-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
target.py
1261 lines (1136 loc) · 58 KB
/
target.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=too-many-return-statements
"""
A target object represents the minimum set of information the transpiler needs
from a backend
"""
from __future__ import annotations
import itertools
import warnings
from typing import Optional, List, Any
from collections.abc import Mapping
import datetime
import io
import logging
import inspect
import rustworkx as rx
# import target class from the rust side
from qiskit._accelerate.target import (
BaseTarget,
BaseInstructionProperties,
)
from qiskit.circuit.parameter import Parameter
from qiskit.circuit.parameterexpression import ParameterValueType
from qiskit.circuit.gate import Gate
from qiskit.circuit.library.standard_gates import get_standard_gate_name_mapping
from qiskit.pulse.instruction_schedule_map import InstructionScheduleMap
from qiskit.pulse.calibration_entries import CalibrationEntry, ScheduleDef
from qiskit.pulse.schedule import Schedule, ScheduleBlock
from qiskit.transpiler.coupling import CouplingMap
from qiskit.transpiler.exceptions import TranspilerError
from qiskit.transpiler.instruction_durations import InstructionDurations
from qiskit.transpiler.timing_constraints import TimingConstraints
from qiskit.providers.exceptions import BackendPropertyError
from qiskit.pulse.exceptions import PulseError, UnassignedDurationError
from qiskit.exceptions import QiskitError
# import QubitProperties here to provide convenience alias for building a
# full target
from qiskit.providers.backend import QubitProperties # pylint: disable=unused-import
from qiskit.providers.models.backendproperties import BackendProperties
from qiskit.utils import deprecate_func
logger = logging.getLogger(__name__)
class InstructionProperties(BaseInstructionProperties):
"""A representation of the properties of a gate implementation.
This class provides the optional properties that a backend can provide
about an instruction. These represent the set that the transpiler can
currently work with if present. However, if your backend provides additional
properties for instructions you should subclass this to add additional
custom attributes for those custom/additional properties by the backend.
"""
__slots__ = [
"_calibration",
]
def __new__( # pylint: disable=keyword-arg-before-vararg
cls,
duration=None, # pylint: disable=keyword-arg-before-vararg
error=None, # pylint: disable=keyword-arg-before-vararg
*args, # pylint: disable=unused-argument
**kwargs, # pylint: disable=unused-argument
):
return super(InstructionProperties, cls).__new__( # pylint: disable=too-many-function-args
cls, duration, error
)
def __init__(
self,
duration: float | None = None, # pylint: disable=unused-argument
error: float | None = None, # pylint: disable=unused-argument
calibration: Schedule | ScheduleBlock | CalibrationEntry | None = None,
):
"""Create a new ``InstructionProperties`` object
Args:
duration: The duration, in seconds, of the instruction on the
specified set of qubits
error: The average error rate for the instruction on the specified
set of qubits.
calibration: The pulse representation of the instruction.
"""
super().__init__()
self._calibration: CalibrationEntry | None = None
self.calibration = calibration
@property
def calibration(self):
"""The pulse representation of the instruction.
.. note::
This attribute always returns a Qiskit pulse program, but it is internally
wrapped by the :class:`.CalibrationEntry` to manage unbound parameters
and to uniformly handle different data representation,
for example, un-parsed Pulse Qobj JSON that a backend provider may provide.
This value can be overridden through the property setter in following manner.
When you set either :class:`.Schedule` or :class:`.ScheduleBlock` this is
always treated as a user-defined (custom) calibration and
the transpiler may automatically attach the calibration data to the output circuit.
This calibration data may appear in the wire format as an inline calibration,
which may further update the backend standard instruction set architecture.
If you are a backend provider who provides a default calibration data
that is not needed to be attached to the transpiled quantum circuit,
you can directly set :class:`.CalibrationEntry` instance to this attribute,
in which you should set :code:`user_provided=False` when you define
calibration data for the entry. End users can still intentionally utilize
the calibration data, for example, to run pulse-level simulation of the circuit.
However, such entry doesn't appear in the wire format, and backend must
use own definition to compile the circuit down to the execution format.
