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IV

Nomenclature

Symbol Quantity Definition

a tokamak minor radius
A atomic mass number
B magnetic field
c sound velocity
d distance between rational surfaces
e elementary charge1 1.602176565×10−19 C
E electric field
f particle distribution function

particle fraction
k wavenumber
LX gradient length of quantity X −X/∇X
m particle mass

poloidal mode number
n particle density

toroidal mode number
p pressure
q electric charge

safety factor
r radial coordinate
r position vector
R tokamak major radius
s magnetic shear r∇q/q
T temperature
v velocity
w mode width
x distance to rational surface
Z atomic number
α normalized pressure gradient −q2R∑s βs∇ps/ps

β normalized pressure p/(B2/2µ0)
γ instability growth rate
Γ particle flux
δ banana width qρ

√
R/r

δX perturbation of quantity X
∆ Shafranov-shift
ε inverse aspect ratio r/R
θ poloidal angle
ϑ pitch angle
µ0 vacuum permeability1 4π×10−7 N A−2

ν collision frequency
ρ cyclotron radius mv⊥/qB

normalized toroidal flux coordinate
τ ion to electron temperature ratio Ti/Te
φ electrostatic potential
χ phase kr−ωt
ϕ toroidal angle
ω frequency



V

Subscript Abbreviations

Symbol

c cyclotron
curv curvature
d drift
e electron
eff effective
i ion
p passing

poloidal
proton

s species
t trapped
? diamagnetic
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1 Introduction

1.1 Motivation

Since mankind began utilizing fossil fuels as a source of energy at the dawn of the Industrial Rev-
olution more than two centuries ago, the consumption of fossil energy carriers and consequently
the emission of greenhouse gases has skyrocketed.2 Evidence for the set in of an anthropogenic
climate change, linked to this development, have been reported repeatedly.3 Moreover, the global
primary energy consumption is predicted to increase further within the upcoming decades,4 while
at the same time the production of fossil fuels, especially of oil, is expected to reach its limit.5 Con-
sequently, clean, reliable, inexhaustible, and inexpensive alternatives to fossil fuel based energy
production are necessary to overcome these challenges.

One possibility is the utilization of nuclear fusion of the two hydrogen isotopes deuterium and
tritium into the heavier element helium through the reaction6

2D+ 3T→ 4He(3.5MeV)+n(14.1MeV) . (1.1)

This process releases around 10 million times as much energy as burning an equivalent amount of
fossil fuels,7 without the production of greenhouse gases or long-lived radioactive waste. More-
over, the fuels required are readily available and virtually inexhaustible, potentially lasting for
billions of years.7 Since additionally the cost of fusion generated electricity is expected to be
comparable to renewable energy sources,6 fusion power is a promising alternative to fossil fuel
based energy production. The viability of this concept has been investigated in torus-shaped fu-
sion reactors called tokamaks since the 1960s, with prominent experiments such as ITER, JET, or
TFTR.6

Yet, achieving the conditions necessary to maintain a self-sustaining reaction is not trivial as
this requires heating the fuels to temperatures above 170 million K,7 as well as ensuring sufficient
particle confinement for hydrogen nuclei to fuse and for produced helium nuclei to transfer ex-
cess energy to the plasma. However, violent magnetohydrodynamic (MHD) instabilities on spatial
scales of the plasma dimensions, such as e.g. kink or sausage instabilities, can disrupt and con-
sequently extinguish the plasma, wherefore these perturbations have to be avoided to sustain the
fusion plasma.8 Moreover, even in the absence of large scale perturbations, increased transport
from the core of the plasma to the reactor walls due to micro-instabilities significantly decreases
confinement and hence energy production. Therefore, understanding and controlling the processes
giving rise to turbulent transport are relevant for the viable operation of fusion reactors.

1.2 Turbulence Modeling

The theory of turbulent transport in tokamaks has been studied since the early 1960s, supported by
the development of gyrokinetic codes based on the Boltzmann equation as a means to bridge theory
and experiment.9, 10 Due to progress in gyrokinetic theory, the development of sophisticated algo-
rithms, and advances in computational technology, present day nonlinear gyrokinetic codes such
as GS2, GYRO, GENE, or GKW are capable of correctly predicting energy, particle, and momen-
tum fluxes in tokamaks in many regimes as compared to experimental results.10 However, a major
limitation of these gyrokinetic codes is the computational time necessary to obtain fluxes in toka-
mak reactors, as the run time for flux prediction at a single time step is about 5× 104 CPUh.9, 11

A reduction can be achieved by evaluating the Boltzmann equation in the quasilinear approxi-
mation, resulting in computation times of roughly 500 CPUh for the quasilinear versions of codes
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mentioned. Applying additional simplifications, e.g. focusing on electrostatic turbulences, compu-
tation times can be brought down to as low as 10 CPUs, such as in the case of the code QuaLiKiz.12

Due to the reduced computational effort of quasilinear gyrokinetic codes, the calculation of tem-
perature, density, and rotational profiles by evaluating fluxes at different radial positions over the
duration of several confinement times is possible by embedding the quasilinear codes into an inte-
grated framework. In the case of QuaLiKiz, profiles can be predicted on a small number of CPUs
within a day.9, 11

Since a reduction in computation time is achieved by simplifying the original Boltzmann equa-
tion, extensive benchmarking of the quasilinear codes against each other, against full nonlinear
codes, and against experimental data is vital to ensure validity of the calculations.10 As for the
fast quasilinear code QuaLiKiz, results obtained were validated with more complete modeling, i.e.
nonlinear GYRO13 and GS2,12 in a broad parameter range.

1.3 Scope of This Work

During validation of the code QuaLiKiz against more complete modeling, significant deviations
from the behavior predicted by both linear and nonlinear GENE have been reported for instabil-
ity growth rate calculations at low values of s−α around the GA-standard case13 and for heat
flux simulations for the DEMO1 scenario,14 with the magnetic shear s = r∇q/q being the nor-
malized gradient of the safety factor q and with α denoting the normalized pressure gradient
α = −q2R∑s βs∇ ln ps. As the operational regime of low magnetic shear and high normalized
pressure gradient is intrinsic to hybrid scenarios, ramp-up and ramp-down phases, as well as to
ITER and DEMO scenarios,13, 15, 16 QuaLiKiz can currently not be used reliably for these highly
relevant conditions.

As the applicability of QuaLiKiz in an even broader parameter range is desirable due to the
code’s fast modeling capabilities, this work aims at understanding the reason for the observed
discrepancy at low values of s−α and thus provides approaches to fix this issue. At first, the
exact parameter range where disagreement occurs is mapped out by comparing calculations of the
instability growth rate and the threshold ion temperature gradient between QuaLiKiz and linear
GENE for ion temperature gradient dominated modes in the electrostatic case. In the obtained
region, the variation of the electrostatic potential with the poloidal angle is compared for both
codes used and their influence on the instability growth rate discussed.

The report is thus organized as follows. In Sec. 2, an introduction to instabilities in tokamak
plasmas is given and the linear gyrokinetic equation used by QuaLiKiz presented. Terms relevant
to this investigation due to the appearance of the magnetic shear or the normalized pressure gradi-
ent are discussed regarding their influence on the drive of instabilities. The following section, i.e.
Sec. 3, covers the approach taken to determine the regime of discrepancy between QuaLiKiz and
GENE. Furthermore, an overview of both gyrokinetic codes is presented and the accuracy of the
results obtained discussed. The results of this investigation are presented and discussed in Sec. 4,
followed by a conclusion of this work in Sec. 5.
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The transport of particles and momentum, as well as of both electron and ion heat in magne-
tized plasmas is greatly enhanced by the occurrence of micro-instabilities.17 To obtain a basic
understanding of the underlying processes necessary to identify relevant instability mechanisms,
an overview of instabilities is presented in Sec. 2.1. Using gyrokinetic theory, characteristics of
these instabilities can be calculated, allowing the prediction of fluxes in experimental devices for
a given set of plasma parameters. In Sec. 2.2, a linear gyrokinetic equation resembling the one
used by the code QuaLiKiz is derived and terms relevant for this investigation analyzed. Limiting
cases for the instabilities introduced in Sec. 2.1 are presented in Sec. 2.3, where the fluid limit of
the linear gyrokinetic equation is described.

2.1 Instabilities in Tokamaks

Turbulent transport in tokamaks is driven by pressure gradients, resulting in fluctuations of the
particle distribution functions and their respective moments, such as particle density, temperature,
momentum, and flux. Since the electromagnetic fields are related to the moments of the particle
distribution functions through Maxwell’s equations, fluctuations occur additionally in the case of
the electrostatic and the magnetic potential, giving rise to fluctuating E×B drift velocities for
particles. Consequently, turbulent transport is caused by radial E×B drifts, i.e. electrostatic
transport, as well as by enhanced diffusion across radial magnetic field fluctuations, i.e. magnetic
transport. Fluctuations of the electrostatic potential dominate turbulent transport at low values of
the normalized plasma pressure β = p/pB = p/(B2/2µ0) as typically encountered in experiments,
whereas transport due to magnetic fluctuations becomes important at high values of β.18

In the core plasma, two kinds of instability modes are primarily responsible for enhanced trans-
port, namely the slab-type and the curvature-type instability, both of which arise in the presence of
particle drift perpendicular to the particle’s motion along the magnetic field lines.19 As opposed to
the curvature-type instability, the development of slab modes is independent of the toroidal plasma
geometry, i.e. the magnetic curvature, and thus also occurs at an infinite aspect ratio.9, 20 Since
here the diamagnetic frequency due to the pressure gradient is coupled to the transit frequency of
particles parallel to the magnetic field lines,9 only passing particles are affected by slab modes.

As the name of the curvature-type instability suggests, this mode develops in the presence of a
curved or inhomogeneous magnetic field ∇∇∇B, coupling the diamagnetic frequency to the ∇∇∇B- and
curvature drift frequencies.9 The instability condition for curvature modes can be expressed as
∇∇∇p ·∇∇∇B > 0,19 requiring the alignment of both the driving pressure gradient and the gradient of
the magnetic field for an instability to develop. Consequently, curvature modes are found only at
the low field side of a tokamak, where both gradients point inward. On the high field side however,
pressure and magnetic gradient are oriented in opposite directions, fulfilling the stability condition
and thus ensuring stability with respect to curvature modes.

The driving mechanism of the curvature-type instability can be illustrated by considering the
influence of pressure fluctuations on the plasma behavior, as depicted in Fig. 2.1, where regions of
higher pressure and lower pressure are shown in dark and light blue, respectively. In the presence
of curved magnetic fields, ions and electrons are subjected to vertical drifts proportional to the
plasma temperature in opposite directions, cf. Eq. (2.19). Consequently, the respective particle
fluxes ΓΓΓd = nv ∝ nT are directly proportional to the plasma pressure. As the vertical fluxes of
identical particles in both regions are therefore of different magnitude, charges accumulate at the
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Fig. 2.1: The curvature-type instability develops in the presence of perturbations of the plasma pressure. The
vertical particle drift ΓΓΓd of ions and electrons due to the magnetic curvature is larger in the plasma regions of
higher pressure as opposed regions of lower pressure, resulting in charge accumulation at the boundary (1st

panel of the illustration) and consequently in the formation of electric fields E (2. panel). On the low field
side of the tokamak, the arising horizontal particle E×B-drifts transport particles from regions of higher
pressure into regions of lower pressure and vice versa (2nd panel), increasing the boundary between both
regions and consequently the accumulation of charges, thus reinforcing the initial perturbation (3rd panel).
On the high field side however (4th panel), the E×B-drifts transport plasma of higher and lower pressure
further into their respective regions (5th panel), decreasing the interjacent boundary and thus accumulation
of charges, leading to a decay of the initial perturbation.

boundary between both regions, giving rise to electric fields. On the low field side of the toka-
mak, charge independent fluxes ΓΓΓE×B = nE×B/B2 due to E×B-drifts transport plasma of higher
pressure into regions of lower pressure and vice versa, increasing the boundary between both re-
gions. This in turn leads to further charge accumulation, reinforcing the initial perturbation of the
plasma. Noticeably, the instability condition ∇∇∇p ·∇∇∇B > 0 is verified in this case, as illustrated in
Fig. 2.1. Following the same arguments, fluctuations at the high field side are stabilized by the
arising E×B-drifts transporting plasma of higher and lower pressure further into the respective
regions, decreasing the interjacent boundary, and thus the associated accumulation of charges. As
a result, the initial perturbation is stabilized as stated by the stability condition. Therefore, the
curvature-type instability can only develop on the low field side. However, since both sides are
connected by poloidal magnetic fields, a strong parallel current stabilizes the instability as particles
in their poloidal motion experience alternating regions of stability and instability.18 The connec-
tion length between low and high field side is determined by the ratio of toroidal to poloidal mode
number, i.e. the safety factor q, increasing for larger values of q. Consequently, the curvature-type
instabilities are more effective for high parallel resistivity and high values of the safety factor.19

For both the curvature-type and the slab-type instability, several branches of the particle pop-
ulation are potentially unstable, as listed in Table 2.1. Whereas only modes driven by passing
particles can be of the slab-type instability, i.e. Ion Temperature Gradient modes (ITG) and Elec-
tron Temperature Gradient modes (ETG), all four branches can be of the curvature-type instability,
including Trapped Ion Modes (TIM) and Trapped Electron Modes (TEM). The rotation of these
modes is along the direction of the driving particles’ diamagnetic drift and is thus different for ion
and electron modes.17 For each branch, the characteristic wavelength is larger than or comparable
to the characteristic length associated with the driving particle species, i.e. the cyclotron radius
ρc = mv⊥/qB in the case of passing particles and the banana width δ' qρ

√
R/r for trapped parti-

cles, yielding the ordering δi > ρi > δe > ρe.20 Expressed in terms of the ion cyclotron radius, the
characteristic wavelengths for each branch are found as

TIM: kθρi . 0.29 TEM: kθρi . 17

ITG: kθρi . 1.0 ETG: kθρi . 60
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Table 2.1: Potentially unstable branches of the particle population.18, 20, 21 Whereas all four branches can be
of the curvature-type instability, only branches driven by passing particles can be of the slab-type instability.
The characteristic wavelength is larger than or comparable to the driving particles’ characteristic length, i.e.
the cyclotron radius ρc or the banana width δ.

