-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
kraus.py
337 lines (292 loc) · 12.9 KB
/
kraus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Kraus representation of a Quantum Channel.
"""
from __future__ import annotations
import copy
import math
from numbers import Number
import numpy as np
from qiskit import circuit
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.predicates import is_identity_matrix
from qiskit.quantum_info.operators.channel.quantum_channel import QuantumChannel
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.channel.choi import Choi
from qiskit.quantum_info.operators.channel.superop import SuperOp
from qiskit.quantum_info.operators.channel.transformations import _to_kraus
from qiskit.quantum_info.operators.mixins import generate_apidocs
from qiskit.quantum_info.operators.base_operator import BaseOperator
class Kraus(QuantumChannel):
r"""Kraus representation of a quantum channel.
For a quantum channel :math:`\mathcal{E}`, the Kraus representation is
given by a set of matrices :math:`[A_0,...,A_{K-1}]` such that the
evolution of a :class:`~qiskit.quantum_info.DensityMatrix`
:math:`\rho` is given by
.. math::
\mathcal{E}(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger
A general operator map :math:`\mathcal{G}` can also be written using the
generalized Kraus representation which is given by two sets of matrices
:math:`[A_0,...,A_{K-1}]`, :math:`[B_0,...,A_{B-1}]` such that
.. math::
\mathcal{G}(\rho) = \sum_{i=0}^{K-1} A_i \rho B_i^\dagger
See reference [1] for further details.
References:
1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus
for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015).
`arXiv:1111.6950 [quant-ph] <https://arxiv.org/abs/1111.6950>`_
"""
def __init__(
self,
data: QuantumCircuit | circuit.instruction.Instruction | BaseOperator | np.ndarray,
input_dims: tuple | None = None,
output_dims: tuple | None = None,
):
"""Initialize a quantum channel Kraus operator.
Args:
data: data to initialize superoperator.
input_dims: the input subsystem dimensions.
output_dims: the output subsystem dimensions.
Raises:
QiskitError: if input data cannot be initialized as a list of Kraus matrices.
Additional Information:
If the input or output dimensions are None, they will be
automatically determined from the input data. If the input data is
a list of Numpy arrays of shape :math:`(2^N,\\,2^N)` qubit systems will be
used. If the input does not correspond to an N-qubit channel, it
will assign a single subsystem with dimension specified by the
shape of the input.
"""
# If the input is a list or tuple we assume it is a list of Kraus
# matrices, if it is a numpy array we assume that it is a single Kraus
# operator
# TODO properly handle array construction from ragged data (like tuple(np.ndarray, None))
# and document these accepted input cases. See also Qiskit/qiskit-terra#9307.
if isinstance(data, (list, tuple, np.ndarray)):
# Check if it is a single unitary matrix A for channel:
# E(rho) = A * rho * A^\dagger
if _is_matrix(data):
# Convert single Kraus op to general Kraus pair
kraus = ([np.asarray(data, dtype=complex)], None)
shape = kraus[0][0].shape
# Check if single Kraus set [A_i] for channel:
# E(rho) = sum_i A_i * rho * A_i^dagger
elif isinstance(data, list) and len(data) > 0:
# Get dimensions from first Kraus op
kraus = [np.asarray(data[0], dtype=complex)]
shape = kraus[0].shape
# Iterate over remaining ops and check they are same shape
for i in data[1:]:
op = np.asarray(i, dtype=complex)
if op.shape != shape:
raise QiskitError("Kraus operators are different dimensions.")
kraus.append(op)
# Convert single Kraus set to general Kraus pair
kraus = (kraus, None)
# Check if generalized Kraus set ([A_i], [B_i]) for channel:
# E(rho) = sum_i A_i * rho * B_i^dagger
elif isinstance(data, tuple) and len(data) == 2 and len(data[0]) > 0:
kraus_left = [np.asarray(data[0][0], dtype=complex)]
shape = kraus_left[0].shape
for i in data[0][1:]:
op = np.asarray(i, dtype=complex)
if op.shape != shape:
raise QiskitError("Kraus operators are different dimensions.")
kraus_left.append(op)
if data[1] is None:
kraus = (kraus_left, None)
else:
kraus_right = []
for i in data[1]:
op = np.asarray(i, dtype=complex)
if op.shape != shape:
raise QiskitError("Kraus operators are different dimensions.")
kraus_right.append(op)
kraus = (kraus_left, kraus_right)
else:
raise QiskitError("Invalid input for Kraus channel.")
op_shape = OpShape.auto(dims_l=output_dims, dims_r=input_dims, shape=kraus[0][0].shape)
else:
# Otherwise we initialize by conversion from another Qiskit
# object into the QuantumChannel.
if isinstance(data, (QuantumCircuit, Instruction)):
# If the input is a Terra QuantumCircuit or Instruction we
# convert it to a SuperOp
data = SuperOp._init_instruction(data)
else:
# We use the QuantumChannel init transform to initialize
# other objects into a QuantumChannel or Operator object.
data = self._init_transformer(data)
op_shape = data._op_shape
output_dim, input_dim = op_shape.shape
# Now that the input is an operator we convert it to a Kraus
rep = getattr(data, "_channel_rep", "Operator")
kraus = _to_kraus(rep, data._data, input_dim, output_dim)
# Initialize either single or general Kraus
if kraus[1] is None or np.allclose(kraus[0], kraus[1]):
# Standard Kraus map
data = (kraus[0], None)
else:
# General (non-CPTP) Kraus map
data = kraus
super().__init__(data, op_shape=op_shape)
@property
def data(self):
"""Return list of Kraus matrices for channel."""