"""
if self._calibration is None:
return None
return self._calibration.get_schedule()
@calibration.setter
def calibration(self, calibration: Schedule | ScheduleBlock | CalibrationEntry):
if isinstance(calibration, (Schedule, ScheduleBlock)):
new_entry = ScheduleDef()
new_entry.define(calibration, user_provided=True)
else:
new_entry = calibration
self._calibration = new_entry
def __repr__(self):
return (
f"InstructionProperties(duration={self.duration}, error={self.error}"
f", calibration={self._calibration})"
)
def __getstate__(self) -> tuple:
return (super().__getstate__(), self.calibration, self._calibration)
def __setstate__(self, state: tuple):
super().__setstate__(state[0])
self.calibration = state[1]
self._calibration = state[2]
class Target(BaseTarget):
"""
The intent of the ``Target`` object is to inform Qiskit's compiler about
the constraints of a particular backend so the compiler can compile an
input circuit to something that works and is optimized for a device. It
currently contains a description of instructions on a backend and their
properties as well as some timing information. However, this exact
interface may evolve over time as the needs of the compiler change. These
changes will be done in a backwards compatible and controlled manner when
they are made (either through versioning, subclassing, or mixins) to add
on to the set of information exposed by a target.
As a basic example, let's assume backend has two qubits, supports
:class:`~qiskit.circuit.library.UGate` on both qubits and
:class:`~qiskit.circuit.library.CXGate` in both directions. To model this
you would create the target like::
from qiskit.transpiler import Target, InstructionProperties
from qiskit.circuit.library import UGate, CXGate
from qiskit.circuit import Parameter
gmap = Target()
theta = Parameter('theta')
phi = Parameter('phi')
lam = Parameter('lambda')
u_props = {
(0,): InstructionProperties(duration=5.23e-8, error=0.00038115),
(1,): InstructionProperties(duration=4.52e-8, error=0.00032115),
}
gmap.add_instruction(UGate(theta, phi, lam), u_props)
cx_props = {
(0,1): InstructionProperties(duration=5.23e-7, error=0.00098115),
(1,0): InstructionProperties(duration=4.52e-7, error=0.00132115),
}
gmap.add_instruction(CXGate(), cx_props)
Each instruction in the ``Target`` is indexed by a unique string name that uniquely
identifies that instance of an :class:`~qiskit.circuit.Instruction` object in
the Target. There is a 1:1 mapping between a name and an
:class:`~qiskit.circuit.Instruction` instance in the target and each name must
be unique. By default, the name is the :attr:`~qiskit.circuit.Instruction.name`
attribute of the instruction, but can be set to anything. This lets a single
target have multiple instances of the same instruction class with different
parameters. For example, if a backend target has two instances of an
:class:`~qiskit.circuit.library.RXGate` one is parameterized over any theta
while the other is tuned up for a theta of pi/6 you can add these by doing something
like::
import math
from qiskit.transpiler import Target, InstructionProperties
from qiskit.circuit.library import RXGate
from qiskit.circuit import Parameter
target = Target()
theta = Parameter('theta')
rx_props = {
(0,): InstructionProperties(duration=5.23e-8, error=0.00038115),
}
target.add_instruction(RXGate(theta), rx_props)
rx_30_props = {
(0,): InstructionProperties(duration=1.74e-6, error=.00012)
}
target.add_instruction(RXGate(math.pi / 6), rx_30_props, name='rx_30')
Then in the ``target`` object accessing by ``rx_30`` will get the fixed
angle :class:`~qiskit.circuit.library.RXGate` while ``rx`` will get the
parameterized :class:`~qiskit.circuit.library.RXGate`.
.. note::
This class assumes that qubit indices start at 0 and are a contiguous
set if you want a submapping the bits will need to be reindexed in
a new``Target`` object.
.. note::
This class only supports additions of gates, qargs, and qubits.
If you need to remove one of these the best option is to iterate over
an existing object and create a new subset (or use one of the methods
to do this). The object internally caches different views and these
would potentially be invalidated by removals.
