
QENSmodels: Handling of units 

At present the QENS models library contains a set of models aimed to fit S(Q, ħ) quasielastic neutron 

scattering data1. As there it does not yet exist an standard format for S(Q, ħ) data, it remains a user 

task to write the appropriate loader to read the data and the library is unit agnostic and it does not 

make any assumption about the units of the input data. As a consequence, if no additional information 

is given, any output parameter will be given in the same units as the input data. Further information 

and examples are given below. 

S(Q, ħ) 

The dynamical structure factor should be given in units of [energy]1 ([E]1), although in many cases 

S(Q, ħ) is not obtained in absolute units and the fitted data will be simply given in arbitrary units. In 

this case, the global scaling factor used in the fitting model will also be just an arbitrary number and 

its units can be ignored. Otherwise, if the input data were carefully normalized and the dynamical 

structure factor is given in absolute units, then this scaling factor will be given also in [E]1 units. 

Q 

The wavevector transfer has units of [length]1 ([L]1). Typically is given in Å1, but it is not strange to 

use nm1 either. 

ħ (or  or  or /c) 

The energy exchange has naturally units of energy and it is commonly expressed in meV. However, 

many other units are also used in the literature. For example, for backscattering experiments it is quite 

usual to use eV instead of meV. But it is also relatively frequent (especially when comparing with 

simulation data) to use just the angular frequency  (often given in rad/ps or rad/s) or the frequency 

 (often in THz, but also in GHz or Hz). In this case the input units are of dimension [time]1 ([T]1). 

Finally, in optical spectroscopy it is usual to use the optical wavevector /c in cm1, i.e. [L]1. Therefore 

it is not uncommon that neutron vibrational spectrometers provide data in cm1. However, as this is 

not of common use in QENS spectroscopy, we will not consider that case.  

 

Output units 

As said above, the units of the output parameters will correspond to the units of the input data. This 

implies that it remains the user responsibility to understand the nature of the parameters in each 

model in order to determine their units and then to convert the output values to any other physical 

unit2. A few examples to show how this can be done are given below.  

Lorentzian or Gaussian models 

Let’s start with the most common case, where we fit a single Lorentzian and in the input data Q is 

given in Å1 and the energy transfer in meV. The three output parameters that we will get are the 

                                                           
1 In In the future the library could be extended to other types of models, e.g. inelastic or I(Q,t) models. 
2 As sometimes this can be confusing and a source of errors, we are working on implementing the possibility of 
declaring which are the units used in the input data and the desired units for the output data. Then the 
conversion will be done at the end of the fit and the final parameters given already in the units preferred by 
the user. TO DO! 



amplitude of the Lorentzian: scale, given in arbitrary units (see above), its position: center, given in 

meV, and its half-width at half-maximum: hwhm, also given in meV.  

It follows naturally that if the energy transfer is given in eV, then center and hwhm will be returned 

also in eV. And similarly if the input data contain S(Q, ) or S(Q, ) instead of S(Q, ħ) and the 

frequency is given in rad/ps or THz, respectively. 

In this case, the standard unit conversion tables can be used to convert directly to the desired units, 

e.g.: 

- List of conversion factors for neutron scattering  

- Documentation about units in Mantid 

- ILL online tool Neutron scattering conversion factors 

 

The same applies to the Gaussian model, with sigma replacing hwhm. 

 

Self-diffusion coefficient  

Let’s start with the simplest model, Brownian Translational Diffusion. This model has also three 

parameters. Scale and center will be treated as above. The third parameter is the self-diffusion 

coefficient, D, which is related to the half-width at half-maximum  of the Lorentzian function by the 

relation Γ = D𝑄2. Thus 𝐷 = Γ/𝑄2 and its units will we EL2 if the input data was S(Q, ħ) or T1L2 if 

the input data was S(Q, ) or S(Q, ). 