if self._data[1] is None:
# If only a single Kraus set, don't return the tuple
# Just the fist set
return self._data[0]
else:
# Otherwise return the tuple of both kraus sets
return self._data
def is_cptp(self, atol=None, rtol=None):
"""Return True if completely-positive trace-preserving."""
if self._data[1] is not None:
return False
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
accum = 0j
for op in self._data[0]:
accum += np.dot(np.transpose(np.conj(op)), op)
return is_identity_matrix(accum, rtol=rtol, atol=atol)
def _evolve(self, state, qargs=None):
return SuperOp(self)._evolve(state, qargs)
# ---------------------------------------------------------------------
# BaseOperator methods
# ---------------------------------------------------------------------
def conjugate(self):
ret = copy.copy(self)
kraus_l, kraus_r = self._data
kraus_l = [np.conj(k) for k in kraus_l]
if kraus_r is not None:
kraus_r = [k.conj() for k in kraus_r]
ret._data = (kraus_l, kraus_r)
return ret
def transpose(self):
ret = copy.copy(self)
ret._op_shape = self._op_shape.transpose()
kraus_l, kraus_r = self._data
kraus_l = [np.transpose(k) for k in kraus_l]
if kraus_r is not None:
kraus_r = [np.transpose(k) for k in kraus_r]
ret._data = (kraus_l, kraus_r)
return ret
def adjoint(self):
ret = copy.copy(self)
ret._op_shape = self._op_shape.transpose()
kraus_l, kraus_r = self._data
kraus_l = [np.conj(np.transpose(k)) for k in kraus_l]
if kraus_r is not None:
kraus_r = [np.conj(np.transpose(k)) for k in kraus_r]
ret._data = (kraus_l, kraus_r)
return ret
def compose(self, other: Kraus, qargs: list | None = None, front: bool = False) -> Kraus:
if qargs is None:
qargs = getattr(other, "qargs", None)
if qargs is not None:
return Kraus(SuperOp(self).compose(other, qargs=qargs, front=front))
if not isinstance(other, Kraus):
other = Kraus(other)
new_shape = self._op_shape.compose(other._op_shape, qargs, front)
input_dims = new_shape.dims_r()
output_dims = new_shape.dims_l()
if front:
ka_l, ka_r = self._data
kb_l, kb_r = other._data
else:
ka_l, ka_r = other._data
kb_l, kb_r = self._data
kab_l = [np.dot(a, b) for a in ka_l for b in kb_l]
if ka_r is None and kb_r is None:
kab_r = None
elif ka_r is None:
kab_r = [np.dot(a, b) for a in ka_l for b in kb_r]
elif kb_r is None:
kab_r = [np.dot(a, b) for a in ka_r for b in kb_l]
else:
kab_r = [np.dot(a, b) for a in ka_r for b in kb_r]
ret = Kraus((kab_l, kab_r), input_dims, output_dims)
ret._op_shape = new_shape
return ret
def tensor(self, other: Kraus) -> Kraus:
if not isinstance(other, Kraus):
other = Kraus(other)
return self._tensor(self, other)
def expand(self, other: Kraus) -> Kraus:
if not isinstance(other, Kraus):
other = Kraus(other)
return self._tensor(other, self)
@classmethod
def _tensor(cls, a, b):
ret = copy.copy(a)
ret._op_shape = a._op_shape.tensor(b._op_shape)
# Get tensor matrix
ka_l, ka_r = a._data
kb_l, kb_r = b._data
kab_l = [np.kron(ka, kb) for ka in ka_l for kb in kb_l]
if ka_r is None and kb_r is None:
kab_r = None
else:
if ka_r is None:
ka_r = ka_l
if kb_r is None:
kb_r = kb_l
kab_r = [np.kron(a, b) for a in ka_r for b in kb_r]
ret._data = (kab_l, kab_r)
return ret
def __add__(self, other):
qargs = getattr(other, "qargs", None)
if not isinstance(other, QuantumChannel):
other = Choi(other)
return self._add(other, qargs=qargs)
def __sub__(self, other):
qargs = getattr(other, "qargs", None)
if not isinstance(other, QuantumChannel):
other = Choi(other)
return self._add(-other, qargs=qargs)
def _add(self, other, qargs=None):
# Since we cannot directly add two channels in the Kraus
# representation we try and use the other channels method
# or convert to the Choi representation
return Kraus(Choi(self)._add(other, qargs=qargs))
def _multiply(self, other):
if not isinstance(other, Number):
raise QiskitError("other is not a number")
ret = copy.copy(self)
# If the number is complex we need to convert to general
# kraus channel so we multiply via Choi representation
if isinstance(other, complex) or other < 0:
# Convert to Choi-matrix
ret._data = Kraus(Choi(self)._multiply(other))._data
return ret
# If the number is real we can update the Kraus operators
# directly
val = math.sqrt(other)
kraus_r = None
kraus_l = [val * k for k in self._data[0]]
if self._data[1] is not None:
kraus_r = [val * k for k in self._data[1]]
ret._data = (kraus_l, kraus_r)
return ret
def _is_matrix(data):
# return True if data is a 2-d array/tuple/list
if not isinstance(data, np.ndarray):
data = np.array(data, dtype=object)
return data.ndim == 2
# Update docstrings for API docs
generate_apidocs(Kraus)