-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
estimator.py
172 lines (154 loc) · 6.58 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Estimator V1 reference implementation
"""
from __future__ import annotations
from collections.abc import Sequence
from typing import Any
import numpy as np
from qiskit.circuit import QuantumCircuit
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.utils.deprecation import deprecate_func
from .base import BaseEstimator, EstimatorResult
from .primitive_job import PrimitiveJob
from .utils import (
_circuit_key,
_observable_key,
_statevector_from_circuit,
init_observable,
)
class Estimator(BaseEstimator[PrimitiveJob[EstimatorResult]]):
"""
Reference implementation of :class:`BaseEstimator` (V1).
:Run Options:
- **shots** (None or int) --
The number of shots. If None, it calculates the expectation values
with full state vector simulation.
Otherwise, it samples from normal distributions with standard errors as standard
deviations using normal distribution approximation.
- **seed** (np.random.Generator or int) --
Set a fixed seed or generator for the normal distribution. If shots is None,
this option is ignored.
.. note::
The result of this class is exact if the circuit contains only unitary operations.
On the other hand, the result could be stochastic if the circuit contains a non-unitary
operation such as a reset for a some subsystems.
The stochastic result can be made reproducible by setting ``seed``, e.g.,
``Estimator(options={"seed":123})``.
"""
@deprecate_func(
since="1.2",
additional_msg="All implementations of the `BaseEstimatorV1` interface "
"have been deprecated in favor of their V2 counterparts. "
"The V2 alternative for the `Estimator` class is `StatevectorEstimator`.",
)
def __init__(self, *, options: dict | None = None):
"""
Args:
options: Default options.
Raises:
QiskitError: if some classical bits are not used for measurements.
"""
super().__init__(options=options)
self._circuits = []
self._parameters = []
self._observables = []
self._circuit_ids = {}
self._observable_ids = {}
def _call(
self,
circuits: Sequence[int],
observables: Sequence[int],
parameter_values: Sequence[Sequence[float]],
**run_options,
) -> EstimatorResult:
shots = run_options.pop("shots", None)
seed = run_options.pop("seed", None)
if seed is None:
rng = np.random.default_rng()
elif isinstance(seed, np.random.Generator):
rng = seed
else:
rng = np.random.default_rng(seed)
# Initialize metadata
metadata: list[dict[str, Any]] = [{} for _ in range(len(circuits))]
bound_circuits = []
for i, value in zip(circuits, parameter_values):
if len(value) != len(self._parameters[i]):
raise QiskitError(
f"The number of values ({len(value)}) does not match "
f"the number of parameters ({len(self._parameters[i])})."
)
bound_circuits.append(
self._circuits[i]
if len(value) == 0
else self._circuits[i].assign_parameters(dict(zip(self._parameters[i], value)))
)
sorted_observables = [self._observables[i] for i in observables]
expectation_values = []
for circ, obs, metadatum in zip(bound_circuits, sorted_observables, metadata):
if circ.num_qubits != obs.num_qubits:
raise QiskitError(
f"The number of qubits of a circuit ({circ.num_qubits}) does not match "
f"the number of qubits of a observable ({obs.num_qubits})."
)
final_state = _statevector_from_circuit(circ, rng)
expectation_value = final_state.expectation_value(obs)
if shots is None:
expectation_values.append(expectation_value)
else:
expectation_value = np.real_if_close(expectation_value)
sq_obs = (obs @ obs).simplify(atol=0)
sq_exp_val = np.real_if_close(final_state.expectation_value(sq_obs))
variance = sq_exp_val - expectation_value**2
variance = max(variance, 0)
standard_error = np.sqrt(variance / shots)
expectation_value_with_error = rng.normal(expectation_value, standard_error)
expectation_values.append(expectation_value_with_error)
metadatum["variance"] = variance
metadatum["shots"] = shots
return EstimatorResult(np.real_if_close(expectation_values), metadata)
def _run(
self,
circuits: tuple[QuantumCircuit, ...],
observables: tuple[BaseOperator, ...],
parameter_values: tuple[tuple[float, ...], ...],
**run_options,
):
circuit_indices = []
for circuit in circuits:
key = _circuit_key(circuit)
index = self._circuit_ids.get(key)
if index is not None:
circuit_indices.append(index)
else:
circuit_indices.append(len(self._circuits))
self._circuit_ids[key] = len(self._circuits)
self._circuits.append(circuit)
self._parameters.append(circuit.parameters)
observable_indices = []
for observable in observables:
observable = init_observable(observable)
index = self._observable_ids.get(_observable_key(observable))
if index is not None:
observable_indices.append(index)
else:
observable_indices.append(len(self._observables))
self._observable_ids[_observable_key(observable)] = len(self._observables)
self._observables.append(observable)
job = PrimitiveJob(
self._call, circuit_indices, observable_indices, parameter_values, **run_options
)
job._submit()
return job