"""
__slots__ = (
"_gate_map",
"_coupling_graph",
"_instruction_durations",
"_instruction_schedule_map",
)
def __new__( # pylint: disable=keyword-arg-before-vararg
cls,
description: str | None = None,
num_qubits: int = 0,
dt: float | None = None,
granularity: int = 1,
min_length: int = 1,
pulse_alignment: int = 1,
acquire_alignment: int = 1,
qubit_properties: list | None = None,
concurrent_measurements: list | None = None,
*args, # pylint: disable=unused-argument disable=keyword-arg-before-vararg
**kwargs, # pylint: disable=unused-argument
):
"""
Create a new ``Target`` object
Args:
description (str): An optional string to describe the Target.
num_qubits (int): An optional int to specify the number of qubits
the backend target has. If not set it will be implicitly set
based on the qargs when :meth:`~qiskit.Target.add_instruction`
is called. Note this must be set if the backend target is for a
noiseless simulator that doesn't have constraints on the
instructions so the transpiler knows how many qubits are
available.
dt (float): The system time resolution of input signals in seconds
granularity (int): An integer value representing minimum pulse gate
resolution in units of ``dt``. A user-defined pulse gate should
have duration of a multiple of this granularity value.
min_length (int): An integer value representing minimum pulse gate
length in units of ``dt``. A user-defined pulse gate should be
longer than this length.
pulse_alignment (int): An integer value representing a time
resolution of gate instruction starting time. Gate instruction
should start at time which is a multiple of the alignment
value.
acquire_alignment (int): An integer value representing a time
resolution of measure instruction starting time. Measure
instruction should start at time which is a multiple of the
alignment value.
qubit_properties (list): A list of :class:`~.QubitProperties`
objects defining the characteristics of each qubit on the
target device. If specified the length of this list must match
the number of qubits in the target, where the index in the list
matches the qubit number the properties are defined for. If some
qubits don't have properties available you can set that entry to
``None``
concurrent_measurements(list): A list of sets of qubits that must be
measured together. This must be provided
as a nested list like ``[[0, 1], [2, 3, 4]]``.
Raises:
ValueError: If both ``num_qubits`` and ``qubit_properties`` are both
defined and the value of ``num_qubits`` differs from the length of
``qubit_properties``.
"""
if description is not None:
description = str(description)
return super(Target, cls).__new__( # pylint: disable=too-many-function-args
cls,
description,
num_qubits,
dt,
granularity,
min_length,
pulse_alignment,
acquire_alignment,
qubit_properties,
concurrent_measurements,
)
def __init__(
self,
description=None, # pylint: disable=unused-argument
num_qubits=0, # pylint: disable=unused-argument
dt=None, # pylint: disable=unused-argument
granularity=1, # pylint: disable=unused-argument
min_length=1, # pylint: disable=unused-argument
pulse_alignment=1, # pylint: disable=unused-argument
acquire_alignment=1, # pylint: disable=unused-argument
qubit_properties=None, # pylint: disable=unused-argument
concurrent_measurements=None, # pylint: disable=unused-argument
):
# A nested mapping of gate name -> qargs -> properties
self._gate_map = {}
self._coupling_graph = None
self._instruction_durations = None
self._instruction_schedule_map = None
def add_instruction(self, instruction, properties=None, name=None):
"""Add a new instruction to the :class:`~qiskit.transpiler.Target`
As ``Target`` objects are strictly additive this is the primary method
for modifying a ``Target``. Typically, you will use this to fully populate
a ``Target`` before using it in :class:`~qiskit.providers.BackendV2`. For
example::
from qiskit.circuit.library import CXGate
from qiskit.transpiler import Target, InstructionProperties
target = Target()
cx_properties = {
(0, 1): None,
(1, 0): None,
(0, 2): None,
(2, 0): None,
(0, 3): None,
(2, 3): None,
(3, 0): None,
(3, 2): None
}
target.add_instruction(CXGate(), cx_properties)
Will add a :class:`~qiskit.circuit.library.CXGate` to the target with no
properties (duration, error, etc) with the coupling edge list:
``(0, 1), (1, 0), (0, 2), (2, 0), (0, 3), (2, 3), (3, 0), (3, 2)``. If
there are properties available for the instruction you can replace the
``None`` value in the properties dictionary with an
:class:`~qiskit.transpiler.InstructionProperties` object. This pattern
is repeated for each :class:`~qiskit.circuit.Instruction` the target
supports.
