0IFg4OC2tIcbIWE9VRk17f3BV+G4VPqNWCY6YkShlaluQVQTQ3WyWRtVLSjX/eChy0Nnr15CGnjVL4XC2O3VqhFAJbhUYpiFQVKqkry4hVOhYnddRXh6Pyr2IVqKDjp2VSQzZsyJ8zMLVDpQ2mDZGVeSvRGIumo3nTkuarVhw7tcRUS0z9Ap2H5AJxAwDwlDskOEMpBVor0VmHnUqCM2DeamjFUbUWTWFgyXoNhRIopEChBc5PFWaFwLmJwsSrkHXM++orZqmyDGdOgRzOH2fU1FmAQoM28y9zDtiuuvhwcdBYf44LCJHIlfD5UKUWyd+t4CgFdSPIK/Ji2O2oMQIxty5edz4XbFZYbFRUfGIdsJhSk++2DZYeDEpxzCYak1Jhe6qxU0k6lxTNaxHmctA4PbaiOqG5OCkUSuAHX3cXfu4m33f3psa0PP61a1pK3L158yTp2x+4DdUp+UGyI43WThDz7rr9Oc8M+maG6WOFC5Lz9bksS3k894hVzWd+/EIz5XBsrcta0jig9Tk5gTyFnmUhFNj6Vhuds1FpAhCTxylfwzepVSIqD0ExaY3DXtNhYQzmncVe19Hr1sa2Kikpl5EhqK9emmlSZUqdFv9SiWxRGChW7PmFA49jPm9lLpOZI2Iz5TBvxjo0WfuZeetb2RiH/cZgbgwaY3G1bX17FIvGK1c0X7SYbmqFUgpUQmBayphvU2kRbToYY7COzoXWOLSdxd6iw6Kl0PHTBwvstx2e3msx74jELXwoi4gYte0pJcd2pVBJgd1So5KkaNWFiC1uCiWoBx0P++5XLd7ofK7DXPauN5vaCTW+7VBrHPYWHVrjcOmgwV7b4Vrb4avXGlxdGBy0Fs/ud9SWyPtmSU4PFhdnpPzdMaGQ6sQTrhCCK3VSsvKqxXBf7WxqdXPQGCw6i0Vr8Mx+gytNiz+9fIBn9jtcmRs8fXURxwz46kLJsT0pMCs47t0usFFITJXEbXXpyTTHpEjdEuhBICuWuIlrc93vszkee+Iy3vvP/wD/9p/9UmxbdAhCAqbDL/3i38Lr7t7CRqWOfV2z1uHKQYvff+IS/tK7f7pnqt2DV61e+++/E//we1/dS+9ZFW50Pke5ZMXolRG/4J5vThbDUABjDNZnY4UabZb1JzQsmI+6uBhwRsRMGd9QOMu5CvsIN0wlKRSo/Xfmc70YA4VFnIDmHIWwUJyqEltrEZrlcMZ81RLvNXsNZK1UPPoFBUIVKuRulVitI44KEfp2dZAuqA88EhnBfejPcnTGQglG4Vxn0frcNs685xLjZHsgfEm/7NtYRD8iBh/aon6Wziso4TTY0BLKLw4LT8IXXT90rL3f0YYicjXVMla65YpVIFa9kGB2PM4a8vwr6qgQeg+mFlWMOUyUhGR0zhvnMNEce42FFiz26gyqbiEpVF4riZmmcO5SfzccVq/8cDIfuuTBZb1yZZzDVkk5k8FCYpHl7AlOc7Zbk6P+dkmFJRMlY/WpkvxQ5W4iyCd08E8B95yr8WPf8SD+8v/uiUtRA4v9/h+ZDgDw0t0JtiYnE3LjnGFronHfjs+dWkasqhlwcBWv/J7vwY99x4O459zJGYYuw0iuRqw98kTpPA8LnJzdY8cZBmpZ0yNXpFp0nPXUkxzhSTTkyiiRu6LT4i84USgpHJQlRcpYhy6rPqQFHDGnLihTIbE5JThTXg5jqYQ8JsfihXXzXhpiCuFBANbSZ7Yx4Z0+vLQORoQWLF6dtBYWLi52kvWJjfLEKoXlsmPpQ1YAAMdiD0vGgJlV0Jx8zUL/wy6rmCtEqh6dKsrHK1RSIVVO6HiubpxtonwUOebMBY8NMvdlDp3iUa2jyl2DiTKoFY/kijFqBq0Fx4ZWqKW3Owh+YHlIF/0H1fA9VHNyRq2LGKOFN/SxDDYfm4WiEKQkArboXFSsiXQxbFcU0t0udDTxLTyxCnmQgSwPCfJZnM8bwbSQePS+Xbz9PT+A9/+jXzhMrDx+5G//dVw8hRzh27dK/NWfeg/+8X/3jw7/48FVYPdu/MPvew1ecr7G9JRTbcaw4IsYZ0muDshDTXnoNYYNQepUIFGhEXMIH4b3hNM+5HaAJR+bvE2JycIhnbFxoQ8VgmEcQGqdE0MZLD1VM9YnbSknaKhuPP8b9zqEko7CsnmLTbIdYqjQOudzZVLYJ85jFs5lGYmNCc0+NMdZSJpPhCrsI2w3hIs767BoU+jYZOdOHsrnDEcS5aB05vP+fEKBOdZpLoepDvk1FULwiy6FdeetifN50BkY16/QlYyj8uHTEL5V3k8uz58aHsc0nuy8cRTmDXN50Bg0ncVBQwUsC2Ow13borOspzJJxTJSE9iHkUIhQKVKspJ/j8AB0K5W7Z/E+G7A37/Bzv/15fPFSg+1a4q+/6b4TU6uuh0t7DX72tz6PZ/c73LWl8UNvvA+TE8j/utH5XAtyNWLEiBEjRowY8ULBC6ufyogRI0aMGDFixCljJFcjRowYMWLEiBErxEiuRowYMWLEiBEjVoiRXI0YMWLEiBEjRqwQI7kaMWLEiBEjRoxYIUZyNWLEiBEjRowYsUKM5GrEiBEjRowYMWKFGMnViBEjRowYMWLECjGSqxEjRowYMWLEiBViJFcjRowYMWLEiBErxEiuRowYMWLEiBEjVoiRXI0YMWLEiBEjRqwQI7kaMWLEiBEjRoxYIUZyNWLEiBEjRowYsUKM5GrEiBEjRowYMWKFGMnViBEjRowYMWLECjGSqxEjRowYMWLEiBViJFcjRowYMWLEiBErxEiuRowYMWLEiBEjVoiRXI0YMWLEiBEjRqwQI7kaMWLEiBEjRoxYIUZyNWLEiBEjRowYsUKM5GrEiBEjRowYMWKF+P8B1hUpX0Mqu5QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pl.figure(figsize=(10, 10))\n", + "pl.title('Convolutional Wasserstein Barycenters in POT')\n", + "cm = 'Blues'\n", + "# regularization parameter\n", + "reg = 0.004\n", + "for i in range(nb_images):\n", + " for j in range(nb_images):\n", + " pl.subplot(nb_images, nb_images, i * nb_images + j + 1)\n", + " tx = float(i) / (nb_images - 1)\n", + " ty = float(j) / (nb_images - 1)\n", + "\n", + " # weights are constructed by bilinear interpolation\n", + " tmp1 = (1 - tx) * v1 + tx * v2\n", + " tmp2 = (1 - tx) * v3 + tx * v4\n", + " weights = (1 - ty) * tmp1 + ty * tmp2\n", + "\n", + " if i == 0 and j == 0:\n", + " pl.imshow(f1, cmap=cm)\n", + " pl.axis('off')\n", + " elif i == 0 and j == (nb_images - 1):\n", + " pl.imshow(f3, cmap=cm)\n", + " pl.axis('off')\n", + " elif i == (nb_images - 1) and j == 0:\n", + " pl.imshow(f2, cmap=cm)\n", + " pl.axis('off')\n", + " elif i == (nb_images - 1) and j == (nb_images - 1):\n", + " pl.imshow(f4, cmap=cm)\n", + " pl.axis('off')\n", + " else:\n", + " # call to barycenter computation\n", + " pl.imshow(ot.bregman.convolutional_barycenter2d(A, reg, weights), cmap=cm)\n", + " pl.axis('off')\n", + "pl.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From ca08b788af38a076f45f000003eb0e2f227d7fd5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Mon, 24 Sep 2018 11:09:48 +0200 Subject: [PATCH 13/26] deprecate ot.gpu and remove OTDA classes from it --- ot/gpu/__init__.py | 5 ++++ ot/gpu/da.py | 69 ---------------------------------------------- 2 files changed, 5 insertions(+), 69 deletions(-) diff --git a/ot/gpu/__init__.py b/ot/gpu/__init__.py index a2fdd3d2e..ed6dcc44e 100644 --- a/ot/gpu/__init__.py +++ b/ot/gpu/__init__.py @@ -9,4 +9,9 @@ # # License: MIT License +import warnings + +warnings.warn("the ot.gpu module is deprecated because cudamat in no longer maintained", DeprecationWarning, + stacklevel=2) + __all__ = ["bregman", "da", "sinkhorn"] diff --git a/ot/gpu/da.py b/ot/gpu/da.py index 71a485a0b..85d43e683 100644 --- a/ot/gpu/da.py +++ b/ot/gpu/da.py @@ -13,7 +13,6 @@ import numpy as np from ..utils import unif -from ..da import OTDA from .bregman import sinkhorn import cudamat @@ -185,71 +184,3 @@ def sinkhorn_lpl1_mm(a, labels_a, b, M_GPU, reg, eta=0.1, numItermax=10, W_GPU = W_GPU.transpose() return transp_GPU.asarray() - - -class OTDA_GPU(OTDA): - - def normalizeM(self, norm): - if norm == "median": - self.M_GPU.divide(float(np.median(self.M_GPU.asarray()))) - elif norm == "max": - self.M_GPU.divide(float(np.max(self.M_GPU.asarray()))) - elif norm == "log": - self.M_GPU.add(1) - cudamat.log(self.M_GPU) - elif norm == "loglog": - self.M_GPU.add(1) - cudamat.log(self.M_GPU) - self.M_GPU.add(1) - cudamat.log(self.M_GPU) - - -class OTDA_sinkhorn(OTDA_GPU): - - def fit(self, xs, xt, reg=1, ws=None, wt=None, norm=None, **kwargs): - cudamat.init() - xs = np.asarray(xs, dtype=np.float64) - xt = np.asarray(xt, dtype=np.float64) - - self.xs = xs - self.xt = xt - - if wt is None: - wt = unif(xt.shape[0]) - if ws is None: - ws = unif(xs.shape[0]) - - self.ws = ws - self.wt = wt - - self.M_GPU = pairwiseEuclideanGPU(xs, xt, returnAsGPU=True, - squared=True) - self.normalizeM(norm) - self.G = sinkhorn(ws, wt, self.M_GPU, reg, **kwargs) - self.computed = True - - -class OTDA_lpl1(OTDA_GPU): - - def fit(self, xs, ys, xt, reg=1, eta=1, ws=None, wt=None, norm=None, - **kwargs): - cudamat.init() - xs = np.asarray(xs, dtype=np.float64) - xt = np.asarray(xt, dtype=np.float64) - - self.xs = xs - self.xt = xt - - if wt is None: - wt = unif(xt.shape[0]) - if ws is None: - ws = unif(xs.shape[0]) - - self.ws = ws - self.wt = wt - - self.M_GPU = pairwiseEuclideanGPU(xs, xt, returnAsGPU=True, - squared=True) - self.normalizeM(norm) - self.G = sinkhorn_lpl1_mm(ws, ys, wt, self.M_GPU, reg, eta, **kwargs) - self.computed = True From c8c397b6e1747d6593ba139d0a4f825fe39f5cc6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Mon, 24 Sep 2018 15:35:40 +0200 Subject: [PATCH 14/26] removed unused import --- ot/gpu/da.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ot/gpu/da.py b/ot/gpu/da.py index 85d43e683..ac3f8d77a 100644 --- a/ot/gpu/da.py +++ b/ot/gpu/da.py @@ -12,7 +12,7 @@ import numpy as np -from ..utils import unif +#from ..utils import unif from .bregman import sinkhorn import cudamat From 5bb13e439578ad8952bece8f491ce68bb1efe47d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Mon, 24 Sep 2018 15:47:29 +0200 Subject: [PATCH 15/26] do code coverage in travis --- .travis.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.travis.yml b/.travis.yml index d14639500..90a0ff42e 100644 --- a/.travis.yml +++ b/.travis.yml @@ -26,11 +26,11 @@ before_script: # configure a headless display to test plot generation # command to install dependencies install: - pip install -r requirements.txt - - pip install flake8 pytest + - pip install flake8 pytest pytest-cov - pip install . # command to run tests + check syntax style script: - python setup.py develop - flake8 examples/ ot/ test/ - - python -m pytest -v test/ + - python -m pytest -v test/ --cov=ot # - py.test ot test From eea946bfe41e00697d2916954d7787c27c787d63 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Mon, 24 Sep 2018 15:54:02 +0200 Subject: [PATCH 16/26] remove old externals --- ot/externals/__init__.py | 0 ot/externals/funcsigs.py | 817 --------------------------------------- 2 files changed, 817 deletions(-) delete mode 100644 ot/externals/__init__.py delete mode 100644 ot/externals/funcsigs.py diff --git a/ot/externals/__init__.py b/ot/externals/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/ot/externals/funcsigs.py b/ot/externals/funcsigs.py deleted file mode 100644 index c73fdc96d..000000000 --- a/ot/externals/funcsigs.py +++ /dev/null @@ -1,817 +0,0 @@ -# Copyright 2001-2013 Python Software Foundation; All Rights Reserved -"""Function signature objects for callables - -Back port of Python 3.3's function signature tools from the inspect module, -modified to be compatible with Python 2.7 and 3.2+. -""" -from __future__ import absolute_import, division, print_function -import itertools -import functools -import re -import types - -from collections import OrderedDict - -__version__ = "0.4" - -__all__ = ['BoundArguments', 'Parameter', 'Signature', 'signature'] - - -_WrapperDescriptor = type(type.