-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
solovay_kitaev.py
217 lines (174 loc) · 8.61 KB
/
solovay_kitaev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Synthesize a single qubit gate to a discrete basis set."""
from __future__ import annotations
import numpy as np
from .gate_sequence import GateSequence
from .commutator_decompose import commutator_decompose
from .generate_basis_approximations import generate_basic_approximations, _1q_gates, _1q_inverses
class SolovayKitaevDecomposition:
"""The Solovay Kitaev discrete decomposition algorithm.
This class is called recursively by the transpiler pass, which is why it is separeted.
See :class:`qiskit.transpiler.passes.SolovayKitaev` for more information.
"""
def __init__(
self, basic_approximations: str | dict[str, np.ndarray] | list[GateSequence] | None = None
) -> None:
"""
Args:
basic_approximations: A specification of the basic SU(2) approximations in terms
of discrete gates. At each iteration this algorithm, the remaining error is
approximated with the closest sequence of gates in this set.
If a ``str``, this specifies a ``.npy`` filename from which to load the
approximation. If a ``dict``, then this contains
``{gates: effective_SO3_matrix}`` pairs,
e.g. ``{"h t": np.array([[0, 0.7071, -0.7071], [0, -0.7071, -0.7071], [-1, 0, 0]]}``.
If a list, this contains the same information as the dict, but already converted to
:class:`.GateSequence` objects, which contain the SO(3) matrix and gates.
"""
if basic_approximations is None:
# generate a default basic approximation
basic_approximations = generate_basic_approximations(
basis_gates=["h", "t", "tdg"], depth=10
)
self.basic_approximations = self.load_basic_approximations(basic_approximations)
@staticmethod
def load_basic_approximations(data: list | str | dict) -> list[GateSequence]:
"""Load basic approximations.
Args:
data: If a string, specifies the path to the file from where to load the data.
If a dictionary, directly specifies the decompositions as ``{gates: matrix}``
or ``{gates: (matrix, global_phase)}``. There, ``gates`` are the names of the gates
producing the SO(3) matrix ``matrix``, e.g.
``{"h t": np.array([[0, 0.7071, -0.7071], [0, -0.7071, -0.7071], [-1, 0, 0]]}``
and the ``global_phase`` can be given to account for a global phase difference
between the U(2) matrix of the quantum gates and the stored SO(3) matrix.
If not given, the ``global_phase`` will be assumed to be 0.
Returns:
A list of basic approximations as type ``GateSequence``.
Raises:
ValueError: If the number of gate combinations and associated matrices does not match.
"""
# is already a list of GateSequences
if isinstance(data, list):
return data
# if a file, load the dictionary
if isinstance(data, str):
data = np.load(data, allow_pickle=True).item()
sequences = []
for gatestring, matrix_and_phase in data.items():
if isinstance(matrix_and_phase, tuple):
matrix, global_phase = matrix_and_phase
else:
matrix, global_phase = matrix_and_phase, 0
sequence = GateSequence()
sequence.gates = [_1q_gates[element] for element in gatestring.split()]
sequence.labels = [gate.name for gate in sequence.gates]
sequence.product = np.asarray(matrix)
sequence.global_phase = global_phase
sequences.append(sequence)
return sequences
def run(
self,
gate_matrix: np.ndarray,
recursion_degree: int,
return_dag: bool = False,
check_input: bool = True,
) -> "QuantumCircuit" | "DAGCircuit":
r"""Run the algorithm.
Args:
gate_matrix: The 2x2 matrix representing the gate. This matrix has to be SU(2)
up to global phase.
recursion_degree: The recursion degree, called :math:`n` in the paper.
return_dag: If ``True`` return a :class:`.DAGCircuit`, else a :class:`.QuantumCircuit`.
check_input: If ``True`` check that the input matrix is valid for the decomposition.
Returns:
A one-qubit circuit approximating the ``gate_matrix`` in the specified discrete basis.
"""
# make input matrix SU(2) and get the according global phase
z = 1 / np.sqrt(np.linalg.det(gate_matrix))
gate_matrix_su2 = GateSequence.from_matrix(z * gate_matrix)
global_phase = np.arctan2(np.imag(z), np.real(z))
# get the decomposition as GateSequence type
decomposition = self._recurse(gate_matrix_su2, recursion_degree, check_input=check_input)
# simplify
_remove_identities(decomposition)
_remove_inverse_follows_gate(decomposition)
# convert to a circuit and attach the right phases
if return_dag:
out = decomposition.to_dag()
else:
out = decomposition.to_circuit()
out.global_phase = decomposition.global_phase - global_phase
return out
def _recurse(self, sequence: GateSequence, n: int, check_input: bool = True) -> GateSequence:
"""Performs ``n`` iterations of the Solovay-Kitaev algorithm on ``sequence``.
Args:
sequence: ``GateSequence`` to which the Solovay-Kitaev algorithm is applied.
n: The number of iterations that the algorithm needs to run.
check_input: If ``True`` check that the input matrix represented by ``GateSequence``
is valid for the decomposition.
Returns:
GateSequence that approximates ``sequence``.
Raises:
ValueError: If the matrix in ``GateSequence`` does not represent an SO(3)-matrix.
"""
if sequence.product.shape != (3, 3):
raise ValueError("Shape of U must be (3, 3) but is", sequence.shape)
if n == 0:
return self.find_basic_approximation(sequence)
u_n1 = self._recurse(sequence, n - 1, check_input=check_input)
v_n, w_n = commutator_decompose(
sequence.dot(u_n1.adjoint()).product, check_input=check_input
)
v_n1 = self._recurse(v_n, n - 1, check_input=check_input)
w_n1 = self._recurse(w_n, n - 1, check_input=check_input)
return v_n1.dot(w_n1).dot(v_n1.adjoint()).dot(w_n1.adjoint()).dot(u_n1)
def find_basic_approximation(self, sequence: GateSequence) -> GateSequence:
"""Find ``GateSequence`` in ``self._basic_approximations`` that approximates ``sequence``.
Args:
sequence: ``GateSequence`` to find the approximation to.
Returns:
``GateSequence`` in ``self._basic_approximations`` that approximates ``sequence``.
"""
# TODO explore using a k-d tree here
def key(x):
return np.linalg.norm(np.subtract(x.product, sequence.product))
best = min(self.basic_approximations, key=key)
return best
def _remove_inverse_follows_gate(sequence):
index = 0
while index < len(sequence.gates) - 1:
curr_gate = sequence.gates[index]
next_gate = sequence.gates[index + 1]
if curr_gate.name in _1q_inverses:
remove = _1q_inverses[curr_gate.name] == next_gate.name
else:
remove = curr_gate.inverse() == next_gate
if remove:
# remove gates at index and index + 1
sequence.remove_cancelling_pair([index, index + 1])
# take a step back to see if we have uncovered a new pair, e.g.
# [h, s, sdg, h] at index = 1 removes s, sdg but if we continue at index 1
# we miss the uncovered [h, h] pair at indices 0 and 1
if index > 0:
index -= 1
else:
# next index
index += 1
def _remove_identities(sequence):
index = 0
while index < len(sequence.gates):
if sequence.gates[index].name == "id":
sequence.gates.pop(index)
else:
index += 1