Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
336 lines (292 sloc) 16.7 KB
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Custom;
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
using QuantConnect.Securities.Equity;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
/// <summary>
/// This algorithm demonstrates the various ways you can call the History function,
/// what it returns, and what you can do with the returned values.
/// </summary>
/// <meta name="tag" content="using data" />
/// <meta name="tag" content="history and warm up" />
/// <meta name="tag" content="history" />
/// <meta name="tag" content="warm up" />
public class HistoryAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
private int _count;
private SimpleMovingAverage _spyDailySma;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
SetStartDate(2013, 10, 08); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
// Find more symbols here:
var SPY = AddSecurity(SecurityType.Equity, "SPY", Resolution.Daily).Symbol;
var CME_SP1 = AddData<QuandlFuture>("CHRIS/CME_SP1", Resolution.Daily).Symbol;
// specifying the exchange will allow the history methods that accept a number of bars to return to work properly
Securities["CHRIS/CME_SP1"].Exchange = new EquityExchange();
// we can get history in initialize to set up indicators and such
_spyDailySma = new SimpleMovingAverage(14);
// get the last calendar year's worth of SPY data at the configured resolution (daily)
var tradeBarHistory = History<TradeBar>("SPY", TimeSpan.FromDays(365));
AssertHistoryCount("History<TradeBar>(\"SPY\", TimeSpan.FromDays(365))", tradeBarHistory, 250, SPY);
// get the last calendar day's worth of SPY data at the specified resolution
tradeBarHistory = History<TradeBar>("SPY", TimeSpan.FromDays(1), Resolution.Minute);
AssertHistoryCount("History<TradeBar>(\"SPY\", TimeSpan.FromDays(1), Resolution.Minute)", tradeBarHistory, 390, SPY);
// get the last 14 bars of SPY at the configured resolution (daily)
tradeBarHistory = History<TradeBar>("SPY", 14).ToList();
AssertHistoryCount("History<TradeBar>(\"SPY\", 14)", tradeBarHistory, 14, SPY);
// get the last 14 minute bars of SPY
tradeBarHistory = History<TradeBar>("SPY", 14, Resolution.Minute);
AssertHistoryCount("History<TradeBar>(\"SPY\", 14, Resolution.Minute)", tradeBarHistory, 14, SPY);
// we can loop over the return value from these functions and we get TradeBars
// we can use these TradeBars to initialize indicators or perform other math
foreach (TradeBar tradeBar in tradeBarHistory)
_spyDailySma.Update(tradeBar.EndTime, tradeBar.Close);
// get the last calendar year's worth of quandl data at the configured resolution (daily)
var quandlHistory = History<QuandlFuture>("CHRIS/CME_SP1", TimeSpan.FromDays(365));
AssertHistoryCount("History<Quandl>(\"CHRIS/CME_SP1\", TimeSpan.FromDays(365))", quandlHistory, 250, CME_SP1);
// get the last 14 bars of SPY at the configured resolution (daily)
quandlHistory = History<QuandlFuture>("CHRIS/CME_SP1", 14);
AssertHistoryCount("History<Quandl>(\"CHRIS/CME_SP1\", 14)", quandlHistory, 14, CME_SP1);
// get the last 14 minute bars of SPY
// we can loop over the return values from these functions and we'll get Quandl data
// this can be used in much the same way as the tradeBarHistory above
foreach (QuandlFuture quandl in quandlHistory)
_spyDailySma.Update(quandl.EndTime, quandl.Value);
// get the last year's worth of all configured Quandl data at the configured resolution (daily)
var allQuandlData = History<QuandlFuture>(TimeSpan.FromDays(365));
AssertHistoryCount("History<QuandlFuture>(TimeSpan.FromDays(365))", allQuandlData, 250, CME_SP1);
// get the last 14 bars worth of Quandl data for the specified symbols at the configured resolution (daily)
allQuandlData = History<QuandlFuture>(Securities.Keys, 14);
AssertHistoryCount("History<QuandlFuture>(Securities.Keys, 14)", allQuandlData, 14, CME_SP1);
// NOTE: using different resolutions require that they are properly implemented in your data type, since
// Quandl doesn't support minute data, this won't actually work, but if your custom data source has
// different resolutions, it would need to be implemented in the GetSource and Reader methods properly
//quandlHistory = History<QuandlFuture>("CHRIS/CME_SP1", TimeSpan.FromDays(7), Resolution.Minute);
//quandlHistory = History<QuandlFuture>("CHRIS/CME_SP1", 14, Resolution.Minute);
//allQuandlData = History<QuandlFuture>(TimeSpan.FromDays(365), Resolution.Minute);
//allQuandlData = History<QuandlFuture>(Securities.Keys, 14, Resolution.Minute);
//allQuandlData = History<QuandlFuture>(Securities.Keys, TimeSpan.FromDays(1), Resolution.Minute);
//allQuandlData = History<QuandlFuture>(Securities.Keys, 14, Resolution.Minute);
// get the last calendar year's worth of all quandl data
allQuandlData = History<QuandlFuture>(Securities.Keys, TimeSpan.FromDays(365));
AssertHistoryCount("History<QuandlFuture>(Securities.Keys, TimeSpan.FromDays(365))", allQuandlData, 250, CME_SP1);
// the return is a series of dictionaries containing all quandl data at each time
// we can loop over it to get the individual dictionaries
foreach (DataDictionary<QuandlFuture> quandlsDataDictionary in allQuandlData)
// we can access the dictionary to get the quandl data we want
var quandl = quandlsDataDictionary["CHRIS/CME_SP1"];
// we can also access the return value from the multiple symbol functions to request a single
// symbol and then loop over it
var singleSymbolQuandl = allQuandlData.Get("CHRIS/CME_SP1");
AssertHistoryCount("allQuandlData.Get(\"CHRIS/CME_SP1\")", singleSymbolQuandl, 250, CME_SP1);
foreach (QuandlFuture quandl in singleSymbolQuandl)
// do something with 'CHRIS/CME_SP1' quandl data
// we can also access individual properties on our data, this will
// get the 'CHRIS/CME_SP1' quandls like above, but then only return the Low properties
var quandlSpyLows = allQuandlData.Get("CHRIS/CME_SP1", "Low");
AssertHistoryCount("allQuandlData.Get(\"CHRIS/CME_SP1\", \"Low\")", quandlSpyLows, 250);
foreach (decimal low in quandlSpyLows)
// do something with each low value
// sometimes it's necessary to get the history for many configured symbols
// request the last year's worth of history for all configured symbols at their configured resolutions
var allHistory = History(TimeSpan.FromDays(365));
AssertHistoryCount("History(TimeSpan.FromDays(365))", allHistory, 250, SPY, CME_SP1);
// request the last days's worth of history at the minute resolution
allHistory = History(TimeSpan.FromDays(1), Resolution.Minute);
AssertHistoryCount("History(TimeSpan.FromDays(1), Resolution.Minute)", allHistory, 391, SPY, CME_SP1);
// request the last 100 bars for the specified securities at the configured resolution
allHistory = History(Securities.Keys, 100);
AssertHistoryCount("History(Securities.Keys, 100)", allHistory, 100, SPY, CME_SP1);
// request the last 100 minute bars for the specified securities
allHistory = History(Securities.Keys, 100, Resolution.Minute);
AssertHistoryCount("History(Securities.Keys, 100, Resolution.Minute)", allHistory, 101, SPY, CME_SP1);
// request the last calendar years worth of history for the specified securities
allHistory = History(Securities.Keys, TimeSpan.FromDays(365));
AssertHistoryCount("History(Securities.Keys, TimeSpan.FromDays(365))", allHistory, 250, SPY, CME_SP1);
// we can also specify the resolution
allHistory = History(Securities.Keys, TimeSpan.FromDays(1), Resolution.Minute);
AssertHistoryCount("History(Securities.Keys, TimeSpan.FromDays(1), Resolution.Minute)", allHistory, 391, SPY, CME_SP1);
// if we loop over this allHistory, we get Slice objects
foreach (Slice slice in allHistory)
// do something with each slice, these will come in time order
// and will NOT have auxilliary data, just price data and your custom data
// if those symbols were specified
// we can access the history for individual symbols from the all history by specifying the symbol
// the type must be a trade bar!
tradeBarHistory = allHistory.Get<TradeBar>("SPY");
AssertHistoryCount("allHistory.Get(\"SPY\")", tradeBarHistory, 390, SPY);
// we can access all the closing prices in chronological order using this get function
var closeHistory = allHistory.Get("SPY", Field.Close);
AssertHistoryCount("allHistory.Get(\"SPY\", Field.Close)", closeHistory, 390);
foreach (decimal close in closeHistory)
// do something with each closing value in order
// we can convert the close history into your normal double array (double[]) using the ToDoubleArray method
double[] doubleArray = closeHistory.ToDoubleArray();
// for the purposes of regression testing, we're explicitly requesting history
// using the universe symbols. Requests for universe symbols are filtered out
// and never sent to the history provider.
var universeSecurityHistory = History(UniverseManager.Keys, TimeSpan.FromDays(10)).ToList();
if (universeSecurityHistory.Count != 0)
throw new Exception("History request for universe symbols incorrectly returned data. "
+ "These requests are intended to be filtered out and never sent to the history provider.");
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
if (_count > 5)
throw new Exception("Invalid number of bars arrived. Expected exactly 5");
if (!Portfolio.Invested)
SetHoldings("SPY", 1);
Debug("Purchased Stock");
private void AssertHistoryCount<T>(string methodCall, IEnumerable<T> history, int expected, params Symbol[] expectedSymbols)
history = history.ToList();
var count = history.Count();
if (count != expected)
throw new Exception(methodCall + " expected " + expected + ", but received " + count);
IEnumerable<Symbol> unexpectedSymbols = null;
if (typeof(T) == typeof(Slice))
var slices = (IEnumerable<Slice>) history;
unexpectedSymbols = slices.SelectMany(slice => slice.Keys)
.Where(sym => !expectedSymbols.Contains(sym))
else if (typeof(T).IsGenericType && typeof(T).GetGenericTypeDefinition() == typeof(DataDictionary<>))
if (typeof(T).GetGenericArguments()[0] == typeof(QuandlFuture))
var dictionaries = (IEnumerable<DataDictionary<QuandlFuture>>) history;
unexpectedSymbols = dictionaries.SelectMany(dd => dd.Keys)
.Where(sym => !expectedSymbols.Contains(sym))
else if (typeof(IBaseData).IsAssignableFrom(typeof(T)))
var slices = (IEnumerable<IBaseData>)history;
unexpectedSymbols = slices.Select(data => data.Symbol)
.Where(sym => !expectedSymbols.Contains(sym))
else if (typeof(T) == typeof(decimal))
// if the enumerable doesn't contain symbols then we can't assert that certain symbols exist
// this case is used when testing data dictionary extensions that select a property value,
// such as dataDictionaries.Get("MySymbol", "MyProperty") => IEnumerable<decimal>
if (unexpectedSymbols == null)
throw new Exception("Unhandled case: " + typeof(T).GetBetterTypeName());
var unexpectedSymbolsString = string.Join(" | ", unexpectedSymbols);
if (!string.IsNullOrWhiteSpace(unexpectedSymbolsString))
throw new Exception($"{methodCall} contains unexpected symbols: {unexpectedSymbolsString}");
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{"Total Trades", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "359.952%"},
{"Drawdown", "1.100%"},
{"Expectancy", "0"},
{"Net Profit", "1.686%"},
{"Sharpe Ratio", "4.502"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "77.786"},
{"Annual Standard Deviation", "0.191"},
{"Annual Variance", "0.036"},
{"Information Ratio", "4.445"},
{"Tracking Error", "0.191"},
{"Treynor Ratio", "0.011"},
{"Total Fees", "$3.26"}
/// <summary>
/// Custom quandl data type for setting customized value column name. Value column is used for the primary trading calculations and charting.
/// </summary>
public class QuandlFuture : Quandl
/// <summary>
/// Initializes a new instance of the <see cref="QuandlFuture"/> class.
/// </summary>
public QuandlFuture()
: base(valueColumnName: "Settle")
You can’t perform that action at this time.