Args:
instruction (Union[qiskit.circuit.Instruction, Type[qiskit.circuit.Instruction]]):
The operation object to add to the map. If it's parameterized any value
of the parameter can be set. Optionally for variable width
instructions (such as control flow operations such as :class:`~.ForLoop` or
:class:`~MCXGate`) you can specify the class. If the class is specified than the
``name`` argument must be specified. When a class is used the gate is treated as global
and not having any properties set.
properties (dict): A dictionary of qarg entries to an
:class:`~qiskit.transpiler.InstructionProperties` object for that
instruction implementation on the backend. Properties are optional
for any instruction implementation, if there are no
:class:`~qiskit.transpiler.InstructionProperties` available for the
backend the value can be None. If there are no constraints on the
instruction (as in a noiseless/ideal simulation) this can be set to
``{None, None}`` which will indicate it runs on all qubits (or all
available permutations of qubits for multi-qubit gates). The first
``None`` indicates it applies to all qubits and the second ``None``
indicates there are no
:class:`~qiskit.transpiler.InstructionProperties` for the
instruction. By default, if properties is not set it is equivalent to
passing ``{None: None}``.
name (str): An optional name to use for identifying the instruction. If not
specified the :attr:`~qiskit.circuit.Instruction.name` attribute
of ``gate`` will be used. All gates in the ``Target`` need unique
names. Backends can differentiate between different
parameterization of a single gate by providing a unique name for
each (e.g. `"rx30"`, `"rx60", ``"rx90"`` similar to the example in the
documentation for the :class:`~qiskit.transpiler.Target` class).
Raises:
AttributeError: If gate is already in map
TranspilerError: If an operation class is passed in for ``instruction`` and no name
is specified or ``properties`` is set.
"""
is_class = inspect.isclass(instruction)
if not is_class:
instruction_name = name or instruction.name
else:
# Invalid to have class input without a name with characters set "" is not a valid name
if not name:
raise TranspilerError(
"A name must be specified when defining a supported global operation by class"
)
if properties is not None:
raise TranspilerError(
"An instruction added globally by class can't have properties set."
)
instruction_name = name
if properties is None or is_class:
properties = {None: None}
if instruction_name in self._gate_map:
raise AttributeError(f"Instruction {instruction_name} is already in the target")
super().add_instruction(instruction, instruction_name, properties)
self._gate_map[instruction_name] = properties
self._coupling_graph = None
self._instruction_durations = None
self._instruction_schedule_map = None
def update_instruction_properties(self, instruction, qargs, properties):
"""Update the property object for an instruction qarg pair already in the Target
Args:
instruction (str): The instruction name to update
qargs (tuple): The qargs to update the properties of
properties (InstructionProperties): The properties to set for this instruction
Raises:
KeyError: If ``instruction`` or ``qarg`` are not in the target
"""
super().update_instruction_properties(instruction, qargs, properties)
self._gate_map[instruction][qargs] = properties
self._instruction_durations = None
self._instruction_schedule_map = None
def update_from_instruction_schedule_map(self, inst_map, inst_name_map=None, error_dict=None):
"""Update the target from an instruction schedule map.
If the input instruction schedule map contains new instructions not in
the target they will be added. However, if it contains additional qargs
for an existing instruction in the target it will error.
Args:
inst_map (InstructionScheduleMap): The instruction
inst_name_map (dict): An optional dictionary that maps any
instruction name in ``inst_map`` to an instruction object.
If not provided, instruction is pulled from the standard Qiskit gates,
and finally custom gate instance is created with schedule name.
error_dict (dict): A dictionary of errors of the form::
{gate_name: {qarg: error}}
for example::
{'rx': {(0, ): 1.4e-4, (1, ): 1.2e-4}}
For each entry in the ``inst_map`` if ``error_dict`` is defined
a when updating the ``Target`` the error value will be pulled from
this dictionary. If one is not found in ``error_dict`` then
``None`` will be used.
"""
get_calibration = getattr(inst_map, "_get_calibration_entry")
# Expand name mapping with custom gate name provided by user.
qiskit_inst_name_map = get_standard_gate_name_mapping()
if inst_name_map is not None:
qiskit_inst_name_map.update(inst_name_map)
for inst_name in inst_map.instructions:
# Prepare dictionary of instruction properties
out_props = {}
for qargs in inst_map.qubits_with_instruction(inst_name):
try:
qargs = tuple(qargs)
except TypeError:
qargs = (qargs,)
try:
props = self._gate_map[inst_name][qargs]
except (KeyError, TypeError):
props = None
entry = get_calibration(inst_name, qargs)
if entry.user_provided and getattr(props, "_calibration", None) != entry:
