-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
ptm.py
204 lines (168 loc) · 7.61 KB
/
ptm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Pauli Transfer Matrix (PTM) representation of a Quantum Channel.
"""
from __future__ import annotations
import copy as _copy
import math
from typing import TYPE_CHECKING
import numpy as np
from qiskit import _numpy_compat
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.channel.quantum_channel import QuantumChannel
from qiskit.quantum_info.operators.channel.superop import SuperOp
from qiskit.quantum_info.operators.channel.transformations import _to_ptm
from qiskit.quantum_info.operators.mixins import generate_apidocs
from qiskit.quantum_info.operators.base_operator import BaseOperator
if TYPE_CHECKING:
from qiskit import circuit
class PTM(QuantumChannel):
r"""Pauli Transfer Matrix (PTM) representation of a Quantum Channel.
The PTM representation of an :math:`n`-qubit quantum channel
:math:`\mathcal{E}` is an :math:`n`-qubit :class:`SuperOp` :math:`R`
defined with respect to vectorization in the Pauli basis instead of
column-vectorization. The elements of the PTM :math:`R` are
given by
.. math::
R_{i,j} = \frac{1}{2^n} \mbox{Tr}\left[P_i \mathcal{E}(P_j) \right]
where :math:`[P_0, P_1, ..., P_{4^{n}-1}]` is the :math:`n`-qubit Pauli basis in
lexicographic order.
Evolution of a :class:`~qiskit.quantum_info.DensityMatrix`
:math:`\rho` with respect to the PTM is given by
.. math::
|\mathcal{E}(\rho)\rangle\!\rangle_P = S_P |\rho\rangle\!\rangle_P
where :math:`|A\rangle\!\rangle_P` denotes vectorization in the Pauli basis
:math:`\langle i | A\rangle\!\rangle_P = \sqrt{\frac{1}{2^n}} \mbox{Tr}[P_i A]`.
See reference [1] for further details.
References:
1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus
for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015).
`arXiv:1111.6950 [quant-ph] <https://arxiv.org/abs/1111.6950>`_
"""
def __init__(
self,
data: QuantumCircuit | circuit.instruction.Instruction | BaseOperator | np.ndarray,
input_dims: int | tuple | None = None,
output_dims: int | tuple | None = None,
):
"""Initialize a PTM quantum channel operator.
Args:
data: data to initialize superoperator.
input_dims: the input subsystem dimensions.
output_dims: the output subsystem dimensions.
Raises:
QiskitError: if input data is not an N-qubit channel or
cannot be initialized as a PTM.
Additional Information:
If the input or output dimensions are None, they will be
automatically determined from the input data. The PTM
representation is only valid for N-qubit channels.
"""
# If the input is a raw list or matrix we assume that it is
# already a Chi matrix.
if isinstance(data, (list, np.ndarray)):
# Should we force this to be real?
ptm = np.asarray(data, dtype=complex)
# Determine input and output dimensions
dout, din = ptm.shape
if input_dims:
input_dim = np.prod(input_dims)
else:
input_dim = int(math.sqrt(din))
if output_dims:
output_dim = np.prod(input_dims)
else:
output_dim = int(math.sqrt(dout))
if output_dim**2 != dout or input_dim**2 != din or input_dim != output_dim:
raise QiskitError("Invalid shape for PTM matrix.")
else:
# Otherwise we initialize by conversion from another Qiskit
# object into the QuantumChannel.
if isinstance(data, (QuantumCircuit, Instruction)):
# If the input is a Terra QuantumCircuit or Instruction we
# convert it to a SuperOp
data = SuperOp._init_instruction(data)
else:
# We use the QuantumChannel init transform to initialize
# other objects into a QuantumChannel or Operator object.
data = self._init_transformer(data)
input_dim, output_dim = data.dim
# Now that the input is an operator we convert it to a PTM object
rep = getattr(data, "_channel_rep", "Operator")
ptm = _to_ptm(rep, data._data, input_dim, output_dim)
if input_dims is None:
input_dims = data.input_dims()
if output_dims is None:
output_dims = data.output_dims()
# Check input is N-qubit channel
num_qubits = int(math.log2(input_dim))
if 2**num_qubits != input_dim or input_dim != output_dim:
raise QiskitError("Input is not an n-qubit Pauli transfer matrix.")
super().__init__(ptm, num_qubits=num_qubits)
def __array__(self, dtype=None, copy=_numpy_compat.COPY_ONLY_IF_NEEDED):
dtype = self.data.dtype if dtype is None else dtype
return np.array(self.data, dtype=dtype, copy=copy)
@property
def _bipartite_shape(self):
"""Return the shape for bipartite matrix"""
return (self._output_dim, self._output_dim, self._input_dim, self._input_dim)
def _evolve(self, state, qargs=None):
return SuperOp(self)._evolve(state, qargs)
# ---------------------------------------------------------------------
# BaseOperator methods
# ---------------------------------------------------------------------
def conjugate(self):
# Since conjugation is basis dependent we transform
# to the SuperOp representation to compute the
# conjugate channel
return PTM(SuperOp(self).conjugate())
def transpose(self):
return PTM(SuperOp(self).transpose())
def adjoint(self):
return PTM(SuperOp(self).adjoint())
def compose(self, other: PTM, qargs: list | None = None, front: bool = False) -> PTM:
if qargs is None:
qargs = getattr(other, "qargs", None)
if qargs is not None:
return PTM(SuperOp(self).compose(other, qargs=qargs, front=front))
# Convert other to PTM
if not isinstance(other, PTM):
other = PTM(other)
new_shape = self._op_shape.compose(other._op_shape, qargs, front)
input_dims = new_shape.dims_r()
output_dims = new_shape.dims_l()
if front:
data = np.dot(self._data, other.data)
else:
data = np.dot(other.data, self._data)
ret = PTM(data, input_dims, output_dims)
ret._op_shape = new_shape
return ret
def tensor(self, other: PTM) -> PTM:
if not isinstance(other, PTM):
other = PTM(other)
return self._tensor(self, other)
def expand(self, other: PTM) -> PTM:
if not isinstance(other, PTM):
other = PTM(other)
return self._tensor(other, self)
@classmethod
def _tensor(cls, a, b):
ret = _copy.copy(a)
ret._op_shape = a._op_shape.tensor(b._op_shape)
ret._data = np.kron(a._data, b.data)
return ret
# Update docstrings for API docs
generate_apidocs(PTM)