__call__) -_MethodWrapper = type(all.__call__) - -_NonUserDefinedCallables = (_WrapperDescriptor, - _MethodWrapper, - types.BuiltinFunctionType) - - -def formatannotation(annotation, base_module=None): - if isinstance(annotation, type): - if annotation.__module__ in ('builtins', '__builtin__', base_module): - return annotation.__name__ - return annotation.__module__ + '.' + annotation.__name__ - return repr(annotation) - - -def _get_user_defined_method(cls, method_name, *nested): - try: - if cls is type: - return - meth = getattr(cls, method_name) - for name in nested: - meth = getattr(meth, name, meth) - except AttributeError: - return - else: - if not isinstance(meth, _NonUserDefinedCallables): - # Once '__signature__' will be added to 'C'-level - # callables, this check won't be necessary - return meth - - -def signature(obj): - '''Get a signature object for the passed callable.''' - - if not callable(obj): - raise TypeError('{0!r} is not a callable object'.format(obj)) - - if isinstance(obj, types.MethodType): - sig = signature(obj.__func__) - if obj.__self__ is None: - # Unbound method: the first parameter becomes positional-only - if sig.parameters: - first = sig.parameters.values()[0].replace( - kind=_POSITIONAL_ONLY) - return sig.replace( - parameters=(first,) + tuple(sig.parameters.values())[1:]) - else: - return sig - else: - # In this case we skip the first parameter of the underlying - # function (usually `self` or `cls`). - return sig.replace(parameters=tuple(sig.parameters.values())[1:]) - - try: - sig = obj.__signature__ - except AttributeError: - pass - else: - if sig is not None: - return sig - - try: - # Was this function wrapped by a decorator? - wrapped = obj.__wrapped__ - except AttributeError: - pass - else: - return signature(wrapped) - - if isinstance(obj, types.FunctionType): - return Signature.from_function(obj) - - if isinstance(obj, functools.partial): - sig = signature(obj.func) - - new_params = OrderedDict(sig.parameters.items()) - - partial_args = obj.args or () - partial_keywords = obj.keywords or {} - try: - ba = sig.bind_partial(*partial_args, **partial_keywords) - except TypeError: - msg = 'partial object {0!r} has incorrect arguments'.format(obj) - raise ValueError(msg) - - for arg_name, arg_value in ba.arguments.items(): - param = new_params[arg_name] - if arg_name in partial_keywords: - # We set a new default value, because the following code - # is correct: - # - # >>> def foo(a): print(a) - # >>> print(partial(partial(foo, a=10), a=20)()) - # 20 - # >>> print(partial(partial(foo, a=10), a=20)(a=30)) - # 30 - # - # So, with 'partial' objects, passing a keyword argument is - # like setting a new default value for the corresponding - # parameter - # - # We also mark this parameter with '_partial_kwarg' - # flag. Later, in '_bind', the 'default' value of this - # parameter will be added to 'kwargs', to simulate - # the 'functools.partial' real call. - new_params[arg_name] = param.replace(default=arg_value, - _partial_kwarg=True) - - elif (param.kind not in (_VAR_KEYWORD, _VAR_POSITIONAL) and - not param._partial_kwarg): - new_params.pop(arg_name) - - return sig.replace(parameters=new_params.values()) - - sig = None - if isinstance(obj, type): - # obj is a class or a metaclass - - # First, let's see if it has an overloaded __call__ defined - # in its metaclass - call = _get_user_defined_method(type(obj), '__call__') - if call is not None: - sig = signature(call) - else: - # Now we check if the 'obj' class has a '__new__' method - new = _get_user_defined_method(obj, '__new__') - if new is not None: - sig = signature(new) - else: - # Finally, we should have at least __init__ implemented - init = _get_user_defined_method(obj, '__init__') - if init is not None: - sig = signature(init) - elif not isinstance(obj, _NonUserDefinedCallables): - # An object with __call__ - # We also check that the 'obj' is not an instance of - # _WrapperDescriptor or _MethodWrapper to avoid - # infinite recursion (and even potential segfault) - call = _get_user_defined_method(type(obj), '__call__', 'im_func') - if call is not None: - sig = signature(call) - - if sig is not None: - # For classes and objects we skip the first parameter of their - # __call__, __new__, or __init__ methods - return sig.replace(parameters=tuple(sig.parameters.values())[1:]) - - if isinstance(obj, types.BuiltinFunctionType): - # Raise a nicer error message for builtins - msg = 'no signature found for builtin function {0!r}'.format(obj) - raise ValueError(msg) - - raise ValueError( - 'callable {0!r} is not supported by signature'.format(obj)) - - -class _void(object): - '''A private marker - used in Parameter & Signature''' - - -class _empty(object): - pass - - -class _ParameterKind(int): - def __new__(self, *args, **kwargs): - obj = int.__new__(self, *args) - obj._name = kwargs['name'] - return obj - - def __str__(self): - return self._name - - def __repr__(self): - return '<_ParameterKind: {0!r}>'.format(self._name) - - -_POSITIONAL_ONLY = _ParameterKind(0, name='POSITIONAL_ONLY') -_POSITIONAL_OR_KEYWORD = _ParameterKind(1, name='POSITIONAL_OR_KEYWORD') -_VAR_POSITIONAL = _ParameterKind(2, name='VAR_POSITIONAL') -_KEYWORD_ONLY = _ParameterKind(3, name='KEYWORD_ONLY') -_VAR_KEYWORD = _ParameterKind(4, name='VAR_KEYWORD') - - -class Parameter(object): - '''Represents a parameter in a function signature. - - Has the following public attributes: - - * name : str - The name of the parameter as a string. - * default : object - The default value for the parameter if specified. If the - parameter has no default value, this attribute is not set. - * annotation - The annotation for the parameter if specified. If the - parameter has no annotation, this attribute is not set. - * kind : str - Describes how argument values are bound to the parameter. - Possible values: `Parameter.POSITIONAL_ONLY`, - `Parameter.POSITIONAL_OR_KEYWORD`, `Parameter.VAR_POSITIONAL`, - `Parameter.KEYWORD_ONLY`, `Parameter.VAR_KEYWORD`. - ''' - - __slots__ = ('_name', '_kind', '_default', '_annotation', '_partial_kwarg') - - POSITIONAL_ONLY = _POSITIONAL_ONLY - POSITIONAL_OR_KEYWORD = _POSITIONAL_OR_KEYWORD - VAR_POSITIONAL = _VAR_POSITIONAL - KEYWORD_ONLY = _KEYWORD_ONLY - VAR_KEYWORD = _VAR_KEYWORD - - empty = _empty - - def __init__(self, name, kind, default=_empty, annotation=_empty, - _partial_kwarg=False): - - if kind not in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD, - _VAR_POSITIONAL, _KEYWORD_ONLY, _VAR_KEYWORD): - raise ValueError("invalid value for 'Parameter.kind' attribute") - self._kind = kind - - if default is not _empty: - if kind in (_VAR_POSITIONAL, _VAR_KEYWORD): - msg = '{0} parameters cannot have default values'.format(kind) - raise ValueError(msg) - self._default = default - self._annotation = annotation - - if name is None: - if kind != _POSITIONAL_ONLY: - raise ValueError("None is not a valid name for a " - "non-positional-only parameter") - self._name = name - else: - name = str(name) - if kind != _POSITIONAL_ONLY and not re.match( - r'[a-z_]\w*$', name, re.I): - msg = '{0!r} is not a valid parameter name'.format(name) - raise ValueError(msg) - self._name = name - - self._partial_kwarg = _partial_kwarg - - @property - def name(self): - return self._name - - @property - def default(self): - return self._default - - @property - def annotation(self): - return self._annotation - - @property - def kind(self): - return self._kind - - def replace(self, name=_void, kind=_void, annotation=_void, - default=_void, _partial_kwarg=_void): - '''Creates a customized copy of the Parameter.''' - - if name is _void: - name = self._name - - if kind is _void: - kind = self._kind - - if annotation is _void: - annotation = self._annotation - - if default is _void: - default = self._default - - if _partial_kwarg is _void: - _partial_kwarg = self._partial_kwarg - - return type(self)(name, kind, default=default, annotation=annotation, - _partial_kwarg=_partial_kwarg) - - def __str__(self): - kind = self.kind - - formatted = self._name - if kind == _POSITIONAL_ONLY: - if formatted is None: - formatted = '' - formatted = '<{0}>'.format(formatted) - - # Add annotation and default value - if self._annotation is not _empty: - formatted = '{0}:{1}'.format(formatted, - formatannotation(self._annotation)) - - if self._default is not _empty: - formatted = '{0}={1}'.format(formatted, repr(self._default)) - - if kind == _VAR_POSITIONAL: - formatted = '*' + formatted - elif kind == _VAR_KEYWORD: - formatted = '**' + formatted - - return formatted - - def __repr__(self): - return '<{0} at {1:#x} {2!r}>'.format(self.__class__.__name__, - id(self), self.name) - - def __hash__(self): - msg = "unhashable type: '{0}'".format(self.__class__.