# It only copies user-provided calibration from the inst map.
# Backend defined entry must already exist in Target.
if self.dt is not None:
try:
duration = entry.get_schedule().duration * self.dt
except UnassignedDurationError:
# duration of schedule is parameterized
duration = None
else:
duration = None
props = InstructionProperties(
duration=duration,
calibration=entry,
)
else:
if props is None:
# Edge case. Calibration is backend defined, but this is not
# registered in the backend target. Ignore this entry.
continue
try:
# Update gate error if provided.
props.error = error_dict[inst_name][qargs]
except (KeyError, TypeError):
pass
out_props[qargs] = props
if not out_props:
continue
# Prepare Qiskit Gate object assigned to the entries
if inst_name not in self._gate_map:
# Entry not found: Add new instruction
if inst_name in qiskit_inst_name_map:
# Remove qargs with length that doesn't match with instruction qubit number
inst_obj = qiskit_inst_name_map[inst_name]
normalized_props = {}
for qargs, prop in out_props.items():
if len(qargs) != inst_obj.num_qubits:
continue
normalized_props[qargs] = prop
self.add_instruction(inst_obj, normalized_props, name=inst_name)
else:
# Check qubit length parameter name uniformity.
qlen = set()
param_names = set()
for qargs in inst_map.qubits_with_instruction(inst_name):
if isinstance(qargs, int):
qargs = (qargs,)
qlen.add(len(qargs))
cal = getattr(out_props[tuple(qargs)], "_calibration")
param_names.add(tuple(cal.get_signature().parameters.keys()))
if len(qlen) > 1 or len(param_names) > 1:
raise QiskitError(
f"Schedules for {inst_name} are defined non-uniformly for "
f"multiple qubit lengths {qlen}, "
f"or different parameter names {param_names}. "
"Provide these schedules with inst_name_map or define them with "
"different names for different gate parameters."
)
inst_obj = Gate(
name=inst_name,
num_qubits=next(iter(qlen)),
params=list(map(Parameter, next(iter(param_names)))),
)
self.add_instruction(inst_obj, out_props, name=inst_name)
else:
# Entry found: Update "existing" instructions.
for qargs, prop in out_props.items():
if qargs not in self._gate_map[inst_name]:
continue
self.update_instruction_properties(inst_name, qargs, prop)
def qargs_for_operation_name(self, operation):
"""Get the qargs for a given operation name
Args:
operation (str): The operation name to get qargs for
Returns:
set: The set of qargs the gate instance applies to.
"""
if None in self._gate_map[operation]:
return None
return self._gate_map[operation].keys()
def durations(self):
"""Get an InstructionDurations object from the target
Returns:
InstructionDurations: The instruction duration represented in the
target
"""
if self._instruction_durations is not None:
return self._instruction_durations
out_durations = []
for instruction, props_map in self._gate_map.items():
for qarg, properties in props_map.items():
if properties is not None and properties.duration is not None:
out_durations.append((instruction, list(qarg), properties.duration, "s"))
self._instruction_durations = InstructionDurations(out_durations, dt=self.dt)
return self._instruction_durations
def timing_constraints(self):
"""Get an :class:`~qiskit.transpiler.TimingConstraints` object from the target
Returns:
TimingConstraints: The timing constraints represented in the ``Target``
"""
return TimingConstraints(
self.granularity, self.min_length, self.pulse_alignment, self.acquire_alignment
)
def instruction_schedule_map(self):
"""Return an :class:`~qiskit.pulse.InstructionScheduleMap` for the
instructions in the target with a pulse schedule defined.
Returns:
InstructionScheduleMap: The instruction schedule map for the
instructions in this target with a pulse schedule defined.
"""
if self._instruction_schedule_map is not None:
return self._instruction_schedule_map
out_inst_schedule_map = InstructionScheduleMap()
for instruction, qargs in self._gate_map.items():
for qarg, properties in qargs.items():
# Directly getting CalibrationEntry not to invoke .get_schedule().
# This keeps PulseQobjDef un-parsed.
cal_entry = getattr(properties, "_calibration", None)
if cal_entry is not None:
# Use fast-path to add entries to the inst map.
out_inst_schedule_map._add(instruction, qarg, cal_entry)
self._instruction_schedule_map = out_inst_schedule_map
return out_inst_schedule_map
def has_calibration(
self,
operation_name: str,
qargs: tuple[int, ...],
) -> bool:
"""Return whether the instruction (operation + qubits) defines a calibration.
Args:
operation_name: The name of the operation for the instruction.
qargs: The tuple of qubit indices for the instruction.
