-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
ryy.py
183 lines (147 loc) · 6.7 KB
/
ryy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Two-qubit YY-rotation gate."""
from __future__ import annotations
import math
from typing import Optional
import numpy as np
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit.parameterexpression import ParameterValueType, ParameterExpression
from qiskit._accelerate.circuit import StandardGate
class RYYGate(Gate):
r"""A parametric 2-qubit :math:`Y \otimes Y` interaction (rotation about YY).
This gate is symmetric, and is maximally entangling at :math:`\theta = \pi/2`.
Can be applied to a :class:`~qiskit.circuit.QuantumCircuit`
with the :meth:`~qiskit.circuit.QuantumCircuit.ryy` method.
**Circuit Symbol:**
.. parsed-literal::
┌─────────┐
q_0: ┤1 ├
│ Ryy(ϴ) │
q_1: ┤0 ├
└─────────┘
**Matrix Representation:**
.. math::
\newcommand{\rotationangle}{\frac{\theta}{2}}
R_{YY}(\theta) = \exp\left(-i \rotationangle Y{\otimes}Y\right) =
\begin{pmatrix}
\cos\left(\rotationangle\right) & 0 & 0 & i\sin\left(\rotationangle\right) \\
0 & \cos\left(\rotationangle\right) & -i\sin\left(\rotationangle\right) & 0 \\
0 & -i\sin\left(\rotationangle\right) & \cos\left(\rotationangle\right) & 0 \\
i\sin\left(\rotationangle\right) & 0 & 0 & \cos\left(\rotationangle\right)
\end{pmatrix}
**Examples:**
.. math::
R_{YY}(\theta = 0) = I
.. math::
R_{YY}(\theta = \pi) = i Y \otimes Y
.. math::
R_{YY}\left(\theta = \frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 0 & 0 & i \\
0 & 1 & -i & 0 \\
0 & -i & 1 & 0 \\
i & 0 & 0 & 1
\end{pmatrix}
"""
_standard_gate = StandardGate.RYYGate
def __init__(
self, theta: ParameterValueType, label: Optional[str] = None, *, duration=None, unit="dt"
):
"""Create new RYY gate."""
super().__init__("ryy", 2, [theta], label=label, duration=duration, unit=unit)
def _define(self):
"""Calculate a subcircuit that implements this unitary."""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
from .x import CXGate
from .rx import RXGate
from .rz import RZGate
# ┌─────────┐ ┌──────────┐
# q_0: ┤ Rx(π/2) ├──■─────────────■──┤ Rx(-π/2) ├
# ├─────────┤┌─┴─┐┌───────┐┌─┴─┐├──────────┤
# q_1: ┤ Rx(π/2) ├┤ X ├┤ Rz(0) ├┤ X ├┤ Rx(-π/2) ├
# └─────────┘└───┘└───────┘└───┘└──────────┘
q = QuantumRegister(2, "q")
theta = self.params[0]
qc = QuantumCircuit(q, name=self.name)
rules = [
(RXGate(np.pi / 2), [q[0]], []),
(RXGate(np.pi / 2), [q[1]], []),
(CXGate(), [q[0], q[1]], []),
(RZGate(theta), [q[1]], []),
(CXGate(), [q[0], q[1]], []),
(RXGate(-np.pi / 2), [q[0]], []),
(RXGate(-np.pi / 2), [q[1]], []),
]
for instr, qargs, cargs in rules:
qc._append(instr, qargs, cargs)
self.definition = qc
def control(
self,
num_ctrl_qubits: int = 1,
label: str | None = None,
ctrl_state: str | int | None = None,
annotated: bool | None = None,
):
"""Return a (multi-)controlled-YY gate.
Args:
num_ctrl_qubits: number of control qubits.
label: An optional label for the gate [Default: ``None``]
ctrl_state: control state expressed as integer,
string (e.g.``'110'``), or ``None``. If ``None``, use all 1s.
annotated: indicates whether the controlled gate should be implemented
as an annotated gate. If ``None``, this is set to ``True`` if
the gate contains free parameters, in which case it cannot
yet be synthesized.
Returns:
ControlledGate: controlled version of this gate.
"""
if annotated is None:
annotated = any(isinstance(p, ParameterExpression) for p in self.params)
gate = super().control(
num_ctrl_qubits=num_ctrl_qubits,
label=label,
ctrl_state=ctrl_state,
annotated=annotated,
)
return gate
def inverse(self, annotated: bool = False):
"""Return inverse RYY gate (i.e. with the negative rotation angle).
Args:
annotated: when set to ``True``, this is typically used to return an
:class:`.AnnotatedOperation` with an inverse modifier set instead of a concrete
:class:`.Gate`. However, for this class this argument is ignored as the inverse
of this gate is always a :class:`.RYYGate` with an inverted parameter value.
Returns:
RYYGate: inverse gate.
"""
return RYYGate(-self.params[0])
def __array__(self, dtype=None, copy=None):
"""Return a numpy.array for the RYY gate."""
if copy is False:
raise ValueError("unable to avoid copy while creating an array as requested")
theta = float(self.params[0])
cos = math.cos(theta / 2)
isin = 1j * math.sin(theta / 2)
return np.array(
[[cos, 0, 0, isin], [0, cos, -isin, 0], [0, -isin, cos, 0], [isin, 0, 0, cos]],
dtype=dtype,
)
def power(self, exponent: float, annotated: bool = False):
(theta,) = self.params
return RYYGate(exponent * theta)
def __eq__(self, other):
if isinstance(other, RYYGate):
return self._compare_parameters(other)
return False