Mode Name Driven By Instability Types Characteristic Wavelength
Curvature Slab

Trapped Ion Mode (TIM):
trapped ions X - kθδi . 1.0 kθρi . 0.29

Ion Temperature Gradient mode (ITG):
passing ions X X kθρi . 1.0 kθρi . 1.0

Trapped Electron Mode (TEM):
trapped electrons X - kθδe . 1.0 kθρi . 17

Electron Temperature Gradient mode (ETG):
passing electrons X X kθρe . 1.0 kθρi . 60

for typical tokamak parameters. Thus, for a given wavelength of the instability, several branches
might be unstable simultaneously. Note that TIMs are not relevant for increased transport since
these modes are suppressed by nonlinear effects. cf. Refs. 22, 23.

The development of an instability depends on the magnitude of the governing temperature and
density gradients, as illustrated exemplary in Fig. 2.2 in the form of a stability diagram. Although
quantitatively valid only for one choice of plasma parameters,9 these representations are suitable
to demonstrate common behavior, cf. stability diagrams in Refs. 17, 20, 24. In the case of low
gradients, no instability branch is unstable. However, above a critical threshold value of the nor-
malized temperature gradient −R∇T/T and the normalized density gradient −R∇n/n, electron or
ion modes become unstable, giving rise to turbulent transport.17, 18 The critical threshold above
which instabilities set in is referred to as instability threshold throughout this work. Note that ion
modes are primarily destabilized by temperature gradients, while the influence of density gradi-
ents is more significant for trapped electron modes, cf. Fig. 2.2. If particularly large gradients
are present in the system, multiple modes can be unstable simultaneously. Hence, an separate
treatment of modes is generally not possible.17

In the case of ion heat transport, the turbulence transport is primarily driven by ITG modes.25

Since the turbulence is relatively weak, with fluctuations of the particle density in the order of a
few percent,25 linear calculations can capture the relevant behavior. Although ITG modes appear
up to kθρi ∼ 1.0, the most unstable wavenumbers are found between 0.1 and 0.3, dominating the
turbulent ion heat transport.25
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Fig. 2.2: Stability diagram for the poten-
tially unstable branches listed in Table 2.1
for varying values of the normalized tem-
perature gradient −R∇T/T and the normal-
ized density gradient−R∇n/n, adopted from
Ref. 17. Although valid for only one choice
of plasma parameters, these diagrams illus-
trate the threshold behavior of the instabil-
ity branches below which no instabilities oc-
cur. For large gradients, multiple branches
may be unstable simultaneously. Similar di-
agrams can be found in e.g. Refs. 20, 24.
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2.2 The Linear Gyrokinetic Equation

Gyrokinetic theory is based on the evaluation of the Boltzmann-equation in the case of low fre-
quencies ω of the perturbations, i.e. ω� ωc with ωc being the particle cyclotron frequency. Since
in this limit the characteristic time ω−1 associated with the evolution of the perturbative potential
is significantly larger than the duration of one gyration period, the perturbations of the potentials
can be averaged over the gyration orbit, hence the name gyrokinetic equation.10, 26 The problem is
thus reduced from 6 dimensions into a 5 dimensional problem, with three coordinates in position
space, the parallel velocity, and the adiabatic invariant remaining, and is thus easier to solve.27

In this section, a gyrokinetic equation resembling the one used by the code QuaLiKiz will be
derived following the calculations by J. Weiland.26 The approach presented is shorter and in some
respect more comprehensible than other methods, such as e.g. a derivation using the formalism
of angular and action variables, where the six dimensions of the problem are chosen as three
conserved quantities and their associated frequencies, cf. e.g. Refs. 9, 21. Since QuaLiKiz works
in the electrostatic limit, fluctuations of the magnetic potential will be neglected in the following
analysis.

2.2.1 Derivation of the Linear Gyrokinetic Equation

The behavior of plasma particles can be described by particle distribution functions f , determined
by the Boltzmann equation

d f
dt

=
∂ f
∂t

+ ṙ ·∇∇∇r f + r̈ ·∇∇∇ṙ f =C( fs′ , fs) , (2.1)

where the term C( fs′ , fs) accounts for collisions between species s′ and s. In thermal equilibrium,
the solution is given by a Maxwell-Boltzmann distribution

f0 = n0

( m
2πT

)3/2
exp
(
−mv2

2T

)
(2.2)

for an equilibrium particle density n0. The particle distribution function f can be written as the
sum of a background distribution f0(r,v) and a small perturbation δ f (r,v, t)� f0, since density
fluctuations in the plasma core are usually in the order of a few percents25, 28 and are thus assumed
to not affect the equilibrium Maxwellian distribution function f0.9 In high temperature fusion
plasmas, collisions usually take place on time scales significantly larger than characteristic time
scales of turbulent fluctuations.27 Although collisions can often not be neglected, the behavior is
still well described in the collisionless limit, wherefore the collisionless Boltzmann equation will
be used, setting C( fs′ , fs) = 0. Hence, the Vlasov equation describes both the equilibrium solution
f0 and the perturbation δ f

d f
dt

=
∂

∂t
( f0 +δ f )+v ·∇∇∇( f0 +δ f )+

q
m
(δE+v×B0)

∂

∂v
( f0 +δ f ) = 0 (2.3)

for a particle of charge q. Note that the electric field consists only of a perturbation δE, whereas
the magnetic field is not subjected to perturbations, corresponding to the electrostatic limit. Intro-
ducing cylindrical geometry for the velocity components with respect to the equilibrium magnetic
field B0, i.e.

∂

∂v
= ê⊥

∂

∂v⊥
+ ϕ̂ϕϕ

1
v⊥

∂

∂ϕ
+ ê‖

∂

∂v‖
, (2.4)

the Vlasov equation for the general solution f can be expressed in zeroth order as

v ·∇∇∇ f0 = ωc
∂ f0

∂ϕ
. (2.5)
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Hence, for a gradient of the distribution function purely perpendicular to the magnetic field, the
relation

∂ f0

∂v
=

1
ωc

ê‖×∇∇∇ f0 + ê⊥
∂ f0

∂v⊥
+ ê‖

∂ f0

∂v‖
(2.6)

is obtained. Approximating the Vlasov equation of the total distribution function f in first order
yields the expression

dδ f
dt

=− q
m

δE · ∂ f0

∂v
. (2.7)

Integrating this equation and introducing Fourier harmonics, the perturbed distribution function
can be written as26

δ fk =−
q
m

∞w

0

δEk
∂ f0

∂v
e−i[kr(τ)−ωτ]dτ . (2.8)

The phase χ(τ) := kr(τ)−ωτ includes a fast oscillating contribution due to the rapid gyration
motion, as well as corrections to the frequency ω of the perturbation due to particle motion parallel
to the magnetic field lines and due to particle drifts26

χ(τ) = k⊥ρc sin(ωcτ)−
τw

0

[
ω− k‖v‖−kvd(t ′)

]︸ ︷︷ ︸
=:ω̃

dt ′ . (2.9)

Replacing the electric field by a perturbative potential using δE = −∇∇∇δφ and expressing the ve-
locity derivative of the equilibrium distribution function in terms of Eq. (2.6), the integrand in Eq.
(2.8) becomes

δEk
∂ f0

∂v
=−i

m
T

δφkk
[

v⊥ê⊥+ v‖ê‖−
T

mωc
ê‖×

∇∇∇ f0

f0︸ ︷︷ ︸
≡v?

]
f0

=−i
m
T

f0
[
k⊥v⊥+ k‖v‖−ω?

]
δφk .

 (2.10)

Note that the position space derivative ∇∇∇ transforms into −ik when using Fourier harmonics. In
the expression obtained, the third term represents the diamagnetic drift frequency ω? := k ·v?, with
v? being the diamagnetic drift velocity as defined in Eq. (2.10). As argued above, the equilibrium
distribution function f0 is assumed to be Maxwellian to calculate ∂v f0. Since the first two terms
of Eq. (2.10) appear in the temporal derivative of the exponential

d
dτ

e−iχ(τ) =
d
dτ

exp(−i [kr(τ)−ωτ]) =−i
[
k⊥v⊥+ k‖v‖−ω

]
e−iχ(τ) , (2.11)

the linearized Vlasov equation in Fourier representation can be reduced to

δ fk =
q
T

f0

[
1+ i(ω−ω?)

∞w

0

e−iχ(τ)dτ

]
δφk . (2.12)

To evaluate the integral over the phase factor, the gyroperiod is assumed significantly smaller than
other time scales involved. In this limit, the gyration motion is across a quasi-constant field, allow-
ing the use of a gyroaveraged value 〈exp(−iχ(τ))〉 instead of the phase factor itself. Expressing
the sine of the exponent as appearing in Eq. (2.9) as a series of Bessel functions, the gyroaveraged
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value of the phase factor is found as

〈
e−iχ(τ)

〉
=

τ+∆τw

τ

exp

(
−i

[
k⊥ρc sin(ωcτ)−

τw

0

ω̃dt ′
])

dτ

=

τ+∆τw

τ

∑
n

Jn (k⊥ρc)exp

(
−inωcτ+ i

τw

0

ω̃dt ′
)

dτ

≈ J0 (k⊥ρc)exp

(
i

τw

0

ω̃(t ′)dt ′
)

(2.13)

The time interval ∆τ is chosen to cover a relevant amount gyrations across the quasi-constant field
while being much shorter than typical time steps of the system. Consequently, the integral vanishes
in the limit ∆τ→ 0 and the series of Bessel functions can be approximated in zeroth order. As a
result, the integral in the simplified Vlasov equation of Eq. (2.12) is replaced by an integral over
the phase factor induced by corrections to the frequency ω of the perturbation. To evaluate this
integral, the simplified Vlasov equation is differentiated with respect to the long time scale such
that the Leibniz integral rule can be applied, yielding the linearized Vlasov equation

δ fk =
q
T

f0

[
1− ω−ω?

ω− k‖v‖−ωd
J0 (k⊥ρc)

]
δφk . (2.14)

This expression consists of an adiabatic term, followed by a non-adiabatic response. Instabilities
are driven by the diamagnetic frequency ω? as this term incorporates deviations from the thermo-
dynamical equilibrium through the presence of gradients of the equilibrium particle distribution
function f0 and consequently of the equilibrium temperature and density29

ω? = k · T
mωc

ê‖×
∇∇∇ f0

f0
=−k · T |∇

∇∇n|
mωcn

(
ê∇∇∇× ê‖

)[
1+

Ln

LT

(
mv2

2T
− 3

2

)]
. (2.15)

The effect of density and temperature gradients is incorporated in the respective gradient length
LX :=−X/∇∇∇X . Resonances of the perturbation with the frequency k‖v‖ associated with the motion
of the particles parallel to the magnetic field lines, as well as with the particle drift frequency ωd
influence the development of these gradient-driven instabilities.

The linearized Vlasov equation for one particle species is not sufficient to obtain the character-
istics of the perturbation. For this purpose, the contributions of all particle species involved have
to be coupled to Maxwell’s equations, which in the electrostatic limit leads to the condition of
quasineutrality, i.e. ∑s qsns = 0.9, 21 Since in thermodynamic equilibrium, the densities of particles
involved fulfill this condition, only density fluctuations have to be considered, which for each par-
ticle species are determined by a three-dimensional phase space integral of the linearized Vlasov
equation, i.e. Eq. (2.14). To lighten notation, the abbreviation 〈. . .〉 ≡

r
. . . f0/ns d3v will be used.

Hence, the condition of quasineutrality can be expressed as9, 21

∑
s

q2
s ns

Ts

[
1− fp

〈
ω−ω?,s

ω− k‖v‖,s−ωd,s
J0 (k⊥ρc,s)

〉
p
− ft

〈
ω−ω?,s

ω−ωd,s
J0 (k⊥δs)

〉
t

]
δφ = 0 ,

(2.16)

where the summation considers all particle species present. This expression is the linear gyroki-
netic equation determining the frequency ω, being the eigenvalue, and the shape of the electrostatic
potential δφ of the perturbation, the eigenfunction. Passing and trapped particles, denoted by sub-
scripts p and t respectively, are treated separately, as only the former have a finite averaged transit
frequency k‖v‖,s, while the latter have an increased radius δ being the banana width due to their
bouncing motion over which the quasiconstant perturbation is averaged. The fraction f of passing
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and trapped particles depends on the inverse aspect ratio ε through the relation7 ft =
√

2ε/(1+ ε)
and fp = 1− ft.

The expression presented in Eq. (2.16) describes the local dispersion relation, wherefore the
integration is only over velocity space. To solve the linear gyrokinetic equation globally, QuaLiKiz
uses a weak form of quasineutrality, i.e.

r
∑s qsnsφ

? d3r= 0, where the condition of quasineutrality
is first multiplied by a test function chosen as the complex conjugate of the perturbed electrostatic
potential and subsequently integrated over real space. Since the diamagnetic drift frequency ω?,
the transit frequency k‖v‖, the drift frequency ωd, and the perturbed electrostatic potential δφ

are spatially dependent, the only unknown left in the dispersion relation is the frequency ω of the
instability. Since the shape of the eigenfunction δφ is assumed Gaussian, as discussed in Sec. 2.3.3,
the dispersion relation is not solved fully self-consistently, thus allowing for a faster calculation.
In the case of linear GENE however, the linear gyrokinetic equation is solved for each location
along the field line such the shape of the perturbation δφ is consistent with the solution obtained.
As linear GENE thus solves the linear gyrokinetic equation more self-consistently as compared to
QuaLiKiz, the computational effort is significantly greater.

2.2.2 The Ballooning Transform

The calculation of the eigenvalues and the eigenfunctions of the linear gyrokinetic equation can be
simplified by considering eigenfunctions which are localized around θ = 0, i.e. strongly ballooned
at the low field side, corresponding to the dominant curvature-type ITG modes.9 In this case, the
potential for one poloidal harmonic can be expressed as30

φ
m
n (r) =

1
2π

πw

−π

φn (r,θ)exp(−imθ+ inq(r)θ) dθ , (2.17)

where the poloidal and toroidal mode number are denoted by m and n, respectively. The envelope
φn(r,θ) is a slowly varying function of θ on the resonant field line as opposed to the exponential,
the eikonal, which oscillates fast off the resonant surface.9 Since the eigenfunctions are typically
confined to ±π, the integration boundaries are set accordingly.9

Around the rational surface labeled by r0, the safety factor may be expanded in first order as
q(x) = q(0)+q′(0) · x, where x := r− r0 denotes the distance to the rational surface of the mode.
An expression for q′(0) can be obtained by considering adjacent poloidal harmonics, yielding
q′(0) = 1/nd with d being the distance between rational surfaces. Using poloidal and toroidal
angles, an alternative representation for the eikonal is given by exp(−in [ϕ−q(0) ·θ−q′(0) · xθ]).
Expressions for the components of the wave vector k can be obtained by taking the respective
derivatives of the eikonal:

kxφ
m
n =−i∂xφ

m
n ⇒ kx = nq′θ =

θ

d
,

kθφ
m
n =− i

r
∂θφ

m
n ⇒ kθ =

nq
r

=
nq′

s
,

k‖φ
m
n =− i

R

(
∂ϕ +

1
q

∂θ

)
φ

m
n ⇒ k‖ ≈

nq′x
qR

=
kθsx
qR

.


(2.18)

Here, the magnetic shear s = rq′/q, describing the change of direction of the magnetic field,31 was
introduced to simplify the expression for the parallel wavenumber. Above relations will be used
in the following section to analyze particle transit and drift frequencies.

2.2.3 Influence of Resonances on the Development of Instabilities

The motion of charged particles parallel to the magnetic field lines, as well as their perpendicular
drift due to the presence of inhomogeneous and curved magnetic fields influences the develop-
ment of instabilities through resonances as can be seen from the linear gyrokinetic equation, cf.
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Eq. (2.16). Since this contribution can strongly suppress the formation of turbulences, an ex-
pression for both the drift and the transit frequency will be derived in this section for a poloidal
geometry in the presence of a shifted magnetic axis to analyze the effect of these frequencies on
the stability of the system.

2.2.3.1 Derivation of the Resonant Frequencies

Charged particles in a curved or non-uniform magnetic field B are subjected to a drift in a direction
perpendicular to both the original magnetic field and the inhomogeneity with constant velocity

vd = vcurv +v∇∇∇B =
m
qB

[
v2
‖+

v2
⊥
2

]
B
B
×∇∇∇B

B
. (2.19)

This expression is to be evaluated in a poloidal geometry where the magnetic axis and consequently
the flux tubes are radially shifted. The magnetic geometry can thus be described by the following
choice of coordinates

R̃ = R+ r cosθ+∆(r) , Z̃ = r sinθ , (2.20)

which are functions of the poloidal angle θ and the radial parameter r, ranging from 0 to the minor
radius a. The radial shift ∆(r), referred to as Shafranov shift, is defined through the differential
equation31

∆
′(r) =

2µ0

rRB2
θ

[
r2 p−

rw

0

[
2p+

B2
θ

2µ0

]
r dr

]
. (2.21)

and vanishes at the boundary of the plasma vessel, i.e. at r = a. From the definition of ∆(r), the
second derivative is obtained as

∆
′′(r) =

1
R

r β
′
p−βp +

1
2

2
rr

0
B2

θ
r dr

r2B2
θ

+

4µ0

rr

0
pr dr

r2B2
θ

−1

=
q2

ε
β
′− 1

R

[
βp−

lint

2
− β̄p−1

]
.

(2.22)

The quantities lint and β̄p denote internal inductance and averaged poloidal normalized plasma
pressure respectively. Introducing the normalized pressure gradient α = −q2Rβ′, the second
derivative of the Shafranov shift can be expressed in the form

∆
′′(r) =− 1

R

[
α

ε
+βp− β̄p−

lint

2
+1
]
≈− α

εR
. (2.23)

Considering the ordering in the inverse aspect ratio ε = r/R of the individual terms of this differ-
ential equation, the first term is of the order ε−1/2, since α∼O(ε1/2), whereas the remaining terms
are of the order O(1). Thus, in the limit of low inverse aspect ratios, i.e. ε� 1, the second order
differential equation can be approximated by above expression.

In the geometry introduced, the differential operator ∇∇∇ can be obtained from

ds2 = dR̃2 +dZ̃2 =
(
1+2∆

′ cosθ
)

dr2 + r2 dθ
2 , (2.24)

Consequently, the gradient is

∇∇∇ =
(
1+2∆

′ cosθ
)−1/2

∂r r̂+
1
r

∂θ θ̂θθ≈ [1+αcosθ]∂r r̂+
1
r

∂θ θ̂θθ . (2.25)
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Here, the initial expression of the gradient was simplified by an expansion in r up to first order,
where the expression for ∆′′ obtained in Eq. (2.23) as well as the boundary condition ∆′(0) = 0
was used.

The total magnetic field can be approximated by the dominating toroidal component, yielding a
radial dependence of

B =
B0

1+ r
R cosθ+ ∆(r)

R

≈ B0

[
1− r

R
cosθ− r

R
∆
′
]

(2.26)

for small values of the inverse aspect ratio. With these considerations, the gradient of the magnetic
field can be written as

∇∇∇B
B

=− 1
R

[[
cosθ−αsin2

θ
]

r̂− sinθθ̂θθ

][
1+

r
R

cosθ+
∆

R

]
, (2.27)

where terms of order O(ε) were neglected. Consequently, the vector product in the expression for
the drift velocity, cf. Eq. (2.19), for B/B≈ ϕ̂ is

B
B
×∇∇∇B

B
=− 1

R

[
sinθ r̂+

[
cosθ−αsin2

θ
]

θ̂θθ

][
1+

r
R

cosθ+
∆

R

]
. (2.28)

From this expression, the drift velocity ṽd is readily obtained as

ṽd =−
m

qBR

[
v2
‖+

v2
⊥
2

][
1+

r
R

cosθ+
∆

R

]
(2.29)

with its components being

vd,r = ṽd sinθ , vd,θ = ṽd
[
cosθ−αsin2

θ
]
. (2.30)

Note that the terms r/R · cosθ+∆/R are of the order O(ε) and are thus omitted in QuaLiKiz.
Nevertheless, the respective terms are considered in the following derivations for the sake of com-
pleteness.

To obtain the drift and transit frequency, the Doppler shift in the eikonal has to be considered.
Since the modes are proportional to exp(−in [ϕ−qθ]− iωt), the change in phase nχ = n [ϕ−qθ]
is

nχ̇ = n
[
ϕ̇− q̇θ−qθ̇

]
=

nv‖
R
−n

dq
dr

dr
dt

θ−nq
[

v‖
qR

+
vd,θ

r

]
≈−nq′x

qR
v‖−nq′ṽdθsinθ− nqṽd

r

[
cosθ−αsin2

θ
]
. (2.31)

Using the expressions for the components of the wavevector k introduced in Eqs. (2.18) for further
simplification, the transit and drift frequencies are found as

k‖v‖ =
kθsx
qR

v‖ , ωd = kθṽd [cosθ+[sθ−αsinθ]sinθ] . (2.32)

2.2.3.2 Influence of the Drift Frequency

The development of instabilities is strongly influenced by the drift frequency ωd, as the drive of
instabilities can be suppressed by negative drift frequencies. Being a function of the magnetic shear
s and the normalized pressure gradient α, cf. Eq. (2.32), the drift frequency is positive throughout
a major part of the poloidal cross section and negative only at the very high field side in the case
of moderate values of both parameters. However, for low values of the magnetic shear or large
values of α, the drift frequency is of negative sign throughout a large part of the poloidal cross
section, as illustrated in Fig. 2.3 for three different combinations of both parameters. An increase
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Fig. 2.3: Influence of the magnetic shear
s and the normalized pressure gradi-
ent α on the drift frequency ωd, cf.
Eq. (2.32), in arbitrary units as function
of the poloidal angle θ. For low val-
ues of s (red line) or large values of α

(green line), the drift frequency is of neg-
ative sign for most poloidal angles and
positive only at the very low field side,
whereas the reference case (blue line) is
only negative at the very high field side.
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of the normalized pressure gradient α = −q2βR∇p/p is more effective to achieve negative drift
frequencies as opposed to a reduction of the magnetic shear s = r∇q/q, i.e. the formation of a
flat or a reversed profile of the safety factor q. Note that even though instabilities are driven by
pressure gradients, the reduction in curvature and ∇B-drifts through α-stabilization outweighs the
|∇p|/p-destabilization above a certain threshold.32

By achieving negative drift frequencies, the drive of the curvature-type instabilities is sup-
pressed. In the fluid-limit, the growth rate γ of curvature modes is proportional to the square
root of the drift frequency, i.e. γ2 ∝ ωdω?, as will be shown in Sec. 2.3 (cf. Eq. (2.55)). Hence,
for negative values of the drift frequency, the instability growing with exp(γ t) is stabilized with γ

becoming imaginary, causing an oscillation rather than an exponential growth. Since stabilization
is due to choices of the magnetic shear and the normalized pressure gradient, this mechanism is
referred to as s-α-stabilization.

2.3 The Fluid Limit

The linear gyrokinetic equation introduced in Sec. 2.2 (cf. Eq. (2.16)) allows the calculation of
instability characteristics such as the driving frequency ω and the growth rate γ = ℑ(ω) for arbi-
trary plasma parameters. However, by analyzing the linear gyrokinetic equation in the strongly
driven case, the dependence of the instability characteristics on the individual factors of the linear
gyrokinetic equation far from the instability threshold can be investigated and dominant branches
identified. As instabilities approach this limit in the case of strong gradients, an analytic solution
will be presented, following the derivation by C. Bourdelle.21

In the fluid limit, the plasma is considered to be strongly driven such that the driving frequency
ω is significantly larger than particle transit frequency k‖v‖ and particle drift frequency ωd. Con-
sequently, the non-adiabatic response of one particle species s can be expressed as a series up to
first order in ωd and second order in k‖v‖, yielding

ω−ω?,s

ω− k‖v‖,s−ωd,s
≈
(

1− ω?,s

ω

)[
1+

k‖v‖,s
ω

+
ωd,s

ω
+

(
k‖v‖,s

ω

)2
]
, (2.33)

where mixed terms have been neglected. Since the characteristic length of the particle species in-
volved is usually much smaller than the wavelength of the instability, the series defining the zeroth
order Bessel function used in the linear gyrokinetc equation (cf. Eq. (2.16)) may be terminated
after the second term for small arguments k⊥ρs, such that J0(k⊥ρs) ≈ 1− k2

⊥ρ2
s/4. As both the

gyroradius ρe and the banana width δe of electrons are much smaller than the ion cyclotron radius
ρi, the averaging of the perturbing potential due to the electrons’ gyration motion is negligible and
the series representing the Bessel function in the respective integrals can be terminated after the
first term. Moreover, passing electrons can be assumed to be very adiabatic such that the transit
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frequency dominates over the instability driving frequency, resulting in the non-adiabatic part to
vanish. Applying these approximations to the linear gyrokinetic equation yields the expression[

ne

Te

[
1−
〈

1− ω?,e

ω
+

ωd,e

ω

(
1− ω?,e

ω

)〉
t

]
+∑

i

niZ2
i

Ti

[
1+

−

〈
1− ω?,i

ω
+

k‖v‖,i
ω

(
1− ω?,i

ω

)
+

ωd,i

ω

(
1− ω?,i

ω

)
+

(
k‖v‖,i

ω

)2(
1− ω?,i

ω

)
−

k2
⊥ρ2

i

4

(
1− ω?,i

ω

)〉
p

+

−
〈

1− ω?,i

ω
+

ωd,i

ω

(
1− ω?,i

ω

)
−

k2
⊥δ2

i

4

(
1− ω?,i

ω

)〉
t

]]
δφ = 0 . (2.34)

The summation over i considers all ion species present in the system. Note that mixed terms of the
characteristic lengths with other than the diamagnetic drift frequency ω?,i have been neglected.

2.3.1 Integration of the Linear Gyrokinetic Equation in Velocity Space

As compared to the linear gyrokinetic equation of Eq. (2.16), the factors f denoting the fractions
of passing or trapped particles were dropped in the strongly driven linear gyrokinetic equation,
cf. Eq. (2.34). Hence, the boundaries for integration over velocity space in spherical coordinates
(v,ϑ,ϕ) have to be adjusted accordingly for each particle species. Assuming a Maxwellian particle
velocity distribution, if the perpendicular velocity component v⊥ of a particle satisfies the condition
v⊥ > vsinϑp, the particle is trapped between the tokamak’s high field side and its low field side, as
illustrated in Fig. 2.4. Complementary, particles with a small perpendicular velociy v⊥ < vsinϑp
are free to move along the tokamak’s toroidal direction, hence they are passing particles. The angle
ϑp separating passing from trapped particles is determined by the ratio between the magnetic field
Bmin at the low field side and the magnetic field Bmax at the high field side via sin2

ϑp = Bmin/Bmax,
cf. Ref. 7. Using the magnetic geometry introduced in Sec. 2.2.3, the magnetic field at both the
low and high field side can be related to the inverse aspect ratio ε = r/R, yielding the relation
sin2

ϑp = (1− ε)/(1+ ε).
Having defined the passing particle angle ϑp, integration over the pitch angle ϑ is performed in

the range ϑ ∈ [ϑp,π−ϑp] for trapped particles and in the region θ ∈ [0,ϑp]∪ [π−ϑp,π] in the case
of passing particles, cf. Fig. 2.4. Consequently, the velocity space integral in spherical coordinates
for an arbitrary function f (v,ϑ) = F(v) ·G(ϑ) can be written as

∞w

0

2πw

0

w

ϑ
F(v)G(ϑ)

f0

n0
v2 sinϑdvdϕdϑ =

(
m3

2πT 3

)1/2 ∞w

0

v2F(v)exp
(
−mv2

2T

)
dv

w

ϑ
sinϑG(ϑ)dϑ

= 〈F(v)〉〈G(ϑ)〉p,t . (2.35)
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Fig. 2.4: Velocity space of an isotropic Maxwellian
distribution. Particles with a perpendicular velocity
component v⊥ > vsinϑp are trapped between high
field side and low field side of the tokamak, whereas
particles with v⊥ < vsinϑp can move freely along
the toroidal direction.
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To evaluate the expression for the strongly driven linear gyrokinetic equation, cf. Eq. (2.34), the
following moments 〈F(v)〉 of the velocity integral are required:

〈1〉= 1
2
,

〈
v2〉= 3

2
T
m
,

〈
v4〉= 15

2
T 2

m2 . (2.36)

An expression for the fraction of trapped and passing particles can be obtained by taking the
respective zeroth order moments of the pitch angle integration, i.e.

〈1〉t = 2
(

2ε

1+ ε

)1/2

, 〈1〉p = 2

[
1−
(

2ε

1+ ε

)1/2
]
. (2.37)

Hence, the fractions of passing and trapped particles are found as

ft = 〈1〉〈1〉t =
(

2ε

1+ ε

)1/2

, fp = 〈1〉〈1〉p = 1−
(

2ε

1+ ε

)1/2

= 1− ft , (2.38)

in agreement with the expressions introduced in Sec. 2.2.1. Additionally, the following moments
of the θ-integration are necessary:

〈cosϑ〉p = 0 ,
〈
cos2

ϑ
〉

p = 2

[
fp− f 2

p +
f 3
p

3

]
≈ 2

3
fp ,

〈
sin2

ϑ
〉

p =
2
3
[

f 2
p − f 3

p
]
≈ 0 ,

〈
cos2

ϑ
〉

t =
2
3

f 3
t ≈ 0 ,

〈
sin2

ϑ
〉

t = 2 ft−
2
3

f 3
t ≈ 2 ft .

 (2.39)

2.3.2 The Strongly Driven Linear Gyrokinetic Equation in the Fluid Limit

For further analysis the moments introduced in Eqs. (2.36) and (2.39) are used in linear approxi-
mation in the respective fraction f of passing or trapped particles. With these considerations made,
the integration of the individual terms of the strongly driven linear gyrokinetic equation is straight-
forward, but necessitates the redefinition of several quantities using the moments of the velocity
integration introduced in Eqs. (2.36). Integration of the diamagnetic drift frequency terms yields
a dependence on only density gradients for pure terms in ω? and a dependence on the pressure
gradient for mixed terms in ω?:

ω
n
?,s =−k · T

qsBLn

(
ê∇∇∇× ê‖

)
, ω

p
?,s = ω

n
?,s

[
1+

Ln

LT

]
. (2.40)

For the drift frequency ωd, the squared transit frequency k2
‖v

2
‖, and the banana width δ, the follow-

ing expressions are obtained:

ω
t
d,s =−

3
2

kθ

T
qsBR

[
1+

r
R

cosθ+
∆

R

]
[cosθ+[sθ−α sinθ]sinθ] ,

ω
p
d,s = 2ω

t
d,s ,

(
k‖v‖,s

)2
= 2k2

‖
T
m
, δ

2 = 3
q2

ε

T
mω2

c,s
.

 (2.41)

Consequently, the strongly driven linear gyrokinetic equation can be written in the fluid limit as[
ne

Te

[
1− ft

[
1−

ωn
?,e

ω
+

ωt
d,e

ω

(
1− ω

p
?,e

ω

)]]
+∑

i

niZ2
i

Ti

[
1+

− fp

[
1−

ωn
?,i

ω
+

ω
p
d,i

ω

(
1−

ω
p
?,i

ω

)
+

k2
‖v

2
‖

ω2

(
1−

ω
p
?,i

ω

)]
+

− ft

[
1−

ωn
?,i

ω
+

ωt
d,i

ω

(
1−

ω
p
?,i

ω

)
−

k2
⊥δ2

i

4

(
1−

ω
p
?,i

ω

)]]]
δφ = 0 .


(2.42)
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Note that the finite Larmor radius effect for passing particles vanishes as the perpendicular velocity
component equals zero in first order in the passing particle fraction fp. Additionally, the linear term
of the ion transit frequency disappears as a the parallel velocity has no preferred direction in the
case of an isotropic Maxwellian velocity distribution. The expression obtained can be simplified
further by using the following relations, with the ion temperature expressed in terms of the electron
temperature, i.e. Ti = τTe, and the ion atomic number Zi approximated by half the ion’s atomic
mass number Ai, i.e. Zi = Ai/2:
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With the quantity 1/Z̄ defined as 1/Z̄ = ∑i niLp,e/neLp,i, the expression τ/Z̄ denotes the ratio of
ion to electron pressure gradient, i.e. τ/Z̄ = ∑i ∇pi/∇pe. Substituting the respective terms in
Eq. (2.42) with above expressions, the relation[
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(2.50)

is found for the fluid form of the strongly driven linear gyrokinetic equation.

2.3.3 Obtaining the Instability Characteristics

Making the assumption that the width w of the modes of the perturbed potential is significantly
smaller than the magnetic shear length Lq = q/∇q, the parallel component of the wave vector can
be approximated as k‖ = ∇k‖ · ∂kr , with the radial component related to the other components by
k2
⊥ = k2

θ
+ k2

r . Replacing the factors including the radial component by the expressions kr→−i∂x

and ∂kr → x as used in the ballooning transform (cf. Eqs. (2.18)), above equation, i.e. Eq. (2.50),
becomes a second order differential equation. Using a Gaussian ansatz δφ = φ0 exp(−x2/2w2) for
the perturbed potential, the differential equation to be solved is found as

∂2

∂x2 δφ =

[
− 1

w2 +
1

w4 x2
]

δφ . (2.51)

By comparing the individual terms of this differential equation with the simplified fluid form of the
strongly driven linear gyrokinetic equation, i.e. Eq. (2.50), both the mode with w and the growth
rate γ = ℑ(ω) of the mode can be determined. Analyzing the terms proportional to x2, the relation

w2 = i
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is obtained. Note that the spatial derivative of the parallel component of the wave vector can
be written as ∇k‖ = kθ/Lq. Substituting the mode width in the constant term of the differential
equation with above expression, the second order polynomial
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in the perturbation frequency ω has to be solved to find the growth rate of the instability.
In the case of curvature-type instabilities, the finite Larmor radius effect can be neglected, set-

ting δeff = 0. Furthermore, in this limit the pressure gradient is dominated by the temperature
gradient such that Ln,e � LT,e ≈ Lp,e. Here, the pressure gradient length is still smaller than the
characteristic size R of the machine. Consequently, the ordering

ω
n
?,e

2
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n,e < ω
2
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p
?,e ∝ R−1L−1

T,e (2.54)

is obtained for the remaining terms (cf. Eqs. (2.40) and (2.41)). Assuming strongly trapped par-
ticles, the drift frequency of both passing and trapped electrons can be described by a single fre-
quency ωd,e. Applying these considerations to the second order polynomial described above, the
growth rate of the curvature-type instability is found as
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 (2.55)

In this limit, instabilities are driven entirely by temperature gradients 1/LT = −∇T/T , with the
growth rate of the instability increasing as the square root of the gradient γ ∝

√
1/LT . Note

that this result is valid only in the presence of low density gradients and for low inverse aspect
ratios. Moreover, as argued before, for low values of the magnetic shear s and high values of the
normalized pressure gradient α, the growth rates becomes imaginary, suppressing instabilities.
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In a comparison of instability growth rates as calculated by the quasilinear code QuaLiKiz with
both linear and nonlinear GENE results in the limit of low magnetic shear, major differences
have been observed, as outlined in the introduction of this work, cf. Sec. 1. The stabilization of the
instabilities due to a decrease in the magnetic shear s was reported to be overestimated as compared
to calculations by GENE.13 Similarly, an increase of the normalized pressure gradient α was also
found to result in an overestimation of the stabilizing impact of this parameter.14 As this regime
is relevant for hybrid scenarios in present day devices, the operation of future machines, as well
as for ramp-up and ramp-down phases, this issue of overestimation of stabilizing mechanisms by
QuaLiKiz has to be resolved to enable reliable use of QuaLiKiz in these cases. For this purpose,
the instability growth rate γ in the parameter range of low magnetic shear and high values of the α-
parameter is to be mapped out using QuaLiKiz and linear-GENE. Furthermore, the eigenfunctions
obtained from both codes are compared in the parameter regime investigated to analyze the validity
of confining the eigenfunctions used in QuaLiKiz to values of θ between ±π.

3.1 Overview of the Gyrokinetic Codes Used

3.1.1 QuaLiKiz

The code QuaLiKiz12 is a very fast quasilinear gyrokinetic code, capable of calculating the insta-
bility characteristics of one wavenumber for a given set of plasma parameters in about 1 s using
one CPU,9 as also observed during this investigation. QuaLiKiz was and is being compared exten-
sively against nonlinear codes such as GS212 or GYRO,13 showing agreement in a broad parameter
range. An overview is presented in Ref. 11.

To obtain the instability characteristics, QuaLiKiz solves the linear gyrokinetic equation in the
electrostatic case, as presented in Sec. 2.2.1, using the formalism of angular and action variables.
Hence, the problem is reduced to three dimensions with the particle energy, the pitch angle, and
the radial coordinate remaining.21 The magnetic geometry of QuaLiKiz corresponds to the s-α-
geometry described in Sec. 2.2.3.1. To speed up calculations, the eigenfunctions of the perturbed
electrostatic potential are assumed to be strongly ballooned at the low field side, allowing the
use of a Gaussian function12 φ = φ0 exp(−θ2w2/2d2) confined to poloidal angles θ between ±π.
Although this approach was benchmarked against GS2 and GYRO,12 deviations could occur in the
limit of low magnetic shear and high values of the α-parameter.

Solutions to the gyrokinetic equation are found using an eigenvalue solver, which determines the
number of eigenvalues and their approximate value inside a closed contour in the complex plane,
thus allowing to find all unstable modes.12 This approach becomes increasingly difficult for modes
close to the real axis, i.e. for modes with a low growth rate. Using the unstable modes obtained, the
fluxes of energy, particles, and momentum are constructed by summation over all modes using a
nonlinear saturation rule tuned to nonlinear simulations. Hence, a small discrepancy in the growth
rate obtained for one single mode does not necessarily result in a deviation of the particle fluxes.
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3.1.2 GENE

The Gyrokinetic Electromagnetic Numerical Experiment33–35 (GENE) is a gyrokinetic code, which
can be used either in a nonlinear or a linear form, both of which have been shown to yield reliable
results.34 The equations solved are presented extensively in Refs. 33–35. As opposed to QuaLiKiz,
the particle distribution function is evaluated in five-dimensional phase space, where only gyroav-
eraging has been taken into account. Thus, velocity space is reduced to two dimensions, with the
parallel component and the magnetic moment remaining. However, the calculations can be sped
up by process parallelization across five phase space dimensions as well as across the number of
particles considered.

The evaluation of the gyrokinetic equation can be performed using an initial value solver or an
eigenvalue solver. Whereas the latter resolves an arbitrary number of unstable modes, the initial
value solver only finds to most unstable solution, as this is the mode determining the evolution
of the system. However, as opposed to the eigenvalue solver, the initial value solver allows real
time monitoring of the calculation process and thus identification of instabilities far from reaching
convergence. With the eigenvalue solver, such an assessment is not possible until the calculation
has converged. This can be problematic close to the instability threshold, where the evaluation
of the gyrokinetic equations is generally more difficult. As the use of the initial value solver is
consequently more robust, the following investigation will be performed using GENE with the
initial value solver.

To calculate the instability characteristics, GENE uses a field aligned coordinate system, with
x being the radial coordinate of the flux surface, y the binormal direction labeling the field lines
on a flux surface, and z the parallel direction along the field line.35, 36 Due to differences with
respect to the coordinate system (r,θ,ϕ) of QuaLiKiz, wavenumbers kθ used in QuaLiKiz have to
be converted to GENE wavenumbers ky to enable comparison of instability characteristics. In the
limit of low inverse aspect ratios ε and typical values of the safety factor q, the exact conversion
ky = kθ(1+(ε/q)2)1/2 can be approximated by ky ≈ kθ, with the error being below 1 %.

As the physics included is more complete as compared to QuaLiKiz, evaluation of the under-
lying equations takes significantly longer, ranging from 103 CPUs for strong instabilities up to
106 CPUs in extreme cases of very low growth rates. However, the typical slow-down as observed
in this investigation is in the order of 104 as compared to QuaLiKiz running with identical plasma
parameters.

3.2 Determination of the Regime of Discrepancy between both Codes

The discrepancy in growth rates is to be mapped out in the regime of low magnetic shear s and high
values of the α-parameter for toroidal ITG modes. For this purpose, combinations of six values of
s ∈ {−0.2,0.1,0.4,0.6,1.0,1.5} and nine equally spaced values of the α-parameter between 0 and
0.8 are chosen, corresponding to the approximate range reported in Ref. 13. The investigation is
carried out for three values of kθ≈ ky, being 0.1, 0.3, and 0.5, since the most unstable wavenumbers
are found between 0.1 and 0.3.25 Note that the wavenumbers ky and kθ are normalized to ρ

−1
i . This

notation will be used in the following analysis, if not mentioned otherwise.
Since the choice of values for the three parameters requires the analysis of 162 different combi-

Table 3.1: Plasma and machine parameters used for the comparison of QuaLiKiz and GENE around the
Cyclone DIII-D base case parameter set.37 The simulations considered two particle species, being deuterium
ions and electrons. Note that both the density and the electron temperature gradients were reduced with
respect to the original Cyclone base case parameters to suppress the occurrence of trapped electron modes.

ni/ne Ti/Te R/Ln R/LTe q β B r/R ν

1 1 1 3 1.4 0 3 T 1/6 0
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nations, the investigation is carried out for only one fixed set of plasma and machine parameters,
based on the Cyclone DIII-D base case parameter set.37 The Cyclone base case represents an
ITER-relevant DIII-D scenario at mid radius and has been used as a benchmark scenario for ap-
proximately the past 20 years. The exact parameters used in this work are presented in Table 3.1.
Both the density and the temperature of deuterium ions and electrons are considered identical.
Note that the calculations are performed using dimensionless units. To suppress the occurrence of
trapped electron modes, the respective driving density and temperature gradients are chosen to be
located well below the instability threshold and thus do not correspond to the Cyclone base case
parameters. Since the time scales of turbulent fluctuations are significantly shorter than typical
collision times ν−1, the plasma is considered collisionless. Note that this set of parameters is not
self-consistent, as the normalized plasma pressure β is set to zero for the GENE calculations to
allow for a comparison with QuaLiKiz at similar settings.

Using the parameters presented, the growth rates of instabilities and the corresponding eigen-
functions are calculated for each combination of the magnetic shear, the α-parameter, and the
wavenumber ky or kθ as a function of the normalized ion temperature gradient R/LTi . The range
of normalized ion temperature gradients considered is chosen such that the instability threshold as
well as the behavior far from the threshold is captured. An example of three scans as performed
by QuaLiKiz is illustrated in Fig. 3.1.

3.2.1 Comparison of the Instability Growth Rates

An instability is characterized by both its threshold gradient, as well as by the sensitivity of the
growth rate to the driving gradient above the threshold. However, the derivation of the instability
threshold gradient from only results close to the threshold is susceptible to numerical uncertainties,
as the calculation of weakly growing instabilities becomes increasingly difficult. Additionally, in
the case of QuaLiKiz solutions may not be found close to the threshold, as e.g. for the parameter
choice kθ = 0.1, s = 1.5, α = 0, illustrated in Fig. 3.1 (red points). Hence, extrapolation from nu-
merically stable results down to the threshold is required to determine the threshold reliably. Since
in the limit of strongly driven instabilities, the growth rate increases as (R/LTi)

1/2, cf. Eq. (2.55),
a corresponding function is used for extrapolation. This approach usually represents the data ob-
tained from calculations well, as e.g. for the parameter choice of kθ = 0.1, s = 0.4, α = 0.2
calculated with QuaLiKiz, cf. Fig. 3.1 (blue points). However, if only a limited number of reliable
results close to the threshold is available for analysis, a second order polynomial is used instead to
determine the value of the normalized ion temperature gradient at the threshold of the instability
through extrapolation. In this case the convergence of the data fitting procedure is better for a
second order polynomial as opposed to a square root function. An example where extrapolation
utilizing a second order polynomial is suitable is illustrated in Fig. 3.1 for QuaLiKiz calculations
using the parameters kθ = 0.1, s = 0.1, α = 0 (green points).

Alternatively, instabilities can be described by the value of the instability growth rate at a fixed
value of the ion temperature gradient far from the instability threshold. This method is more robust
than characterization using the value of the ion temperature gradient at the instability threshold,
since the results used are considered numerically stable. However, since the choice of R/LTi is
arbitrary for this method, conclusions regarding the agreement between QuaLiKiz and GENE can
only be drawn by analyzing the change of the growth rate for different values for the magnetic
shear or the α-parameter, or by combining this characterization method with the characterization
utilizing the value of the ion temperature gradient at the instability threshold. A direct compari-
son of the absolute values of the growth rates for a fixed value of R/LTi between QuaLiKiz and
GENE has to be made with care, as possible agreement may be attributed to the choice of R/LTi .
An example of this effect is given by the growth rates obtained with QuaLiKiz for the parameter
combinations kθ = 0.1, s = 0.4, α = 0.2 and kθ = 0.1, s = 1.5, α = 0 for R/LTi = 13, cf. Fig. 3.1
(blue and red points). Although both growth rates in this example agree within 1 %, suggesting
identical behavior of the instability, the instability characteristics differ strongly, rendering a direct
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comparison vain. Therefore, comparing the absolute values of the growth rates calculated by Qua-
LiKiz and GENE requires an integrated assessment using the analysis of the instability thresholds
or of the change of growth rates for different values of the magnetic shear and the α-parameter.

In this investigation, a value of R/LTi = 10.0 is used to compare the growth rates of different
parameters at a fixed value of the ion temperature gradient, since this value is high enough to ensure
numerical stability of the growth rates obtained, while being sufficiently close to the instability
threshold to not be dominated completely by the analytic solution of the strongly driven linear
gyrokinetic equation. Regarding the analysis of QuaLiKiz calculations, the value of the growth
rate at R/LTi = 10.0 is obtained through fitting, since individual data points may be shifted up
or downwards with respect to the function describing the data points or as solutions may not have
been found. Both cases are illustrated in Fig. 3.1. Although the use of a fitting function would have
only been necessary in of 19 of the 162 QuaLiKiz calculations, all QuaLiKiz scans were analyzed
in this manner. In the cases where fitting would not have been necessary, deviations to the actual
values calculated by QuaLiKiz were found to be negligible, as the fitting functions described the
data very well. Therefore, this approach was chosen as it allowed for an easier analysis since no
differentiation had to be made between both case and a suitable fitting function was already found
during the determination of the instability threshold gradient. As for the results obtained with
GENE, the values of the growth rate at R/LTi = 10.0 are considered accurate, since the results
were found to not exhibit numerical errors.

Finally, characterization of the instability using the stiffness dγ/d(R/LTi) of the growth rate at
the instability threshold was dismissed, as this method is strongly dependent on the function used
for extrapolation and requires an increased number of data points, which may not be available in
the case of GENE. Consequently this approach is not reliable to compare instabilities for different
values of the parameters considered.
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Fig. 3.1: R/LTi -scans with QuaLiKiz for three different combinations of the magnetic shear s and the α-
parameter for the plasma parameters listed in Table 3.1. Usually, the data points of scans can be represented
by a function of the form of a square root down to the instability threshold (blue points). However, some-
times solutions close to the threshold are not found for entire segments (red points) or for individual data
points (green points). It may also occur, that entire segments (blue points) or individual data points (green
points) are shifted up- or downwards with respect to the expected behavior. Therefore, both the instability
threshold and the growth rate at a certain value of the ion temperature gradient can only be obtained by
extrapolation from the robust regions of the growth rate calculation.
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3.2.2 Comparison of the Eigenfunctions

Since the perturbed particle distributions functions δ f were found to be linearly dependent on
the perturbed electrostatic potential δφ in the gyrokinetic equation, the eigenfunctions calculated
by both codes should agree to ensure identical responses of the particle distribution function. Dis-
agreement between both solutions of the perturbed electrostatic potential could thus be responsible
for differences in the growth rates and fluxes observed.

Whereas the eigenfunctions used in QuaLiKiz are approximated by a Gaussian function charac-
terized by two parameters, being the mode width w and the distance d between resonant surfaces,
GENE obtains a non-analytic solution for the perturbed electrostatic potential. However, since the
modes considered are strongly ballooned at the low field side, the solutions for the electrostatic
potential typically behave similarly and can thus be approximated by a single Gaussian as well.
Therefore, the 1/e-half width of the Gaussians can be used to compare both eigenfunctions. Since
the approach used in QuaLiKiz is confined to values of the poloidal angle θ between ±π, the non-
analytic solution obtained by GENE is fitted to a single Gaussian function using only the values
between these boundaries, enabling comparison in the regime relevant to QuaLiKiz. A second fit-
ting function covers the entire θ-range considered by GENE, thus being sensible to eigenfunctions
peaked at values other than θ = 0, as e.g. in the case of slab-type modes.

3.3 Validation of Accuracy

Numerical Accuracy The calculations performed with QuaLiKiz and GENE are desired to be
both fast and accurate. Yet, a speed-up of the calculations is obtained by decreasing the accuracy of
the calculations. In the case of the fast code QuaLiKiz, time limitations are not an issue, wherefore
a relatively high number of at maximum 5× 106 integrand evaluations of the two dimensional
integrals as well as a high relative accuracy of the one and two dimensional integrals, being 1×
10−4 and 2×10−3 respectively, are set for all calculations performed.

For the slow code GENE however, decreasing the computation time necessary is vital to perform
the large amount of calculations needed for this investigation. Hence, the minimum accuracy
where results are stable within a few % with respect to an increase in accuracy has to be utilized,
requiring intensive benchmarking of the influence of the respective parameters on the stability
of the results. The resolution of the fixed five dimensional grid applied is determined by four
quantities, being the number of grid points in the radial direction nx0, in the parallel direction
nz0, in the direction of the parallel velocity nv0, and in the direction of the magnetic moment
nw0. Furthermore, the simulation box can be extended in both the direction of the parallel velocity
and the magnetic moment by setting the parameters lv and lw to ensure normalization of the
respective Maxwellian integrals. Finally, the numerical dissipation in the parallel direction hyp_z
and in the direction of the parallel velocity hyp_v can also be specified. As a result, the influence
of eight parameters on the stability of the results has to be reviewed.

Ideally, convergence tests of this kind should be carried out for every calculation performed
to ensure reliability of the results obtained. However, in practice this approach is not feasible as
the time required may exceed the speed-up gained. Therefore, only two stability analyses were

Table 3.2: Numerical parameters for GENE calculations using s-α-geometry. For each value of the mag-
netic shear, identical parameters were used for all combinations of the α-parameter and the wavenumber
ky. Note that the resolution in the radial direction nx0 includes kx = 0 and an even number of positive and
negative kx-modes.

Magnetic Shear nx0 nz0 nv0 nw0 lv lw hyp_z hyp_v

−0.2, 0.1, 0.4, 0.6
17

32 128
16

4.0
9.0 0.8 0.2

1.0, 1.5 16 64 3.0



22 Investigative Approach

performed at values of the magnetic shear of−0.2 and 1.0, with the α-parameter set to 0.8 and the
wavenumber ky set to 0.5 in both cases, since the computational effort increases with decreasing
values of the magnetic shear and increasing values of the α-parameter. As convergence is generally
easier to achieve for larger growth rates as opposed to instabilities located near the threshold, the
stability of the former growth rates was taken as criterion of having achieved convergence in the
analyses performed. The numerical parameters used throughout this investigation are listed in
Table 3.2 for individual values of the magnetic shear. As the behavior of the plasma was analyzed
for decreasing values of the magnetic shear, the resolution in both the parallel direction and the
parallel velocity direction was doubled, while the simulation box was extended further in the
direction of the parallel velocity. Although all results obtained are consequently subjected to
uncertainties, individual errors of the growth rates cannot be specified reliably due to changing
parameters used or increasing computational effort closer to the instability threshold. Yet, as
a consequence of the convergence analysis, the overall uncertainty should be in the order of at
maximum a few %.

Accuracy of the Magnetic Geometry The assessment of the accuracy of the results obtained
with GENE is further complicated by the availability of different magnetic geometries imple-
mented. Since QuaLiKiz uses a geometry of shifted, circular flux surfaces, GENE scans were
carried out using the geometry s_alpha. A comparison with the similar geometry s_alpha_B
revealed deviations in the order of a few % only, wherefore the standard implementation of the s-
α-geometry was utilized for this investigation. However, since the s-α-geometry is not uniformly
defined, differences between the implementations used in QuaLiKiz and GENE may exist. Fur-
thermore, the shifted circle equilibrium is generally not self-consistent.35 Therefore, an additional
two α-scans per wavenumber for the lowest two choices of the magnetic shear, being −0.2 and
0.1, were carried out using Miller-geometry38 in GENE. This equilibrium model is completely
described by nine parameters, two of which are insignificant for this investigation, namely the
elongation and the triangularity. As the s-α-geometry is self-consistent only at low values of the
normalized plasma pressure and large aspect ratios R/a,38 only minor differences between the
growth rates obtained with both geometries are expected. The calculation with Miller-geometry
utilized the same numerical parameters as in the analysis using the shifted circle model, cf. Ta-
ble 3.2, with the number of grid points in the direction of the parallel velocity reduced from 128

Fig. 3.2: An eigenvalue analysis with GENE for ky = 0.5, s = 0.1, α = 0.8, determining the two most
unstable instabilities in the system for a given value of the normalized ion temperature gradient reveals the
presence of multiple modes with clearly separated frequencies. More importantly, the most unstable growth
rate (blue points) does generally not correspond to a single mode throughout the R/LTi -range considered, as
the discontinuity in the respective instability frequency shows.
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to 64. For further investigation of the effect of different geometries on the stability of the growth
rates, the respective calculations are supported by results obtained with the code GKW using
Miller-geometry.

Accuracy of Modes Obtained The analysis of the growth rates obtained regarding the thresh-
old value R/LTi of the instability is hindered by the appearance of multiple modes throughout an
R/LTi-scan. Since the initial value solver captures only the most dominant instability, the mode
considered might change throughout the R/LTi-scan for a given set of parameters, as illustrated
in Fig. 3.2. Although the dominant growth rate is continuous throughout the scan, a discontinuity
in the instability frequency associated with the dominant growth rate is occasionally observed,
identifying the dominant growth rate as consisting of two separate modes, each of which is dom-
inant only in a limited range of R/LTi values. Considering the second most unstable instability as
well, both modes of the dominant growth rate are found to continue as weaker modes upon being
surpassed by the other mode. The eigenfunctions of the additional modes captured are not neces-
sarily peaked around ballooning angles of θ= 0 and may exhibit strong contributions at ballooning
angles being multiples of 2π, wherefore they may not be found by QuaLiKiz.

Moreover for a given value of the wave number ky and the magnetic shear s, the curve repre-
senting the dominant growth rates, cf. e.g. Fig. 3.2, is approximately shifted up- or downwards
with changing values of the α-parameter. In the presence of multiple modes and consequently
discontinuities in the first derivative of the curve representing the dominant growth rate, a discon-
tinuity may also be observed when illustrating the threshold values R/LTi of the instability as a
function of the α-parameter for fixed values of ky and s. This discontinuity is characterized by
the appearance of a weakly growing mode well below the threshold value R/LTi of the curve with
∆α =±0.1. Although low growth rate solutions are not necessarily numerically stable, the modes
observed were found not to be numerical phenomena and were thus included in the analysis. A
similar behavior has occasionally been observed for solutions obtained with QuaLiKiz as well.

3.4 Analysis of the JET Hybrid Scenario 75225

Whereas the plasma and machine parameters used to determine the regime of discrepancy between
QuaLiKiz and GENE are tailored for this investigation, the analysis of a JET scenario with low
magnetic shear and a high value of the α-parameter allows for a sensitivity analysis of the results
obtained with QuaLiKiz with respect to GENE for practical parameters. For this purpose, the JET
hybrid scenario 7522539, 40 is analyzed at two points of the poloidal cross section, being r/a= 0.42
and r/a = 0.73, by comparing the instability growth rates obtained with QuaLiKiz and GENE
using s-α-geometry as a function of the normalized ion temperature gradient. To support the
analysis, both the results of the preceding growth rate investigation, as well as the eigenfunctions
obtained for the JET parameters are used for further assessment.

Since hybrid scenarios are characterized by a flat q-profile in the plasma center, the point lo-
cated in the inner half radius has a significantly lower value of the magnetic shear than the point
located further out, cf. Table 3.3. Consequently, agreement in the growth rates obtained with
QuaLiKiz and GENE is only expected to occur for the outer location. However, during previous
analyses,14, 39 agreement was also observed at the inner location by neglecting the effect of α-
stabilization by QuaLiKiz, setting α = 0. Therefore, the investigation of the JET hybrid scenario
is carried out examining both the original parameters as well as the case of a vanishing α-parameter
in separate calculations. A full list of the parameters used for this analysis is presented in Table 3.3.
As opposed to the investigation of the regime of discrepancy between QuaLiKiz and GENE, col-
lisions are taken into account in the analysis of the JET hybrid scenario.
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Table 3.3: Parameters of the JET hybrid scenario analyzed at two radial positions, located inside and outside
of the half radius. Here, the geometric major radius is denoted by Rgeo. The value of the major radius
denoted by R is dependent on the radial position due to the Shafranov shift. The quantity ρ describes the
normalized toroidal flux coordinate. The plasma considered contains a small fraction of 12C. Note that the
actual values for both the density n and the normalized ion density gradient R/Lni used for the calculations
were specified with a significantly higher accuracy to ensure quasi-neutrality of the plasma.

Inner Location r/a = 0.42 Outer Location r/a = 0.73

Common Parameters:
B (T) 1.85
Rgeo (m) 3.11
a (m) 0.96

Location Dependent Parameters:
R (m) 3.07 2.99
ρ 0.38 0.68
q 1.39 2.12
s 0.39 1.28
α 0.70 0.62

Particle Species Dependent Parameters:
Electrons Deuterium Carbon Electrons Deuterium Carbon

n (1019 m−3) 4.30 3.48 0.14 3.45 2.98 0.08
T (keV) 4.40 4.70 4.70 2.40 2.64 2.64
R/Ln 1.91 2.08 1.18 3.24 2.05 10.82
R/LT 5.80 4.33 4.33 7.10 8.54 8.54



4 Comparison of Growth Rate Calculations
with QuaLiKiz and GENE

In this section, the results of the instability calculations using QuaLiKiz and GENE, as described
in the previous section, are presented. The regime of disagreement between the solutions obtained
with both codes is identified by analyzing the instability threshold gradients in Sec. 4.1.1 as well
as the instability growth rate at a constant value of the normalized ion temperature gradient in Sec.
4.1.2. In the s−α-range considered, the widths of the eigenfunctions are compared in Sec. 4.2
regarding explaining the observed behavior of the growth rates. Using these analyses, sources for
the discrepancy of growth rates between both codes are discussed in Sec. 4.3. Furthermore, in
Sec. 4.4 the behavior of QuaLiKiz for practical parameters used in the JET hybrid scenario 75225
is compared to the findings of the investigation regarding the disagreement of both codes.

4.1 Growth Rate Comparison

4.1.1 Threshold Values of the Instability

The instability threshold of the normalized ion temperature gradient has been determined in the
regime of s between -0.2 and 1.5, with the α-parameter ranging from 0 to 0.8. For all three values
of the wavenumber ky considered, the results are summarized in Fig. 4.1.

In agreement with expectations, destabilization by an increase of the α-parameter for a constant
magnetic shear occurs for larger values of s−α, whereas in increase of α in the regime of lower
values of s−α results in a stabilization of the instability, necessitating a larger value of the nor-
malized ion temperature gradient for an instability to develop. This behavior is observed for both
the results obtained with QuaLiKiz and with GENE. Furthermore, stabilization by a decrease of
the magnetic shear s for a fixed value of the α-parameter occurs for low values of s−α, whereas
for larger values of s−α, an increase in s stabilizes the system.

The instability threshold gradients obtained with both codes are generally in good agreement
above s−α≈ 0.2 with the instability threshold calculated by QuaLiKiz agreeing within 20% with
GENE calculations. Whereas this behavior is observed for all values of s and α above this limit
in the case of ky = 0.1, for larger values of the wavenumber, the destabilizing impact of the α-
parameter is overestimated by QuaLiKiz for s = 1.0 and s = 1.5. In these cases, the instability
threshold obtained decreases only weakly with increasing values of the α-parameter as compared
to the rate of change at very low values of s−α. However, for negligible values of the α-parameter,
the solutions with QuaLiKiz and GENE obtained are sill in good agreement for s= 1.0 and s= 1.5.

Severe disagreement between the results obtained with QuaLiKiz and GENE is observed for
s−α . −0.2. In this regime, deviations are typically greater for lower wavenumbers, especially
for ky = 0.1 where instability thresholds as calculated by QuaLiKiz are off by more than 100%. For
increasing values of ky, the maximum deviations found are brought down to about 90% for ky = 0.3
and 60% for ky = 0.5 as compared to the instability thresholds calculated with GENE using shifted-
circle geometry. Analyzing the dependence on the magnetic shear, disagreement for identical
values of s−α but different combinations of s and α is often worse for lower values of the magnetic
shear as compared to larger values for identical wavenumbers, as in the case of ky = 0.1. However,
the behavior described is observed far less frequent for ky = 0.3 or ky = 0.5. Moreover, instability
threshold gradients calculated with QuaLiKiz for constant values of the wavenumber are more
consistent for ky = 0.3 and ky = 0.5, where deviations between instability threshold gradients for
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Fig. 4.1: Dependence of the instability threshold gradient R/LTi on s−α, calculated for three different
wavenumbers using QuaLiKiz (red), GENE with s-α-geometry (blue), GENE with Miller-geometry (green),
and GKW with Miller-geometry (orange).
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Fig. 4.2: Dependence of the instability growth rate on s−α for a fixed value of the normalized ion temper-
ature gradient of R/LTi = 10.0, calculated for three different wavenumbers using QuaLiKiz (red), GENE
with s-α-geometry (blue), GENE with Miller-geometry (green), and GKW with Miller-geometry (orange).
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identical values of s−α are less severe as opposed to the case of low wavenumbers. Consequently,
the disagreement between QuaLiKiz and GENE using s-α-geometry and the consistency of results
obtained with QuaLiKiz for different combinations of s and α is worse for low wavenumbers
ky = 0.1 as opposed to larger wavenumbers.

The effect of the different geometries used for GENE calculations, i.e. the shifted-circle equi-
librium and Miller-geometry, on the instability threshold gradients obtained is minor. Neverthe-
less, applying Miller-geometry yields almost consistently noticeably larger threshold gradients as
opposed to s-α-geometry, resulting in slightly better agreement with the results obtained by Qua-
LiKiz, especially for very negative values of s−α. This behavior is in so far unexpected, as the
differences between both geometries themselves are considered small, due to the case of a large
aspect ratio and a negligible normalized pressure gradient β. However, inconsistencies between
the s-α-model and an MHD equilibrium in the order of the inverse aspect ratio have been reported
before, cf. e.g. Ref. 41.

The comparison of the instability threshold gradients between QuaLiKiz and GENE, as well as
between both GENE geometries is complicated by the appearance of dents in the curves obtained
with GENE for low values of the magnetic shear for both geometries. Whereas the overall decrease
of the instability threshold gradient as a function of s−α can be described roughly by a parabola,
in the case of ky = 0.3 the α-scans for s = −0.2 and s = 0.1 exhibit excursions to lower values
of the threshold gradient as expected by extrapolation. This effect is even more prominent for
ky = 0.5, where α-scans with values of the magnetic shear of −0.2, 0.1, and 0.4 are affected.
Throughout the R/LTi-scans performed with GENE for constant values of s and α, additional low
growth rate modes appeared well below the threshold gradient observed for neighboring values
of the α-parameter. Consequently, the instability threshold is suddenly shifted downwards upon
appearance of such a mode, resulting in excursions to lower values, as described in Sec. 3.3.
However, as the nature of these modes is not evident, the analysis of the α-scans demonstrating
this behavior is subjected to additional uncertainties.

4.1.2 Growth Rates at a Fixed Ion Temperature Gradient

From the R/LTi-scans performed, the instability growth rates calculated for a normalized ion tem-
perature gradient R/LTi = 10 are additionally analyzed to assess the agreement of QuaLiKiz with
more complete modeling using GENE with both shifted-circle geometry and Miller-geometry, as
well as using GKW with Miller-geometry. The respective instability growth rates are summarized
in Fig. 4.2 for all three values of the wavenumber.

Analyzing the growth rates at R/LTi = 10, the expected behavior of α-destabilization at larger
values of s−α and α-stabilization at lower values of s−α is found for all gyrokinetic codes used,
being in agreement with the analysis of the instability threshold gradients of the previous part. The
same holds for the influence of the magnetic shear on the stability of the system.

The agreement of the growth rates obtained by QuaLiKiz and GENE with s-α-geometry is
within ∼ 20% down to values of s−α ≈ 0.0. However, the effect of s-α-stabilization is almost
consistently overestimated by QuaLiKiz, resulting in lower growth rates as compared to GENE.
As in the analysis of the instability threshold gradients, the destabilizing influence of finite values
of the α-parameter is not observed for values of the magnetic shear of s = 1.0 and s = 1.5 for both
ky = 0.3 and ky = 0.5. Instead, the growth rates remain virtually constant throughout the α-scan.
For negative values of s−α, the disagreement between QuaLiKiz and more complete modeling is
severe only at very negative values of s−α .−0.8 for ky = 0.3 and ky = 0.5, where the effect of
s-α-stabilization is even more overestimated. In between this limit and the boundary of agreement
mentioned previously, the agreement is still good, being within ∼ 20%. This is especially the case
when comparing the growth rates of QuaLiKiz with those obtained using Miller-geometry. For
ky = 0.3, the agreement is almost exact, while for ky = 0.5, the agreement is still better as opposed
to a comparison with GENE using s-α-geometry. This holds for the growth rates obtained with
both implementations of Miller-geometry in GENE and GKW. Slight deviations between GENE
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and GKW are due to small differences of 1.7% in the wavenumbers used, due to the conversion
from the GENE to the GKW coordinate system. However, as the instability threshold gradients
obtained for QuaLiKiz and GENE with Miller-geometry do not exhibit the degree of agreement
as observed in the comparison of the growth rates at R/LTi = 10, the good agreement in the latter
case has to be attributed at least partially to the choice of R/LTi . Nevertheless, even for varying
values of the ion temperature gradient the growth rates obtained with QuaLiKiz agree better with
those obtained using Miller-geometry rather than with those obtained using GENE s-α-geometry.

In the case of low wavenumbers of ky = 0.1 and negative values of s−α, the behavior predicted
by all codes is fundamentally different. Using GENE with shifted-circle geometry, the growth
rates obtained remain independent of the magnetic shear s and the choice of α at a constant level
for s−α≤−0.4, whereas QuaLiKiz predicts a stable situation. The codes using Miller-geometry
produce results in between those two extrema, yielding decreasing growth rates with increasing
values of the α-parameters, although at a significantly lower rate as in the case of larger values
of s−α. Note that a constant growth rate, independent of the value of the α-parameter is also
obtained by GENE using s-α-geometry for larger wavenumbers of ky = 0.3 in the case of a negative
magnetic shear for s−α≤−0.7. However, as for ky = 0.1, the disagreement with the other codes
used in the regime of negative values of s−α is worse as opposed to larger wavenumbers, as also
observed in the analysis of the instability threshold gradients.

4.2 Eigenfunction Comparison

For further interpretation of the analysis of the instability growth rate at a constant value of the
ion temperature gradient of R/LTi = 10.0, the solutions of the electrostatic fluctuations obtained
are analyzed. Although the eigenfunctions calculated by GENE are non-analytic, they can roughly
be approximated by a Gaussian function, allowing for a simple comparison with the Gaussian
eigenfunctions used in QuaLiKiz. Since the ansatz used in QuaLiKiz restricts the eigenfunctions
to ballooning angles θ between ±π, the solutions of the electrostatic fluctuations obtained with
GENE are fitted to two different Gaussian functions, one considering the entire θ-range covered,
whereas the second function only takes solutions in the same regime as QuaLiKiz into account.
Using the 1/e-half width of the Gaussian functions obtained, the eigenfunctions of both codes can
be easily compared, as presented in Fig. 4.3.

Analyzing the width of the eigenfunctions obtained, the solutions found with both QuaLiKiz and
GENE increase in width with increasing values of s−α until a certain value of s−α is reached,
above which the width of the eigenfunctions decreases. Furthermore, the solutions obtained with
QuaLiKiz are typically more narrow as opposed to GENE eigenfunctions. In these two ways,
the behavior of the eigenfunction width resembles the trend of the instability growth rate at the
same constant value of R/LTi , cf. Fig. 4.2. In the case of QuaLiKiz, the maximum width of the
eigenfunctions is located around s−α≈ 0.4, agreeing very well with the location of the maximum
instability growth rates found. Nevertheless, the magnitude of the eigenfunction width is not di-
rectly linked to the growth rate, since the broadest eigenfunctions are found for ky = 0.1, which is
characterized by the lowest growth rates obtained. More importantly, the growth rates for ky = 0.3
and ky = 0.5 are of similar magnitude with neither wavenumber constantly having larger growth
rates throughout the s−α-range considered as compared to the other wavenumber, whereas the
eigenfunctions obtained for ky = 0.3 are constantly broader as opposed to the eigenfunctions ob-
tained for ky = 0.5. However, a similar correlation of the maximum eigenfunction width and the
maximum growth rate is not found in the case of GENE, wherefore no obvious correlations be-
tween these two quantities are assumed for both GENE and QuaLiKiz. Nevertheless, the behavior
of the roughly constant growth rates found for s = 1.0 and s = 1.5 in the case of ky = 0.3 and
ky = 0.5 is also observed for the width of the respective eigenfunctions.

Comparing the width of both Gaussian functions used to represent the solutions found with
GENE, the eigenfunctions calculated by GENE are confined to ballooning angles θ between ±π
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Fig. 4.3: Dependence of the 1/e-Half Width of the Gaussian Eigenfunctions on s−α for a fixed value of
the normalized ion temperature gradient of R/LTi = 10.0, calculated for three different wavenumbers using
QuaLiKiz (red), GENE with s-α-geometry (blue), and GENE with Miller-geometry (green).
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Fig. 4.4: Normalized eigenfunctions for negative values of the magnetic shear s = −0.2, four values of
the α-parameter, and a normalized ion temperature gradient of R/LTi = 10.0, calculated for three different
values of the wavenumber using QuaLiKiz (red), GENE with s-α-geometry (blue), GENE with Miller-
geometry (green), and GKW with Miller-geometry (orange).
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in the case of large values of the magnetic shear and for large wavenumbers, where both Gaussian
functions used are of identical width, cf. e.g. s = 1.5 for ky = 0.3 or ky = 0.5 in Fig. 4.3. Modes
with smaller values of s have small, but finite contributions at θ = ±2π, shifting the width of the
Gaussian eigenfunctions to larger values. This effect is especially prominent in the case of ky = 0.5
for negative values of s, where the influence of contributions located at θ 6= 0 grows with increasing
values α (cf. shape of the eigenfunctions for different values of the α-parameter in Fig. 4.4). In
the case of ky = 0.1, the assumption of having strongly ballooned eigenfunctions breaks down for
s−α.−0.5. Instead, the modes observed are located around ballooning angles being multiples of
±2π with contributions from θ =±4π dominating, as illustrated in Fig. 4.4. Consequently, these
instabilities are slab-type ITG modes as opposed to the curvature-type ITG modes captured for the
other parameters investigated. The validity of the slab-type ITG modes observed was confirmed by
GENE using Miller geometry and by GKW, cf. Fig. 4.4, both of which are reported of obtaining
broad eigenfunctions in the parameter range of low magnetic shear and low wavenumbers, cf.
Ref. 13. Analyzing the behavior of the instability growth rates for both GENE using shifted-circle
geometry and QuaLiKiz in the s−α-range where the slab-type ITG modes occur, the respective
GENE growth rates exhibit the plateau behavior at a finite value as addressed in the previous part,
whereas QuaLiKiz predicts a stable situation, cf. Fig. 4.2. Therefore, the difference in growth rates
observed is due to the presence of slab-type ITG modes, which QuaLiKiz cannot resolve.

Although the instability growth rates obtained with QuaLiKiz are best represented by GENE
calculations using s-α-geometry, the differences in eigenfunctions obtained between the three
codes QuaLiKiz is validated against are only minor in the case of negative values of the mag-
netic shear, cf. Fig. 4.4. Nevertheless, it should be noted that in the regime relevant to QuaLiKiz,
i.e. for ballooning angles between ±π, using GENE with Miller geometry yields the narrowest
eigenfunctions, whereas the solutions found for GENE with shifted-circle geometry are broadest.
However, the differences of the eigenfunctions observed are not sufficient to explain deviations in
growth rates between the GENE and GKW.

4.3 Discussion

In the previous two sections, the instability threshold gradients, the growth rates at a constant value
of the ion temperature gradient, and the eigenfunctions as calculated by QuaLiKiz and both GENE
and GKW have been analyzed. The differences found and their consequences for QuaLiKiz will
be discussed in this section.

Consistent Overestimation of s-α-Stabilization Although the instability threshold gradients
and growth rates obtained with QuaLiKiz agree within 20% with the respective results found with
GENE using s-α-geometry for positive values of s−α, the effect of s-α-stabilization is consistently
overestimated for QuaLiKiz throughout the entire s−α-range considered, yielding larger threshold
gradients and lower growth rates. Moreover, the width of the Gaussian electrostatic fluctuations
used by QuaLiKiz is also almost consistently underestimated as compared to GENE using shifted-
circle geometry, GENE using Miller-geometry, or GKW. Consequently, modifying the ansatz used
in QuaLiKiz to consider broader eigenfunctions may yield a better agreement.

Increased Disagreement for Negative Values of s−α Both the instability threshold gradients
and to a lower extend the growth rates at a constant value of R/LTi calculated with QuaLiKiz
show increased disagreement for negative values of s−α as compared to GENE using shifted-
circle geometry, GENE using Miller-geometry, and GKW. However, as the deviations of QuaLiKiz
with respect to codes utilizing Miller-geometry are less severe as opposed to GENE using s-α-
geometry, differences in the calculation of the drift-frequency due to different implementations
of the geometry used may be responsible for the discrepancy observed, since this term becomes
relevant at low values of s−α. Consequently, a further investigation of the exact implementations
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of both geometries is necessary to assess if differences in the drift-frequency are responsible for
the deviations.

Weak α-Destabilization for Both Large s and Wavenumbers The growth rates calculated
with QuaLiKiz in the case of magnetic shears of s = 1.0 and s = 1.5 for ky ≥ 0.3 were found to
depend only weakly on the α-parameter, resulting in a virtually constant growth rate throughout
the respective α-scans performed. This behavior may be due to an improper pitch angle integra-
tion of transit and drift frequencies in the case of passing particles. In QuaLiKiz, the integration
is performed not self-consistently as a simple averaging procedure to significantly speed up the
calculation process.

Unresolvable Modes In the case of simultaneously low wavenumbers and values of s−α, the
stability of the system was found to be dominated by slab-type ITG-modes, peaked around bal-
looning angles θ being multiples of ±2π. Since the eigenfunctions used by QuaLiKiz are single
Gaussians located around θ = 0, slab-type ITG-modes cannot be resolved. Adopting the ansatz
used by QuaLiKiz to include multiple Gaussians may resolve this issue, but is bound to cause
additional difficulties.

Increased Disagreement for Low Wavenumbers Both the instability threshold gradients and
the growth rates calculated with QuaLiKiz for low wavenumbers of ky = 0.1 were found to dis-
agree worse with GENE calculations in the regime of negative values of s−α, i.e. small values of
the magnetic shear, as compared to results obtained with QuaLiKiz using larger wavenumbers, i.e.
ky = 0.3 and ky = 0.5. Here, contributions from small values of kx = skyθ (cf. Eq. (2.18)) to the
eigenfunction are weakened at larger ballooning angles as in the case of larger wavenumbers ky,
resulting in the appearance of additional peaks located at multiples of ±2π. Again, the eigenfunc-
tion ansatz used by QuaLiKiz is not suitable to resolve this phenomenon and would consequently
require modifications to capture this behavior as well.

4.4 The JET Hybrid Scenario 75225

A validation of QuaLiKiz against GENE for experimentally relevant parameters in the regime of
low values of the magnetic shear is performed using parameters from the JET hybrid scenario
7522539, 40 at two radial positions. Using the results of the previous growth rate analysis, the
behavior of QuaLiKiz in the JET case can be assessed in more detail. In previous investigations,
cf. e.g. Refs. 14, 39, agreement between QuaLiKiz and GENE in the regime of low values of
the magnetic shear was obtained only by neglecting the effect of α-stabilization, wherefore the
behavior of QuaLiKiz and GENE is analyzed for both the case of experimental and negligible
values of the α-parameter. The growth rates obtained as a function of the applied normalized ion
temperature gradient R/LTi are illustrated in Fig. 4.5, whereas the corresponding eigenfunctions
are presented in Fig. 4.6.

The inner location analyzed at a radial coordinate of r/a = 0.42 is characterized by a low mag-
netic shear of s = 0.39, with the α-parameter being α = 0.70. Consequently, the parameters used
are for the case of strong s-α-stabilization, explaining the low growth rates observed at this lo-
cation. In the case of low wavenumbers of ky = 0.1, the system is barely unstable, requiring
an increase by 40% of the experimentally used ion temperature gradient to reach instability, ac-
cording GENE calculations. Whereas QuaLiKiz predicts a stable system throughout the range of
normalized ion temperature gradients considered for the experimental value of the α-parameter,
neglecting this parameter yields a better, yet rough approximation of the solution obtained by
GENE. For increasing wavenumbers, the growth rates as calculated by GENE using α = 0.70 are
described significantly better by QuaLiKiz neglecting the influence of the α-parameter as opposed
to the case where the experimentally obtained value of α is used for QuaLiKiz. In the later case,
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Fig. 4.5: Dependence of the instability growth rates of the JET hybrid scenario 75225 on the normalized ion
temperature gradient R/LTi at the inner and outer location analyzed, calculated for three different wavenum-
bers using QuaLiKiz (red) and GENE with s-α-geometry (blue).
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Fig. 4.6: Dependence of the 1/e-Half Width of the Gaussian Eigenfunctions of the JET hybrid scenario
75225 on the normalized ion temperature gradient R/LTi at the inner and outer location analyzed, calculated
for three different wavenumbers using QuaLiKiz (red) and GENE with s-α-geometry (blue).
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the threshold gradients calculated by QuaLiKiz are overestimated by 30 to 40% as compared to the
ones calculated by GENE with α = 0.70. However, by setting α = 0 for QuaLiKiz, agreement of
the threshold gradients is within 10%. Comparing this increase in agreement with the 1/e-width
of the eigenfunctions, cf. Fig. 4.6, the eigenfunctions obtained with QuaLiKiz for a finite value of
the α-parameter are significantly narrower than the eigenfunctions found by GENE. By neglecting
the effect of α-stabilization, the width of the QuaLiKiz eigenfunctions approaches those of GENE.

The effect of increased agreement by setting α = 0 can be explained by considering the change
of the instability growth rate for varying values of s−α at a constant normalized ion temperature
gradient R/LTi , cf. Fig. 4.2. For the given set of s and α, the parameters used at inner location
of the JET case are located in the s−α-regime where an increase of the α-parameter stabilizes
the system. Simultaneously, the effect of s-α-stabilization is severely overestimated by QuaLiKiz
in this s−α-range, resulting in significantly lower growth rates as opposed to GENE. As conse-
quently decreasing values of α have a destabilizing effect, neglecting the α-parameter in this case
results in the growth rates found by QuaLiKiz approaching those obtained by GENE.

Although the growth rates obtained with QuaLiKiz for the outer location of the JET case, and
thus for a larger value of the magnetic shear, were expected to agree well with results obtained by
GENE for α = 0.62, significant disagreement is observed, cf. Fig. 4.5. To obtain the growth rates
as found by GENE at the experimental value of the ion temperature gradient, QuaLiKiz requires
an increase of R/LTi by 30 to 60%. Consequently, the effect of s−α-stabilization is significantly
overestimated at this comparatively high value of the magnetic shear of s = 1.28. Moreover,
neglecting the effect of the α-parameter has only a minor influence on the growth rate obtained,
even worsening the agreement with GENE using α = 0.62. This phenomenon is also observed
for the respective eigenfunctions, which are significantly narrower throughout the R/LTi-range
considered than the solutions found by GENE. However, agreement in the growth rates calculated
is significantly improved by setting α = 0 for both QuaLiKiz and GENE, cf. Fig. 4.5.

Considering the values of s and α at the outer position of the JET scenario, this location is found
to be located in the s−α-regime, where an increase of the α-parameter destabilizes the system, cf.
Fig. 4.2. Consequently, the growth rates and eigenfunctions found with QuaLiKiz and GENE for
negligible values of the α-parameter are respectively lower or narrower as opposed to the case of
a finite α. Moreover, the phenomenon of growth rates as calculated by QuaLiKiz being virtually
independent of α is observed in the same regime of s−α, i.e. in the case of comparatively large
values of the magnetic shear, cf. Fig. 4.2, whereas the GENE growth rates are found to decrease
significantly by neglecting the effect of α-destabilization, cf. Fig. 4.5.

To further investigate the discrepancy of the growth rates between QuaLiKiz and GENE at the
outer location, two additional cases with reduced normalized density gradients were analyzed to
study the influence of trapped electron drive on the growth rate. In the first case, all density
gradients were set to correspond to the electron density gradient of R/Lne = 3.24, greatly reducing
the large carbon impurity density gradient of R/LnC = 10.82. However, no improved agreement
as compared to the analysis using the original density gradients is observed, cf. Fig. 4.7. For the
second case using R/Ln = 1.0, the agreement between QuaLiKiz and GENE improved slightly,
eliminating trapped electron drive as reason for the discrepancy observed. As in the analysis
of the JET hybrid scenario using the original density gradients, agreement between QuaLiKiz
and GENE is significantly improved by neglecting the effect of α-destabilization. Moreover, the
growth rates obtained with QuaLiKiz are again found to be virtually independent of the choice of
the α-parameter, whereas the growth rates calculated by GENE are sensitive to a change in α.

As a result, even though the parameters used in the JET hybrid scenario are slightly different
than those of the modified Cyclone base case, the behavior at both the inner and the outer location
of the JET case analyzed is consistent with the observations made in the growth rate analysis of
Sec. 4.1.2. Consequently, results obtained for the JET case are subjected to the same issues as
discussed in Sec. 4.3 for the more general comparison, requiring the modifications of QuaLiKiz
addressed for reliable use for these scenarios.
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Fig. 4.7: Growth rates of the JET hybrid scenario 75225 for three values of ky, where in the left column
all density gradients were set to match the normalized electron density gradient R/Lne = 3.24, whereas in
the right column all density gradients were reduced to R/Ln = 1.0. For comparison, the growth rates for
the original density gradients are illustrated in pale colors. A slight improvement in agreement between
QuaLiKiz and GENE is achieved for both choices of the α-parameter only for R/Ln = 1.0, eliminating
trapped electron drive as reason for the discrepancy observed using the original density gradients.





5 Conclusion

In this work, the discrepancy of linear microstability calculations between the gyrokinetic codes
QuaLiKiz and linear GENE observed previously13 has been investigated in the regime of low
magnetic shear s ∈ [−0.2,1.5] and large values of the normalized pressure gradient α ∈ [0,0.8]
for electrostatically driven, toroidal ITG modes around the Cyclone base case. The analysis was
carried out comparing instability threshold ion temperature gradients, instability growth rates at
a constant value of the ion temperature gradient R/LTi = 10, as well as eigenfunctions of the
electrostatic potential fluctuations. Furthermore, microstability calculations were performed for
the JET hybrid scenario 75225 at two radial positions of low and high magnetic shear as to assess
the validity of results obtained for practical parameters by comparison with the findings of the
QuaLiKiz-GENE investigation around the Cyclone base case.

From gyrokinetic theory, particle drift and transit frequencies were found to be the relevant
quantities influenced by changing values of the magnetic shear and the α-parameter, suppressing
the development of instabilities in the regime of low values of s−α. In the case of QuaLiKiz, this
effect was found to be overestimated, resulting almost consistently in larger instability threshold
gradients and lower instability growth rates as compared to linear GENE. For positive values of
s−α, the agreement between both codes was typically within 20%, whereas for negative values,
deviations of the instability threshold gradients with respect to GENE calculations increased sig-
nificantly. An increase of the differences in the growth rates obtained in this regime was found
to be heavily dependent on the wavenumber ky, such that using low values of ky = 0.1 resulted in
more severe disagreement below larger values of s−α≈ 0 as compared to the case of wavenum-
bers ky = 0.3 and ky = 0.5, where increased disagreement was observed below s−α ≈ −0.7.
Although being at least partially attributed to the choice of R/LTi , this effect illustrates increased
discrepancy for lower wavenumbers due to additional components kx = skyθ being weakened at
larger ballooning angles. Furthermore, the appearance of slab-type ITG modes at simultaneously
low values of the magnetic shear and the wavenumber is also responsible for increased disagree-
ment in this regime, as these modes are unresolvable by QuaLiKiz due to the eigenfunction ansatz
used. Additional deviations were observed at large values of both the magnetic shear and the
wavenumber, where QuaLiKiz predicted growth rates and their corresponding eigenfunctions be-
ing virtually independent of the choice of the α-parameter in contrast to calculations by GENE.
This phenomenon may be caused by an improper pitch angle integration of passing particles.

As the comparison of the effect of s-α-stabilization due to particle drift and transit frequen-
cies requires identical implementations of the magnetic geometry in the codes used, the initial
results obtained with GENE using shifted-circle-geometry were verified by additional scans in the
regime of low magnetic shear performed with the more consistent Miller-geometry, using GENE
and GKW. Contrary to expectations, noticeable differences between both geometries used were
observed, with both codes using Miller-geometry predicting a larger effect of s-α-stabilization,
thus agreeing better with QuaLiKiz calculations. For further assessment, analysis of the exact im-
plementations of the different geometries used is necessary to assess the reason for the differences
observed.

Several of the issues occurring in the comparison of QuaLiKiz and linear GENE around the
Cyclone base case were also observed in the investigation of the JET hybrid scenario 75225. Due
to overestimation of the effect of s-α-stabilization, growth rates at the experimental value of the
ion temperature gradient as calculated by GENE using shifted-circle-geometry were only obtained
with QuaLiKiz by using an ion temperature gradient increased by 30 to 60%. Alternatively, ne-
glecting the effect of α-stabilization for QuaLiKiz calculations in the case of low values of the
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magnetic shear also resulted in better agreement with GENE. Additionally, growth rates at the ra-
dial location corresponding to a large value of s were found to be independent of the choice of the
α-parameter for all three wavenumbers analyzed, as also observed in the comparison of QuaLiKiz
and GENE around the Cyclone base case.

Consequently, the issues found in this investigation have to be resolved to allow for a reliable
use of QuaLiKiz in scenarios of low magnetic shear. Further work should thus focus on a review of
the magnetic geometry implemented in GENE for both shifted-circle and Miller-geometry, on the
exact comparison of the dependence of the drift frequency on the poloidal angle θ between Qua-
LiKiz and GENE, on a proper pitch angle integration, and on a reevaluation of the eigenfunction
ansatz used.
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