Returns:
Returns ``True`` if the calibration is supported and ``False`` if it isn't.
"""
qargs = tuple(qargs)
if operation_name not in self._gate_map:
return False
if qargs not in self._gate_map[operation_name]:
return False
return getattr(self._gate_map[operation_name][qargs], "_calibration", None) is not None
def get_calibration(
self,
operation_name: str,
qargs: tuple[int, ...],
*args: ParameterValueType,
**kwargs: ParameterValueType,
) -> Schedule | ScheduleBlock:
"""Get calibrated pulse schedule for the instruction.
If calibration is templated with parameters, one can also provide those values
to build a schedule with assigned parameters.
Args:
operation_name: The name of the operation for the instruction.
qargs: The tuple of qubit indices for the instruction.
args: Parameter values to build schedule if any.
kwargs: Parameter values with name to build schedule if any.
Returns:
Calibrated pulse schedule of corresponding instruction.
"""
if not self.has_calibration(operation_name, qargs):
raise KeyError(
f"Calibration of instruction {operation_name} for qubit {qargs} is not defined."
)
cal_entry = getattr(self._gate_map[operation_name][qargs], "_calibration")
return cal_entry.get_schedule(*args, **kwargs)
@property
def operation_names(self):
"""Get the operation names in the target."""
return self._gate_map.keys()
@property
def instructions(self):
"""Get the list of tuples ``(:class:`~qiskit.circuit.Instruction`, (qargs))``
for the target
For globally defined variable width operations the tuple will be of the form
``(class, None)`` where class is the actual operation class that
is globally defined.
"""
return [
(self._gate_name_map[op], qarg)
for op, qargs in self._gate_map.items()
for qarg in qargs
]
def instruction_properties(self, index):
"""Get the instruction properties for a specific instruction tuple
This method is to be used in conjunction with the
:attr:`~qiskit.transpiler.Target.instructions` attribute of a
:class:`~qiskit.transpiler.Target` object. You can use this method to quickly
get the instruction properties for an element of
:attr:`~qiskit.transpiler.Target.instructions` by using the index in that list.
However, if you're not working with :attr:`~qiskit.transpiler.Target.instructions`
directly it is likely more efficient to access the target directly via the name
and qubits to get the instruction properties. For example, if
:attr:`~qiskit.transpiler.Target.instructions` returned::
[(XGate(), (0,)), (XGate(), (1,))]
you could get the properties of the ``XGate`` on qubit 1 with::
props = target.instruction_properties(1)
but just accessing it directly via the name would be more efficient::
props = target['x'][(1,)]
(assuming the ``XGate``'s canonical name in the target is ``'x'``)
This is especially true for larger targets as this will scale worse with the number
of instruction tuples in a target.
Args:
index (int): The index of the instruction tuple from the
:attr:`~qiskit.transpiler.Target.instructions` attribute. For, example
if you want the properties from the third element in
:attr:`~qiskit.transpiler.Target.instructions` you would set this to be ``2``.
Returns:
InstructionProperties: The instruction properties for the specified instruction tuple
"""
instruction_properties = [
inst_props for qargs in self._gate_map.values() for inst_props in qargs.values()
]
return instruction_properties[index]
def _build_coupling_graph(self):
self._coupling_graph = rx.PyDiGraph(multigraph=False)
if self.num_qubits is not None:
self._coupling_graph.add_nodes_from([{} for _ in range(self.num_qubits)])
for gate, qarg_map in self._gate_map.items():
if qarg_map is None:
if self._gate_name_map[gate].num_qubits == 2:
self._coupling_graph = None # pylint: disable=attribute-defined-outside-init
return
continue
for qarg, properties in qarg_map.items():
if qarg is None:
if self.operation_from_name(gate).num_qubits == 2:
self._coupling_graph = None
return
continue
if len(qarg) == 1:
self._coupling_graph[qarg[0]] = (
properties # pylint: disable=attribute-defined-outside-init
)
elif len(qarg) == 2:
try:
edge_data = self._coupling_graph.get_edge_data(*qarg)
edge_data[gate] = properties
except rx.NoEdgeBetweenNodes:
self._coupling_graph.add_edge(*qarg, {gate: properties})
qargs = self.qargs
if self._coupling_graph.num_edges() == 0 and (
qargs is None or any(x is None for x in qargs)
):
self._coupling_graph = None # pylint: disable=attribute-defined-outside-init
def build_coupling_map(self, two_q_gate=None, filter_idle_qubits=False):
"""Get a :class:`~qiskit.transpiler.CouplingMap` from this target.
