-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
rx.py
302 lines (246 loc) · 10.8 KB
/
rx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Rotation around the X axis."""
from __future__ import annotations
import math
from math import pi
from typing import Optional, Union
import numpy
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.parameterexpression import ParameterValueType, ParameterExpression
from qiskit._accelerate.circuit import StandardGate
class RXGate(Gate):
r"""Single-qubit rotation about the X axis.
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.rx` method.
**Circuit symbol:**
.. parsed-literal::
┌───────┐
q_0: ┤ Rx(ϴ) ├
└───────┘
**Matrix Representation:**
.. math::
\newcommand{\rotationangle}{\frac{\theta}{2}}
RX(\theta) = \exp\left(-i \rotationangle X\right) =
\begin{pmatrix}
\cos\left(\rotationangle\right) & -i\sin\left(\rotationangle\right) \\
-i\sin\left(\rotationangle\right) & \cos\left(\rotationangle\right)
\end{pmatrix}
"""
_standard_gate = StandardGate.RXGate
def __init__(
self, theta: ParameterValueType, label: Optional[str] = None, *, duration=None, unit="dt"
):
"""Create new RX gate."""
super().__init__("rx", 1, [theta], label=label, duration=duration, unit=unit)
def _define(self):
"""
gate rx(theta) a {r(theta, 0) a;}
"""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
from .r import RGate
q = QuantumRegister(1, "q")
qc = QuantumCircuit(q, name=self.name)
rules = [(RGate(self.params[0], 0), [q[0]], [])]
for instr, qargs, cargs in rules:
qc._append(instr, qargs, cargs)
self.definition = qc
def control(
self,
num_ctrl_qubits: int = 1,
label: str | None = None,
ctrl_state: str | int | None = None,
annotated: bool | None = None,
):
"""Return a (multi-)controlled-RX gate.
Args:
num_ctrl_qubits: number of control qubits.
label: An optional label for the gate [Default: ``None``]
ctrl_state: control state expressed as integer,
string (e.g.``'110'``), or ``None``. If ``None``, use all 1s.
annotated: indicates whether the controlled gate should be implemented
as an annotated gate. If ``None``, this is set to ``True`` if
the gate contains free parameters and more than one control qubit, in which
case it cannot yet be synthesized. Otherwise it is set to ``False``.
Returns:
ControlledGate: controlled version of this gate.
"""
# deliberately capture annotated in [None, False] here
if not annotated and num_ctrl_qubits == 1:
gate = CRXGate(self.params[0], label=label, ctrl_state=ctrl_state)
gate.base_gate.label = self.label
else:
# If the gate parameters contain free parameters, we cannot eagerly synthesize
# the controlled gate decomposition. In this case, we annotate the gate per default.
if annotated is None:
annotated = any(isinstance(p, ParameterExpression) for p in self.params)
gate = super().control(
num_ctrl_qubits=num_ctrl_qubits,
label=label,
ctrl_state=ctrl_state,
annotated=annotated,
)
return gate
def inverse(self, annotated: bool = False):
r"""Return inverted RX gate.
:math:`RX(\lambda)^{\dagger} = RX(-\lambda)`
Args:
annotated: when set to ``True``, this is typically used to return an
:class:`.AnnotatedOperation` with an inverse modifier set instead of a concrete
:class:`.Gate`. However, for this class this argument is ignored as the inverse
of this gate is always a :class:`.RXGate` with an inverted parameter value.
Returns:
RXGate: inverse gate.
"""
return RXGate(-self.params[0])
def __array__(self, dtype=None, copy=None):
"""Return a numpy.array for the RX gate."""
if copy is False:
raise ValueError("unable to avoid copy while creating an array as requested")
cos = math.cos(self.params[0] / 2)
sin = math.sin(self.params[0] / 2)
return numpy.array([[cos, -1j * sin], [-1j * sin, cos]], dtype=dtype)
def power(self, exponent: float, annotated: bool = False):
(theta,) = self.params
return RXGate(exponent * theta)
def __eq__(self, other):
if isinstance(other, RXGate):
return self._compare_parameters(other)
return False
class CRXGate(ControlledGate):
r"""Controlled-RX gate.
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.crx` method.