__name__) - raise TypeError(msg) - - def __eq__(self, other): - return (issubclass(other.__class__, Parameter) and - self._name == other._name and - self._kind == other._kind and - self._default == other._default and - self._annotation == other._annotation) - - def __ne__(self, other): - return not self.__eq__(other) - - -class BoundArguments(object): - '''Result of `Signature.bind` call. Holds the mapping of arguments - to the function's parameters. - - Has the following public attributes: - - * arguments : OrderedDict - An ordered mutable mapping of parameters' names to arguments' values. - Does not contain arguments' default values. - * signature : Signature - The Signature object that created this instance. - * args : tuple - Tuple of positional arguments values. - * kwargs : dict - Dict of keyword arguments values. - ''' - - def __init__(self, signature, arguments): - self.arguments = arguments - self._signature = signature - - @property - def signature(self): - return self._signature - - @property - def args(self): - args = [] - for param_name, param in self._signature.parameters.items(): - if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or - param._partial_kwarg): - # Keyword arguments mapped by 'functools.partial' - # (Parameter._partial_kwarg is True) are mapped - # in 'BoundArguments.kwargs', along with VAR_KEYWORD & - # KEYWORD_ONLY - break - - try: - arg = self.arguments[param_name] - except KeyError: - # We're done here. Other arguments - # will be mapped in 'BoundArguments.kwargs' - break - else: - if param.kind == _VAR_POSITIONAL: - # *args - args.extend(arg) - else: - # plain argument - args.append(arg) - - return tuple(args) - - @property - def kwargs(self): - kwargs = {} - kwargs_started = False - for param_name, param in self._signature.parameters.items(): - if not kwargs_started: - if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or - param._partial_kwarg): - kwargs_started = True - else: - if param_name not in self.arguments: - kwargs_started = True - continue - - if not kwargs_started: - continue - - try: - arg = self.arguments[param_name] - except KeyError: - pass - else: - if param.kind == _VAR_KEYWORD: - # **kwargs - kwargs.update(arg) - else: - # plain keyword argument - kwargs[param_name] = arg - - return kwargs - - def __hash__(self): - msg = "unhashable type: '{0}'".format(self.__class__.__name__) - raise TypeError(msg) - - def __eq__(self, other): - return (issubclass(other.__class__, BoundArguments) and - self.signature == other.signature and - self.arguments == other.arguments) - - def __ne__(self, other): - return not self.__eq__(other) - - -class Signature(object): - '''A Signature object represents the overall signature of a function. - It stores a Parameter object for each parameter accepted by the - function, as well as information specific to the function itself. - - A Signature object has the following public attributes and methods: - - * parameters : OrderedDict - An ordered mapping of parameters' names to the corresponding - Parameter objects (keyword-only arguments are in the same order - as listed in `code.co_varnames`). - * return_annotation : object - The annotation for the return type of the function if specified. - If the function has no annotation for its return type, this - attribute is not set. - * bind(*args, **kwargs) -> BoundArguments - Creates a mapping from positional and keyword arguments to - parameters. - * bind_partial(*args, **kwargs) -> BoundArguments - Creates a partial mapping from positional and keyword arguments - to parameters (simulating 'functools.partial' behavior.) - ''' - - __slots__ = ('_return_annotation', '_parameters') - - _parameter_cls = Parameter - _bound_arguments_cls = BoundArguments - - empty = _empty - - def __init__(self, parameters=None, return_annotation=_empty, - __validate_parameters__=True): - '''Constructs Signature from the given list of Parameter - objects and 'return_annotation'. All arguments are optional. - ''' - - if parameters is None: - params = OrderedDict() - else: - if __validate_parameters__: - params = OrderedDict() - top_kind = _POSITIONAL_ONLY - - for idx, param in enumerate(parameters): - kind = param.kind - if kind < top_kind: - msg = 'wrong parameter order: {0} before {1}' - msg = msg.format(top_kind, param.kind) - raise ValueError(msg) - else: - top_kind = kind - - name = param.name - if name is None: - name = str(idx) - param = param.replace(name=name) - - if name in params: - msg = 'duplicate parameter name: {0!r}'.format(name) - raise ValueError(msg) - params[name] = param - else: - params = OrderedDict(((param.name, param) - for param in parameters)) - - self._parameters = params - self._return_annotation = return_annotation - - @classmethod - def from_function(cls, func): - '''Constructs Signature for the given python function''' - - if not isinstance(func, types.FunctionType): - raise TypeError('{0!r} is not a Python function'.format(func)) - - Parameter = cls._parameter_cls - - # Parameter information. - func_code = func.__code__ - pos_count = func_code.co_argcount - arg_names = func_code.co_varnames - positional = tuple(arg_names[:pos_count]) - keyword_only_count = getattr(func_code, 'co_kwonlyargcount', 0) - keyword_only = arg_names[pos_count:(pos_count + keyword_only_count)] - annotations = getattr(func, '__annotations__', {}) - defaults = func.__defaults__ - kwdefaults = getattr(func, '__kwdefaults__', None) - - if defaults: - pos_default_count = len(defaults) - else: - pos_default_count = 0 - - parameters = [] - - # Non-keyword-only parameters w/o defaults. - non_default_count = pos_count - pos_default_count - for name in positional[:non_default_count]: - annotation = annotations.get(name, _empty) - parameters.append(Parameter(name, annotation=annotation, - kind=_POSITIONAL_OR_KEYWORD)) - - # ... w/ defaults. - for offset, name in enumerate(positional[non_default_count:]): - annotation = annotations.get(name, _empty) - parameters.append(Parameter(name, annotation=annotation, - kind=_POSITIONAL_OR_KEYWORD, - default=defaults[offset])) - - # *args - if func_code.co_flags & 0x04: - name = arg_names[pos_count + keyword_only_count] - annotation = annotations.get(name, _empty) - parameters.append(Parameter(name, annotation=annotation, - kind=_VAR_POSITIONAL)) - - # Keyword-only parameters. - for name in keyword_only: - default = _empty - if kwdefaults is not None: - default = kwdefaults.get(name, _empty) - - annotation = annotations.get(name, _empty) - parameters.append(Parameter(name, annotation=annotation, - kind=_KEYWORD_ONLY, - default=default)) - # **kwargs - if func_code.co_flags & 0x08: - index = pos_count + keyword_only_count - if func_code.co_flags & 0x04: - index += 1 - - name = arg_names[index] - annotation = annotations.get(name, _empty) - parameters.append(Parameter(name, annotation=annotation, - kind=_VAR_KEYWORD)) - - return cls(parameters, - return_annotation=annotations.get('return', _empty), - __validate_parameters__=False) - - @property - def parameters(self): - try: - return types.MappingProxyType(self._parameters) - except AttributeError: - return OrderedDict(self._parameters.items()) - - @property - def return_annotation(self): - return self._return_annotation - - def replace(self, parameters=_void, return_annotation=_void): - '''Creates a customized copy of the Signature. - Pass 'parameters' and/or 'return_annotation' arguments - to override them in the new copy. - ''' - - if parameters is _void: - parameters = self.parameters.values() - - if return_annotation is _void: - return_annotation = self._return_annotation - - return type(self)(parameters, - return_annotation=return_annotation) - - def __hash__(self): - msg = "unhashable type: '{0}'".format(self.__class__.__name__) - raise TypeError(msg) - - def __eq__(self, other): - if (not issubclass(type(other), Signature) or - self.return_annotation != other.return_annotation or - len(self.parameters) != len(other.parameters)): - return False - - other_positions = dict((param, idx) - for idx, param in enumerate(other.parameters.keys())) - - for idx, (param_name, param) in enumerate(self.parameters.items()): - if param.kind == _KEYWORD_ONLY: - try: - other_param = other.parameters[param_name] - except KeyError: - return False - else: - if param != other_param: - return False - else: - try: - other_idx = other_positions[param_name] - except KeyError: - return False - else: - if (idx != other_idx or - param != other.parameters[param_name]): - return False - - return True - - def __ne__(self, other): - return not self.