-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
piecewise_chebyshev.py
353 lines (278 loc) · 12.8 KB
/
piecewise_chebyshev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Piecewise polynomial Chebyshev approximation to a given f(x)."""
from __future__ import annotations
from typing import Callable
import numpy as np
from numpy.polynomial.chebyshev import Chebyshev
from qiskit.circuit import QuantumRegister, AncillaRegister
from qiskit.circuit.library.blueprintcircuit import BlueprintCircuit
from qiskit.circuit.exceptions import CircuitError
from .piecewise_polynomial_pauli_rotations import PiecewisePolynomialPauliRotations
class PiecewiseChebyshev(BlueprintCircuit):
r"""Piecewise Chebyshev approximation to an input function.
For a given function :math:`f(x)` and degree :math:`d`, this class implements a piecewise
polynomial Chebyshev approximation on :math:`n` qubits to :math:`f(x)` on the given intervals.
All the polynomials in the approximation are of degree :math:`d`.
The values of the parameters are calculated according to [1] and see [2] for a more
detailed explanation of the circuit construction and how it acts on the qubits.
Examples:
.. plot::
:include-source:
import numpy as np
from qiskit import QuantumCircuit
from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev
f_x, degree, breakpoints, num_state_qubits = lambda x: np.arcsin(1 / x), 2, [2, 4], 2
pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits)
pw_approximation._build()
qc = QuantumCircuit(pw_approximation.num_qubits)
qc.h(list(range(num_state_qubits)))
qc.append(pw_approximation.to_instruction(), qc.qubits)
qc.draw(output='mpl')
References:
[1]: Haener, T., Roetteler, M., & Svore, K. M. (2018).
Optimizing Quantum Circuits for Arithmetic.
`arXiv:1805.12445 <http://arxiv.org/abs/1805.12445>`_
[2]: Carrera Vazquez, A., Hiptmair, H., & Woerner, S. (2022).
Enhancing the Quantum Linear Systems Algorithm Using Richardson Extrapolation.
`ACM Transactions on Quantum Computing 3, 1, Article 2 <https://doi.org/10.1145/3490631>`_
"""
def __init__(
self,
f_x: float | Callable[[int], float],
degree: int | None = None,
breakpoints: list[int] | None = None,
num_state_qubits: int | None = None,
name: str = "pw_cheb",
) -> None:
r"""
Args:
f_x: the function to be approximated. Constant functions should be specified
as f_x = constant.
degree: the degree of the polynomials.
Defaults to ``1``.
breakpoints: the breakpoints to define the piecewise-linear function.
Defaults to the full interval.
num_state_qubits: number of qubits representing the state.
name: The name of the circuit object.
"""
super().__init__(name=name)
# define internal parameters
self._num_state_qubits = None
# Store parameters
self._f_x = f_x
self._degree = degree if degree is not None else 1
self._breakpoints = breakpoints if breakpoints is not None else [0]
self._polynomials: list[list[float]] | None = None
self.num_state_qubits = num_state_qubits
def _check_configuration(self, raise_on_failure: bool = True) -> bool:
"""Check if the current configuration is valid."""
valid = True
if self._f_x is None:
valid = False
if raise_on_failure:
raise AttributeError("The function to be approximated has not been set.")
if self._degree is None:
valid = False
if raise_on_failure:
raise AttributeError("The degree of the polynomials has not been set.")
if self._breakpoints is None:
valid = False
if raise_on_failure:
raise AttributeError("The breakpoints have not been set.")
if self.num_state_qubits is None:
valid = False
if raise_on_failure:
raise AttributeError("The number of qubits has not been set.")
if self.num_qubits < self.num_state_qubits + 1:
valid = False
if raise_on_failure:
raise CircuitError(
"Not enough qubits in the circuit, need at least "
f"{self.num_state_qubits + 1}."
)
return valid
@property
def f_x(self) -> float | Callable[[int], float]:
"""The function to be approximated.
Returns:
The function to be approximated.
"""
return self._f_x
@f_x.setter
def f_x(self, f_x: float | Callable[[int], float] | None) -> None:
"""Set the function to be approximated.
Note that this may change the underlying quantum register, if the number of state qubits
changes.
Args:
f_x: The new function to be approximated.
"""
if self._f_x is None or f_x != self._f_x:
self._invalidate()
self._f_x = f_x
self._reset_registers(self.num_state_qubits)
@property
def degree(self) -> int:
"""The degree of the polynomials.
Returns:
The degree of the polynomials.
"""
return self._degree
@degree.setter
def degree(self, degree: int | None) -> None:
"""Set the error tolerance.
Note that this may change the underlying quantum register, if the number of state qubits
changes.
Args:
degree: The new degree.
"""
if self._degree is None or degree != self._degree:
self._invalidate()
self._degree = degree
self._reset_registers(self.num_state_qubits)
@property
def breakpoints(self) -> list[int]:
"""The breakpoints for the piecewise approximation.
Returns:
The breakpoints for the piecewise approximation.