So if we fit S(Q, ħ) data with Q in Å1 and ħ in meV, D will be given in Å2meV. The output value can 

be converted to more standard units for the self-diffusion coefficient by noting that 1 Å = 1010 m and 

ħ = 1 meV corresponds to  = 1.5191012 rad/s, giving3:  

 1 Å2meV = 1.51910-8 m2/s = 1.51910-4 cm2/s = 1.519 Å2/ps 

If the energy transfer is given in eV instead of meV, then D will be obtained in Å2eV, and we would 

need to apply:  

 1 Å2eV = 1.51910-11 m2/s = 1.51910-7 cm2/s = 1.51910-3  Å2/ps 

If Q is in nm1, then we would have D in nm2meV or nm2eV, and: 

 1 nm2meV = 1.51910-6 m2/s = 1.51910-2 cm2/s = 151.9 Å2/ps 

 1 nm2eV = 1.51910-9 m2/s = 1.51910-5 cm2/s = 1.51910-1  Å2/ps 

If the input data correspond to S(Q, ) with  in rad/ps, then D will be obtained directly in Å2/ps (if Q 

was in Å1) or in nm2/ps (if  Q was in nm1).  

Finally, if the input is S(Q, ) with  in THz and Q in Å1 , then D will be in Å2THz, and: 

 1 Å2THz = 6.28310-12 m2/s = 6.28310-8 cm2/s = 6.28310-4  Å2/ps 

                                                           
3 Conversions done using the values appearing in the NIST conversion table. 



Naturally, the same unit conversions can be applied to the parameter D in the Chudley-Elliot, jump 

translational diffusion, or the Gaussian localized diffusion models or in any other derived model where 

D represents a translational diffusion coefficient. 

 

Distance parameters (e.g. jump length or radius) 

They appear in many models, e.g. L in  the Chudley-Elliot model for translational diffusion, or radius in 

the models of jumps among equivalent sites in a circle (simple or including a log-norm distribution) 

and isotropic rotational diffusion. They are in units of [L], i.e. the inverse of the units of Q, so if the 

input contains Q in  Å1, then the output will be the length or radius in Å, while if Q was given in nm1, 

they will be returned in nm. 

The same applies to the parameter 〈𝑢𝑥
2〉, quantifying the size of the region in which the particle is 

confined in the Gaussian model for localized diffusion4. In this case, 〈𝑢𝑥
2〉 is in units of L2, so typically 

the parameter returned by the model will be in Å2 (if Q was in Å1) or in nm2 (if Q was in nm1). 

 

Time parameters 

At present, the only time parameter appearing in the library models is the residence time in a given 

site, called resTime in the jump translational diffusion and jump between equivalent sites in a circle 

(both simple or using a log-norm distribution or residence times) models. Its natural unit is T, of course, 

but if the input data correspond to S(Q, ħ), the resulting residence time will be given in E1 units. 

Therefore, in the most common case where we have experimental data with the energy transfer given 

in meV, the fit will give us a residence time  in meV1 which can be easily transformed to time units: 

 1 meV1 = 6.583 10-13 s = 0.6583 ps  

 

Rotational diffusion coefficient 

At present, this parameter appears only in the isotropic rotational diffusion model, named as DR and 

it will have units of E or directly T1 if the input is S(Q, ) instead of S(Q, ħ). In the first case, the result 

can be converted to the expected inverse time units easily: 

 1 meV = 1.5191012 s1 = 1.519 ps1 

 

Adimensional parameters 

Although they do not require any conversion, they are listed here for completeness.  

A0, A1, A2 in models formed by the sum of several functions (e.g. delta_lorentz). 

Nsites defining the number of sites in a circle (which should not be an adjustable parameter) in 

equivalent_sites_circle and jump_sites_log_norm_dist. 

Sigma describing the width of the log-norm distribution in jump_sites_log_norm_dist 

                                                           
4 F. Volino, J.-C. Perrin, and S. Lyonnard, J. Phys. Chem. B 110, 11217-11223 (2006). 


