Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
203 changes: 203 additions & 0 deletions Algorithm.CSharp/ExecutionModelOrderEventsRegressionAlgorithm.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

using System;
using System.Collections.Generic;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Orders;
using QuantConnect.Interfaces;
using QuantConnect.Securities;

namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression algorithm demonstrating how to get order events in custom execution models
/// and asserting that they match the algorithm's order events.
/// </summary>
public class ExecutionModelOrderEventsRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly List<OrderEvent> _orderEvents = new();
private CustomImmediateExecutionModel _executionModel;

public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Minute;

SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 11);
SetCash(100000);

SetUniverseSelection(new ManualUniverseSelectionModel(QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA)));
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, null));
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel(Resolution.Daily));

_executionModel = new CustomImmediateExecutionModel(this);
SetExecution(_executionModel);
SetRiskManagement(new MaximumDrawdownPercentPerSecurity(0.01m));
}

public override void OnOrderEvent(OrderEvent orderEvent)
{
_orderEvents.Add(orderEvent);
}

public override void OnEndOfAlgorithm()
{
if (_executionModel.OrderEvents.Count != _orderEvents.Count)
{
throw new RegressionTestException($"Order events count mismatch. Execution model: {_executionModel.OrderEvents.Count}, Algorithm: {_orderEvents.Count}");
}

for (int i = 0; i < _orderEvents.Count; i++)
{
var modelEvent = _executionModel.OrderEvents[i];
var algoEvent = _orderEvents[i];

if (modelEvent.Id != algoEvent.Id ||
modelEvent.OrderId != algoEvent.OrderId ||
modelEvent.Status != algoEvent.Status)
{
throw new RegressionTestException($"Order event mismatch at index {i}. Execution model: {_executionModel.OrderEvents[i]}, Algorithm: {_orderEvents[i]}");
}
}
}

private class CustomImmediateExecutionModel : ExecutionModel
{
private readonly QCAlgorithm _algorithm;

private readonly PortfolioTargetCollection _targetsCollection = new PortfolioTargetCollection();

private readonly Dictionary<int, OrderTicket> _orderTickets = new();

public List<OrderEvent> OrderEvents { get; } = new();

public CustomImmediateExecutionModel(QCAlgorithm algorithm)
{
_algorithm = algorithm;
}

public override void Execute(QCAlgorithm algorithm, IPortfolioTarget[] targets)
{
_targetsCollection.AddRange(targets);
if (!_targetsCollection.IsEmpty)
{
foreach (var target in _targetsCollection.OrderByMarginImpact(algorithm))
{
var security = algorithm.Securities[target.Symbol];

// calculate remaining quantity to be ordered
var quantity = OrderSizing.GetUnorderedQuantity(algorithm, target, security, true);

if (quantity != 0 &&
security.BuyingPowerModel.AboveMinimumOrderMarginPortfolioPercentage(security, quantity,
algorithm.Portfolio, algorithm.Settings.MinimumOrderMarginPortfolioPercentage))
{
var ticket = algorithm.MarketOrder(security, quantity, Asynchronous, target.Tag);
_orderTickets[ticket.OrderId] = ticket;
}
}

_targetsCollection.ClearFulfilled(algorithm);
}
}

public override void OnOrderEvent(OrderEvent orderEvent)
{
// This method will get events for all orders, but if we save the tickets in Execute we can filter
// to process events for orders placed by this model
if (_orderTickets.TryGetValue(orderEvent.OrderId, out var ticket))
{
if (orderEvent.Status.IsFill())
{
_algorithm.Debug($"Purchased Stock: {orderEvent.Symbol}");
}

if (orderEvent.Status.IsClosed())
{
// Once the order is closed we can remove it from our tracking dictionary
_orderTickets.Remove(orderEvent.OrderId);
}
}

OrderEvents.Add(orderEvent);
}
}

/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;

/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public virtual List<Language> Languages { get; } = new() { Language.CSharp, Language.Python };

/// <summary>
/// Data Points count of all timeslices of algorithm
/// </summary>
public long DataPoints => 3943;

/// <summary>
/// Data Points count of the algorithm history
/// </summary>
public int AlgorithmHistoryDataPoints => 0;

/// <summary>
/// Final status of the algorithm
/// </summary>
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;

/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Orders", "3"},
{"Average Win", "0%"},
{"Average Loss", "-1.01%"},
{"Compounding Annual Return", "261.134%"},
{"Drawdown", "2.200%"},
{"Expectancy", "-1"},
{"Start Equity", "100000"},
{"End Equity", "101655.30"},
{"Net Profit", "1.655%"},
{"Sharpe Ratio", "8.472"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "66.840%"},
{"Loss Rate", "100%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.091"},
{"Beta", "1.006"},
{"Annual Standard Deviation", "0.224"},
{"Annual Variance", "0.05"},
{"Information Ratio", "-33.445"},
{"Tracking Error", "0.002"},
{"Treynor Ratio", "1.885"},
{"Total Fees", "$10.32"},
{"Estimated Strategy Capacity", "$27000000.00"},
{"Lowest Capacity Asset", "SPY R735QTJ8XC9X"},
{"Portfolio Turnover", "59.86%"},
{"Drawdown Recovery", "3"},
{"OrderListHash", "f209ed42701b0419858e0100595b40c0"}
};
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
using QuantConnect.Data;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
using QuantConnect.Orders;

namespace QuantConnect.Algorithm.CSharp
{
Expand All @@ -31,7 +32,7 @@ namespace QuantConnect.Algorithm.CSharp
public class ETFConstituentUniverseFrameworkRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private List<ETFConstituentUniverse> ConstituentData = new List<ETFConstituentUniverse>();