__eq__(other) - - def _bind(self, args, kwargs, partial=False): - '''Private method. Don't use directly.''' - - arguments = OrderedDict() - - parameters = iter(self.parameters.values()) - parameters_ex = () - arg_vals = iter(args) - - if partial: - # Support for binding arguments to 'functools.partial' objects. - # See 'functools.partial' case in 'signature()' implementation - # for details. - for param_name, param in self.parameters.items(): - if (param._partial_kwarg and param_name not in kwargs): - # Simulating 'functools.partial' behavior - kwargs[param_name] = param.default - - while True: - # Let's iterate through the positional arguments and corresponding - # parameters - try: - arg_val = next(arg_vals) - except StopIteration: - # No more positional arguments - try: - param = next(parameters) - except StopIteration: - # No more parameters. That's it. Just need to check that - # we have no `kwargs` after this while loop - break - else: - if param.kind == _VAR_POSITIONAL: - # That's OK, just empty *args. Let's start parsing - # kwargs - break - elif param.name in kwargs: - if param.kind == _POSITIONAL_ONLY: - msg = '{arg!r} parameter is positional only, ' \ - 'but was passed as a keyword' - msg = msg.format(arg=param.name) - raise TypeError(msg) - parameters_ex = (param,) - break - elif (param.kind == _VAR_KEYWORD or - param.default is not _empty): - # That's fine too - we have a default value for this - # parameter. So, lets start parsing `kwargs`, starting - # with the current parameter - parameters_ex = (param,) - break - else: - if partial: - parameters_ex = (param,) - break - else: - msg = '{arg!r} parameter lacking default value' - msg = msg.format(arg=param.name) - raise TypeError(msg) - else: - # We have a positional argument to process - try: - param = next(parameters) - except StopIteration: - raise TypeError('too many positional arguments') - else: - if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY): - # Looks like we have no parameter for this positional - # argument - raise TypeError('too many positional arguments') - - if param.kind == _VAR_POSITIONAL: - # We have an '*args'-like argument, let's fill it with - # all positional arguments we have left and move on to - # the next phase - values = [arg_val] - values.extend(arg_vals) - arguments[param.name] = tuple(values) - break - - if param.name in kwargs: - raise TypeError('multiple values for argument ' - '{arg!r}'.format(arg=param.name)) - - arguments[param.name] = arg_val - - # Now, we iterate through the remaining parameters to process - # keyword arguments - kwargs_param = None - for param in itertools.chain(parameters_ex, parameters): - if param.kind == _POSITIONAL_ONLY: - # This should never happen in case of a properly built - # Signature object (but let's have this check here - # to ensure correct behaviour just in case) - raise TypeError('{arg!r} parameter is positional only, ' - 'but was passed as a keyword'. - format(arg=param.name)) - - if param.kind == _VAR_KEYWORD: - # Memorize that we have a '**kwargs'-like parameter - kwargs_param = param - continue - - param_name = param.name - try: - arg_val = kwargs.pop(param_name) - except KeyError: - # We have no value for this parameter. It's fine though, - # if it has a default value, or it is an '*args'-like - # parameter, left alone by the processing of positional - # arguments. - if (not partial and param.kind != _VAR_POSITIONAL and - param.default is _empty): - raise TypeError('{arg!r} parameter lacking default value'. - format(arg=param_name)) - - else: - arguments[param_name] = arg_val - - if kwargs: - if kwargs_param is not None: - # Process our '**kwargs'-like parameter - arguments[kwargs_param.name] = kwargs - else: - raise TypeError('too many keyword arguments') - - return self._bound_arguments_cls(self, arguments) - - def bind(self, *args, **kwargs): - '''Get a BoundArguments object, that maps the passed `args` - and `kwargs` to the function's signature. Raises `TypeError` - if the passed arguments can not be bound. - ''' - return self._bind(args, kwargs) - - def bind_partial(self, *args, **kwargs): - '''Get a BoundArguments object, that partially maps the - passed `args` and `kwargs` to the function's signature. - Raises `TypeError` if the passed arguments can not be bound. - ''' - return self._bind(args, kwargs, partial=True) - - def __str__(self): - result = [] - render_kw_only_separator = True - for idx, param in enumerate(self.parameters.values()): - formatted = str(param) - - kind = param.kind - if kind == _VAR_POSITIONAL: - # OK, we have an '*args'-like parameter, so we won't need - # a '*' to separate keyword-only arguments - render_kw_only_separator = False - elif kind == _KEYWORD_ONLY and render_kw_only_separator: - # We have a keyword-only parameter to render and we haven't - # rendered an '*args'-like parameter before, so add a '*' - # separator to the parameters list ("foo(arg1, *, arg2)" case) - result.append('*') - # This condition should be only triggered once, so - # reset the flag - render_kw_only_separator = False - - result.append(formatted) - - rendered = '({0})'.format(', '.join(result)) - - if self.return_annotation is not _empty: - anno = formatannotation(self.return_annotation) - rendered += ' -> {0}'.format(anno) - - return rendered From 057bb89892af0cbeddec70241873d51d2931f3c5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Mon, 24 Sep 2018 16:01:50 +0200 Subject: [PATCH 17/26] Revert "remove old externals" This reverts commit eea946bfe41e00697d2916954d7787c27c787d63. --- ot/externals/__init__.py | 0 ot/externals/funcsigs.py | 817 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 817 insertions(+) create mode 100644 ot/externals/__init__.py create mode 100644 ot/externals/funcsigs.py diff --git a/ot/externals/__init__.py b/ot/externals/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/ot/externals/funcsigs.py b/ot/externals/funcsigs.py new file mode 100644 index 000000000..c73fdc96d --- /dev/null +++ b/ot/externals/funcsigs.py @@ -0,0 +1,817 @@ +# Copyright 2001-2013 Python Software Foundation; All Rights Reserved +"""Function signature objects for callables + +Back port of Python 3.3's function signature tools from the inspect module, +modified to be compatible with Python 2.7 and 3.2+. +""" +from __future__ import absolute_import, division, print_function +import itertools +import functools +import re +import types + +from collections import OrderedDict + +__version__ = "0.4" + +__all__ = ['BoundArguments', 'Parameter', 'Signature', 'signature'] + + +_WrapperDescriptor = type(type.__call__) +_MethodWrapper = type(all.__call__) + +_NonUserDefinedCallables = (_WrapperDescriptor, + _MethodWrapper, + types.BuiltinFunctionType) + + +def formatannotation(annotation, base_module=None): + if isinstance(annotation, type): + if annotation.__module__ in ('builtins', '__builtin__', base_module): + return annotation.__name__ + return annotation.__module__ + '.' + annotation.__name__ + return repr(annotation) + + +def _get_user_defined_method(cls, method_name, *nested): + try: + if cls is type: + return + meth = getattr(cls, method_name) + for name in nested: + meth = getattr(meth, name, meth) + except AttributeError: + return + else: + if not isinstance(meth, _NonUserDefinedCallables): + # Once '__signature__' will be added to 'C'-level + # callables, this check won't be necessary + return meth + + +def signature(obj): + '''Get a signature object for the passed callable.''' + + if not callable(obj): + raise TypeError('{0!r} is not a callable object'.format(obj)) + + if isinstance(obj, types.MethodType): + sig = signature(obj.__func__) + if obj.__self__ is None: + # Unbound method: the first parameter becomes positional-only + if sig.parameters: + first = sig.parameters.values()[0].replace( + kind=_POSITIONAL_ONLY) + return sig.replace( + parameters=(first,) + tuple(sig.parameters.values())[1:]) + else: + return sig + else: + # In this case we skip the first parameter of the underlying + # function (usually `self` or `cls`). + return sig.replace(parameters=tuple(sig.parameters.values())[1:]) + + try: + sig = obj.__signature__ + except AttributeError: + pass + else: + if sig is not None: + return sig + + try: + # Was this function wrapped by a decorator? + wrapped = obj.