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3. Photon number fluctuations

In the circuit QED architecture, resonator pho-
ton number fluctuation is another major decoherence
source147. Residual microwave fields in the cavity have
photon-number fluctuations that in the dispersive regime
impact the qubit through an interaction term χσzn, see
Sec. II C 2, leading to a frequency shift ∆Stark = 2ηχn̄,
where n̄ is the average photon number, and η = κ2/(κ2 +
4χ2) effectively scales the photon population seen by the
qubit due to the interplay between the qubit-induced dis-
persive shift of the resonator frequency (χ) and the res-
onator decay rate (κ).

In the dispersive limit, the noise is longitudinally cou-
pled to the qubit and leads to pure dephasing at a rate,

Γφ = η
4χ2

κ
n̄. (51)

The fluctuations originate from residual photons in the
resonator, typically due to radiation from higher tem-
perature stages in the dilution refrigerator107,148. The
corresponding noise spectral density is of a Lorentzian
type,

S(ω) = 4χ2 2ηn̄κ
ω2 + κ2 , (52)

which exhibits an essentially white noise spectrum up to
a 3dB cutoff frequency ω = κ set by the resonator decay
rate κ, see Ref. 62.

4. Quasiparticles

Quasiparticles, i.e. unpaired electrons, are another im-
portant noise source for superconducting devices121. The
tunneling of quasiparticles through a qubit junction may
lead to both T1 relaxation and pure dephasing Tϕ, de-
pending on the type of qubit, the bias point, and the
junction through which the tunneling event occurs120,122.

Quasiparticles are naturally excited due to thermo-
dynamics, and the quasiparticle density in equilibrium
superconductors should be exponentially suppressed as
temperature decreases. However, below about 150 mK,
the quasiparticle density observed in superconducting de-
vices – generally in the range 10−8−10−6 per Cooper pair
– is much higher than BCS theory would predict for a su-
perconductor in equilibrium with its cryogenic environ-
ment at 10 mK. The reason for this excess quasiparticle
population is unclear, but it is very likely related to the
presence of additional, non-thermal mechanisms that in-
crease the generation rates, “bottleneck effects” that oc-
cur at millikelvin temperatures to reduce recombination
rates, or a combination of both.

It has been shown that the observed T1 and excess
excited-state population measured in today’s state-of-
the-art high-coherence transmon are self-consistent with
excess “hot” nonequilibrium quasiparticles at the quasi-
universal density of around 10−7 − 10−6 per Cooper

pair149,150. Although this quasiparticle generation mech-
anism is not yet well understood, it has been shown that
quasiparticles can be transiently pumped away, improv-
ing T1 times and reducing T1 temporal variation122.

D. Operator form of qubit-environment interaction

Similar to the way that two qubits are coupled, a qubit
may couple and interact with uncontrolled degrees of
freedom (DOF) in its environment (the noise sources).
The interaction Hamiltonian between the qubit DOF
(Ôq) and those of the noise source (λ̂) may be expressed
in a general form

Ĥint = νÔqλ̂ (53)

where ν denotes the coupling strength – which is related
to the sensitivity of the qubit to environmental fluctua-
tions ∂Ĥq/∂λ – and we assume that Ôq is a qubit opera-
tor within the qubit Hamiltonian Ĥq. The noisy environ-
ment represented by the operator λ̂ produces fluctuations
δλ. Note that we retained the hats in this section to re-
mind us that these are quantum operators.

1. Connecting T1 to S(ω)

If the coupling is transverse to the qubit, e.g. Ôq
is of the type σx or (a + a†) – see the related case of
qubit-qubit coupling treated in Sec. II C – then noise
at the qubit frequency can cause transitions between
the qubit eigenstates. Since this is a stochastic process,
the ensemble-average manifests itself as a decay (usually
exponential) of the qubit population towards a certain
equilibrium value (usually the qubit ground state |0〉 for
kBT � ~ωq). Again, this process is equivalently referred
to as “T1 relaxation”, “energy relaxation”, or “longitudi-
nal relaxation”. As stated above, T1 is the characteristic
time scale of the decay. Its inverse, Γ1 = 1/T1 is called
the relaxation rate and depends on the power spectral
density of the noise S(ω) at the transition frequency of
the qubit ω = ωq:

Γ1 = 1
~2

∣∣∣∣∣〈0|∂Ĥq

∂λ
|1〉
∣∣∣∣∣
2

Sλ(ωq), (54)

where ∂Ĥq/∂λ is the qubit transverse susceptibility to
fluctuations δλ, such that |δλ|2 is the ensemble average
value of the environmental noise sources as seen by the
qubit. Eq. (54) is equivalent to Fermi’s Golden Rule,
in which the qubit’s transverse susceptibility to noise is
driven by the noise power spectral density. The qubit
transverse susceptibility can be used to calculate the pref-
actors; for example, for fluctuations δλ = δn, the rele-
vant term in the transmon Hamiltonian in Eq. (16) is
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FIG. 7. Dynamical error suppression. (a) Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence applies N equally
spaced π pulses within an otherwise free-evolution time τ .
Pulses in the time domain correspond to bandpass filters in
the frequency domain (lower panel) which serve to shape the
noise power spectrum seen by the qubit. The centroid of the
bandpass filter shifts to higher frequencies as N is increased.
For noise that decreases with frequency, such as 1/f noise,
larger N corresponds to less integrated noise impinging on
the qubit. (b) CPMG pulse sequence applied to a flux qubit
biased at a point that is highly sensitive to 1/f flux noise. The
Ramsey (N = 0) time is approximately 300 ns, and the Hahn
echo (N = 1) time is approximately 1.5 µs. Increasing the
number of CPMG pulses continues to increase the effective
T2 time towards the 2T1 limit. Adapted from Ref. 78.

4EC(n̂ − ng)2, where we allow for an offset charge ng,
and the susceptibility is given by 8EC n̂. We refer the
reader to Refs. 151–153 for more details.

2. Connecting Tϕ to S(ω)

If the coupling to the qubit is instead longitudinal,
e.g. Ĥq is of the type σz or a†a, the noise will stochasti-

cally modulate the transition frequency of the qubit and
thereby introduce a stochastic phase evolution of a qubit
superposition state. This gradually leads to a loss of
phase information, and it is therefore called pure dephas-
ing (time constant Tϕ). Unlike T1 relaxation, which is
generally an irreversible (incoherent) error, pure dephas-
ing Tϕ is in principle reversible (a coherent error). The
degree of pure dephasing depends on the control pulse
sequence applied while the qubit is subject to the noise
process.

Consider the relative phase ϕ of a superposition state
undergoing free evolution in the presence of noise. The
superposition state’s accumulated phase,

ϕ(t) =
∫ t

0
ωqdt

′ = 〈ωq〉t+ δϕ(t) (55)

diffuses due to adiabatic fluctuations of the transition
frequency,

δϕ(t) = ∂ωq

∂λ

∫ t

0
δλ(t′)dt′, (56)

where ∂ωq/∂λ = (1/~)|〈∂Ĥq/∂λ〉| is the qubit’s longi-
tudinal sensitivity to λ-noise. For noise generated by a
large number of fluctuators that are weakly coupled to
the qubit, its statistics are Gaussian. Ensemble averaging
over all realizations of the Gaussian-distributed stochas-
tic process δλ(t), the dephasing is

〈ei δϕ(t)〉 = e−
1
2 〈δϕ

2(t)〉 ≡ e−χN (t), (57)

leading to a coherence decay function,

〈e−χN (τ)〉 = exp
[
−τ

2

2
∂ωq

∂λ

∫ ∞
−∞

gN (ω, τ)S(ω)dω
]
,

(58)
where g(ω, τ) is a dimensionless weighting function.

The function gN (ω, τ) can be viewed as a frequency-
domain filter of the noise Sλ(ω) [see Fig. 7(a)]. In gen-
eral, its filter properties depend on the number N and
distribution of applied pulses. For example, considering
sequences of π-pulses78,154–158,

gN (ω, τ) = 1
(ωτ)2

∣∣∣1 + (−1)1+N exp(iωτ)+

2
N∑
j=1

(−1)j exp(iωδjτ) cos(ωτπ/2)
∣∣∣2, (59)

where δj ∈ [0, 1] is the normalized position of the centre
of the jth π-pulse between the two π/2-pulses, τ is the
total free-induction time, and τπ is the length of each
π-pulse157,158, yielding a total sequence length τ +Nτπ.
As the number of pulses increases for fixed τ , the filter
function’s peak shifts to higher frequencies, leading to a
reduction in the net integrated noise for 1/fα-type noise
spectra with α > 0. Similarly, for a fixed N , the filter
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function will shift in frequency with τ . Additionally, for a
fixed time separation τ ′ = τ/N (valid for N ≥ 1), the fil-
ter sharpens and asymptotically peaks at ω′/2π = 1/2τ ′
as more pulses are added. gN (ω, τ) is thus called the “fil-
ter function”78,156, and it depends on the pulse sequences
being applied. From Eq. (58), the pure dephasing de-
cay arises from a noise spectral density that is “shaped”
or “filtered” by the sequence-specific filter function. By
choosing the number of pulses, their rotation axes, and
their arrangement in time, we can design filter functions
that minimize the net noise power for a given noise spec-
tral density within the experimental constraints of the ex-
periment (e.g., pulse-modulation bandwidth of the elec-
tronics used to control the qubits).