/// <summary>
/// Initializes the algorithm, setting up the framework classes and ETF constituent universe settings
/// </summary>
Expand All @@ -40,7 +41,7 @@ public override void Initialize()
SetStartDate(2020, 12, 1);
SetEndDate(2021, 1, 31);
SetCash(100000);

SetAlpha(new ETFConstituentAlphaModel());
SetPortfolioConstruction(new ETFConstituentPortfolioModel());
SetExecution(new ETFConstituentExecutionModel());
Expand Down Expand Up @@ -111,19 +112,19 @@ public void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes)
public IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice data)
{
var algo = (ETFConstituentUniverseFrameworkRegressionAlgorithm) algorithm;

foreach (var constituent in algo.ConstituentData)
{
if (!data.Bars.ContainsKey(constituent.Symbol) &&
!data.QuoteBars.ContainsKey(constituent.Symbol))
{
continue;
}

var insightDirection = constituent.Weight != null && constituent.Weight >= 0.01m
? InsightDirection.Up
: InsightDirection.Down;

yield return new Insight(
algorithm.UtcTime,
constituent.Symbol,
Expand All @@ -144,7 +145,7 @@ public IEnumerable<Insight> Update(QCAlgorithm algorithm, Slice data)
private class ETFConstituentPortfolioModel : IPortfolioConstructionModel
{
private bool _hasAdded;

/// <summary>
/// Securities changed, detects if we've got new additions to the universe
/// so that we don't try to trade every loop
Expand Down Expand Up @@ -203,8 +204,13 @@ public void Execute(QCAlgorithm algorithm, IPortfolioTarget[] targets)
algorithm.SetHoldings(target.Symbol, target.Quantity);
}
}

public void OnOrderEvent(OrderEvent orderEvent)
{

}
}

/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
Expand Down
84 changes: 84 additions & 0 deletions Algorithm.Python/ExecutionModelOrderEventsRegressionAlgorithm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from AlgorithmImports import *

### <summary>
### Regression algorithm demonstrating how to get order events in custom execution models
### and asserting that they match the algorithm's order events.
### </summary>
class ExecutionModelOrderEventsRegressionAlgorithm(QCAlgorithm):
def initialize(self):
self._order_events = []
self.universe_settings.resolution = Resolution.MINUTE

self.set_start_date(2013, 10, 7)
self.set_end_date(2013, 10, 11)
self.set_cash(100000)

self.set_universe_selection(ManualUniverseSelectionModel(Symbol.create("SPY", SecurityType.EQUITY, Market.USA)))
self.set_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(minutes=20), 0.025, None))
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Resolution.DAILY))

self._execution_model = CustomImmediateExecutionModel(self)
self.set_execution(self._execution_model)
self.set_risk_management(MaximumDrawdownPercentPerSecurity(0.01))

def on_order_event(self, order_event):
self._order_events.append(order_event)

def on_end_of_algorithm(self):
if len(self._execution_model.order_events) != len(self._order_events):
raise Exception(f"Order events count mismatch. Execution model: {len(self._execution_model.order_events)}, Algorithm: {len(self._order_events)}")

for i, (model_event, algo_event) in enumerate(zip(self._execution_model.order_events, self._order_events)):
if (model_event.id != algo_event.id or
model_event.order_id != algo_event.order_id or
model_event.status != algo_event.status):
raise Exception(f"Order event mismatch at index {i}. Execution model: {model_event}, Algorithm: {algo_event}")

class CustomImmediateExecutionModel(ExecutionModel):
def __init__(self, algorithm):
self._algorithm = algorithm
self._targets_collection = PortfolioTargetCollection()
self._order_tickets = {}
self.order_events = []

def execute(self, algorithm, targets):
self._targets_collection.add_range(targets)
if not self._targets_collection.is_empty:
for target in self._targets_collection.order_by_margin_impact(algorithm):
security = algorithm.securities[target.symbol]

# calculate remaining quantity to be ordered
quantity = OrderSizing.get_unordered_quantity(algorithm, target, security, True)

if (quantity != 0 and
BuyingPowerModelExtensions.above_minimum_order_margin_portfolio_percentage(security.buying_power_model,
security, quantity, algorithm.portfolio, algorithm.settings.minimum_order_margin_portfolio_percentage)):
ticket = algorithm.market_order(security.symbol, quantity, asynchronous=True, tag=target.tag)
self._order_tickets[ticket.order_id] = ticket

self._targets_collection.clear_fulfilled(algorithm)

def on_order_event(self, order_event):
# This method will get events for all orders, but if we save the tickets in Execute we can filter
# to process events for orders placed by this model
if order_event.order_id in self._order_tickets:
ticket = self._order_tickets[order_event.order_id]
if order_event.status.is_fill():
self._algorithm.debug(f"Purchased Stock: {order_event.symbol}")
if order_event.status.is_closed():
del self._order_tickets[order_event.order_id]

self.order_events.append(order_event)
9 changes: 9 additions & 0 deletions Algorithm/Execution/ExecutionModel.cs
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Orders;

namespace QuantConnect.Algorithm.Framework.Execution
{
Expand Down Expand Up @@ -57,5 +58,13 @@ public virtual void Execute(QCAlgorithm algorithm, IPortfolioTarget[] targets)
public virtual void OnSecuritiesChanged(QCAlgorithm algorithm, SecurityChanges changes)
{
}

/// <summary>
/// New order event handler
/// </summary>
/// <param name="orderEvent">Order event to process</param>
public virtual void OnOrderEvent(OrderEvent orderEvent)
{
}
}
}
Loading