__wrapped__ + except AttributeError: + pass + else: + return signature(wrapped) + + if isinstance(obj, types.FunctionType): + return Signature.from_function(obj) + + if isinstance(obj, functools.partial): + sig = signature(obj.func) + + new_params = OrderedDict(sig.parameters.items()) + + partial_args = obj.args or () + partial_keywords = obj.keywords or {} + try: + ba = sig.bind_partial(*partial_args, **partial_keywords) + except TypeError: + msg = 'partial object {0!r} has incorrect arguments'.format(obj) + raise ValueError(msg) + + for arg_name, arg_value in ba.arguments.items(): + param = new_params[arg_name] + if arg_name in partial_keywords: + # We set a new default value, because the following code + # is correct: + # + # >>> def foo(a): print(a) + # >>> print(partial(partial(foo, a=10), a=20)()) + # 20 + # >>> print(partial(partial(foo, a=10), a=20)(a=30)) + # 30 + # + # So, with 'partial' objects, passing a keyword argument is + # like setting a new default value for the corresponding + # parameter + # + # We also mark this parameter with '_partial_kwarg' + # flag. Later, in '_bind', the 'default' value of this + # parameter will be added to 'kwargs', to simulate + # the 'functools.partial' real call. + new_params[arg_name] = param.replace(default=arg_value, + _partial_kwarg=True) + + elif (param.kind not in (_VAR_KEYWORD, _VAR_POSITIONAL) and + not param._partial_kwarg): + new_params.pop(arg_name) + + return sig.replace(parameters=new_params.values()) + + sig = None + if isinstance(obj, type): + # obj is a class or a metaclass + + # First, let's see if it has an overloaded __call__ defined + # in its metaclass + call = _get_user_defined_method(type(obj), '__call__') + if call is not None: + sig = signature(call) + else: + # Now we check if the 'obj' class has a '__new__' method + new = _get_user_defined_method(obj, '__new__') + if new is not None: + sig = signature(new) + else: + # Finally, we should have at least __init__ implemented + init = _get_user_defined_method(obj, '__init__') + if init is not None: + sig = signature(init) + elif not isinstance(obj, _NonUserDefinedCallables): + # An object with __call__ + # We also check that the 'obj' is not an instance of + # _WrapperDescriptor or _MethodWrapper to avoid + # infinite recursion (and even potential segfault) + call = _get_user_defined_method(type(obj), '__call__', 'im_func') + if call is not None: + sig = signature(call) + + if sig is not None: + # For classes and objects we skip the first parameter of their + # __call__, __new__, or __init__ methods + return sig.replace(parameters=tuple(sig.parameters.values())[1:]) + + if isinstance(obj, types.BuiltinFunctionType): + # Raise a nicer error message for builtins + msg = 'no signature found for builtin function {0!r}'.format(obj) + raise ValueError(msg) + + raise ValueError( + 'callable {0!r} is not supported by signature'.format(obj)) + + +class _void(object): + '''A private marker - used in Parameter & Signature''' + + +class _empty(object): + pass + + +class _ParameterKind(int): + def __new__(self, *args, **kwargs): + obj = int.__new__(self, *args) + obj._name = kwargs['name'] + return obj + + def __str__(self): + return self._name + + def __repr__(self): + return '<_ParameterKind: {0!r}>'.format(self._name) + + +_POSITIONAL_ONLY = _ParameterKind(0, name='POSITIONAL_ONLY') +_POSITIONAL_OR_KEYWORD = _ParameterKind(1, name='POSITIONAL_OR_KEYWORD') +_VAR_POSITIONAL = _ParameterKind(2, name='VAR_POSITIONAL') +_KEYWORD_ONLY = _ParameterKind(3, name='KEYWORD_ONLY') +_VAR_KEYWORD = _ParameterKind(4, name='VAR_KEYWORD') + + +class Parameter(object): + '''Represents a parameter in a function signature. + + Has the following public attributes: + + * name : str + The name of the parameter as a string. + * default : object + The default value for the parameter if specified. If the + parameter has no default value, this attribute is not set. + * annotation + The annotation for the parameter if specified. If the + parameter has no annotation, this attribute is not set. + * kind : str + Describes how argument values are bound to the parameter. + Possible values: `Parameter.POSITIONAL_ONLY`, + `Parameter.POSITIONAL_OR_KEYWORD`, `Parameter.VAR_POSITIONAL`, + `Parameter.KEYWORD_ONLY`, `Parameter.VAR_KEYWORD`. + ''' + + __slots__ = ('_name', '_kind', '_default', '_annotation', '_partial_kwarg') + + POSITIONAL_ONLY = _POSITIONAL_ONLY + POSITIONAL_OR_KEYWORD = _POSITIONAL_OR_KEYWORD + VAR_POSITIONAL = _VAR_POSITIONAL + KEYWORD_ONLY = _KEYWORD_ONLY + VAR_KEYWORD = _VAR_KEYWORD + + empty = _empty + + def __init__(self, name, kind, default=_empty, annotation=_empty, + _partial_kwarg=False): + + if kind not in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD, + _VAR_POSITIONAL, _KEYWORD_ONLY, _VAR_KEYWORD): + raise ValueError("invalid value for 'Parameter.kind' attribute") + self._kind = kind + + if default is not _empty: + if kind in (_VAR_POSITIONAL, _VAR_KEYWORD): + msg = '{0} parameters cannot have default values'.format(kind) + raise ValueError(msg) + self._default = default + self._annotation = annotation + + if name is None: + if kind != _POSITIONAL_ONLY: + raise ValueError("None is not a valid name for a " + "non-positional-only parameter") + self._name = name + else: + name = str(name) + if kind != _POSITIONAL_ONLY and not re.match( + r'[a-z_]\w*$', name, re.I): + msg = '{0!r} is not a valid parameter name'.format(name) + raise ValueError(msg) + self._name = name + + self._partial_kwarg = _partial_kwarg + + @property + def name(self): + return self._name + + @property + def default(self): + return self._default + + @property + def annotation(self): + return self._annotation + + @property + def kind(self): + return self._kind + + def replace(self, name=_void, kind=_void, annotation=_void, + default=_void, _partial_kwarg=_void): + '''Creates a customized copy of the Parameter.''' + + if name is _void: + name = self._name + + if kind is _void: + kind = self._kind + + if annotation is _void: + annotation = self._annotation + + if default is _void: + default = self._default + + if _partial_kwarg is _void: + _partial_kwarg = self._partial_kwarg + + return type(self)(name, kind, default=default, annotation=annotation, + _partial_kwarg=_partial_kwarg) + + def __str__(self): + kind = self.kind + + formatted = self._name + if kind == _POSITIONAL_ONLY: + if formatted is None: + formatted = '' + formatted = '<{0}>'.format(formatted) + + # Add annotation and default value + if self._annotation is not _empty: + formatted = '{0}:{1}'.format(formatted, + formatannotation(self._annotation)) + + if self._default is not _empty: + formatted = '{0}={1}'.format(formatted, repr(self._default)) + + if kind == _VAR_POSITIONAL: + formatted = '*' + formatted + elif kind == _VAR_KEYWORD: + formatted = '**' + formatted + + return formatted + + def __repr__(self): + return '<{0} at {1:#x} {2!r}>'.format(self.__class__.__name__, + id(self), self.name) + + def __hash__(self): + msg = "unhashable type: '{0}'".format(self.__class__.__name__) + raise TypeError(msg) + + def __eq__(self, other): + return (issubclass(other.__class__, Parameter) and + self._name == other._name and + self._kind == other._kind and + self._default == other._default and + self._annotation == other._annotation) + + def __ne__(self, other): + return not self.__eq__(other) + + +class BoundArguments(object): + '''Result of `Signature.bind` call. Holds the mapping of arguments + to the function's parameters. + + Has the following public attributes: + + * arguments : OrderedDict + An ordered mutable mapping of parameters' names to arguments' values. + Does not contain arguments' default values. + * signature : Signature + The Signature object that created this instance. + * args : tuple + Tuple of positional arguments values. + * kwargs : dict + Dict of keyword arguments values. + ''' + + def __init__(self, signature, arguments): + self.arguments = arguments + self._signature = signature + + @property + def signature(self): + return self._signature + + @property + def args(self): + args = [] + for param_name, param in self._signature.parameters.items(): + if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or + param._partial_kwarg): + # Keyword arguments mapped by 'functools.partial' + # (Parameter._partial_kwarg is True) are mapped + # in 'BoundArguments.kwargs', along with VAR_KEYWORD & + # KEYWORD_ONLY + break + + try: + arg = self.arguments[param_name] + except KeyError: + # We're done here. Other arguments + # will be mapped in 'BoundArguments.kwargs' + break + else: + if param.kind == _VAR_POSITIONAL: + # *args + args.extend(arg) + else: + # plain argument + args.append(arg) + + return tuple(args) + + @property + def kwargs(self): + kwargs = {} + kwargs_started = False + for param_name, param in self._signature.parameters.items(): + if not kwargs_started: + if (param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or + param._partial_kwarg): + kwargs_started = True + else: + if param_name not in self.arguments: + kwargs_started = True + continue + + if not kwargs_started: + continue + + try: + arg = self.arguments[param_name] + except KeyError: + pass + else: + if param.kind == _VAR_KEYWORD: + # **kwargs + kwargs.update(arg) + else: + # plain keyword argument + kwargs[param_name] = arg + + return kwargs + + def __hash__(self): + msg = "unhashable type: '{0}'".format(self.__class__.__name__) + raise TypeError(msg) + + def __eq__(self, other): + return (issubclass(other.__class__, BoundArguments) and + self.signature == other.signature and + self.arguments == other.arguments) + + def __ne__(self, other): + return not self.