

3D Slicer for DCE-MRI Image Analysis

Madeline Carr – mec640@uowmail.edu.au

https://download.slicer.org/

Installations

^{*}Stable version required currently to access the required modules.

- Require 2 main Extensions to be installed:
- View → Extension Manager → Install Extensions → Search:

Then restart Slicer.

Installations

To change views below: E.g. Single or quad windows

Navigating

- To see image viewing options
- Change plane of observation
- Change image data set observing
- Centre image
- Set background and foreground preferences
- Scroll over image to browse through slices
- Right click and scroll to zoom centrally on image
- Left click and scroll to change brightness of all images

T1-Mapping using VFA Method

- DICOM Browser→ Import: to load in VFA scan images
- Load in both flip angle scan data at the same time (select both folders)
 - This registers them together as a multi-volume; required for the T1mapping module
 - Slicer will generally re-name the volume for you after the 'study name' in the DICOM header of the VFA scans

- Too see **theory** behind how this map was generated:
 - Sung et al., 2013, Transmit B1 + Field Inhomogeneity and T1 Estimation Errors in Breast DCE-MRI at 3T
- T1-Mapping

- Input image: Must be in multi-volume format
- Model: VFA
- Type in FA's used, commas to separate
- Don't enter any in exclude box
- -Output T1 Map → New Volume → T1 Map
- This will generate T1 map in 3D

Handling DCE-MRI Data Sets

Exploration and Study of MultiVolume Image Data using 3D Slicer

Meysam Torabi and Andriy Fedorov torabi@bwh.harvard.edu, fedorov@bwh.harvard.edu

Surgical Navigation and Robotics Lab and Surgical Planning Lab, Brigham and Women's Hospital and Harvard Medical School, April 2013.

Surgical Planning Laboratory

https://www.slicer.org/w/images/2/2c/MultiVolumeExplorer_Meysam_SNR-April2013-v3.pdf

- Loaded in as multi-volumes.
- To work with these, see above slides.

Generating an AIF

- By now, you should have:
 - Loaded in your DCE image data set
 - Made them easier to observe in appearance
 - Selected a frame for analysis in coronal plane (can do any plane though)
 - Generated a T1 Map
- The next step is generating an AIF:
 - My example will be using the carotid carotid bulb/ carotid sinus for the head and neck.
 - Need location to have rapid uptake of contrast.

Still viewing original DCE image series

MultiVolume Exporter→ Select DCE series at desired spatial location as Input
 → Select frame (should be copied already)→ Observe plot to see signal
 uptake vs time.

AIF Generation

- Segment Editor Module →
 Select desired frame from series → Add segment
- Use any drawing tool of choice (e.g. paint) over approx. uniform ROI that highlighted good uptake.
- Export to new label map

AIF Generation

- Multivolume Exporter → Use desired frame → Plotting Settings
- Select your exported segmentation to be the probed label volume
- Chart
 - Easiest observation: Set viewing to 4-Up Quantitative
 - The shape of the uptake will be used as your AIF.

PK-Modeling Module

Now to combine all previous steps

PKModeling Module:

- Parameters will be auto-set to standardised prostate DCE-MRI parameters.
- Alter accordingly for your particular body region and contrast media.
- T1 overall tissue value will have to be estimated from your T1 Map or assumed from literature*.
- Can get individual patient haematocrit values- but generally okay to use a population standard.

- For AIF Mode:
- Select AverageUnderAIFMask if last step completed for segment map
- Can use Population based for estimate but not as accurate for individual.
- Cont.

PK-Modelling Module

- **Input** as above:
 - Input 4D image is your DCE-Data set
 - ROI Mask Image if you have your known ROI already (not included above)
 - Input your T1 map and Segment-label generated prior
 - If using a population based AIF, leave the AIF Mask field blank.
- Output: The parameter maps you desire (save each as new volume maps).

The Output

Exporting

- There are several exporting methods for the PK Maps:
 - Direct DICOM Export
 - Requires the Quantitative Reporting extension installed or to apply a scaling filter beforehand: Want float-point values to be conserved.
 - Nrrd (standard- recommended)
 - E.g. Using nrrd reader on MATLAB or Python for analysis.
 - MatlabBridge extension
 - MATLAB only based analysis.

Export to DICOM

- Open: Data Module
- Create 'New Subject' (right click in blank space)
 - Create new 'Child Study'
 - Drag maps into 'New Study'
- Right click on the New Study→ Export to DICOM

*T1-map can require a different subject → See next 2 slides.

Export

• Each parameter map in the study will be saved to a different folder.

T1-map to DICOM

Complete previous process with moving the T1 map to same new study as the combined VFA multivolume.

Simple MATLAB Code (DICOM)

• First open **DICOM Image Reader Application (Matlab2018+)** and export image of choice to the workspace (e.g. as 't1'). Then use:

```
figure;
imagesc(t1)
title(['T-1'])
hi=colorbar('eastoutside');
k = jet(7);
colormap('jet');
title(hi,'Value')
caxis([o 10000]);
xlabel('Pixels (x)') % x-axis label
ylabel('Pixels (y)') % y-axis label
impixelinfo()
m = mean(t1(:));
disp(m)
```

Export to nrrd

- Save scenes as nrrd files:
 - Allows you to work on them again on Slicer directly
 - Easily opened by MATLAB and Python

Simple MATLAB Code (nrrd)

 Download nrrdread.m and then call the function using your image data set:

```
image = nrrdread('Output ve image.nrrd')
T_matrix =[224 224 26]; %[height width #slices]
M1 = repmat(single(o), T_matrix);
for m1 = 1:26
  M1(:,:,:) = image.pixelData();
End
for F =1:26
  imshow3D(M1)
  title(['Slice #', num2str(F)])
  hi=colorbar('eastoutside');
  k = jet(7);
  colormap('jet');
  title(hi,'PK Map')
  caxis([o 2]);
  xlabel('Pixels (x)') % x-axis label
  ylabel('Pixels (y)') % y-axis label
end
```