If there is a mix of two qubit operations that have a connectivity
constraint and those that are globally defined this will also return
``None`` because the globally connectivity means there is no constraint
on the target. If you wish to see the constraints of the two qubit
operations that have constraints you should use the ``two_q_gate``
argument to limit the output to the gates which have a constraint.
Args:
two_q_gate (str): An optional gate name for a two qubit gate in
the ``Target`` to generate the coupling map for. If specified the
output coupling map will only have edges between qubits where
this gate is present.
filter_idle_qubits (bool): If set to ``True`` the output :class:`~.CouplingMap`
will remove any qubits that don't have any operations defined in the
target. Note that using this argument will result in an output
:class:`~.CouplingMap` object which has holes in its indices
which might differ from the assumptions of the class. The typical use
case of this argument is to be paired with
:meth:`.CouplingMap.connected_components` which will handle the holes
as expected.
Returns:
CouplingMap: The :class:`~qiskit.transpiler.CouplingMap` object
for this target. If there are no connectivity constraints in
the target this will return ``None``.
Raises:
ValueError: If a non-two qubit gate is passed in for ``two_q_gate``.
IndexError: If an Instruction not in the ``Target`` is passed in for
``two_q_gate``.
"""
if self.qargs is None:
return None
if None not in self.qargs and any(len(x) > 2 for x in self.qargs):
logger.warning(
"This Target object contains multiqubit gates that "
"operate on > 2 qubits. This will not be reflected in "
"the output coupling map."
)
if two_q_gate is not None:
coupling_graph = rx.PyDiGraph(multigraph=False)
coupling_graph.add_nodes_from([None] * self.num_qubits)
for qargs, properties in self[two_q_gate].items():
if len(qargs) != 2:
raise ValueError(
f"Specified two_q_gate: {two_q_gate} is not a 2 qubit instruction"
)
coupling_graph.add_edge(*qargs, {two_q_gate: properties})
cmap = CouplingMap()
cmap.graph = coupling_graph
return cmap
if self._coupling_graph is None:
self._build_coupling_graph()
# if there is no connectivity constraints in the coupling graph treat it as not
# existing and return
if self._coupling_graph is not None:
cmap = CouplingMap()
if filter_idle_qubits:
cmap.graph = self._filter_coupling_graph()
else:
cmap.graph = self._coupling_graph.copy()
return cmap
else:
return None
def _filter_coupling_graph(self):
has_operations = set(itertools.chain.from_iterable(x for x in self.qargs if x is not None))
graph = self._coupling_graph.copy()
to_remove = set(graph.node_indices()).difference(has_operations)
if to_remove:
graph.remove_nodes_from(list(to_remove))
return graph
def __iter__(self):
return iter(self._gate_map)
def __getitem__(self, key):
return self._gate_map[key]
def get(self, key, default=None):
"""Gets an item from the Target. If not found return a provided default or `None`."""
try:
return self[key]
except KeyError:
return default
def __len__(self):
return len(self._gate_map)
def __contains__(self, item):
return item in self._gate_map
def keys(self):
"""Return the keys (operation_names) of the Target"""
return self._gate_map.keys()
def values(self):
"""Return the Property Map (qargs -> InstructionProperties) of every instruction in the Target"""
return self._gate_map.values()
def items(self):
"""Returns pairs of Gate names and its property map (str, dict[tuple, InstructionProperties])"""
return self._gate_map.items()
def __str__(self):
output = io.StringIO()
if self.description is not None:
output.write(f"Target: {self.description}\n")
else:
output.write("Target\n")
output.write(f"Number of qubits: {self.num_qubits}\n")
output.write("Instructions:\n")
for inst, qarg_props in self._gate_map.items():
output.write(f"\t{inst}\n")
for qarg, props in qarg_props.items():
if qarg is None:
continue
if props is None:
output.write(f"\t\t{qarg}\n")
continue
prop_str_pieces = [f"\t\t{qarg}:\n"]
duration = getattr(props, "duration", None)
if duration is not None:
prop_str_pieces.append(f"\t\t\tDuration: {duration:g} sec.\n")
error = getattr(props, "error", None)
if error is not None:
prop_str_pieces.append(f"\t\t\tError Rate: {error:g}\n")
schedule = getattr(props, "_calibration", None)
if schedule is not None:
prop_str_pieces.append("\t\t\tWith pulse schedule calibration\n")
extra_props = getattr(props, "properties", None)
if extra_props is not None:
extra_props_pieces = [