__eq__(other) + + +class Signature(object): + '''A Signature object represents the overall signature of a function. + It stores a Parameter object for each parameter accepted by the + function, as well as information specific to the function itself. + + A Signature object has the following public attributes and methods: + + * parameters : OrderedDict + An ordered mapping of parameters' names to the corresponding + Parameter objects (keyword-only arguments are in the same order + as listed in `code.co_varnames`). + * return_annotation : object + The annotation for the return type of the function if specified. + If the function has no annotation for its return type, this + attribute is not set. + * bind(*args, **kwargs) -> BoundArguments + Creates a mapping from positional and keyword arguments to + parameters. + * bind_partial(*args, **kwargs) -> BoundArguments + Creates a partial mapping from positional and keyword arguments + to parameters (simulating 'functools.partial' behavior.) + ''' + + __slots__ = ('_return_annotation', '_parameters') + + _parameter_cls = Parameter + _bound_arguments_cls = BoundArguments + + empty = _empty + + def __init__(self, parameters=None, return_annotation=_empty, + __validate_parameters__=True): + '''Constructs Signature from the given list of Parameter + objects and 'return_annotation'. All arguments are optional. + ''' + + if parameters is None: + params = OrderedDict() + else: + if __validate_parameters__: + params = OrderedDict() + top_kind = _POSITIONAL_ONLY + + for idx, param in enumerate(parameters): + kind = param.kind + if kind < top_kind: + msg = 'wrong parameter order: {0} before {1}' + msg = msg.format(top_kind, param.kind) + raise ValueError(msg) + else: + top_kind = kind + + name = param.name + if name is None: + name = str(idx) + param = param.replace(name=name) + + if name in params: + msg = 'duplicate parameter name: {0!r}'.format(name) + raise ValueError(msg) + params[name] = param + else: + params = OrderedDict(((param.name, param) + for param in parameters)) + + self._parameters = params + self._return_annotation = return_annotation + + @classmethod + def from_function(cls, func): + '''Constructs Signature for the given python function''' + + if not isinstance(func, types.FunctionType): + raise TypeError('{0!r} is not a Python function'.format(func)) + + Parameter = cls._parameter_cls + + # Parameter information. + func_code = func.__code__ + pos_count = func_code.co_argcount + arg_names = func_code.co_varnames + positional = tuple(arg_names[:pos_count]) + keyword_only_count = getattr(func_code, 'co_kwonlyargcount', 0) + keyword_only = arg_names[pos_count:(pos_count + keyword_only_count)] + annotations = getattr(func, '__annotations__', {}) + defaults = func.__defaults__ + kwdefaults = getattr(func, '__kwdefaults__', None) + + if defaults: + pos_default_count = len(defaults) + else: + pos_default_count = 0 + + parameters = [] + + # Non-keyword-only parameters w/o defaults. + non_default_count = pos_count - pos_default_count + for name in positional[:non_default_count]: + annotation = annotations.get(name, _empty) + parameters.append(Parameter(name, annotation=annotation, + kind=_POSITIONAL_OR_KEYWORD)) + + # ... w/ defaults. + for offset, name in enumerate(positional[non_default_count:]): + annotation = annotations.get(name, _empty) + parameters.append(Parameter(name, annotation=annotation, + kind=_POSITIONAL_OR_KEYWORD, + default=defaults[offset])) + + # *args + if func_code.co_flags & 0x04: + name = arg_names[pos_count + keyword_only_count] + annotation = annotations.get(name, _empty) + parameters.append(Parameter(name, annotation=annotation, + kind=_VAR_POSITIONAL)) + + # Keyword-only parameters. + for name in keyword_only: + default = _empty + if kwdefaults is not None: + default = kwdefaults.get(name, _empty) + + annotation = annotations.get(name, _empty) + parameters.append(Parameter(name, annotation=annotation, + kind=_KEYWORD_ONLY, + default=default)) + # **kwargs + if func_code.co_flags & 0x08: + index = pos_count + keyword_only_count + if func_code.co_flags & 0x04: + index += 1 + + name = arg_names[index] + annotation = annotations.get(name, _empty) + parameters.append(Parameter(name, annotation=annotation, + kind=_VAR_KEYWORD)) + + return cls(parameters, + return_annotation=annotations.get('return', _empty), + __validate_parameters__=False) + + @property + def parameters(self): + try: + return types.MappingProxyType(self._parameters) + except AttributeError: + return OrderedDict(self._parameters.items()) + + @property + def return_annotation(self): + return self._return_annotation + + def replace(self, parameters=_void, return_annotation=_void): + '''Creates a customized copy of the Signature. + Pass 'parameters' and/or 'return_annotation' arguments + to override them in the new copy. + ''' + + if parameters is _void: + parameters = self.parameters.values() + + if return_annotation is _void: + return_annotation = self._return_annotation + + return type(self)(parameters, + return_annotation=return_annotation) + + def __hash__(self): + msg = "unhashable type: '{0}'".format(self.__class__.__name__) + raise TypeError(msg) + + def __eq__(self, other): + if (not issubclass(type(other), Signature) or + self.return_annotation != other.return_annotation or + len(self.parameters) != len(other.parameters)): + return False + + other_positions = dict((param, idx) + for idx, param in enumerate(other.parameters.keys())) + + for idx, (param_name, param) in enumerate(self.parameters.items()): + if param.kind == _KEYWORD_ONLY: + try: + other_param = other.parameters[param_name] + except KeyError: + return False + else: + if param != other_param: + return False + else: + try: + other_idx = other_positions[param_name] + except KeyError: + return False + else: + if (idx != other_idx or + param != other.parameters[param_name]): + return False + + return True + + def __ne__(self, other): + return not self.__eq__(other) + + def _bind(self, args, kwargs, partial=False): + '''Private method. Don't use directly.''' + + arguments = OrderedDict() + + parameters = iter(self.parameters.values()) + parameters_ex = () + arg_vals = iter(args) + + if partial: + # Support for binding arguments to 'functools.partial' objects. + # See 'functools.partial' case in 'signature()' implementation + # for details. + for param_name, param in self.parameters.items(): + if (param._partial_kwarg and param_name not in kwargs): + # Simulating 'functools.partial' behavior + kwargs[param_name] = param.default + + while True: + # Let's iterate through the positional arguments and corresponding + # parameters + try: + arg_val = next(arg_vals) + except StopIteration: + # No more positional arguments + try: + param = next(parameters) + except StopIteration: + # No more parameters. That's it. Just need to check that + # we have no `kwargs` after this while loop + break + else: + if param.kind == _VAR_POSITIONAL: + # That's OK, just empty *args. Let's start parsing + # kwargs + break + elif param.name in kwargs: + if param.kind == _POSITIONAL_ONLY: + msg = '{arg!r} parameter is positional only, ' \ + 'but was passed as a keyword' + msg = msg.format(arg=param.name) + raise TypeError(msg) + parameters_ex = (param,) + break + elif (param.kind == _VAR_KEYWORD or + param.default is not _empty): + # That's fine too - we have a default value for this + # parameter. So, lets start parsing `kwargs`, starting + # with the current parameter + parameters_ex = (param,) + break + else: + if partial: + parameters_ex = (param,) + break + else: + msg = '{arg!r} parameter lacking default value' + msg = msg.format(arg=param.name) + raise TypeError(msg) + else: + # We have a positional argument to process + try: + param = next(parameters) + except StopIteration: + raise TypeError('too many positional arguments') + else: + if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY): + # Looks like we have no parameter for this positional + # argument + raise TypeError('too many positional arguments') + + if param.kind == _VAR_POSITIONAL: + # We have an '*args'-like argument, let's fill it with + # all positional arguments we have left and move on to + # the next phase + values = [arg_val] + values.extend(arg_vals) + arguments[param.name] = tuple(values) + break + + if param.name in kwargs: + raise TypeError('multiple values for argument ' + '{arg!r}'.format(arg=param.name)) + + arguments[param.name] = arg_val + + # Now, we iterate through the remaining parameters to process + # keyword arguments + kwargs_param = None + for param in itertools.chain(parameters_ex, parameters): + if param.kind == _POSITIONAL_ONLY: + # This should never happen in case of a properly built + # Signature object (but let's have this check here + # to ensure correct behaviour just in case) + raise TypeError('{arg!r} parameter is positional only, ' + 'but was passed as a keyword'. + format(arg=param.name)) + + if param.kind == _VAR_KEYWORD: + # Memorize that we have a '**kwargs'-like parameter + kwargs_param = param + continue + + param_name = param.name + try: + arg_val = kwargs.pop(param_name) + except KeyError: + # We have no value for this parameter. It's fine though, + # if it has a default value, or it is an '*args'-like + # parameter, left alone by the processing of positional + # arguments. + if (not partial and param.kind != _VAR_POSITIONAL and + param.default is _empty): + raise TypeError('{arg!r} parameter lacking default