"""
breakpoints = self._breakpoints
# it the state qubits are set ensure that the breakpoints match beginning and end
if self.num_state_qubits is not None:
num_states = 2**self.num_state_qubits
# If the last breakpoint is < num_states, add the identity polynomial
if breakpoints[-1] < num_states:
breakpoints = breakpoints + [num_states]
# If the first breakpoint is > 0, add the identity polynomial
if breakpoints[0] > 0:
breakpoints = [0] + breakpoints
return breakpoints
@breakpoints.setter
def breakpoints(self, breakpoints: list[int] | None) -> None:
"""Set the breakpoints for the piecewise approximation.
Note that this may change the underlying quantum register, if the number of state qubits
changes.
Args:
breakpoints: The new breakpoints for the piecewise approximation.
"""
if self._breakpoints is None or breakpoints != self._breakpoints:
self._invalidate()
self._breakpoints = breakpoints if breakpoints is not None else [0]
self._reset_registers(self.num_state_qubits)
@property
def polynomials(self) -> list[list[float]]:
"""The polynomials for the piecewise approximation.
Returns:
The polynomials for the piecewise approximation.
Raises:
TypeError: If the input function is not in the correct format.
"""
if self.num_state_qubits is None:
return [[]]
# note this must be the private attribute since we handle missing breakpoints at
# 0 and 2 ^ num_qubits here (e.g. if the function we approximate is not defined at 0
# and the user takes that into account we just add an identity)
breakpoints = self._breakpoints
# Need to take into account the case in which no breakpoints were provided in first place
if breakpoints == [0]:
breakpoints = [0, 2**self.num_state_qubits]
num_intervals = len(breakpoints)
# Calculate the polynomials
polynomials = []
for i in range(0, num_intervals - 1):
# Calculate the polynomial approximating the function on the current interval
try:
# If the function is constant don't call Chebyshev (not necessary and gives errors)
if isinstance(self.f_x, (float, int)):
# Append directly to list of polynomials
polynomials.append([self.f_x])
else:
poly = Chebyshev.interpolate(
self.f_x, self.degree, domain=[breakpoints[i], breakpoints[i + 1]]
)
# Convert polynomial to the standard basis and rescale it for the rotation gates
poly = 2 * poly.convert(kind=np.polynomial.Polynomial).coef
# Convert to list and append
polynomials.append(poly.tolist())
except ValueError as err:
raise TypeError(
" <lambda>() missing 1 required positional argument: '"
+ self.f_x.__code__.co_varnames[0]
+ "'."
+ " Constant functions should be specified as 'f_x = constant'."
) from err
# If the last breakpoint is < 2 ** num_qubits, add the identity polynomial
if breakpoints[-1] < 2**self.num_state_qubits:
polynomials = polynomials + [[2 * np.arcsin(1)]]
# If the first breakpoint is > 0, add the identity polynomial
if breakpoints[0] > 0:
polynomials = [[2 * np.arcsin(1)]] + polynomials
return polynomials
@polynomials.setter
def polynomials(self, polynomials: list[list[float]] | None) -> None:
"""Set the polynomials for the piecewise approximation.
Note that this may change the underlying quantum register, if the number of state qubits
changes.
Args:
polynomials: The new breakpoints for the piecewise approximation.
"""
if self._polynomials is None or polynomials != self._polynomials:
self._invalidate()
self._polynomials = polynomials
self._reset_registers(self.num_state_qubits)
@property
def num_state_qubits(self) -> int:
r"""The number of state qubits representing the state :math:`|x\rangle`.
Returns:
The number of state qubits.
"""
return self._num_state_qubits
@num_state_qubits.setter
def num_state_qubits(self, num_state_qubits: int | None) -> None:
"""Set the number of state qubits.
Note that this may change the underlying quantum register, if the number of state qubits
changes.
Args:
num_state_qubits: The new number of qubits.
"""
if self._num_state_qubits is None or num_state_qubits != self._num_state_qubits:
self._invalidate()
self._num_state_qubits = num_state_qubits
# Set breakpoints if they haven't been set
if num_state_qubits is not None and self._breakpoints is None:
self.breakpoints = [0, 2**num_state_qubits]
self._reset_registers(num_state_qubits)
def _reset_registers(self, num_state_qubits: int | None) -> None:
"""Reset the registers."""
self.qregs = []
if num_state_qubits is not None:
qr_state = QuantumRegister(num_state_qubits, "state")
qr_target = QuantumRegister(1, "target")
self.qregs = [qr_state, qr_target]
num_ancillas = num_state_qubits
if num_ancillas > 0:
qr_ancilla = AncillaRegister(num_ancillas)
self.add_register(qr_ancilla)
def _build(self):
"""Build the circuit if not already build. The operation is considered successful
when q_objective is :math:`|1>`"""
if self._is_built:
return
super()._build()
poly_r = PiecewisePolynomialPauliRotations(
self.num_state_qubits, self.breakpoints, self.polynomials, name=self.name
)
# qr_state = self.qubits[: self.num_state_qubits]
# qr_target = [self.qubits[self.num_state_qubits]]
# qr_ancillas = self.qubits[self.num_state_qubits + 1 :]
# Apply polynomial approximation
self.append(poly_r.to_gate(), self.qubits)