**Circuit symbol:**
.. parsed-literal::
q_0: ────■────
┌───┴───┐
q_1: ┤ Rx(ϴ) ├
└───────┘
**Matrix representation:**
.. math::
\newcommand{\rotationangle}{\frac{\theta}{2}}
CRX(\theta)\ q_0, q_1 =
I \otimes |0\rangle\langle 0| + RX(\theta) \otimes |1\rangle\langle 1| =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos\left(\rotationangle\right) & 0 & -i\sin\left(\rotationangle\right) \\
0 & 0 & 1 & 0 \\
0 & -i\sin\left(\rotationangle\right) & 0 & \cos\left(\rotationangle\right)
\end{pmatrix}
.. note::
In Qiskit's convention, higher qubit indices are more significant
(little endian convention). In many textbooks, controlled gates are
presented with the assumption of more significant qubits as control,
which in our case would be q_1. Thus a textbook matrix for this
gate will be:
.. parsed-literal::
┌───────┐
q_0: ┤ Rx(ϴ) ├
└───┬───┘
q_1: ────■────
.. math::
\newcommand{\rotationangle}{\frac{\theta}{2}}
CRX(\theta)\ q_1, q_0 =
|0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RX(\theta) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos\left(\rotationangle\right) & -i\sin\left(\rotationangle\right) \\
0 & 0 & -i\sin\left(\rotationangle\right) & \cos\left(\rotationangle\right)
\end{pmatrix}
"""
_standard_gate = StandardGate.CRXGate
def __init__(
self,
theta: ParameterValueType,
label: Optional[str] = None,
ctrl_state: Optional[Union[str, int]] = None,
*,
duration=None,
unit="dt",
_base_label=None,
):
"""Create new CRX gate."""
super().__init__(
"crx",
2,
[theta],
num_ctrl_qubits=1,
label=label,
ctrl_state=ctrl_state,
base_gate=RXGate(theta, label=_base_label),
)
def _define(self):
"""
gate cu3(theta,phi,lambda) c, t
{ u1(pi/2) t;
cx c,t;
u3(-theta/2,0,0) t;
cx c,t;
u3(theta/2,-pi/2,0) t;
}
"""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
from .u1 import U1Gate
from .u3 import U3Gate
from .x import CXGate
# q_0: ─────────────■───────────────────■────────────────────
# ┌─────────┐┌─┴─┐┌─────────────┐┌─┴─┐┌────────────────┐
# q_1: ┤ U1(π/2) ├┤ X ├┤ U3(0/2,0,0) ├┤ X ├┤ U3(0/2,-π/2,0) ├
# └─────────┘└───┘└─────────────┘└───┘└────────────────┘
q = QuantumRegister(2, "q")
qc = QuantumCircuit(q, name=self.name)
rules = [
(U1Gate(pi / 2), [q[1]], []),
(CXGate(), [q[0], q[1]], []),
(U3Gate(-self.params[0] / 2, 0, 0), [q[1]], []),
(CXGate(), [q[0], q[1]], []),
(U3Gate(self.params[0] / 2, -pi / 2, 0), [q[1]], []),
]
for instr, qargs, cargs in rules:
qc._append(instr, qargs, cargs)
self.definition = qc
def inverse(self, annotated: bool = False):
"""Return inverse CRX gate (i.e. with the negative rotation angle).
Args:
annotated: when set to ``True``, this is typically used to return an
:class:`.AnnotatedOperation` with an inverse modifier set instead of a concrete
:class:`.Gate`. However, for this class this argument is ignored as the inverse
of this gate is always a :class:`.CRXGate` with an inverted parameter value.
Returns:
CRXGate: inverse gate.
"""
return CRXGate(-self.params[0], ctrl_state=self.ctrl_state)
def __array__(self, dtype=None, copy=None):
"""Return a numpy.array for the CRX gate."""
if copy is False:
raise ValueError("unable to avoid copy while creating an array as requested")
half_theta = float(self.params[0]) / 2
cos = math.cos(half_theta)
isin = 1j * math.sin(half_theta)
if self.ctrl_state:
return numpy.array(
[[1, 0, 0, 0], [0, cos, 0, -isin], [0, 0, 1, 0], [0, -isin, 0, cos]], dtype=dtype
)
else:
return numpy.array(
[[cos, 0, -isin, 0], [0, 1, 0, 0], [-isin, 0, cos, 0], [0, 0, 0, 1]], dtype=dtype
)
def __eq__(self, other):
if isinstance(other, CRXGate):
return self._compare_parameters(other) and self.ctrl_state == other.ctrl_state
return False