value'. + format(arg=param_name)) + + else: + arguments[param_name] = arg_val + + if kwargs: + if kwargs_param is not None: + # Process our '**kwargs'-like parameter + arguments[kwargs_param.name] = kwargs + else: + raise TypeError('too many keyword arguments') + + return self._bound_arguments_cls(self, arguments) + + def bind(self, *args, **kwargs): + '''Get a BoundArguments object, that maps the passed `args` + and `kwargs` to the function's signature. Raises `TypeError` + if the passed arguments can not be bound. + ''' + return self._bind(args, kwargs) + + def bind_partial(self, *args, **kwargs): + '''Get a BoundArguments object, that partially maps the + passed `args` and `kwargs` to the function's signature. + Raises `TypeError` if the passed arguments can not be bound. + ''' + return self._bind(args, kwargs, partial=True) + + def __str__(self): + result = [] + render_kw_only_separator = True + for idx, param in enumerate(self.parameters.values()): + formatted = str(param) + + kind = param.kind + if kind == _VAR_POSITIONAL: + # OK, we have an '*args'-like parameter, so we won't need + # a '*' to separate keyword-only arguments + render_kw_only_separator = False + elif kind == _KEYWORD_ONLY and render_kw_only_separator: + # We have a keyword-only parameter to render and we haven't + # rendered an '*args'-like parameter before, so add a '*' + # separator to the parameters list ("foo(arg1, *, arg2)" case) + result.append('*') + # This condition should be only triggered once, so + # reset the flag + render_kw_only_separator = False + + result.append(formatted) + + rendered = '({0})'.format(', '.join(result)) + + if self.return_annotation is not _empty: + anno = formatannotation(self.return_annotation) + rendered += ' -> {0}'.format(anno) + + return rendered From 6a69eddaff07f9bba2b081aa9d7e26b130b441f9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Mon, 24 Sep 2018 16:12:05 +0200 Subject: [PATCH 18/26] correct typo deprecated function --- ot/datasets.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ot/datasets.py b/ot/datasets.py index 362a89b5f..e76e75d2c 100644 --- a/ot/datasets.py +++ b/ot/datasets.py @@ -38,9 +38,9 @@ def make_1D_gauss(n, m, s): @deprecated() -def get_1D_gauss(n, m, sigma, random_state=None): +def get_1D_gauss(n, m, sigma): """ Deprecated see make_1D_gauss """ - return make_1D_gauss(n, m, sigma, random_state=None) + return make_1D_gauss(n, m, sigma) def make_2D_samples_gauss(n, m, sigma, random_state=None): From c531fba46d9ea703a8a5ae270efe44466d54a593 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Tue, 25 Sep 2018 08:19:03 +0200 Subject: [PATCH 19/26] update contibution.md --- CONTRIBUTING.md | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 84ef29a14..54e7e427a 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -17,7 +17,7 @@ GitHub, clone, and develop on a branch. Steps: a copy of the code under your GitHub user account. For more details on how to fork a repository see [this guide](https://help.github.com/articles/fork-a-repo/). -2. Clone your fork of the scikit-learn repo from your GitHub account to your local disk: +2. Clone your fork of the POT repo from your GitHub account to your local disk: ```bash $ git clone git@github.com:YourLogin/POT.git @@ -84,7 +84,7 @@ following rules before you submit a pull request: example script in the ``examples/`` folder. Have a look at other examples for reference. Examples should demonstrate why the new functionality is useful in practice and, if possible, compare it - to other methods available in scikit-learn. + to other methods available in POT. - Documentation and high-coverage tests are necessary for enhancements to be accepted. Bug-fixes or new features should be provided with @@ -145,7 +145,7 @@ following rules before submitting: See [Creating and highlighting code blocks](https://help.github.com/articles/creating-and-highlighting-code-blocks). - Please include your operating system type and version number, as well - as your Python, scikit-learn, numpy, and scipy versions. This information + as your Python, POT, numpy, and scipy versions. This information can be found by running the following code snippet: ```python @@ -165,8 +165,8 @@ following rules before submitting: New contributor tips -------------------- -A great way to start contributing to scikit-learn is to pick an item -from the list of [Easy issues](https://github.com/scikit-learn/scikit-learn/issues?labels=Easy) +A great way to start contributing to POT is to pick an item +from the list of [Easy issues](https://github.com/rflamary/POT/issues?labels=Easy) in the issue tracker. Resolving these issues allow you to start contributing to the project without much prior knowledge. Your assistance in this area will be greatly appreciated by the more @@ -201,4 +201,4 @@ method does to the data and a figure (coming from an example) illustrating it. -This Contrubution guide is strongly inpired by the one of the [scikit-learn](https://github.com/scikit-learn/scikit-learn) team. +This Contribution guide is strongly inpired by the one of the [scikit-learn](https://github.com/scikit-learn/scikit-learn) team. From 287c4c0747ea5341c989c0c85daf0ed1d5a7cdf0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 28 Sep 2018 15:43:03 +0200 Subject: [PATCH 20/26] update realease.md --- RELEASES.md | 11 +++++++---- ot/__init__.py | 2 +- ot/gpu/da.py | 4 +++- 3 files changed, 11 insertions(+), 6 deletions(-) diff --git a/RELEASES.md b/RELEASES.md index 68abcb3b7..57ea61d46 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -1,10 +1,10 @@ # POT Releases -## 0.5.0b +## 0.5.0 Year 2 *Sep 2018* -*This is a beta release and is still a work in progress* +POT is 2 years old! This release bring both numerous new features to the toolbox as listed below but also several #### Features @@ -12,7 +12,7 @@ * Add non regularized Gromov-Wasserstein solver (PR #41) * Linear OT mapping between empirical distributions and 90\% test coverage (PR #42) * Add log parameter in class EMDTransport and SinkhornLpL1Transport (PR #44) -* Add Marddown format for Pipy (PR #45) +* Add Markdown format for Pipy (PR #45) * Test for Python 3.5 and 3.6 on Travis (PR #46) * Non regularized Wasserstein barycenter with scipy linear solver and/or cvxopt (PR #47) * Rename dataset functions to be more sklearn compliant (PR #49) @@ -22,10 +22,13 @@ * Speed-up Sinkhorn function (PR #57 and PR #58) * Add convolutional Wassersein barycenters for 2D images (PR #64) * Add Greedy Sinkhorn variant (Greenkhorn) (PR #66) +* Big ot.gpu update with cupy implementation (instead of un-maintained cudamat) (PR #67) #### Deprecation -Deprecated OTDA Classes were removed for version 0.5 (PR #48), it has been a year and the deprecation message. +Deprecated OTDA Classes were removed for version 0.5 (PR #48 and PR #67). The +deprecation messagehas been for a year here since 0.4 and it is time to pull +the plug. #### Closed issues diff --git a/ot/__init__.py b/ot/__init__.py index fa6600d74..b27541d54 100644 --- a/ot/__init__.py +++ b/ot/__init__.py @@ -29,7 +29,7 @@ # utils functions from .utils import dist, unif, tic, toc, toq -__version__ = "0.5.0b" +__version__ = "0.5.0" __all__ = ["emd", "emd2", "sinkhorn", "sinkhorn2", "utils", 'datasets', 'bregman', 'lp', 'tic', 'toc', 'toq', 'gromov', diff --git a/ot/gpu/da.py b/ot/gpu/da.py index f5e7daa87..7f7b2b047 100644 --- a/ot/gpu/da.py +++ b/ot/gpu/da.py @@ -133,7 +133,9 @@ def sinkhorn_lpl1_mm(a, labels_a, b, M, reg, eta=0.1, numItermax=10, # separated W = np.ones(M.shape) for (i, c) in enumerate(classes): -<<<<<<< HEAD + + +<< << << < HEAD (_, nbRow) = indices_labels[i].shape tmpC_GPU = cudamat.empty((Nfin, nbRow)).assign(0) transp_GPU.transpose().select_columns(indices_labels[i], tmpC_GPU) From 49af12288b4a6e45d1ff85f3e39d8d76839b2d5f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 28 Sep 2018 15:46:31 +0200 Subject: [PATCH 21/26] correction bug merge ot.gpu.da --- ot/gpu/da.py | 18 ------------------ 1 file changed, 18 deletions(-) diff --git a/ot/gpu/da.py b/ot/gpu/da.py index 7f7b2b047..4a9803872 100644 --- a/ot/gpu/da.py +++ b/ot/gpu/da.py @@ -134,23 +134,6 @@ def sinkhorn_lpl1_mm(a, labels_a, b, M, reg, eta=0.1, numItermax=10, W = np.ones(M.shape) for (i, c) in enumerate(classes): - -<< << << < HEAD - (_, nbRow) = indices_labels[i].shape - tmpC_GPU = cudamat.empty((Nfin, nbRow)).assign(0) - transp_GPU.transpose().select_columns(indices_labels[i], tmpC_GPU) - majs_GPU = tmpC_GPU.sum(axis=1).add(epsilon) - cudamat.pow(majs_GPU, (p - 1)) - majs_GPU.mult(p) - - tmpC_GPU.assign(0) - tmpC_GPU.add_col_vec(majs_GPU) - W_GPU.set_selected_columns(indices_labels[i], tmpC_GPU) - - W_GPU = W_GPU.transpose() - - return transp_GPU.asarray() -======= majs = np.sum(transp[indices_labels[i]], axis=0) majs = p * ((majs + epsilon)**(p - 1)) W[indices_labels[i]] = majs @@ -159,4 +142,3 @@ def sinkhorn_lpl1_mm(a, labels_a, b, M, reg, eta=0.1, numItermax=10, return utils.to_np(transp) else: return transp ->>>>>>> master From