f"\t\t\t\t{key}: {value}\n" for key, value in extra_props.items()
]
extra_props_str = "".join(extra_props_pieces)
prop_str_pieces.append(f"\t\t\tExtra properties:\n{extra_props_str}\n")
output.write("".join(prop_str_pieces))
return output.getvalue()
def __getstate__(self) -> dict:
return {
"_gate_map": self._gate_map,
"coupling_graph": self._coupling_graph,
"instruction_durations": self._instruction_durations,
"instruction_schedule_map": self._instruction_schedule_map,
"base": super().__getstate__(),
}
def __setstate__(self, state: tuple):
self._gate_map = state["_gate_map"]
self._coupling_graph = state["coupling_graph"]
self._instruction_durations = state["instruction_durations"]
self._instruction_schedule_map = state["instruction_schedule_map"]
super().__setstate__(state["base"])
@classmethod
def from_configuration(
cls,
basis_gates: list[str],
num_qubits: int | None = None,
coupling_map: CouplingMap | None = None,
inst_map: InstructionScheduleMap | None = None,
backend_properties: BackendProperties | None = None,
instruction_durations: InstructionDurations | None = None,
concurrent_measurements: Optional[List[List[int]]] = None,
dt: float | None = None,
timing_constraints: TimingConstraints | None = None,
custom_name_mapping: dict[str, Any] | None = None,
) -> Target:
"""Create a target object from the individual global configuration
Prior to the creation of the :class:`~.Target` class, the constraints
of a backend were represented by a collection of different objects
which combined represent a subset of the information contained in
the :class:`~.Target`. This function provides a simple interface
to convert those separate objects to a :class:`~.Target`.
This constructor will use the input from ``basis_gates``, ``num_qubits``,
and ``coupling_map`` to build a base model of the backend and the
``instruction_durations``, ``backend_properties``, and ``inst_map`` inputs
are then queried (in that order) based on that model to look up the properties
of each instruction and qubit. If there is an inconsistency between the inputs
any extra or conflicting information present in ``instruction_durations``,
``backend_properties``, or ``inst_map`` will be ignored.
Args:
basis_gates: The list of basis gate names for the backend. For the
target to be created these names must either be in the output
from :func:`~.get_standard_gate_name_mapping` or present in the
specified ``custom_name_mapping`` argument.
num_qubits: The number of qubits supported on the backend.
coupling_map: The coupling map representing connectivity constraints
on the backend. If specified all gates from ``basis_gates`` will
be supported on all qubits (or pairs of qubits).
inst_map: The instruction schedule map representing the pulse
:class:`~.Schedule` definitions for each instruction. If this
is specified ``coupling_map`` must be specified. The
``coupling_map`` is used as the source of truth for connectivity
and if ``inst_map`` is used the schedule is looked up based
on the instructions from the pair of ``basis_gates`` and
``coupling_map``. If you want to define a custom gate for
a particular qubit or qubit pair, you can manually build :class:`.Target`.
backend_properties: The :class:`~.BackendProperties` object which is
used for instruction properties and qubit properties.
If specified and instruction properties are intended to be used
then the ``coupling_map`` argument must be specified. This is
only used to lookup error rates and durations (unless
``instruction_durations`` is specified which would take
precedence) for instructions specified via ``coupling_map`` and
``basis_gates``.
instruction_durations: Optional instruction durations for instructions. If specified
it will take priority for setting the ``duration`` field in the
:class:`~InstructionProperties` objects for the instructions in the target.
concurrent_measurements(list): A list of sets of qubits that must be
measured together. This must be provided
as a nested list like ``[[0, 1], [2, 3, 4]]``.
dt: The system time resolution of input signals in seconds
timing_constraints: Optional timing constraints to include in the
:class:`~.Target`
custom_name_mapping: An optional dictionary that maps custom gate/operation names in
``basis_gates`` to an :class:`~.Operation` object representing that
gate/operation. By default, most standard gates names are mapped to the
standard gate object from :mod:`qiskit.circuit.library` this only needs
to be specified if the input ``basis_gates`` defines gates in names outside
that set.
Returns: