Skip to content
Branch: master
Find file Copy path
Find file Copy path
3 contributors

Users who have contributed to this file

@Martin-Molinero @simonsonjack @AlexCatarino
172 lines (141 sloc) 7.94 KB
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data.Market import TradeBar
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Risk import *
from QuantConnect.Orders.Fees import ConstantFeeModel
from QuantConnect.Algorithm.Framework.Alphas import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from QuantConnect.Algorithm.Framework.Selection import *
from QuantConnect.Indicators import RollingWindow, SimpleMovingAverage
from datetime import timedelta, datetime
import numpy as np
# A number of companies publicly trade two different classes of shares
# in US equity markets. If both assets trade with reasonable volume, then
# the underlying driving forces of each should be similar or the same. Given
# this, we can create a relatively dollar-netural long/short portfolio using
# the dual share classes. Theoretically, any deviation of this portfolio from
# its mean-value should be corrected, and so the motivating idea is based on
# mean-reversion. Using a Simple Moving Average indicator, we can
# compare the value of this portfolio against its SMA and generate insights
# to buy the under-valued symbol and sell the over-valued symbol.
# This alpha is part of the Benchmark Alpha Series created by QuantConnect which are open
# sourced so the community and client funds can see an example of an alpha.
class ShareClassMeanReversionAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 1, 1) #Set Start Date
self.SetCash(100000) #Set Strategy Cash
## Setup Universe settings and tickers to be used
tickers = ['VIA','VIAB']
self.UniverseSettings.Resolution = Resolution.Minute
symbols = [ Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in tickers]
self.SetSecurityInitializer(lambda security: security.SetFeeModel(ConstantFeeModel(0))) ## Set $0 fees to mimic High-Frequency Trading
## Set Manual Universe Selection
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
## Set Custom Alpha Model
self.SetAlpha(ShareClassMeanReversionAlphaModel(tickers = tickers))
## Set Equal Weighting Portfolio Construction Model
## Set Immediate Execution Model
## Set Null Risk Management Model
class ShareClassMeanReversionAlphaModel(AlphaModel):
''' Initialize helper variables for the algorithm'''
def __init__(self, *args, **kwargs):
self.sma = SimpleMovingAverage(10)
self.position_window = RollingWindow[Decimal](2)
self.alpha = None
self.beta = None
if 'tickers' not in kwargs:
raise Exception('ShareClassMeanReversionAlphaModel: Missing argument: "tickers"')
self.tickers = kwargs['tickers']
self.position_value = None
self.invested = False
self.liquidate = 'liquidate'
self.long_symbol = self.tickers[0]
self.short_symbol = self.tickers[1]
self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Minute
self.prediction_interval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), 5) ## Arbitrary
self.insight_magnitude = 0.001
def Update(self, algorithm, data):
insights = []
## Check to see if either ticker will return a NoneBar, and skip the data slice if so
for security in algorithm.Securities:
if self.DataEventOccured(data, security.Key):
return insights
## If Alpha and Beta haven't been calculated yet, then do so
if (self.alpha is None) or (self.beta is None):
self.CalculateAlphaBeta(algorithm, data)
algorithm.Log('Alpha: ' + str(self.alpha))
algorithm.Log('Beta: ' + str(self.beta))
## If the SMA isn't fully warmed up, then perform an update
if not self.sma.IsReady:
return insights
## Update indicator and Rolling Window for each data slice passed into Update() method
## Check to see if the portfolio is invested. If no, then perform value comparisons and emit insights accordingly
if not self.invested:
if self.position_value >= self.sma.Current.Value:
insights.append(Insight(self.long_symbol, self.prediction_interval, InsightType.Price, InsightDirection.Down, self.insight_magnitude, None))
insights.append(Insight(self.short_symbol, self.prediction_interval, InsightType.Price, InsightDirection.Up, self.insight_magnitude, None))
## Reset invested boolean
self.invested = True
elif self.position_value < self.sma.Current.Value:
insights.append(Insight(self.long_symbol, self.prediction_interval, InsightType.Price, InsightDirection.Up, self.insight_magnitude, None))
insights.append(Insight(self.short_symbol, self.prediction_interval, InsightType.Price, InsightDirection.Down, self.insight_magnitude, None))
## Reset invested boolean
self.invested = True
## If the portfolio is invested and crossed back over the SMA, then emit flat insights
elif self.invested and self.CrossedMean():
## Reset invested boolean
self.invested = False
return Insight.Group(insights)
def DataEventOccured(self, data, symbol):
## Helper function to check to see if data slice will contain a symbol
if data.Splits.ContainsKey(symbol) or \
data.Dividends.ContainsKey(symbol) or \
data.Delistings.ContainsKey(symbol) or \
return True
def UpdateIndicators(self, data):
## Calculate position value and update the SMA indicator and Rolling Window
self.position_value = (self.alpha * data[self.long_symbol].Close) - (self.beta * data[self.short_symbol].Close)
self.sma.Update(data[self.long_symbol].EndTime, self.position_value)
def CrossedMean(self):
## Check to see if the position value has crossed the SMA and then return a boolean value
if (self.position_window[0] >= self.sma.Current.Value) and (self.position_window[1] < self.sma.Current.Value):
return True
elif (self.position_window[0] < self.sma.Current.Value) and (self.position_window[1] >= self.sma.Current.Value):
return True
return False
def CalculateAlphaBeta(self, algorithm, data):
## Calculate Alpha and Beta, the initial number of shares for each security needed to achieve a 50/50 weighting
self.alpha = algorithm.CalculateOrderQuantity(self.long_symbol, 0.5)
self.beta = algorithm.CalculateOrderQuantity(self.short_symbol, 0.5)
You can’t perform that action at this time.