eaa05d1411cc8b365479fb239acf4e774c68037c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 28 Sep 2018 15:50:34 +0200 Subject: [PATCH 22/26] cleanup tests with plot --- test/test_plot.py | 13 +++++++++++-- 1 file changed, 11 insertions(+), 2 deletions(-) diff --git a/test/test_plot.py b/test/test_plot.py index f77d879c0..caf84deb1 100644 --- a/test/test_plot.py +++ b/test/test_plot.py @@ -5,10 +5,18 @@ # License: MIT License import numpy as np -import matplotlib -matplotlib.use('Agg') +import pytest +try: # test if matplotlib is installed + import matplotlib + matplotlib.use('Agg') + nogo = False +except ImportError: + nogo = True + + +@pytest.mark.skipif(nogo, reason="Matplotlib not installed") def test_plot1D_mat(): import ot @@ -30,6 +38,7 @@ def test_plot1D_mat(): ot.plot.plot1D_mat(a, b, M, 'Cost matrix M') +@pytest.mark.skipif(nogo, reason="Matplotlib not installed") def test_plot2D_samples_mat(): import ot From 642fd5b7707c4bdce72b883c666ffdae89fde76a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 28 Sep 2018 16:04:19 +0200 Subject: [PATCH 23/26] speedup tests --- test/test_bregman.py | 4 ++-- test/test_gromov.py | 10 ++++++---- test/test_ot.py | 12 ++++++------ test/test_utils.py | 2 +- 4 files changed, 15 insertions(+), 13 deletions(-) diff --git a/test/test_bregman.py b/test/test_bregman.py index b0c335816..14edaf50d 100644 --- a/test/test_bregman.py +++ b/test/test_bregman.py @@ -118,12 +118,12 @@ def test_wasserstein_bary_2d(): a2 += a2.min() a2 = a2 / np.sum(a2) # creating matrix A containing all distributions - A = np.zeros((2, 100, 100)) + A = np.zeros((2, size, size)) A[0, :, :] = a1 A[1, :, :] = a2 # wasserstein - reg = 1e-3 + reg = 1e-2 bary_wass = ot.bregman.convolutional_barycenter2d(A, reg) np.testing.assert_allclose(1, np.sum(bary_wass)) diff --git a/test/test_gromov.py b/test/test_gromov.py index fb86274a1..305ae8488 100644 --- a/test/test_gromov.py +++ b/test/test_gromov.py @@ -28,7 +28,7 @@ def test_gromov(): C1 /= C1.max() C2 /= C2.max() - G = ot.gromov.gromov_wasserstein(C1, C2, p, q, 'square_loss') + G = ot.gromov.gromov_wasserstein(C1, C2, p, q, 'square_loss', verbose=True) # check constratints np.testing.assert_allclose( @@ -69,7 +69,7 @@ def test_entropic_gromov(): C2 /= C2.max() G = ot.gromov.entropic_gromov_wasserstein( - C1, C2, p, q, 'square_loss', epsilon=5e-4) + C1, C2, p, q, 'square_loss', epsilon=5e-4, verbose=True) # check constratints np.testing.assert_allclose( @@ -107,7 +107,8 @@ def test_gromov_barycenter(): [ot.unif(ns), ot.unif(nt) ], ot.unif(n_samples), [.5, .5], 'square_loss', # 5e-4, - max_iter=100, tol=1e-3) + max_iter=100, tol=1e-3, + verbose=True) np.testing.assert_allclose(Cb.shape, (n_samples, n_samples)) Cb2 = ot.gromov.gromov_barycenters(n_samples, [C1, C2], @@ -134,7 +135,8 @@ def test_gromov_entropic_barycenter(): [ot.unif(ns), ot.unif(nt) ], ot.unif(n_samples), [.5, .5], 'square_loss', 2e-3, - max_iter=100, tol=1e-3) + max_iter=100, tol=1e-3, + verbose=True) np.testing.assert_allclose(Cb.shape, (n_samples, n_samples)) Cb2 = ot.gromov.entropic_gromov_barycenters(n_samples, [C1, C2], diff --git a/test/test_ot.py b/test/test_ot.py index 45e777add..76523946a 100644 --- a/test/test_ot.py +++ b/test/test_ot.py @@ -70,7 +70,7 @@ def test_emd_empty(): def test_emd2_multi(): - n = 1000 # nb bins + n = 500 # nb bins # bin positions x = np.arange(n, dtype=np.float64) @@ -78,7 +78,7 @@ def test_emd2_multi(): # Gaussian distributions a = gauss(n, m=20, s=5) # m= mean, s= std - ls = np.arange(20, 1000, 20) + ls = np.arange(20, 500, 20) nb = len(ls) b = np.zeros((n, nb)) for i in range(nb): @@ -207,11 +207,11 @@ def test_warnings(): def test_dual_variables(): - n = 5000 # nb bins - m = 6000 # nb bins + n = 500 # nb bins + m = 600 # nb bins - mean1 = 1000 - mean2 = 1100 + mean1 = 300 + mean2 = 400 # bin positions x = np.arange(n, dtype=np.float64) diff --git a/test/test_utils.py b/test/test_utils.py index b524ef6fe..640598dbf 100644 --- a/test/test_utils.py +++ b/test/test_utils.py @@ -12,7 +12,7 @@ def test_parmap(): - n = 100 + n = 10 def f(i): return 1.0 * i * i From 84022d1e07f3f4cd3e54ff406f46f3b5e2261bf2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Fri, 28 Sep 2018 16:23:59 +0200 Subject: [PATCH 24/26] add coveragerc for better coverage estimation in ravis --- .coveragerc | 6 ++++++ 1 file changed, 6 insertions(+) create mode 100644 .coveragerc diff --git a/.coveragerc b/.coveragerc new file mode 100644 index 000000000..2114fb45d --- /dev/null +++ b/.coveragerc @@ -0,0 +1,6 @@ +[run] + +omit= + ot/externals/* + ot/externals/funcsigs.py + ot/gpu/* From b6977571c1788152b85b756f2a09b1f47b99aac5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 3 Oct 2018 08:27:36 +0200 Subject: [PATCH 25/26] update releases.md --- RELEASES.md | 31 ++++++++++++++++++++++++++----- ot/gpu/__init__.py | 2 +- 2 files changed, 27 insertions(+), 6 deletions(-) diff --git a/RELEASES.md b/RELEASES.md index 57ea61d46..93af09c03 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -4,8 +4,29 @@ ## 0.5.0 Year 2 *Sep 2018* -POT is 2 years old! This release bring both numerous new features to the toolbox as listed below but also several - +POT is 2 years old! This release brings numerous new features to the +toolbox as listed below but also several bug correction. + +Among the new features, we can highlight a [non-regularized Gromov-Wasserstein +solver](https://github.com/rflamary/POT/blob/master/notebooks/plot_gromov.ipynb), +a new [greedy variant of sinkhorn](https://pot.readthedocs.io/en/latest/all.html#ot.bregman.greenkhorn), +[non-regularized](https://pot.readthedocs.io/en/latest/all.html#ot.lp.barycenter), +[convolutional (2D)](https://github.com/rflamary/POT/blob/master/notebooks/plot_convolutional_barycenter.ipynb) +and [free support](https://github.com/rflamary/POT/blob/master/notebooks/plot_free_support_barycenter.ipynb) + Wasserstein barycenters and [smooth](https://github.com/rflamary/POT/blob/prV0.5/notebooks/plot_OT_1D_smooth.ipynb) + and [stochastic](https://pot.readthedocs.io/en/latest/all.html#ot.stochastic.sgd_entropic_regularization) +implementation of entropic OT. + +POT 0.5 also comes with a rewriting of ot.gpu using the cupy framework instead of +the unmaintained cudamat. Note that while we tried to keed changes to the +minimum, the OTDA classes were deprecated. + +The code quality has also improved with 92% code coverage in tests that is now +printed to the log in the Travis builds. The documentation has also been +greatly improved with new modules and examples/notebooks. + +This new release is so full of new stuff and corrections thanks to the old +and new POT contributors (you can see the list in the readme). #### Features @@ -26,9 +47,9 @@ POT is 2 years old! This release bring both numerous new features to the toolbox #### Deprecation -Deprecated OTDA Classes were removed for version 0.5 (PR #48 and PR #67). The -deprecation messagehas been for a year here since 0.4 and it is time to pull -the plug. +Deprecated OTDA Classes were removed from ot.da and ot.gpu for version 0.5 +(PR #48 and PR #67). The deprecation message has been for a year here since +0.4 and it is time to pull the plug. #### Closed issues diff --git a/ot/gpu/__init__.py b/ot/gpu/__init__.py index 213578c93..deda6b139 100644 --- a/ot/gpu/__init__.py +++ b/ot/gpu/__init__.py @@ -9,7 +9,7 @@ in order to proide drop-in replacement for the other POT function but the transfer between CPU en GPU comes with a significant overhead. -In order to get the best erformances, we recommend to given only cupy +In order to get the best erformances, we recommend to give only cupy arrays to the functions and desactivate the conversion to numpy of the result of the function with parameter ``to_numpy=False``. From 27f0a9fe625f6fa8123e0e7364a4c0c0e10d5702 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?R=C3=A9mi=20Flamary?= Date: Wed, 3 Oct 2018 08:31:21 +0200 Subject: [PATCH 26/26] small release edit --- RELEASES.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/RELEASES.md b/RELEASES.md index 93af09c03..a6174412c 100644 --- a/RELEASES.md +++ b/RELEASES.md @@ -19,14 +19,15 @@ implementation of entropic OT. POT 0.5 also comes with a rewriting of ot.gpu using the cupy framework instead of the unmaintained cudamat. Note that while we tried to keed changes to the -minimum, the OTDA classes were deprecated. +minimum, the OTDA classes were deprecated. If you are happy with the cudamat +implementation, we recommend you stay with stable release 0.4 for now. The code quality has also improved with 92% code coverage in tests that is now printed to the log in the Travis builds. The documentation has also been greatly improved with new modules and examples/notebooks. This new release is so full of new stuff and corrections thanks to the old -and new POT contributors (you can see the list in the readme). +and new POT contributors (you can see the list in the [readme](https://github.com/rflamary/POT/blob/master/README.md)). #### Features