To give a standard example, we compare the coherence
integral for two cases: a Ramsey pulse sequence and a
Hahn echo pulse sequence. Both sequences involve two
π/2 pulses separated by a time τ , during which free evo-
lution of the qubit occurs in the presence of low-frequency
dephasing noise. The distinction is that the Hahn echo
will place a single π pulse (N = 1) in the middle of the
free-evolution period, whereas the Ramsey does not use
any additional pulses (N = 0). The resulting filter func-
tions are:

g0(ω, τ) = sinc2ωτ

2 (60)

g1(ω, τ) = sin2 ωτ

4 sinc2ωτ

4 (61)

where the subscript N = 0 and N = 1 indicate the num-
ber of π-pulses applied for the Ramsey and Hahn echo
experiments, respectively. The filter function g0(ω, τ) for
the Ramsey case is a sinc-function centered at ω = 0. For
noise that decreases with frequency, e.g., 1/f flux noise
in superconducting qubits, the Ramsey experiment win-
dows through the noise in S(ω) where it has its highest
value. This is the worst choice of filter function for 1/f
noise. In contrast, the Hahn echo filter function has a
centroid that is peaked at a higher frequency, away from
ω = 0. In fact, it has zero value at ω = 0. For noise
that decreases with frequency, such as 1/f noise, this is
advantageous. This concept extends to larger numbers
N of π pulses, and is called a Carr-Purcell-Meiboom-Gill
(CPMG) sequence159,160. In Fig. 7(b), the T2 time of a
qubit under the influence of strong dephasing noise is in-
creased toward the 2T1 limit using a CPMG dynamical
error-suppression pulse sequence with an increasing num-
ber of pulses, N . We refer the reader to Refs. 78, 161, and
162, where these experiments were performed with super-
conducting qubits.

3. Noise spectroscopy

The qubit is highly sensitive to its noisy environment,
and this feature can be used to map out the noise power
spectral density. In general, one can map the noise PSD

during free evolution – periods of time for which no con-
trol is applied to the qubit, except for very short dynami-
cal decoupling pulses – and during driven evolution – pe-
riods of time during which the control fields are applied
to the qubit. Both free-evolution and driven-evolution
noise is important to characterize, as the noise PSD may
differ for these two types of evolution, and both are uti-
lized in the context of universal quantum computation.
We refer the reader to Ref. 132 for a summary of noise
spectroscopy during both types of evolution.

The Ramsey frequency itself is sensitive to longitudinal
noise, and monitoring its fluctuations is one means to
map out the noise spectral density over the sub-millihertz
to ∼ 100 Hz range131,163.

At higher frequencies, the CPMG dynamical decou-
pling sequence can be used to create narrow-band fil-
ters that “sample” the noise at different frequencies as a
function of the free-evolution time τ and the number of
pulses N . This has been used to map out the noise PSD
in the range 0.1 - 300 MHz78. One must be careful of
the additional small peaks at higher-frequencies, which
all contribute to the dephasing used to perform the noise
spectroscopy164.

In fact, using pulse envelopes such as Slepians165 –
which are designed to have concentrated frequency re-
sponse – to perform noise spectroscopy is one means to
reduce such errors157.

At even higher frequencies, measurements of T1 can be
used in conjunction with Fermi’s golden rule to map out
the transverse noise spectrum above 1 GHz62,78,166.

The aforementioned are all examples of noise spec-
troscopy during free evolution. Noise spectroscopy dur-
ing driven evolution was also demonstrated using a “spin-
locking” technique, where a strong drive along x or y
axes defines a new qubit quantization axis, whose Rabi
frequency is the new qubit frequency in the spin-locking
frame. The spin-locking frame is then used to infer the
noise spectrum while the qubit is continually subject to
a driving field. For more information, we refer the reader
to Ref. 132.

E. Engineering noise mitigation

Here, we briefly review a few examples of techniques
that have been developed to reduce noise or reduce its im-
pact on decoherence (sensitivity). We stress that improv-
ing gate fidelity is a comprehensive optimization task, one
that is full of trade-offs. It is thus important to identify
what the limiting factors are, what price we have to pay
to diminish these limiting factors, and what advantage we
can achieve until reaching a better trade-off. These all
require an accurate understanding the limitations on the
gate fidelity, the sources of decoherence, the properties
of the noise, and how it affects the system performance.


